NASA Astrophysics Data System (ADS)
Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.
2016-04-01
In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.
Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar
2013-01-01
The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528
Santhakumari, R; Ramamurthi, K
2011-02-01
Single crystals of the organic NLO material, benzaldehyde thiosemicarbazone (BTSC) monohydrate, were grown by slow evaporation method. Solubility of BTSC monohydrate was determined in ethanol at different temperatures. The grown crystals were characterized by single crystal X-ray diffraction analysis to determine the cell parameters and by FT-IR technique to study the presence of the functional groups. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. UV-vis-NIR spectrum shows excellent transmission in the region of 200-1100 nm. Theoretical calculations were carried out to determine the linear optical constants such as extinction coefficient and refractive index. Further the optical nonlinearities of BTSC have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. Mechanical properties of the grown crystal were studied using Vickers microhardness tester. Second harmonic generation efficiency of the powdered BTSC monohydrate was tested using Nd:YAG laser and it is found to be ∼5.3 times that of potassium dihydrogen orthophosphate. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Mengrong; Yu, Yanying; Liu, Jing; Chen, Zelu; Cao, Shuwen
2018-05-01
A series of substituted benzaldehyde thiosemicarbazide compounds (1-7) were synthesized as xanthine oxidase (XO) inhibitors, and the interactions between substituted benzaldehyde thiosemicarbazide compounds (1-7) and XO were studied by ultraviolet spectroscopy, fluorescence spectroscopy, and molecular docking. It was found that the hydrogen bond and hydrophobicity were the main interactions between substituted benzaldehyde thiosemicarbazide compounds and XO, and introducing sbnd OH at the para position of the benzene ring and a Ph- or Me-group at the amino terminal of compound 4 increased the modifier's inhibitory activity. The results suggest that the newly introduced benzene ring interacted with the hydrophobic cavity of XO by means of the π-π stacking force between the newly introduced benzene ring and the aromatic amino acid residues, such as the Phe residue, which greatly increased the modifier's inhibitory activity. We conclude that introducing the Ph-group at the amino terminal of compound 4 and the sbnd OH group at the para position of the benzene ring was a good route to obtain novel XO inhibitors. Fluorescence spectroscopy assisted by 8-anilino-1-naphthalenesulfonic acid fluorescence probing and molecular docking were helpful for achieving a preliminary and relatively clear understanding of the interactions between target compounds and XO, which deserve further study.
Martins, Solange C; Lazarin-Bidóia, Danielle; Desoti, Vânia C; Falzirolli, Hugo; da Silva, Cleuza C; Ueda-Nakamura, Tania; Silva, Sueli de O; Nakamura, Celso V
2016-12-01
This work evaluated the in vitro and in vivo activity of TDZ 2 on Trypanosoma cruzi amastigotes and determined the possible mechanism of action of this compound on T. cruzi death. TDZ 2 inhibited T. cruzi proliferation in vitro and had low haemolytic potential. It also induced morphological and ultrastructural alterations. We observed a reduction of cell volume, the depolarization of the mitochondrial membrane, an increase in ROS production, lipoperoxidation of the cell membrane, lipid bodies formation and production of nitric oxide, a decrease in reduced thiols levels and, presence of autophagic vacuoles. The in vivo study found a reduction of parasitemia in animals treated with TDZ 2 alone or combined with benznidazole. Altogether, the alterations induced by TDZ 2 point to an oxidative stress condition that lead to T. cruzi cell death. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Parker, Erica N.; Song, Jiangli; Kumar, G. D. Kishore; Odutola, Samuel O.; Chavarria, Gustavo E.; Charlton-Sevcik, Amanda K.; Strecker, Tracy E.; Barnes, Ashleigh L.; Sudhan, Dhivya R.; Wittenborn, Thomas R.; Siemann, Dietmar W.; Horsman, Michael R.; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.
2016-01-01
Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre-clinical drug candidates. PMID:26462052
Khan, Salman A; Asiri, Abdullah M
2017-08-01
Ru(II) steroidal metal complexes were synthesized by the reaction of dichlorodicarbonyl ruthenium(II) [Ru(CO) 2 Cl 2 ] n with Steroidal thiosemicarbazones. Coordination via the thionic sulfur and the azomethine nitrogen atom of the thiosemicarbazone to the Ru(II) metal. Steroidal thiosemicarbazone derivatives were obtained by the thiosemicarbazide with steroidal ketones. Structures of the steroidal thiosemicarbazone and their metal complexes were confirmed by the FT-IR, 1 H NMR, 13 C NMR, Fab-Mass spectroscopy and elemental analysis. The antibacterial activity of these compounds were first tested in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) was determined. The results showed that steroidal Ru(II) complexes are better inhibit growth as compared to steroidal thiosemicarbazones of both types of the bacteria (gram-positive and gram-negative). Copyright © 2017 Elsevier Inc. All rights reserved.
New 1-indanone thiosemicarbazone derivatives active against BVDV.
Finkielsztein, Liliana M; Castro, Eliana F; Fabián, Lucas E; Moltrasio, Graciela Y; Campos, Rodolfo H; Cavallaro, Lucía V; Moglioni, Albertina G
2008-08-01
Identification of new therapeutic agents for the treatment of viral diseases represents an area of active investigation. In an effort to develop new antiviral compounds, a series of 1-indanone thiosemicarbazone derivatives were synthesized. These derivatives were structurally characterized using several spectroscopic techniques and evaluated against bovine viral diarrhoea virus as a surrogate model for hepatitis C virus. Thiosemicarbazone 2m showed potent anti-bovine viral diarrhoea virus activity with a higher selectivity index (SI=80.29) than that of ribavirin (SI=11.64). This result determines the potentiality of these thiosemicarbazones as antiviral agents for the treatment of infections caused by other highly related members of Flaviviridae family, as hepatitis C virus.
Synthesis, characterization and biological activities of semicarbazones and their copper complexes.
Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C
2016-09-01
Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.
Gómez, Natalia; Santos, Diego; Vázquez, Ramiro; Suescun, Leopoldo; Mombrú, Alvaro; Vermeulen, Monica; Finkielsztein, Liliana; Shayo, Carina; Moglioni, Albertina; Gambino, Dinorah; Davio, Carlos
2011-08-01
In the search for alternative chemotherapeutic strategies against leukemia, various 1-indanone thiosemicarbazones, as well as eight novel platinum(II) and palladium(II) complexes, with the formula [MCl₂(HL)] and [M(HL)(L)]Cl, derived from two 1-indanone thiosemicarbazones were synthesized and tested for antiproliferative activity against the human leukemia U937 cell line. The crystal structure of [Pt(HL1)(L1)]Cl·2MeOH, where L1=1-indanone thiosemicarbazone, was solved by X-ray diffraction. Free thiosemicarbazone ligands showed no antiproliferative effect, but the corresponding platinum(II) and palladium(II) complexes inhibited cell proliferation and induced apoptosis. Platinum(II) complexes also displayed selective apoptotic activity in U937 cells but not in peripheral blood monocytes or the human hepatocellular carcinoma HepG2 cell line used to screen for potential hepatotoxicity. Present findings show that, in U937 cells, 1-indanone thiosemicarbazones coordinated to palladium(II) were more cytotoxic than those complexed with platinum(II), although the latter were found to be more selective for leukemic cells suggesting that they are promising compounds with potential therapeutic application against hematological malignancies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khan, Salman A.; Asiri, Abdullah M.; Al-Amry, Khalid; Malik, Maqsood Ahmad
2014-01-01
Metal complexes were prepared by the reaction of thiosemicarbazone with CuCl2, NiCl2, CoCl2, Cu(OAc)2, Ni(OAc)2, and Co(OAc)2. The thiosemicarbazone coordinates to metal through the thionic sulfur and the azomethine nitrogen. The thiosemicarbazone was obtained by the thiosemicarbazide with 3-acetyl-2,5-dimethylthiophene. The identities of these compounds were elucidated by IR, 1H, 13C-NMR, and GC-MS spectroscopic methods and elemental analyses. The antibacterial activity of these compounds was first tested in vitro by the disc diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) was determined by using chloramphenicol as reference drug. The results showed that compound 1.1 is better inhibitor of both types of tested bacteria as compared to chloramphenicol. PMID:24523641
Synthesis and in vitro antibacterial activity of new steroidal thiosemicarbazone derivatives.
Khan, Salman Ahmad; Kumar, Praveen; Joshi, Rajkumar; Iqbal, Prince F; Saleem, Kishwar
2008-09-01
We investigated the antibacterial activity of some new steroidal thiosemicarbazone derivatives, prepared from the reaction of cholest-5-en-7-one with thiosemicarbazides, in ethanol in the presence of a few drops of HCl at 80 degrees C in high yield. All the compounds have been characterized by means of elemental analyses, IR, 1H NMR and mass spectroscopic data, to find an effective antibacterial agent. The antibacterial activity was first tested in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria, and then the minimum inhibitory concentration (MIC) of compounds was determined. The results showed that the steroidal thiosemicarbazones derivatives inhibit growth of both types of the bacteria (Gram-positive and Gram-negative). The acetoxy and chloro derivatives of cyclopentyl and cyclohexyl amine thiosemicarbazones were found to have more antibacterial activity than the other derivatives.
Núñez-Montenegro, Ara; Carballo, Rosa; Vázquez-López, Ezequiel M
2014-11-01
The binding affinities towards estrogen receptors (ERs) α and β of a set of thiosemicarbazone ligands (HL(n)) and their rhenium(I) carbonyl complexes [ReX(HL(n))(CO)3] (X=Cl, Br) were determined by a competitive standard radiometric assay with [(3)H]-estradiol. The ability of the coordinated thiosemicarbazone ligands to undergo deprotonation and the lability of the ReX bond were used as a synthetic strategy to obtain [Re(hpy)(L(n))(CO)3] (hpy=3- or 4-hydroxypyridine). The inclusion of the additional hpy ligand endows the new thiosemicarbazonate complexes with an improved affinity towards the estrogen receptors and, consequently, the values of the inhibition constant (Ki) could be determined for some of them. In general, the values of Ki for both ER subtypes suggest an appreciable selectivity towards ERα. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.
2015-08-01
DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.
Comparison of metabolic pathways of different α-N-heterocyclic thiosemicarbazones.
Pelivan, Karla; Frensemeier, Lisa M; Karst, Uwe; Koellensperger, Gunda; Heffeter, Petra; Keppler, Bernhard K; Kowol, Christian R
2018-03-01
Clinical failure of novel drugs is often related to their rapid metabolism and excretion. This highlights the importance of elucidation of their pharmacokinetic profile already at the preclinical stage of drug development. Triapine, the most prominent representative of α-N-heterocyclic thiosemicarbazones, was investigated in more than 30 clinical phase I/II trials, but the results against solid tumors were disappointing. Recent investigations from our group suggested that this is, at least partially, based on the fast metabolism and excretion. In order to establish more detailed structure/activity/metabolism relationships, herein a panel of 10 different Triapine derivatives was investigated for their metabolic pathways. From the biological point of view, the panel consists of terminally dimethylated thiosemicarbazones with nanomolar IC 50 values, derivatives with micromolar cytotoxicities comparable to Triapine and a completely inactive representative. To study the oxidative metabolism, a purely instrumental approach based on electrochemistry/mass spectrometry was applied and the results were compared to the data obtained from microsomal incubations. Overall, the investigated thiosemicarbazones underwent the phase I metabolic reactions dehydrogenation, hydroxylation, oxidative desulfuration (to semicarbazone and amidrazone) and demethylation. Notably, dehydrogenation resulted in a ring-closure reaction with formation of thiadiazoles. Although strong differences between the metabolic pathways of the different thiosemicarbazones were observed, they could not be directly correlated to their cytotoxicities. Finally, the metabolic pathways for the most cytotoxic compound were elucidated also in tissues collected from drug-treated mice, confirming the data obtained by electrochemical oxidation and microsomes. In addition, the in vivo experiments revealed a very fast metabolism and excretion of the compound. Graphical abstract Structure/activity/metabolisation relationships for 10 anticancer thiosemicarbazones were established using electrochemical oxidation coupled to mass spectrometry (EC-MS) and human liver microsomes analyzed by LC-MS.
[Study of the effect of thiosemicarbazones against Toxoplasma gondii].
Gomes, Marco Antônio G B; Carreira, Gabriela M; Souza, Daniela P V; Nogueira, Paulo Marcos R; de Melo, Edésio J T; Maria, Edmilson J
2013-04-01
Toxoplasmosis is a neglected disease, with an estimated occurrence of one-third of the population worldwide. Research in medicinal chemistry has for some years been pursuing the development of new drugs against toxoplasmosis, because current treatments cause serious side effects in the patient. The use of thiosemicarbazones as an alternative option for the treatment of various diseases has been published in recent years, due to their, among others, anticancer, antimalarial, antitrypanosomal, antibacterial, and antitoxoplasmosis activities, the latter being the subject of this study, which is based upon biological analyses and tests of the response of Toxoplasma gondii in the presence of thiosemicarbazones. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V
2014-03-01
The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.
Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.
2009-01-01
We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-β-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322
NASA Astrophysics Data System (ADS)
Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M. R. Prathapachandra
2015-03-01
Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N4-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ = 0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)sbnd I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g|| > g⊥ > 2.0023 and the g values in frozen DMF are consistent with the dx2-y2 ground state. The thermal stabilities of some of the complexes were also determined.
Kovacevic, Zaklina; Menezes, Sharleen V.; Sahni, Sumit; Kalinowski, Danuta S.; Bae, Dong-Hun; Lane, Darius J. R.; Richardson, Des R.
2016-01-01
N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963
Final report on the safety assessment of benzaldehyde.
Andersen, Alan
2006-01-01
Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Little acute toxicity was seen. The oral LD(50) of Benzaldehyde in rats and mice ranged from 800 to 2850 mg/kg. The intraperitoneal LD(50) in white rats was 3265 mg/kg. In short-term oral studies, the no observed adverse effect level (NOAEL) was 400 mg/kg in rats and mice. In subchronic oral studies, the NOAEL was 400 mg/kg in rats and 600 mg/kg in mice. In a 16-week feeding study, rats given up to 10,000 ppm showed no signs of toxicity. Repeated inhalation of volatilized Benzaldehyde produced ocular and nasal irritation at 500 ppm and death in rabbits at 750 ppm. Undiluted Benzaldehyde was irritating to rabbit eyes, causing edema, erythema, and pain. Benzaldehyde was determined not to be a contact sensitizer, but did produce allergic reactions in a maximization test. Clinical reports of allergy to Benzaldehyde are rare. Benzoic Acid did not produce irritation or sensitization reactions in human clinical studies. Benzoic Acid also failed to produce reactions in phototoxicity and photosensitization tests. Neither Benzaldehyde, Benzoic Acid, nor Sodium Benzoate are reproductive or developmental toxicants at doses that are nontoxic to the mother. In a behavioral study, blood levels of 0.12 ng/ml Benzaldehyde produced a 44% reduction in motor activity in mice. Benzaldehyde did not produce mutations in bacterial assays, but did produce chromosomal abnormalities in Chinese hamster cells and increased mutations in a mouse lymphoma forward mutation assay. Benzaldehyde was evaluated by the National Toxicology Program, which found no evidence of carcinogenicity in rats, and some evidence of carcinogenicity in mice. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products.
Jayakumar, K; Sithambaresan, M; Aiswarya, N; Kurup, M R Prathapachandra
2015-03-15
Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N(4)-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ=0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g||>g⊥>2.0023 and the g values in frozen DMF are consistent with the d(x2-y2) ground state. The thermal stabilities of some of the complexes were also determined. Copyright © 2014 Elsevier B.V. All rights reserved.
Jalilian, Amir Reza; Yousefnia, Hassan; Shafaii, Kamaleddin; Novinrouz, Aytak; Rajamand, Amir Abbas
2012-01-01
Various radiometal complexes have been developed for tumor imaging, especially Ga-68 tracer. In the present study, the development of a radiogallium bis-thiosemicarbazone complex has been reported. [67Ga] acetylacetonate bis(thiosemicarbazone) complex ([67Ga] AATS) was prepared starting [67Ga]Gallium acetate and freshly prepared acetylacetonate bis (thiosemicarbazone) (AATS) in 30 min at 90°C. The partition co-efficient and the stability of the tracer were determined in final solution (25°C) and the presence of human serum (37°C) up to 24 h. The biodistribution of the labeled compound in wild-type and fibrosarcoma-bearing rodents were determined up to 72 h. The radiolabled Ga complex was prepared in high radiochemical purity (> 97%, HPLC) followed by initial biodistribution data with the significant tumor accumulation of the tracer in 2 h which is far higher than free Ga-67 cation while the compound wash-out is significantly faster. Above-mentioned pharmacokinetic properties suggest an interesting radiogallium complex while prepared by the PET Ga radioisotope, 68Ga, in accordance with the physical half life, for use in fibrosarcoma tumors, and possibly other malignancies. PMID:24250475
Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María
2018-03-25
Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Salvarese, Nicola; Spolaore, Barbara; Marangoni, Selena; Pasin, Anna; Galenda, Alessandro; Tamburini, Sergio; Cicoria, Gianfranco; Refosco, Fiorenzo; Bolzati, Cristina
2018-06-01
An assessment study involving the use of the transglutaminase (TGase) conjugation method and the nitride-technetium-99m labelling on a bis(thiosemicarbazone) (BTS) bifunctional chelating agent is presented. The previously described chelator diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-(N 4 -amino-3-thiosemicarbazone), H 2 ATSM/A, has been functionalized with 6-aminohexanoic acid (ε-Ahx) to generate the bifunctional chelating agent diacetyl-2-(N 4 -methyl-3-thiosemicarbazone)-3-[N 4 -(amino)-(6-aminohexanoic acid)-3-thiosemicarbazone], H 2 ATSM/A-ε-Ahx (1), suitable for conjugation to glutamine (Gln) residues of bioactive molecules via TGase. The feasibility of the TGase reaction in the synthesis of a bioconjugate derivative was investigated using Substance P (SP) as model peptide. Compounds 1 and H 2 ATSM/A-ε-Ahx-SP (2) were labelled with nitride-technetium-99m, obtaining the complexes [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx)] ( 99m Tc1) and [ 99m Tc][Tc(N)(ATSM/A-ε-Ahx-SP)] ( 99m Tc2). The chemical identity of 99m Tc1 and 99m Tc2 was confirmed by radio/UV-RP-HPLC combined with ESI-MS analysis on the respective carrier-added products 99g/99m Tc1 and 99g/99m Tc2. The stability of the radiolabelled complexes after incubation in various environments was investigated. All the results were compared with those obtained for the corresponding 64 Cu-analogues, 64 Cu1 and 64 Cu2. The TGase reaction allows the conjugation of 1 with the peptide, but it is not highly efficient due to instability of the chelator in the required conditions. The SP-conjugated complexes are unstable in mouse and human sera. However, indeed the BTS system can be exploited as nitride-technetium-99m chelator for highly efficient technetium labelling, thus making compound 1 worthy of further investigations for new targeted technetium and copper radiopharmaceuticals encompassing Single Photon Emission Computed Tomography and Positron Emission Tomography imaging. Copyright © 2018 Elsevier Inc. All rights reserved.
Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta
2018-03-21
X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.
Structural and cytotoxic studies of cationic thiosemicarbazones
NASA Astrophysics Data System (ADS)
Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai
2017-06-01
Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.
NASA Astrophysics Data System (ADS)
Manikandan, R.; Viswnathamurthi, P.
2012-11-01
Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.
Tang, Lijun; Huang, Zhenlong; Zheng, Zhuxuan; Zhong, Keli; Bian, Yanjiang
2016-09-01
Selective fluorescence turn on Zn(2+) sensor with long-wavelength emission and a large Stokes shift is highly desirable in Zn(2+) sensing area. We reported herein the synthesis and Zn(2+) recognition properties of a new thiosemicarbazone-based fluorescent sensor L. L displays high selectivity and sensitivity toward Zn(2+) over other metal ions in DMSO-H2O (1:1, v/v, HEPES 10 mM, pH = 7.4) solution with a long-wavelength emission at 572 nm and a large Stokes shift of 222 nm. Confocal fluorescence microscopy experiments demonstrate that L is cell-permeable and capable of monitoring intracellular Zn(2+). Graphical Abstract We report a new thiosemicarbazone-based fluorescent sensor (L) for selective recognition of Zn(2+) with a long wavelength emission and a large Stokes shift.
Influence of thermal processing conditions on flavor stability in fluid milk: benzaldehyde.
Potineni, R V; Peterson, D G
2005-01-01
Flavor loss in dairy products has been associated with enzymatic degradation by xanthine oxidase. This study was conducted to investigate the influence of milk thermal processing conditions (or xanthine oxidase inactivation) on benzaldehyde stability. Benzaldehyde was added to whole milk which had been thermally processed at 4 levels: (1) none or raw, (2) high temperature, short time (HTST) pasteurization, (3) HTST pasteurization, additionally heated to 100 degrees C (PAH), and (4) UHT sterilized. Additionally, PAH and UHT milk samples containing benzaldehyde (with and without ferrous sulfate) were spiked with xanthine oxidase. Azide was added as an antimicrobial agent (one additional pasteurized sample without) and the microbial load (total plate count) was determined on d 0, 2, and 6. The concentration of benzaldehyde and benzoic acid in all milk samples were determined at d 0, 1, 2, 4, and 6 (stored at 5 degrees C) by gas chromatography/mass spectrometry in selective ion monitory mode. Over the 6-d storage period, more than 80% of the benzaldehyde content was converted (oxidized) to benzoic acid in raw and pasteurized milk, whereas no change in the benzaldehyde concentration was found in PAH or UHT milk samples. Furthermore, the addition of xanthine oxidase or xanthine oxidase plus ferrous sulfate to PAH or UHT milk samples did not result in benzaldehyde degradation over the storage period.
Kumar, Kewal; Schniper, Sarah; González-Sarrías, Antonio; Holder, Alvin A; Sanders, Natalie; Sullivan, David; Jarrett, William L; Davis, Krystyn; Bai, Fengwei; Seeram, Navindra P; Kumar, Vipan
2014-10-30
A gallium(III) complex with 7-chloroquinoline thiosemicarbazone was synthesized and characterized. The complex proved to be thirty-one times more potent on colon cancer cell line, HCT-116, with considerably less cytotoxicity on non-cancerous colon fibroblast, CCD-18Co, when compared to etoposide. Its anti-malarial potential on 3D7 isolate of Plasmodium falciparum was better than lumefantrine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Ashok Kumar, S L; Saravana Kumar, M; Sreeja, P B; Sreekanth, A
2013-09-01
Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques. Copyright © 2013 Elsevier B.V. All rights reserved.
Schulze, W; Gutsche, W; Wohlrabe, K; Fleck, W; Tresselt, D
1985-08-01
The synthesis of S-substituted derivatives of 1,4-benzoquinone-guanylhydrazone-thiosemicarbazone is described. The obtained 1,4-benzoquinone-guanylhydrazone-S-alkyl (resp. aralkyl)-isothiosemicarbazones, in comparison with the unsubstituted standard compound, showed a significantly decreased biological activity against the murine leukemias L 1210 and P 388 as well as against the growth of several kinds of bacteria. Therefore the S-substitution seems not to be useful for reaching a maximum activity.
Comparative evaluation of Bis(thiosemicarbazone)- Biotin and Met-ac-TE3A for tumor imaging
NASA Astrophysics Data System (ADS)
Singh, Sweta; Tiwari, Anjani K.; Varshney, Raunak; Mathur, R.; Shukla, Gauri; Bag, N.; Singh, B.; Mishra, Anil K.
2016-01-01
2,2‧,2″-(11-(2-((4-mercapto-1-methoxy-1-oxobutan-2-yl)amino)-2-oxoethyl)-1,4,8,11-tetraaza cyclotetradecane-1,4,8-triyl)triacetic acid, Met-ac-TE3A and (E)-N-methyl-2-((E)-3-(2-(2-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)hydrazinecarbono-thioyl)hydrazonobutan-2-ylidene)hydrazinecarbothioamide, Bis(thiosemicarbazone)- Biotin were synthesized and evaluated for imaging application. The pharmacokinetics of these ligands were determined by tracer methods. In vitro human serum stability of 99mTc Met-ac-TE3A/99mTc Bis(thiosemicarbazone)-Biotin after 24 h was found to be 96.5% and 97.0% respectively. Blood kinetics of both ligands in normal rabbits showed biphasic clearance pattern. Ex vivo biodistribution study revealed significant initial tumor uptake and high tumor/muscles ratio which is a pre-requisite condition for a ligand to work as SPECT-radiopharmaceutical for tumor imaging.
Hameed, Abdul; Khan, Khalid Mohammed; Zehra, Syeda Tazeen; Ahmed, Ramasa; Shafiq, Zahid; Bakht, Syeda Mahwish; Yaqub, Muhammad; Hussain, Mazhar; de la Vega de León, Antonio; Furtmann, Norbert; Bajorath, Jürgen; Shad, Hazoor Ahmad; Tahir, Muhammad Nawaz; Iqbal, Jamshed
2015-08-01
Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a-3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Raja, N.; Ramesh, R.
2010-02-01
Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.
Buschini, Annamaria; Giordani, Federica; de Albuquerque, Cristina Northfleet; Pellacani, Claudia; Pelosi, Giorgio; Rossi, Carlo; Zucchi, Tânia Maria Araújo Domingues; Poli, Paola
2007-05-15
Human American trypanosomiasis is resurgent in Latin Americans, and new drugs are urgently required as current medications suffer from a number of drawbacks. Some nitroheterocycles have been demonstrated to exert a potent activity against trypanosomes. However, host toxicity issues halted their development as trypanocides. As part of the efforts to develop new compounds in order to treat parasitic infections, it is important to define their structure-activity relationship. In this study, 5-nitromegazol and two of its analogues, 4-nitromegazol, and 1-methyl-5-nitro-2-imidazolecarboxaldehyde 5-nitroimidazole-thiosemicarbazone, were tested and compared for in vitro induction of DNA damage in human leukocytes by the comet assay, performed at different pHs to better identify the types of damage. Specific oxidatively generated damage to DNA was also measured by using the comet assay with endonucleases. DNA damage was found in 5-nitromegazol-treated cells: oxidative stress appeared as the main source of DNA damage. 4-Nitromegazol did not produce any significant effect, thus confirming that 4-nitroimidazoles isomers have no important biological activity. The 5-nitroimidazole-thiosemicarbazone induced DNA damage with a higher efficiency than 5-nitromegazol. The central role in the reduction process played by the acidic hydrazine proton present in the thiosemicarbazone group but not in the cyclic (thiadiazole) form can contribute to rationalise our results. Given its versatility, thiosemicarbazone moiety could be involved in different reactions with nitrogenous bases (nucleophilic and/or electrophilic attacks).
NASA Astrophysics Data System (ADS)
El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.
2018-04-01
The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.
López-Torres, Elena; Mendiola, Ma Antonia; Pastor, César J; Pérez, Beatriz Souto
2004-08-23
Reactions of benzil bis(thiosemicarbazone), LH(6), with M(NO(3))(2).nH(2)O (M = Zn, Cd, and Ni), in the presence of LiOH.H(2)O, show the versatile behavior of this molecule. The structure of the ligand, with the thiosemicarbazone moieties on opposite sides of the carbon backbone, changes to form complexes by acting as a chelating molecule. Complexes of these metal ions with empirical formula [MLH(4)] were obtained, although they show different molecular structures depending on their coordinating preferences. The zinc complex is the first example of a crystalline coordination polymer in which a bis(thiosemicarbazone) acts as bridging ligand, through a nitrogen atom, giving a 1D polymeric structure. The coordination sphere is formed by the imine nitrogen and sulfur atoms, and the remaining position, in a square-based pyramid, is occupied by an amine group of another ligand. The cadmium derivative shows the same geometry around the metal ion but consists of a dinuclear structure with sulfur atoms acting as a bridge between the metal ions. However, in the nickel complex LH(6) acts as a N(2)S(2) ligand yielding a planar structure for the nickel atom. The ligand and its complexes have been characterized by X-ray crystallography, microanalysis, mass spectrometry, IR, (1)H, and (13)C NMR spectroscopies and for the cadmium complex by (113)Cd NMR in solution and in the solid state.
Soraires Santacruz, María C; Fabiani, Matías; Castro, Eliana F; Cavallaro, Lucía V; Finkielsztein, Liliana M
2017-08-01
A series of N 4 -arylsubstituted thiosemicarbazones derived from 1-indanones and a set of compounds lacking such substitution in the N 4 position of the thiosemicarbazone moiety were synthesized and evaluated for their anti-bovine viral diarrhea virus (BVDV) activity. Among these, derivatives 2 and 15 displayed high activity (EC 50 =2.7±0.4 and 0.7±0.1µM, respectively) as inhibitors of BVDV replication. Novel key structural features related to the anti-BVDV activity were identified by structure-activity relationship (SAR) analysis. In a previous study, the thiosemicarbazone of 5,6-dimethoxy-1-indanone (5,6-TSC) was characterized as a non-nucleoside inhibitor (NNI) of the BVDV RNA-dependent RNA polymerase. In the present work, cross-resistance assays were performed with the most active compounds. Such studies were carried out on 5,6-TSC resistant BVDV (BVDV-TSC r T1) carrying mutations in the viral polymerase. This BVDV mutant was also resistant to compound 15. Molecular docking studies and MM/PBSA calculations were performed to assess the most active derivatives at the 5,6-TSC viral polymerase binding site. The differences in the interaction pattern and the binding affinity of derivative 15 either to the wild type or BVDV-TSC r T1 polymerase were key factors to define the mode of action of this compound. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cherry-flavoured electronic cigarettes expose users to the inhalation irritant, benzaldehyde.
Kosmider, Leon; Sobczak, Andrzej; Prokopowicz, Adam; Kurek, Jolanta; Zaciera, Marzena; Knysak, Jakub; Smith, Danielle; Goniewicz, Maciej L
2016-04-01
Many non-cigarette tobacco products, including e-cigarettes, contain various flavourings, such as fruit flavours. Although many flavourings used in e-cigarettes are generally recognised as safe when used in food products, concerns have been raised about the potential inhalation toxicity of these chemicals. Benzaldehyde, which is a key ingredient in natural fruit flavours, has been shown to cause irritation of respiratory airways in animal and occupational exposure studies. Given the potential inhalation toxicity of this compound, we measured benzaldehyde in aerosol generated in a laboratory setting from flavoured e-cigarettes purchased online and detected benzaldehyde in 108 out of 145 products. The highest levels of benzaldehyde were detected in cherry-flavoured products. The benzaldehyde doses inhaled with 30 puffs from flavoured e-cigarettes were often higher than doses inhaled from a conventional cigarette. Levels in cherry-flavoured products were >1000 times lower than doses inhaled in the workplace. While e-cigarettes seem to be a promising harm reduction tool for smokers, findings indicate that using these products could result in repeated inhalation of benzaldehyde, with long-term users risking regular exposure to the substance. Given the uncertainty surrounding adverse health effects stemming from long-term inhalation of flavouring ingredients such as benzaldehyde, clinicians need to be aware of this emerging risk and ask their patients about use of flavoured e-cigarettes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Mohammadi, Ali; Mohammadi, Somayeh; Bayandori Moghaddam, Abdolmajid; Masoumi, Vahideh; Walker, Roderick B
2014-10-01
In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography-flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50-800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n = 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Shi, Daming; Vohs, John M.
2016-08-01
Temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) were used to characterize the adsorption and reaction of benzaldehyde (C6H5CHO) on hydrogen-covered Pt(111) and Zn-modified Pt(111) surfaces. Benzaldehyde was found to interact with Pt(111) via both the phenyl ring and carbonyl of the aldehyde group. This bonding configuration facilitates unselective decomposition of the benzaldehyde to produce CO, H2, and small hydrocarbon fragments at relatively low temperatures. On the other hand, benzaldehyde was found to bond to Zn-decorated Pt(111) surface exclusively via the carbonyl group in an η2(C, O) configuration, with the phenyl ring tilted away from the surface. This configuration weakens Csbnd O bond in the carbonyl facilitating its cleavage and helps prevent hydrogenation of the phenyl ring.
NASA Astrophysics Data System (ADS)
Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada
2014-01-01
Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.
NASA Astrophysics Data System (ADS)
Mohamed Subarkhan, M.; Ramesh, R.
2015-03-01
A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.
Pacca, Carolina Colombelli; Marques, Rafael Elias; Espindola, José Wanderlan P; Filho, Gevânio B O Oliveira; Leite, Ana Cristina Lima; Teixeira, Mauro Martins; Nogueira, Mauricio L
2017-03-01
Arboviruses, arthropod-borneviruses, are frequency associated to human outbreak and represent a serious health problem. The genus Flavivirus, such as Yellow Fever Virus (YFV) and Saint Louis Encephalitis Virus (SLEV), are important pathogens with high morbidity and mortality worldwide. In Brazil, YFV is maintained in sylvatic cycle, but many cases are notified annually, despite the efficiency of vaccine. SLEV causes an acute encephalitis and is widely distributed in the Americas. There is no specific antiviral drugs for these viruses, only supporting treatment that can alleviate symptoms and prevent complications. Here, we evaluated the potential anti-YFV and SLEV activity of a series of thiosemicarbazones and phthalyl-thiazoles. Plaque reduction assay, flow cytometry, immunofluorescence and cellular viability were used to test the compounds in vitro. Treated cells showed efficient inhibition of the viral replication at concentrations that presented minimal toxicity to cells. The assays showed that phthalyl-thiazole and phenoxymethyl-thiosemicarbazone reduced 60% of YFV replication and 75% of SLEV replication. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.
Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W
2016-09-01
During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, p<0.0001). In the case of cherry flavoured beverages, industrial best practices should include monitoring for benzene. Formulations containing either benzoic acid or benzaldehyde in combination with ascorbic acid should be avoided. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benzaldehyde lyase, a novel thiamine PPi-requiring enzyme, from Pseudomonas fluorescens biovar I.
González, B; Vicuña, R
1989-01-01
Pseudomonas fluorescens biovar I can grow on benzoin as the sole carbon and energy source. This ability is due to benzaldehyde lyase, a new type of enzyme that irreversibly cleaves the acyloin linkage of benzoin, producing two molecules of benzaldehyde. Benzaldehyde lyase was purified 70-fold and found to require catalytic amounts of thiamine PPi (TPP) and a divalent cation as cofactors. Optimal activity was obtained with a 1.0 mM concentration of Mn2+, Mg2+, or Ca2+. Gel permeation chromatography indicated a native molecular weight of 80,000, whereas the enzyme migrated in sodium dodecyl sulfate-containing polyacrylamide gels as a single polypeptide with a molecular weight of 53,000. Benzaldehyde lyase is highly specific; of a variety of structurally related compounds tested, only benzoin and anisoin (4,4'-dimethoxybenzoin) acted as substrates, their apparent Kms being 9.0 x 10(-3) and 3.25 x 10(-2) mM, respectively. A catalytic mechanism for the enzyme is proposed. Images PMID:2496105
Kowol, Christian R; Nagy, Nóra V; Jakusch, Tamás; Roller, Alexander; Heffeter, Petra; Keppler, Bernhard K; Enyedy, Éva A
2015-11-01
The stoichiometry and thermodynamic stability of vanadium(IV/V) complexes of Triapine and two related α(N)-heterocyclic thiosemicarbazones (TSCs) with potential antitumor activity have been determined by pH-potentiometry, EPR and (51)V NMR spectroscopy in 30% (w/w) dimethyl sulfoxide/water solvent mixtures. In all cases, mono-ligand complexes in different protonation states were identified. Dimethylation of the terminal amino group resulted in the formation of vanadium(IV/V) complexes with considerably higher stability. Three of the most stable complexes were also synthesized in solid state and comprehensively characterized. The biological evaluation of the synthesized vanadium complexes in comparison to the metal-free ligands in different human cancer cell lines revealed only minimal influence of the metal ion. Thus, in addition the coordination ability of salicylaldehyde thiosemicarbazone (STSC) to vanadium(IV/V) ions was investigated. The exchange of the pyridine nitrogen of the α(N)-heterocyclic TSCs to a phenolate oxygen in STSC significantly increased the stability of the complexes in solution. Finally, this also resulted in increased cytotoxicity activity of a vanadium(V) complex of STSC compared to the metal-free ligand. Copyright © 2015 Elsevier Inc. All rights reserved.
Enyedy, Éva A.; Primik, Michael F.; Kowol, Christian R.; Arion, Vladimir B.; Kiss, Tamás; Keppler, Bernhard K.
2012-01-01
Stoichiometry and stability of GaIII, FeIII, FeII complexes of Triapine and five related α-N heterocyclic thiosemicarbazones with potential antitumor activity have been determined by pH-potentiometry, UV-vis spectrophotometry, 1H NMR spectroscopy, and spectrofluorimetry in aqueous solution (with 30% DMSO), together with the characterization of the proton dissociation processes. Additionally, the redox properties of the iron complexes were studied by cyclic voltammetry at various pH values. Formation of high stability bis-ligand complexes was found in all cases, which are predominant at physiological pH with FeIII/FeII, whilst only at the acidic pH range with GaIII. The results show that among the thiosemicarbazones with various substituents the N-terminal dimethylation does not exert a measurable effect on the redox potential, but has the highest impact on the stability of the complexes as well as the cytotoxicity, especially in the absence of a pyridine-NH2 group in the molecule. In addition the fluorescence properties of the ligands in aqueous solution and their changes caused by GaIII were studied. PMID:21523301
Wang, Kun; Arntfield, Susan D
2016-11-15
Molecular interactions between heterologous classes of flavour compounds with salt-extracted pea protein isolates (PPIs) were determined using various bond disrupting agents followed by GC/MS analysis. Flavour bound by proteins decreased in the order: dibutyl disulfide>octanal>hexyl acetate>2-octanone=benzaldehyde. Benzaldehyde, 2-octanone and hexyl acetate interacted non-covalently with PPIs, whereas octanal bound PPIs via covalent and non-covalent forces. Dibutyl disulfide reacted with PPIs covalently, as its retention was not diminished by urea and guanidine hydrochloride. Using propylene glycol, H-bonding and ionic interactions were implicated for hexyl acetate, benzaldehyde, and 2-octanone. A protein-destabilising salt (Cl3CCOONa) reduced bindings for 2-octanone, hexyl acetate, and benzaldehyde; however, retention for octanal and dibutyl disulfide increased. Conversely, a protein-stabilising salt (Na2SO4) enhanced retention for benzaldehyde, 2-octanone, hexyl acetate and octanal. Formation of a volatile flavour by-product, 1-butanethiol, from dibutyl disulfide when PPIs were treated with dithiothreitol indicated occurrence of sulfhydryl-disulfide interchange reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kokalis-Burelle, N.; Martinez-Ochoa, N.; Rodríguez-Kábana, R.; Kloepper, J. W.
2002-01-01
The effects of combinations of organic amendments, phytochemicals, and plant-growth promoting rhizobacteria on tomato (Lycopersicon esculentum) germination, transplant growth, and infectivity of Meloidogyne incognita were evaluated. Two phytochemicals (citral and benzaldehyde), three organic amendments (pine bark, chitin, and hemicellulose), and three bacteria (Serratia marcescens, Brevibacterium iodinum, and Pseudomonas fluorescens) were assessed. Increasing rates of benzaldehyde and citral reduced nematode egg viability in vitro. Benzaldehyde was 100% efficacious as a nematicide against juveniles, whereas citral reduced juvenile viability to less than 20% at all rates tested. Benzaldehyde increased tomato seed germination and root weight, whereas citral decreased both. High rates of pine bark or chitin reduced plant growth but not seed germination, whereas low rates of chitin increased shoot length, shoot weight, and root weight; improved root condition; and reduced galling. The combination of chitin and benzaldehyde significantly improved tomato transplant growth and reduced galling. While each of the bacterial isolates contributed to increased plant growth in combination treatments, only Brevibacterium iodinum applied alone significantly improved plant growth. PMID:19265957
Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio
2007-04-01
This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response time of no more than ca. 10 min. Figure A single-step multi-sandwich immunoassay step increases SPR sensor signal by ca. 12 times affording a low detection limit for benzaldehyde of 5 ppt.
Hernández, Karel; Parella, Teodor; Petrillo, Giovanna; Usón, Isabel; Wandtke, Claudia M; Joglar, Jesús; Bujons, Jordi; Clapés, Pere
2017-05-02
Intramolecular benzoin reactions catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I (BAL) are reported. The structure of the substrates envisaged for this reaction consists of two benzaldehyde derivatives linked by an alkyl chain. The structural requirements needed to achieve the intramolecular carbon-carbon bond reaction catalyzed by BAL were established. Thus, a linker consisting of a linear alkyl chain of three carbon atoms connected through ether-type bonds to the 2 and 2' positions of two benzaldehyde moieties, which could be substituted with either Cl, Br, or OCH 3 at either the 3 and 3' or 5 and 5' positions, were suitable substrates for BAL. Reactions with 61-84 % yields of the intramolecular product and ee values between 64 and 98 %, were achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit
2008-07-28
Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used tomore » probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.« less
Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar
2009-01-01
Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg2+ as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these type of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analog of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 Å (PDB ID: 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase. PMID:18570438
Synthesis and spectral studies of platinum metal complexes of benzoin thiosemicarbazone
NASA Astrophysics Data System (ADS)
Offiong, Offiong E.
1994-11-01
The platinum metal chelates of benzoin thiosemicarbazone obtained with Ru(III), Rh(III), Ir(III), Pd(II) and Pt(II) were prepared from their corresponding halide salts. The complexes were characterized by elemental analysis, conductance measurement, IR, Raman, 1H-NMR, 13C-NMR and UV-visible spectra studies. Various ligand field parameters and nephelauxetic parameters were also calculated. The mode of bonding and the geometry of the ligand environment around the metal ion have been discussed in the light of the available data obtained. Complexes of Ru(III), Rh(III) and Ir(III) are six-coordinate octahedral, while Pd(II) and Pt(II) halide complexes are four-coordinated with halides bridging.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Kumar, Anil
2007-12-01
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.
Collett, Christopher J; Massey, Richard S; Taylor, James E; Maguire, Oliver R; O'Donoghue, AnnMarie C; Smith, Andrew D
2015-01-01
Rate and equilibrium constants for the reaction between N-aryl triazolium N-heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3-(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2-substituent in these reactions and provide insight into the chemoselectivity of cross-benzoin reactions. PMID:25908493
Collett, Christopher J.; Massey, Richard S.; Taylor, James E.; Maguire, Oliver R.
2015-01-01
Abstract Rate and equilibrium constants for the reaction between N‐aryl triazolium N‐heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3‐(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2‐substituent in these reactions and provide insight into the chemoselectivity of cross‐benzoin reactions. PMID:27478264
Integrated Risk Information System (IRIS)
Benzaldehyde ; CASRN 100 - 52 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe
NASA Astrophysics Data System (ADS)
Kotian, Avinash; Kumara, Karthik; Kamat, Vinayak; Naik, Krishna; Kokare, Dhoolesh G.; Nevrekar, Anupama; Lokanath, Neratur Krishnappagowda; Revankar, Vidyanand K.
2018-03-01
In the present work, three potential metal ion chelating ligands, p-halo N4-phenyl substituted thiosemicarbazones are synthesized and characterized. The molecular structure of all (E)-4-(4-halophenyl)-1-(3-hydroxyiminobutan-2-ylidene) thiosemicarbazones (halo = F/Cl/Br) are determined by single crystal X-ray diffraction method. All the molecules have crystallized in monoclinic crystal system with P21/n space group. The ligands show Csbnd H⋯S and Nsbnd H⋯S intermolecular interactions, which are responsible to form the supramolecular self-assemblies through R22(8), R22(12) and R22(14) ring motifs. Hirshfeld surface analysis is carried out to explore the intermolecular interactions. A series of Co(III) and Ni(II) mononuclear transition metal complexes derived from these ligands have been synthesized and characterized by various spectro-analytical methods. The metal to ligand stoichiometry has been found to be 1:2 in all the complexes. The synthesized compounds have been investigated for their in vitro antimicrobial potencies. The compounds are found to be more active than the standard used, in the case of E. coli and A. niger. Additionally, they are also screened for their in vitro antitubercular activity.
Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Tarasconi, P; Albertini, R; Dall'Aglio, P P; Lunghi, P; Pinelli, S
1995-05-15
The reaction of zinc chloride, acetate, or perchlorate with two bis(thiosemicarbazones) of 2,6-diacetylpyridine [H2daptsc = 2,6-diacetylpyridine bis(thiosemicarbazone) and H2dapipt = 2,6-diacetylpyridine bis(hydrazinopyruvoylthiosemicarbazone)] leads to the formation of four novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the two compounds--[Zn(daptsc)]2.2DMF (1) and [Zn(H2dapipt)(OH2)2](CIO4)2.3H2O (2)--also have been determined by x-ray methods from diffractometer data. Compound (1) is dimeric and the two zinc atoms have a distorted octahedral coordination. The ligand is deprotonated. In compound (2), the coordination geometry about zinc is pentagonal--bipyramidal and the ligand is in the neutral form. The molecular structure of (2) consists of cations [Zn(H2dapipt)(OH2)]2+, CIO4- disordered anions, and three water molecules of solvation. Biological studies have shown that the ligands and the complexes Zn(daptsc).1/2EtOH and Zn(H2daptsc)Cl2 have an effect in vitro on cell proliferation and differentiation (inhibition); both are concentration dependent. [Zn(daptsc)]2.2DMF (1) shows the effects at lower concentration values with respect to other compounds.
Loh, Sheng Wei; Looi, Chung Yeng; Hassandarvish, Pouya; Phan, Alicia Yi Ling; Wong, Won Fen; Wang, Hao; Paterson, Ian C.; Ea, Chee Kwee; Mustafa, Mohd Rais; Maah, Mohd Jamil
2014-01-01
Background The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. Methodology/Principal Findings Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. Conclusions/Significance Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects. PMID:24977407
The Kinetic Behavior of Benzaldehyde under Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Fecteau, K.; Gould, I.; Hartnett, H. E.; Williams, L. B.; Shock, E.
2013-12-01
Aldehydes represent an intermediate redox state between alcohols and carboxylic acids and are likely intermediates in the transformation of organic compounds in natural systems. We have conducted kinetic studies of a model aldehyde, benzaldehyde, in high-temperature water (250-350 °C, saturation pressure) in clear fused quartz (CFQ) autoclaves. Under these conditions, benzaldehyde is observed to undergo a disproportionation reaction to benzyl alcohol and benzoic acid reminiscent of the base-catalyzed Cannizzaro reaction known to occur at cooler temperatures. Benzene is also produced via decarbonylation of the aldehyde. We have obtained pseudo second-order rate constants for the decomposition of benzaldehyde at 250, 300, and 350 °C. Rates derived via repeated heating phases and subsequent quantitative 13C-NMR spectroscopy of a single NMR-compatible CFQ tube containing isotopically labeled benzaldehyde are consistent with those obtained by analysis of product suites from individual timed experiments via gas chromatography. Arrhenius parameters for these rate constants are consistent with published values for the reaction under supercritical conditions from one study (Tsao et al. 1992) yet the pre-exponential factor is approximately 7 orders of magnitude smaller than that derived from another study (Ikushima et al. 2001). Moreover, fitting our rate constants with the Eyring equation yields an entropy of activation (ΔS‡) of -26.6 kcal mol-1 K-1, which is consistent for a bimolecular transition state at the rate-limiting step. In contrast, the rates of Ikushima et al. yield a positive value of ΔS‡, which is inconsistent with the putative mechanism for the reaction. The linear Arrhenius behavior of the decomposition of benzaldehyde from high-temperature liquid to supercritical conditions demonstrates the potential for extrapolating experimentally derived rates of reactions for organic functional group transformations to conditions where diagenesis, alteration, metamorphism, and other hydrothermal processes of interest occur in natural systems. References Ikushima, Y., K. Hatakeda, O. Sato, T. Yokoyama, and M. Arai. 2001. Structure and base catalysis of supercritical water in the noncatalytic benzaldehyde disproportionation using water at high temperatures and pressures. Angewandte Chemie, 40, 210-213. Tsao, C.C., Y. Zhou, X. Liu, and T.J. Houser. 1992. Reactions of supercritical water with benzaldehyde, benzylidenebenzylamine, benzyl alcohol, and benzoic acid. The Journal of Supercritical Fluids, 5, 107-113.
Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi
2018-05-01
A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.
Alam, Israt S; Arrowsmith, Rory L; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W; Dilworth, Jonathan R; Carroll, Laurence; Aboagye, Eric O; Pascu, Sofia I
2016-01-07
We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under 'cold' and 'hot' biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. (68)Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration.
Lakovidou, Z; Papageorgiou, A; Demertzis, M A; Mioglou, E; Mourelatos, D; Kotsis, A; Yadav, P N; Kovala-Demertzi, D
2001-01-01
The effect of three novel complexes of Pt(II) and three complexes of Pd(II) with 2-acetylpyridine thiosemicarbazone (HAcTsc) on sister chromatid exchange (SCE) rates and human lymphocyte proliferation kinetics on a molar basis was studied. Also, the effect of Pt(II) and Pd(II) complexes against leukemia P388 was investigated. Among these compounds, the most effective in inducing antitumor and cytogenetic effects were the complexes [Pt(AcTsc)2] x H2O and [Pd(AcTsc)2] while the rest, i.e. (HAcTsc), [Pt(AcTsc)Cl], [Pt(HAcTsc)2]Cl2 x 2H2O, [Pd(AcTsc)Cl] and [Pd(HAcTsc)2]Cl2, displayed marginal cytogenetic and antitumor effects.
Su, Wei; Qian, Quanquan; Li, Peiyuan; Lei, Xiaolin; Xiao, Qi; Huang, Shan; Huang, Chusheng; Cui, Jianguo
2013-11-04
A series of ketone-N(4)-substituted thiosemicarbazone (TSC) compounds (L1-L9) and their corresponding [(η(6)-p-cymene)Ru(II)(TSC)Cl](+/0) complexes (1-9) were synthesized and characterized by NMR, IR, elemental analysis, and HR-ESI-mass spectrometry. The molecular structures of L4, L9, 1-6, and 9 were determined by single-crystal X-ray diffraction analysis. The compounds were further evaluated for their in vitro antiproliferative activities against the SGC-7901 human gastric cancer, BEL-7404 human liver cancer, and HEK-293T noncancerous cell lines. Furthermore, the interactions of the compounds with DNA were followed by electrophoretic mobility spectrometry studies.
Benzoin 4-ethylthiosemicarbazone.
Dinçer, Muharrem; Ozdemir, Namik; Cukurovali, Alaaddin; Yilmaz, Ibrahim; Büyükgüngör, Orhan
2006-01-01
In the title compound, 2-hydroxy-1,2-diphenylethanone 4-ethylthiosemicarbazone, C17H19N3OS, the thiosemicarbazone moiety is planar and has an E configuration. The planar phenyl rings make dihedral angles of 82.34 (8) and 8.07 (17) degrees with the plane of the thiosemicarbazone moiety. The crystal structure contains two intramolecular (N-H...O and N-H...N) and one intermolecular interaction (O-H...S), as well as two C-H...pi(benzene) interactions. Molecules are stacked in columns running along the a axis. Molecules in each column are connected to each other by means of linear O-H...S hydrogen bonds and C-H...pi interactions. In addition, there are also C-H...pi(benzene) interactions between the columns.
Gaffer, Hatem E; Khalifa, Mohamed E
2015-12-09
The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.
Xia, Lei; Xia, Yu-Fen; Huang, Li-Rong; Xiao, Xiao; Lou, Hua-Yong; Liu, Tang-Jingjun; Pan, Wei-Dong; Luo, Heng
2015-06-05
There is an urgent need to develop new antibacterial agents because of multidrug resistance by bacteria and fungi. Schiff bases (aldehyde or ketone-like compounds) exhibit intense antibacterial characteristics, and are therefore, promising candidates as antibacterial agents. To investigate the mechanism of action of newly designed benzaldehyde Schiff bases, a series of high-yielding benzaldehyde Schiff bases were synthesized, and their structures were determined by NMR and MS spectra data. The structure-microbicidal activity relationship of derivatives was investigated, and the antibacterial mechanisms were investigated by gene assays for the expression of functional genes in vitro using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The active compounds were selective for certain active groups. The polar substitution of the R2 group of the amino acids in the Schiff bases, affected the antibacterial activity against E. coli and S. aureus; specific active group at the R3 or R4 groups of the acylhydrazone Schiff bases could improve their inhibitory activity against these three tested organisms. The antibacterial mechanism of the active benzaldehyde Schiff bases appeared to regulate the expression of metabolism-associated genes in E. coli, hemolysis-associated genes in B. subtilis, and key virulence genes in S. aureus. Some benzaldehyde Schiff bases were bactericidal to all the three strains and appeared to regulate gene expression associated with metabolism, hemolysis, and virulence, in vitro. The newly designed benzaldehyde Schiff bases possessed unique antibacterial activity and might be potentially useful for prophylactic or therapeutic intervention of bacterial infections. Copyright © 2015. Published by Elsevier Masson SAS.
Kundu, Kousik; McCullagh, James V; Morehead, Andrew T
2005-11-23
Asymmetric rhodium-catalyzed hydroacylation has been utilized in the synthesis of 3-substituted indanones with high conversions and enantioselectivity. The hydroacylation reaction of 2-vinyl benzaldehyde had been previously reported to give a low yield of indanone and an unidentified product. We have identified this compound as a dimer of the starting material. Substitution at the alpha-position of the 2-vinyl benzaldehyde substrates blocks the competitive dimerization reaction and allows the reaction to proceed with yields generally greater than 90%. Utilization of BINAP as a chiral ligand results in good chemical yields and enantioselectivity greater than 95% in most cases.
Hydrogen bonds and antiviral activity of benzaldehyde derivatives
NASA Astrophysics Data System (ADS)
Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.
2012-09-01
We have obtained the Fourier transform IR spectra of solutions of benzaldehyde derivatives having different antiviral activities against a herpes virus. We observe a correlation between the presence of hydrogen bonds in the benzaldehyde molecules and the appearance of antiviral properties in the compounds. For compounds having antiviral activity, we have obtained spectral data suggesting the existence of hydrogen bonds of the type C=OṡṡṡH-O and O-HṡṡṡO in the molecules. When the hydrogen atom in the hydroxyl groups are replaced by a methyl group, no intramolecular hydrogen bonds are formed and the compounds lose their antiviral activity.
Sâmia, Luciana B P; Parrilha, Gabrieli L; Da Silva, Jeferson G; Ramos, Jonas P; Souza-Fagundes, Elaine M; Castelli, Silvia; Vutey, Venn; Desideri, Alessandro; Beraldo, Heloisa
2016-06-01
Complexes [Au(PyCT4BrPh)Cl]Cl (1), [Pt(PyCT4BrPh)Cl]0.5KCl (2), and [Pd(PyCT4BrPh)Cl]KCl (3) were obtained with 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh). Although complexes (2) and (3) did not exhibit potent cytotoxic activity, HPyCT4BrPh and its gold(III) complex (1) proved to be highly cytotoxic against HL-60 (human promyelocytic leukemia) and THP-1 (human monocytic leukemia) cells, and against MDA-MB 231 and MCF-7 (human breast adenocarcinoma) solid tumor cells. Except for HL-60 cells, upon coordination to gold(III) a 2- to 3-fold increase in the cytotoxic effect was observed. An investigation on the possible biological targets of the gold(III) complex was carried out. Complex (1) but not the free thiosemicarbazone inhibits the enzymatic activity of thioredoxin reductase (TrxR). The affinity of 1 for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. While HPyCT4BrPh was inactive, 1 was able to inhibit topoisomerase IB (Topo IB) activity. Hence, inhibition of TrxR and Topo IB could contribute to the mechanism of cytotoxic action of complex (1).
Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta
2014-07-15
In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.
Antifungal activity of redox-active benzaldehydes that target cellular antioxidation
USDA-ARS?s Scientific Manuscript database
Many pathogenic fungi are becoming resistant to currently available drugs. Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. The aim of this study was to identify benzaldehydes that...
Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol
NASA Astrophysics Data System (ADS)
Rodríguez-Reyes, Juan Carlos F.; Friend, Cynthia M.; Madix, Robert J.
2012-08-01
Benzyl alcohol has received substantial attention as a probe molecule to test the selectivity and efficiency of novel metallic gold catalysts. Herein, the mechanisms of benzyl alcohol oxidation on a gold surface covered with atomic oxygen are elucidated; the results show direct correspondence to the reaction on gold-based catalysts. The selective, partial oxidation of benzyl alcohol to benzaldehyde is achieved with low oxygen surface concentrations and takes place through dehydrogenation of the alcohol to form benzaldehyde via a benzyloxy (C6H5-CH2O) intermediate. While in this case atomic oxygen plays solely a dehydrogenating role, at higher concentrations it leads to the formation of intermediates from benzaldehyde, producing benzoic acid and CO2. Facile ester (benzyl benzoate) formation also occurs at low oxygen concentrations, which indicates that benzoic acid is not a precursor of further oxidation of the ester; instead, the ester is produced by the coupling of adsorbed benzyloxy and benzaldehyde. Key to the high selectivity seen at low oxygen concentrations is the fact that the production of the aldehyde (and esters) is kinetically favored over the production of benzoic acid.
Structure of the ThDP-dependent enzyme benzaldehyde lyase refined to 1.65 Å resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maraite, Andy; Schmidt, Thomas; Ansörge-Schumacher, Marion B.
2007-07-01
The X-ray crystal structure of the ThDP-dependent enzyme benzaldehyde lyase has been refined to 1.65 Å. Benzaldehyde lyase (BAL; EC 4.1.2.38) is a thiamine diphosphate (ThDP) dependent enzyme that catalyses the enantioselective carboligation of two molecules of benzaldehyde to form (R)-benzoin. BAL has hence aroused interest for its potential in the industrial synthesis of optically active benzoins and derivatives. The structure of BAL was previously solved to a resolution of 2.6 Å using MAD experiments on a selenomethionine derivative [Mosbacher et al. (2005 ▶), FEBS J.272, 6067–6076]. In this communication of parallel studies, BAL was crystallized in an alternative spacemore » group (P2{sub 1}2{sub 1}2{sub 1}) and its structure refined to a resolution of 1.65 Å, allowing detailed observation of the water structure, active-site interactions with ThDP and also the electron density for the co-solvent 2-methyl-2,4-pentanediol (MPD) at hydrophobic patches of the enzyme surface.« less
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Wani, Mohmmad Y.; Arranja, Claudia T.; Castro, Ricardo A. E.; Paixão, José A.; Sobral, Abilio J. F. N.
2018-01-01
Fluorescent materials are important for low-cost opto-electronic and biomedical sensor devices. In this study we present the synthesis and characterization of graphene modified with bis-thiosemicarbazone (BTS). This new material was characterized using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) and Raman spectroscopy techniques. Further evaluation by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic-force microscopy (AFM) allowed us to fully characterize the morphology of the fabricated material. The average height of the BTSGO sheet is around 10 nm. Optical properties of BTSGO evaluated by photoluminescence (PL) spectroscopy showed red shift at different excitation wavelength compared to graphene oxide or bisthiosemicarbazide alone. These results strongly suggest that BTSGO material could find potential applications in graphene based optoelectronic devices.
2012-01-01
A series of 36 thiosemicarbazone analogues containing the thiochromanone molecular scaffold functionalized primarily at the C-6 position were prepared by chemical synthesis and evaluated as inhibitors of cathepsins L and B. The most promising inhibitors from this group are selective for cathepsin L and demonstrate IC50 values in the low nanomolar range. In nearly all cases, the thiochromanone sulfide analogues show superior inhibition of cathepsin L as compared to their corresponding thiochromanone sulfone derivatives. Without exception, the compounds evaluated were inactive (IC50 > 10000 nM) against cathepsin B. The most potent inhibitor (IC50 = 46 nM) of cathepsin L proved to be the 6,7-difluoro analogue 4. This small library of compounds significantly expands the structure–activity relationship known for small molecule, nonpeptidic inhibitors of cathepsin L. PMID:24900494
Buschini, Annamaria; Pinelli, Silvana; Pellacani, Claudia; Giordani, Federica; Ferrari, Marisa Belicchi; Bisceglie, Franco; Giannetto, Marco; Pelosi, Giorgio; Tarasconi, Pieralberto
2009-05-01
Thiosemicarbazones are versatile organic compounds that present considerable pharmaceutical interest because of a wide range of properties. In our laboratory we synthesised some new metal-complexes with thiosemicarbazones derived from natural aldehydes which showed peculiar biological activities. In particular, a nickel complex [Ni(S-tcitr)(2)] (S-tcitr=S-citronellalthiosemicarbazonate) was observed to induce an antiproliferative effect on U937, a human histiocytic lymphoma cell line, at low concentrations (IC(50)=14.4microM). Therefore, we decided to study the interactions of this molecule with various cellular components and to characterise the induced apoptotic pathway. Results showed that [Ni(S-tcitr)(2)] causes programmed cell death via down-regulation of Bcl-2, alteration of mitochondrial membrane potential and caspase-3 activity, regardless of p53 function. The metal complex is not active on G(0) cells (i.e. fresh leukocytes) but is able to induce perturbation of the cell cycle on stimulated lymphocytes and U937 cells, in which a G(2)/M block was detected. It reaches the nucleus where it induces, at low concentrations (2.5-5.0microM), DNA damage, which could be partially ascribed to oxidative stress. [Ni(S-tcitr)(2)] is moreover able to strongly reduce the telomerase activity. Although the biological target of this metal complex is still unknown, the reported data suggest that [Ni(S-tcitr)(2)] could be a good model for the synthesis of new metal thiosemicarbazones with specific biological activity.
USDA-ARS?s Scientific Manuscript database
We have recently shown that repellency of the tick Rhipicephalus sanguineus sensu lato by the tick resistant dog breed Beagle is mediated by volatile organic compounds 2-hexanone and benzaldehyde present in Beagle dog odour. Ectoparasite location on animal hosts is affected by variation in odour com...
Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...
Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites
NASA Astrophysics Data System (ADS)
Wang, Yuan-Yuan; Song, Hua; Song, Hua-Lin; Jin, Zai-Shun
2016-10-01
A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.
ERIC Educational Resources Information Center
Tsui, David; van der Kooy, Derek
2008-01-01
We utilized olfactory-mediated chemotaxis in "Caenorhabditis elegans" to examine the effect of aging on information processing and animal behavior. Wild-type (N2) young adults (day 4) initially approach and eventually avoid a point source of benzaldehyde. Aged adult animals (day 7) showed a stronger initial approach and a delayed avoidance to…
Characterization and analysis of diesel exhaust odor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shala, F.J.
1983-01-01
An instrumental method known as the Diesel Odor Analysis System or DOAS, has been developed at A.D. Little, Inc. for measuring diesel exhaust odor. It was of interest to determine which compound or compounds in the oxygenated fraction of the exhaust were primarily responsible for the odor correlation as developed at A.D. Little, Inc. This was accomplished by observing how the measurement of the exhaust odor intensity and number of chemical constituents of the oxygenate fraction were changing with respect to the odor values as measured by the DOAS. Benzaldehyde was found to give the best correlation (R = 0.98)more » with odor. A quantitative relationship between exhaust odor as measured by the total intensity of aroma (TIA) and the benzaldehyde concentration (B) in ppm in the exhaust is given by: TIA = 1.11 log/sub 10/(B) + 4.10. This correlation was supported by results obtained from two other diesel engine exhaust sources. A methyl benzaldehyde isomer also yielded a good correlation (R = 0.90) with odor. Air to fuel ratio correlations were determined for the tentatively identified compounds, cinnamaldehyde (R = 0.94) and a C2-benzaldehyde isomer (R = 0.94).« less
Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik
2016-05-01
TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.
NASA Astrophysics Data System (ADS)
Dong, Huanhuan; Liu, Jing; Liu, Xiaoru; Yu, Yanying; Cao, Shuwen
2018-01-01
A collection of thirty-six aromatic heterocycle thiosemicarbazone analogues presented a broad span of anti-tyrosinase activities were designed and obtained. A robust and reliable two-dimensional quantitative structure-activity relationship model, as evidenced by the high q2 and r2 values (0.848 and 0.893, respectively), was gained based on the analogues to predict the quantitative chemical-biological relationship and the new modifier direction. Inhibitory activities of the compounds were found to greatly depend on molecular shape and orbital energy. Substituents brought out large ovality and high highest-occupied molecular orbital energy values helped to improve the activity of these analogues. The molecular docking results provided visual evidence for QSAR analysis and inhibition mechanism. Based on these, two novel tyrosinase inhibitors O04 and O05 with predicted IC50 of 0.5384 and 0.8752 nM were designed and suggested for further research.
Casas, José S; Castaño, María V; Cifuentes, María C; García-Monteagudo, Juán C; Sánchez, Agustín; Sordo, José; Abram, Ulrich
2004-06-01
Dichloro[2-(dimethylaminomethyl)phenyl- phenyl-C1,N]gold(III), [Au(damp-C1,N)Cl2], reacts with the formylferrocene thiosemicarbazones derived from 4-methyl-, 4-phenyl-, 4-ethyl- and 4,4-dimethyl-3-thiosemicarbazides, HFcTSC, to give complexes of general formula [Au(Hdamp-1C)Cl(FcTSC)]Cl. These complexes were isolated and characterized by elemental analysis, mass spectrometry and IR, 1H NMR and (13)C NMR spectroscopy. In some cases, cyclic voltammetric studies were carried out and these showed that the complexation of gold affects the redox behaviour of the ferrocene unit. The in vitro antitumor activity against the HeLa cell line was also determined for the more soluble complexes. The IC(50) values were found to be higher than that of cisplatin but the maximum antiproliferative activity was similar.
Qi, Jinxu; Yao, Qian; Qian, Kun; Tian, Liang; Cheng, Zhen; Yang, Dongmei; Wang, Yihong
2018-05-14
Five thiosemicarbazone ligands were synthesized and characterized by condensation with different aldehydes or ketones by 4-phenylthiosemicarbazone. The representative dichlorido[2-(Di-2-pyridinylmethylene)-Nphenylhydrazinecarbothioamide-N,N,S]-gallium(III) (Ga4) was characterized by X-ray single crystal diffraction, which was 1:1 ligand/Ga(III) complexes. The structure-activity relationship of these ligands and Ga (III) complexes have been investigated, and the results demonstrate that the formation of Ga (III) complexes have significant antiproliferative activity over the corresponding ligands. The anticancer mechanism of gallium (III) complexes has been studied in detail, which is typical agents that effect on the mitochondrial apoptotic pathway. The ability of gallium (III) complexes to inhibit the cell cycle does not enhanced with the increasing concentrations, whereas the ability to promote apoptosis is concentration-dependent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil
2016-12-01
In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.
Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Pelosi, G; Albertini, R; Bonati, A; Dall'Aglio, P P; Lunghi, P; Pinelli, S
1997-04-01
The reaction of iron, nickel, copper, and zinc chlorides or acetates with acenaphthenequinone thiosemicarbazone, Haqtsc leads to the formation of novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the free ligand Haqtsc 1 and of the compound [Ni(aqtsc)2].DMF 2, have also been determined by X-ray methods from diffractometer data. In 1, the conformation of the two nonequivalent molecules is governed by intramolecular hydrogen bonds, while an intermolecular hydrogen bond is responsible for dimer-like groups formation. In 2, the coordination geometry about nickel is distorted octahedral, and the two ligand molecules are terdentate monodeprotonated. Biological studies have shown that, for the first time at least up the used doses, a free ligand is active both in the inhibition of cell proliferation and in the induced differentiation on Friend erythroleukemia cells (FLC).
Photoelectrochemical detection of benzaldehyde in foodstuffs
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaCourse, W.R.; Krull, I.S.
Photoelectrochemical detection (PED) coupled with high performance liquid chromatography was used to quantitatively determine benzaldehyde in extracts, beverages, and foodstuffs. Photoelectrochemical detection is responsive to alkyl and aryl ketones and aldehydes and offers the advantages of 2-3 orders of magnitude linearity, 5-1-ng limits of detection, and a high degree of selectivity without chemical derivatization. This is the first application of the PED to sample analysis.
Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs.
Rettondin, Andressa R; Carneiro, Zumira A; Gonçalves, Ana C R; Ferreira, Vanessa F; Oliveira, Carolina G; Lima, Angélica N; Oliveira, Ronaldo J; de Albuquerque, Sérgio; Deflon, Victor M; Maia, Pedro I S
2016-09-14
Tridentate thiosemicarbazone ligands with an ONS donor set, H2L(R) (R = Me and Et) were prepared by reactions of 1-phenyl-1,3-butanedione with 4-R-3-thiosemicarbazides. H2L(R) reacts with Na[AuCl4]·2H2O in MeOH in a 1:1 M ratio under formation of green gold(III) complexes of composition [AuCl(L(R))]. These compounds represent the first examples of gold(III) complexes with ONS chelate-bonded thiosemicarbazones. The in vitro anti-Trypanosoma cruzi activity against both trypomastigote and amastigote forms (IC50try/ama) of CL Brener strains as well as the cytotoxicity against LLC-MK2 cells of the free ligands and complexes was evaluated. The complex [AuCl(L(Me))] was found to be more active and more selective than its precursor ligand and the standard drug benznidazole with a SItry/ama value higher than 200, being considered as a lead candidate for Chagas disease treatment. Moreover the in vitro activity against the replicative amastigote form (IC50ama) of T. cruzi was additionally investigated revealing that [AuCl(L(Me))] was also more potent than benznidazole still with a similar selectivity index. Finally, docking studies showed that free ligands and complexes interact with the same residues of the parasite protease cruzain but with different intensities, suggesting that this protease could be a possible target for the trypanocidal action of the obtained compounds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Chitambar, Christopher R; Antholine, William E
2013-03-10
Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine(®) has demonstrated activity against other tumors. Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it.
Popović-Bijelić, Ana; Kowol, Christian R.; Lind, Maria E.S.; Luo, Jinghui; Himo, Fahmi; Enyedy, Éva A.; Arion, Vladimir B.; Gräslund, Astrid
2012-01-01
Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper (II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron (II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical. PMID:21955844
Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde
NASA Astrophysics Data System (ADS)
Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney
2013-09-01
The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.
Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.
Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J
2014-08-20
Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates.
Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.
Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing
2015-07-13
A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.
Wang, Song; Li, Xiao-Ming; Teuscher, Franka; Li, Dong-Li; Diesel, Arnulf; Ebel, Rainer; Proksch, Peter; Wang, Bin-Gui
2006-11-01
Cultivation of the endophytic fungus Chaetomium globosum, which was isolated from the inner tissue of the marine red alga Polysiphonia urceolata, resulted in the isolation of chaetopyranin (1), a new benzaldehyde secondary metabolite. Ten known compounds were also isolated, including two benzaldehyde congeners, 2-(2',3-epoxy-1',3'-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)benzaldehyde (2) and isotetrahydroauroglaucin (3), two anthraquinone derivatives, erythroglaucin (4) and parietin (5), five asperentin derivatives including asperentin (6, also known as cladosporin), 5'-hydroxy-asperentin-8-methylether (7), asperentin-8-methyl ether (8), 4'-hydroxyasperentin (9), and 5'-hydroxyasperentin (10), and the prenylated diketopiperazine congener neoechinulin A (11). The structures of these compounds were determined on the basis of their spectroscopic data analysis (1H, 13C, 1H-1H COSY, HMQC, and HMBC NMR, as well as low- and high-resolution mass experiments). To our knowledge, compound 1 represents the first example of a 2H-benzopyran derivative of marine algal-derived fungi as well as of the fungal genus Chaetomium. Each isolate was tested for its DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging property. Compounds 1-4 were found to have moderate activity. Chaetopyranin (1) also exhibited moderate to weak cytotoxic activity toward several tumor cell lines.
NASA Astrophysics Data System (ADS)
Ding, Bin; Ma, Dian Xue; Zhang, Hui Min; Meng, Xin; Qiu, Rong Rong; Ren, Rong; Wu, Jie; Wu, Xiang Xia; Huo, Jian Zhong; Liu, Yuan Yuan; Shi, Xue Fang
2018-06-01
In this work a unique hetero-metallic alkaline earth-transition Ba-Cd luminescent micro-porous metal-organic framework {[BaCd(μ6-tp)1.5(μ2-Cl)(H2O) (DMF)2]·0.75H2O}n (H2tp = terephthalic acid) (1) has been prepared under solvo-thermal conditions. In 1 infinite 1D {Ba-X-Cd} (X = O, Cl) inorganic chains are linked via these full de-pronated tp2- ligands forming a unique 3D I1O2 type micro-porous coordination framework. PXRD patterns of 1 have been determined confirming pure phases of 1. Luminescence investigations suggested that 1 exhibits highly selective and sensitive sensing for trace amounts of benzaldehyde in ethanol, which provides a facile method for real-time detection of benzaldehyde. Meanwhile 1 also exhibits highly selective and sensitive sensing for Cu2+ over other cations with high quenching efficiency Ksv value 1.15 × 104 L·mol-1. As far as we know, 1 represents the first example of alkaline earth-transition hetero-metallic Ba-Cd micro-porous coordination framework as bi-functional luminescent probes for Cu2+ and benzaldehyde.
Cai, Xiaoming; Bian, Lei; Xu, Xiuxiu; Luo, Zongxiu; Li, Zhaoqun; Chen, Zongmao
2017-01-01
Attractants for pest monitoring and controlling can be developed based on plant volatiles. Previously, we showed that tea leafhopper (Empoasca onukii) preferred grapevine, peach plant, and tea plant odours to clean air. In this research, we formulated three blends with similar attractiveness to leafhoppers as peach, grapevine, and tea plant volatiles; these blends were composed of (Z)-3-hexenyl acetate, (E)-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene, benzaldehyde, and ethyl benzoate. Based on these five compounds, we developed two attractants, formula-P and formula-G. The specific component relative to tea plant volatiles in formula-P was benzaldehyde, and that in formula-G was ethyl benzoate. These two compounds played a role in attracting leafhoppers. In laboratory assays, the two attractants were more attractive than tea plant volatiles to the leafhoppers, and had a similar level of attractiveness. However, the leafhoppers were not attracted to formula-P in the field. A high concentration of benzaldehyde was detected in the background odour of the tea plantations. In laboratory tests, benzaldehyde at the field concentration was attractive to leafhoppers. Our results indicate that the field background odour can interfere with a point-releasing attractant when their components overlap, and that a successful attractant must differ from the field background odour. PMID:28150728
Ding, Bin; Ma, Dian Xue; Zhang, Hui Min; Meng, Xin; Qiu, Rong Rong; Ren, Rong; Wu, Jie; Wu, Xiang Xia; Huo, Jian Zhong; Liu, Yuan Yuan; Shi, Xue Fang
2018-06-15
In this work a unique hetero-metallic alkaline earth-transition Ba-Cd luminescent micro-porous metal-organic framework {[BaCd(μ 6 -tp) 1.5 (μ 2 -Cl)(H 2 O) (DMF) 2 ]·0.75H 2 O} n (H 2 tp=terephthalic acid) (1) has been prepared under solvo-thermal conditions. In 1 infinite 1D {Ba-X-Cd} (X=O, Cl) inorganic chains are linked via these full de-pronated tp 2- ligands forming a unique 3D I 1 O 2 type micro-porous coordination framework. PXRD patterns of 1 have been determined confirming pure phases of 1. Luminescence investigations suggested that 1 exhibits highly selective and sensitive sensing for trace amounts of benzaldehyde in ethanol, which provides a facile method for real-time detection of benzaldehyde. Meanwhile 1 also exhibits highly selective and sensitive sensing for Cu 2+ over other cations with high quenching efficiency K sv value 1.15×10 4 L·mol -1 . As far as we know, 1 represents the first example of alkaline earth-transition hetero-metallic Ba-Cd micro-porous coordination framework as bi-functional luminescent probes for Cu 2+ and benzaldehyde. Copyright © 2018 Elsevier B.V. All rights reserved.
Amino acid-based dithiazines: synthesis and photofragmentation of their benzaldehyde adducts.
Kurchan, Alexei N; Kutateladze, Andrei G
2002-11-14
Alpha-amino acids and GABA are functionalized with dithiazine rings via reaction with sodium hydrosulfide in aqueous formaldehyde. The resulting dithiazines are lithiated at -78 degrees C and reacted with benzaldehyde furnishing amino acid-based 2,5-bis-substituted dithiazines. These adducts undergo externally sensitized photofragmentation with quantum efficiency comparable to that of the parent dithiane adducts, thus offering a novel approach to amino acid-based photolabile tethers. [reaction: see text
NASA Astrophysics Data System (ADS)
Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.
2018-05-01
In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.
Product selectivity control induced by using liquid-liquid parallel laminar flow in a microreactor.
Amemiya, Fumihiro; Matsumoto, Hideyuki; Fuse, Keishi; Kashiwagi, Tsuneo; Kuroda, Chiaki; Fuchigami, Toshio; Atobe, Mahito
2011-06-07
Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.
Antholine, William E.
2013-01-01
Abstract Significance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents. Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells. Therefore, strategies to perturb these iron-dependent steps in malignant cells hold promise for the treatment of cancer. Recent studies show that gallium compounds and metal-thiosemicarbazone complexes inhibit tumor cell growth by targeting iron homeostasis, including iron-dependent ribonucleotide reductase. Chemical similarities of gallium(III) with iron(III) enable the former to mimic the latter and interpose itself in critical iron-dependent steps in cellular proliferation. Newer gallium compounds have emerged with additional mechanisms of action. In clinical trials, the first-generation-compound gallium nitrate has exhibited activity against bladder cancer and non-Hodgkin's lymphoma, while the thiosemicarbazone Triapine® has demonstrated activity against other tumors. Critical Issues: Novel gallium compounds with greater cytotoxicity and a broader spectrum of antineoplastic activity than gallium nitrate should continue to be developed. Future Directions: The antineoplastic activity and toxicity of the existing novel gallium compounds and thiosemicarbazone-metal complexes should be tested in animal tumor models and advanced to Phase I and II clinical trials. Future research should identify biologic markers that predict tumor sensitivity to gallium compounds. This will help direct gallium-based therapy to cancer patients who are most likely to benefit from it. Antioxid. Redox Signal. 00, 000–000. PMID:22900955
Castro, Eliana F.; Fabian, Lucas E.; Caputto, María E.; Gagey, Dolores; Finkielsztein, Liliana M.; Moltrasio, Graciela Y.; Moglioni, Albertina G.; Campos, Rodolfo H.; Cavallaro, Lucía V.
2011-01-01
In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV). PMID:21430053
Castro, Eliana F; Fabian, Lucas E; Caputto, María E; Gagey, Dolores; Finkielsztein, Liliana M; Moltrasio, Graciela Y; Moglioni, Albertina G; Campos, Rodolfo H; Cavallaro, Lucía V
2011-06-01
In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV).
Rodríguez Arce, Esteban; Machado, Ignacio; Rodríguez, Belén; Lapier, Michel; Zúñiga, María Carolina; Maya, Juan Diego; Olea Azar, Claudio; Otero, Lucía; Gambino, Dinorah
2017-05-01
American Trypanosomiasis is a chronic infection discovered and described in 1909 by the Brazilian scientist Carlos Chagas. It is caused by the protozoan parasite Trypanosoma cruzi. Although it affects about 10million people in Latin America, the current chemotherapy is still inadequate. The discovery of new drugs is urgently needed. Our group is focused on the development of prospective metal-based drugs mainly based on bioactive ligands and pharmacologically interesting metal ions. In this work three new rhenium(I) tricarbonyl compounds fac-[Re I (CO) 3 Br(HL)] where HL=5-nitrofuryl containing thiosemicarbazones were synthesized and fully characterized in solution and in the solid state. The in vitro evaluation of the compounds on T. cruzi trypomastigotes (Dm28c strain) showed that the Re(I) compounds are 8 to 15 times more active than the reference drug Nifurtimox and show a 4 to 17 fold increase in activity in respect to the free (HL) ligands. Obtained compounds also show good selectivity indexes (IC 50 endothelial cells Ea.hy926 /IC 50 T. cruzi (Dm28c tripomastigotes) ). 1 H NMR and MS studies, performed with time, showed that the fac-[Re(CO) 3 Br(HL)] species convert into the dimers [Re 2 (CO) 6 (L) 2 ] in solution. Crystal structure of [Re I 2 (CO) 6 (L2) 2 ], the product of complexes' dimerization, was solved. Related to the mechanism of action, the studied compounds do not generate radical oxygen species in the parasite (as 5-nitrofuryl derived thiosemicarbazones do) probably due to the unfavorable nitro reduction potential of the generated dimeric species. On the contrary, the compounds produce a decrease of the oxygen consumption rate of the parasites, maybe inhibiting their mitochondrial respiration. Copyright © 2017 Elsevier Inc. All rights reserved.
Alam, Israt S.; Arrowsmith, Rory L.; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W.; Dilworth, Jonathan R.
2016-01-01
We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under ‘cold’ and ‘hot’ biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. 68Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration. PMID:26583314
Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B; Abdul Majid, A M S
2014-05-05
New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel series of thiosemicarbazone drugs: From synthesis to structure
NASA Astrophysics Data System (ADS)
Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Alsalim, Tahseen A.; Ghali, Thaer S.; Bolandnazar, Zeinab
2015-02-01
A new series of thiosemicarbazones (TSCs) and their 1,3,4-thiadiazolines (TDZs) containing acetamide group have been synthesized from thiosemicarbazide compounds by the reaction of TSCs with cyclic ketones as well as aromatic aldehydes. The structures of newly synthesized 1,3,4-thiadiazole derivatives obtained by heterocyclization of the TSCs with acetic anhydride were experimentally characterized by spectral methods using IR, 1H NMR, 13C NMR and mass spectroscopic methods. Furthermore, the structural, thermodynamic, and electronic properties of the studied compounds were also studied theoretically by performing Density Functional Theory (DFT) to access reliable results to the experimental values. The molecular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and Mulliken atomic charges of the studied compounds have been calculated at the B3LYP method and standard 6-31+G(d,p) basis set starting from optimized geometry. The theoretical 13C chemical shift results were also calculated using the gauge independent atomic orbital (GIAO) approach and their respective linear correlations were obtained.
Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut
2013-05-15
The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.
Kumar, Ashwini; Singh, Baldev; Malik, Ashok Kumar; Tiwary, Dhananjay K
2007-01-01
A new approach has been developed for the extraction and determination of aldehydes such as veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde by using solid-phase microextraction (SPME) and high-performance liquid chromatography with UV detection (HPLC/UV). The method involves adsorption of the aldehydes on polydimethylsiloxane/divinylbenzene-coated fiber, followed by desorption in the desorption chamber of the SPME-HPLC interface, using acetonitrile-water (70 + 30) as the mobile phase; UV detection was at 254 nm. A good separation of 5 aldehydes was obtained on a C18 column. The detection limits of veratraldehyde, m-nitrobenzaldehyde, cinnamaldehyde, benzaldehyde, and p-chlorobenzaldehyde are 25, 41, 13, 12, and 11 pg/mL, respectively, which are about 100 times better than the detection limits for other SPME methods using gas chromatography. The proposed method was validated by determining benzaldehyde in bitter almonds and cinnamaldehyde in cinnamon bark. The recoveries of the 5 analytes were determined by analysis of spiked drinking water.
Interactions of flavoured oil in-water emulsions with polylactide.
Salazar, Rómulo; Domenek, Sandra; Ducruet, Violette
2014-04-01
Polylactide (PLA), a biobased polymer, might prove suitable as eco-friendly packaging, if it proves efficient at maintaining food quality. To assess interactions between PLA and food, an oïl in-water model emulsion was formulated containing aroma compounds representing different chemical structure classes (ethyl esters, 2-nonanone, benzaldehyde) at a concentration typically found in foodstuff (100 ppm). To study non-equilibrium effects during food shelf life, the emulsions were stored in a PLA pack (tray and lid). To assess equilibrium effects, PLA was conditioned in vapour contact with the aroma compounds at concentrations comparable to headspace conditions of real foods. PLA/emulsion interactions showed minor oil and aroma compound sorption in the packaging. Among tested aroma compounds, benzaldehyde and ethyl acetate were most sorbed and preferentially into the lid through the emulsion headspace. Equilibrium effects showed synergy of ethyl acetate and benzaldehyde, favouring sorption of additional aroma compounds in PLA. This should be anticipated during the formulation of food products. Copyright © 2013 Elsevier Ltd. All rights reserved.
He, Yunqing; Xue, Ying
2010-09-02
The reaction mechanism of the cyanide-catalyzed benzoin condensation without protonic solvent assistance has been studied computationally for the first time employing the density functional theory (B3LYP) method in conjunction with 6-31+G(d,p) basis set. Four possible pathways have been investigated. A new proposed pathway on the basis of the Lapworth mechanism is determined to be the dominant pathway in aprotic solvent, in which the formation of the Lapworth's cyanohydrin intermediate is a sequence including three steps assisted by benzaldehyde, clearly manifesting that the reaction can take place in aprotic solvents such as DMSO. In this favorable pathway with six possible transition states located along the potential energy surface, the reaction of the cyanide/benzaldehyde complex with another benzaldehyde to afford an alpha-hydroxy ether is the rate-determining dynamically with the activation free energy barrier of 26.9 kcal/mol, and the step to form cyanohydrin intermediate from alpha-hydroxy ether is partially rate-determining for its relatively significant barrier 20.0 kcal/mol.
Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda
2018-01-01
Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes. Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ndolomingo, Matumuene Joe; Meijboom, Reinout
2017-03-01
Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2018-05-01
Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of the Benzaldehyde (BZ), Methanol (MeOH) and their binary mixtures were measured in the temperature range from 293.15 K to 323.15 K (in the interval of 10 K). From the ɛ0 and ɛ∞ other parameters such as effective Kirkwood correlation factor (geff), corrective Kirkwood correction factor (gf), Bruggman factor (fB), excess permittivity (ɛ0E ) and permittivity at optical frequency (ɛ∞E ) were evaluated.
Initial reactions involved in the dissimilation of mandelate by Rhodotorula graminis.
Durham, D R
1984-01-01
Rhodotorula graminis utilized DL-mandelate, L(+)-mandelate, and D(-)-mandelate as sole sources of carbon and energy. Growth on these aromatic substrates resulted in the induction of an NAD-dependent D(-)-mandelate dehydrogenase and a dye-linked L(+)-mandelate dehydrogenase, each catalyzing the stereospecific conversion of its respective enantiomer of mandelate to benzoylformate. Benzoylformate was oxidized to benzaldehyde, which was dehydrogenated to benzoate by an NAD-dependent benzaldehyde dehydrogenase. Benzoate was further metabolized through p-hydroxybenzoate and the protocatechuate branch of the beta-ketoadipate pathway. PMID:6389497
Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K
2013-02-01
Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.
NASA Astrophysics Data System (ADS)
Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.
2008-09-01
The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).
Scariot, Débora B.; Britta, Elizandra A.; Moreira, Amanda L.; Falzirolli, Hugo; Silva, Cleuza C.; Ueda-Nakamura, Tânia; Dias-Filho, Benedito P.; Nakamura, Celso V.
2017-01-01
Drug combination therapy is a current trend to treat complex diseases. Many benefits are expected from this strategy, such as cytotoxicity decrease, retardation of resistant strains development, and activity increment. This study evaluated in vitro combination between an innovative thiosemicarbazone molecule – BZTS with miltefosine, a drug already consolidated in the leishmaniasis treatment, against Leishmania amazonensis. Cytotoxicity effects were also evaluated on macrophages and erythrocytes. Synergistic antileishmania effect and antagonist cytotoxicity were revealed from this combination therapy. Mechanisms of action assays were performed in order to investigate the main cell pathways induced by this treatment. Mitochondrial dysfunction generated a significant increase of reactive oxygen and nitrogen species production, causing severe cell injuries and promoting intense autophagy process and consequent apoptosis cell death. However, this phenomenon was not strong enough to promote dead in mammalian cell, providing the potential selective effect of the tested combination for the protozoa. Thus, the results confirmed that drugs involved in distinct metabolic routes are promising agents for drug combination therapy, promoting a synergistic effect. PMID:28270805
García-Tojal, Javier; Gil-García, Rubén; Fouz, Víctor Ivo; Madariaga, Gotzon; Lezama, Luis; Galletero, María S; Borrás, Joaquín; Nollmann, Friederike I; García-Girón, Carlos; Alcaraz, Raquel; Cavia-Saiz, Mónica; Muñiz, Pilar; Palacios, Òscar; Samper, Katia G; Rojo, Teófilo
2018-03-01
Thiosemicarbazones (TSCs), and their copper derivatives, have been extensively studied mainly due to the potential applications as antitumor compounds. A part of the biological activity of the TSC-Cu II complexes rests on their reactivity against cell reductants, as glutathione (GSH). The present paper describes the structure of the [Cu(PTSC)(ONO 2 )] n compound (1) (HPTSC=pyridine-2-carbaldehyde thiosemicarbazone) and its spectroscopic and magnetic properties. ESI studies performed on the reaction of GSH with 1 and the analogous [{Cu(PTSC*)(ONO 2 )} 2 ] derivative (2, HPTSC*=pyridine-2-carbaldehyde 4N-methylthiosemicarbazone) show the absence of peaks related with TSC-Cu-GSH species. However GSH-Cu ones are detected, in good agreement with the release of Cu I ions after reduction in the experimental conditions. The reactivity of 1 and 2 with cytochrome c and myoglobin and their activities against HT-29 and SW-480 colon carcinoma cell lines are compared with those shown by the free HPTSC and HPTSC* ligands. Copyright © 2017 Elsevier Inc. All rights reserved.
McQuade, Paul; Martin, Katherine E; Castle, Thomas C; Went, Michael J; Blower, Philip J; Welch, Michael J; Lewis, Jason S
2005-02-01
Cu-diacetyl-bis(N4-methylthiosemicarbazone) [Cu-ATSM], although excellent for oncology applications, may not be suitable for delineating cardiovascular or neurological hypoxia. For this reason, new Cu hypoxia positron emission tomography (PET) imaging agents are being examined to search for a higher selectivity for hypoxic or ischemic tissue at higher oxygen concentrations found in these tissues. Two approaches are to increase alkylation or to replace the sulfur atoms with selenium, resulting in the formation of selenosemicarbazones. Three 64Cu-labeled selenosemicarbazone complexes were synthesized and one was screened for hypoxia selectivity in vitro using EMT-6 mouse mammary carcinoma cells. Rodent biodistribution and small animal PET images were obtained from BALB/c mice implanted with EMT-6 tumors. One alkylated thiosemicarbazone was synthesized and examined. Of the three bis(selenosemicarbazone) ligands synthesized and examined, only 64Cu-diacetyl-bis(selenosemicarbazone) [64Cu-ASSM] was isolated in high-enough radiochemical purity to undertake cell uptake experiments where uptake was shown to be independent of oxygen concentration. The bis(thiosemicarbazone) complex synthesized, 64Cu-diacetyl-bis(N4-ethylthiosemicarbazone) [64Cu-ATSE], showed hypoxia selectivity similar to 64Cu-ATSM although at a higher oxygen concentration. Biodistribution studies for 64Cu-ASSM and 64Cu-ATSE showed high tumor uptake at 20 min (64Cu-ASSM, 10.33+/-0.78% ID/g; 64Cu-ATSE, 7.71+/-0.46% ID/g). PET images of EMT-6 tumor-bearing mice visualized the tumor with 64Cu-ATSE and revealed hypoxia selectivity consistent with the in vitro data. Of the compounds synthesized, only 64Cu-ASSM and 64Cu-ATSE could be examined in vitro and in vivo. Although the stability of bis(selenosemicarbazone) complexes increased upon addition of methyl groups to the diimine backbone, the fully alkylated species, 64Cu-ASSM, demonstrated no hypoxia selectivity. However, the additional alkylation present in Cu-ATSE modifies the hypoxia selectivity and in vivo properties when compared with Cu-ATSM.
Seebacher, Nicole A.; Lane, Darius J. R.; Jansson, Patric J.; Richardson, Des R.
2016-01-01
Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a “safe house” to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in multidrug-resistant tumors where a stressful micro-environment exists. PMID:26601947
NASA Astrophysics Data System (ADS)
Rajasekhar, Bathula; Patowary, Nidarshana; K. Z., Danish; Swu, Toka
2018-07-01
Hundred and forty-five novel molecules of Wittig-based Schiff-base (WSB), including copper(II) complex and precursors, were computationally screened for nonlinear optical (NLO) properties. WSB ligands were derived from various categories of amines and aldehydes. Wittig-based precursor aldehydes, (E)-2-hydroxy-5-(4-nitrostyryl)benzaldehyde (f) and 2-hydroxy-5-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl) benzaldehyde (g) were synthesised and spectroscopically confirmed. Schiff-base ligands and copper(II) complex were designed, optimised and their NLO property was studied using GAUSSIAN09 computer program. For both optimisation and hyperpolarisability (finite-field approach) calculations, Density Functional Theory (DFT)-based B3LYP method was applied with LANL2DZ basis set for metal ion and 6-31G* basis set for C, H, N, O and Cl atoms. This is the first report to present the structure-activity relationship between hyperpolarisability (β) and WSB ligands containing mono imine group. The study reveals that Schiff-base ligands of the category N-2, which are the ones derived from the precursor aldehyde, 2-hydroxy-5-(4nitro-styryl)benzaldehyde and pre-polarised WSB coordinated with Cu(II), encoded as Complex-1 (β = 14.671 × 10-30 e.s.u) showed higher β values over other categories, N-1 and N-3, i.e. WSB derived from precursor aldehydes, 2-hydroxy-5-styrylbenzaldehyde and 2-hydroxy-5-((1Z,3E)-4-phenylbuta-1,3-dien-1-yl)benzaldehyde, respectively. For the first time here we report the geometrical isomeric effect on β value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradpour, Tahereh; Abbasi, Alireza, E-mail: aabbassi@khayam.ut.ac.ir; Van Hecke, Kristof
A new 3D nanoporous metal–organic framework (MOF), [[Zn{sub 4}O(C{sub 24}H{sub 15}N{sub 6}O{sub 6}){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O·DMF]{sub n} (1) based on 4,4′,4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) ligand was solvothermally synthesized and characterized by single–crystal X-ray diffraction, Powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and Brunauer–Emmett–Teller (BET) analyses. X-ray single crystal diffraction analysis reveals that 1 exhibits a 3D network with new kvh1 topology. Semi-empirical (AM1) calculations were carried out to obtain stable conformers for TATAB ligand. In addition, the absorption of two typical aldehydes (benzaldehyde and formaldehyde) in the presence of 1 was investigated and the effect of the aldehyde concentration, exposure timemore » and temperature was studied. It was found that compound 1 has a potential for the absorption of aldehydes under mild conditions. - Graphical abstract: Absorption of two typical aldehydes (formaldehyde and benzaldehyde) by solvothermally synthesized of a 3D nano-porous MOF based on TATAB tricarboxylate ligand and Zn (NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • We present a 3D Zn(II)-MOF with TATAB linker by solvothermal method. • The framework possesses a new kvh1 topology. • The framework displays formaldehyde and benzaldehyde absorption property. • Conformational analysis was performed to determine the stable linker geometry.« less
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanmay; Chatterjee, Sourav; Majumder, Ishani; Ghosh, Soumen; Yoon, Sangee; Sim, Eunji
2018-04-01
Three Schiff base ligands such as 2-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL1), 2-[(2-Hydroxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL2), 2-[(3,5-Dichloro-2-hydroxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL3) have been synthesized by condensation of aldehydes (such as 3,5-Dichloro-2-hydroxy benzaldehyde, 2-Hydroxy-benzaldehyde, and 2-Hydroxy-3-methoxy-benzaldehyde) with Tris-(hydroxymethyl)amino methane and characterized by IR, UV-vis and 1H NMR spectroscopy. Then all these three ligands have been used to prepare Pb(II) complexes by reaction with lead(II) acetate tri-hydrate in methanol. In view of analytical and spectral (IR, UV-vis and Mass) studies, it has been concluded that, except HL2, other two ligands form 1:1 metal complexes (1 and 3) with lead. Between two complexes, complex 3 is highly fluorescent and this property has been used to identify the pollutant nitroaromatics. Finally, the quenching mechanism has been established by means of spectroscopic investigation.
Evaluation of the hydroxynitrile lyase activity in cell cultures of capulin (Prunus serotina).
Hernández, Liliana; Luna, Héctor; Navarro-Ocaña, Arturo; Olivera-Flores, Ma Teresa de Jesús; Ayala, Ivon
2008-07-01
Enzymatic preparations obtained from young plants and cell cultures of capulin were screened for hydroxynitrile lyase activity. The three week old plants, grown under sterile conditions, were used to establish a solid cell culture. Crude preparations obtained from this plant material were evaluated for the transformation of benzaldehyde to the corresponding cyanohydrin (mandelonitrile). The results show that the crude material from roots, stalks, and leaves of young plants and calli of roots, stalks, internodes and petioles biocatalyzed the addition of hydrogen cyanide (HCN) to benzaldehyde with a modest to excellent enantioselectivity.
2007-01-01
viruses, herpes simplex virus (HSV), cytomegalovirus (CMV), varicella-zoster virus (VZV), influenza A and B viruses, and respiratory syncytial virus...Rouzioux C. 2004. Penetration of enfuvirtide, tenofovir, efavirenz, and protease inhibitors in the genital tract of HIV-1-infected men. Aids 18:1958...1968. Sensitivity of herpes simplex virus, vaccinia virus, and adenoviruses to deoxyribonucleic acid inhibitors and thiosemicarbazones in a plaque
Wang, Xin Rui; Wang, Xing Ze; Li, Yong; Liu, Kun; Liu, Shi Xin; Du, Jing; Huang, Zhuo; Luo, Yan; Huo, Jian Zhong; Wu, Xiang Xia; Liu, Yuan Yuan; Ding, Bin
2018-06-01
In this work, a novel water-stable coordination polymer with {4 4 } network topology {[Zn(L) 2 (NO 3 ) 2 ]} n (1) (L = 4,4'-Bis(triazol-1-ylmethyl)biphenyl) has been synthesized through the hydrothermal and sonochemical approaches. 1 has been characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy, UV-vis absorption spectrum and scanning electron microscopy (SEM). PXRD patterns of the as-synthesized samples 1 have confirmed the purity of the bulky samples. In the sonochemical preparation approaches, different ultrasound irradiation power and ultrasound time were also used in order to investigate the impact factor for morphology and size of nano-structured 1. Photo-luminescence studies have revealed that 1 can efficiently distinguish Fe 3+ from Fe 2+ and other metal ions. On the other hand, 1 also can exhibit a highly sensitive, excellently selective and real-time detection of benzaldehyde and pH through photo-luminescence quenching process. As for 1, density functional theory (DFT) and time-dependent DFT (TDDFT) theory has been applied to calculate these spectroscopic data, the result agree with the experimental results for detection of benzaldehyde. Photo-luminescent recyclability results indicated 1 can be reused at least five times in the detection process. To the best of our knowledge, this is the first example of a multi-responsive regenerable luminescent sensor for highly selective, sensitive and real-time sensing of Fe 3+ over Fe 2+ , benzaldehyde and pH values. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Savithiri, S.; Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Bharanidharan, S.; Saleem, H.
2015-02-01
In this study, the molecular structure and vibrational spectra of 3t-pentyl2r,6c-diphenylpiperidin-4-one thiosemicarbazone (PDPOTSC) were studied. The ground-state molecular geometry was ascertained by using the density functional theory (DFT)/B3LYP method using 6-31++G(d,p) as a basis set. The vibrational (FT-IR and FT-Raman) spectra of PDPOTSC were computed using DFT/B3LYP and HF methods with 6-31++G(d,p) basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED ⩾ 10%) of the vibrational modes, calculated with scaled quantum mechanics (SQM) methods PQS program. The electrical dipole moment (μ) and first hyperpolarizability (βo) values have been computed using DFT/B3LYP and HF methods. The calculated result (βo) shows that the title molecule might have nonlinear optical (NLO) behavior. Atomic charges of C, N, S and molecular electrostatic potential (MEP) were calculated using B3LYP/6-31G++(d,p). The HOMO-LUMO energies were calculated and natural bonding orbital (NBO) analysis has also been carried out.
Helal, M H M; Salem, M A; El-Gaby, M S A; Aljahdali, M
2013-07-01
In the present investigation, furo[2,3-d]thiazol-5(2H)-one 5 was obtained from reaction of thiosemicarbazone derivative 2 with diethyl acetylene dicarboxylate. A series of newly synthesized 2-(hydrazinyl)thiazol-4(5H)-one 6, 7 &8 and 2-(4-(substituted)-thiazol-2-yl)hydrazono derivatives 9a, b &10 were synthesized from treatment of thiosemicarbazone derivative 2 with appropriate α-halogenated compounds. Also, a one pot synthesis of thiazole derivatives 13 &15 was achieved from three components reaction of hydrazone derivative 11 with phenyl isothiocyanate and α-halogenated compounds catalyzed by DMF/KOH. 4-(4-Morpholino phenyl) thiazol-2-amino 17 was obtained via the reaction of acetophenone derivative 1 with thiourea in presence of iodine. The reactivity of 2-aminothiazole 17 toward some electrophilic reagents was investigated. The structure of the newly compounds was confirmed on the basis of elemental analysis and spectral data. The antibacterial activity towards two Gram negative (Proteus mirabilis &Serratia marcesens) and two Gram positive (Staphylococcus aureus &Bacillus cereus) bacteria was investigated. The anti-inflammatory activity was also investigated and the inhibition of the carrageenin-induced oedema by these compounds was established. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Sun, Jian-Fan; Lin, Xiuping; Zhou, Xue-Feng; Wan, Junting; Zhang, Tianyu; Yang, Bin; Yang, Xian-Wen; Tu, Zhengchao; Liu, Yonghong
2014-06-01
Five alkenyl phenol and benzaldehyde derivatives, pestalols A-E (1-5), as well as seven known compounds (6-12), were isolated from endophytic fungus Pestalotiopsis sp. AcBC2 derived from the Chinese mangrove plant Aegiceras corniculatum. Their structures were determined by spectroscopic analyses. Compounds 2 and 3 showed cytotoxicity against a panel of 10 tumor cell lines. Compounds 1-5, 8, 9, 11, and 12 showed inhibitory activities against Influenza A virus subtype (H3N2) and Swine Flu (H1N1) viruses. Compound 2 also showed inhibitory activity against tuberculosis.
Walcourt, Asikiya; Kurantsin-Mills, Joseph; Kwagyan, John; Adenuga, Babafemi B.; Kalinowski, Danuta S.; Lovejoy, David B.; Lane, Darius J. R.; Richardson, Des R.
2013-01-01
Iron chelators inhibit the growth of the malaria parasite, Plasmodium falciparum, in culture and in animal and human studies. We previously reported the anti-plasmodial activity of the chelators, 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), 2-hydroxy-1-naphthylaldehyde 4-methyl-3-thiosemicarbazone (N4mT), and 2-hydroxy-1-naphthylaldehyde 4-phenyl-3-thiosemicarbazone (N4pT). In fact, these ligands showed greater growth inhibition of chloroquine-sensitive (3D7) and chloroquine-resistant (7G8) strains of P. falciparum in culture compared to desferrioxamine (DFO). The present study examined the effects of 311, N4mT and N4pT on erythrocyte membrane integrity and asexual parasite development. While the characteristic biconcave disk shape of the erythrocytes was unaffected, the chelators caused very slight hemolysis at IC50 values that inhibited parasite growth. The chelators 311, N4mT and N4pT affected all stages of the intra-erythrocytic development cycle (IDC) of P. falciparum in culture. However, while these ligands primarily affected the ring-stage, DFO inhibited primarily trophozoite and schizont-stages. Ring, trophozoite and schizont-stages of the IDC were inhibited by significantly lower concentrations of 311, N4mT, and N4pT (IC50 = 4.45 ± 1.70, 10.30 ± 4.40, and 3.64 ± 2.00 μM, respectively) than DFO (IC50 = 23.43 ± 3.40 μM). Complexation of 311, N4mT and N4pT with iron reduced their anti-plasmodial activity. Estimation of the intracellular labile iron pool (LIP) in erythrocytes showed that the chelation efficacy of 311, N4mT and N4pT corresponded to their anti-plasmodial activity, suggesting that the LIP may be a potential source of non-heme iron for parasite metabolism within the erythrocyte. This study has implications for malaria chemotherapy that specifically disrupts parasite iron utilization. PMID:24028863
NASA Astrophysics Data System (ADS)
Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.
2009-11-01
Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.
He, Yunqing; Xue, Ying
2011-03-03
A new annulated N-heterocyclic carbene (NHC), pyrido[1,2-a]-2-ethyl[1,2,4]triazol-3-ylidene, has been synthesized and its good catalytic activity for benzoin condensation has been experimentally determined by You and co-workers recently [ Ma , Y. J. , Wei , S. P. , Lan , J. B. , Wang , J. Z. , Xie , R. G. , and You , J. S. J. Org. Chem. 2008 , 73 , 8256 ]. In this work, the mechanism of the title reaction has been intensively studied computationally by employing the density functional theory (B3LYP) method in conjunction with 6-31+G(d) and 6-311+G(2d,p) basis sets. Our results indicate that path A (in which a sequence of intermolecular proton transfers between two carbene/benzaldehyde coupling intermediates affords enamine) and path B (in which a t-BuOH assisted hydrogen transfer generates enamine) proposed on the basis of the Breslow mechanism are competitive for their similar barriers. In path A, the first intermolecular proton transfer between two N-heterocyclic carbene/benzaldehyde coupled intermediates to form tertiary alcohol and enolate anion is theoretically the rate-determining step with corresponding barrier (30.93 kcal/mol), while the t-BuOH assisted hydrogen transfer generating Breslow enamine is the rate-determining step with corresponding barrier (28.84 kcal/mol) in path B. The coupling of carbene and benzaldehyde, and the coupling of enamine and another benzaldehyde to form a C-C bond are partially rate-determining for their relatively significant barriers (24.06 and 26.95 kcal/mol, respectively), being the same in both paths A and B. Our results are in nice agreement with the experimental result in a kinetic investigation of thiazolium ion-catalyzed benzoin condensation performed by White and Leeper in 2001.
Farrugia, Louis J; Khalaji, Aliakbar Dehno
2011-11-17
The charge density in 2,5-dimethoxybenzaldehyde thiosemicarbazone (1) has been studied experimentally using Mo-K(α) X-ray diffraction at 100 K, and by theory using DFT calculations at the B3LYP/6-311++G(2d,2p) level. The quantum theory of atoms in molecules (QTAIM) was used to investigate the extent of π-delocalization in the thioamide side-chain, which is virtually coplanar with the benzene ring. The experimental and theoretical ellipticity profiles along the bond paths were in excellent agreement, and showed that some of the formal single bonds in the side-chain have significant π-bond character. This view was supported by the magnitudes of the topological bond orders and by the delocalization indices δ(Ω(A), Ω(B)). An orbital decomposition of δ(Ω(A), Ω(B)) demonstrated that there was significant π-character in all the interchain non-H chemical bonds. On the other hand, the source function referenced at the interchain bond critical points could not provide any evidence for π-delocalization, showing instead only limited σ-delocalization between nearest neighbors. Overall, the topological evidence and the atomic graphs of the oxygen atoms did not provide convincing evidence for π-delocalization involving the methoxy substituents.
NASA Astrophysics Data System (ADS)
Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.
2015-01-01
A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.
NASA Astrophysics Data System (ADS)
Beckford, Floyd A.; Webb, Kelsey R.
2017-08-01
A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50) × 104 M- 1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105 M- 1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65 μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27 μM.
Carradori, Simone; Cirilli, Roberto; Dei Cicchi, Simona; Ferretti, Rosella; Menta, Sergio; Pierini, Marco; Secci, Daniela
2012-12-21
Here, we report on the simultaneous direct HPLC diastereo- and enantioseparation of 3-methylcyclohexanone thiosemicarbazone (3-MCET) on a polysaccharide-based chiral stationary phase under normal-phase conditions. The optimized chromatographic system was employed in dynamic HPLC experiments (DHPLC), as well as detection technique in a batch wise approach to determine the rate constants and the corresponding free energy activation barriers of the spontaneous, base- and acid-promoted E/Z diastereomerization of 3-MCET. The stereochemical characterization of four stereoisomers of 3-MCET was fully accomplished by integrating the results obtained by chemical correlation method with those derived by theoretical calculations and experimental investigations of circular dichroism (CD). As a final goal, a deepened analysis of the perturbing effect exercised by the stationary phase on rate constant values measured through DHPLC determinations as a function of the chromatographic separation factor α of the interconverting species was successfully accomplished. This revealed quite small deviations from the equivalent kinetic values obtained by off-column batch wise procedure, and suggested a possible effective correction of rate constants measured by DHPLC approach. Copyright © 2012 Elsevier B.V. All rights reserved.
Computational study of the synthesis of benzoin derivatives from benzil
NASA Astrophysics Data System (ADS)
Topal, Kevser Göçmen; Unaleroglu, Canan; Aviyente, Viktorya
Benzil (1,2-diphenylethane-1,2-dione) undergoes cyanide catalyzed condensation with benzaldehyde to yield O-benzoylated benzoin (2-benzoyl-1,2-diphenylethanone). In this study, the experimentally suggested mechanism has been modeled with PM3 and verified with B3LYP. The effect of the substituent on the reaction yield has been rationalized by considering two benzil derivatives; 1,2-bis(2-chlorophenyl)ethane-1,2-dione and 1,2-bis(2-fluorophenyl)ethane-1,2-dione and three benzaldehyde derivatives; o-fluorobenzaldehyde, o-methylbenzaldehyde and 2-pyridinecarboxaldehyde. The effect of the solvent has been modeled by using the isodensity-surface polarizable continuum (IPCM) model. Reactivity descriptors have been used to justify the reactivity differences of the various substituents.
NASA Astrophysics Data System (ADS)
Ravikumar, C.; Joe, I. Hubert; Jayakumar, V. S.
2008-07-01
FT Raman and IR spectra of the crystallized nonlinear optic (NLO) molecule, benzaldehyde phenylhydrazone (BPH) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies of BPH have been investigated with the help of B3LYP density functional theory (DFT) method. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). From the optimized geometry, the decrease in C-N bond length indicates the electron delocalization over the region of the molecule. The vibrational analysis confirm the charge transfer interaction between the phenyl rings through ≻Cdbnd N-N≺ skeleton.
Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.
Lehto, Maili; Karilainen, Topi; Róg, Tomasz; Cramariuc, Oana; Vanhala, Esa; Tornaeus, Jarkko; Taberman, Helena; Jänis, Janne; Alenius, Harri; Vattulainen, Ilpo; Laine, Olli
2014-01-01
In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.
NASA Astrophysics Data System (ADS)
Singh, Ajay K.; Pandey, O. P.; Sengupta, S. K.
2013-09-01
Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L = monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2‧(OOCCH3)2(H2O)2](L‧ = neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, 1H NMR, and 13C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200 nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.
Sek, Danuta; Siwy, Mariola; Bijak, Katarzyna; Grucela-Zajac, Marzena; Malecki, Grzegorz; Smolarek, Karolina; Bujak, Lukasz; Mackowski, Sebastian; Schab-Balcerzak, Ewa
2013-10-10
Two series of azines and their azomethine analogues were prepared via condensation reaction of benzaldehyde, 2-hydroxybenzaldehyde, 4-pyridinecarboxaldehyde, 2-thiophenecarboxaldehyde, and 4-(diphenylamino)benzaldehyde with hydrazine monohydrate and 1,4-phenylenediamine, respectively. The structures of given compounds were characterized by FTIR, (1)H NMR, and (13)C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of all compounds were investigated by means of differential scanning calorimetry (DSC), UV-vis spectroscopy, stationary and time-resolved photoluminescence spectroscopy, and cycling voltammetry (CV). Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). Influence of chemical structure of the compounds on their properties was analyzed.
A Grignard-like Organic Reaction in Water
NASA Astrophysics Data System (ADS)
Breton, Gary W.; Hughey, Christine A.
1998-01-01
The addition of a Grignard reagent to a carbonyl-containing compound to form an alcohol is an important reaction to demonstrate in organic chemistry laboratory courses. However, the reaction presents several practical problems for the lab instructor including the need for anhydrous solvents (e.g., ether), dry glassware, and the occasional problem of slow reaction initiation. We have scaled, and tested, a known Grignard-like reaction between allyl bromide and benzaldehyde mediated by zinc metal in aqueous media. The procedure retains the desirable features of the traditional Grignard reaction, while eliminating some of the commonly encountered difficulties. Thus, addition of allyl bromide (1.2 eq) to benzaldehyde and zinc in a two-phase mixture of THF and saturated aqueous NH4Cl afforded addition product 1-phenyl-3-buten-1-ol in 70-85% yields.
4-{2-[2-(4-Formyl-phen-oxy)eth-oxy]eth-oxy}benzaldehyde.
Ma, Zhen; Cao, Yiqun
2011-06-01
The title compound, C(18)H(18)O(5), was obtained by the reaction of 4-hy-droxy-benzaldehyde with bis-(2,2-dichloro-eth-yl) ether in dimethyl-formamide. In the crystal, the mol-ecule lies on a twofold rotation axis that passes through the central O atom of the aliphatic chain, thus leading to one half-mol-ecule being present per asymmetric unit. The carbonyl, aryl and O-CH(2)-CH(2) groups are almost coplanar, with an r.m.s. deviation of 0.030 Å. The aromatic rings are approximately perpendicular to each other, forming a dihedral angle of 78.31 sh;H⋯O hydrogen bonds and C-H⋯π inter-actions help to consolidate the three-dimensional network.
NASA Astrophysics Data System (ADS)
Cui, Ganglong; Lu, You; Thiel, Walter
2012-06-01
We report a theoretical study on the electronically excited states and the mechanisms of photodissociation of C6H5CHO and C6H5COCH3. For both molecules, we find an S1/T2/T1 three-state intersection region, which allows for an efficient S1 → T1 intersystem crossing via the T2 state that acts as a relay. Consequently, T1 reactions become the major radical photodissociation channels. According to the computed energy profiles, T1 photodissociation mainly yields phenyl and formyl radicals in the case of benzaldehyde, and benzoyl and methyl radicals in the case of acetophenone, with different C-C bonds being cleaved preferentially. The computational results agree well with the available experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Gabriel S.; Kneen, Malea M.; Petsko, Gregory A.
2010-02-11
Benzaldehyde lyase (BAL) from Pseudomonas putida is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the breakdown of (R)-benzoin. Here we report that a point mutant, BAL A28S, not only catalyzes the decarboxylation of benzoylformate but, like benzoylformate decarboxylase (BFDC), is also inactivated by the benzoylformate analogues methyl benzoylphosphonate (MBP) and benzoylphosphonate (BP). The latter has no effect on wild-type BAL, and the inactivation of the A28S variant is shown to result from phosphorylation of the newly introduced serine residue. This lends support to the proposal that an appropriately placed nucleophile facilitates the expulsion of carbon dioxide from the active sitemore » in many ThDP-dependent decarboxylases.« less
Seebacher, Nicole A; Richardson, Des R; Jansson, Patric J
2016-12-01
The intracellular distribution of a drug can cause significant variability in both activity and selectivity. Herein, we investigate the mechanism by which the anti-cancer agents, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and the clinically trialed, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), re-instate the efficacy of doxorubicin (DOX), in drug-resistant P-glycoprotein (Pgp)-expressing cells. Both Dp44mT and DpC potently target and kill Pgp-expressing tumors, while DOX effectively kills non-Pgp-expressing cancers. Thus, the combination of these agents should be considered as an effective rationalized therapy for potently treating advanced and resistant tumors that are often heterogeneous in terms of Pgp-expression. These studies demonstrate that both Dp44mT and DpC are transported into lysosomes via Pgp transport activity, where they induce lysosomal-membrane permeabilization to release DOX trapped within lysosomes. This novel strategy of loading lysosomes with DOX, followed by permeabilization with Dp44mT or DpC, results in the relocalization of stored DOX from its lysosomal 'safe house' to its nuclear targets, markedly enhancing cellular toxicity against resistant tumor cells. Notably, the combination of Dp44mT or DpC with DOX showed a very high level of synergism in multiple Pgp-expressing cell types, for example, cervical, breast and colorectal cancer cells. These studies revealed that the level of drug synergy was proportional to Pgp activity. Interestingly, synergism was ablated by inhibiting Pgp using the pharmacological inhibitor, Elacridar, or by inhibiting Pgp-expression using Pgp-silencing, demonstrating the importance of Pgp in the synergistic interaction. Furthermore, lysosomal-membrane stabilization inhibited the relocalization of DOX from lysosomes to the nucleus upon combination with Dp44mT or DpC, preventing synergism. This latter observation demonstrated the importance of lysosomal-membrane permeabilization to the synergistic interaction between these agents. The synergistic and potent anti-tumor efficacy observed between DOX and thiosemicarbazones represents a promising treatment combination for advanced cancers, which are heterogeneous and composed of non-Pgp- and Pgp-expressing tumor cells.
Pessoto, Felipe S.; Yokomizo, Cesar H.; Prieto, Tatiana; Fernandes, Cleverton S.; Silva, Alan P.; Kaiser, Carlos R.; Basso, Ernani A.; Nantes, Iseli L.
2015-01-01
A series of thiosemicarbazone (TSC) p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics. PMID:26075034
Bahl, Deepa; Athar, Fareeda; Soares, Milena Botelho Pereira; de Sá, Matheus Santos; Moreira, Diogo Rodrigo Magalhães; Srivastava, Rajendra Mohan; Leite, Ana Cristina Lima; Azam, Amir
2010-09-15
A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure-activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 microM) and antiamoebic (NT2Pd, IC50 of 0.6 microM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells. Copyright (c) 2010. Published by Elsevier Ltd.
β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones.
Glisoni, Romina J; García-Fernández, María J; Pino, Marylú; Gutkind, Gabriel; Moglioni, Albertina G; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Sosnik, Alejandro
2013-04-02
Two types of hydrophilic networks with conjugated beta-cyclodextrin (β-CD) were developed with the aim of engineering useful platforms for the localized release of an antimicrobial 5,6-dimethoxy-1-indanone N4-allyl thiosemicarbazone (TSC) in the eye and its potential application in ophthalmic diseases. Poly(2-hydroxyethyl methacrylate) soft contact lenses (SCLs) displaying β-CD, namely pHEMA-co-β-CD, and super-hydrophilic hydrogels (SHHs) of directly cross-linked hydroxypropyl-β-CD were synthesized and characterized regarding their structure (ATR/FT-IR), drug loading capacity, swelling and in vitro release in artificial lacrimal fluid. Incorporation of TSC to the networks was carried out both during polymerization (DP method) and after synthesis (PP method). The first method led to similar drug loads in all the hydrogels, with minor drug loss during the washing steps to remove unreacted monomers, while the second method evidenced the influence of structural parameters on the loading efficiency (proportion of CD units, mesh size, swelling degree). Both systems provided a controlled TSC release for at least two weeks, TSC concentrations (up to 4000μg/g dry hydrogel) being within an optimal therapeutic window for the antimicrobial ocular treatment. Microbiological tests against P. aeruginosa and S. aureus confirmed the ability of TSC-loaded pHEMA-co-β-CD network to inhibit bacterial growth. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rohani Moghadam, Masoud; Poorakbarian Jahromi, Sayedeh Maria; Darehkordi, Ali
2016-02-01
A newly synthesized bis thiosemicarbazone ligand, (2Z,2'Z)-2,2'-((4S,5R)-4,5,6-trihydroxyhexane-1,2-diylidene)bis(N-phenylhydrazinecarbothioamide), was used to make a complex with Cu(2+), Ni(2+), Co(2+) and Fe(3+) for their simultaneous spectrophotometric determination using chemometric methods. By Job's method, the ratio of metal to ligand in Ni(2+) was found to be 1:2, whereas it was 1:4 for the others. The effect of pH on the sensitivity and selectivity of the formed complexes was studied according to the net analyte signal (NAS). Under optimum conditions, the calibration graphs were linear in the ranges of 0.10-3.83, 0.20-3.83, 0.23-5.23 and 0.32-8.12 mg L(-1) with the detection limits of 2, 3, 4 and 10 μg L(-1) for Cu(2+), Co(2+), Ni(2+) and Fe(3+) respectively. The OSC-PLS1 for Cu(2+) and Ni(2+), the PLS1 for Co(2+) and the PC-FFANN for Fe(3+) were selected as the best models. The selected models were successfully applied for the simultaneous determination of elements in some foodstuffs and vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gao, Baojiao; Zhang, Liqin; Zhang, Dandan
2018-02-07
Two kinds of bidentate Schiff base ligands derived from benzaldehyde, benzaldehyde/m-aminophenol (BAMA) type and benzaldehyde/glutamic acid (BAGL) type ligands, were synchronously synthesized and bonded on the backbone of polysulfone (PSF) through molecular design and by polymer reactions, and two functional polymers, PSF-BAMA and PSF-BAGL, were obtained. Then two series of novel luminescent Schiff base-type polymer-rare earth complexes were prepared via coordination reactions. In this work, the effects of the structures of the bonded ligands on the photoluminescence performance of the complexes were investigated in detail, and for the different photophysical properties of the prepared complexes, relevant theoretical explanations were given. The experimental results show that the bonded ligand BAMA can strongly sensitize the fluorescence emission of Eu(iii) ions, and the binary complex PSF-(BAMA) 3 -Eu(iii) emits strong red fluorescence under UV light. The reason for this lies in the fact that a larger conjugate π-bond system is contained in the structure of BAMA, and so the triplet state of BAMA can be matched with the resonant energy level of the Eu(iii) ion. While the bonded ligand BAGL can effectively sensitize the fluorescence emission of Tb(iii) ions, the binary complex PSF-(BAGL) 3 -Tb(iii) exhibits very strong green fluorescence under UV light. The reason is that a smaller conjugate π-bond system is contained in the structure of BAGL and there is a good energy level matching between the triplet state of BAGL and the resonant energy level of the Tb(iii) ion. The fluorescence intensities of the two ternary complexes, PSF-(BAMA) 3 -Eu(iii)-(Phen) 1 (phenanthroline, Phen) and PSF-(BAGL) 3 -Tb(iii)-(Phen) 1 , are much stronger than that of the corresponding binary complex because Phen as the second ligand has two effects, the effect of synergistic coordination with the first ligand and the effect of replacing the coordinated water around the central ion, and it has been confirmed by fluorescence spectroscopy and thermogravimetric analysis.
Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.
da Silva, Gabriel; Bozzelli, Joseph W
2012-12-14
The resonance stabilized benzyl radical is an important intermediate in the combustion of aromatic hydrocarbons and in polycyclic aromatic hydrocarbon (PAH) formation in flames. Despite being a free radical, benzyl is relatively stable in thermal, oxidizing environments, and is predominantly removed through bimolecular reactions with open-shell species other than O(2). In this study the reaction of benzyl with ground-state atomic oxygen, O((3)P), is examined using quantum chemistry and statistical reaction rate theory. C(7)H(7)O energy surfaces are generated at the G3SX level, and include several novel pathways. Transition state theory is used to describe elementary reaction kinetics, with canonical variational transition state theory applied for barrierless O atom association with benzyl. Apparent rate constants and branching ratios to different product sets are obtained as a function of temperature and pressure from solving the time-dependent master equation, with RRKM theory for microcanonical k(E). These simulations indicate that the benzyl + O reaction predominantly forms the phenyl radical (C(6)H(5)) plus formaldehyde (HCHO), with lesser quantities of the C(7)H(6)O products benzaldehyde, ortho-quinone methide, and para-quinone methide (+H), along with minor amounts of the formyl radical (HCO) + benzene. Addition of O((3)P) to the methylene site in benzyl produces a highly vibrationally excited C(7)H(7)O* adduct, the benzoxyl radical, which can β-scission to benzaldehyde + H and phenyl + HCHO. In order to account for the experimental observation of benzene as the major reaction product, a roaming radical mechanism is proposed that converts the nascent products phenyl and HCHO to benzene + HCO. Oxygen atom addition at the ortho and para ring sites in benzyl, which has not been previously considered, is shown to lead to the quinone methides + H; these species are less-stable isomers of benzaldehyde that are proposed as important combustion intermediates, but are yet to be identified experimentally. Franck-Condon simulations of the benzaldehyde, o-quinone methide, and p-quinone methide photoelectron spectra suggest that these C(7)H(6)O isomers could be distinguished using tunable VUV photoionization mass spectrometry.
2011-03-29
Ethanol Benzophenone Benzophenone Stearyl alcohol Stearyl alcohol Fragrances Fragrances Shampoo Lipstick Benzaldehyde Glycerin Methylene Chloride...MatchInconclusiveMatchConclusion NO YES Unknown Coastal Background Sediments: National Survey 0 10 cm depth composites A- Analytical Methods (EPA SW
A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen, E-mail: guwen68@nankai.edu.cn
2016-12-15
A 3D lanthanide MOF with formula [Sm{sub 2}(abtc){sub 1.5}(H{sub 2}O){sub 3}(DMA)]·H{sub 2}O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays amore » turn-on luminescence sensing with respect to ethanol among different alcohol molecules.« less
Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd
2009-01-01
Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.
Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi
2010-01-01
Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.
Singh, Ajay K; Pandey, O P; Sengupta, S K
2013-09-01
Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L=monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2(')(OOCCH3)2(H2O)2](L'=neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, (1)H NMR, and (13)C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases. Copyright © 2013 Elsevier B.V. All rights reserved.
Rotational Spectrum and Large Amplitude Motions of 3,4-, 2,5- and 3,5-DIMETHYL-BENZALDEHYDE
NASA Astrophysics Data System (ADS)
Kleiner, I.; Tudorie, M.; Jahn, M.; Grabow, J.-U.; Goubet, M.
2012-06-01
The microwave spectra of the 3,4-, 2,5- and 3,5-Dimethyl-Benzaldehyde (DMBA) molecules have been recorded for the first time in the 2-26.5 GHz frequency range, using the COBRA-FTMW spectrometer in Hannover, with an instrumental uncertainty of 0.5 kHz for unblended lines. The experimental assignments and fits are supplemented by ab initio quantum chemical calculations,conformational energy landscape, and dipole moment components. The analysis of the spectra for the three isomers are in progress. The latest results, including spectroscopic constants and large amplitude motion parameters, will be presented. This investigation follows the study of the spectra of the 4-Methyl-Benzaldehyde molecule. The DMBA isomers belong to a similar series of molecules formally obtained by adding a second methyl group at the aromatic ring. These molecules serve as prototype systems for the development of the theoretical model of asymmetric top molecules having Cs symmetry while containing two inequivalent methyl tops (C3v), exhibiting different barrier heights and coupling terms to methyl internal rotation. Thus, the DMBA isomers represent benchmark species for testing the two-top internal rotors BELGI program written recently. Supported by the ANR-08-BLAN-0054 contract (France), the Deutsche Forschungsgemeinschaft, and the Land Niedersachsen (Germany). H. Saal, W. Caminati, I. Kleiner, A. R. Hight-Walker, J. T. Hougen, J.-U. Grabow, to be published. M. Tudorie, I. Kleiner, J. T. Hougen, S. Melandri, L. W. Sutikdja, W. Stahl, J. Mol. Spectrosc., 269 (2011), 211-225
Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D
2009-02-01
In industrial and pharmaceutical processes, the study of residual products becomes essential to guarantee the quality of compounds and to eliminate or minimize toxic residual products. Knowledge about the origin of impurities (raw materials, processes, the contamination of industrial plants, etc.) is necessary in preventive treatment and in the control of a product's lifecycle. Benzyl chloride is used as raw material to synthesize several quaternary ammonium compounds, such as benzalkonium chloride, which may have pharmaceutical applications. Benzaldehyde, benzyl alcohol, toluene, chloro derivatives of toluene, and dibenzyl ether are compounds that may be found as impurities in technical benzyl chloride. We proposed a high-performance liquid chromatography method for the separation of these compounds, testing two stationary phases with different dimensions and particle sizes, with the application of photodiode array-detection. The linearity for four possible impurities (benzaldehyde, toluene, alpha,alpha-dichlorotoluene, and 2-chlorotoluene) ranged from 0.1 to 10 microg/mL, limits of detection from 11 to 34 ng/mL, and repeatability from 1% to 2.9% for a 0.3-1.2 microg/mL concentration range. The method was applied to samples of technical benzyl chloride, and alpha,alpha-dichlorotoluene and benzaldehyde were identified by spectral analysis and quantitated. The selection of benzyl chloride with lower levels of impurities is important to guarantee the reduction of residual products in further syntheses.
NASA Astrophysics Data System (ADS)
Pramod, A. G.; Renuka, C. G.; Shivashankar, K.; Boregowda, P.; Nadaf, Y. F.
2018-05-01
Steady-state absorption and the fluorescence properties of the synthesized Benzofuran derivatives were studied. Absorption and fluorescence spectra of 4-(2-Oxo-2H-benzo[h]chromen-4-ylm ethoxy)-benzaldehyde (4-OBCM) have been recorded at room temperature in extensive variety of solvents of various polarities. 4-OBCM Fluorescence band maxima of the solvents are small amount spectral shifted to hypsochromic when the solvent polarity will increase, compared to absorption band under the identical circumstance. This suggests an increase in dipole moment of excited state compared to ground state. The ground-state dipole moment of 4-OBCM was found from quantum mechanical methods and the excited state dipole moment of 4-OBCM was evaluated from Lippert-Mataga Bakhshiev's, Kawski-Chamma-Viallet's and Reichardt conditions by methods for solvatochromic shift. Kamlet-Taft coefficients which affect this absorption profiles.
Fouda, A S; Gouda, M M; El-Rahman, S I
2000-05-01
The effect of benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives on the corrosion of aluminium in hydrochloric acid has been investigated using thermometric and polarization techniques. The inhibitive efficiency ranking of these compounds from both techniques was found to be: 2>3>1>4. The inhibitors acted as mixed-type inhibitors but the cathode is more polarized. The relative inhibitive efficiency of these compounds has been explained on the basis of structure of the inhibitors and their mode of interaction at the surface. Results show that these additives are adsorbed on an aluminium surface according to the Langmuir isotherm. Polarization measurements indicated that the rate of corrosion of aluminium rapidly increases with temperature over the range 30-55 degrees C both in the absence and in the presence of inhibitors. Some thermodynamic data of the adsorption process are calculated and discussed.
4-{2-[2-(4-Formylphenoxy)ethoxy]ethoxy}benzaldehyde
Ma, Zhen; Cao, Yiqun
2011-01-01
The title compound, C18H18O5, was obtained by the reaction of 4-hydroxybenzaldehyde with bis(2,2-dichloroethyl) ether in dimethylformamide. In the crystal, the molecule lies on a twofold rotation axis that passes through the central O atom of the aliphatic chain, thus leading to one half-molecule being present per asymmetric unit. The carbonyl, aryl and O—CH2—CH2 groups are almost coplanar, with an r.m.s. deviation of 0.030 Å. The aromatic rings are approximately perpendicular to each other, forming a dihedral angle of 78.31 sh;H⋯O hydrogen bonds and C—H⋯π interactions help to consolidate the three-dimensional network. PMID:21754870
EVALUATION OF THE SYNTHESIS AND STRUCTURE OF NEW AZETIDIN-2-ONES OF FERULIC ACID.
Stan, Cătălina Daniela; Drăgan, Maria; Pânzariu, Andreea; Profire, Lenuţa
2016-01-01
To synthesize some new azetidin-2-ones of ferulic acid and to evaluate them from physicochemical and spectral point of view. The synthesis was carried out in several steps: (i) obtaining the ferulic acid chloride; (ii) obtaining the ferulic acid hydrazide with hydrazine hydrate (98%); (iii) condensation of ferulic acid hydrazide with different benzaldehydes (2-hydroxy-/2-nitro-/4-chloro-/4- fluoro-/4-bromo-benzaldehyde) in order to obtain the corresponding hydrazones; (iv) cy- clization of ferulic acid hydrazones with chloroacethyl chloride in freshly distilled toluene medium and in the presence of triethylamine, resulting in the corresponding azetidin-2-ones. Six new azetidin-2-ones of ferulic acid were synthesized. They were characterized in terms of their physicochemical properties and their structure was confirmed by IR and 1H-NMR spectroscopy. Six new azetidin-2-ones of ferulic acid were synthesized, physicochemically characterized and validated spectrally. A
Ultrasound-assisted synthesis of curcumin analogs promoted by activated chicken eggshells
NASA Astrophysics Data System (ADS)
Mardiana, L.; Ardiansah, B.; Septiarti, A.; Bakri, R.; Kosamagi, G.
2017-07-01
Curcumin has been widely known as a multifunctional natural product which has many biological activities. However, the biggest limitation for the large scale application of curcumin is its poor bioavailability. This research presented a cheap, mild and efficient solvent-free synthesis of monocarbonyl analogs of curcumin via Aldol condensation using activated chicken eggshells (ACE). Dibenzalpropanone as a product of Aldol condensation was prepared by mixing benzaldehyde and acetone using a simple glass tube in the presence of ACE under ultrasound irradiation (78 % yield), while dibenzalcyclohexanone was produced from the reaction of benzaldehyde with cyclohenxanone (81 %). The products have been characterized by FTIR, UV-Vis spectrophotometer and GC-MS instruments. The FTIR spectra show a significant absorption of carbonyl group that attached to the double bond in α,β-position at 1630-1660 cm-1. The molecular cation of m/z of 234 and 274 is in agreement with the products structures.
Analysis and optimization of a synthetic milkweed floral attractant for mosquitoes.
Otienoburu, Philip E; Ebrahimi, Babak; Phelan, P Larry; Foster, Woodbridge A
2012-07-01
A pentane extract of flowers of common milkweed, Asclepias syriaca (Asclepiadaceae), elicited significant orientation from both male and female Culex pipiens in a dual-port flight olfactometer. Analysis of the extract by gas chromatography-mass spectrometry revealed six major constituents in order of relative abundance: benzaldehyde, (E)-β-ocimene, phenylacetaldehyde, benzyl alcohol, nonanal, and (E)-2-nonenal. Although not all were collected from the headspace profile of live flowers, a synthetic blend of these six compounds, when presented to mosquitoes in the same levels and proportions that occur in the extract, elicited a response comparable to the extract. Subtractive behavioral bioassays demonstrated that a three-component blend consisting of benzaldehyde, phenylacetaldehyde, and (E)-2-nonenal was as attractive as the full blend. These findings suggest the potential use of synthetic floral-odor blends for monitoring or control of both male and female disease-vectoring mosquitoes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oezay, H.; Yildiz, M., E-mail: myildiz@comu.edu.tr; Uenver, H.
2013-01-15
The compound called 3-methoxy-2- [(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with hexachlorocyclotriphosphazene. It has been characterized by elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR and UV-visible spectroscopic techniques. The structure of the title compound has been determind by X-ray analysis. Crystals are orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, Z = 4, a = 7.705(1), b = 12.624(1), c = 17.825(2) A, R{sub 1} = 0.0390 and wR{sub 2} = 0.1074 [I > 2{sigma}(I)], respectively.
Serda, Maciej; Kalinowski, Danuta S; Rasko, Nathalie; Potůčková, Eliška; Mrozek-Wilczkiewicz, Anna; Musiol, Robert; Małecki, Jan G; Sajewicz, Mieczysław; Ratuszna, Alicja; Muchowicz, Angelika; Gołąb, Jakub; Simůnek, Tomáš; Richardson, Des R; Polanski, Jaroslaw
2014-01-01
Thiosemicarbazones (TSCs) are an interesting class of ligands that show a diverse range of biological activity, including anti-fungal, anti-viral and anti-cancer effects. Our previous studies have demonstrated the potent in vivo anti-tumor activity of novel TSCs and their ability to overcome resistance to clinically used chemotherapeutics. In the current study, 35 novel TSCs of 6 different classes were designed using a combination of retro-fragments that appear in other TSCs. Additionally, di-substitution at the terminal N4 atom, which was previously identified to be critical for potent anti-cancer activity, was preserved through the incorporation of an N4-based piperazine or morpholine ring. The anti-proliferative activity of the novel TSCs were examined in a variety of cancer and normal cell-types. In particular, compounds 1d and 3c demonstrated the greatest promise as anti-cancer agents with potent and selective anti-proliferative activity. Structure-activity relationship studies revealed that the chelators that utilized "soft" donor atoms, such as nitrogen and sulfur, resulted in potent anti-cancer activity. Indeed, the N,N,S donor atom set was crucial for the formation of redox active iron complexes that were able to mediate the oxidation of ascorbate. This further highlights the important role of reactive oxygen species generation in mediating potent anti-cancer activity. Significantly, this study identified the potent and selective anti-cancer activity of 1d and 3c that warrants further examination.
Kamel, Ayman H
2015-11-01
A new potentiometric transducer for selective recognition of azide is characterized and developed. The PVC plasticized based sensor incorporates Mn(II) [2-formylquinoline thiosemicarbazone] complex in the presence of tri dodecyl methyl ammonium chloride (TDMAC) as a lipophilic cationic additive. The sensor displayed a near-Nernstian response for azide over 1.0×10(-2)-1.0×10(-5) mol L(-1), with an anionic slope of -55.8±0.6 mV decade(-1) and lower limit of detection 0.34 µg mL(-1). The sensor was pH independent in the range 5.5-9 and presented good selectivity features towards several inorganic anions, and it is easily used in a flow injection system and compared with a tubular detector. The intrinsic characteristics of the detector in a low dispersion manifold were determined and compared with data obtained under a hydrodynamic mode of operation. This simple and inexpensive automation, with a good potentiometric detector, enabled the analysis of ~33 samples h(-1) without requiring pre-treatment procedures. The proposed method is also applied to the analysis of trace levels of azide in primer mixtures. Significantly improved accuracy, precision, response time, stability and selectivity were offered by these simple and cost-effective potentiometric sensor compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to determine azide ions. Copyright © 2015 Elsevier B.V. All rights reserved.
Formation of highly oxygenated low-volatility products from cresol oxidation
NASA Astrophysics Data System (ADS)
Schwantes, Rebecca H.; Schilling, Katherine A.; McVay, Renee C.; Lignell, Hanna; Coggon, Matthew M.; Zhang, Xuan; Wennberg, Paul O.; Seinfeld, John H.
2017-03-01
Hydroxyl radical (OH) oxidation of toluene produces ring-retaining products: cresol and benzaldehyde, and ring-opening products: bicyclic intermediate compounds and epoxides. Here, first- and later-generation OH oxidation products from cresol and benzaldehyde are identified in laboratory chamber experiments. For benzaldehyde, first-generation ring-retaining products are identified, but later-generation products are not detected. For cresol, low-volatility (saturation mass concentration, C* ˜ 3.5 × 104 - 7.7 × 10-3 µg m-3), first- and later-generation ring-retaining products are identified. Subsequent OH addition to the aromatic ring of o-cresol leads to compounds such as hydroxy, dihydroxy, and trihydroxy methyl benzoquinones and dihydroxy, trihydroxy, tetrahydroxy, and pentahydroxy toluenes. These products are detected in the gas phase by chemical ionization mass spectrometry (CIMS) and in the particle phase using offline direct analysis in real-time mass spectrometry (DART-MS). Our data suggest that the yield of trihydroxy toluene from dihydroxy toluene is substantial. While an exact yield cannot be reported as authentic standards are unavailable, we find that a yield for trihydroxy toluene from dihydroxy toluene of ˜ 0.7 (equal to the reported yield of dihydroxy toluene from o-cresol; Olariu et al., 2002) is consistent with experimental results for o-cresol oxidation under low-NO conditions. These results suggest that even though the cresol pathway accounts for only ˜ 20 % of the oxidation products of toluene, it is the source of a significant fraction (˜ 20-40 %) of toluene secondary organic aerosol (SOA) due to the formation of low-volatility products.
NASA Astrophysics Data System (ADS)
Castiñeiras, Alfonso; García-Santos, Isabel; Nogueiras, Silvia; Rodríguez-González, Iria; Rodríguez-Riobó, Raúl
2014-09-01
Reaction of 2-cyanopyrazine with thiosemicarbazide or N-methylthiosemicarbazide afforded the (Z)-2-(amino(pyrazin-2-yl)methylene)hydrazinecarbothioamide (HPzAm4DH) and (Z)-2-(amino(pyrazin-2-yl)methylene)-N-methylhydrazine carbothioamide (HPzAm4M), respectively. (2Z,N‧E)-N‧-(4-Oxothiazolidin-2-ylidene)pyrazine-2-carbohydrazonamide (HPzAmot, 5) and (2Z,N‧E)-N‧-(3-methyl-4-oxothiazolidin-2-ylidene)pyrazine-2-carbohydrazonamide (MPzAmot, 7) have been synthesized from these thiosemicarbazones with chloroacetic or bromoacetic acids, using a conventional synthetic methodology and microwave-assisted organic reaction enhancement. The crystal structures of the thiosemicarbazones and their solvates [HPzAm4DHṡ1/2 MeOH (1), HPzAm4DHṡH2O (2), HPzAm4M (3), HPzAm4Mṡ2H2O (4)] and the 1,3-thiazolidin-4-ones (5 and 7) have been studied by X-ray diffractometry. All of the compounds were characterized by elemental analysis, mass spectrometry, FT-IR and 1H and 13C NMR spectroscopy. Several by-products have also been isolated in a crystalline form, namely 3-((Z,E)-N‧-(4-oxothiazolidin-2-ylidene)carbamohydrazonium-yl)pyrazin-1-ium dibromide monohydrate, (H3PzAmot)Br2ṡH2O (6), 2-((5-(pyrazin-2-yl)-1H-1,2,4-triazol-3-yl)thio)acetic acid, (H2Pz124ttAc) (8), 2-amino-5-(pyrazin-2-yl)-1,3,4-thiadiazol-3-ium chloride monohydrate, (HPz134tda)ClṡH2O (9), and 2-(methylamino)-5-(pyrazin-2-yl)-1,3,4-thiadiazol-3-ium chloride N-methyl-5-(pyrazin-2-yl)-1,3,4-thiadiazol-2-amine solvate, (HMPz134tda)Clṡ(MPz134tda) (10). The structures of these compounds were also analyzed by X-ray diffractometry. The microwave-assisted organic reaction method for synthesis is easy, convenient, and ecofriendly when compared to the traditional synthetic methods. Crystal analysis revealed that the compounds have extended 3D supramolecular networks through high levels of H-bonding and weak molecular interactions between the molecular moieties and solvent molecules. The novel synthons, which are sustained by Nsbnd H⋯N and Nsbnd H⋯O hydrogen bonding and other weak interactions, have been shown to assemble with 1,3-thizolidine-4-ones, 1,2,4-trizole, or 1,3,4-thiadiazole derivatives in a zigzag or herringbone architecture.
NASA Astrophysics Data System (ADS)
Li, Haitao; Liu, Ruihua; Lian, Suoyuan; Liu, Yang; Huang, Hui; Kang, Zhenhui
2013-03-01
Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry.Selective oxidation of alcohols is a fundamental and significant transformation for the large-scale production of fine chemicals, UV and visible light driven photocatalytic systems for alcohol oxidation have been developed, however, the long wavelength near infrared (NIR) and infrared (IR) light have not yet fully utilized by the present photocatalytic systems. Herein, we reported carbon quantum dots (CQDs) can function as an effective near infrared (NIR) light driven photocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde. Based on the NIR light driven photo-induced electron transfer property and its photocatalytic activity for H2O2 decomposition, this metal-free catalyst could realize the transformation from benzyl alcohol to benzaldehyde with high selectivity (100%) and conversion (92%) under NIR light irradiation. HO&z.rad; is the main active oxygen specie in benzyl alcohol selective oxidative reaction confirmed by terephthalic acid photoluminescence probing assay (TA-PL), selecting toluene as the substrate. Such metal-free photocatalytic system also selectively converts other alcohol substrates to their corresponding aldehydes with high conversion, demonstrating a potential application of accessing traditional alcohol oxidation chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00092c
Microwave assisted tandem reactions for the synthesis of 2-hydrazolyl-4-thiazolidinones
Saiz, Cecilia; Pizzo, Chiara; Manta, Eduardo; Wipf, Peter; Mahler, S. Graciela
2009-01-01
A tandem method for the synthesis of 2-hydrazolyl-4-thiazolidinones (5) from commercially available materials in a 3 component reaction has been developed. The reaction connects aldehydes, thiosemicarbazides and maleic anhydride, effectively assisted by microwave irradiation. The synthesis of a new type of compound, 2-hydrazolyl-5,5-diphenyl-4-thiazolidinone (7), obtained by treatment of thiosemicarbazone with benzil in basic media is also reported. HOMO/LUMO energies, orbital coefficients and charge distribution were used to explain the proposed reaction mechanism. PMID:19756224
Provisional Peer-Reviewed Toxicity Values for Benzaldehyde
Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...
Health-Beneficial Phenolic Aldehyde in Antigonon leptopus Tea
Mulabagal, Vanisree; Alexander-Lindo, Ruby L.; DeWitt, David L.; Nair, Muraleedharan G.
2011-01-01
Tea prepared from the aerial parts of Antigonon leptopus is used as a remedy for cold and pain relief in many countries. In this study, A. leptopus tea, prepared from the dried aerial parts, was evaluated for lipid peroxidation (LPO) and cyclooxygenase (COX-1 and COX-2) enzyme inhibitory activities. The tea as a dried extract inhibited LPO, COX-1 and COX-2 enzymes by 78%, 38% and 89%, respectively, at 100 μg/mL. Bioassay-guided fractionation of the extract yielded a selective COX-2 enzyme inhibitory phenolic aldehyde, 2,3,4-trihydroxy benzaldehyde. Also, it showed LPO inhibitory activity by 68.3% at 6.25 μg/mL. Therefore, we have studied other hydroxy benzaldehydes and their methoxy analogs for LPO, COX-1 and COX-2 enzymes inhibitory activities and found that compound 1 gave the highest COX-2 enzyme inhibitory activity as indicated by a 50% inhibitory concentration (IC50) at 9.7 μg/mL. The analogs showed only marginal LPO activity at 6.25 μg/mL. The hydroxy analogs 6, 7 and 9 showed 55%, 61% and 43% of COX-2 inhibition at 100 μg/mL. However, hydroxy benzaldehydes 3 and 12 showed selective COX-1 inhibition while compounds 4 and 10 gave little or no COX-2 enzyme inhibition at 100 μg/mL. At the same concentration, compounds 14, 21 and 22 inhibited COX-1 by 83, 85 and 70%, respectively. Similarly, compounds 18, 19 and 23 inhibited COX-2 by 68%, 72% and 70%, at 100 μg/mL. This is the first report on the isolation of compound 1 from A. leptopus tea with selective COX-2 enzyme and LPO inhibitory activities. PMID:19454555
Lapadatescu, Carmen; Giniès, Christian; Le Quéré, Jean-Luc; Bonnarme, Pascal
2000-01-01
Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with l-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors (14C- and 13C-labelled l-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified were benzyl alcohol, benzaldehyde (bitter almond aroma), and benzoic acid. Hydroxy- and methoxybenzylic compounds (alcohols, aldehydes, and acids) were also found in fungal cultures. Intracellular enzymatic activities (phenylalanine ammonia lyase, aryl-alcohol oxidase, aryl-alcohol dehydrogenase, aryl-aldehyde dehydrogenase, lignin peroxidase) and extracellular enzymatic activities (aryl-alcohol oxidase, lignin peroxidase), as well as aromatic compounds, were detected in B. adusta cultures. Metabolite formation required de novo protein biosynthesis. Our results show that l-phenylalanine was deaminated to trans-cinnamic acid by a phenylalanine ammonia lyase and trans-cinnamic acid was in turn converted to aromatic acids (phenylpyruvic, phenylacetic, mandelic, and benzoylformic acids); benzaldehyde was a metabolic intermediate. These acids were transformed into benzaldehyde, benzyl alcohol, and benzoic acid. Our findings support the hypothesis that all of these compounds are intermediates in the biosynthetic pathway from l-phenylalanine to aryl metabolites. Additionally, trans-cinnamic acid can also be transformed via β-oxidation to benzoic acid. This was confirmed by the presence of acetophenone as a β-oxidation degradation intermediate. To our knowledge, this is the first time that a β-oxidation sequence leading to benzoic acid synthesis has been found in a white rot fungus. A novel metabolic scheme for biosynthesis of aryl metabolites from l-phenylalanine is proposed. PMID:10742235
Zaitan, Hicham; Mohamed, Elham F; Valdés, Héctor; Nawdali, Mostafa; Rafqah, Salah; Manero, Marie Hélène
2016-12-01
A great number of pollution problems come as a result of the emission of Volatile Organic Compounds (VOCs) into the environment and their control becomes a serious challenge for the global chemical industry. Adsorption is a widely used technique for the removal of VOCs due to its high efficiency, low cost, and convenient operation. In this study, the feasibility to use a locally available clay, as adsorbent material to control VOCs emissions is evaluated. Natural clay is characterised by different physical-chemical methods and adsorptive interaction features between VOCs and natural clay are identified. Toluene (T), methanol (M) and benzaldehyde (B) are used here as representatives of three different kinds of VOCs. Adsorption isotherms onto natural clay and faujasite-Y type zeolite (Fau Y) are obtained at room temperature. According to Langmuir model data, maximum adsorption capacities (qm) of Fez natural clay and zeolite toward methanol (M), toluene (T) and benzaldehyde (B) at 300 K are 8, 0.89 and 3.1 mmol g-1, and 15, 1.91 and 13.9 mmol g-1 respectively. In addition, the effect of temperature on the adsorption of toluene onto natural clay is evaluated in the range from 300 to 323K. An increase on temperature reduces the adsorption capacity of natural clay toward toluene, indicating that an exothermic physical adsorption process takes place. The enthalpy of adsorption of toluene onto Fez natural clay was found to be -54 kJ mol-1. A preliminary cost analysis shows that natural clay could be used as an alternative low cost adsorbent in the control of VOCs from contaminated gas streams with a cost of US$ 0.02 kg-1 compared to Fau Y zeolite with US$ 10 kg-1.
NASA Astrophysics Data System (ADS)
Akgemci, Emine Guler; Saf, Ahmet Ozgur; Tasdemir, Halil Ugur; Türkkan, Ercan; Bingol, Haluk; Turan, Suna Ozbas; Akkiprik, Mustafa
2015-02-01
In this study, 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) and its novel N(4) substituted derivatives were synthesized and characterized by different techniques. The optical band gap of the compounds and the energy of HOMO were experimentally examined by UV-vis spectra and cyclic voltammetry measurements, respectively. Furthermore, the conformational spaces of the compounds were scanned with molecular mechanics method. The geometry optimization, HOMO and LUMO energies, the energy gap of the HOMO-LUMO, dipole moment of the compounds were theoretically calculated by the density functional theory B3LYP/6-311++G(d,p) level. The minimal electronic excitation energy and maximum wavelength calculations of the compounds were also performed by TD-DFT//B3LYP/6-311++G(d,p) level of theory. Theoretically calculated values were compared with the related experimental values. The combined results exhibit that all compounds have good electron-donor properties which affect anti-proliferative activity. The cytotoxic effects of the compounds were also evaluated against HeLa (cervical carcinoma), MCF-7 (breast carcinoma) and PC-3 (prostatic carcinoma) cell lines using the standard MTT assay. All tested compounds showed antiproliferative effect having IC50 values in different range. In comparison with that of HMAT, it was obtained that while ethyl group on 4(N)-substituted position decreased in potent anti-proliferative effect, the phenyl group on the position increased in anti-proliferative effect for the tested cancer cell line. Considering the molecular energy parameters, the cytotoxicity activities of the compounds were discussed.
NASA Astrophysics Data System (ADS)
Azarkish, Mohammad; Akbari, Alireza; Sedaghat, Tahereh; Simpson, Jim
2018-03-01
The new ternary complexes, ZnLL‧ [L = 1-((2-hydroxynaphthalen-1-yl)methylene)-4-phenylthiosemicarbazide and L‧ = imidazole (1), 2, 2‧-bipyridine (2) and 2-methyimidazole (3)], Zn2L2L‧ [L‧ = 4, 4‧-bipy (4)] and CuLL‧ [L‧ = 2, 2‧-bipy (5)] have been synthesized by the reaction of a metal(II) acetate salt with the thiosemicarbazone and in presence of heterocyclic bases as auxiliary ligands. The synthesized compounds were investigated by elemental analysis and IR, 1H NMR, and 13C NMR spectroscopy and complex 5 was structurally characterized by X-ray crystallography. The results indicate the thiosemicarbazone doubly deprotonated and coordinates to metal through the thiolate sulfur, imine nitrogen and phenolic oxygen atoms. The nitrogen atom(s) of the auxiliary ligand complete the coordination sphere. Complex 4 is binuclear with 4, 4‧-bipy acting as a bridging ligand. The structure of 5 is a distorted square pyramid with one of the bipyridine nitrogen atoms in the apical position. This compound creates an inversion dimer in solid state by intermolecular hydrogen bonds of Nsbnd H⋯S type. The in vitro antibacterial activity of the synthesized compounds were evaluated against Gram-positive (B. subtilis and S. aureus) and Gram-negative (P. aeruginosa) bacteria and is compared to that of standard antibacterial drugs. All complexes exhibit good inhibitory effects and are significantly more effective than the parent ligand.
21 CFR 182.60 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (parapropenyl anisole). Benzaldehyde (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, gera-nial, neral). Decanal (N-decylaldehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3...
21 CFR 182.60 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (parapropenyl anisole). Benzaldehyde (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, gera-nial, neral). Decanal (N-decylaldehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3...
21 CFR 182.60 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (parapropenyl anisole). Benzaldehyde (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, gera-nial, neral). Decanal (N-decylaldehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3...
21 CFR 182.60 - Synthetic flavoring substances and adjuvants.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (parapropenyl anisole). Benzaldehyde (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, gera-nial, neral). Decanal (N-decylaldehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3...
Surface Plasmon Resonance Based Sensitive Immunosensor for Benzaldehyde Detection
NASA Astrophysics Data System (ADS)
Onodera, Takeshi; Shimizu, Takuzo; Miura, Norio; Matsumoto, Kiyoshi; Toko, Kiyoshi
Fragrant compounds used to add flavor to beverages remain in the manufacturing line after the beverage manufacturing process. Line cleanliness before the next manufacturing cycle is difficult to estimate by sensory analysis, making excessive washing necessary. A new measurement system to determine line cleanliness is desired. In this study, we attempted to detect benzaldehyde (Bz) using an anti-Bz monoclonal antibody (Bz-Ab) and a surface plasmon resonance (SPR) sensor. We fabricated two types of sensor chips using self-assembled monolayers (SAMs) and investigated which sensor surface exhibited higher sensitivity. In addition, anti-Bz antibody conjugated with horseradish peroxidase (HRP-Bz-Ab) was used to enhance the SPR signal. A detection limit of ca. 9ng/mL (ppb) was achieved using an immobilized 4-carboxybenzaldehyde sensor surface using SAMs containing ethylene glycol. When the HRP-Bz-Ab concentration was reduced to 30ng/mL, a detection limit of ca. 4ng/mL (ppb) was achieved for Bz.
Martin, David; Canac, Yves; Lavallo, Vincent; Bertrand, Guy
2014-04-02
A series of stable carbenes, featuring a broad range of electronic properties, were reacted with simple organic substrates. The N,N-dimesityl imidazolylidene (NHC) does not react with isocyanides, whereas anti-Bredt di(amino)carbene (pyr-NHC), cyclic (alkyl)(amino)carbene (CAAC), acyclic di(amino)carbene (ADAC), and acyclic (alkyl)(amino)carbene (AAAC) give rise to the corresponding ketenimines. NHCs are known to promote the benzoin condensation, and we found that the CAAC, pyr-NHC, and ADAC react with benzaldehyde to give the ketone tautomer of the Breslow intermediate, whereas the AAAC first gives the corresponding epoxide and ultimately the Breslow intermediate, which can be isolated. Addition of excess benzaldehyde to the latter does not lead to benzoin but to a stable 1,3-dioxolane. Depending on the electronic properties of carbenes, different products are also obtained with methyl acrylate as a substrate. The critical role of the carbene electrophilicity on the outcome of reactions is discussed.
NASA Astrophysics Data System (ADS)
Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried
2010-12-01
The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.
Molecular docking study, synthesis and biological evaluation of Schiff bases as Hsp90 inhibitors.
Dutta Gupta, Sayan; Snigdha, D; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, C V S; Gowrishankar, N L; Raghavendra, N M
2014-04-01
Heat shock protein 90 (Hsp90) is an emerging attractive target for the discovery of novel cancer therapeutic agents. Docking methods are powerful in silico tools for lead generation and optimization. In our mission to rationally develop novel effective small molecules against Hsp90, we predicted the potency of our designed compounds by Sybyl surflex Geom X docking method. The results of the above studies revealed that Schiff bases derived from 2,4-dihydroxy benzaldehyde/5-chloro-2,4-dihydroxy benzaldehyde demonstrated effective binding with the protein. Subsequently, a few of them were synthesized (1-10) and characterized by IR, (1)HNMR and mass spectral analysis. The synthesized molecules were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The anticancer studies were performed by 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. The software generated results was in satisfactory agreement with the evaluated biological activity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Drinkel, Emma E; Campedelli, Roberta R; Manfredi, Alex M; Fiedler, Haidi D; Nome, Faruk
2014-03-21
Palladium nanoparticles (NPs) stabilized by a zwitterionic surfactant are revealed here to be good catalysts for the reductive amination of benzaldehydes using formate salts as hydrogen donors in aqueous isopropanol. In terms of environmental impact and economy, metallic NPs offer several advantages over homogeneous and traditional heterogeneous catalysts. NPs usually display greater activity due to the increased metal surface area and sometimes exhibit enhanced selectivity. Thus, it is possible to use very low loadings of expensive metal. The methodology eliminates the use of a hydrogen gas atmosphere or toxic or expensive reagents. A range of aromatic aldehydes were converted to benzylamines when reacted with primary and secondary amines in the presence of the Pd NPs, which also displayed good activity when supported on alumina. In every case, the Pd NPs could be easily recovered and reused up to three more times, and at the end of the process, the product was metal-free.
Rui Xie; Maobing Tu; Thomas Elder
2016-01-01
Phenolic compounds significantly inhibit microbial fermentation of biomass hydrolysates. To understand thequantitative structure-inhibition relationship of phenolic aldehydes on alcoholic fermentation, the effect of 11 differentsubstituted benzaldehydes on the final ethanol yield was examined. The results showed that the degree of phenolic...
Catalytic Hydrogenation of Organic Compounds without H2 Supply: An Electrochemical System
ERIC Educational Resources Information Center
Navarro, Daniela Maria do Amaral Ferraz; Navarro, Marcelo
2004-01-01
An experiment developed for an undergraduate organic chemistry laboratory course that can be used to introduce the catalytic hydrogenation reaction, catalysis electrochemical principles and gas chromatography is presented. The organic compounds hydrogenated by the electrocatalytic hydrogenation (ECH) process were styrene, benzaldehyde and…
USDA-ARS?s Scientific Manuscript database
Bioassay-guided fractionation of the fungus Eurotium repens resulted in the isolation of two benzyl derivatives, repenol A (1) and repenol B (2). Seven known secondary metabolites were also isolated including five benzaldehyde compounds, flavoglaucin (3), tetrahydroauroglaucin (4), dihydroauroglauci...
USDA-ARS?s Scientific Manuscript database
Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural (HMF), anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and...
ERIC Educational Resources Information Center
Silverberg, Lee J.; Coyle, David J.; Cannon, Kevin C.; Mathers, Robert T.; Richards, Jeffrey A.; Tierney, John
2016-01-01
Imines are important in biological chemistry and as intermediates in organic synthesis. An experiment for introductory undergraduate organic chemistry is presented in which benzaldehyde was condensed with "p"-methoxyaniline in toluene to give 4-methoxy-"N"-(phenylmethylene)benzenamine. Water was removed by azeotropic…
Investigation of Solvent Effects on the Rate and Stereoselectivity of the Henry Reaction
Kostal, Jakub; Voutchkova, Adelina M.; Jorgensen, William L.
2011-01-01
A combined computational and experimental kinetic study on the Henry reaction is reported. The effects of salvation on the transition structures and the rates of reaction between nitromethane and formaldehyde, and between nitropropane and benzaldehyde are elucidated with QM/MM calculations. PMID:22168236
Solvent-Free Synthesis of Chalcones
ERIC Educational Resources Information Center
Palleros, Daniel R.
2004-01-01
The synthesis of twenty different chalcones in the absence of solvent is presented. The results indicated that out of the twenty different chalcones investigated seventeen can be obtained in a matter of minutes by mixing the corresponding benzaldehyde and acetophenone in the presence of solid NaOH in a mortar with pestle.
Janssen-Müller, Daniel; Singha, Santanu; Olyschläger, Theresa; Daniliuc, Constantin G; Glorius, Frank
2016-09-02
The activation of 2-(bromomethyl)benzaldehydes using N-heterocyclic carbenes represents a novel approach to the generation of o-quinodimethane (o-QDM) intermediates. Coupling with ketones such as phenylglyoxylates, isatins, or trifluoromethyl ketones via [4 + 2] annulation gives access to functionalized 1-isochromanones.
Real World of Industrial Chemistry: Organic Chemicals from Carbon Monoxide.
ERIC Educational Resources Information Center
Kolb, Kenneth E.; Kolb, Doris
1983-01-01
Carbon Monoxide obtained from coal may serve as the source for a wide variety of organic compounds. Several of these compounds are discussed, including phosgene, benzaldehyde, methanol, formic acid and its derivatives, oxo aldehydes, acrylic acids, and others. Commercial reactions of carbon monoxide are highlighted in a table. (JN)
Castiñeiras, Alfonso; Fernández-Hermida, Nuria; García-Santos, Isabel; Gómez-Rodríguez, Lourdes
2012-11-21
Octahedral 1:1 Ni(II) and square-planar 1:1 Pd(II) and Pt(II) complexes of formulae [Ni(HAcb4DM)(AcO)(H2O)2]·H2O (1), [Pd(HAcb4DM)Cl]·5H2O (2) and [Pt(HAcb4DM)Cl]·3H2O (3), where H2Acb4DM = 5-acetylbarbituric-4N-dimethylthiosemicarbazone (H2 denoting its two dissociable protons, one enolic and one thiolic), have been synthesized and characterized by elemental analysis and by 1H and 13C NMR, UV-vis, and IR spectroscopy. Crystallisation of compounds 1–3 from DMSO afforded complexes of formulae [Ni(HAcb4DM)2]·2H2O (1a), [Pd(Acb4DM)(DMSO)]·DMSO (2a) and [Pt(Acb4DM)(DMSO)]·DMSO (3a), the molecular and crystal structures of which were determined by X-ray diffractometry. The thiosemicarbazone in 1a coordinates to the metal ions in an ONS-tridentate manner in the O-enolate/S-thione form, but in complexes 2a and 3a the thiosemicarbazone binds Pd(II) or Pt(II) as an ONS-pincer ligand in the O-enolate/S-thiolate form. The 195Pt NMR spectrum of 3 shows a signal at −2950 ppm along with two new signals at −3348 and −2731 ppm, indicating the presence of solvolysis products. The catalytic activity of complex 2a has been explored in aryl–aryl Suzuki cross-coupling reactions. H2Acb4DM and complexes 2 and 3 were screened for in vitro cytotoxicity against a human tumour cell line (HeLa-229), with the clinically employed drug cisplatin as a reference.
NASA Astrophysics Data System (ADS)
Mathan Kumar, Shanmugaiah; Kesavan, Mookkandi Palsamy; Vinoth Kumar, Gujuluva Gangatharan; Sankarganesh, Murugesan; Chakkaravarthi, Ganesan; Rajagopal, Gurusamy; Rajesh, Jegathalaprathaban
2018-02-01
A thiosemicarbazone ligand HL appended new Zn(II) complexes [Zn(L)(bpy)] (1) and [Zn(L)(phen)] (2) (where, HL = {2-(3-bromo-5-chloro-2-hydroxybenzylidene)-N-phenylhydrazinecarbothioamide}, bpy = 2, 2‧-bipyridine and phen = 1, 10-phenanthroline) have been synthesized and well characterized using conventional spectroscopic techniques viz.,1H NMR, FTIR and UV-Vis spectra. The crystal structures of complexes 1 and 2 have been determined by single crystal X-ray diffraction studies. Both the complex 1 (τ = 0.5) and 2 (τ = 0.37) possesses square based pyramidally distorted trigonal bipyramidal geometry. The ground state electronic structures of complexes 1 and 2 were investigated by DFT/B3LYP theoretical analysis using 6-311G (d,p) and LANL2DZ basis set level. The superior DNA binding ability of complex 2 has been evaluated using absorption and fluorescence spectral titration studies. Antimicrobial evaluation reveals that complex 2 endowed better screening than HL and complex 1 against both bacterial as well as fungal species. Consequently, complex 2 possesses highest antibacterial screening against Staphylococcus aureus (MIC = 3.0 ± 0.23 mM) and antifungal screening against Candida albicans (MIC = 6.0 ± 0.11 mM). Furthermore, the anticancer activity of the ligand HL, complexes 1 and 2 have been examined against the MCF-7 cell line (Human breast cancer cell line) using MTT assay. It is remarkable that complex 2 (12 ± 0.67 μM) show highest anticancer activity than HL (25.0 ± 0.91 μM) and complex 1 (15 ± 0.88 μM) due to the presence of phen ligand moiety.
Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions
ERIC Educational Resources Information Center
Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung
2007-01-01
Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…
A Better Sunscreen: Structural Effects on Spectral Properties
ERIC Educational Resources Information Center
Huck, Lawrence A.; Leigh, William J.
2010-01-01
A modification of the mixed-aldol synthesis of dibenzylideneacetone, prepared from acetone and benzaldehyde, is described wherein acetone is replaced with a series of cyclic ketones with ring sizes of 5-7 carbons. The structural variations in the resulting conjugated ketones produce regular variations in the UV-vis absorption spectra. The choice…
Multiple-division of self-propelled oil droplets through acetal formation.
Banno, Taisuke; Kuroha, Rie; Miura, Shingo; Toyota, Taro
2015-02-28
We demonstrate a novel system that exhibits both self-propelled motion and division of micrometer-sized oil droplets induced by chemical conversion of the system components. Such unique dynamics were observed in an oil-in-water emulsion of a benzaldehyde derivative, an alkanol and a cationic surfactant at a low pH.
C.J. Fettig; S.R. McKelvey; C.P. Dabney; R.R. Borys; D.P.W. Huber
2009-01-01
A blend of eight nonhost angiosperm volatiles (benzyl alcohol, benzaldehyde, guaiacol, nonanal, salicylaldehyde, (E)-2-hexenal, (E)-2-hexen-1-ol and (Z)-2-hexen-1-ol) without [NAV] and with [NAVV] (â)-verbenone (4,6,6-trimethylbicyclo[3...
USDA-ARS?s Scientific Manuscript database
The aim of this study was to identify benzaldehydes to which the fungal cell wall integrity signaling mutants showed increased sensitivity. These compounds could then function as chemosensitizing agents in combination with monoterpenoid phenols, such as carvacrol or thymol, to enhance antifungal act...
NASA Astrophysics Data System (ADS)
Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan
2013-09-01
Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.
Vieira Ferreira, Luis F; Ferreira Machado, Isabel; Da Silva, José P; Oliveira, Anabela S
2004-02-01
Diffuse reflectance and laser-induced techniques were used to study photochemical and photophysical processes of benzil adsorbed on two solid powdered supports, microcrystalline cellulose and [small beta]-cyclodextrin. In both substrates, a distribution of ground-state benzil conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. Room temperature phosphorescence was observed in air-equilibrated samples in both cases. The decay times vary greatly and the largest lifetime was obtained for benzil/[small beta]-cyclodextrin, showing that this host's cavity accommodates benzil well, enhancing its room temperature phosphorescence. Triplet-triplet absorption of benzil entrapped in cellulose was detected and benzil ketyl radical formation also occurred. With benzil included into [small beta]-cyclodextrin, and following laser excitation, benzoyl radicals were detected on the millisecond timescale. Product analysis and identification of laser-irradiated benzil samples in the two hosts clearly showed that the main degradation photoproducts were benzoic acid and benzaldehyde. The main differences were a larger benzoic acid/benzaldehyde ratio in the case of cellulose and the formation of benzyl alcohol in this support.
Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.
Beigi, Maryam; Gauchenova, Ekaterina; Walter, Lydia; Waltzer, Simon; Bonina, Fabrizio; Stillger, Thomas; Rother, Dörte; Pohl, Martina; Müller, Michael
2016-09-19
The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Saravanan, M.; Abraham Rajasekar, S.
2016-04-01
The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhixin, E-mail: czx@fzu.edu.cn; Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002; Xu, Jingjing
Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4}more » prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.« less
Verma, Anand Mohan; Kishore, Nanda
2017-09-27
The catalytic conversion of 2-hydroxybenzaldehyde (2-HB) is carried out numerically over a Pd(111) surface using density functional theory. The palladium catalyst surface is designed using a 12 atom monolayer and verified with the adsorption of phenol, benzene, anisole, guaiacol, and vanillin; it is found that the adsorption energies along with the adsorption configurations of phenol and benzene are in excellent agreement with the literature. The conversion of 2-HB over the Pd(111) catalyst surface is performed using four reaction schemes: (i) dehydrogenation of the formyl group followed by elimination of CO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (ii) direct elimination of CHO from 2-HB followed by elimination of hydrogen from adsorbed CHO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (iii) direct dehydroxylation of 2-HB followed by association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde, and (iv) dehydrogenation of the hydroxyl group of 2-HB followed by elimination of an oxygen atom and association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde. Along with the reaction mechanisms and their barrier heights, all reaction steps are considered for kinetic modelling in the temperature range 498-698 K with 50 K intervals. The rate constants, pre-exponential factors, and equilibrium constants of all elementary reaction steps are evaluated for each temperature. Kinetic analyses of the catalytic conversion of 2-HB over the Pd(111) surface suggests the production of phenol as an intermediate, instead of benzaldehyde, via dehydrogenation of the formyl group of 2-HB as a first elementary reaction step because of its low activation barrier and the high rate constant of the rate controlling step. Furthermore, the equilibrium constants of the rate controlling step in the production of phenol from 2-HB over the Pd(111) surface report a major fraction of the product in the product mixture even at a low temperature of 498 K.
NASA Astrophysics Data System (ADS)
Manakhov, Anton; Čechal, Jan; Michlíček, Miroslav; Shtansky, Dmitry V.
2017-08-01
The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH2 groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH2/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH2 fraction ∼8.5%. This value is closely matching the NH2/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH2/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA derivatization is probably related to the side reaction of benzaldehydes with conjugated imines, the proposed IFA derivatization of primary amines can be an alternative procedure for the quantification of surface amine groups.
Benzene formation in electronic cigarettes.
Pankow, James F; Kim, Kilsun; McWhirter, Kevin J; Luo, Wentai; Escobedo, Jorge O; Strongin, Robert M; Duell, Anna K; Peyton, David H
2017-01-01
The heating of the fluids used in electronic cigarettes ("e-cigarettes") used to create "vaping" aerosols is capable of causing a wide range of degradation reaction products. We investigated formation of benzene (an important human carcinogen) from e-cigarette fluids containing propylene glycol (PG), glycerol (GL), benzoic acid, the flavor chemical benzaldehyde, and nicotine. Three e-cigarette devices were used: the JUULTM "pod" system (provides no user accessible settings other than flavor cartridge choice), and two refill tank systems that allowed a range of user accessible power settings. Benzene in the e-cigarette aerosols was determined by gas chromatography/mass spectrometry. Benzene formation was ND (not detected) in the JUUL system. In the two tank systems benzene was found to form from propylene glycol (PG) and glycerol (GL), and from the additives benzoic acid and benzaldehyde, especially at high power settings. With 50:50 PG+GL, for tank device 1 at 6W and 13W, the formed benzene concentrations were 1.9 and 750 μg/m3. For tank device 2, at 6W and 25W, the formed concentrations were ND and 1.8 μg/m3. With benzoic acid and benzaldehyde at ~10 mg/mL, for tank device 1, values at 13W were as high as 5000 μg/m3. For tank device 2 at 25W, all values were ≤~100 μg/m3. These values may be compared with what can be expected in a conventional (tobacco) cigarette, namely 200,000 μg/m3. Thus, the risks from benzene will be lower from e-cigarettes than from conventional cigarettes. However, ambient benzene air concentrations in the U.S. have typically been 1 μg/m3, so that benzene has been named the largest single known cancer-risk air toxic in the U.S. For non-smokers, chronically repeated exposure to benzene from e-cigarettes at levels such as 100 or higher μg/m3 will not be of negligible risk.
ERIC Educational Resources Information Center
Speed, Traci J.; Mclntyre, Jean P.; Thamattoor, Dasan M.
2004-01-01
An instructive experiment for the synthesis of ethyl trans-cinnamate, a pleasant smelling ester used in perfumery and flavoring by the reaction of benzaldehyde with the stable ylid triphenylphosphorane is described. The synthesis, workup and characterization of trans-cinnamate may be accomplished in a single laboratory session with commonly…
ERIC Educational Resources Information Center
Hanson, John; Dasher, Bill; Scharrer, Eric; Hoyt, Tim
2010-01-01
Students in the second-semester organic chemistry laboratory perform a Wittig reaction between butylidenetriphenylphosphorane (an ylide) and benzaldehyde and determine the relative percentages of the cis and trans isomers of the 1-phenyl-1-pentene product. Because of the highly reactive nature of this unstabilized ylide, students are introduced to…
The fathead minnow (pimephales promelas) larval survival and growth test was used to evaluate the relative sensitivity of 1-,4-, and 7-d-old larvae to five contaminants, KC1, NaC1, 1-octanol, carbaryl, and benzaldehyde. The no observable effect concentration (NOEC) for survival o...
ERIC Educational Resources Information Center
Rosenberg, Robert E.
2007-01-01
The guided-inquiry approach is applied to the reactions of sodium borohydride and phenyl magnesium bromide with benzaldehyde, benzophenone, benzoic anhydride, and ethyl benzoate. Each team of four students receives four unknowns. Students identify the unknowns and their reaction products by using the physical state of the unknown, an…
[Studies on chemical constituents from Elaeocarpus sylvestris].
Zhang, Hong-Chao; Shi, Hai-Ming
2008-10-01
To study the chemical constituents of Elaeocarpus sylvestris. The compounds were isolated by chromatographic methods and their structures were elucidated by physico-chemical properties and spectral analysis. Six compounds were isolated and identified as: 2-hydroxy-benzaldehyde (1), coniferyl alcohol (2), umbelliferone (3), scopoletin (4), beta-sitosterol (5), daucosterol (6). All above compounds are isolated from Elaeocarpus Genus for the first time.
USDA-ARS?s Scientific Manuscript database
Domestic dog breeds are hosts for the tick Rhipicephalus sanguineus sensu lato, but infestation levels vary among breeds. Beagles are less susceptible to tick infestations than English cocker spaniels due to enhanced production of 2-hexanone and benzaldehyde that act as tick repellents. We report th...
Sedláček, Jan; Havelková, Lucie; Zedník, Jiří; Coufal, Radek; Faukner, Tomáš; Balcar, Hynek; Brus, Jiří
2017-04-01
The chain coordination polymerization of (ethynylarene)carbaldehydes with unprotected carbaldehyde groups, namely ethynylbenzaldehydes, 1-ethynylbenzene-3,5-dicarboxaldehyde, and 3-[(4-ethynylphenyl)ethynyl]benzaldehyde, is reported for the first time. Polymerization is catalyzed with various Rh(I) catalysts and yields poly(arylacetylene)s with one or two pendant carbaldehyde groups per monomeric unit. Surprisingly, the carbaldehyde groups of the monomers do not inhibit the polymerization unlike the carbaldehyde group of unsubstituted benzaldehyde that acts as a strong inhibitor of Rh(I) catalyzed polymerization of arylacetylenes. The inhibition ability of carbaldehyde groups in (ethynylarene)carbaldehydes seems to be eliminated owing to a simultaneous presence of unsaturated ethynyl groups in (ethynylarene)carbaldehydes. The reactive carbaldehyde groups make poly[(ethynylarene)carbaldehyde]s promising for functional appreciation via various postpolymerization modifications. The introduction of photoluminescence or chirality to poly(ethynylbenzaldehyde)s via quantitative modification of their carbaldehyde groups in reaction with either photoluminescent or chiral primary amines under formation of the polymers with Schiff-base-type pendant groups is given as an example. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Berski, Slawomir; Zbigniew Ciunik, Leszek
2015-04-01
The mechanisms of reaction of benzaldehyde (ald) with 4-amine-4H-1,2,4-triazole (4at), leading to Schiff base (Sch) and water, were investigated using topological analysis of the electron localisation function and catastrophe theory. Two reactions (synthesis of hemiaminal and synthesis of Schiff base) are represented by one catastrophe sequence: ald+4at: 1-14-[FF†F†FFTS1FF†F†FF†F†CF†]-2-9-[C†FFTS3F†F†FFF]-0:Sch+H2O with only fold (F) and cusp (C) catastrophes. The first reaction, in which a molecule of the hemiaminal is formed, consists of 14 steps separated by 13 catastrophes. The mechanism is non-concerted. The covalent bond C-N is formed after the formation of the O-H bond is terminated. The Schiff base formation through the water molecule elimination in the second reaction requires nine steps with eight catastrophes. The mechanism is non-concerted because first the C-O bond is broken and then the proton transfer occurs that results in the O-H bond creation.
NASA Technical Reports Server (NTRS)
Batten, J. H.; Stutte, G. W.; Wheeler, R. M.
1995-01-01
The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.
Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Wenjing; Vannucci, Aaron K.; Farnum, Byron H.
2014-06-27
Light-driven dehydrogenation of benzyl alcohol (BnOH) to benzaldehyde and hydrogen has been shown to occur in a dye-sensitized photoelectrosynthesis cell (DSPEC). In the DSPEC, the photoanode consists of mesoporous films of TiO2 nanoparticles or of core/shell nanoparticles with tin-doped In2O3 nanoparticle (nanoITO) cores and thin layers of TiO2 deposited by atomic layer deposition (nanoITO/TiO2). Metal oxide surfaces were coderivatized with both a ruthenium polypyridyl chromophore in excess and an oxidation catalyst. Chromophore excitation and electron injection were followed by cross-surface electron-transfer activation of the catalyst to RuIV=O2+, which then oxidizes benzyl alcohol to benzaldehyde. The injected electrons are transferred tomore » a Pt electrode for H2 production. The nanoITO/TiO2 core/shell structure causes a decrease of up to 2 orders of magnitude in back electron-transfer rate compared to TiO2. At the optimized shell thickness, sustained absorbed photon to current efficiency of 3.7% was achieved for BnOH dehydrogenation, an enhancement of ~10 compared to TiO2.« less
UV-Induced [2+2] Grafting-To Reactions for Polymer Modification of Cellulose.
Conradi, Matthias; Ramakers, Gijs; Junkers, Thomas
2016-01-01
Benzaldehyde-functional cellulose paper sheets have been synthesized via tosylation of cellulose (Whatman No 5) followed by addition of p-hydroxy benzaldehyde. Via UV-induced Paterno-Büchi [2+2] cycloaddition reactions, these aldehyde functional surfaces are grafted with triallylcyanurate, trimethylolpropane allyl ether, and vinyl chloroacetate. In the following, allyl-functional polymers (poly(butyl acrylate), pBA, Mn = 6990 g mol(-1) , Đ = 1.12 and poly(N-isopropyl acrylamide), pNIPAAm, Mn = 9500 g mol(-1) , Đ = 1.16) synthesized via reversible addition fragmentation chain transfer polymerization are conjugated to the celloluse surface in a UV-induced grafting-to approach. With pBA, hydrophobic cellulose sheets are obtained (water contact angle 116°), while grafting of pNIPAAm allows for generation of "smart" surfaces, which are hydrophilic at room temperature, but that become hydrophobic when heated above the characteristic lower critical solution temperature (93° contact angle). The Paterno-Büchi reaction has been shown to be a versatile synthetic tool that also performs well in grafting-to approaches whereby its overall performance seems to be close to that of radical thiol-ene reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New hydrazones of ferulic acid: synthesis, characterization and biological activity.
Wolszleger, Maria; Stan, Cătălina Daniela; Apotrosoaei, Maria; Vasincu, Ioana; Pânzariu, Andreea; Profire, Lenuţa
2014-01-01
The ferulic acid (4-hydroxy-3-methoxy-cinnamic acid) is a phenolic compound with important antioxidant effects and which nowadays is being extensively studied for his potential indications in inflammatory and neurodegenerative diseases, hypertension, atherosclerosis, etc. The synthesis of new ferulic acid compounds with potential antioxidant activity. The synthesis of the designed compounds was performed in several steps: (i) the obtaining of ferulic acid chloride by reacting of ferulic acid with thionyl chloride; (ii) the reaction between the ferulic acid chloride and hydrazine hydrate 98% to obtain the ferulic acid hydrazide; (iii) the condensation of ferrulic acid hydrazide with various benzaldehydes (2-hydroxy/3-hydroxy/4-hydroxy/2-nitro/3-nitro/4-nitro/2-methoxi/ 4-chloro/4-fluoro/4-bromo-benzaldehyde) resulting the correspond- ing hydrazones. The structure of the synthesized compounds was confirmed by FT-IR spectroscopy and the evaluation of antioxidant potential was achieved by determining the total antioxidant capacity and reducing power. In this study new hydrazones of ferulic acid have been synthesized, physic-chemical and spectral characterized. The evaluation of antioxidant potential using in vitro methods showed the favorable influence of the structural modulation on the antioxidant effects of ferulic acid.
Daenen, Luk; Sterckx, Femke; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy
2008-11-01
The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'.
A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)(1).
Delaude, Lionel; Laszlo, Pierre
1996-09-06
A new, efficient preparation has been devised for potassium ferrate(VI) (K(2)FeO(4)). The ability of this high-valent iron salt for oxidizing organic substrates in nonaqueous media was studied. Using benzyl alcohol as a model, the catalytic activity of a wide range of microporous adsorbents was ascertained. Among numerous solid supports of the aluminosilicate type, the K10 montmorillonite clay was found to be best at achieving quantitative formation of benzaldehyde, without any overoxidation to benzoic acid. The roles of the various parameters (reaction time and temperature, nature of the solvent, method of preparation of the solid reagent) were investigated. The evidence points to a polar reaction mechanism. The ensuing procedure was applied successfully, at room temperature, to oxidation of a series of alcohols to aldehydes and ketones, to oxidative coupling of thiols to disulfides, and to oxidation of nitrogen derivatives. At 75 degrees C, the reagent has the capability of oxidizing both activated and nonactivated hydrocarbons. Toluene is turned into benzyl alcohol (and benzaldehyde). Cycloalkanes are also oxidized, in significant (30-40%) yields, to the respective cycloalkanols (and cycloalkanones). Thus, potassium ferrate, used in conjunction with an appropriate heterogeneous catalyst, is a strong and environmentally friendly oxidant.
Papageorgiou, A; Iakovidou, Z; Mourelatos, D; Mioglou, E; Boutis, L; Kotsis, A; Kovala-Demertzi, D; Domopoulou, A; West, D X; Dermetzis, M A
1997-01-01
The effect of novel Pd(II) complexes with derivatives of 2-acetyl-pyridinethisemicarbazone, N4-ethyl (HAc4Et) and 3-hexamethyleneiminylthiosemicarbazone (HAchexim), on Sister Chromatid Exchange (SCE) rates and human lymphocyte proliferation kinetics was studied. Also, the effect of Pd(II) complexes on DNA synthesis of P388 and L1210 cell cultures and against Leukemia P388 was investigated. Among these compounds, the compound Bis(3-hexamethyleneiminyl-2-acetylpyridine-thisemicarbazonato++ +) palladium (II) was found to be distinctly effective against Leukemia P388, in inhibiting incorporation of 3H-thymidine into DNA and in inducing SCEs and cell division delays.
Synthesis and Cytotoxic Evaluation of Steroidal Copper (Cu (II)) Complexes
Huang, Yanmin; Kong, Erbin; Zhan, Junyan; Chen, Shuang; Gan, Chunfang; Liu, Zhiping; Pang, Liping
2017-01-01
Using estrone and pregnenolone as starting materials, some steroidal copper complexes were synthesized by the condensation of steroidal ketones with thiosemicarbazide or diazanyl pyridine and then complexation of steroidal thiosemicarbazones or steroidal diazanyl pyridines with Cu (II). The complexes were characterized by IR, NMR, and HRMS. The synthesized compounds were screened for their cytotoxicity against HeLa, Bel-7404, and 293T cell lines in vitro. The results show that all steroidal copper (II) complexes display obvious antiproliferative activity against the tested cancer cells. The IC50 values of complexes 5 and 12 against Bel-7404 (human liver carcinoma) are 5.0 and 7.0 μM. PMID:29180937
Chandra, Sulekh; Raizada, Smriti; Tyagi, Monika; Gautam, Archana
2007-01-01
A series of metal complexes of Cu(II) and Ni(II) having the general composition [M(L)X2] with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties. PMID:18273385
NASA Astrophysics Data System (ADS)
Corral, Ines; Mo, Otilia; Yanez, Manuel
2006-09-01
The complexes of Cu+ with phenol, aniline, benzaldehyde, benzoic acid, and trifluromethyl-benzene were investigated through the use of MP2 and density functional theory (DFT) methods. Both harmonic vibrational frequencies and optimized geometries were obtained at the B3LYP/6-311G(d,p) and MP2(full)/6-311G(d,p) levels of theory. Final energies were obtained through single point B3LYP/6-311+G(3df,2p)//B3LYP/6-311G(d,p) calculations. The interactions of Cu+ with these aromatic compounds have a non-negligible covalent character, which clearly differentiate Cu+-complexes from the corresponding Li+-complexes. These dissimilarities are reflected in the geometries, binding energies and infrared spectra of the most stable adducts. For Li+ only conventional [pi]-complexes should be expected when interacting with aniline, while Cu+ attaches preferentially to the para carbon atom. For phenol, besides the conventional [pi]-complexes, a 12% of oxygen attached species are expected to be found upon Li+ association. Conversely, no oxygen attached species should be formed in reactions of phenol with Cu+. For benzoic acid and benzaldehyde, Li+ aligns with the dipole moment of the base, interacting exclusively with the carbonyl oxygen in the plane of the molecule. This is also the case in Cu+-benzoic acid complex, while in the Cu+-benzaldehyde complex the metal ion also interacts with the aromatic [pi]-system. Cu+ binding enthalpies (BEs) are systematically larger (about 1.3 times) than Li+ BEs. The covalent character of Cu+ interactions is associated with electron donations from bonding ([pi]) orbitals or lone-pairs of the base toward the 4s empty orbital of the metal and with back-donations from the occupied d orbitals of the metal toward antibonding ([pi]*) empty orbitals of the base. This non-negligible covalent character is also reflected in a rough correlation between the calculated Cu+ BEs and the available experimental proton affinities that does not exist for Li+ BEs.
Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yang; Sanyal, Udishnu; Pangotra, Dhananjai
Abstract Selective reduction of benzaldehyde to benzyl alcohol on C-supported Pt, Rh, Pd, and Ni in aqueous phase was conducted using either directly H2 (thermal catalytic hydrogenation, TCH) or in situ electrocatalytically generated hydrogen (electrocatalytic hydrogenation, ECH). In TCH, the intrinsic activity of the metals at room temperature and 1 bar H2 increased in the sequence Rh/C < Pt/C < Pd/C, while Ni/C is inactive at these conditions due to surface oxidation in the absence of cathodic potential. The reaction follows a Langmuir-Hinshelwood mechanism with the second hydrogen addition to the adsorbed hydrocarbon being the rate-determining step. All tested metalsmore » were active in ECH of benzaldehyde, although hydrogenation competes with the hydrogen evolution reaction (HER). The minimum cathodic potentials to obtain appreciable ECH rates were identical to the onset potentials of HER. Above this onset, the relative rates of H reacting to H2 and H addition to the hydrocarbon determines the selectivity to ECH and TCH. Accordingly, the selectivity of the metals towards ECH increases in the order Ni/C < Pt/C < Rh/C < Pd/C. Pd/C shows exceptionally high ECH selectivity due to its surprisingly low HER reactivity under the reaction conditions. Acknowledgements The authors would like to thank the groups of Hubert A. Gasteiger at the Technische Universität München of Jorge Gascon at the Delft University of Technology for advice and valuable discussions. The authors are grateful to Nirala Singh, Erika Ember, Gary Haller, and Philipp Rheinländer for fruitful discussions. We are also grateful to Marianne Hanzlik for TEM measurements and to Xaver Hecht and Martin Neukamm for technical support. Y.S. would like to thank the Chinese Scholarship Council for the financial support. The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less
Attia, Steven; Kolesar, Jill; Mahoney, Michelle R; Pitot, Henry C; Laheru, Daniel; Heun, James; Huang, Wei; Eickhoff, Jens; Erlichman, Charles; Holen, Kyle D
2008-08-01
3-Aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine) is a novel small molecule inhibitor of ribonucleotide reductase (RR) with clinical signs of activity in pancreatic cancer. Therefore, the Phase 2 Consortium (P2C) initiated a trial (two single stage studies with planned interim analysis) of 3-AP at 96 mg/m(2) intravenously days 1-4 and 15-18 of a 28-day cycle in both chemotherapy-naive and gemcitabine-refractory (GR) patients with advanced pancreatic cancer. The primary endpoint was survival at six months (chemotherapy-naive) and four months (GR). Secondary endpoints were toxicity, response, overall survival, time to progression and mechanistic studies. Fifteen patients were enrolled including one chemotherapy-naïve and 14 GR. The chemotherapy-naïve patient progressed during cycle 1 with grade 3 and 4 toxicities. Of 14 GR patients, seven received two cycles, six received one cycle and one received eight cycles. Progression precluded further treatment in 11 GR patients. Additionally, one died of an ileus in cycle 1 considered related to treatment and two stopped treatment due to toxicity. Five GR patients had grade 4 toxicities possibly related to 3-AP and six GR patients had grade 3 fatigue. Toxicities and lack of meaningful clinical benefit prompted early study closure. Four-month survival in GR patients was 21% (95% CI: 8-58%). Correlative studies confirmed that 3-AP increased the percentage of S-phase buccal mucosal cells, the presence of multidrug resistance gene polymorphisms appeared to predict leukopenia, and baseline pancreatic tumor RR M2 expression was low relative to other tumors treated with 3-AP. In conclusion, this regimen appears inactive against predominantly GR pancreatic cancer. RR M2 protein may not have a critical role in the malignant potential of pancreatic cancer.
Attia, Steven; Kolesar, Jill; Mahoney, Michelle R.; Pitot, Henry C.; Laheru, Daniel; Heun, James; Huang, Wei; Eickhoff, Jens; Erlichman, Charles
2015-01-01
Summary 3-Aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine®) is a novel small molecule inhibitor of ribonucleotide reductase (RR) with clinical signs of activity in pancreatic cancer. Therefore, the Phase 2 Consortium (P2C) initiated a trial (two single stage studies with planned interim analysis) of 3-AP at 96 mg/m2 intravenously days 1–4 and 15–18 of a 28-day cycle in both chemotherapy-naive and gemcitabine-refractory (GR) patients with advanced pancreatic cancer. The primary endpoint was survival at six months (chemotherapy-naive) and four months (GR). Secondary endpoints were toxicity, response, overall survival, time to progression and mechanistic studies. Fifteen patients were enrolled including one chemotherapy-naïve and 14 GR. The chemotherapy-naïve patient progressed during cycle 1 with grade 3 and 4 toxicities. Of 14 GR patients, seven received two cycles, six received one cycle and one received eight cycles. Progression precluded further treatment in 11 GR patients. Additionally, one died of an ileus in cycle 1 considered related to treatment and two stopped treatment due to toxicity. Five GR patients had grade 4 toxicities possibly related to 3-AP and six GR patients had grade 3 fatigue. Toxicities and lack of meaningful clinical benefit prompted early study closure. Four-month survival in GR patients was 21% (95% CI: 8–58%). Correlative studies confirmed that 3-AP increased the percentage of S-phase buccal mucosal cells, the presence of multidrug resistance gene polymorphisms appeared to predict leukopenia, and baseline pancreatic tumor RR M2 expression was low relative to other tumors treated with 3-AP. In conclusion, this regimen appears inactive against predominantly GR pancreatic cancer. RR M2 protein may not have a critical role in the malignant potential of pancreatic cancer. PMID:18278438
Incorporation of an aldehyde function in oligonucleotides.
Tilquin, J M; Dechamps, M; Sonveaux, E
2001-01-01
A nucleotide-like phosphoramidite building block that has the nucleic base replaced by the tert-butyldimethylsilyl-protected styrene glycol was synthesized. After the automatic synthesis of an oligonucleotide incorporating this synthon, the benzaldehyde function was generated by fluoride deprotection and oxidation by sodium periodate. In a similar manner, an oligonucleotide where a nucleic base was replaced by the (CH2)8CH=O chain was synthesized and conjugated with biotin derivatives.
Chen, Shuang; Xu, Yan; Qian, Michael C
2013-11-27
The aroma profile of Chinese rice wine was investigated in this study. The volatile compounds in a traditional Chinese rice wine were extracted using Lichrolut EN and further separated by silica gel normal phase chromatography. Seventy-three aroma-active compounds were identified by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). In addition to acids, esters, and alcohols, benzaldehyde, vanillin, geosmin, and γ-nonalactone were identified to be potentially important to Chinse rice wine. The concentration of these aroma-active compounds in the Chinese rice wine was further quantitated by combination of four different methods, including headsapce-gas chromatography, solid phase microextraction-gas chromatography (SPME)-GC-MS, solid-phase extraction-GC-MS, and SPME-GC-pulsed flame photometric detection (PFPD). Quantitative results showed that 34 aroma compounds were at concentrations higher than their corresponding odor thresholds. On the basis of the odor activity values (OAVs), vanillin, dimethyl trisulfide, β-phenylethyl alcohol, guaiacol, geosmin, and benzaldehyde could be responsible for the unique aroma of Chinese rice wine. An aroma reconstitution model prepared by mixing 34 aroma compounds with OAVs > 1 in an odorless Chinese rice wine matrix showed a good similarity to the aroma of the original Chinese rice wine.
Nutritional value and volatile compounds of black cherry (Prunus serotina) seeds.
García-Aguilar, Leticia; Rojas-Molina, Alejandra; Ibarra-Alvarado, César; Rojas-Molina, Juana I; Vázquez-Landaverde, Pedro A; Luna-Vázquez, Francisco J; Zavala-Sánchez, Miguel A
2015-02-17
Prunus serotina (black cherry), commonly known in Mexico as capulín, is used in Mexican traditional medicine for the treatment of cardiovascular, respiratory, and gastrointestinal diseases. Particularly, P. serotina seeds, consumed in Mexico as snacks, are used for treating cough. In the present study, nutritional and volatile analyses of black cherry seeds were carried out to determine their nutraceutical potential. Proximate analysis indicated that P. serotina raw and toasted seeds contain mostly fat, followed by protein, fiber, carbohydrates, and ash. The potassium content in black cherry raw and toasted seeds is high, and their protein digestibility-corrected amino acid scores suggest that they might represent a complementary source of proteins. Solid phase microextraction and gas chromatography/flame ionization detection/mass spectrometry analysis allowed identification of 59 and 99 volatile compounds in the raw and toasted seeds, respectively. The major volatile compounds identified in raw and toasted seeds were 2,3-butanediol and benzaldehyde, which contribute to the flavor and odor of the toasted seeds. Moreover, it has been previously demonstrated that benzaldehyde possesses a significant vasodilator effect, therefore, the presence of this compound along with oleic, linoleic, and α-eleostearic fatty acids indicate that black cherry seeds consumption might have beneficial effects on the cardiovascular system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Xiaocui; Baicheng College of Higher Medicine, Baicheng 137000; Fu Youzhi
2008-06-15
A new polyoxometalate anion-pillared layered double hydroxide (LDH) was prepared by aqueous ion exchange of a Mg-Al LDH precursor in nitrate form with the tungstocobaltate anions [CoW{sub 12}O{sub 40}]{sup 5-}. The physicochemical properties of the product were characterized by the methods of powder X-ray diffraction, elemental analysis, infrared spectroscopy, thermogravimetric analysis and cyclic voltammetry. It was confirmed that [CoW{sub 12}O{sub 40}]{sup 5-} was intercalated between the brucite-type layers of the LDHs without a change in the structure. Magnetic measurement shows the occurrence of antiferromagnetic interactions between the magnetic centers. The investigation of catalytic performance for this sample exhibits high activitymore » for the oxidation of benzaldehyde by hydrogen peroxide. - Graphical abstract: A tungstocobaltate anion [CoW{sub 12}O{sub 40}]{sup 5-} pillared layered double hydroxide (LDH) was prepared by aqueous ion exchange with a Mg-Al LDH precursor in nitrate form, demonstrating that [CoW{sub 12}O{sub 40}]{sup 5-} was intercalated between the brucite-type layers of the LDHs without change in structure. Magnetic measurement shows the occurrence of antiferromagnetic interactions between the magnetic centers. The investigation of catalytic performance for this sample exhibits high activity for the oxidation of benzaldehyde by hydrogen peroxide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasayco, M.L.; Prestwich, G.D.
1990-02-25
Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor ofmore » this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.« less
Pulsed corona discharge oxidation of aqueous carbamazepine micropollutant.
Ajo, Petri; Krzymyk, Ewelina; Preis, Sergei; Kornev, Iakov; Kronberg, Leif; Louhi-Kultanen, Marjatta
2016-08-01
The anti-epileptic drug carbamazepine (CBZ) receives growing attention due to slow biodegradation and inherent accumulation in the aquatic environment. The application of a gas-phase pulsed corona discharge (PCD) was investigated to remove CBZ from synthetic solutions and spiked wastewater effluent from a municipal wastewater treatment facility. The treated water was showered between high voltage (HV) wires and grounded plate electrodes, to which ultra-short HV pulses were applied. CBZ was readily oxidized and 1-(2-benzaldehyde)-4-hydroquinazoline-2-one (BQM) and 1-(2-benzaldehyde)-4-hydro-quinazoline-2,4-dione (BQD) were identified as the most abundant primary transformation products, which, contrary to CBZ ozonation data available in the literature, were further easily oxidized with PCD: BQM and BQD attributed to only a minor portion of the target compound oxidized. In concentrations commonly found in wastewater treatment plant effluents (around 5 µg L(-1)), up to 97% reduction in CBZ concentration was achieved at mere 0.3 kW h m(-3) energy consumption, and over 99.9% was removed at 1 kW h m(-3). The PCD application proved to be efficient in the removal of both the parent substance and its known transformation products, even with the competing reactions in the complex composition of wastewater.
Jagannathan, K; Umarani, P; Ratchagar, V; Ramesh, V; Kalainathan, S
2016-01-15
The 3-Hydroxy Benzaldehyde-N-methyl 4-Stilbazolium Tosylate (3- HBST) is a new organic NLO crystal and it is a new derivative in stilbazolium tosylate family. In this work we have synthesized 3-HBST and the single crystal was grown by conventional slow cooling method. The structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction (XRD) technique and it is exhibiting good crystalline nature which is observed from the powder XRD. In order to check the crystalline quality the rocking curve was recorded using multi crystal X-ray diffractometer. The functional groups were identified from both FTIR and NMR spectral analyses. The π-π* and n-π* optical transition energy levels were estimated from the absorption peaks. The NLO property was confirmed by measuring relative SHG efficiency by Kurtz powder test; it shows 24 times higher SHG efficiency than that of urea. In order to test the mechanical stability the Vickers and Knoop micro hardness measurement were carried out and found that the micro hardness number decreases with increasing load. The melting point was determined from Differential Scanning Colorimetry (DSC). Copyright © 2015 Elsevier B.V. All rights reserved.
Mohamed, Nadia A; Abd El-Ghany, Nahed A
2018-04-21
Four chemically modified chitosan derivatives 1-4 were designed and synthesized via a series of four reactions; first by reaction with benzaldehyde to protect its amino groups (Derivative 1), second by reaction with epichlorohydrine (Derivative 2), third by reaction with aminobenzhydrazide (Derivative 3), and forth by removing of benzaldehyde to restore the free amino groups on the chitosan (Derivative 4). Two multi-walled carbon nanotube (MWCNT) biocomposites based on Derivative 4 were also prepared. The structure of the prepared derivatives and MWCNT composites was elucidated using elemental analyses, FTIR, XRD, SEM and TEM. The modified chitosan derivatives and MWCNT composites showed better antimicrobial activities than that of chitosan against Enterococcus faecalis, Staphylococcus epidermidis, Escherichia coli, Aspergillus niger, Cryptococcus neoformans and Candida tropicalis as judged by their higher inhibition zone diameters using the agar well diffusion technique. These derivatives and MWCNT composites are more potent against Gram-positive bacteria than against Gram-negative bacteria. The MWCNT composites displayed comparable or even better antimicrobial activities than the reference bactericides or fungicides. Thus, structural modification of chitosan through combination with functionalized moieties and MWCNTs in one system was taken as a way to achieve promising templates for antimicrobial agents and to be appropriate candidates for medical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Jingke; Zhao, Wei; Li, Shaohui; Zhang, Aixia; Zhang, Yuzong; Liu, Songyan
2018-02-20
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
NASA Astrophysics Data System (ADS)
Vyvyan, James R.; Pavia, Donald L.; Lampman, Gary M.; Kriz, George S., Jr.
2002-09-01
A guided inquiry experiment involving the synthesis and characterization of substituted benzalacetophenones (chalcones) is described. The chalcones are produced in the aldol condensation of substituted benzaldehydes with substituted acetophenones. Each student is assigned a different target chalcone and conducts online and printed literature searches on the target. After completing the synthesis and purification of their product, the students compare their data with those found in the literature.
Langdon, Steven M; Wilde, Myron M D; Thai, Karen; Gravel, Michel
2014-05-28
Morpholinone- and piperidinone-derived triazolium salts are shown to catalyze highly chemoselective cross-benzoin reactions between aliphatic and aromatic aldehydes. The reaction scope includes ortho-, meta-, and para-substituted benzaldehyde derivatives with a range of electron-donating and -withdrawing groups as well as branched and unbranched aliphatic aldehydes. Catalytic loadings as low as 5 mol % give excellent yields in these reactions (up to 99%).
Tissue Engineered Testicular Prostheses With Prolonged Testosterone Release
2008-12-01
inguinal lymph nodes from a leaking testicular prosthesis: a cause for chronic fatigue? BJU Int., 86, 1090. Ebert, T ., F. Jockenhovel, A. Morales, and R ...NaOH, hydroxyproline oxidation was initiated by adding 1 ml chloramine- T to the extract. After gentle mixing and incubation for 20 minutes, the...chloramine- T was destroyed by addition of 1 ml perchloric acid to each tube. Finally, 1 ml p- dimethylamino-benzaldehyde solution was added and
Sarıgüney, Ahmet Burak; Saf, Ahmet Özgür; Coşkun, Ahmet
2014-07-15
2,3-Indoledione 3-thiosemicarbazone (TSCI) and a novel compound 3-(2-(4-(4-phenoxyphenyl)thiazol-2-yl)hydrazono)indolin-2-one (FTHI) were synthesized with high yield and characterized by spectroscopic techniques. The complexation behaviors of TSCI and FTHI for various anionic species (F(-), Cl(-), Br(-), I(-), NO2(-), NO3(-), BzO(-), HSO4(-), ClO4(-)) in CH3CN were investigated and compared by UV-vis spectroscopy, cyclic voltammetry and (1)H NMR titration techniques. FTHI showed high degree of selectivity for fluoride over other anions. This selectivity could be easily observed by the naked eye, indicating that FTHI is potential colorimetric sensor for fluoride anion. Copyright © 2014 Elsevier B.V. All rights reserved.
Amin, Mohamed M; Shaaban, Mohamed R; Al-Qurashi, Nadia T; Mahmoud, Huda K; Farghaly, Thoraya A
2018-03-29
Short reaction time and high yield was achieved for the synthesis of new hydrazonoindolines having thiazole moiety under microwave irradiation via the reaction of hydrazonoyl chlorides or halogenated activemethylene derivatives with thiosemicarbazone derivatives. Also, the utility of the versatile indoline-2,3-dione derivatives in the design of new multifunctional building blocks using condensation with hydrazine derivatives was demonstrated. The information derived from the spectral data of the formed compounds were confirmed their structures. Also, the analgesic and anti-inflammatory activities of the designed derivatives were screened and the results obtained indicated that six derivatives 4g, 9b, 4c, 10b, 4d and 11a revealed the highest anti-inflammatory and analgesic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Piccionello, Antonio Palumbo; Buscemi, Silvestre; Vivona, Nicolò; Pace, Andrea
2010-08-06
A new variation on the Boulton-Katritzky reaction is reported, namely, involving use of a CNC side chain. A novel Montmorillonite-K10 catalyzed nonreductive transamination of a 3-benzoyl-1,2,4-oxadiazole afforded a 3-(alpha-aminobenzyl)-1,2,4-oxadiazole, which was condensed with benzaldehydes to afford the corresponding imines. In the presence of strong base, these imines underwent Boulton-Katritzky-type rearrangement to afford novel 4(5)-acylaminoimidazoles.
Mårdh, G; Dingley, A L; Auld, D S; Vallee, B L
1986-01-01
Studies of the function of human alcohol dehydrogenase (ADH) have revealed substrates that are virtually unique for class II ADH (pi ADH). It catalyzes the formation of the intermediary glycols of norepinephrine metabolism, 3,4-dihydroxyphenylglycol and 4-hydroxy-3-methoxyphenylglycol, from the corresponding aldehydes 3,4-dihydroxymandelaldehyde and 4-hydroxy-3-methoxymandelaldehyde with Km values of 55 and 120 microM and kcat/Km ratios of 14,000 and 17,000 mM-1 X min-1; these are from 60- to 210-fold higher than those obtained with class I ADH isozymes. The catalytic preference of class II ADH also extends to benzaldehydes. The kcat/Km values for the reduction of benzaldehyde, 3,4-dihydroxybenzaldehyde and 4-hydroxy-3-methoxybenzaldehyde by pi ADH are from 9- to 29-fold higher than those for a class I isozyme, beta 1 gamma 2 ADH. Furthermore, the norepinephrine aldehydes are potent inhibitors of alcohol (ethanol) oxidation by pi ADH. The high catalytic activity of pi ADH-catalyzed reduction of the aldehydes in combination with a possible regulatory function of the aldehydes in the oxidative direction leads to essentially "unidirectional" catalysis by pi ADH. These features and the presence of pi ADH in human liver imply a physiological role for pi ADH in the degradation of circulating epinephrine and norepinephrine. PMID:3466164
NASA Astrophysics Data System (ADS)
Golbedaghi, Reza; Rezaeivala, Majid; Albeheshti, Leila
2014-11-01
Four new [Cd(H2L1)(NO3)]ClO4 (1), [Zn(H2L1)](ClO4)2 (2), [Cd(H2L2)(NO3)]ClO4 (3), and [Zn(H2L2)](ClO4)2 (4), complexes were prepared by the reaction of two new Schiff base ligands and Cd(II) and Zn(II) metal ions in equimolar ratios. The ligands H2L1 and H2L2 were synthesized by reaction of 2-[2-(2-formyl phenoxy)ethoxy]benzaldehyde and/or 2-[2-(3-formyl phenoxy)propoxy]benzaldehyde and ethanol amine and characterized by IR, 1H and 13C NMR spectroscopy. All complexes were characterized by IR, 1H and 13C NMR, COSY, and elemental analysis. Also, the complex 1 was characterized by X-ray in addition to the above methods. The X-ray crystal structure of compound 1 showed that all nitrogen and oxygen atoms of ligand (N2O4) and a molecule of nitrate with two donor oxygen atom have been coordinated to the metal ion and the Cd(II) ion is in an eight-coordinate environment that is best described as a distorted dodecahedron geometry.
Zhong, Xin; Cui, Chongwei; Yu, Shuili
2017-07-01
Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tahir, Nawroz Abdul-Razzak; Azeez, Hoshyar Abdullah; Muhammad, Kadhm Abdullah; Faqe, Shewa Anwer; Omer, Dlshad Ali
2017-12-25
The chemical profile of the essential oil of callus and cell suspension cultures derivatives from stem and root of Hypericum triquetrifolium were explored by ITEX/GC-MS. The major constituents for stem derivatives were undecane (78.44%) and 2,4,6-trimethyl-octane (9.74%) for fresh calli, 2,4-dimethyl-benzaldehyde (46.94%), 2,3-dimethyl-undecane (28.39%), 2,4-dimethyl-1-hexene (10.17%), 1,2-oxolinalool (3.64%) and limonene (3.55%) for dry calli and undecane (61.24%), octane, 2,4,6-trimethyl- (16.73%), nonane, 3-methyl-(3.74%), 2,5-diphenyl-benzoquinone (3.70%) and limonene (3.60%) for cell suspension. However, for root derivatives, the dominated components were: undecane (49.94%), eucalyptol (12.07%), limonene (9.98%), toluene (9.03%) and 3-methyl-nonane (4.29%) for fresh calli, 2,4-dimethyl-benzaldehyde (29.80%), 1,1-dimethylethyl-cyclohexane (14.99%), 3-methyl-pentanal (14.99%), undecane (10.04%), beta-terpinyl acetate (8.60%), 1,2-oxolinalool (6.27%) and 2-pentyl-furan (4.09%) for dry calli, undecane (52.38%), 2,4,6-trimethyl-octane (13.81%), 3-methyl-nonane (5.73%), toluene (4.82%) and limonene (4.57%) for cell suspension derivative in root. The attained outcomes indicated that the alkane, aldehyde and monoterpene fractions dominated the chemical composition of essential oils.
Field observations of volatile organic compound (VOC) exchange in red oaks
NASA Astrophysics Data System (ADS)
Cappellin, Luca; Algarra Alarcon, Alberto; Herdlinger-Blatt, Irina; Sanchez, Juaquin; Biasioli, Franco; Martin, Scot T.; Loreto, Francesco; McKinney, Karena A.
2017-03-01
Volatile organic compounds (VOCs) emitted by forests strongly affect the chemical composition of the atmosphere. While the emission of isoprenoids has been largely characterized, forests also exchange many oxygenated VOCs (oVOCs), including methanol, acetone, methyl ethyl ketone (MEK), and acetaldehyde, which are less well understood. We monitored total branch-level exchange of VOCs of a strong isoprene emitter (Quercus rubra L.) in a mixed forest in New England, where canopy-level fluxes of VOCs had been previously measured. We report daily exchange of several oVOCs and investigated unknown sources and sinks, finding several novel insights. In particular, we found that emission of MEK is linked to uptake of methyl vinyl ketone (MVK), a product of isoprene oxidation. The link was confirmed by corollary experiments proving in vivo detoxification of MVK, which is harmful to plants. Comparison of MEK, MVK, and isoprene fluxes provided an indirect indication of within-plant isoprene oxidation. Furthermore, besides confirming bidirectional exchange of acetaldehyde, we also report for the first time direct evidence of benzaldehyde bidirectional exchange in forest plants. Net emission or deposition of benzaldehyde was found in different periods of measurements, indicating an unknown foliar sink that may influence atmospheric concentrations. Other VOCs, including methanol, acetone, and monoterpenes, showed clear daily emission trends but no deposition. Measured VOC emission and deposition rates were generally consistent with their ecosystem-scale flux measurements at a nearby site.
NASA Astrophysics Data System (ADS)
Wahyuningsih, Tutik Dwi; Kurniawan, Yehezkiel Steven
2017-03-01
Greases are mostly prepared from petroleum base stocks that make it toxic to the environment. The demand for green greases has led to in depth research of other renewable resources. Vegetable oils are promising candidates due to their renewability and low toxicity. However, it has poor oxidation stability and high total acid number. One way to solve this problem is chemical modification of its fatty acid structure. We report some novel dioxolane compounds from oleic acid and benzaldehyde derivates from some Indonesian essential oils via several steps, i.e: hydroxylation, esterification and acetalization. The esterification and acetalization reaction was carried out by green procedure using sonochemical method and montmorillonite KSF as a catalyst. Hydroxylation of Oleic acid was performed by KMnO4 to give 9,10-dihydroxyoctadecanoic (DHOA) in 47% yield. The esterification was done using methanol yielded methyl 9,10-dihydroxyoctadecanoate (MDHO) as white powder in 94%. Acetalization of the ester MDO with various benzaldehyde derivatives was carried out to give the dioxolan derivatives in the range of 17 - 60% yield. All of the structure was confirmed by FT-IR and GC-MS, meanwhile their physicochemical properties were determined using ASTM methods. From physicochemical properties, i.e: -TAN, TBN and IV-, it can be concluded that these novel compounds have the potential to be developed into biogrease.
Castro, Eliana F; Campos, Rodolfo H; Cavallaro, Lucía V
2014-01-01
Bovine viral diarrhea virus (BVDV) is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC) is a non-nucleoside polymerase inhibitor (NNI) of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1-5) present an N264D mutation in the NS5B gene (RdRp) whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1-5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1-5) remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.
A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework
NASA Astrophysics Data System (ADS)
Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen; Liu, Xin
2016-12-01
A 3D lanthanide MOF with formula [Sm2(abtc)1.5(H2O)3(DMA)]·H2O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol.
[Study on the chemical constituets in ethyl acetante extraction from semen litchi].
Huang, Kai-Wen; Guo, Jie-Wen; Chen, Jian-Mei; Lin, Li-Jing; Xu, Feng
2012-01-01
To study the chemical constituents in ethyl acetate extraction of Semen Litchi. The compounds were isolated and purified by column chromatography on silica gel and Sephadex LH-20 coupled with preparative silica gel TLC, their structures were identified by physicochemical properties and spectrum analysis. Five compounds were isolated and identified as stigmasterol (1), P-hydroxy-benzaldehyde (2), protocatechuic acid (3), daucosterol (4) and kaempferol-3-O-beta-D-glucopyranoside (5). Compounds 2 and 5 are obtained from this plant for the first time.
Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification
NASA Astrophysics Data System (ADS)
Tan, Fu-neng
2018-03-01
A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.
Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto
2016-01-01
A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).
1994-10-27
Thus, we investigated several other secondary amines for use in the condensation of the picoline salt with various substituted benza!dehydes. C I I...a 10 gallon glass lined reactor was charged with 12 L of methanol, 3.120 kg of picoline , and 6.046 kg of methyl toluene sulfonate. The I reaction...dimethylamino benzaldehyde was added to the newly formed picoline salt, I together with an additional 6 L of methanol. Finally, 500 mL of pyrrolidine were slowly
SEPARATION OF PLUTONIUM FROM ELEMENTS HAVING AN ATOMIC NUMBER NOT LESS THAN 92
Fitch, F.T.; Russell, D.S.
1958-09-16
other elements having atomic numbers nnt less than 92, It has been proposed in the past to so separate plutonium by solvent extraction iato an organic solvent using triglycoldichlcride as the organic solvent. The improvement lies in the discovery that triglycoldichloride performs far more efflciently as an extractant, wher certain second organie compounds are added to it. Mentioned as satisfactory additive compounds are benzaldehyde, saturated aliphatic aldehydes containtng at least twc carbon atoms, and certain polyhydric phenols.
Copper(II)-bis(thiosemicarbazonato) complexes as anti-chlamydial agents.
Marsh, James W; Djoko, Karrera Y; McEwan, Alastair G; Huston, Wilhelmina M
2017-09-29
Lipophilic copper (Cu)-containing complexes have shown promising antibacterial activity against a range of bacterial pathogens. To examine the susceptibility of the intracellular human pathogen Chlamydia trachomatis to copper complexes containing bis(thiosemicarbazone) ligands [Cu(btsc)], we tested the in vitro effect of CuII-diacetyl- and CuII-glyoxal-bis[N(4)-methylthiosemicarbazonato] (Cu(atsm) and Cu(gtsm), respectively) on C. trachomatis. Cu(atsm) and to a greater extent, Cu(gtsm), prevented the formation of infectious chlamydial progeny. Impacts on host cell viability and respiration were also observed in addition to the Chlamydia impacts. This work suggests that copper-based complexes may represent a new lead approach for future development of new therapeutics against chlamydial infections, although host cell impacts need to be fully explored. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
3-[(E)-(acridin-9‧-ylmethylidene)amino]-1-substituted thioureas and their biological activity
NASA Astrophysics Data System (ADS)
Bečka, Michal; Vilková, Mária; Salem, Othman; Kašpárková, Jana; Brabec, Viktor; Kožurková, Mária
2017-06-01
This paper describes the synthesis of a novel series of acridine thiosemicarbazones through a two-step reaction between various isothiocyanates and hydrazine followed by treatment with acridin-9-carbaldehyde. The properties of this series of seven new derivatives are studied using NMR and biochemical techniques, and the DNA-binding properties of the compounds are determined using spectrophotometric studies (UV-vis absorption, fluorescence, and circular/linear dichroism) and viscometry. The binding constants K are estimated as being in the range of 2.2 to 7.8 × 104 M- 1 and the percentage of hypochromism was found to be 22.11-49.75% (from UV-vis spectral titration). Electrophoretic experiments prove that the novel compounds demonstrate moderate inhibitory effects against Topo I activity at a concentration of 60 × 10- 6 M.
Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333.
Kavitha, Alapati; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra
2010-06-01
An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces. 2010 Elsevier Masson SAS. All rights reserved.
Sas, Claudia; Müller, Frank; Kappel, Christian; Kent, Tyler V; Wright, Stephen I; Hilker, Monika; Lenhard, Michael
2016-12-19
The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3-5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6-8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9-13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14-17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella. While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella. We identify the Capsella CNL1 gene encoding cinnamate:CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate:CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Li, Yani; Yu, Bo
2015-01-15
A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-sitemore » silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.« less
Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poelarends, Gerrit J
2017-07-18
The enzyme 4-oxalocrotonate tautomerase (4-OT) from Pseudomonas putida mt-2 takes part in a catabolic pathway for aromatic hydrocarbons, where it catalyzes the conversion of 2hydroxyhexa-2,4-dienedioate into 2-oxohexa-3-enedioate. This tautomerase can also promiscuously catalyze carbon-carbon bond-forming reactions, including various types of aldol reactions, by using its amino-terminal proline as a key catalytic residue. Here, we used systematic mutagenesis to identify two hotspots in 4-OT (Met45 and Phe50) at which single mutations give marked improvements in aldolase activity for the self-condensation of propanal. Activity screening of a focused library in which these two hotspots were varied led to the discovery of a 4-OT variant (M45Y/F50V) with strongly enhanced aldolase activity in the self-condensation of linear aliphatic aldehydes, such as acetaldehyde, propanal, and butanal, to yield α,β-unsaturated aldehydes. With both propanal and benzaldehyde, this double mutant, unlike the previously constructed single mutant F50A, mainly catalyzes the self-condensation of propanal rather than the cross-condensation of propanal and benzaldehyde, thus indicating that it indeed has altered substrate specificity. This variant could serve as a template to create new biocatalysts that lack dehydration activity and possess further enhanced aldolase activity, thus enabling the efficient enzymatic self-coupling of aliphatic aldehydes. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Catalyst system and process for benzyl ether fragmentation and coal liquefaction
Zoeller, Joseph Robert
1998-04-28
Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.
Tajti, Ádám; Ádám, Anna; Csontos, István; Karaghiosoff, Konstantin; Czugler, Mátyás; Ábrányi-Balogh, Péter
2017-01-01
A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N–H···O=P intermolecular hydrogen bridges pair. PMID:28179951
(E)-2-[2-(Pentafluorophenyl)ethenyl]-8-quinolyl acetate
Zhang, Li-Yan; Huo, Yan-Ping
2009-01-01
The title compound, C19H10F5NO2, was synthesized by the 1:1 condensation of 2-methyl-8-hydroxyquinaldine with pentafluorobenzaldehyde. It crystallizes with two almost identical molecules in the asymmetric unit. The pentafluorobenzene ring is essentially coplanar with the quinoline ring, forming dihedral angles of 2.49 (17) and 8.72 (16)° in the two molecules. PMID:21578456
Liu, Yongjun; Tian, Guang; Li, Jingjing; Qi, Yan; Wen, Yonghong; Du, Feng
2017-06-02
The novel bis-addition of benzaldehydes to acrylates or maleates was achieved by the direct use of samarium metal with the assistance of CuI under mild conditions under dry air, and the useful 2-hydroxylalkyl-γ-butyrolactons and lignan derivatives were thus constructed with high efficiency. The key factors that influence the reaction efficiency were investigated. The use of potassium iodide and molecular sieves as additives can improve the reaction efficiency remarkably.
1988-01-01
Lindsey 13 yielded 9, 1O-dimethyl-2,3,6,7-tetramethoxyanthracene (13) by condensing veratrole (12) and acetaldehyde in the presence of sulfuric acid...combination of those cited by Boldt12 and Lindsey.13 To an ice cooled solution of veratrole (32 mL, 250 mmol) in acetic acid (125 mL) was slowly added...solution of veratrole (32 mL, 250 mmol) in acetic acid (125 mL) was slowly added an ice cooled solution of benzaldehyde ( 25 mL, 246 mmol) in methanol
Beckford, Floyd A.
2010-01-01
The reaction of [(η6-p-cymene)Ru(ATSC)Cl]PF6 (ATSC = 9-anthraldehyde thiosemicarbazone) with human serum albumin was investigated at different temperatures using fluorescence and infrared spectrophotometry. The binding constant, K, for the reaction was determined using a number of different methods. Using a modified Stern-Volmer equation, K was determined to be 9.09 × 104, 12.1 × 104, and 13.1 × 104 M−1 at 293 K, 298 K, and 308 K, respectively. A thermodynamic analysis showed that the reaction is spontaneous with ΔG being negative. The enthalpy of reaction ΔH = 16.5kJ mol−1 and the entropy of reaction ΔS = 152 Jmol−1K−1. The values of ΔH and ΔS suggest that hydrophobic forces are dominant in the mode of interaction and that the process is mostly entropy driven. PMID:20671814
Bhat, Abdul R; Tazeem; Azam, Amir; Choi, Inho; Athar, Fareeda
2011-07-01
A new series of thiadiazoles and intermediate thiosemicarbazones were synthesized from the chloroquinone molecule, with an aim to explore their effect on in vitro growth of microorganisms causing microbial infection. The chemical structures of the compound were elucidated by elemental analysis, FTIR, 1H and 13C NMR and ESI-MS spectral data. In vitro anti-microbial activity was performed against Staphylococcusaureus, Streptococcuspyogenes, Salmonellatyphimurium, and Escherichiacoli. The MIC was detected using the double dilution method. The results were compared by calculating percent inhibit area/μg of the compounds and the standard "amoxicillin". The selected compounds were tested for cytotoxic results using MTT assay H9c2 cardiac myoblasts cell line and the results showed that all the compounds offered remarkable >80% viability to a concentration of 200 μg/mL. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka
2013-09-01
The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Abril, M A; Michan, C; Timmis, K N; Ramos, J L
1989-01-01
The TOL plasmid upper pathway operon encodes enzymes involved in the catabolism of aromatic hydrocarbons such as toluene and xylenes. The regulator of the gene pathway, the XylR protein, exhibits a very broad effector specificity, being able to recognize as effectors not only pathway substrates but also a wide variety of mono- and disubstituted methyl-, ethyl-, and chlorotoluenes, benzyl alcohols, and p-chlorobenzaldehyde. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two upper pathway enzymes, exhibit very broad substrate specificities and transform unsubstituted substrates and m- and p-methyl-, m- and p-ethyl-, and m- and p-chloro-substituted benzyl alcohols and benzaldehydes, respectively, at a high rate. In contrast, toluene oxidase only oxidizes toluene, m- and p-xylene, m-ethyltoluene, and 1,2,4-trimethylbenzene [corrected], also at a high rate. A biological test showed that toluene oxidase attacks m- and p-chlorotoluene, albeit at a low rate. No evidence for the transformation of p-ethyltoluene by toluene oxidase has been found. Hence, toluene oxidase acts as the bottleneck step for the catabolism of p-ethyl- and m- and p-chlorotoluene through the TOL upper pathway. A mutant toluene oxidase able to transform p-ethyltoluene was isolated, and a mutant strain capable of fully degrading p-ethyltoluene was constructed with a modified TOL plasmid meta-cleavage pathway able to mineralize p-ethylbenzoate. By transfer of a TOL plasmid into Pseudomonas sp. strain B13, a clone able to slowly degrade m-chlorotoluene was also obtained. PMID:2687253
Svärd, Laura; Putkonen, Matti; Kenttä, Eija; Sajavaara, Timo; Krahl, Fabian; Karppinen, Maarit; Van de Kerckhove, Kevin; Detavernier, Christophe; Simell, Pekka
2017-09-26
Molecular layer deposition (MLD) is an increasingly used deposition technique for producing thin coatings consisting of purely organic or hybrid inorganic-organic materials. When organic materials are prepared, low deposition temperatures are often required to avoid decomposition, thus causing problems with low vapor pressure precursors. Monofunctional compounds have higher vapor pressures than traditional bi- or trifunctional MLD precursors, but do not offer the required functional groups for continuing the MLD growth in subsequent deposition cycles. In this study, we have used high vapor pressure monofunctional aromatic precursors in combination with ozone-triggered ring-opening reactions to achieve sustained sequential growth. MLD depositions were carried out by using three different aromatic precursors in an ABC sequence, namely with TMA + phenol + O 3 , TMA + 3-(trifluoromethyl)phenol + O 3 , and TMA + 2-fluoro-4-(trifluoromethyl)benzaldehyde + O 3 . Furthermore, the effect of hydrogen peroxide as a fourth step was evaluated for all studied processes resulting in a four-precursor ABCD sequence. According to the characterization results by ellipsometry, infrared spectroscopy, and X-ray reflectivity, self-limiting MLD processes could be obtained between 75 and 150 °C with each of the three aromatic precursors. In all cases, the GPC (growth per cycle) decreased with increasing temperature. In situ infrared spectroscopy indicated that ring-opening reactions occurred in each ABC sequence. Compositional analysis using time-of-flight elastic recoil detection indicated that fluorine could be incorporated into the film when 3-(trifluoromethyl)phenol and 2-fluoro-4-(trifluoromethyl)benzaldehyde were used as precursors.
Moreno-García, Jaime; García-Martínez, Teresa; Millán, M Carmen; Mauricio, Juan Carlos; Moreno, Juan
2015-10-01
A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jung, Da-Mi; De Ropp, Jeffrey S; Ebeler, Susan E
2002-07-17
Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shu-Hua, E-mail: zsh720108@163.com; Zhao, Ru-Xia; Li, He-Ping
Using the solvothermal method, we present the comparative preparation of ([Co{sub 3}Na(dmaep){sub 3}(ehbd)(N{sub 3}){sub 3}]·DMF){sub n} (1) and [Co{sub 2}Na{sub 2}(hmbd){sub 4}(N{sub 3}){sub 2}(DMF){sub 2}] (2), where Hehbd is 3-ethoxy-2-hydroxy-benzaldehyde, Hhmbd is 3-methoxy-2-hydroxy-benzaldehyde, and Hdmaep is 2-dimethylaminomethyl-6-ethoxy-phenol, which was synthesized by an in-situ reaction. Complexes 1 and 2 were characterized by elemental analysis, IR spectroscopy, and X-ray single-crystal diffraction. Complex 1 is a novel heterometallic cluster-based 1-D chain and 2 is a heterometallic tetranuclear cluster. The (Co{sub 3}{sup II}Na) and (Co{sub 2}{sup II}Na{sub 2}) cores display dominant ferromagnetic interaction from the nature of the binding modes through μ{sub 1,1,1}-N{sub 3}{supmore » –} (end-on, EO). - Graphical abstract: Two novel cobalt complexes have been prepared. Compound 1 consists of tetranuclear (Co{sub 3}{sup II}Na) units, which further formed a 1-D chain. Compound 2 is heterometallic tetranuclear cluster. Two complexes display dominant ferromagnetic interaction. - Highlights: • Two new heterometallic complexes have been synthesized by solvothermal method. • The stereospecific blockade of the ligands in the synthesis system seems to be the most important synthetic parameter. • The magnetism studies show that 1 and 2 exhibit ferromagnetic interactions. • Complex 1 shows slowing down of magnetization and not blocking of magnetization.« less
Meng, Qingxi; Shen, Wei; Li, Ming
2012-03-01
Density functional theory (DFT) was used to investigate the Rh(I)-catalyzed intermolecular hydroacylation of vinylsilane with benzaldehyde. All intermediates and transition states were optimized completely at the B3LYP/6-31G(d,p) level (LANL2DZ(f) for Rh). Calculations indicated that Rh(I)-catalyzed intermolecular hydroacylation is exergonic, and the total free energy released is -110 kJ mol(-1). Rh(I)-catalyzed intermolecular hydroacylation mainly involves the active catalyst CA2, rhodium-alkene-benzaldehyde complex M1, rhodium-alkene-hydrogen-acyl complex M2, rhodium-alkyl-acyl complex M3, rhodium-alkyl-carbonyl-phenyl complex M4, rhodium-acyl-phenyl complex M5, and rhodium-ketone complex M6. The reaction pathway CA2 + R2 → M1b → T1b → M2b → T2b1 → M3b1 → T4b → M4b → T5b → M5b → T6b → M6b → P2 is the most favorable among all reaction channels of Rh(I)-catalyzed intermolecular hydroacylation. The reductive elimination reaction is the rate-determining step for this pathway, and the dominant product predicted theoretically is the linear ketone, which is consistent with Brookhart's experiments. Solvation has a significant effect, and it greatly decreases the free energies of all species. The use of the ligand Cp' (Cp' = C(5)Me(4)CF(3)) decreased the free energies in general, and in this case the rate-determining step was again the reductive elimination reaction.
Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa
2015-03-01
Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.
Douny, Caroline; Bayram, Pinar; Brose, François; Degand, Guy; Scippo, Marie-Louise
2016-05-01
Knowing that polyunsaturated fatty acids can lead to the formation of potentially toxic aldehydes as secondary oxidation products, an analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) detection was developed to measure the concentration of eight aldehydes in animal feed: malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), 4-hydroxy-2-hexenal (4-HHE), crotonaldehyde (CRT), benzaldehyde (BNZ), hexanal (HXL), 2,4-nonadienal, and 2,4-decadienal. The developed method was validated according to the criteria and procedure described in international standards. The evaluated parameters were specificity/selectivity, recovery, precision, accuracy, uncertainty, limits of detection and quantification, using the concept of accuracy profiles. These parameters were determined during experiments conducted over three different days with ground Kellogg's® Corn Flakes® cereals as model matrix for animal feed and spiked at different levels of concentration. Malondialdehyde, 4-HHE, 4-HNE, crotonaldehyde, benzaldehyde, and hexanal can be analyzed in the same run in animal feed with a very good accuracy, with recovery rates ranging from 86 to 109% for a working range going from 0.16 to 12.50 mg/kg. The analysis of 2,4-nonadienal and 2,4-decadienal can also be performed but in a limited range of concentration and with a limited degree of accuracy. Their recovery rates ranged between 54 and 114% and coefficient of variation for the intermediate precision between 11 and 25% for these two compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
El-Baradie, K.; El-Sharkawy, R.; El-Ghamry, H.; Sakai, K.
2014-03-01
The azodye ligand (HL1) was synthesized from the coupling of sulfaguanidine diazonium salt with 2,4-dihydroxy-benzaldehyde while the two ligands, HL2 and HL3, were prepared by the coupling of sulfadiazine diazonium salt with salicylaldehyde (HL2) and 2,4-dihydroxy-benzaldehyde (HL3). The prepared ligands were characterized by elemental analysis, IR, 1H NMR and mass spectra. Cu(II), Co(II) and Ni(II) complexes of the prepared ligands have been synthesized and characterized by various spectroscopic techniques like IR, UV-Visible as well as magnetic and thermal (TG and DTA) measurements. It was found that all the ligands behave as a monobasic bidentate which coordinated to the metal center through the azo nitrogen and α-hydroxy oxygen atoms in the case of HL1 and HL3. HL2 coordinated to the metal center through sulfonamide oxygen and pyrimidine nitrogen. The applications of the prepared complexes in the oxidative degradation of indigo carmine dye exhibited good catalytic activity in the presence of H2O2 as an oxidant. The reactions followed first-order kinetics and the rate constants were determined. The degradation reaction involved the catalytic action of the azo-dye complexes toward H2O2 decomposition, which can lead to the generation of HOrad radicals as a highly efficient oxidant attacking the target dye. The detailed kinetic studies and the mechanism of these catalytic reactions are under consideration in our group.
Umadevi, C; Kalaivani, P; Puschmann, H; Murugan, S; Mohan, P S; Prabhakaran, R
2017-02-01
A series of new water soluble nickel(II) complexes containing triphenylphosphine and 4-methoxysalicylaldehyde-4(N)-substituted thiosemicarbazones were synthesized and characterized. Crystallographic investigations confirmed the structure of the complexes (1-4) having the general structure [Ni(4-Msal-Rtsc)(PPh 3 )] (Where R=H (1); CH 3 (2); C 2 H 5 (3); C 6 H 5 (4)) which showed that thiosemicarbazone ligands coordinated to nickel(II) ion as ONS tridentate bibasic donor. DNA/BSA protein binding ability of the ligands and their new complexes were studied by taking calf-thymus DNA (CT-DNA) and Bovine serum albumin (BSA) through absorption and emission titrations. Ethidium bromide (EB) displacement study showed the intercalative binding trend of the complexes to DNA. From the albumin binding studies, the mechanism of quenching was found as static and the alterations in the secondary structure of BSA by the compounds were confirmed with synchronous spectral studies. The binding affinity of the complexes to CT-DNA and BSA has the order of [Ni(4-Msal-etsc)(PPh 3 )] (3) >[Ni(4-Msal-mtsc)(PPh 3 )] (2) >[Ni(4-Msal-tsc)(PPh 3 )] (1) >[Ni(4-Msal-ptsc)(PPh 3 )] (4). In vitro cytotoxicity of the complexes was tested on human lung cancer cells (A549), human cervical cancer cells (HeLa), human liver carcinoma cells (Hep G2). All the complexes exhibited significant activity against three cancer cells. Among them, complex 4 exhibited almost 2.5 fold activity than cisplatin in A549 and HepG2 cell lines. In HeLa cell line, the complexes exhibited significant activity which is less than cisplatin. While comparing the activity of the complexes in A549 and HepG2 cell lines it falls in the order 4>1>2>3>cisplatin. The results obtained from DNA, protein binding and cytotoxicity studies, it is concluded that the cytotoxicity of the complexes as determined by MTT assay were not unduly influenced by the complexes having different binding efficiency with DNA and protein. The complexes exhibited good spectrum of antibacterial activity against four pathogenic bacteria such as E. faecalis (gram +ve), S. aureus (gram +ve), E. coli (gram -ve) and P. aeruginosa (gram -ve). Copyright © 2016 Elsevier B.V. All rights reserved.
Cardiac hypoxia imaging: second-generation analogues of 64Cu-ATSM.
Handley, Maxwell G; Medina, Rodolfo A; Mariotti, Erika; Kenny, Gavin D; Shaw, Karen P; Yan, Ran; Eykyn, Thomas R; Blower, Philip J; Southworth, Richard
2014-03-01
Myocardial hypoxia is an attractive target for diagnostic and prognostic imaging, but current approaches are insufficiently sensitive for clinical use. The PET tracer copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) has promise, but its selectivity and sensitivity could be improved by structural modification. We have therefore evaluated a range of (64)Cu-ATSM analogs for imaging hypoxic myocardium. Isolated rat hearts (n = 5/group) were perfused with normoxic buffer for 30 min and then hypoxic buffer for 45 min within a custom-built triple-γ-detector system to quantify radiotracer infusion, hypoxia-dependent cardiac uptake, and washout. A 1-MBq bolus of each candidate tracer (and (18)F-fluoromisonidazole for comparative purposes) was injected into the arterial line during normoxia, and during early and late hypoxia, and their hypoxia selectivity and pharmacokinetics were evaluated. The in vivo pharmacokinetics of promising candidates in healthy rats were then assessed by PET imaging and biodistribution. All tested analogs exhibited hypoxia sensitivity within 5 min. Complexes less lipophilic than (64)Cu-ATSM provided significant gains in hypoxic-to-normoxic contrast (14:1 for (64)Cu-2,3-butanedione bis(thiosemicarbazone) (ATS), 17:1 for (64)Cu-2,3-pentanedione bis(thiosemicarbazone) (CTS), 8:1 for (64)Cu-ATSM, P < 0.05). Hypoxic first-pass uptake was 78.2% ± 7.2% for (64)Cu-ATS and 70.7% ± 14.5% for (64)Cu-CTS, compared with 63.9% ± 11.7% for (64)Cu-ATSM. Cardiac retention of (18)F-fluoromisonidazole increased from 0.44% ± 0.17% during normoxia to 2.24% ± 0.08% during hypoxia. In vivo, normoxic cardiac retention of (64)Cu-CTS was significantly lower than that of (64)Cu-ATSM and (64)Cu-ATS (0.13% ± 0.02% vs. 0.25% ± 0.04% and 0.24% ± 0.03% injected dose, P < 0.05), with retention of all 3 tracers falling to less than 0.7% injected dose within 6 min. (64)Cu-CTS also exhibited lower uptake in liver and lung. (64)Cu-ATS and (64)Cu-CTS exhibit better cardiac hypoxia selectivity and imaging characteristics than the current lead hypoxia tracers, (64)Cu-ATSM and (18)F-fluoromisonidazole.
Synthesis and anticandidal activity of some imidazopyridine derivatives.
Kaplancikli, Zafer Asim; Turan-Zitouni, Gülhan; Ozdemir, Ahmet; Revial, Gilbert
2008-12-01
New hydrazide derivatives of imidazo[1,2-a]pyridine have been synthesized and evaluated for anticandidal activity. The reaction of imidazo[1,2-a]pyridine-2-carboxylic acid hydrazides with various benzaldehydes gave N-(benzylidene)imidazo[ 1,2-a]pyridine-2-carboxylic acid hydrazide derivatives. Their anticandidal activities against Candida albicans and Candida glabrata (isolates obtained from Osmangazi University, Faculty of Medicine, Eskisehir, Turkey), Candida albicans (ATCC 90028), Candida utilis (NRLL Y-900), Candida tropicalis (NRLL Y-12968), Candida krusei (NRLL Y-7179), Candida zeylanoides (NRLL Y-1774), and Candida parapsilosis (NRLL Y-12696) were investigated.
The enzymic hydrolysis of amygdalin
Haisman, D. R.; Knight, D. J.
1967-01-01
Chromatographic examination has shown that the enzymic hydrolysis of amygdalin by an almond β-glucosidase preparation proceeds consecutively: amygdalin was hydrolysed to prunasin and glucose; prunasin to mandelonitrile and glucose; mandelonitrile to benzaldehyde and hydrocyanic acid. Gentiobiose was not formed during the enzymic hydrolysis. The kinetics of the production of mandelonitrile and hydrocyanic acid from amygdalin by the action of the β-glucosidase preparation favour the probability that three different enzymes are involved, each specific for one hydrolytic stage, namely, amygdalin lyase, prunasin lyase and hydroxynitrile lyase. Cellulose acetate electrophoresis of the enzyme preparation showed that it contained a number of enzymically active components. PMID:4291788
NASA Astrophysics Data System (ADS)
Samovich, S. N.; Brinkevich, S. D.; Shadyro, O. I.
2013-01-01
Benzaldehyde and its derivatives efficaciously oxidize in aqueous solutions α-hydroxyl-containing carbon-centered radicals (α-HCR) of various structures, suppressing thereby the radical recombination and fragmentation reactions. The compounds containing cinnamic moieties are capable of adding α-hydroxyethyl radicals (α-HER) to the carbon-carbon double bonds conjugated with the aromatic system to form molecular products identifiable by mass spectrometry. On radiolysis of aqueous ethanol solutions, reduction of α-HER by aromatic alcohols and acids has been shown to proceed via formation of their adducts with hydrated electron species.
Phytochemical, morphological, and biological investigations of propolis from Central Chile.
Valcic, S; Montenegro, G; Mujica, A M; Avila, G; Franzblau, S; Singh, M P; Maiese, W M; Timmermann, B N
1999-01-01
Propolis from central Chile was investigated for its plant origin by microscopical analysis of pollen grains and leaf fragments found in the sample. The pollen grains that appear with significant higher frequency in the sample corresponded to four native and two introduced species, whereas leaf fragments corresponded to four native species. Seventeen phenolic compounds that belong to the phenylpropane, benzaldehyde, dihydrobenzofuran, or benzopyran classes, were isolated from an organic extract that was found to have a moderate growth inhibitory activity against Mycobacterium avium, M. tuberculosis, and two strains of Staphylococcus aureus. The components responsible for activity were determined.
Organic materials with nonlinear optical properties
Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu
1995-01-01
The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.
Mariana Balu, Alina; Pineda, Antonio; Yoshida, Kenta; Manuel Campelo, Juan; Gai, Pratibha L; Luque, Rafael; Angel Romero, Antonio
2010-11-07
A synergetic Fe-Al effect in Fe(2)O(3) nanoparticles supported on mesoporous aluminosilicates compared to pure siliceous silicates has been demonstrated, for the first time, by a remarkably superior catalytic activity of the former in the microwave-assisted selective oxidation of benzyl alcohol to benzaldehyde. This significant finding, that also deeply influences the acidity of the materials (increasing total and particularly Lewis acidity), can have important consequences in the improved efficiency of these systems in related oxidations as well as in acid catalysed processes.
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, R.E.; Dolbeare, F.A.
1980-10-21
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, Robert E. [557 Escondido Cir., Livermore, CA 94550; Dolbeare, Frank A. [5178 Diane La., Livermore, CA 94550
1980-10-21
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.
Organic materials with nonlinear optical properties
Stupp, S.I.; Son, S.; Lin, H.C.
1995-05-02
The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.
Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes
Smith, Robert E.; Dolbeare, Frank A.
1979-01-01
Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.
Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.
Hein, Samuel J; Lehnherr, Dan; Arslan, Hasan; J Uribe-Romo, Fernando; Dichtel, William R
2017-11-21
Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl- and halogen-substituted alkynes. Through a combined experimental and computational approach, we have elucidated mechanistic insight and key principles that govern the regioselectivity outcome of the benzannulation of structurally diverse alkynes. We have applied these methods to prepare sterically hindered, shape-persistent aromatic systems, heterocyclic aromatic compounds, functionalized 2-aryne precursors, polyheterohalogenated naphthalenes, ortho-arylene foldamers, and graphene nanoribbons. As a result of these new synthetic avenues, aromatic structures with interesting properties were uncovered such as ambipolar charge transport in field effect transistors based on our graphene nanoribbons, conformational aspects of ortho-arylene architectures resulting from intramolecular π-stacking, and modulation of frontier molecular orbitals via protonation of heteroatom containing aromatic systems. Given the availability of many substituted 2-(phenylethynyl)benzaldehydes and the regioselectivity of the benzannulation reaction, naphthalenes can be prepared with control of the substitution pattern at seven of the eight substitutable positions. Researchers in a range of fields are likely to benefit directly from newly accessible molecular and polymeric systems derived from polyfunctionalized naphthalenes.
Iron(II) catalysis in oxidation of hydrocarbons with ozone in acetonitrile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja
Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH 3CN) 6 2+. The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH 3CN) 6 2+-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH 3CN) 6 2+] andmore » [O 3] and independent of [substrate] at concentrations greater than ~5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, k cat = (8 ± 1) × 10 4 M –1 s –1, and that for (C 2H 5) 2O is (5 ± 0.5) × 10 4 M –1 s –1. In the absence of substrate, Fe(CH 3CN) 6 2+ reacts with O 3 with k Fe = (9.3 ± 0.3) × 10 4 M –1 s –1. The similarity between the rate constants k Fe and k cat strongly argues for Fe(CH 3CN) 6 2+/O 3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH 3CN) 6 2+/O 3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. As a result, this assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates.« less
Hewala, Ismail; El-Fatatre, Hamed; Emam, Ehab; Mubrouk, Mokhtar
2010-06-30
A simple, rapid and sensitive reversed phase high performance liquid chromatographic method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, benzyl alcohol, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron) and benzaldehyde (the main degradation product of benzyl alcohol) in granisetron injections. The separation was achieved on Hypersil BDS C8 (250 mm x 4.6 mm i.d., 5 microm particle diameter) column using a mobile phase consisted of acetonitrile:0.05 M KH(2)PO(4):triethylamine (22:100:0.15) adjusted to pH 4.8. The column was maintained at 25 degrees C and 20 microL of solutions was injected. Photodiode array detector was used to test the peak purity and the chromatograms were extracted at 210 nm. Naphazoline hydrochloride was used as internal standard. The method was validated with respect to specificity, linearity, accuracy, precision, limit of quantitation and limit of detection. The validation acceptance criteria were met in all cases. Identification of the pure peaks was carried out using library match programmer and wavelengths of derivative optima of the spectrograms of the peaks. The method was successfully applied to the determination of the investigated drugs and their degradation products in different batches of granisetron injections. The method was proved to be sensitive for the determination down to 0.03 and 0.01% of granisetron degradation product and benzaldehyde, respectively, which are far below the compendia limits for testing these degradation products in their corresponding intact drugs. Copyright 2010 Elsevier B.V. All rights reserved.
Spus, Maciej; Liu, Hua; Wels, Michiel; Abee, Tjakko; Smid, Eddy J
2017-01-16
Lactobacillus helveticus is widely used in dairy fermentations and produces a range of enzymes, which upon cell lysis can be released into the cheese matrix and impact degradation of proteins, peptides and lipids. In our study we set out to explore the potential of Lb. helveticus DSM 20075 for increased autolytic capacity triggered by conditions such as low pH and high salt concentrations encountered in cheese environments. Lb. helveticus DSM 20075 was subjected to varied incubation temperatures (ranging from 37 to 50°C). High-temperature incubation (in the range of 45 to 50°C) allowed us to obtain a collection of six variant strains (V45-V50), which in comparison to the wild-type strain, showed higher growth rates at elevated temperatures (42°C-45°C). Moreover, variant strain V50 showed a 4-fold higher, in comparison to wild type, autolytic capacity in cheese-like conditions. Next, strain V50 was used as an adjunct in lab-scale cheese making trials to measure its impact on aroma formation during ripening. Specifically, in cheeses made with strain V50, the relative abundance of benzaldehyde increased 3-fold compared to cheeses made with the wild-type strain. Analysis of the genome sequence of strain V50 revealed multiple mutations in comparison to the wild-type strain DSM 20075 including a mutation found in a gene coding for a metal ion transporter, which can potentially be linked to intracellular accumulation of Mn 2+ and benzaldehyde formation. The approach of high-temperature incubation can be applied in dairy industry for the selection of (adjunct) cultures targeted at accelerated cheese ripening and aroma formation. Copyright © 2016 Elsevier B.V. All rights reserved.
Ben Haj Hassen, Leila; Ezzayani, Khaireddine; Rousselin, Yoann; Nasri, Habib
2014-01-01
In the title compound, [Fe(C44H24Cl4N4)(H2O)2](SO3CF3)·C8H8O3·2H2O, the FeIII cation is chelated by the four N atoms of the deprotonated tetrakis(4-chlorotetraphenyl)porphyrin (TClPP) and further coordinated by two water molecules in a distorted octahedral geometry. In the crystal, the cations, anions, 4-hydroxy-3-methoxybenzaldehyde and water molecules of crystallization are linked by classical O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional supramolecular architecture. The crystal packing is further stabilized by weak C—H⋯π interactions involving pyrrole and benzene rings. π–π stacking between parallel benzene rings of adjacent 4-hydroxy-3-methoxybenzaldehyde molecules is also observed, the centroid–centroid distance being 3.8003 (13) Å. The three F atoms of the anion are disordered over two sets of sites, with a refined occupancy ratio 0.527 (12):0.473 (12). The O atom of one water molecule of crystallization is also disordered over two positions in an occupancy ratio of 0.68 (5):0.32 (5). PMID:25249880
NASA Astrophysics Data System (ADS)
Tsarkov, Dmitriy; Mardanov, Robert; Markin, Andrey; Moukhamedieva, Lana
Investigation of intermediary metabolites, produced in cells, in expired air of healthy man is directed on determination of molecular markers which are reflecting normal physiological pro-cesses in an organism, as well as on determination and validation of biomarkers for objective screening and non-invasive prenosological diagnostics of disorders in metabolic processes caused by negative effect of live environment. Investigation of influence of long-term isolation in her-metical confined environment on composition of healthy human expired air was made during experiment with 105 days isolation in condition of controlled environment and standard food ra-tion. Expired air samples were analyzed on gas chromatograph associated with the quadrupole mass spectrometer. The investigation results show that at rest hydroxy ketones, mostly 1-hydroxy-prorapanone-2 (acetol), aldehydes (decenal, benzaldehyde), acetophenone, phenol and fatty acids were determined. After physical performance (oxidative stress) the content of ke-tones (heptanone-2, heptanone-3), phenol, determined aldehydes (decenal, octadecenal) and acetol in expired air of volunteers decreased. It can be concerned with prevailing of alternative -methylglyoxalic metabolic pathway and caused by oxidative stress. Analysis of expired air samples taken on 30, 60 and 90 day of isolation showed that in conditions of long-term iso-lation concentration of heptanone-2, heptanone-3, 2,3-butadione, acetol, furanones, aldehydes (decenal, benzaldehyde) and acetophenone is increasing while concentration of phenol and fatty acids is decreasing as compared to samples taken before isolation. It was shown that dynamics of concentration of saturated hydrocarbons in expired air can be informative marker for estima-tion of organism response to oxidative stress, while the level of acetol can be used as indicator of man's training status, validity of exercise load and as a marker of hypoxic state.
Wei, Jianing; Shao, Wenbo; Wang, Xianhui; Ge, Jin; Chen, Xiangyong; Yu, Dan; Kang, Le
2017-02-01
Chemical communication plays an important role in density-dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3-butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4-vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4-vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4-vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Obali, Aslihan Yilmaz; Ucan, Halil Ismet
2016-09-01
Novel different substitued polypyridine ligands 4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzaldehyde (BA-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzylidene)-pyrene-4-amine (PR-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10] phenanthroline-2-yl)phenoxy)methyl)benzylidene)-1,10-phenanthroline-5amine (FN-PPY), 2-(4-(bromomethyl)phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (BR-PPY), 2-(4-(azidomethyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (N3-PPY) and triazole containing polypyridine ligand 3,4-bis[(4-(metoxy)-1,2,3-triazole)1-methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline)] benzaldehyde (BA-DIPPY) and Ruthenium(II) complexes were synthesized and characterized. Their photopysical properties were investigated. The complexes RuP(PR-PPY), RuB(PR-PPY, RuP(FN-PPY) and RuB(FN-PPY) exhibited a broad absorption bands at 485, 475, 476, and 453 nm, respectively, assignable to the spin-allowed MLCT (dπ-π*) transition. The emission maxima of the pyrene-appended polypyridine ligand PR-PPY was observed at λems = 616 nm and the phenanthroline-appended polypyridine ligand FN-PPY was observed at λems = 668 nm. And the emission maxima of the complexes RuP(PR-PPY), RuB(PR-PPY), RuP(FN-PPY) and RuB(FN-PPY) were observed at λems = 646, 646, 685 and 685 nm, respectively. As seen in fluorescence spectra, the fluorescence intensities of the ligands are higher than their metal complexes. This is because of quenching effect of Ruthenium(II) metal on chromophore groups.
NASA Astrophysics Data System (ADS)
Wu, Jianfeng; Su, Tongming; Jiang, Yuexiu; Xie, Xinling; Qin, Zuzeng; Ji, Hongbing
2017-08-01
In situ DRIFTS were conducted to identify adsorbed ozone and/or adsorbed oxygen species on CaO, ZnO, γ-Al2O3, CuO and α-Fe2O3 surfaces at room temperature. Samples were characterized by means of TG, XRD, N2 adsorption-desorption, pyridine-IR, nitrobenzene-IR, chloroform-IR, and CO2-TPD. Pyridine-DRIFTS measurements evidence two kinds of acid sites in all the samples. Nitrobenzene, chloroform-DRIFTS, and CO2-TPD reveal that there are large amounts of medium-strength base sites on all the metal oxides, and only CaO, ZnO, and γ-Al2O3 have strong base sites. And the benzaldehyde selectivity was increased in the same order of the alkalinity of the metal oxides. With weaker sites, ozone molecules form coordinative complexes bound via the terminal oxygen atom, observed by vibrational frequencies at 2095-2122 and 1026-1054 cm-1. The formation of ozonide O3- at 790 cm-1, atomic oxygen at 1317 cm-1, and superoxide O2- at 1124 cm-1 was detected; these species are believed to be intermediates of O3 decomposition on strong acid/base sites. The adsorption of ozone on metal oxides is a weak adsorption, and other gases, such as CO2, will compete with O3 adsorption. The mechanism of cinnamaldehyde ozonation at room temperature over CaO shows that cinnamaldehyde can not only be oxidized into cinnamic acid, but also be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO2 in the presence of O3.
Iron(II) catalysis in oxidation of hydrocarbons with ozone in acetonitrile
Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja
2015-02-11
Oxidation of alcohols, ethers, and sulfoxides by ozone in acetonitrile is catalyzed by submillimolar concentrations of Fe(CH 3CN) 6 2+. The catalyst provides both rate acceleration and greater selectivity toward the less oxidized products. For example, Fe(CH 3CN) 6 2+-catalyzed oxidation of benzyl alcohol yields benzaldehyde almost exclusively (>95%), whereas the uncatalyzed reaction generates a 1:1 mixture of benzaldehyde and benzoic acid. Similarly, aliphatic alcohols are oxidized to aldehydes/ketones, cyclobutanol to cyclobutanone, and diethyl ether to a 1:1 mixture of ethanol and acetaldehyde. The kinetics of oxidation of alcohols and diethyl ether are first-order in [Fe(CH 3CN) 6 2+] andmore » [O 3] and independent of [substrate] at concentrations greater than ~5 mM. In this regime, the rate constant for all of the alcohols is approximately the same, k cat = (8 ± 1) × 10 4 M –1 s –1, and that for (C 2H 5) 2O is (5 ± 0.5) × 10 4 M –1 s –1. In the absence of substrate, Fe(CH 3CN) 6 2+ reacts with O 3 with k Fe = (9.3 ± 0.3) × 10 4 M –1 s –1. The similarity between the rate constants k Fe and k cat strongly argues for Fe(CH 3CN) 6 2+/O 3 reaction as rate-determining in catalytic oxidation. The active oxidant produced in Fe(CH 3CN) 6 2+/O 3 reaction is suggested to be an Fe(IV) species in analogy with a related intermediate in aqueous solutions. As a result, this assignment is supported by the similarity in kinetic isotope effects and relative reactivities of the two species toward substrates.« less
Effect of Antiviral Agents in Equine Abortion Virus-Infected Hamsters1
Lieberman, Melvin; Pascale, Andrea; Schafer, Thomas W.; Came, Paul E.
1972-01-01
Equine abortion virus, a member of the herpesvirus group, produces a lethal infection in hamsters. With this system, the protective effect of certain inhibitors of deoxyribonucleic acid viruses, inducers of interferon and exogenous interferon, was evaluated. Of the various agents studied, 9-β-d-arabinofuranosyladenine markedly suppressed mortality, and 5-iodo-2′-deoxyuridine, distamycin A, and N-ethylisatin β-thiosemicarbazone were inactive. Of the inducers tested, statolon, ultraviolet-irradiated Newcastle disease virus, and polyriboinosinic:polyribocytidylic acid (poly I:C) were protective, and endotoxin, polyacrylic acid, and polymethacrylic acid did not protect. Administration of exogenous interferon did not afford protection. Statolon and ultraviolet-irradiated Newcastle disease virus induced circulating interferon in hamsters, whereas poly I:C, endotoxin, and polyacrylic acid did not produce interferon. Because of the severity of the disease produced in hamsters by equine abortion virus, lack of protective activity by an agent in this system should not preclude possible efficacy against other members of the herpesvirus group. PMID:4376907
NASA Astrophysics Data System (ADS)
El-Shahawi, M. S.; Al-Jahdali, M. S.; Bashammakh, A. S.; Al-Sibaai, A. A.; Nassef, H. M.
2013-09-01
The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru3+, Rh3+, Pd2+, Ni2+ and Cu2+ were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M2+/M3+ and M3+/M4+ (M = Ru3+, Rh3+) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned.
Synthesis of Renewable meta-Xylylenediamine from Biomass-Derived Furfural.
Scodeller, Ivan; Mansouri, Samir; Morvan, Didier; Muller, Eric; de Oliveira Vigier, Karine; Wischert, Raphael; Jérôme, François
2018-04-30
We report the synthesis of biomass-derived functionalized aromatic chemicals from furfural, a building block nowadays available in large scale from low-cost biomass. The scientific strategy relies on a Diels-Alder/aromatization sequence. By controlling the rate of each step, it was possible to produce exclusively the meta aromatic isomer. In particular, through this route, we describe the synthesis of renewably sourced meta-xylylenediamine (MXD). Transposition of this work to other furfural-derived chemicals is also discussed and reveals that functionalized biomass-derived aromatics (benzaldehyde, benzylamine, etc.) can be potentially produced, according to this route. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The oxidation of 2,6-di-tert-butyl-4-methylphenol
Yohe, G.R.; Dunbar, J.E.; Pedrotti, R.L.; Scheidt, F.M.; Lee, F.G.H.; Smith, E.C.
1956-01-01
The products formed in the oxidation of 2,6-di-tert-butyl-4-methylphenol with oxygen and sodium hydroxide at about 100?? are 3,5-di-tert-butyl-4-hydroxybenzaldehyde, trimethylacetic acid, an acidic compound C14H22O3, and probably 2,6-di-tert-butylbenzoquinone (which was actually isolated in the similar oxidation of the above-named benzaldehyde), in addition to compounds previously reported. Some of the properties of C14H22O3 are given, and the oxidation of it to 2,3-di-tert-butylsuccinic anhydride is described, but assignment of structure is reserved pending the completion of more experimental work.
NASA Astrophysics Data System (ADS)
Hammud, Hassan H.; Ghannoum, Amer; Masoud, Mamdouh S.
2006-02-01
Sixteen Schiff bases obtained from the condensation of benzaldehyde or salicylaldehyde with various amines (aniline, 4-carboxyaniline, phenylhydrazine, 2,4-dinitrophenylhydrazine, ethylenediamine, hydrazine, o-phenylenediamine and 2,6-pyridinediamine) are studied with UV-vis spectroscopy to observe the effect of solvents, substituents and other structural factors on the spectra. The bands involving different electronic transitions are interpreted. Computerized analysis and multiple regression techniques were applied to calculate the regression and correlation coefficients based on the equation that relates peak position λmax to the solvent parameters that depend on the H-bonding ability, refractive index and dielectric constant of solvents.
Ghosh, Soumen; Alam, Md Akhtarul; Ganguly, Aniruddha; Guchhait, Nikhil
2015-01-01
A series of Schiff bases synthesized by the condensation of benzohydrazide and -NO2 substituted benzaldehyde have been used as selective fluoride ion sensor. Test paper coated with these synthetic Schiff bases (test kits) can detect fluoride ion selectively with a drastic color change and detection can be achieved by just using the naked-eye without the help of any optical instrument. Interestingly, the position of -NO2 group in the amido Schiff bases has an effect on the sensitivity as well as on the change of color of species. Copyright © 2015 Elsevier B.V. All rights reserved.
Surface and catalytic properties of acid metal carbons prepared by the sol gel method
NASA Astrophysics Data System (ADS)
Aguado-Serrano, J.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M.; López-Peinado, A. J.; Gómez-Serrano, V.
2006-06-01
The sol-gel method has been applied for the synthesis of a series of acid metal-carbon xerogels (with M = V, Cr, Mo and Ni) by polymerisation of resorcinol with formaldehyde in the presence of metallic precursors. A blank sample was also prepared without any metal addition. The xerogels were heated in nitrogen at 1000 °C to obtain the pyrolysed products. The samples were characterised by different techniques such as thermal-mass spectrometry analysis, gas physisorption, and mercury porosimetry. In addition, the acid character of the pyrolysed products was tested by the Claisen-Schmidt condensation between benzaldehyde and acetophenone for the formation of chalcones.
NASA Astrophysics Data System (ADS)
Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng
2014-03-01
MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H2O2 indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions.
Direct evidence of photochemical α-cleavage of benzoin in fluid solutions
NASA Astrophysics Data System (ADS)
Koyanagi, Motohiko; Futami, Hiroshi; Mukai, Masahiro; Yamauchi, Seigo
1989-02-01
By means of optical absorption, 1 NMR, and transient EPR techniques, the fate of diluted benzoin upon light irradiation to its S 1 (nπ*) state has been investigated in methylcyclohexane and benzene solutions at room temperature. The CIDEP spectrum of benzoin is observed for the first time, and the intermediate radicals involved are assigned. The overall results show that the main scheme of the photochemical reactions is the α-cleavage occurring in the excited triplet state of benzoin, as proved in the almost net emission pattern of the CIDEP spectra. A stoichiometric reaction leading to effective benzaldehyde formation is established for the benzoin solutions.
Fritsch, Julia; Rose, Marcus; Wollmann, Philipp; Böhlmann, Winfried; Kaskel, Stefan
2010-01-01
We present new element organic frameworks based on Sn, Sb and Bi atoms connected via organic linkers by element-carbon bonds. The open frameworks are characterized by specific surface areas (BET) of up to 445 m2 g-1 and a good stability under ambient conditions resulting from a highly hydrophobic inner surface. They show good performance as heterogeneous catalysts in the cyanosylilation of benzaldehyde as a test reaction. Due to their catalytic activity, this class of materials might be able to replace common homogeneous element-organic and often highly toxic catalysts especially in the food industry.
Synthesis and Spectroscopic Properties of Carbazole-Oxadiazoles.
Gündoğdu, Leyla; Şen, Nihan; Hızlıateş, Cevher Gündoğdu; Ergün, Mustafa Yavuz
2017-11-01
Four new carbazole-oxadiazole derivatives (3a-b, 6a-b) were prepared from the reaction of aromatic aldehydes and carbohydrazides which were synthesized from carbazole aldehydes namely 9-hexyl-9H-carbazole-3-carbaldehyde 1 and 4-(9H-carbazole-9-yl)benzaldehyde 4 and acid hydrazides. The structures of the new derivatives were confirmed by 1 H-NMR and FT-IR. The optical properties such as maximum absorption and emission wavelengths (λ; nm), molar extinction coefficients (ε; cm -1 M -1 ), Stoke's shifts (ΔλST; nm) and quantum yields (ϕF), of the carbazole-oxadiazole derivatives were declared in dichloromethane, toluene and tetrahydrofuran solutions.
[Study on chemical constituents from roots of Saussurea lappa].
Zhang, Ting; Wang, Hongqing; Du, Guanhua; Chen, Ruoyun
2009-05-01
To study the chemical constituents in roots of Saussurea lappa. Isolation and purification were carried out by silica gel, Sephadex LH-20 and RP-18 column chromatography. The chemical structures of constituents were elucidated on the basis of spectral data. Eleven compounds were isolated and identified as: 5,7-dihydroxy-2-methylchromone (1), p-hydroxybenzaldehyde (2), 3,5-dimethoxy-4-hydroxy-benzaldehyde (3), 3,5-dimethoxy-4-hydroxy-acetophenone (4), ethyl 2-pyrrolidinone-5(s)-carboxylate (5), 5-hydroxymethyl-furaldehyde (6), palmitic acid (7), succinic acid (8), glucose (9), daucosterol (10), beta-sitosterol (11). Compounds 1, 2, 4, 5, 7, 9 were isolated from the genus Saussurea for the first time.
NASA Astrophysics Data System (ADS)
Sathiyamoorthi, K.; Mala, V.; Sakthinathan, S. P.; Kamalakkannan, D.; Suresh, R.; Vanangamudi, G.; Thirunarayanan, G.
2013-08-01
Totally 38 aryl E 2-propen-1-ones including nine substituted styryl 4-iodophenyl ketones have been synthesised using solvent-free SiO2-H3PO4 catalyzed Aldol condensation between respective methyl ketones and substituted benzaldehydes under microwave irradiation. The yields of the ketones are more than 80%. The synthesised chalcones were characterized by their analytical, physical and spectroscopic data. The spectral frequencies of synthesised substituted styryl 4-iodophenyl ketones have been correlated with Hammett substituent constants, F and R parameters using single and multi-linear regression analysis. The antimicrobial activities of 4-iodophenyl chalcones have been studied using Bauer-Kirby method.
Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand
2016-12-17
In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans . All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.
Solvent for urethane adhesives and coatings and method of use
Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.
2010-08-03
A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.
Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.
Jayakumar, Jayachandran; Cheng, Chien-Hong
2016-01-26
A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atar, Amol B; Jeong, Yeon Tae
2014-05-01
A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.
Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D
2004-12-27
Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief discussion of the dehalogenation chemistry, along with relevant environmental perspectives, is included.
Carbonyl emissions in diesel and biodiesel exhaust
NASA Astrophysics Data System (ADS)
Machado Corrêa, Sérgio; Arbilla, Graciela
With the use of biodiesel in clear growth, it is important to quantify any potential emission benefits or liabilities of this fuel. Several researches are available concerning the regulated emissions of biodiesel/diesel blends, but there is a lack of information about non-regulated emissions. In a previous paper [Corrêa, S.M., Arbilla, G., 2006. Emissões de formaldeído e acetaldeído de misturas biodiesel/diesel. Periódico Tchê Química, 3, 54-68], the emissions of aromatic hydrocarbons were reported. In this work, seven carbonyl emissions (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, butyraldehyde, and benzaldehyde) were evaluated by a heavy-duty diesel engine fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1000, 1500, and 2000 rpm. The exhaust gases were diluted nearly 20 times and the carbonyls were sampled with SiO 2-C18 cartridges, impregnated with acid solution of 2,4-dinitrophenylhydrazine. The chemical analyses were performed by high performance liquid chromatography using UV detection. Using average values for the three modes of operation (1000, 1500, and 2000 rpm) benzaldehyde showed a reduction on the emission (-3.4% for B2, -5.3% for B5, -5.7% for B10, and -6.9% for B20) and all other carbonyls showed a significative increase: 2.6, 7.3, 17.6, and 35.5% for formaldehyde; 1.4, 2.5, 5.4, and 15.8% for acetaldehyde; 2.1, 5.4, 11.1, and 22.0% for acrolein+acetone; 0.8, 2.7, 4.6, and 10.0% for propionaldehyde; 3.3, 7.8, 16.0, and 26.0% for butyraldehyde.
Cecinato, Angelo; Yassaa, Noureddine; Di Palo, Vincenzo; Possanzin, Massimiliano
2002-04-01
Lower carbonyls and n-alkanals from C5 to C10 were measured from late autumn 2000 to summer 2001 in two urban areas in the Algerian territory: Algiers and Ouargla. They were collected on silica cartridges coated with dinitrophenylhydrazine (DNPH) and pentafluorophenylhydrazine (PFPH), which were analysed by HPLC-UV and high-resolution GC-MS. respectively. The two methods were used in parallel samplings in a suburban Algiers site and provided consistent results for semi-volatile congeners, as differences in the concentration data did not exceed 21% on average for individual carbonyl levels ranging from 0.0 to 0.5-2.6 microg m(-3). Concentrations of formaldehyde up to 27 and 5 microg m(-3) were monitored during 10 h samplings in the daytime in Algiers and Ouargla, respectively; acetaldehyde reached values of 13 and 5 microg m(-3), whilst acetone was the most abundant ketone with peak levels of 14 and 4 microg m(-3), respectively. High night-time levels of lower carbonyls were also measured at both locations. Among the semi-volatile alkanals, the highest levels were observed in suburban Algiers for hexanal and nonanal (2.2 microg m(-3)) and in downtown Algiers for valeraldehyde (2.6 microg m(-3)), whilst in Ouargla only hexanal and nonanal levels within the C5-C10 fraction exceeded 1 microg m(-3). Moreover, benzaldehyde concentrations as high as 5 microg m(-3) were measured in the centre of Algiers. Algiers data are comparable with those found in photochemically polluted urban areas of Europe and the USA. Strong correlations between formaldehyde and acetaldehyde and between formaldehyde and benzaldehyde were observed; by contrast, acetone did not show any correlation with the lower aldehydes, suggesting the existence of carbonyl sources other than vehicular traffic. Diurnal variations of almost all carbonyls suggested that motor vehicles were the most important source in the winter, whereas photochemical production appeared to predominate during the summer.
Kuś, Piotr M; Jerković, Igor; Marijanović, Zvonimir; Tuberoso, Carlo I G
2017-09-01
GC/MS of headspace solid phase micro extraction (HS-SPME) and solvent extractives along with targeted HPLC-DAD of Polish fir (Abies alba Mill.) honeydew honey (FHH), were used to determine the chemical profiles and potential markers of botanical origin. Additionally, typical physical-chemical parameters were also assigned. The values determined for FHH were: conductivity (1.2 mS/cm), water content (16.7 g/100 g), pH (4.5), and CIE chromaticity coordinates (L* = 48.4, a* = 20.6, b* = 69.7, C* = 72.9, and h° = 73.5). FHH contained moderate-high total phenolic content (533.2 mg GAE/kg) and antioxidant activity (1.1 mmol TEAC/kg) and (3.2 mmol Fe 2+ /kg) in DPPH and FRAP assays. The chemical profiles were dominated by source plant-originated benzene derivatives: 3,4-dihydroxybenzoic acid (up to 8.7 mg/kg, HPLC/honey solution), methyl syringate (up to 14.5%, GC/solvent extracts) or benzaldehyde (up to 43.7%, GC/headspace). Other markers were terpenes including norisoprenoid (4-hydroxy-3,5,6-trimethyl-4-(3-oxobut-1-enyl)cyclohex-2-en-1-one, up to 20.3%, GC/solvent extracts) and monoterpenes, mainly linalool derivatives (up to 49%, GC/headspace) as well as borneol (up to 5.9%, GC/headspace). The application of various techniques allowed comprehensive characterisation of FHH. 4-Hydroxy-3,5,6-trimethyl-4-(3-oxobut-1-enyl)cyclohex-2-en-1-one, coniferyl alcohol, borneol, and benzaldehyde were first time proposed for FHH screening. Protocatechuic acid may be a potential marker of FFH regardless of the geographical origin. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baitao, E-mail: btli@scut.edu.cn; Zhu, Yanrun; Jin, Xiaojing
2015-01-15
Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was moremore » beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.« less
Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan; Wang, Zhao
2014-04-01
A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg(-1) for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg(-1) using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP(+), suggesting the nature of being an aldehyde reductase.
Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan
2014-01-01
A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923
Gómez-Saiz, Patricia; García-Tojal, Javier; Maestro, Miguel A; Arnaiz, Francisco J; Rojo, Teófilo
2002-03-25
The addition of pyridine-2-carbaldehyde 4N-methylthiosemicarbazone (C8H10N4S) to an aqueous solution of copper(II) nitrate yields [[Cu(C8H9N4S)(NO3)]2] (1). This complex consists of centrosymmetric dinuclear entities containing square-pyramidal copper(II) ions bridged through the sulfur thioamide atoms. The oxidation of 1 with KBrO3 or KIO3 gives rise to a compound with formula [[Cu(C8H8N4O)(H2O)2(SO4)]2]*2H2O (2) (C8H8N4O = 2-methylamino-5-pyridin-2-yl-1,3,4-oxadiazole). The structure of 2 is made up of centrosymmetric dimers where the copper(II) ions exhibit a distorted octahedral coordination and are connected by the oxadiazole moiety. The metal ions in 2 can be removed by addition of K4[Fe(CN)6], and then the oxadiazole ligand can be isolated and recrystallized as (C8H8N4O)*3H2O (3).
Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species?
Levina, Aviva; Lay, Peter A
2017-07-18
Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H 2 VO 4 - ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to V V and/or V IV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
El-Shahawi, M S; Al-Jahdali, M S; Bashammakh, A S; Al-Sibaai, A A; Nassef, H M
2013-09-01
The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru(3+), Rh(3+), Pd(2+), Ni(2+) and Cu(2+) were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M(2+)/M(3+) and M(3+)/M(4+) (M=Ru(3+), Rh(3+)) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Ionuţ, Ioana; Vodnar, Dan Cristian; Oniga, Ilioara; Oniga, Ovidiu; Tiperciuc, Brînduşa; Tamaian, Radu
2016-01-01
Various thiosemicarbazones (TSCs) and their heterocyclic thiadiazolines (TDZ) possess important biological effects. In addition, chromenyl derivatives exhibit a wide range of pharmacological activities. Based on these findings and as a continuation of our research on nitrogen and sulfur containing compounds, we investigated a series of previously reported chromenyl-TSCs (1a-j) and chromenyl-TDZs (2a-j) for their in vitro antimicrobial activities against two bacterial and four fungal strains. MIC and MBC/MFC (µg/mL) values of these compounds were evaluated and compared to those of Spectinomycin, Moxifloxacin and Fluconazole, used as reference drugs. For a better understanding of the drug-receptor interactions, all the compounds were further subjected to molecular docking against four targets that were chosen based on the specific mechanism of action of the reference drugs used in the antimicrobial screening. All compounds tested showed equal or higher antibacterial/antifungal activities relative to the used reference drugs. In silico studies (molecular docking) revealed that all the investigated compounds showed good binding energies towards four receptor protein targets and supported their antimicrobial properties.
He, Dian; Li, Chong; Wang, Xiaohong
2011-01-01
The title compound, C35H35NO2·CH4O, was obtained by the reaction of rac-2-amino-2-hydroxy-1,1-binaphthyl and 3,5-di-tert-butyl-2-hydroxybenzaldehyde in absolute methanol. In the Schiff base molecule, the two naphthyl bicycles are twisted by 71.15 (5)°. One hydroxy group is involved in intramolecular O—H⋯N hydrogen bond, while the methanol solvent molecule is linked to another hydroxy group via an intermolecular O—H⋯O hydrogen bond. PMID:22219946
Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A
2017-02-01
Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC 50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay. Published by Elsevier Ltd.
Hagu, Hannes; Salmar, Siim; Tuulmets, Ants
2007-04-01
Kinetics of the benzoin condensation of benzaldehyde in presence of KCN as the catalyst in water and in ethanol-water binary solutions were investigated without sonication and under ultrasound at 22 kHz. A statistically significant 20% decrease of the rate was observed in water. The retardation effect of ultrasound gradually decreases up to 45 wt% ethanol content. We report an evidence of ultrasonic retardation of reactions and thereby a direct evidence for sonochemical processes in the bulk solution. Ultrasound can disturb solvation of the species in the solution. If breaking down the stabilization of the encounter complexes between the reagents, sonication hinders the reaction while perturbation of the solvent-stabilization of the reagents accelerates the reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Stephen G.; Hoskins, Nicola; Xu Feng
Four (CYP195A2, CYP199A2, CYP203A1, and CYP153A5) of the seven P450 enzymes, and palustrisredoxin A, a ferredoxin associated with CYP199A2, from the metabolically diverse bacterium Rhodopseudomonas palustris have been expressed and purified. A range of substituted benzenes, phenols, benzaldehydes, and benzoic acids was shown to bind to the four P450 enzymes. Monooxygenase activity of CYP199A2 was reconstituted with palustrisredoxin A and putidaredoxin reductase of the P450cam system from Pseudomonas putida. We found that 4-ethylbenzoate and 4-methoxybenzoate were oxidized to single products, and 4-methoxybenzoate was demethylated to form 4-hydroxybenzoate. Crystals of substrate-free CYP199A2 which diffracted to {approx}2.0 A have been obtained.
Synthesis of new chalcone derivatives and their antimicrobial studies
NASA Astrophysics Data System (ADS)
Noorulhaq, Syed Shah Najib; Baseer, Mohammad Abdul
2017-11-01
Chalcones are the significant constituent of natural sources. Chalcones posses 1,3-diaryl-1-ones frame which withdraws the recognition of biological importance. Chalcones are not possible to separate from plants because it is transformed into flavonones due to the presence of enzyme chalcone synthetase. Chalcones are prepared by the Claisen-Schimdt condensation of equimolar ratios of aldehyde and ketone in presence of base. With this vision we accounted here the synthesis of some novel chalcones via Clasien-Schimdt condensation of substituted ketones containing hydroxy, chloro, fluoro groups and 4-(4-Methyl-piperazin-1-yl)-benzaldehyde in presence of alkali at room temperature. These recently synthesized γ, β unsaturated compounds that is chalcones were screened for their antimicrobial studies which show modest to good activity.
Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.
Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G
2018-02-14
This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.
NASA Astrophysics Data System (ADS)
Paul, Luna; Banerjee, Biplab; Bhaumik, Asim; Ali, Mahammad
2016-05-01
A new oxime-imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH2-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO4)2 to yield the functionalized nickel catalyst SBA-15-NH2-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH2-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant.
NASA Astrophysics Data System (ADS)
Tadavi, Samina K.; Yadav, Abhijit A.; Bendre, Ratnamala S.
2018-01-01
A novel schiff base H2L derived from simple condensation of 2-hydroxy-6-isopropyl-3-methyl benzaldehyde and 1,2-diaminopropane in 2:1 M ratio and its [MnL], [CoL] and [NiL]2 complexes have been prepared and characterized by spectroscopic technique, elemental analysis, SEM-EDX analysis, and cyclic voltammetry. Additionally, single crystal X-ray diffraction technique has been applied to the schiff base ligand H2L and its nickel complex. The structure of nickel complex exhibited dimeric form with formula [NiL]2 with distorted square planar geometry around each nickel center. Furthermore, all the synthesized compounds were screened for their antimicrobial and antioxidant and DNA cleavage activities.
Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka
2015-11-02
Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-01-01
Recent US legislation permitting recreational use of marijuana in certain states brings the use of marijuana odor as probable cause for search and seizure to the forefront of forensic science, once again. This study showed the use of solid-phase microextraction with multidimensional gas chromatography—mass spectrometry and simultaneous human olfaction to characterize the total aroma of marijuana. The application of odor activity analysis offers an explanation as to why high volatile chemical concentration does not equate to most potent odor impact of a certain compound. This suggests that more attention should be focused on highly odorous compounds typically present in low concentrations, such as nonanal, decanol, o-cymene, benzaldehyde, which have more potent odor impact than previously reported marijuana headspace volatiles. PMID:26657499
NASA Astrophysics Data System (ADS)
Habibi, Davood; Faraji, Ali Reza
2013-07-01
The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.
Flavonoids and other constituents from Aletris spicata and their chemotaxonomic significance.
Li, Lin-Zhen; Wang, Meng-Hua; Sun, Jian-Bo; Liang, Jing-Yu
2014-01-01
Eleven compounds, including four flavonoids [(2R,3R)-2,3-dihydro-3,5-dihydroxy-7,4'-dimethoxyflavone (1), 5-hydroxy-7,8,4'-trimethoxy-flavone (2), amentoflavone (10) and apigenin (11)], two penylpropanoids [sinapaldehyde (3) and 3-methoxy-4-hydroxy-cinnamic aldehyde (4)], three phenolic acids [4-hydroxyl-3,5-dimethoxy-benzaldehyde (5), 4-hydroxyacetophen-one (6) and p-hydroxybenzaldehyde (7)], one furan derivative [5-hydroxymethyl furfural (8)] and one steroid saponin [β-sitosterol-3-O-β-d-glucoside (9)], were isolated and identified from Aletris spicata. Among them, compounds 1-7, 9 and 10 were reported from the genus Aletris for the first time. Furthermore, seven of them (1-6, 10) were obtained from the family Liliaceae for the first time. Chemotaxonomy of the isolated compounds is discussed briefly.
Myoglobin-Catalyzed Olefination of Aldehydes.
Tyagi, Vikas; Fasan, Rudi
2016-02-12
The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kalaiarasi, G.; Rex Jeya Rajkumar, S.; Aswini, G.; Dharani, S.; Fronczek, Frank R.; Prabhakaran, R.
2018-07-01
A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.
Targeting cancer by binding iron: Dissecting cellular signaling pathways
Lui, Goldie Y.L.; Kovacevic, Zaklina; Richardson, Vera; Merlot, Angelica M.; Kalinowski, Danuta S.; Richardson, Des R.
2015-01-01
Newer and more potent therapies are urgently needed to effectively treat advanced cancers that have developed resistance and metastasized. One such strategy is to target cancer cell iron metabolism, which is altered compared to normal cells and may facilitate their rapid proliferation. This is supported by studies reporting the anti-neoplastic activities of the clinically available iron chelators, desferrioxamine and deferasirox. More recently, ligands of the di-2-pyridylketone thiosemicarbazone (DpT) class have demonstrated potent and selective anti-proliferative activity across multiple cancer-types in vivo, fueling studies aimed at dissecting their molecular mechanisms of action. In the past five years alone, significant advances have been made in understanding how chelators not only modulate cellular iron metabolism, but also multiple signaling pathways implicated in tumor progression and metastasis. Herein, we discuss recent research on the targeting of iron in cancer cells, with a focus on the novel and potent DpT ligands. Several key studies have revealed that iron chelation can target the AKT, ERK, JNK, p38, STAT3, TGF-β, Wnt and autophagic pathways to subsequently inhibit cellular proliferation, the epithelial-mesenchymal transition (EMT) and metastasis. These developments emphasize that these novel therapies could be utilized clinically to effectively target cancer. PMID:26125440
Dawood, Dina H; Batran, Rasha Z; Farghaly, Thoraya A; Khedr, Mohammed A; Abdulla, Mohamed M
2015-12-01
Two new series of coumarin derivatives incorporating thiazoline and thiazolidinone moieties were designed, synthesized, and investigated in vivo for their anti-inflammatory activities using the carrageenan-induced rat paw edema model and in vitro for their inhibitory activities against the human cyclooxygenase (COX)-1 and COX-2 isoforms. Most of the synthesized compounds demonstrated exceptionally high in vivo anti-inflammatory activity and displayed superior GI safety profiles (0-7% ulceration) as compared to indomethacin. All the bioactive compounds showed in vitro high affinity and selectivity toward the COX-2 isoenzyme, compared to the reference celecoxib with IC50 values ranging from 0.31 to 0.78 μM. The ethyl thiosemicarbazone 2b, thiazoline derivatives 3a, 3b, 5b, 6a, and 7f, and the thiazolidinone compounds 8b and 9a showed the highest in vivo and in vitro anti-inflammatory activities with remarkable COX-2 selectivity. Quantitative structure-activity relationship study (QSAR) was done and resulted in a highly predictive power R(2) (0.908). A molecular docking study revealed a relationship between the docking affinity and the biological results. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kapoor, Vidushi; Rai, Rajanikant; Thiyagarajan, Durairaj; Mukherjee, Sandipan; Das, Gopal; Ramesh, Aiyagari
2017-08-04
Zinc-complexing ligands are prospective anti-biofilm agents because of the pivotal role of zinc in the formation of Staphylococcus aureus biofilm. Accordingly, the potential of a thiosemicarbazone (compound C1) and a benzothiazole-based ligand (compound C4) in the prevention of S. aureus biofilm formation was assessed. Compound C1 displayed a bimodal activity, hindering biofilm formation only at low concentrations and promoting biofilm growth at higher concentrations. In the case of C4, a dose-dependent inhibition of S. aureus biofilm growth was observed. Atomic force microscopy analysis suggested that at higher concentrations C1 formed globular aggregates, which perhaps formed a substratum that favored adhesion of cells and biofilm formation. In the case of C4, zinc supplementation experiments validated zinc complexation as a plausible mechanism of inhibition of S. aureus biofilm. Interestingly, C4 was nontoxic to cultured HeLa cells and thus has promise as a therapeutic anti-biofilm agent. The essential understanding of the structure-driven implications of zinc-complexing ligands acquired in this study might assist future screening regimes for identification of potent anti-biofilm agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.
Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less
Surface chemistry of aromatic reactants on Pt- and Mo-modified Pt catalysts
Robinson, Allison M.; Mark, Lesli; Rasmussen, Mathew J.; ...
2016-11-01
Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmedmore » desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic-surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Altogether, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic-surface interaction is correlated with an improvement in selectivity to C-O bond scission.« less
In vitro assessment of the role of DpC in the treatment of head and neck squamous cell carcinoma.
Xu, Ye-Xing; Zeng, Man-Li; Yu, Di; Ren, Jie; Li, Fen; Zheng, Anyuan; Wang, Yong-Ping; Chen, Chen; Tao, Ze-Zhang
2018-05-01
The present study aimed to investigate the antitumor efficacy of di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) on head and neck squamous cell carcinoma (HNSCC) cells. The proliferation and apoptosis of HNSCC cells treated with the iron chelators DpC and Dp44mT were detected. The mechanism of DpC-induced apoptosis on HNSCC cells was investigated. The human HNSCC cell lines FaDu, Cal-27 and SCC-9 were cultured in vitro and exposed to gradient concentrations of DpC and Dp44mT. A Cell Counting Kit-8 assay was used to detect the viability of FaDu, Cal-27, SCC-9 cells. Double staining with annexin V and propidium iodide was performed for the detection of the proportion of apoptotic FaDu, Cal-27 and SCC-9 cells following treatment. The nuclear damage to Cal-27 cells that were treated with DpC was detected by Hoechst staining. Finally, western blot analysis was used to detect the expression of proteins associated with the DNA damage pathway in Cal-27 cells that were treated with DpC. The CCK-8 assay showed that treatment with DpC and Dp44mT was able to markedly inhibit the viability of FaDu, Cal-27 and SCC-9 cells in a concentration-dependent manner. In comparison to Dp44mT, treatment with DpC exhibited a more effective inhibitory effect on the viability of HNSCC cells. The proportion of apoptotic cells detected by flow cytometry increased in a dose-dependent manner in all cell lines following DpC and Dp44mT treatment, with the proportion of apoptotic HNSCC cells induced by DpC treatment being significantly higher compared with Dp44mT (P<0.05). The results of Hoechst staining revealed that the nuclei of Cal-27 cells exhibited morphological changes in response to DpC treatment, including karyopyknosis and nuclear fragmentation. The expression of DNA damage-associated proteins, including phosphorylated (p)-serine-protein kinase ATM, p-serine/threonine-protein kinase Chk1 (p-Chk-1), p-serine/threonine-protein kinase ATR (p-ATR), p-Chk-2, poly (ADP-ribose) polymerase, p-histone H2AX, breast cancer type 1 susceptibility protein, p-tumor protein P53, increased with increasing concentration of DpC in Cal-27 cells. Treatment with DpC and Dp44mT markedly inhibited cell viability and increased the apoptotic rates in human HNSCC cells in a concentration-dependent manner. DpC exhibited a stronger antitumor effect compared with Dp44mT, potentially inducing the apoptosis of HNSCC cells via the upregulation of DNA damage repair-associated proteins.
Ethyl 4-anilino-2,6-bis(4-chlorophenyl)-1-phenyl-1,2,5,6-tetrahydropyridine-3-carboxylate
Yu, Jianfeng; Tang, Shiming; Zeng, Jingbin; Yan, Zifeng
2013-01-01
The title compound, C32H28Cl2N2O2, was synthesized by a multicomponent reaction of 4-chlorobenzaldehyde, aniline and ethyl acetoacetate. The central 1,2,5,6-tetrahydropyridine ring exhibits a distorted boat conformation and the two chlorophenyl rings attached to the central ring at positions 2 and 6 are oriented in opposite directions. The two O atoms of the ethoxycarbonyl group are involved in intramolecular N—H⋯O and C—H⋯O hydrogen bonds. In the crystal, weak C—H⋯O hydrogen bonds link molecules related by translation along the b axis into chains. PMID:23795109
Burgess, Samantha A; Kassie, Abebu; Baranowski, Sarah A; Fritzsching, Keith J; Schmidt-Rohr, Klaus; Brown, Craig M; Wade, Casey R
2016-02-17
A porous metal-organic framework Zr6O4(OH)4(L-PdX)3 (1-X) has been constructed from Pd diphosphinite pincer complexes ([L-PdX](4-) = [(2,6-(OPAr2)2C6H3)PdX](4-), Ar = p-C6H4CO2(-), X = Cl, I). Reaction of 1-X with PhI(O2CCF3)2 facilitates I(-)/CF3CO2(-) ligand exchange to generate 1-TFA and I2 as a soluble byproduct. 1-TFA is an active and recyclable catalyst for transfer hydrogenation of benzaldehydes using formic acid as a hydrogen source. In contrast, the homogeneous analogue (t)Bu(L-PdTFA) is an ineffective catalyst owing to decomposition under the catalytic conditions, highlighting the beneficial effects of immobilization.
A pure inorganic 1D chain based on {Mo8O28} clusters and Mn(II) ions: [Mn(H2O)2Mo8O28 ] n 6 n -
NASA Astrophysics Data System (ADS)
Zhang, Xiaofen; Yan, Yonghong; Wu, Lizhou; Yu, Chengxin; Dong, Xinbo; Hu, Huaiming; Xue, Ganglin
2016-01-01
A new pure inorganic polymer, (NH4)6n[Mn(H2O)2Mo8O28)]n(H2O)2n(1), has been synthesized and characterized by elemental analyses, IR spectrum, UV-vis absorption spectra, TG-DSC and electrochemical studies. In 1, [Mo8O28]8- anions act as tetradentate ligands and are alternately linked by Mn(H2O)2 2 + ions into a one-dimensional chain structure. It is interesting that 1 represents the first example of pure inorganic-inorganic hybrid based on octamolybdate and transition metal ions. Moreover, it was indicated that 1 had definite catalytic activities on the probe reaction of benzyl alcohol oxidation to benzaldehyde with H2O2.
Nanoscale Assembly of Actuating Cilia-Mimetic
NASA Astrophysics Data System (ADS)
Baird, Lance; Breidenich, Jennifer; Land, Bruce; Hayes, Allen; Benkoski, Jason; Keng, Pei; Pyun, Jeffrey
2009-03-01
The cilium is among the smallest mechanical actuators found in nature. We have taken inspiration from this design to create magnetic nanochains, measuring approximately 1-5 μm long and 25 nm in diameter. Fabricated from the self-assembly of cobalt nanoparticles, these flexible filaments actuate in an oscillating magnetic field. The cobalt nanoparticles were functionalized with a polystyrene/benzaldehyde surface coating, thus allowing the particles to form imine bonds with one another in the presence of a diamine terminated polyethylene glycol. These imine bonds effectively cross-linked the particles and held the nanochains together in the absence of a magnetic field. Using design of experiments (DOE) to efficiently screen the effects of cobalt nanoparticle concentration, crosslinker concentration, and surface chemistry, we determined that the morphology of the final structures could be explained primarily by physical interactions (i.e. magnetic forces) rather than chemistry.
NASA Astrophysics Data System (ADS)
Kimi, Melody; Jaidie, Mohd Muazmil Hadi; Pang, Suh Cem
2018-01-01
A series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5 and 1) nanoparticles supported on activated carbon (AC) were prepared by deposition-precipitation method for the oxidation of benzyl alcohol to benzaldehyde using hydrogen peroxide as oxidising agent. Analyses by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) confirmed that Cu and Ni was successfully added on the surface of activated carbon. CuNi1/AC showed the best catalytic activity for the oxidation of benzyl alcohols to the corresponding aldehyde within a short reaction period at 80 °C. The catalytic performance is significantly enhanced by the addition of equal amount of Ni as compared to the monometallic counterpart. This result indicates the synergistic effect between Ni and Cu particles in the catalytic oxidation reaction.
Kang, Xinchen; Zhang, Jianling; Shang, Wenting; Wu, Tianbin; Zhang, Peng; Han, Buxing; Wu, Zhonghua; Mo, Guang; Xing, Xueqing
2014-03-12
Stable porous ionic liquid-water gel induced by inorganic salts was created for the first time. The porous gel was used to develop a one-step method to synthesize supported metal nanocatalysts. Au/SiO2, Ru/SiO2, Pd/Cu(2-pymo)2 metal-organic framework (Cu-MOF), and Au/polyacrylamide (PAM) were synthesized, in which the supports had hierarchical meso- and macropores, the size of the metal nanocatalysts could be very small (<1 nm), and the size distribution was very narrow even when the metal loading amount was as high as 8 wt %. The catalysts were extremely active, selective, and stable for oxidative esterification of benzyl alcohol to methyl benzoate, benzene hydrogenation to cyclohexane, and oxidation of benzyl alcohol to benzaldehyde because they combined the advantages of the nanocatalysts of small size and hierarchical porosity of the supports. In addition, this method is very simple.
Keil, Richard; Salemme, Keri; Forrest, Brittany; Neibauer, Jaqui; Logsdon, Miles
2011-11-01
Organic compounds were evaluated in March 2010 at 22 stations in Barkley Sound, Vancouver Island Canada and at 66 locations in Puget Sound. Of 37 compounds, 15 were xenobiotics, 8 were determined to have an anthropogenic imprint over natural sources, and 13 were presumed to be of natural or mixed origin. The three most frequently detected compounds were salicyclic acid, vanillin and thymol. The three most abundant compounds were diethylhexyl phthalate (DEHP), ethyl vanillin and benzaldehyde (∼600 n g L(-1) on average). Concentrations of xenobiotics were 10-100 times higher in Puget Sound relative to Barkley Sound. Three compound couplets are used to illustrate the influence of human activity on marine waters; vanillin and ethyl vanillin, salicylic acid and acetylsalicylic acid, and cinnamaldehyde and cinnamic acid. Ratios indicate that anthropogenic activities are the predominant source of these chemicals in Puget Sound. Published by Elsevier Ltd.
Kim, Junheon; Seo, Sun-Mi; Lee, Sang-Gil; Shin, Sang-Chul; Park, Il-Kwon
2008-08-27
Commercial essential oils from 28 plant species were tested for their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. Good nematicidal activity against B. xylophilus was achieved with essential oils of coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii). Analysis by gas chromatography-mass spectrometry led to the identification of 26, 11, and 4 major compounds from coriander (Coriandrum sativum), Oriental sweetgum (Liquidambar orientalis), and valerian (Valeriana wallichii) oils, respectively. Compounds from each plant essential oil were tested individually for their nematicidal activities against the pine wood nematode. Among the compounds, benzaldehyde, trans-cinnamyl alcohol, cis-asarone, octanal, nonanal, decanal, trans-2-decenal, undecanal, dodecanal, decanol, and trans-2-decen-1-ol showed strong nematicidal activity. The essential oils described herein merit further study as potential nematicides against the pine wood nematode.
da Rocha, Renier Felinto Julião; da Silva Araújo, Ídila Maria; de Freitas, Sílvia Maria; Dos Santos Garruti, Deborah
2017-11-01
Optimization of the extraction conditions to investigate the volatile composition of papaya fruit involving headspace solid phase micro-extraction was carried out using multivariate strategies such as factorial design and response surface methodology. The performance of different combinations of time for reaching the equilibrium in the headspace and time for maximum extraction of volatiles was evaluated by GC-olfactometry of the extract (intensity of papaya characteristic aroma), number of peaks and total area in the chromatogram. Thirty-two compounds were identified by GC-MS under the optimized extraction conditions, the majority of which were aldehydes, both in number of compounds and area. Major compounds were δ-octalactone, β-citral, benzaldehyde, heptanal, benzyl isothiocyanate, isoamyl acetate, γ-octalactone, (E)-linalool oxide and benzyl alcohol. Seven aldehydes and two other compounds are reported for the first time in papaya's volatile profile.
Khachatryan, Lavrent; Xu, Meng-xia; Wu, Ang-jian; Pechagin, Mikhail; Asatryan, Rubik
2016-01-01
The experimental results on detection and identification of intermediate radicals and molecular products from gas-phase pyrolysis of cinnamyl alcohol (CnA), the simplest non-phenolic lignin model compound, over the temperature range of 400–800 °C are reported. The low temperature matrix isolation – electron paramagnetic resonance (LTMI-EPR) experiments along with the theoretical calculations, provided evidences on the generation of the intermediate carbon and oxygen centered as well as oxygen-linked, conjugated radicals. A mechanistic analysis is performed based on density functional theory to explain formation of the major products from CnA pyrolysis; cinnamaldehyde, indene, styrene, benzaldehyde, 1-propynyl benzene, and 2-propenyl benzene. The evaluated bond dissociation patterns and unimolecular decomposition pathways involve dehydrogenation, dehydration, 1,3-sigmatropic H-migration, 1,2-hydrogen shift, C—O and C—C bond cleavage processes. PMID:28344372
Xu, Liang; Liu, Haiping; Ma, Yucui; Wu, Cui; Li, Ruiqi; Chao, Zhimao
2018-06-13
The differences of volatile components in male (MFB) and female flower buds (FFB) of Populus × tomentosa were analysed and compared by HS-SPME with GC-MS for the first time. A total of 34 compounds were identified. Two clusters were clearly divided into male and female by hierarchical clustering analysis. Both the male and female flower buds showed methyl salicylate (22.83 and 24.09%, respectively) and 2-hydroxy-benzaldehyde (10.05 and 12.41%, respectively) as the main volatile constituents. The content of 2-cyclohexen-1-one, benzyl benzoate, and methyl benzoate in FFB was remarkably higher than in MFB. In contrast, the content of ethyl benzoate in MFB was greater than that in FFB. The phenomena showed the characteristic differences between MFB and FFB of P. × tomentosa, which enriched the basic studies on dioecious plant.
Reductive alkylation of ribosomes as a probe to the topography of ribosomal proteins*
Moore, Graham; Crichton, Robert R.
1974-01-01
Escherichia coli ribosomes were treated with a number of different aldehydes of various sizes in the presence of NaBH4. After incorporation of either 3H or 14C, the ribosomal proteins were separated by two-dimensional polyacrylamide-gel electrophoresis and the extent of alkylation of the lysine residues in each protein was measured. The same pattern of alkylation was observed with the four reagents used, namely formaldehyde, acetone, benzaldehyde and 3,4,5-trimethoxybenzaldehyde. Every protein in 30S and 50S subunits was modified, although there was considerable variation in the degree of alkylation of individual proteins. A topographical classification of ribosomal proteins is presented, based on the degree of exposure of lysine residues. The data indicate that every protein of the ribosome has at least one lysine residue exposed at or near the surface of the ribonucleo-protein complex. PMID:4462744
Crystal structure of (E)-2-hy-droxy-4'-meth-oxy-aza-stilbene.
Chantrapromma, Suchada; Kaewmanee, Narissara; Boonnak, Nawong; Chantrapromma, Kan; Ghabbour, Hazem A; Fun, Hoong-Kun
2015-06-01
The title aza-stilbene derivative, C14H13NO2 {systematic name: (E)-2-[(4-meth-oxy-benzyl-idene)amino]-phenol}, is a product of the condensation reaction between 4-meth-oxy-benzaldehyde and 2-amino-phenol. The mol-ecule adopts an E conformation with respect to the azomethine C=N bond and is almost planar, the dihedral angle between the two substituted benzene rings being 3.29 (4)°. The meth-oxy group is coplanar with the benzene ring to which it is attached, the Cmeth-yl-O-C-C torsion angle being -1.14 (12)°. There is an intra-molecular O-H⋯N hydrogen bond generating an S(5) ring motif. In the crystal, mol-ecules are linked via C-H⋯O hydrogen bonds, forming zigzag chains along [10-1]. The chains are linked via C-H⋯π inter-actions, forming a three-dimensional structure.
NASA Astrophysics Data System (ADS)
Vennila, P.; Govindaraju, M.; Venkatesh, G.; Kamal, C.
2016-05-01
Fourier transform - Infra red (FT-IR) and Fourier transform - Raman (FT-Raman) spectroscopic techniques have been carried out to analyze O-methoxy benzaldehyde (OMB) molecule. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT). The vibrational analysis of stable isomer of OMB has been carried out by FT-IR and FT-Raman in combination with theoretical method simultaneously. The first-order hyperpolarizability and the anisotropy polarizability invariant were computed by DFT method. The atomic charges, hardness, softness, ionization potential, electronegativity, HOMO-LUMO energies, and electrophilicity index have been calculated. The 13C and 1H Nuclear magnetic resonance (NMR) have also been obtained by GIAO method. Molecular electronic potential (MEP) has been calculated by the DFT calculation method. Electronic excitation energies, oscillator strength and excited states characteristics were computed by the closed-shell singlet calculation method.
Gao, Xingwen; Cai, Xuejian; Yan, Kai; Song, Baoan; Gao, Lili; Chen, Zhuo
2007-12-27
A simple and general method has been developed for the synthesis of various4(3H)-quinazolinone derivatives by the treatment of the appropriate 3-amino-2-aryl-4(3H)-quinazolinone with a substituted benzaldehyde in ethanol. The structures of the compoundswere characterized by elemental analysis, IR, (1)H-NMR and (13)C-NMR spectra. The title 2-aryl- or 2-methyl-3-(substituted-benzalamino)-4(3H)-quinazolinone compounds III-1~III-31 were found to possess moderate to good antiviral activity. Semi-quantitative PCR andReal Time PCR assays were used to ascertain the target of action of compound III-31against TMV. The studies suggest that III-31 possesses antiviral activity due to inductionof up-regulation of PR-1a and PR-5, thereby inhibiting virus proliferation and movementby enhancement of the activity of some defensive enzyme.
NASA Astrophysics Data System (ADS)
Ghasemian, Motaleb; Kakanejadifard, Ali; Karami, Tahereh
2016-11-01
The azo-azomethine dyes with a different substitution have been designed from the reaction of 4,4‧-diaminodiphenyl sulfone with 2-hydroxy-5-(aryldiazenyl)benzaldehyde. The compounds have been characterized by elemental analysis, Mass, IR, UV-Vis, TGA-DTA and NMR spectroscopy. The solvatochromism behaviors, effects of substitution and pH on the electronic absorption spectra of dyes were evaluated. The in vitro antimicrobial activities were also screened for their potential for antibiotic activities by broth micro dilution method. Also, the optimum molecular geometries, molecular electrostatic potential (MEP), nucleus-independent chemical shift (NICS) and frontier molecular orbitals (FMO), vibrational spectra (IR) and electronic absorption (UV-Vis) spectra of the title compounds have been investigated with the help of DFT and TDDFT methods with 6-311 ++G(d,p) basis sets and PCM calculations. The results of the calculations show excellent agreement with the experimental value.
Hashim, Nur Athirah; Ahmad, Farediah; Basar, Norazah; Awang, Khalijah; Ng, Seik Weng
2011-09-01
The reaction of 5,6-(2,2-dimethyl-chroman-yl)-2-hy-droxy-4-meth-oxy-acetophenone and 3,4-bis-(meth-oxy-meth-yloxy)benzaldehyde affords the intense orange title chalcone derivative, C(25)H(30)O(8). The two benzene rings are connected through a -C(=O)-CH=CH- (propenone) unit, which is in an E conformation; the ring with the hy-droxy substitutent is aligned at 19.5 (2)° with respect to this unit, whereas the ring with the meth-oxy-meth-yloxy substituent is aligned at 9.3 (3)°. The dihedral angle between the rings is 19.38 (10)°. The hy-droxy group engages in an intra-molecular O-H⋯O hydrogen bond with the carbonyl O atom of the propenone unit, generating an S(5) ring.
Characterization of oxidized coal surfaces: Quarterly report, January 1987-April 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hercules, D.M.
1987-04-01
The work has focused on exploration of ambient temperature in-situ derivatization of aldehydes and ketones on carbon surfaces. 2,4-Dinitrophenylhydrazine, bisulfite, -ylium dichloro-iodate, and iminium perchlorate derivatizations were performed on a set of model aldehydes and ketones. Positive and negative ion laser mass spectra (LMS) of the 2,4-dinitrophenylhydrazine derivatives were obtained on zinic which is a common metal support used for LMS analysis. Although positive ion spectra were informative, negative ion spectra were more satisfactory as most compounds yielded molecular ion species in negative ion analysis. Spectra of selected preformed derivatives placed on charcoal and of benzaldehyde derivatized on charcoal weremore » also obtained. Molecular ion species that can be distinguished readily from carbon background ions were observed. Thus, the results established that in-situ derivatization followed by analysis is indeed possible. 3 refs., 8 figs.« less
Role of laccase from Coriolus versicolor MTCC-138 in selective oxidation of aromatic methyl group.
Chaurasia, Pankaj Kumar; Singh, Sunil Kumar; Bharati, Shashi Lata
2014-01-01
Now a day, laccases are the most promising enzymes in the area of biotechnology and synthesis. One of the best applications of laccases is the selective oxidation of aromatic methyl group to aldehyde group. Such transformations are valuable because it is difficult to stop the reaction at aldehyde stage. Chemical methods used for such biotransformations areexpensive and give poor yields. But, the laccase-catalyzed biotransformations of such type are non-expensive and yield is excellent. Authors have used crude laccase obtained from the liquid culture growth medium of fungal strain Coriolus versicolor MTCC-138 for the biotransformations of toluene, 3-nitrotoluene, and 4-chlorotoluene to benzaldehyde, 3-nitrobenzaldehyde, and 4-chlorobenzaldehyde, respectively, instead of purified laccase because purification process requires much time and cost. This communication reports that crude laccase can also be used in the place of purified laccase as effective biocatalyst.
Design, synthesis, and spectroscopic study of some new flavones containing two azo linkages
NASA Astrophysics Data System (ADS)
Ayoob, Mzgin Mohammed; Hawaiz, Farouq Emam
2017-09-01
In the present study; 5-(4-chlorophenyl azo) -2-hydroxy acetophenone (1) was prepared by diazotization of 4-chloro aniline and its coupling reaction with 2-hydroxy acetophenone, then reacted with different azo benzyloxy benzaldehydes(3a-i) to give new synthesized 2-hydroxy chalcones(4a-i). The later compounds were subjected to oxidative cyclization by catalytic amount of I2 in DMSO affording the target molecules new flavones bearing two azo-linkages (5a-i). The structures of the newly synthesized compounds were identified on the bases of their FT-IR, 1H-NMR, 13C-NMR and DEPT-135 spectra. The synthesized Flavone derivatives were evaluated against two types of bacteria gram positive (Staphylococcus aurous) and gram negative (Pseudomonas aeruginosa). The results showed that most of the synthesized flavones are more sensitive against (G -ve) bacteria than (G +ve) bacteria.
Synthesis, crystal growth and studies on non-linear optical property of new chalcones
NASA Astrophysics Data System (ADS)
Sarojini, B. K.; Narayana, B.; Ashalatha, B. V.; Indira, J.; Lobo, K. G.
2006-09-01
The synthesis, crystal growth and non-linear optical (NLO) property of new chalcone derivatives are reported. 4-Propyloxy and 4-butoxy benzaldehydes were made to under go Claisen-Schmidt condensation with 4-methoxy, 4-nitro and 4-phenoxy acetophenones to form corresponding chalcones. The newly synthesized compounds were characterized by analytical and spectral data. The Second harmonic generation (SHG) efficiency of these compounds was measured by powder technique using Nd:YAG laser. Among tested compounds three chalcones showed NLO property. The chalcone 1-(4-methoxyphenyl)-3-(4-propyloxy phenyl)-2-propen-1-one exhibited SHG conversion efficiency 2.7 times that of urea. The bulk crystal of 1-(4-methoxyphenyl)-3-(4-butoxyphenyl)-2-propen-1-one (crystal size 65×28×15 mm 3) was grown by slow-evaporation technique from acetone. Microhardness of the crystal was tested by Vicker's microhardness method.
Pollen diversity and volatile variability of honey from Corsican Anthyllis hermanniae L. habitat.
Yang, Yin; Battesti, Marie-José; Paolini, Julien; Costa, Jean
2014-12-01
Melissopalynological, physicochemical, and volatile analyses of 29 samples of Corsican 'summer maquis' honey were performed. The pollen spectrum was characterized by a wide diversity of nectariferous and/or polleniferous taxa. The most important were Anthyllis hermanniae and Rubus sp., associated with some endemic taxa. Castanea sativa was also determined in these honeys with a great variation. The volatile fraction was characterized by 37 compounds and dominated by phenolic aldehydes and linear acids. The major compounds were phenylacetaldehyde, benzaldehyde, and nonanoic acid. Statistical analysis of pollen and volatile data showed that 18 samples were characterized by a high abundance of phenylacetaldehyde, which might relate to the high amount of A. hermanniae and Rubus sp. Eleven other samples displayed a higher proportion of phenolic ketones and linear acids, which characterized the nectar contribution of C. sativa and Thymus herba-barona, respectively. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbon-Supported Palladium Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savara, Aditya; Rossetti, Ilenia; Chan-Thaw, Carine E.
Six products are formed from benzyl alcohol oxidation over Pd nanoparticles using O2 as the oxidant: benzaldehyde, toluene, benzyl ether, benzene, benzoic acid, and benzyl benzoate. Three experimental parameters were varied here: alcohol concentration, oxygen concentration, and temperature. Microkinetic modeling using a mechanism published recently with surface intermediates was able to produce all 18 trends observed experimentally with mostly quantitative agreement. Approximate analytical equations derived from the microkinetic model for isothermal conditions reproduced the isothermal trends and provided insight. The most important activation energies are Ea2=57.9 kJ mol₋1, Ea5=129 kJ mol₋1, and Ea6=175 kJ mol₋1, which correspond to alcohol dissociation,more » alkyl hydrogenation, and the reaction of alkyl species with alkoxy species. Upper limits for other activation energies were identified. The concepts of a sticking coefficient and steric factor in solution were applied.« less
Iridium-catalyzed Arene ortho-Silylation by Formal Hydroxyl-directed C-H Activation
Simmons, Eric M.; Hartwig, John F.
2010-01-01
A strategy for the ortho-silylation of aryl ketone, benzaldehyde and benzyl alcohol derivatives has been developed in which a hydroxyl group formally serves as the directing element for Ir-catalyzed arene C-H bond activation. One-pot generation of a (hydrido)silyl ether from the carbonyl compound or alcohol is followed by dehydrogenative cyclization at 80–100 °C in the presence of norbornene as hydrogen acceptor and the combination of 1 mol % [Ir(cod)OMe]2 and 1,10-phenanthroline as catalyst to form benzoxasiloles. The synthetic utility of the benzoxasilole products is demonstrated by conversion to phenol or biaryl derivatives by Tamao-Fleming oxidation or Hiyama cross-coupling. Both of these transformations of the C-H silylation products exploit the Si-O bond in the system and proceed by activation of the silyl moiety with hydroxide, rather than fluoride. PMID:21077625
The Variation of Catalyst and Carrier Gas on Anisole Deoxygenation Reaction
NASA Astrophysics Data System (ADS)
Ariyani, D.; Dwi Nugrahaningtyas, Khoirina; Heraldy, E.
2018-03-01
This research aims to determine the best catalyst and carrier gas in anisole deoxygenation reaction. The reaction was carried out over a flow system with a variation of catalyst CoMo A (CoMo/USY reduction), CoMo B (CoMo/USY oxidation-reduction), and CoMo C (CoMo/ZAA oxidation-reduction). In addition, variation of carrier gas nitrogen and hydrogen was investigated. The result was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). The deoxygenation anisole result showed that CoMo A catalyst with hydrogen as the carrier gas has the highest total product yield (50.72 %), intermediate product yield (38.49 % in phenol and 6.99 % in benzaldehyde), and deoxygenation yield (5.24 %). The CoMo C catalyst exhibited the most selective deoxygenation product. The nitrogen carrier gas with the CoMo C catalyst has the best selectivity of benzene product (93.92 %).
Senthilraja, Manavalan; Alagarsamy, Veerachamy
2012-10-01
A new series of 2-(4-dimethylaminophenyl)-3-substituted thiazolidin-4-one-5-yl-acetyl acetamides/benzamides were synthesized by the nucleophilic substitution of 3-substituted-2-(4-dimethylaminophenyl)-thiazolidin-4-one-5-yl-acetylchloride with acetamide and benzamide. The starting material 3-substituted-2-(4-dimethylaminophenyl)-thiazolidin-4-one-5-yl-acetylchloride was synthesized from 3-substituted-2-(4-dimethylaminophenyl)-thiazolidin-4-one-5-yl-acetic acid, which in turn was prepared by one-pot reaction of amino component, p-dimethylamino benzaldehyde and mercapto succinic acid. The title compounds were investigated for their anticonvulsant activities; among the test compounds, compound 2-(4-dimethylaminophenyl)-3-phenylamino-thiazolidine-4-one-5-yl-acetylbenzamide (14) emerged as the most active compound of the series and as moderately more potent than the reference standard diazepam. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural and biochemical analyses of YvgN and YtbE from Bacillus subtilis
Lei, Jian; Zhou, Yan-Feng; Li, Lan-Fen; Su, Xiao-Dong
2009-01-01
Bacillus subtilis is one of the most studied gram-positive bacteria. In this work, YvgN and YtbE from B. subtilis, assigned as AKR5G1 and AKR5G2 of aldo-keto reductase (AKR) superfamily. AKR catalyzes the NADPH-dependent reduction of aldehyde or aldose substrates to alcohols. YvgN and YtbE were studied by crystallographic and enzymatic analyses. The apo structures of these proteins were determined by molecular replacement, and the structure of holoenzyme YvgN with NADPH was also solved, revealing the conformational changes upon cofactor binding. Our biochemical data suggest both YvgN and YtbE have preferential specificity for derivatives of benzaldehyde, such as nitryl or halogen group substitution at the 2 or 4 positions. These proteins also showed broad catalytic activity on many standard substrates of AKR, such as glyoxal, dihydroxyacetone, and DL-glyceraldehyde, suggesting a possible role in bacterial detoxification. PMID:19585557
Microwave-assisted synthesis and anti-YFV activity of 2,3-diaryl-1,3-thiazolidin-4-ones.
Sriram, Dharmarajan; Yogeeswari, Perumal; Kumar, T G Ashok
2005-09-01
The purpose of this study was to prepare several 1,3-thaizolidin-4-ones bearing variously substituted diaryl ring at C-2 and N-3 positions and evaluate them for their anti-YFV activity. Several 1,3-thaizolidin-4-ones were prepared by reacting substituted benzaldehyde with equimolar amount of an appropriate substituted aromatic amine in the presence of an excess of mercaptoacetic acid in toluene utilizing microwave irradiation. The synthesized compounds were also evaluated for their inhibitory effects on the replication of YFV in green monkey kidney (Vero) cells (ATCC CCL81), by means of a cytopathic effect reduction assay. The compound DS1 emerged as the most potent anti-YFV agent with EC50 of 6.9 microM and CC50 more than 100 microM making it more potent than ribavirin. 2,3-diaryl-1,3-thiazolidin-4-ones possess anti-YFV potency.
Cooper, Christine J; Jones, Matthew D; Brayshaw, Simon K; Sonnex, Benjamin; Russell, Mark L; Mahon, Mary F; Allan, David R
2011-04-14
In this paper we report the synthesis and solid-state structures for a series of pyridine based Cu(II) complexes and preliminary data for the asymmetric Henry reaction. Interestingly, the solid-state structures indicate the incorporation of an alcohol into one of the imine groups of the ligand, forming a rare α-amino ether group. The complexes have been studied via single crystal X-ray diffraction, EPR spectroscopy and mass spectrometry. Intriguingly, it has been observed that the alcohol only adds to one of the imine moieties. Density functional theory (DFT) calculations have also been employed to rationalise the observed structures. The Cu(II) complexes have been tested in the asymmetric Henry reaction (benzaldehyde + nitromethane or nitroethane) with ee's up to 84% being achieved as well as high conversions and modest diastereoselectivities. © The Royal Society of Chemistry 2011
Chemical analysis applied to the radiation sterilization of solid ketoprofen
NASA Astrophysics Data System (ADS)
Colak, S.; Maquille, A.; Tilquin, B.
2006-01-01
The aim of this work is to investigate the feasibility of radiation sterilization of ketoprofen from a chemical point of view. Although irradiated ketoprofen has already been studied in the literature [Katusin-Razem et al., Radiat. Phys. Chem. 73 111-116 (2005)], new results, on the basis of electron spin resonance (ESR) measurements and the use of hyphenated techniques (GC-MS and LC-MS), are obtained. The ESR spectra of irradiated ketoprofen consists of four unresolved resonance peaks and the mean G-value of ketoprofen is found to be 4 +/- 0.9 nmoles/J, which is very small. HPLC-UV analyses indicate that no significant loss of ketoprofen is detected after irradiation. LC-MS-MS analyses show that the structures of the non-volatile final products are similar to ketoprofen. Benzaldehyde is detected in the irradiated samples after dynamic-extraction GC-MS. The analyses show that ketoprofen is radioresistant and therefore might be radiosterilized.
Manjulatha, Khanapur; Srinivas, S; Mulakayala, Naveen; Rambabu, D; Prabhakar, M; Arunasree, Kalle M; Alvala, Mallika; Basaveswara Rao, M V; Pal, Manojit
2012-10-01
An improved synthesis of functionalized aurones has been accomplished via the reaction of benzofuran-3(2H)-one with a range of benzaldehydes in the presence of a mild base EDDA under ultrasound. A number of aurones were synthesized (within 5-30min) and the molecular structure of a representative compound determined by single crystal X-ray diffraction study confirmed Z-geometry of the C-C double bond present within the molecule. Some of the compounds synthesized have shown SIRT1 inhibiting as well as anti proliferative properties against two cancer cell lines in vitro. Compound 3a [(Z)-2-(5-bromo-2-hydroxybenzylidene) benzofuran-3(2H)-one] was identified as a potent inhibitor of SIRT1 (IC(50)=1μM) which showed a dose dependent increase in the acetylation of p53 resulting in induction of apoptosis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tuulmets, Ants; Hagu, Hannes; Salmar, Siim; Cravotto, Giancarlo; Järv, Jaak
2007-03-29
The kinetics of KCN-catalyzed benzoin condensation of benzaldehyde in water and ethanol-water binary mixtures was investigated both under ultrasound at 22 kHz and without sonication. Thermodynamic activation parameters were calculated from kinetic data obtained at 35, 50, and 65 degrees C. Evidence that ultrasound can retard reactions is reported and hence a direct proof that sonochemical processes occur in the bulk solution. Former results and literature data for ester hydrolyses and tert-butyl chloride solvolysis are involved in the discussion. A quantitative relationship between sonication effects and the hydrophobicity of reagents is presented for the first time. Ultrasound affects hydrophobic interactions with the solvent, which are not manifested in conventional kinetics. When it suppresses the stabilization of the encounter complexes between reagents, sonication hinders the reaction but accelerates it when it perturbs the hydrophobic stabilization of the ground state of a reagent.
Odour intensity learning in fruit flies
Yarali, Ayse; Ehser, Sabrina; Hapil, Fatma Zehra; Huang, Ju; Gerber, Bertram
2009-01-01
Animals' behaviour towards odours depends on both odour quality and odour intensity. While neuronal coding of odour quality is fairly well studied, how odour intensity is treated by olfactory systems is less clear. Here we study odour intensity processing at the behavioural level, using the fruit fly Drosophila melanogaster. We trained flies by pairing a MEDIUM intensity of an odour with electric shock, and then, at a following test phase, measured flies' conditioned avoidance of either this previously trained MEDIUM intensity or a LOWer or a HIGHer intensity. With respect to 3-octanol, n-amylacetate and 4-methylcyclohexanol, we found that conditioned avoidance is strongest when training and test intensities match, speaking for intensity-specific memories. With respect to a fourth odour, benzaldehyde, on the other hand, we found no such intensity specificity. These results form the basis for further studies of odour intensity processing at the behavioural, neuronal and molecular level. PMID:19586944
Reaction Acceleration in Thin Films with Continuous Product Deposition for Organic Synthesis.
Wei, Zhenwei; Wleklinski, Michael; Ferreira, Christina; Cooks, R Graham
2017-08-01
Thin film formats are used to study the Claisen-Schmidt base-catalyzed condensation of 6-hydroxy-1-indanone with substituted benzaldehydes and to compare the reaction acceleration relative to the bulk. Relative acceleration factors initially exceeded 10 3 and were on the order of 10 2 at steady state, although the confined volume reaction was not electrostatically driven. Substituent effects were muted compared to those in the corresponding bulk and microdroplet reactions and it is concluded that the rate-limiting step at steady state is reagent transport to the interface. Conditions were found that allowed product deposition from the thin film to occur continuously as the reaction mixture was added and as the solvent evaporated. Yields of 74 % and production rates of 98 mg h -1 were reached in a very simple experimental system that could be multiplexed to greater scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbon-Supported Palladium Nanoparticles
Savara, Aditya; Rossetti, Ilenia; Chan-Thaw, Carine E.; ...
2016-07-14
Six products are formed from benzyl alcohol oxidation over Pd nanoparticles using O2 as the oxidant: benzaldehyde, toluene, benzyl ether, benzene, benzoic acid, and benzyl benzoate. Three experimental parameters were varied here: alcohol concentration, oxygen concentration, and temperature. Microkinetic modeling using a mechanism published recently with surface intermediates was able to produce all 18 trends observed experimentally with mostly quantitative agreement. Approximate analytical equations derived from the microkinetic model for isothermal conditions reproduced the isothermal trends and provided insight. The most important activation energies are Ea2=57.9 kJ mol₋1, Ea5=129 kJ mol₋1, and Ea6=175 kJ mol₋1, which correspond to alcohol dissociation,more » alkyl hydrogenation, and the reaction of alkyl species with alkoxy species. Upper limits for other activation energies were identified. The concepts of a sticking coefficient and steric factor in solution were applied.« less
Kraujalytė, Vilma; Leitner, Erich; Venskutonis, Petras Rimantas
2013-05-22
The profiles of volatile constituents of berry fruit of two Aronia melanocarpa genotypes were evaluated by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation and extraction (SDE), and gas chromatography-olfactometry (GC-O). In total, 74 volatile compounds were identified in chokeberry juice, 3-penten-2-one, 3,9-epoxy-p-menth-1-ene, and benzaldehyde being the most abundant constituents; however, their percentage concentrations were remarkably different in the HS-SPME and SDE profiles. Twenty two aroma-active compounds were detected and characterized by the trained panelists in HS-SPME using GC-O detection frequency analysis. Olfactometry revealed that ethyl-2-methyl butanoate, ethyl-3-methyl butanoate, ethyl decanoate ("fruity" aroma notes), nonanal ("green" notes), unidentified compound possessing "moldy" odor, and some other volatiles may be very important constituents in formation of chokeberry aroma of both analyzed plant cultivars.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika
2005-11-01
The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.
Salar, Uzma; Khan, Khalid Mohammed; Syed, Shazia; Taha, Muhammad; Ali, Farman; Ismail, Nor Hadiani; Perveen, Shahnaz; Wadood, Abdul; Ghufran, Mehreen
2017-02-01
Current research is based on the synthesis of novel (E)-4-aryl-2-(2-(pyren-1-ylmethylene)hydrazinyl)thiazole derivatives (3-15) by adopting two steps route. First step was the condensation between the pyrene-1-carbaldehyde (1) with the thiosemicarbazide to afford pyrene-1-thiosemicarbazone intermediate (2). While in second step, cyclization between the intermediate (2) and phenacyl bromide derivatives or 2-bromo ethyl acetate was carried out. Synthetic derivatives were structurally characterized by spectroscopic techniques such as EI-MS, 1 H NMR and 13 C NMR. Stereochemistry of the iminic double bond was confirmed by NOESY analysis. All pure compounds 2-15 were subjected for in vitro β-glucuronidase inhibitory activity. All molecules were exhibited excellent inhibition in the range of IC 50 =3.10±0.10-40.10±0.90μM and found to be even more potent than the standard d-saccharic acid 1,4-lactone (IC 50 =48.38±1.05μM). Molecular docking studies were carried out to verify the structure-activity relationship. A good correlation was perceived between the docking study and biological evaluation of active compounds. Copyright © 2016 Elsevier Inc. All rights reserved.
Jing, Xu; He, Cheng; Yang, Yang; Duan, Chunying
2015-03-25
The design of artificial systems that mimic highly evolved and finely tuned natural photosynthetic systems is a subject of intensive research. We report herein a new approach to constructing supramolecular systems for the photocatalytic generation of hydrogen from water by encapsulating an organic dye molecule into the pocket of a redox-active metal-organic polyhedron. The assembled neutral Co4L4 tetrahedron consists of four ligands and four cobalt ions that connect together in alternating fashion. The cobalt ions are coordinated by three thiosemicarbazone NS chelators and exhibit a redox potential suitable for electrochemical proton reduction. The close proximity between the redox site and the photosensitizer encapsulated in the pocket enables photoinduced electron transfer from the excited state of the photosensitizer to the cobalt-based catalytic sites via a powerful pseudo-intramolecular pathway. The modified supramolecular system exhibits TON values comparable to the highest values reported for related cobalt/fluorescein systems. Control experiments based on a smaller tetrahedral analogue of the vehicle with a filled pocket and a mononuclear compound resembling the cobalt corner of the tetrahedron suggest an enzymatic dynamics behavior. The new, well-elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems.
Ferroquine and its derivatives: new generation of antimalarial agents.
Wani, Waseem A; Jameel, Ehtesham; Baig, Umair; Mumtazuddin, Syed; Hun, Lee Ting
2015-08-28
Malaria has been teasing human populations from a long time. Presently, several classes of antimalarial drugs are available in market, but the issues of toxicity, lower efficacy and the resistance by malarial parasites have decreased their overall therapeutic indices. Thus, the search for new promising antimalarials continues, however, the battle against malaria is far from over. Ferroquine is a derivative of chloroquine with antimalarial properties. It is the most successful of the chloroquine derivatives. Not only ferroquine, but also its derivatives have shown promising potential as antimalarials of clinical interest. Presently, much research is dedicated to the development of ferroquine derivatives as safe alternatives to antimalarial chemotherapy. The present article describes the structural, chemical and biological features of ferroquine. Several classes of ferroquine derivatives including hydroxyferroquines, trioxaferroquines, chloroquine-bridged ferrocenophanes, thiosemicarbazone derivatives, ferrocene dual conjugates, 4-N-substituted derivatives, and others have been discussed. Besides, the mechanism of action of ferroquine has been discussed. A careful observation has been made into pharmacologically significant ferroquine derivatives with better or equal therapeutic effects to that of chloroquine and ferroquine. A brief discussion of the toxicities of ferroquine derivatives has been made. Finally, efforts have been made to discuss the current challenges and future perspectives of ferroquine-based antimalarial drug development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Bai, Jie; Wang, Rui-Hui; Qiao, Yan; Wang, Aidong; Fang, Chen-Jie
2017-01-01
Multidrug resistance (MDR) is a huge obstacle in cancer chemotherapeutics. Overcoming MDR is a great challenge for anticancer drug discovery. Here, DNA binding and cytotoxicity of Schiff base L1 and L2 were explored to assess their efficiency in fighting cancer and overcoming the MDR. L1 and L2 could treat extremely chemoresistant MCF-7/ADR cell as drug-sensitive cell, with drug resistance index (DRI) <2.13, showing high potential in overcoming the MDR. The apoptotic ratio induced by L1 and L2 was low for both MCF-7 and MCF-7/ADR cells. L1 and L2 induced an impairment of cell cycle progression of MCF-7 and MCF-7/ADR cell lines and suppressed cell growth by perturbing progress through the G0/G1 phase, with L2 causing more profound effect, which might account for lower drug resistance after L2 treatment. The molecular docking revealed weak interaction between L1/L2 and P-glycoprotein (P-gp), the most important drug efflux pump and intracellular Rhodamine 123 accumulation indicated that the activity of P-gp was not inhibited by L1 and L2. Combined with the cellular uptake results, it implied that L1 and L2 could bypass P-gp efflux to exert anticancer activity.
de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; Gomes da Silva, Lúcia Patrícia Bezerra; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Gois Ruiz, Ana Lucia Tasca; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra
2015-01-01
In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a–h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N-(4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233
Keramat, Akram; Zare-Dorabei, Rouholah
2017-09-01
In this work, the synthesis of the magnetic graphene oxide modified by 2-pyridinecarboxaldehyde thiosemicarbazone groups (Fe 3 O 4 @GO/2-PTSC) was utilized for preconcentration and determination of mercuric ions in a trace amount by inductively coupled plasma-optical emission spectrometry (ICP-OES). Characterization of the adsorbent was performed using various techniques, such as FT-IR, VSM, SEM and XRD analysis. Central composite design (CCD) under response surface methodology (RSM) was used for obtaining the most important parameters and probable interactions in variables. The variables such as adsorbent dosage, pH, desorption time, and eluent volume was optimized. These values were 8mg, 5.4min, 0.5mL (HCl, 0.1M), respectively. Sonication had an important role in shortening the adsorption time of Hg (II) ions by enhancing the dispersion of adsorbent in solution. Under the optimal conditions, the proposed method presented high enrichment factor of 193, an extraction percentage of 96.5, a detection limit of 0.0079µgL -1 and a relative standard deviation (RSD %) of 1.63%. Finally, the application of the synthesized material was evaluated for preconcentration and determination of mercuric ions from foods and environmental waters samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jagadeesh, M.; Rashmi, H. K.; Subba Rao, Y.; Sreenath Reddy, A.; Prathima, B.; Uma Maheswari Devi, P.; Reddy, A. Varada
2013-11-01
A new cis-palladium(II)diaqua(3,4-difluoroacetophenonethiosemicarbazone complex (Pd(II) complex) is synthesized using 3,4-difluoroacetophenonethiosemicarbazone(L). The L and its Pd(II) complex are characterized and confirmed by elemental analyses, electrochemical analyses, FT-IR, FT-Raman, UV-Vis, HRMS and LC-MS techniques. Ligand L is further characterized by 1H, 13C and 19F NMR spectroscopy. The crystal structure of L is unambiguously characterized by single X-ray crystallography. The ligand (L) belongs to monoclinic system with P2(1)/C space group and the unit cell parameters are a(Å) = 9.1144(7), b(Å) = 13.7928(7), c(Å) = 8.4174(5), α(°) = 90, β(°) = 100.715, γ(°) = 90 and volume V(A3) = 1039.73(11). The Raman bands observed for the L and its Pd(II) complex are in good agreement with the FT-IR spectral data. The Pd(II) complex is found to be highly efficient in inhibiting the growth of human pathogens like Salmonella typhimurium and Klebsiella pneumonia with MIC value 10.0 μg/mL whose inhibition zones are almost comparable with the standard antibiotic. The synthesized compounds have shown antiproliferative activity against the human breast cancer cell lines MDA-MB231 by intermitting the regular pathway of ribonucleotidereductase.
Fernandes, Bruno; Correia, Ana C; Cosme, Fernanda; Nunes, Fernando M; Jordão, António M
2015-01-01
The purpose of this work was to study the volatile composition of vine leaves and vine leaf infusion prepared from vine leaves collected at 30 and 60 days after grape harvest of two Vitis vinifera L. species. Eighteen volatile compounds were identified by gas chromatography-mass spectrometry in vine leaves and in vine leaf infusions. It was observed that the volatile compounds present in vine leaves are dependent on the time of harvest, with benzaldehyde being the major volatile present in vine leaves collected at 30 days after harvesting. There are significant differences in the volatile composition of the leaves from the two grape cultivars, especially in the sample collected at 60 days after grape harvest. This is not reflected in the volatile composition of the vine leaf infusion made from this two cultivars, the more important being the harvesting date for the volatile profile of vine leaf infusion than the vine leaves grape cultivar.
Skin diseases in workers at a perfume factory.
Schubert, Hans-Jürgen
2006-08-01
The aim of this study is to find out the causes of skin diseases in one-third of the staff of a perfume factory, in which 10 different perfume sprays were being manufactured. Site inspection, dermatological examination and patch testing of all 26 persons at risk with 4 perfume oils and 30 ingredients of them. The results showed 6 bottlers were found suffering from allergic contact dermatitis, 2 from irritant contact dermatitis, 12 workers showed different strong reactions to various fragrances. The main causes of allergic contact dermatitis were 2 perfume oils (12 cases) and their ingredients geraniol (12 cases), benzaldehyde(9), cinnamic aldehyde (6), linalool, neroli oil, terpenes of lemon oil and orange oil (4 each). Nobody was tested positive to balsam of Peru. Job changes for office workers, packers or printers to other rooms, where they had no longer contact with fragrances, led to a settling. To conclude, automation and replacement of glass bottles by cartridges from non-fragile materials and using gloves may minimize the risk.
NASA Astrophysics Data System (ADS)
Wang, Xiaomei; Gu, Jinyan; Tian, Lei; Zhang, Xu
2017-03-01
Owing to their unique structural and surface properties, mesoporous microspheres are widely applied in the catalytic field. Generally, increasing the surface area of the specific active phase of the catalyst is a good method, which can achieve a higher catalytic activity through the fabrication of the corresponding catalytic microspheres with the smaller size and hollow structure. However, one of the major challenges in the use of hollow microspheres (microcapsules) as catalysts is their chemical and structural stability. Herein, the grape-like hypercrosslinked polystyrene hierarchical porous interlocked microcapsule (HPIM-HCL-PS) is fabricated by SiO2 colloidal crystals templates, whose structure is the combination of open mouthed structure, mesoporous nanostructure and interlocked architecture. Numerous microcapsules assembling together and forming the roughly grape-like microcapsule aggregates can enhance the structural stability and recyclability of these microcapsules. After undergoing the sulfonation, the sulfonated HPIM-HCL-PS is served as recyclable acid catalyst for condensation reaction between benzaldehyde and ethylene glycol (TOF = 793 h-1), moreover, exhibits superior activity, selectivity and recyclability.
Bonnaventure, Isabelle; Charette, André B
2008-08-15
The hemilabile ligand Me-DuPHOS(O) 2 has proven to be a successful ligand for the copper-catalyzed addition of diethylzinc to N-phosphinoylimines. The corresponding alpha-chiral amines were obtained in high yields (80-98%) and enantiomeric ratios (19.0:1 to 99.0:1 er). Furthermore, this Cu* 2 catalytic system has been shown to be effective in the addition of diethylzinc to nitroalkenes and in the reduction of beta,beta-disubstituted vinyl phenyl sulfones. This paper describes a general structure/selectivity study in which the three ligand subunits (chiral phospholane-linker-labile coordinating group (Z)) are systematically modified and tested in the copper-catalyzed addition of diethylzinc to the N-phosphinoylimine 1 derived from benzaldehyde. This study led to the discovery of a new class of effective chiral ligands that combine a chiral phospholane unit and an achiral phosphine oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Kannan, Pranav; Xue, Jingchuan
Resin-based dental sealants (also referred to as pit-and-fissure sealants) have been studied for their contribution to bisphenol A (BPA) exposure in children. Nevertheless, little attention has been paid to the occurrence of other potentially toxic chemicals in dental sealants. In this study, the occurrence of six synthetic phenolic antioxidants (SPAs), including 2,6-di-tert-butyl-4-hydroxytoluene (BHT), 2,6-di-tert-butyl-4-(hydroxyethyl)phenol (BHT-OH), 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO), 2,6-di-tert-butylcyclohexa-2,5-diene-1,4-dione (BHT-Q), 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHT-COOH) and 2-tert-butyl-4-methoxyphenol (BHA), was examined in 63 dental sealant products purchased from the U.S. market. BHT was found in all dental sealants at median and maximum concentrations of 56.8 and 1020 µg/g, respectively. The metabolites of BHT andmore » BHA were detected in 39–67% of samples, at concentration ranges of« less
Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran.
Wang, Wei; Guo, Jia; Zhang, Junnan; Peng, Jie; Liu, Tianxing; Xin, Zhihong
2015-03-15
The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds, cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9) and para-hydroxy benzaldehyde (10). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5 and 7 exhibited strong DPPH and ABTS(+) radical scavenging activities, followed by compounds 4 and 6. Compound 1 and 2 showed potent DPPH and ABTS(+) radical scavenging activities, compound 8 displayed moderate antioxidant activity against ABTS(+) radical, whereas compound 9 and 10 showed weak antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Subramanian, M.; Vanangamudi, G.; Thirunarayanan, G.
2013-06-01
A series of 2,5-dimethyl-3-furyl chalcones [2E-1-(2,5-dimethyl-3-furyl)-3-(substituted phenyl)-2-propen-1-ones] have been synthesized by Hydrotalcite catalyzed aldol condensation between 3-acetyl-2,5-dimethylfuron and substituted benzaldehydes. Yields of chalcones are more than 80%. These chalcones were characterized by their physical constants and spectral data. The group frequencies of infrared ν(cm-1) of CO s-cis and s-trans, CH in-plane and out of plane, CHdbnd CH out of plane, lbond2 Cdbnd Crbond2 out of plane modes, NMR chemical shifts δ(ppm) of Hα, Hβ, CO, Cα and Cβ of these chalcones were correlated with Hammett substituent constants, F and R parameters using single and multi-regression analyses. From the results of statistical analyses, the effects of substituents on the group frequencies are explained. Antibacterial, antifungal and insect antifeedant activities of these chalcones have been studied.
Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation.
Larsen, Daniel B; Petersen, Allan R; Dethlefsen, Johannes R; Teshome, Ayele; Fristrup, Peter
2016-11-07
The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the transfer HDO of five para-substituted benzylic alcohols was carried out. Density-functional theory (DFT) calculations suggest a transition state with significant loss of aromaticity contributes to the lack of linearity observed in the Hammett study. The transfer HDO could also be carried out in neat PhCH 2 OH at 175 °C. Under these conditions, PhCH 2 OH underwent disproportionation to yield benzaldehyde, toluene, and significant amounts of bibenzyl. Isotopic-labelling experiments (using PhCH 2 OD and PhCD 2 OH) showed that incorporation of deuterium into the resultant toluene originated from the α position of benzyl alcohol, which is in line with the mechanism suggested by the DFT study. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yellowing reaction in encapsulant of photovoltaic modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigekuni, T.; Kumano, M.
1997-12-31
To clarify the mechanism of the yellowing reaction in encapsulant used for photovoltaic (PV) modules, a low molecular weight substance in EVA (Ethylene vinyl acetate) under accelerated weathering test (Dew cycle test, 1000 hours) with yellow change and virgin EVA were extracted with methanol. Extracts were chemically analyzed by GCIR (Gas Chromatography Infrared-Ray spectroscopic analysis), GC-AED (Gas Chromatography Atomic Emission Detector), and FDMS (Field Desorption Mass Spectroscopy). The conditions of this accelerated test were based on JIS-K9117. The analysis results showed that 2,6-di-t-butyl-4-methyl phenol of antioxidant and 2-hydroxy-4-octoxy-benzophenone of UV absorbent were consumed after the weathering test and that 3,5-di-t-butyl-4-hydroxy-benzaldehydemore » having yellow color was newly produced. A mechanism of the yellowing reaction in encapsulant was presented here that 2,6-di-t-N-O radical from Bis-2,2,6,6-tetramethyl-4-piperidinyl sebacate to produce 3,5 di-t-butyl-4-hydroxy benzaldehyde.« less
Crystal structure of benzyl (E)-2-(3,4-di-meth-oxy-benzyl-idene)hydrazine-1-carbodi-thio-ate.
Tan, Yew-Fung; Break, Mohammed Khaled Bin; Tahir, M Ibrahim M; Khoo, Teng-Jin
2015-02-01
The title compound, C17H18N2O2S2, synthesized via a condensation reaction between S-benzyl di-thio-carbazate and 3,4-di-meth-oxy-benzaldehyde, crystallized with two independent mol-ecules (A and B) in the asymmetric unit. Both mol-ecules have an L-shape but differ in the orientation of the benzyl ring with respect to the 3,4-di-meth-oxy-benzyl-idine ring, this dihedral angle is 65.59 (8)° in mol-ecule A and 73.10 (8)° in mol-ecule B. In the crystal, the A and B mol-ecules are linked via pairs of N-H⋯S hydrogen bonds, forming dimers with an R 2 (2)(8) ring motif. The dimers are linked via pairs of C-H⋯O hydrogen bonds, giving inversion dimers of dimers. These units are linked by C-H⋯π inter-actions, forming ribbons propagating in the [100] direction.
NASA Astrophysics Data System (ADS)
François, Stéphanie; Perraud, Véronique; Pflieger, Maryline; Monod, Anne; Wortham, Henri
In this work, glass tube and mist chamber sampling techniques using 2,4-dinitrophenylhydrazine as derivative agent for the analysis of gaseous carbonyl compounds are compared. Trapping efficiencies of formaldehyde, acetaldehyde, propionaldehyde, acetone, acrolein, glyoxal, crotonaldehyde, benzaldehyde, butyraldehyde and valeraldehyde are experimentally determined using a gas-phase generator. In addition to generalise our results to all atmospheric gaseous compounds and derivative agents, theoretical trapping efficiencies and enrichment factors are expressed taking into account mechanisms involved in the two kinds of traps. Theoretical and experimental results show that, as expected, the trapping efficiencies of the glass tube depend mainly on solubility of compounds. The results provide new information and better understanding of phenomena occurring in the mist chamber and the ability of this sampler to concentrate the samples. Hence, the mist chamber is the more convenient sampling method when the trapping is associated to a fast derivatisation of the compounds and the glass tube technique must be used to trap atmospheric compounds without simultaneous derivatisation.
Zhao, Lingling; Niu, Lijing; Liang, Hongze; Tan, Hui; Liu, Chaozong; Zhu, Feiyan
2017-11-01
pH and glucose dual-responsive injectable hydrogels were prepared through the cross-linking of Schiff's base and phenylboronate ester using phenylboronic-modified chitosan, poly(vinyl alcohol) and benzaldehyde-capped poly(ethylene glycol). Protein drugs and live cells could be incorporated into the hydrogels during the in situ cross-linking, displaying sustained and pH/glucose-triggered drug release from the hydrogels and cell viability and proliferation in the three-dimensional hydrogel matrix as well. Hence, the hydrogels with insulin and fibroblasts were considered as bioactive dressings for diabetic wound healing. A streptozotocin-induced diabetic rat model was used to evaluate the efficacy of hydrogel dressings in wound repair. The results revealed that the incorporation of insulin and L929 in the hydrogels could promote neovascularization and collagen deposition and enhance the wound-healing process of diabetic wounds. Thus, the drug- and cell-loaded hydrogels have promising potential in wound healing as a medicated system for various therapeutic proteins and live cells.
Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4(3H)-ones.
Khan, Khalid Mohammed; Saad, Syed Muhammad; Shaikh, Nimra Naveed; Hussain, Shafqat; Fakhri, Muhammad Imran; Perveen, Shahnaz; Taha, Muhammad; Choudhary, Muhammad Iqbal
2014-07-01
2-Arylquinazolin-4(3H)-ones 1-25 were synthesized by reacting anthranilamide with various benzaldehydes using CuCl2·2H2O as a catalyst in ethanol under reflux. Synthetic 2-arylquinazolin-4(3H)-ones 1-25 were evaluated for their β-glucuronidase inhibitory potential. A trend of inhibition IC50 against the enzyme in the range of 0.6-198.2μM, was observed and compared with the standard d-saccharic acid 1,4-lactone (IC50=45.75±2.16μM). Compounds 13, 19, 4, 12, 14, 22, 23, 25, 15, 8, 17, 11, 21, 1, 3, 18, 9, 2, and 24 with the IC50 values within the range of 0.6-44.0μM, indicated that the compounds have superior activity than the standard. The compounds showed no cytotoxic effects against PC-3 cells. A structure-activity relationship is established. Copyright © 2014 Elsevier Ltd. All rights reserved.
Leinwand, Sarah G; Yang, Claire J; Bazopoulou, Daphne; Chronis, Nikos; Srinivasan, Jagan; Chalasani, Sreekanth H
2015-09-22
Chemosensory neurons extract information about chemical cues from the environment. How is the activity in these sensory neurons transformed into behavior? Using Caenorhabditis elegans, we map a novel sensory neuron circuit motif that encodes odor concentration. Primary neurons, AWC(ON) and AWA, directly detect the food odor benzaldehyde (BZ) and release insulin-like peptides and acetylcholine, respectively, which are required for odor-evoked responses in secondary neurons, ASEL and AWB. Consistently, both primary and secondary neurons are required for BZ attraction. Unexpectedly, this combinatorial code is altered in aged animals: odor-evoked activity in secondary, but not primary, olfactory neurons is reduced. Moreover, experimental manipulations increasing neurotransmission from primary neurons rescues aging-associated neuronal deficits. Finally, we correlate the odor responsiveness of aged animals with their lifespan. Together, these results show how odors are encoded by primary and secondary neurons and suggest reduced neurotransmission as a novel mechanism driving aging-associated sensory neural activity and behavioral declines.
NASA Astrophysics Data System (ADS)
Kurşun Aktar, Bedriye Seda; Oruç-Emre, Emine Elçin; Demirtaş, Ibrahim; Yaglioglu, Ayse Sahin; Guler, Caglar; Adem, Sevki; Karaküçük Iyidoğan, Ayşegül
2017-12-01
The fluorinated chalcones were synthesized by Claisen-Schmidt condensation between 4‧-morpholineacetophenone and various fluorinated benzaldehydes in the presence of NaOH in methanol. The synthesized compounds [1-7] were evaluated their antiproliferative activity against HeLa and C6 cell lines. Among them, compounds 4 and 5 were determined to have anticancer activity against HeLa cells line (IC50 values of 7.74 and 6.10 μg/mL, respectively). The anticancer activity results were shown that compounds 3, and 6 had inhibitory against C6 cells (IC50 values of 12.80 and 4.16 μg/mL, respectively). The compounds 1 and 2 had high antiproliferative activity with non-cytotoxicity. All of the new compounds, except for compound 4 showed inhibition against the human isozyme hCA I with IC50 in the range of 0.5-1,16 mM. Pyruvate kinase M2 (PKM2) was effectively inhibited by compound 4 with IC50 = 26 μM.
Conformational Aspects of the O-acetylation of C-tetra(phenyl)calixpyrogallol[4]arene.
Casas-Hinestroza, José Luis; Maldonado, Mauricio
2018-05-20
Reaction between pyrogallol and benzaldehyde results in a conformational mixture of C- tetra(phenyl)pyrogallol[4]arene (crown and chair). The conformer mixture was separated using crystallization procedures and the structures were determined using FTIR, ¹H-NMR, and 13 C-NMR. O -acetylation of C- tetra(phenyl)pyrogallol[4]arene (chair) with acetic anhydride, in pyridine results in the formation of dodecaacetyl-tetra(phenyl)pyrogallol[4]arene. The structure was determined using ¹H-NMR and 13 C-NMR finding that the product maintains the conformation of the starting conformer. On the other hand, the O -acetylation reaction of C- tetra(phenyl)pirogallol[4]arene (crown) under same conditions proceeded efficiently, and its structure was determined using ¹H-NMR and 13 C-NMR. Dynamic ¹H-NMR of acetylated pyrogallolarene was studied by means of variable temperature in DMSO- d ₆ solution, and it revealed that two conformers are formed in the solution. Boat conformations for acetylated pyrogallolarene showed a slow interconversion at room temperature.
Chemical Analysis of Dietary Constituents in Rosa roxburghii and Rosa sterilis Fruits.
Liu, Meng-Hua; Zhang, Qi; Zhang, Yuan-He; Lu, Xian-Yuan; Fu, Wei-Ming; He, Jing-Yu
2016-09-09
Both Rosa roxburghii and R. sterilis, belonging to the Rosaceae, are endemic species in Guizhou Province, China. The fruits of these two species are mixed-used as functional food in the region. Aiming to elucidate the phytochemical characteristics of R. roxburghii and R. sterilis fruits, the essential oils and constituents in a methanol extract have been analyzed and compared by GC-MS and UFLC/Q-TOF-MS, respectively. As a result, a total of 135 volatile compounds were identified by GC-MS and 91 components were different between R. roxburghii and R. sterilis fruits; a total of 59 compounds in methanol extracts were identified by UFLC/Q-TOF-MS, including 13 organic acids, 12 flavonoids, 11 triterpenes, nine amino acids, five phenylpropanoid derivatives, four condensed tannins, two stilbenes, two benzaldehyde derivatives and one benzoic acid derivative; and nine characteristic compounds were found between R. roxburghii and R. sterilis fruits. This systematic study plays an important role for R. roxburghii and R. sterilis fruits in the product development.
Reany, Ofer; Fuchs, Benzion
2013-02-18
The chemistry and complexation behavior of diaminal podands based on cis-1,3,5,7-tetraazadecalin (cis-TAD) were elaborated, reassessed, and extended. The synthesis of 2,6-bis(hydroxymethylene)-cis-TAD (9) and 2,6-bis(α,α'-dimethyl-β- hydroxyethyl)-cis-TAD (10) as well as of suitably substituted 2,6-diaryl-cis-TAD podands is laid out. For the latter, the effect of electron donating or withdrawing substituents on the benzaldehyde reagents was examined while 9 and 10 were probed and showed considerable propensity for heavy metal-ion chelation. The [Cd(II)·(9)] and [Pb(II)·(9)] complexes stood out indeed, and their structure and properties show a particularly interesting 5-amino-1,3-diazane chelation type and strong ligand-ion binding mode, with intramolecular donor exchange in solution, all strongly influenced by the anomeric effect in the ligand.
Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air
NASA Astrophysics Data System (ADS)
Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet
To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.
[Mechanism and performance of styrene oxidation by O3/H2O2].
He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan
2013-10-01
It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.
Molecular System for the Division of Self-Propelled Oil Droplets by Component Feeding.
Banno, Taisuke; Toyota, Taro
2015-06-30
Unique dynamics using inanimate molecular assemblies have drawn a great amount of attention for demonstrating prebiomimetic molecular systems. For the construction of an organized logic combining two fundamental dynamics of life, we demonstrate here a molecular system that exhibits both division and self-propelled motion using oil droplets. The key molecule of this molecular system is a novel cationic surfactant containing a five-membered acetal moiety, and the molecular system can feed the self-propelled oil droplet composed of a benzaldehyde derivative and an alkanol. The division dynamics of the self-propelled oil droplets were observed through the hydrolysis of the cationic surfactant in bulk solution. The mechanism of the current dynamics is argued to be based on the supply of "fresh" oil components in the moving oil droplets, which is induced by the Marangoni instability. We consider this molecular system to be a prototype of self-reproducing inanimate molecular assembly exhibiting self-propelled motion.
NASA Astrophysics Data System (ADS)
Joseph, J.; Suman, A.; Nagashri, K.; Joseyphus, R. Selwin; Balakrishnan, Nisha
2017-06-01
Novel series of four copper(II) complexes with 2-aminobenzimidazole derivatives (obtained from the Knoevenagel condensate of acetylacetone (obtained from acetylacetone and halogen substituted benzaldehydes) and 2-aminobenzimidazole) were synthesized. They were structurally characterized using elemental analysis, molar conductance, FAB mass, FT- IR, 1H &13C-NMR, UV-Vis., and EPR techniques. On the basis of analytical and spectral studies, the distorted square planar geometry was assigned for all the complexes. The antibacterial screening of the ligands and their copper complexes indicated that all the complexes showed higher anti microbial activities than the free ligands. Superoxide dismutase and antioxidant activities of the copper complexes have also been performed. In the electrochemical technique, the shift in ΔEp, E1/2 and Ipc values were explored for the interaction of the complexes with CT-DNA. During the electrolysis process, the present ligand system stabilizes unusual oxidation state of copper in the complexes. It is believed that the copper complexes with curcumin analogs may enhance chemotherapeutic behavior.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei
2015-01-01
A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fessenden, R.W.; Carton, P.M.; Shimamori, H.
1982-09-16
Time-resolved changes in microwave dielectric absorption have been used to study transients formed by laser flash photolysis. Details of the method and apparatus are given. Applications both to the measurements of the dipole moments of transients and to decay kinetics are given. The dipole moments of the lowest triplet states of a number of aromatic compounds (mostly ketones) have been measured in benzene solution at room temperature. States of n..pi..* character generally possess smaller dipole moments than the corresponding ground states while states of ..pi pi..* character (for example, fluorenone) have larger values than the ground state. The triplets ofmore » 4-(dimethylamino)benzaldehyde and 4,4'-bis(dimethylamino)benzophenone have rather high values of dipole moment (10.5 and 8.4 D, respectively) showing their charge-transfer character. The triplet state of benzil was found to have zero or near-zero dipole moment, thus confirming that the triplet state is of a transstructure. 7 figures, 1 table.« less
Tandem catalysis by palladium nanoclusters encapsulated in metal–organic frameworks
Li, Xinle; Guo, Zhiyong; Xiao, Chaoxian; ...
2014-08-25
A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH 2, this catalyst (Pd@UiO-66-NH 2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found thatmore » alcohols with electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. As a result, we further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation.« less
Sonklin, Chanikan; Laohakunjit, Natta; Kerdchoechuen, Orapin
2011-08-10
Enzymatic bromelain mungbean meal protein hydrolysate (eb-MPH) was produced from mungbean meal protein isolate (MPI). Enzymatic bromelain, with a known protease activity of 98,652 (unit/g), was used at concentrations of 0, 2, 6, 10, 14 and 18% (w/w) and with hydrolysis times of 0.5, 3, 6, 12, and 24 h. The pH and temperature were controlled at 6.0 and 50 °C, respectively. It was found that the best treatment combination for eb-MPH production by response surface methodology (RSM) was 18% bromelain and a hydrolysis time of 3 h, resulting in the greatest degree of hydrolysis (% DH) and percent yield, with values of 61.04 and 45.63%, respectively. Results also showed that the phenylalanine, tyrosine and leucine contents of the optimally produced eb-MPH were 20.88, 14.50 and 10.93%, respectively. Twelve volatile compounds were identified using gas chromatography mass spectrometry in eb-MPH; benzaldehyde, 2-pentylfuran and furfural were the predominant odorants.
Leinwand, Sarah G; Yang, Claire J; Bazopoulou, Daphne; Chronis, Nikos; Srinivasan, Jagan; Chalasani, Sreekanth H
2015-01-01
Chemosensory neurons extract information about chemical cues from the environment. How is the activity in these sensory neurons transformed into behavior? Using Caenorhabditis elegans, we map a novel sensory neuron circuit motif that encodes odor concentration. Primary neurons, AWCON and AWA, directly detect the food odor benzaldehyde (BZ) and release insulin-like peptides and acetylcholine, respectively, which are required for odor-evoked responses in secondary neurons, ASEL and AWB. Consistently, both primary and secondary neurons are required for BZ attraction. Unexpectedly, this combinatorial code is altered in aged animals: odor-evoked activity in secondary, but not primary, olfactory neurons is reduced. Moreover, experimental manipulations increasing neurotransmission from primary neurons rescues aging-associated neuronal deficits. Finally, we correlate the odor responsiveness of aged animals with their lifespan. Together, these results show how odors are encoded by primary and secondary neurons and suggest reduced neurotransmission as a novel mechanism driving aging-associated sensory neural activity and behavioral declines. DOI: http://dx.doi.org/10.7554/eLife.10181.001 PMID:26394000
Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo
2014-11-01
Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.
Kishikawa, Naoya; Nakao, Maiko; Ohba, Yoshihito; Nakashima, Kenichiro; Kuroda, Naotaka
2006-07-01
9,10-Phenanthrenequinone (PQ), one of the components of atmospheric pollutants, has potent harmful effects on human health. PQ in airborne particulates collected in Nagasaki city was determined by HPLC with fluorescence derivatization. PQ extracted from airborne particulates using methanol was derivatized with benzaldehyde in the presence of ammonium acetate to give a fluorescent compound. The average concentration (mean+/-SD, n=52) of PQ found in airborne particulates collected from July 1997 to June 1998 was 0.287+/-0.128 ng m-3. Concentrations of PQ in winter were higher than those in summer. In a weekly variation study, PQ concentrations were higher during weekdays and lower at weekend. The levels of PQ were obviously correlated with those of phenanthrene (PH) that is considered as a parent compound of PQ. This observation suggested that PQ was emitted into the atmosphere from the same source as PH, or PQ was converted from PH in the atmosphere.
MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.
Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.
1964-01-01
Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Luna; Banerjee, Biplab; Bhaumik, Asim, E-mail: msab@iacs.res.in
2016-05-15
A new oxime–imine functionalized highly ordered mesoporous SBA-15 (SBA-15-NH{sub 2}-DAMO) has been synthesized via post-synthesis functionalization of SBA-15 with 3-aminopropyl-triethoxysilane followed by the Schiff base condensation with diacetylmonooxime, which was further reacted with Ni(ClO{sub 4}){sub 2} to yield the functionalized nickel catalyst SBA-15-NH{sub 2}-DAMO-Ni. All the synthesized materials were thoroughly characterized using different characterization techniques. It was found that SBA-15-NH{sub 2}-DAMO-Ni catalyzes the one-pot oxidation of olefins like styrene, cyclohexene, cyclooctene, 1-hexene and 1-octene to the corresponding benzaldehyde, cyclohexene-1-ol and cyclooctene-oxide, respectively under solvent-free conditions by using tert-butylhydroperoxide as oxidant. - Graphical abstract: A new well characterized oxime–imine functionalized highlymore » ordered mesoporous SBA-15-NH{sub 2}-DAMO-Ni complex catalyzes the one-pot oxidation of olefins under solvent free mild conditions.« less
Origin of low-molecular mass aldehydes as disinfection by-products in beverages.
Serrano, María; Gallego, Mercedes; Silva, Manuel
2017-09-01
A novel, simple and automatic method based on static headspace-gas chromatography-mass spectrometry has been developed to determine 10 low-molecular mass aldehydes that can be found in beverages, coming from the treated water used in their production. These aldehydes are the most frequently found in treated water as water disinfection by-products, so they can be used as indicators of the addition of treated water to beverages. The study covered a large number of fruit juices and soft drinks. The presence of the whole array of analytes is related to the contact with treated water during beverage production, mainly by the addition of treated water as ingredient. In particular, propionaldehyde, valeraldehyde and benzaldehyde can be used as indicators of the addition of treated water in these kinds of beverages. Among the ten aldehydes, only formaldehyde and acetaldehyde are naturally present in all kinds of fruit, and their concentrations are related to stage of the ripening of the fruit.
Dover, Lynn G.; Alahari, Anuradha; Gratraud, Paul; Gomes, Jessica M.; Bhowruth, Veemal; Reynolds, Robert C.; Besra, Gurdyal S.; Kremer, Laurent
2007-01-01
Many of the current antimycobacterial agents require some form of cellular activation unmasking reactive groups, which in turn will bind to their specific targets. Therefore, understanding the mechanisms of activation of current antimycobacterials not only helps to decipher mechanisms of drug resistance but may also facilitate the development of alternative activation strategies or of analogues that do not require such processes. Herein, through the use of genetically defined strains of Mycobacterium bovis BCG we provide evidence that EthA, previously shown to activate ethionamide, also converts isoxyl (ISO) and thiacetazone (TAC) into reactive species. These results were further supported by the development of an in vitro assay using purified recombinant EthA, which allowed direct assessment of the metabolism of ISO. Interestingly, biochemical analysis of [14C]acetate-labeled cultures suggested that all of these EthA-activated drugs inhibit mycolic acid biosynthesis via different mechanisms through binding to specific targets. This report is also the first description of the molecular mechanism of action of TAC, a thiosemicarbazone antimicrobial agent that is still used in the treatment of tuberculosis as a second-line drug in many developing countries. Altogether, the results suggest that EthA is a common activator of thiocarbamide-containing drugs. The broad specificity of EthA can now be used to improve the activation process of these drugs, which may help overcome the toxicity problems associated with clinical thiocarbamide use. PMID:17220416
Ma, Q L; Hamid, N; Bekhit, A E D; Robertson, J; Law, T F
2012-12-01
This research was carried out to determine the effects of pre-rigor injection of beef semimembranosus muscle with nine proteases from plant and microbial sources, on the volatile profile of cooked beef after 1 day and 21 days post-mortem (PM) storage using Solid-phase microextraction gas chromatography mass spectrometry analysis. A total of 23 aldehydes, 5 ketones, 3 furans, 8 nitrogen and sulphur compounds, 4 alkanes, 7 alcohols and 6 terpenes were detected. Eleven volatile compounds characteristic of ginger flavour were detected in zingibain-treated meat. Benzaldehyde significantly increased (p<0.05) only in kiwifruit juice (KJ), fungal 31 protease and Asparagus protease (ASP) treated samples from 1 day to 21 days PM storage. A significant increase (p<0.05) in 3-methylbutanal was observed in KJ, bacterial and fungal protease treated samples at 21 days PM storage. Treatments with bromelain, papain, ASP, actinidin, and KJ (except KJ 21 days) proteases resulted in flavour profiles closer to that of the control beef sample. Copyright © 2012 Elsevier Ltd. All rights reserved.
The benzylperoxyl radical as a source of hydroxyl and phenyl radicals.
Sander, Wolfram; Roy, Saonli; Bravo-Rodriguez, Kenny; Grote, Dirk; Sanchez-Garcia, Elsa
2014-09-26
The benzyl radical (1) is a key intermediate in the combustion and tropospheric oxidation of toluene. Because of its relevance, the reaction of 1 with molecular oxygen was investigated by matrix-isolation IR and EPR spectroscopy as well as computational methods. The primary reaction product of 1 and O2 is the benzylperoxyl radical (2), which exists in several conformers that can easily interconvert even at cryogenic temperatures. Photolysis of radical 2 at 365 nm results in a formal [1,3]-H migration and subsequent cleavage of the O-O bond to produce a hydrogen-bonded complex between the hydroxyl radical and benzaldehyde (4). Prolonged photolysis produces the benzoyl radical (5) and water, which finally yield the phenyl radical (7), CO, and H2O. Thus, via a sequence of exothermic reactions 1 is transformed into radicals of even higher reactivity, such as OH and 7. Our results have implications for the development of models for the highly complicated process of combustion of aromatic compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.
Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa
2018-03-06
Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.
A study of interferences in ozone UV and chemiluminescence monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgens, E.E.; Kleindienst, T.E.; McElroy, F.F.
A study was conducted to examine interferences and other measurement anomalies in chemiluminescence and ultraviolet ozone monitors. Previous results had show that there was a positive deviation in the chemiluminescence monitors and no direct interference with ultraviolet monitors due to the presence of water at non-condensing concentrations. The present study continues this effort, examining both potential positive and negative effects of moisture and other interferences on these monitors. Aromatic compounds and their oxidation products could potentially show a positive interference with ultraviolet monitors, and test measurements were made with aromatics such as toluene, benzaldehyde, and nitrotoluene to determine their possiblemore » retention in the ozone scrubber and their absorption in the cell as a function of the humidity. A detailed examination of the scrubbers used in ultraviolet ozone monitors has also been undertaken. Ozone scrubbers that have shown anomalous behavior in the field have been studied in various reduced-efficacy modes under controlled laboratory conditions. Longer term tests of unused scrubbers for possible ozone breakthrough under exposure to various simulated field conditions were initiated.« less
Emission of floral volatiles from Mahonia japonica (Berberidaceae).
Picone, Joanne M; MacTavish, Hazel S; Clery, Robin A
2002-07-01
Flowering Mahonia japonica plants were subjected to controlled environments and the floral volatiles emitted from whole racemes (laterals) were trapped by Porapak Q adsorbent and analysed by GC-FID. An experiment with photoperiods of 6 and 9 h at constant temperature (10+/-1 degrees C) demonstrated that photoperiod was the stimulus for enhanced emission of most volatiles. Small quantitative differences in emitted fragrance composition were observed between light and dark periods and between plants acclimatised to different photoperiods. Maximum rates of emission occurred in the middle of the light period; aromatic compounds (benzaldehyde, benzyl alcohol and indole) displayed a more rapid increase and subsequent decline compared with monoterpenes (cis- and trans-ocimene and linalool). When the photoperiod was extended from 6 to 9 h, maximum rates of emission continued throughout the additional 3 h. Total emission (microg/h) of volatiles was 2-fold greater in the day-time (DT) (39.7 microg/h) compared with the night-time (NT) (19.8 microgg/h) under a 6 h photoperiod and was not significantly different from total emission under a 9 h photoperiod.
Chen, Qinqin; Song, Jianxin; Bi, Jinfeng; Meng, Xianjun; Wu, Xinye
2018-03-01
Volatile profile of ten different varieties of fresh jujubes was characterized by HS-SPME/GC-MS (headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry) and E-nose (electronic nose). GC-MS results showed that a total of 51 aroma compounds were identified in jujubes, hexanoic acid, hexanal, (E)-2-hexenal, (Z)-2-heptenal, benzaldehyde and (E)-2-nonenal were the main aroma components with contributions that over 70%. Differentiation of jujube varieties was conducted by cluster analysis of GC-MS data and principal component analysis & linear discriminant analysis of E-nose data. Both results showed that jujubes could be mainly divided into two groups: group A (JZ, PDDZ, JSXZ and LWZZ) and group B (BZ, YZ, MZ, XZ and DZ). There were significant differences in contents of alcohols, acids and aromatic compounds between group A and B. GC-MS coupled with E-nose could be a fast and accurate method to identify the general flavor difference in different varieties of jujubes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice.
de Godoy Alves Filho, Elenilson; Rodrigues, Tigressa Helena Soares; Fernandes, Fabiano André Narciso; Pereira, Ana Lucia Fernandes; Narain, Narendra; de Brito, Edy Sousa; Rodrigues, Sueli
2017-09-01
The aim of this study was to evaluate the influence of the lactic acid fermentation on volatile compounds of melon and cashew apple juices. The effect of the fermentation processing on the volatile profile of probiotic juices was assessed by HS-SPME/GC-MS coupled to chemometrics with 67.9% and 81.0% of the variance in the first principal component for melon and cashew juices, respectively. The Lactobacillus casei fermentation imparted a reduction of ethyl butanoate, ethyl-2-methylbutirate, and ethyl hexanoate for melon juice; and of ethyl acetate, ethyl-2-methyl butanoate, ethyl crotonate, ethyl isovalerate, benzaldehyde, and ethyl hexanoate for cashew juice. Measurements of the stability of these compounds and the formation of the component 3-methyl-2-butenyl in melon juice may be used as a volatile marker to follow the juice fermentation. These findings suggested that even though it is not a dairy product the lactic acid fermentation of fruits developed a volatile profile combining the fruit and lactic acid fermentation volatiles with mildly formation or degradation of aroma compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter
NASA Astrophysics Data System (ADS)
Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming
2018-02-01
The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507 nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz.
Bhosale, Jitendra; Fegade, Umesh; Bondhopadhyay, Banashree; Kaur, Simanpreet; Singh, Narinder; Basu, Anupam; Dabur, Rajesh; Bendre, Ratnamala; Kuwar, Anil
2015-06-01
Cation sensing behaviour of a pyrrole-based derivative (2-hydroxyl 3 methyl 6 isopropyl benzaldehyde}-3,4-dimethyl-1H-pyrrole-2-carbohydrazide (receptor 3) has been explored and is found to be selective towards Zn(2+) over a variety of tested cations. The receptor 3 has shown high selectivity and sensitivity towards Zn(2+) over the other alkali, alkaline earth and transition metal ions. In the presence of Zn(2+), absorption band of receptor 3 has shown the red shift. The sensing behaviour has been suggested to continue via enhancement process which has further been supported by UV-vis absorption and theoretical density functional theory (DFT) calculations indicating the formation of a 1:1 complex between the pyrrole based receptor 3 and Zn(2+). The present work is presenting a highly selective dual channel colorimetric sensor for zinc with great sensitivity. The developed sensor was successfully applied to image intracellular Zn(2+) in living cells. Copyright © 2015 John Wiley & Sons, Ltd.
Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz
2015-11-01
The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.
HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis).
Xiao, Lu; Lee, Jihyun; Zhang, Gong; Ebeler, Susan E; Wickramasinghe, Niramani; Seiber, James; Mitchell, Alyson E
2014-05-15
A robust HS-SPME and GC/MS method was developed for analyzing the composition of volatiles in raw and dry-roasted almonds. Almonds were analyzed directly as ground almonds extracted at room temperature. In total, 58 volatiles were identified in raw and roasted almonds. Straight chain aldehydes and alcohols demonstrated significant but minimal increases, while the levels of branch-chain aldehydes, alcohols, heterocyclic and sulfur containing compounds increased significantly (500-fold) in response to roasting (p<0.05). Benzaldehyde decreased from 2934.6±272.5 ng/g (raw almonds) to 315.8±70.0 ng/g (averaged across the roasting treatments evaluated i.e. 28, 33 and 38 min at 138 °C) after roasting. Pyrazines were detected in only the roasted almonds, with the exception of 2,5-dimethylpyrazine, which was also found in raw almonds. The concentration of most alcohols increased in the roasted samples with the exception of 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethyl alcohol, which decreased 68%, 80%, and 86%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Volatiles from a rare Acer spp. honey sample from Croatia.
Jerković, Igor; Marijanović, Zvonimir; Malenica-Staver, Mladenka; Lusić, Drazen
2010-06-24
A rare sample of maple (Acer spp.) honey from Croatia was analysed. Ultrasonic solvent extraction (USE) using: 1) pentane, 2) diethyl ether, 3) a mixture of pentane and diethyl ether (1:2 v/v) and 4) dichloromethane as solvents was applied. All the extracts were analysed by GC and GC/MS. The most representative extracts were 3) and 4). Syringaldehyde was the most striking compound, being dominant in the extracts 2), 3) and 4) with percentages 34.5%, 33.1% and 35.9%, respectively. In comparison to USE results of other single Croatian tree honey samples (Robinia pseudoacacia L. nectar honey, Salix spp. nectar and honeydew honeys, Quercus frainetto Ten. honeydew as well as Abies alba Mill. and Picea abies L. honeydew) and literature data the presence of syringaldehyde, previously identified in maple sap and syrup, can be pointed out as a distinct characteristic of the Acer spp. honey sample. Headspace solid-phase microextraction (HS-SPME) combined with GC and GC/MS identified benzaldehyde (16.5%), trans-linalool oxide (20.5%) and 2-phenylethanol (14.9%) as the major compounds that are common in different honey headspace compositions.
Udomsil, Natteewan; Rodtong, Sureelak; Choi, Yeung Joon; Hua, Yanglin; Yongsawatdigul, Jirawat
2011-08-10
The potential of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation was elucidated. Four strains of T. halophilus isolated from fish sauce mashes were inoculated to anchovy mixed with 25% NaCl with an approximate cell count of 10(6) CFU/mL. The α-amino content of 6-month-old fish sauce samples inoculated with T. halophilus was 780-784 mM. The addition of T. halophilus MRC10-1-3 and T. halophilus MCD10-5-10 resulted in a reduction of histamine (P < 0.05). Fish sauce inoculated with T. halophilus showed high contents of total amino acids with predominantly high glutamic acid. Major volatile compounds in fish sauce were 2-methylpropanal, 2-methylbutanal, 3-methylbutanal, and benzaldehyde. T. halophilus-inoculated fish sauce samples demonstrated the ability to reduce dimethyl disulfide, a compound contributing to a fecal note. The use of T. halophilus for fish sauce fermentation improves amino acid profiles and volatile compounds as well as reduces biogenic amine content of a fish sauce product.
Kamle, Madhu; Bar, Einat; Lewinsohn, Dalia; Shavit, Elinoar; Roth-Bejerano, Nurit; Kagan-Zur, Varda; Barak, Ze'ev; Guy, Ofer; Zaady, Eli; Lewinsohn, Efraim; Sitrit, Yaron
2017-03-28
Desert truffles are mycorrhizal, hypogeous fungi considered a delicacy. On the basis of morphological characters, we identified three desert truffle species that grow in the same habitat in the Negev desert. These include Picoa lefebvrei (Pat.), Tirmania nivea (Desf.) Trappe, and Terfezia boudieri (Chatain), all associated with Helianthemum sessiliflorum. Their taxonomy was confirmed by PCR-RFLP. The main volatiles of fruit bodies of T. boudieri and T. nivea were 1-octen-3-ol and hexanal; however, volatiles of the latter species further included branched-chain amino acid derivatives such as 2-methylbutanal and 3-methylbutanal, phenylalanine derivatives such as benzaldehyde and benzenacetaldehyde, and methionine derivatives such as methional and dimethyl disulfide. The least aromatic truffle, P. lefebvrei, contained low levels of 1-octen-3-ol as the main volatile. Axenic mycelia cultures of T. boudieri displayed a simpler volatile profile compared to its fruit bodies. This work highlights differences in the volatile profiles of desert truffles and could hence be of interest for selecting and cultivating genotypes with the most likable aroma.
McLeod, Nicolas A; Kuzmina, Lyudmila G; Korobkov, Ilia; Howard, Judith A K; Nikonov, Georgii I
2016-02-14
The syntheses of novel Group 5 and Group 6 hydrosilylamido complexes of the type R(ArN[double bond, length as m-dash])M{N((t)Bu)SiMe2-H}X (M = Ta, R = Cp; M = Mo, R = ArN; X = Cl, H, OBn, Me) are described. The various substituents in the X position seem to play the key role in determining the extent of β-agostic interaction with the Si-H bond. The Mo agostic hydrido complex (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H is a pre-catalyst for the hydrosilylation of carbonyls. The stoichiometric reaction between benzaldehyde and (ArN[double bond, length as m-dash])2Mo{η(3)-N((t)Bu)SiMe2-H}H gives the benzoxy complex (ArN[double bond, length as m-dash])2Mo{N((t)Bu)SiMe2-H}(OBn), which showed a similar catalytic reactivity compared to the parent hydride. Mechanistic studies suggest that a non-hydride mechanism is operative.
Ultrasound accelerated Claisen Schmidt condensation: A green route to chalcones
NASA Astrophysics Data System (ADS)
Calvino, V.; Picallo, M.; López-Peinado, A. J.; Martín-Aranda, R. M.; Durán-Valle, C. J.
2006-06-01
Chalcones have been synthesized under sonochemical irradiation by Claisen-Schmidt condensation between benzaldehyde and acetophenone. Two basic activated carbons (Na and Cs-Norit) have been used as catalysts. The effect of the ultrasound activation has been studied. A substantial enhancing effect in the yield was observed when the carbon catalyst was activated under ultrasonic waves. This "green" method (combination of alkaline-doped carbon catalyst and ultrasound waves) has been applied to the synthesis of several chalcones with antibacterial properties achieving, in all cases, excellent activities and selectivities. A comparative study under non-sonic activation has showed that the yields are lower in silent conditions, indicating that the sonication exerts a positive effect on the activity of the catalyst. Cs-doped carbon is presented as the optimum catalyst, giving excellent activity for this type of condensation. Cs-Norit carbon catalyst can compete with the traditional NaOH/EtOH when the reaction is carried out under ultrasounds. The role of solvent in this reaction was studied with ethanol. High conversion was obtained in absence of solvent. The carbons were characterized by thermal analysis, nitrogen adsorption and X-ray photoelectron spectroscopy.
Yang, Yin; Battesti, Marie-José; Costa, Jean; Paolini, Julien
2014-01-27
Pollen spectrum, physicochemical parameters and volatile fraction of Corsican "spring" honeys were investigated with the aim of developing a multidisciplinary method for the qualification of honeys in which nectar resources are under-represented in the pollen spectrum. Forty-one Corsican "spring" honeys were certified by melissopalynological analysis using directory and biogeographical origin of 50 representative taxa. Two groups of honeys were distinguished according to the botanical origin of samples: "clementine" honeys characterized by the association of cultivated species from oriental plain and other "spring" honeys dominated by wild herbaceous taxa from the ruderal and/or maquis area. The main compounds of the "spring" honey volatile fraction were phenylacetaldehyde, benzaldehyde and methyl-benzene. The volatile composition of "clementine" honeys was also characterized by three lilac aldehyde isomers. Statistical analysis of melissopalynological, physicochemical and volatile data showed that the presence of Citrus pollen in "clementine" honeys was positively correlated with the amount of linalool derivatives and methyl anthranilate. Otherwise, the other "spring" honeys were characterized by complex nectariferous species associations and the content of phenylacetaldehyde and methyl syringate.
Bhatti, Huma Aslam; Khatoon, Memoona; Al-Rashida, Mariya; Bano, Huma; Iqbal, Nafees; Zaib-Un-Nisa; Yousuf, Sammer; Khan, Khalid Mohammed; Hameed, Abdul; Iqbal, Jamshed
2017-04-01
Owing to the biological importance of cyclic sulfonamides (sultams), herein we report a new, facile and cost-effective method for the synthesis of sultams that makes use of a reaction between dansyl amide and easily accessible benzaldehydes under mildly acidic conditions. All compounds were obtained in good yields (69-96%). Consequently a series of cyclic sulfonamides (7a-7n) was synthesized and characterized using FTIR, MS and NMR spectroscopy, crystal structure of compound 7b has also been determined. All compounds were evaluated for their potential to inhibit alkaline phosphatase (bTNAP and bIAP). All compounds were found to be excellent inhibitors of bTNAP with IC 50 values in lower micro-molar range (0.11-6.63μM). Most of the compounds were selective inhibitors of bTNAP over bIAP. Only six compounds were found to be active against bIAP (IC 50 values in the range 0.38-3.48μM). Molecular docking studies were carried out to identify and rationalize the structural elements necessary for efficient AP inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.
Odor of the muskox : A preliminary investigation.
Flood, P F; Abrams, S R; Muir, G D; Rowell, J E
1989-08-01
The behavior of captive male muskoxen was observed closely during their characteristic superiority display, the anatomy of the preputial region was studied in two adults and three calves, and preputial washings and preorbital gland secretion were subjected to gas chromatography and mass spectroscopy. During the superiority display, the prepuce was everted to form a pendulous tube tipped with a fringe of matted hair. Owing to the movement of the animal, the urine that dribbled from the preputial opening was liberally applied to the long guard hairs of the belly. The superiority display was almost exclusively confined to dominant males and apparently accounted for their odor. In the quiescent state, the hair seen around the preputial opening was drawn inside and formed an 8 cm-wide band on the lining of the prepuce. The preputial washings contained large amounts of benzoic acid andp-cresol. The infraorbital gland secretion contained cholesterol, benzaldehyde, and a homologous series of saturated γ-lactones ranging from 8 to 12 carbons. The latter compounds and the natural secretion smell similar to the human nose.
Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder
2016-05-23
In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko
2009-07-27
Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.
Jerković, Igor; Kuś, Piotr Marek; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka
2014-02-15
The case study of Polish Salix spp. honey was compared with published data on willow honey from other regions. GC-FID/MS (after HS-SPME and ultrasonic solvent extraction) and targeted HPLC-DAD were applied. Phenolic content, FRAP/DPPH assays and the colour coordinates were determined spectrophotometrically. Beside ubiquitous linalool derivatives, borneol (up to 10.9%), bicyclic monoterpenes with pinane skeleton (pinocarvone up to 10.6%, myrtenal up to 4.8% and verbenone up to 3.4%) and trans-β-damascenone (up to 13.0%) dominated in the headspace. The main compounds of the extractives were vomifoliol (up to 39.6%) and methyl syringate (up to 16.5%) along with not common 4-hydroxy-3-(1-methylethyl)benzaldehyde (up to 11.1%). Abscisic acid (ABA) was found (up to 53.7 mg/kg) with the isomeric ratio (Z,E)-ABA:(E,E)-ABA=1:2. The honey exhibited low antioxidant potential with pale yellow colour. The composition of Polish willow honey is similar to Mediterranean willow honeys with several relevant differences. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jerković, Igor; Marijanović, Zvonimir; Zekić, Marina; Tuberoso, Carlo I G
2017-03-01
Rare Moltkia petraea (Tratt.) Griseb. honey from Croatia was first time characterised. The spectrophotometric assays on CIE L*a*b*C ab *h ab ° colour coordinates, total phenol content and antioxidant capacity (FRAP, CUPRAC, DPPH • and ABTS •+ assays) determined higher honey values generally close to dark honeys ranges. Headspace solid-phase microextraction (HS-SPME) on two fibres after GC-FID and GC/MS revealed the major compounds 2-phenylacetaldehyde (12.8%; 15.6%), benzaldehyde (11.1%; 10.0%), octane (9.3%; 7.6%), nonane, propan-2-one, pentan-2-one, pentanal and nonanal (4.9%; 14.5%). Ultrasonic solvent extraction (USE) mainly isolated non-specific higher molecular compounds characteristic of the comb environment. Targeted HLPC-DAD analysis of the honey determined higher concentration of phenylalanine (212.08 mg/kg) and lumichrome (16.25 mg/kg) along with tyrosine and kojic acid. The headspace composition (chemical fingerprint) and high concentration of lumichrome can be considered particular for M. petraea honey. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Nastasă, Cristina; Tiperciuc, Brînduşa; Pârvu, Alina; Duma, Mihaela; Ionuţ, Ioana; Oniga, Ovidiu
2013-06-01
A novel series of 5-arylidene-2,4-thiazolidinediones (TZDs) 2a-p was synthesized from the condensation of 3-((2-phenylthiazol-4-yl)methyl)thiazolidine-2,4-dione with different benzaldehyde derivatives. All the structures were confirmed by their spectral (IR, ¹H NMR, ¹³C NMR and mass) and elemental analytical data. The new molecules were evaluated in vivo as anti-inflammatory agents in an acute experimental inflammation, evaluating the acute phase bone marrow response and phagocyte activity. All compounds, excepting one, reduced the absolute leukocytes count due to the lower neutrophil percentage. Phagocytary index was decreased by the same molecules, while only half of them reduced the phagocytary activity. The effect was superior to meloxicam, the reference anti-inflammatory drug, for the majority of the TZD derivatives. The new molecules were also investigated for their antimicrobial properties on Gram-positive and Gram-negative bacteria and one fungal strain. Two compounds (2e and 2n) manifested growth inhibition capacity on all the tested strains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hajbi, Youssef; Neagoie, Cléopatra; Biannic, Bérenger; Chilloux, Aurélie; Vedrenne, Emeline; Baldeyrou, Brigitte; Bailly, Christian; Mérour, Jean-Yves; Rosca, Sorin; Routier, Sylvain; Lansiaux, Amélie
2010-11-01
New 1,5-dihydro-4-(substituted phenyl)-3H-furo[3,4-b]carbazol-3-ones were synthesised via a key step Diels-Alder reaction under microwave irradiation. 3-Formylindole was successfully used in a 6-step synthesis to obtain those complex heterocycles. The Diels-Alder reaction generating the carbazole ring was optimised under thermal conditions or microwave irradiation. After cleavage of functional groups, DNA binding, topoisomerase inhibition and cytotoxic properties of the new-formed furocarbazoles were investigated. These carbazoles do not present a strong interaction with the DNA, and do not modify the relaxation of the DNA in the presence of topoisomerase I or II except for one promising compound. This compound is a potent topoisomerase II inhibitor, and its cellular activity is not moderated compared to etoposide. The synthesis of these molecules allowed the generalisation of the method using indole and 5-OBn indole and several benzaldehydes. The synthesis of these molecules produced chemical structures endowed with promising cytotoxic and topoisomerase II inhibition activities. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Banno, Taisuke; Tanaka, Yuki; Asakura, Kouichi; Toyota, Taro
2016-09-20
Unique dynamics using inanimate molecular assemblies based on soft matter have drawn much attention for demonstrating far-from-equilibrium chemical systems. However, there are no soft matter systems that exhibit a possible pathway linking the self-propelled oil droplets to formation of giant vesicles stimulated by low pH. In this study, we conceived an experimental oil-in-water emulsion system in which flocculated particles composed of a imine-containing oil transformed to spherical oil droplets that self-propelled and, after coming to rest, formed membranous figures. Finally, these figures became giant vesicles. From NMR, pH curves, and surface tension measurements, we determined that this far-from-equilibrium phenomenon was due to the acidic hydrolysis of the oil, which produced a benzaldehyde derivative as an oil component and a primary amine as a surfactant precursor, and the dynamic behavior of the hydrolytic products in the emulsion system. These findings afforded us a potential linkage between mobile droplet-based protocells and vesicle-based protocells stimulated by low pH.
NASA Astrophysics Data System (ADS)
Ahmed, I. S.; Kassem, M. A.
2010-10-01
New four Schiff bases are prepared by condensation of 2-amino-pyridin-3-ol with 3, 4-dihydroxy-benzaldehyde (I), 2-hydroxybenzaldehyde (II), 5-bromo-2-hydroxybenzaldehyde (III), and 4-dimethylaminobenzaldehyde (IV). The structures of these compounds are characterized based on elemental analyses (C. H. N), IR and 1H NMR. Also, the electronic absorption spectra are recorded in organic solvents of different polarity. The solvents are selected to be covered a wide range of parameters (refractive index, dielectric constant and hydrogen bonding capacity). The UV-vis absorption spectra of Schiff base compounds are investigated in aqueous buffer solutions of varying pH and utilized for the determination of ionization constant, p Ka and activation free energy, Δ G* of the ionization process. The biological activity against bacterial species and fungi as microorganisms representing different microbial categories such as (two Gram-negative bacteria, Eschericha coli and Agrobacterium sp.),three Gram-positive bacteria ( Staphylococcus aureus, Bacillus subtlus and Bacillus megatherium), yeast ( Candida albicans), and fungi ( Aspergillus niger) were studied.
Constitutive and inducible resistance to Atherigona soccata (Diptera: Muscidae) in Sorghum bicolor.
Chamarthi, Siva K; Vijay, Peter M; Sharma, Hari C; Narasu, Lakshmi M
2012-06-01
Host plant resistance is one of the important components for minimizing the losses because of sorghum shoot fly, Atherigona soccata (Diptera: Muscidae) attack. Therefore, we studied the constitutive and inducible biochemical mechanisms of resistance to A. soccata in a diverse array of sorghum genotypes to identify lines with diverse mechanisms of resistance to this insect. Fifteen sorghum genotypes with different levels of resistance to A. soccata were evaluated. Methanol extracts of 10-d old damaged and undamaged sorghum seedlings were subjected to high-performance liquid chromatography analysis. Association between peak areas of the identified and unidentified compounds with parameters measuring A. soccata resistance was determined through correlation analysis. Amounts of p-hydroxy benzaldehyde and the unidentified compounds at RTs 24.38 and 3.70 min were associated with susceptibility to A. soccata. Genotypes exhibiting resistance to A. soccata were placed in four groups, and the lines showing constitutive and/or induced resistance to A. soccata with different combinations of biochemical factors potentially could be used for increasing the levels of resistance to A. soccata in sorghum.
Structural and catalytic properties of some azo-rhodanine Ruthenium(III) complexes
NASA Astrophysics Data System (ADS)
Shoair, A. F.; El-Bindary, A. A.; Abd El-Kader, M. K.
2017-09-01
Novel azo-rhodanine ruthenium(III) complexes of the type trans-[Ru(Ln)2(AsPh3)2]Cl (Ln = monobasic bidentate anions of 5-(4‧-methoxyphenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL1), 5-(phenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL2) and 5-(4‧-chlorophenylazo)-3-phenylamino-2-thioxothiazolidin-4-one (HL3); AsPh3 = triphenylarsine) have been synthesized and characterized by elemental analysis, spectroscopic (IR, 1H NMR and UV-VIS), magnetic, X-ray diffraction, mass spectra and thermal analysis techniques. These techniques confirm the formation of octahedral ruthenium(III) complexes. The Ru(III) complexes were tested as a catalysts for the oxidation of benzyl alcohol to benzaldehyde with N-methylmorpholine-N-oxide as a co-oxidant. The effect of time, temperature, and solvent were also studied and the mechanism of this catalytic oxidation reaction is suggested. Molecular docking was used to predict the binding between azo rhodanine derivatives (HLn) with the receptor of 3qum- immune system receptor of human prostate specific antigen (PSA) in a Fab sandwich with a high affinity and a PCa selective antibody.
Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.
Willies, Simon; Isupov, Misha; Littlechild, Jennifer
2010-09-01
Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.
Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael
2014-12-22
ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Xiaoxia; Chen, Hangrong; Zhu, Yan; Song, Yudian; Chen, Yu; Wang, Yongxia; Gong, Yun; Zhang, Guobin; Shu, Zhu; Cui, Xiangzhi; Zhao, Jinjin; Shi, Jianlin
2013-07-22
Dual-mesoporous ZSM-5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co-templates. The product contains two types of mesopores--smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30-50 nm in diameter along the b axis--and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual-mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya
2018-01-15
Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Costa, Rosaria; Tedone, Laura; De Grazia, Selenia; Dugo, Paola; Mondello, Luigi
2013-04-03
Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC-MS) and flame ionization detection (GC-FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033-0.078 ng), limit of quantification (LoQ, range 0.111-0.259 ng) and analyte recovery (92.3-108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti.
Kaminski, E; Stawicki, S; Wasowicz, E
1974-06-01
Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant.
Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti
Kaminski, E.; Stawicki, S.; Wasowicz, E.
1974-01-01
Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant. PMID:16349989
[Chemical constituents from whole plants of Aconitum tanguticum (III)].
Li, Yan-Rong; Li, Chun; Wang, Zhi-Min; Yang, Li-Xin
2014-04-01
Nineteen compounds were isolated from the whole plants of Aconitum tanguticum by various of chromatographic techniques and their structures were determined through spectral analysis (1D, 2D-NMR and MS) and comparison with the literature data. These compounds were identified as 5-hydroxymethy furfural (1), 5-acetoxymethyl furfural (2), pyrrolezanthine [5-hydroxymethyl-1-[2-(4-hydroxyphenyl) -ethyl] -1H-pyrrole-2-carbaldehyde] (3), lichiol B (4), phthalic acid dibutyl ester (5), 3, 4-dihydroxy phenylethanol (6), 3, 4-dihydroxy phenylethanol glucoside (7), salidroside (8), p-hydroxy phenylethanol (9), p-hydroxybenzoie acid glucoside (10), p-hydroxybenzoic acid (11), gastrodin (12), 1-(3, 4-dimethoxyphenyl) -1, 2-ethanediol (13), p-hydroxy benzaldehyde (14), p-hydroxy acetophenone (15), 3, 4-dihydroxy phenyl ethyl acetate (16), syringic aldehyde (17), ethyl beta-D-fructopyranoside (18), and p-hydroxybenzoic acid methyl ester (19). Compounds 3 and 4 were isolated from the Ranunculaceae family for the first time, and compounds 2, 6 and 9-19 were isolated from the Aconitum genus for the first time, and compounds 1 and 5 were isolated from the species for the first time.
Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.
Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun
2017-06-01
The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Asiri, Abdullah M.; El-Daly, Samy A.; Alamry, Khalid A.; Arshad, Muhammad Nadeem; Pannipara, Mehboobali
2015-10-01
A new fluorophore, (2Z)-3-[4-(dimethylamino) phenyl]-2-(2-methylphenyl) prop-2-ene-nitrile (DPM), was synthesized by knoevenagel condensation of 4-(dimethylamino) benzaldehyde and 2-methylbenzyl cyanide in ethanol using NaOH as base. The electronic absorption and emission characteristic of DPM was studied in different solvents. The X-ray crystallographic structure of DPM was also investigated. A crystalline solid of DPM gives a strong green emission at about 533 nm; these phenomena are important for the application of DPM dye in organic photo emitting diode. DPM exhibits a red shift in its emission spectrum as solvent polarity increases, indicating a large change in the dipole moment of dye molecule upon excitation due to intramolecular charge transfer in excited DPM*. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. The DPM dye displays solubilization in cationic (CTAB) micelle and could be used as a probe to determine the critical micelle concentration (CMC) of CTAB.
Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T
2017-07-01
The title Zn II complex, [Zn(C 18 H 18 N 3 S) 2 ], (I), features two independent but chemically equivalent mol-ecules in the asymmetric unit. In each, the thio-semicarbazonate monoanion coordinates the Zn II atom via the thiol-ate-S and imine-N atoms, with the resulting N 2 S 2 donor set defining a distorted tetra-hedral geometry. The five-membered ZnSCN 2 chelate rings adopt distinct conformations in each independent mol-ecule, i.e. one ring is almost planar while the other is twisted about the Zn-S bond. In the crystal, the two mol-ecules comprising the asymmetric unit are linked by amine-N-H⋯N(imine) and amine-N-H⋯S(thiol-ate) hydrogen bonds via an eight-membered heterosynthon, {⋯HNCN⋯HNCS}. The dimeric aggregates are further consolidated by benzene-C-H⋯S(thiol-ate) inter-actions and are linked into a zigzag supra-molecular chain along the c axis via amine-N-H⋯S(thiol-ate) hydrogen bonds. The chains are connected into a three-dimensional architecture via phenyl-C-H⋯π(phen-yl) and π-π inter-actions, the latter occurring between chelate and phenyl rings [inter-centroid separation = 3.6873 (11) Å]. The analysis of the Hirshfeld surfaces calculated for (I) emphasizes the different inter-actions formed by the independent mol-ecules in the crystal and the impact of the π-π inter-actions between chelate and phenyl rings.
NASA Astrophysics Data System (ADS)
Bečka, Michal; Vilková, Mária; Šoral, Michal; Potočňák, Ivan; Breza, Martin; Béres, Tibor; Imrich, Ján
2018-02-01
Acridine thiosemicarbazones 3a-g, obtained through a two-step reaction between aromatic isothiocyanates and hydrazine followed by the treatment with acridin-9-carbaldehyde, in reaction with bifunctional reagents; methyl bromoacetate (MBA) and diethyl acetylenedicarboxylate (DEAD) afforded acridin-thiazolidinone derivatives 4a-g and 7a-f and not their regioisomers 6a-g and 9a-f. Derivatives 4a-g and 7a-f exhibit ZC2N6EN7C8 configuration. Upon standing in DMSO-d6 the thiazolidinones 4a-g and 7a-f spontaneously isomerized into ZC2N6ZN7C8 isomers 5a-g and 8a-f to give a mixture of the both stereoisomers. All compounds were fully characterized by multinuclear NMR, mass spectrometry (MS) and X-ray crystal structure of 4b is also described. X-ray diffraction study revealed that the representative compound 4b crystallized in the monoclinic crystal system with the C2/c space group and Z = 4. Intramolecular C1‧sbnd H1‧⋯N-7 hydrogen bond between the acridine proton H-1‧ and nitrogen N-7 of linker existed. This hydrogen bond is responsible for the E isomerism on C-8 atom which was observed in the NMR experiments. Quantum-chemical calculations and NOESY experiments confirmed ZC2N6ZN7C8 configuration of the transformed stereoisomers 5a-g and 8a-f.
NASA Astrophysics Data System (ADS)
Bedier, R. A.; Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.
2017-07-01
New ligand, (E)-2-((E)-2-(hydroxyimino)-1,2-diphenylethylidene)-N-(pyridin-2 yl) hydrazinecarbothioamide (H2DPPT) and its complexes [Fe(DPPT)Cl(H2O)], [Ni(H2DPPT)2Cl2], [Zn(HDPPT)(OAc)] and [Hg(HDPPT)Cl](H2O)4 were isolated and characterized by various of physico-chemical techniques. IR spectra show that H2DPPT coordinates to the metal ions as neutral NN bidentate, mononegative NNS tridentate and binegative NNSN tetradentate, respectively. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) has been calculated to elucidate the conductivity of the isolated complexes. The optical transition energy (Eg) is direct and equals 3.34 and 3.44 ev for Ni and Fe complexes, respectively. The ligand and their metal complexes were screened for antibacterial activity against the following bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results revealed that the metal complexes have more potent antibacterial compared with the ligand. Also, the degradation effect of the investigated compounds was tested showing that, Ni complex exhibited powerful and complete degradation effect on DNA.
Efficient synthetic protocols in glycerol under heterogeneous catalysis.
Cravotto, Giancarlo; Orio, Laura; Gaudino, Emanuela Calcio; Martina, Katia; Tavor, Dorith; Wolfson, Adi
2011-08-22
The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 °C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis, characterization and biological activity of C6-Schiff bases derivatives of chitosan.
Xu, Ruibo; Aotegen, Bayaer; Zhong, Zhimei
2017-12-01
C 6 -Schiff bases derivatives of chitosan were synthesized for the first time. C 2 -amino groups and C 3 -hydroxy groups were firstly protected by CuSO 4 ·5H 2 O, and the C 6 -hydroxy was then transformed into aldehyde, which then reacted with anilines through nucleophilic addition to introduce the CN group at C 6 -position in chitosan chain. Finally, C 6 -Schiff bases derivatives of chitosan were got by the deprotection of C 2 -NH 2 with cation exchange resin. The structures and properties of the new synthesized products were characterized by Fourier transform infrared spectroscopy, 13 C NMR, SEM image, and elemental analysis. The antibacterial activities of derivatives were tested in the experiment, and the results showed that the prepared chitosan derivatives had significantly improved antibacterial activity toward Staphylococcus aureus and Escherichia coli. The Cytotoxicity test showed that the prepared chitosan derivatives had low Cytotoxicity, compared with chitosan and C 2 -benzaldehyde Schiff bases of chitosan. This paper allowed a new method for the synthesis of Schiff bases of chitosan, which was enlightening. Copyright © 2017 Elsevier B.V. All rights reserved.
Brandão, Pedro Francisco; Ramos, Rui Miguel; Almeida, Paulo Joaquim; Rodrigues, José António
2017-02-08
A new approach is proposed for the extraction and determination of carbonyl compounds in solid samples, such as wood or cork materials. Cork products are used as building materials due to their singular characteristics; however, little is known about its aldehyde emission potential and content. Sample preparation was done by using a gas-diffusion microextraction (GDME) device for the direct extraction of volatile aldehydes and derivatization with 2,4-dinitrophenylhydrazine. Analytical determination of the extracts was done by HPLC-UV, with detection at 360 nm. The developed methodology proved to be a reliable tool for aldehyde determination in cork agglomerate samples with suitable method features. Mass spectrometry studies were performed for each sample, which enabled the identification, in the extracts, of the derivatization products of a total of 13 aldehydes (formaldehyde, acetaldehyde, furfural, propanal, 5-methylfurfural, butanal, benzaldehyde, pentanal, hexanal, trans-2-heptenal, heptanal, octanal, and trans-2-nonenal) and 4 ketones (3-hydroxy-2-butanone, acetone, cyclohexanone, and acetophenone). This new analytical methodology simultaneously proved to be consistent for the identification and determination of aldehydes in cork agglomerates and a very simple and straightforward procedure.
Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming
2018-02-05
The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinetics of acetaminophen degradation by Fenton oxidation in a fluidized-bed reactor.
de Luna, Mark Daniel G; Briones, Rowena M; Su, Chia-Chi; Lu, Ming-Chun
2013-01-01
Acetaminophen (ACT), an analgesic and antipyretic substance, is one of the most commonly detected pharmaceutical compound in surface waters and wastewaters. In this study, fluidized-bed Fenton (FB-Fenton) was used to decompose ACT into its final degradation products. The 1.45-L cylindrical glass reactor had inlet, outlet and recirculating sections. SiO(2) carrier particles were supported by glass beads with 2-4 mm in diameter. ACT concentration was determined by high performance liquid chromatography (HPLC). During the first 40 min of reaction, a fast initial ACT removal was observed and the "two-stage" ACT degradation conformed to a pseudo reaction kinetics. The effects of ferrous ion dosage and [Fe(2+)]/[H(2)O(2)] (FH ratio) were integrated into the derived pseudo second-order kinetic model. A reaction pathway was proposed based on the intermediates detected through SPME/GC-MS. The aromatic intermediates identified were hydroquinone, benzaldehydes and benzoic acids while the non-aromatic substances include alcohols, ketones, aldehydes and carboxylic acids. Rapid initial ACT degradation rate can be accomplished by high initial ferrous ion concentration and/or low FH ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.
Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes
NASA Astrophysics Data System (ADS)
Shabbir, Muhammad; Akhter, Zareen; Ismail, Hammad; Mirza, Bushra
2017-10-01
Novel ether based Schiff bases (HL1- HL4) were synthesized from 5-chloro-2-hydroxy benzaldehyde and primary amines (1-amino-4-phenoxybenzene, 4-(4-aminophenyloxy) biphenyl, 1-(4-aminophenoxy) naphthalene and 2-(4-aminophenoxy) naphthalene). From these Schiff bases copper(II) complexes (Cu(L1)2-Cu(L4)2)) were synthesized and characterized by elemental analysis and spectroscopic (FTIR, NMR) techniques. The synthesized Schiff bases and copper(II) complexes were further assessed for various biological studies. In brine shrimp assay the copper(II) complexes revealed 4-fold higher activity (LD50 3.8 μg/ml) as compared with simple ligands (LD50 12.4 μg/ml). Similar findings were observed in potato disc antitumor assay with higher activities for copper(II) complexes (IC50 range 20.4-24.1 μg/ml) than ligands (IC50 range 40.5-48.3 μg/ml). DPPH assay was performed to determine the antioxidant potential of the compounds. Significant antioxidant activity was shown by the copper(II) complexes whereas simple ligands have shown no activity. In DNA protection assay significant protection behavior was exhibited by simple ligand molecules while copper(II) complexes showed neutral behavior (neither protective nor damaging).
Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.
Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy
2009-08-10
Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.
Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco
2015-06-01
Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.
Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d’Ischia, Marco
2015-01-01
Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system. PMID:26246999
Chemical composition and antimicrobial activity of the essential oil of apricot seed.
Lee, Hyun-Hee; Ahn, Jeong-Hyun; Kwon, Ae-Ran; Lee, Eun Sook; Kwak, Jin-Hwan; Min, Yu-Hong
2014-12-01
In traditional oriental medicine, apricot (Prunus armeniaca L.) seed has been used to treat skin diseases such as furuncle, acne vulgaris and dandruff, as well as coughing, asthma and constipation. This study describes the phytochemical profile and antimicrobial potential of the essential oil obtained from apricot seeds (Armeniacae Semen). The essential oil isolated by hydrodistillation was analysed by gas chromatography-mass spectroscopy. Benzaldehyde (90.6%), mandelonitrile (5.2%) and benzoic acid (4.1%) were identified. Disc diffusion, agar dilution and gaseous contact methods were performed to determine the antimicrobial activity against 16 bacteria and two yeast species. The minimum inhibitory concentrations ranged from 250 to 4000, 500 to 2000 and 250 to 1000 µg/mL for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The minimum inhibitory doses by gaseous contact ranged from 12.5 to 50, 12.5 to 50 and 3.13 to 12.5 mg/L air for Gram-positive bacteria, Gram-negative bacteria and yeast strains, respectively. The essential oil exhibited a variable degree of antimicrobial activity against a range of bacteria and yeasts tested. Copyright © 2014 John Wiley & Sons, Ltd.
Chindapan, Nathamol; Devahastin, Sakamon; Chiewchan, Naphaporn; Sablani, Shyam S
2011-09-01
Fish sauce is an ingredient that exhibits unique flavor and is widely used by people in Southeast Asia. Fish sauce, however, contains a significant amount of salt (sodium chloride). Recently, electrodialysis (ED) has been successfully applied to reduce salt in fish sauce; however, no information is available on the effect of ED on changes in compounds providing aroma and taste of ED-treated fish sauce. The selected aroma compounds, amino acids, and sensory quality of the ED-treated fish sauce with various salt concentrations were then analyzed. The amounts of trimethylamine, 2,6-dimethylpyrazine, phenols, and all carboxylic acids except for hexanoic acid significantly decreased, whereas benzaldehyde increased significantly when the salt removal level was higher. The amounts of all amino acids decreased with the increased salt removal level. Significant difference in flavor and saltiness intensity among ED-treated fish sauce with various salt concentrations, as assessed by a discriminative test, were observed. Information obtained in this work can serve as a guideline for optimization of a process to produce low-sodium fish sauce by ED. It also forms a basis for further in-depth sensory analysis of low-sodium fish sauce. © 2011 Institute of Food Technologists®
Son, Young-A; Gwon, Seon-Yeong; Lee, Sue-Yoen; Kim, Sung-Hoon
2010-01-01
2-[[3-Cyano-4-(N-ethyl-N-(2-hydroxyethyl)amino)styryl]-5,5-dimethylfuran-2(5H)-ylidene]malononitrile styryl dye was prepared by the condensation of 4-[(2-hydroxy-ethyl)-methyl-amino]-benzaldehyde (donor moiety) with 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (acceptor moiety). The corresponding design, synthesis and solvatochromic characteristics of the intramolecular charge-transfer (ICT) dye chromophore were discussed and determined. Optical properties such as absorption and fluorescence emission spectra were monitored in several solvent media with different polarity. In this determination, the prepared dye chromophore showed positive solvatochromism effect and the resulting solvatochromic characteristics were studied with semiempirical calculations. The energy potentials of this dye chromophore such as HOMO and LUMO values were calculated by computational simulation approaches using Material Studio 4.3. Furthermore, the functions as a molecular switching sensor with pH stimulation of alkali-acid addition were determined in DMSO, which was operated by deprotonation/protonation effects based on intramolecular charge-transfer system. Copyright 2009 Elsevier B.V. All rights reserved.
Low temperature oxidation of benzene and toluene in mixture with n-decane
Herbinet, Olivier; Husson, Benoit; Ferrari, Maude; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique
2013-01-01
The oxidation of two blends, benzene/n-decane and toluene/n-decane, was studied in a jet-stirred reactor with gas chromatography analysis (temperatures from 500 to 1100 K, atmospheric pressure, stoichiometric mixtures). The studied hydrocarbon mixtures contained 75% of aromatics in order to highlight the chemistry of the low-temperature oxidation of these two aromatic compounds which have a very low reactivity compared to large alkanes. The difference of behavior between the two aromatic reactants is highly pronounced concerning the formation of derived aromatic products below 800 K. In the case of benzene, only phenol could be quantified. In the case of toluene, significant amounts of benzaldehyde, benzene, and cresols were also formed, as well as several heavy aromatic products such as bibenzyl, phenylbenzylether, methylphenylbenzylether, and ethylphenylphenol. A comparison with results obtained with neat n-decane showed that the reactivity of the alkane is inhibited by the presence of benzene and, to a larger extent, toluene. An improved model for the oxidation of toluene was developed based on recent theoretical studies of the elementary steps involved in the low-temperature chemistry of this molecule. Simulations using this model were successfully compared with the obtained experimental results. PMID:23762017
Synthesis and characterization of Cr-MSU-1 and its catalytic application for oxidation of styrene
NASA Astrophysics Data System (ADS)
Liu, Hong; Wang, Zhigang; Hu, Hongjiu; Liang, Yuguang; Wang, Mengyang
2009-07-01
Chromium-containing mesoporous silica material Cr-MSU-1 was synthesized using lauryl alcohol-polyoxyethylene (23) ether as templating agent under the neutral pH condition by two-step method. The sample was characterized by XRD, TEM, FT-IR, UV-Vis, ESR, ICP-AES and N 2 adsorption. Its catalytic performance for oxidation of styrene was studied. Effects of the solvent used, the styrene/H 2O 2 mole ratio and the reaction temperature and time on the oxidation of styrene over the Cr-MSU-1 catalyst were examined. The results indicate that Cr ions have been successfully incorporated into the framework of MSU-1 and the Cr-MSU-1 material has a uniform worm-like holes mesoporous structure. After Cr-MSU-1 is calcined, most of Cr 3+ is oxidized to Cr 5+ and Cr 6+ in tetrahedral coordination and no extra-framework Cr 2O 3 is formed. The Cr-MSU-1 catalyst is highly active for the selective oxidation of styrene and the main reaction products over Cr-MSU-1 are benzaldehyde and phenylacetaldehyde. Its catalytic performance remains stable within five repeated runs and no leaching is noticed for this chromium-based catalyst.
Improved rate of substrate oxidation catalyzed by genetically-engineered myoglobin.
Chand, Subhash; Ray, Sriparna; Wanigasekara, Eranda; Yadav, Poonam; Crawford, Joshua A; Armstrong, Daniel W; Rajeshwar, Krishnan; Pierce, Brad S
2018-02-01
This study showcases the potential of unnatural amino acids to enable non-natural functions when incorporated in the protein scaffold of heme metalloproteins. For this purpose, a genetically-engineered myoglobin (Mb) mutant was created by incorporating redox-active 3-amino-l-tyrosine (NH 2 Tyr) into its active site, replacing the distal histidine (H64) with NH 2 Tyr. In peroxide-shunt assays, this variant exhibits an increased rate of turnover for thioanisole and benzaldehyde oxidation as compared to the wild-type (WT) Mb. Indeed, in the presence of excess hydrogen peroxide (H 2 O 2 ), a 9-fold and 81-fold increase in activity was observed over multiple turnovers for thioanisole sulfoxidation and benzoic acid formation, respectively. The increased oxidation activity in the H64NH 2 Tyr Mb mutant underlined the role of NH 2 Tyr in the distal active-site scaffold in peroxide activation. Kinetic, electrochemical, and EPR spectroscopic experiments were performed. On the basis of these studies, it is argued that the single NH 2 Tyr residue within the Mb variant simultaneously serves the role of the conserved His/Arg-pair within the distal pocket of horseradish peroxidase. Copyright © 2018 Elsevier Inc. All rights reserved.
Marijanović, Zvonimir; Roje, Marin; Kuś, Piotr M.; Jokić, Stela; Čož-Rakovac, Rozelinda
2018-01-01
Performed phytochemical study contributes to the knowledge of volatile organic compounds (VOCs) of Halopteris filicina (Grateloup) Kützing, Dictyota dichotoma (Hudson) J. V. Lamouroux, Posidonia oceanica (L.) Delile and Flabellia petiolata (Turra) Nizamuddin from the Adriatic Sea (single point collection). VOCs were investigated by headspace solid-phase microextraction (HS-SPME) and analysed by gas chromatography and mass spectrometry (GC-MS/FID). H. filicina headspace contained dimethyl sulfide (DMS; 12.8%), C8-compounds (e.g. fucoserratene (I; 9.5%)), benzaldehyde (II; 8.7%), alkane C17, dictyopterene D and C (III, IV), tribromomethane (V), 1-iodopentane, others. F. petiolata headspace was characterized by DMS (22.2%), 6-methylhept-5-en-2-one (9.5%), C17 (9.1%), II (6.5%), compounds I-V. DMS (59.3%), C15 (14.5%), C17 (7.2%) and C19 (6.3%) dominated in P. oceanica headspace. Sesquiterpenes were found in D. dichotoma, predominantly germacrene D (28.3%) followed by other cadinenyl (abundant), muurolenyl and amorphenyl structures. Determined VOCs may be significant for chemosystematics and chemical communications in marine ecosystem. PMID:29738535
Teles, Helder Lopes; Sordi, Renata; Silva, Geraldo Humberto; Castro-Gamboa, Ian; Bolzani, Vanderlan da Silva; Pfenning, Ludwig Heinrich; de Abreu, Lucas Magalhães; Costa-Neto, Claudio Miguel; Young, Maria Claudia Marx; Araújo, Angela Regina
2006-12-01
6,8-Dimethoxy-3-(2'-oxo-propyl)-coumarin (1) and 2,4-dihydroxy-6-[(1'E,3'E)-penta-1',3'-dienyl]-benzaldehyde (2), in addition to the known compound periconicin B (3), were isolated from the ethyl acetate extract of Periconia atropurpurea, an endophytic fungus obtained from the leaves of Xylopia aromatica, a native plant of the Brazilian Cerrado. Their chemical structures were assigned based on analyses of MS, 1D and 2D-NMR spectroscopic experiments. Biological analyses were performed using two mammalian cell lines, human cervix carcinoma (HeLa) and Chinese hamster ovary (CHO). The results showed that compound 1 had no effect when compared to the control group, which was treated with the vehicle (DMSO). Compound 2 was able to induce a slight increase in cell proliferation of HeLa (37% of increase) and CHO (38% of increase) cell lines. Analysis of compound 3 showed that it has potent cytotoxic activity against both cell lines, with an IC50 of 8.0 microM. Biological analyses using the phytopathogenic fungi Cladosporium sphaerospermum and C. cladosporioides revealed that also 2 showed potent antifungal activity compared to nystatin.
Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D
2006-04-01
The control of industrial products for minimization of their impact on the environment and human health requires the development of specific analysis methods. Information provided by these methods about toxic components, by-products, and other derivatives may also be useful to reduce the possible impact of industrial products. The studied compound in this paper, triethylbenzylammonium chloride (TEBA), is mainly used in industrial synthesis. This quaternary compound and its residual products coming from quaternization reaction (benzyl chloride, benzaldehyde, and benzyl alcohol) are analyzed by HPLC. The separation is based on control of the silanophilic contribution to TEBA retention because of the quaternary nature of this compound. The effect of the three buffers (sodium acetate, ammonium acetate, and sodium formate) and their concentrations in the chromatographic behavior of the quaternary compound is examined. The buffer cation and anion regulate TEBA retention. Also, the concentration of the quaternary compound is another parameter that had influence in some aspects of its chromatographic behavior (e.g., retention and symmetry). The proposed method is applied to TEBA synthesis along, with the formation and removal of impurities with the results compared with those obtained for the quaternary compound benzalkonium chloride.
Yang, Yin; Battesti, Marie-José; Costa, Jean; Paolini, Julien
2014-01-01
Pollen spectrum, physicochemical parameters and volatile fraction of Corsican “spring” honeys were investigated with the aim of developing a multidisciplinary method for the qualification of honeys in which nectar resources are under-represented in the pollen spectrum. Forty-one Corsican “spring” honeys were certified by melissopalynological analysis using directory and biogeographical origin of 50 representative taxa. Two groups of honeys were distinguished according to the botanical origin of samples: “clementine” honeys characterized by the association of cultivated species from oriental plain and other “spring” honeys dominated by wild herbaceous taxa from the ruderal and/or maquis area. The main compounds of the “spring” honey volatile fraction were phenylacetaldehyde, benzaldehyde and methyl-benzene. The volatile composition of “clementine” honeys was also characterized by three lilac aldehyde isomers. Statistical analysis of melissopalynological, physicochemical and volatile data showed that the presence of Citrus pollen in “clementine” honeys was positively correlated with the amount of linalool derivatives and methyl anthranilate. Otherwise, the other “spring” honeys were characterized by complex nectariferous species associations and the content of phenylacetaldehyde and methyl syringate. PMID:28234308
Winter, Jaclyn M.; Cascio, Duilio; Dietrich, David; ...
2015-07-14
Modular collaboration between iterative fungal polyketide synthases (IPKSs) is an important mechanism for generating structural diversity of polyketide natural products. Inter-PKS communication and substrate channeling are controlled in large by the starter unit acyl carrier protein transacylase (SAT) domain found in the accepting IPKS module. Here in this study, we reconstituted the modular biosynthesis of the benzaldehyde core of the chaetoviridin and chaetomugilin azaphilone natural products using the IPKSs CazF and CazM. Our studies revealed a critical role of CazM’s SAT domain in selectively transferring a highly reduced triketide product from CazF. In contrast, a more oxidized triketide that ismore » also produced by CazF and required in later stages of biosynthesis of the final product is not recognized by the SAT domain. The structural basis for the acyl unit selectivity was uncovered by the first X-ray structure of a fungal SAT domain, highlighted by a covalent hexanoyl thioester intermediate in the SAT active site. Finally, the crystal structure of SAT domain will enable protein engineering efforts aimed at mixing and matching different IPKS modules for the biosynthesis of new compounds.« less