Sample records for benzenes

  1. Benzene oxidation coupled to sulfate reduction

    USGS Publications Warehouse

    Lovley, D.R.; Coates, J.D.; Woodward, J.C.; Phillips, E.J.P.

    1995-01-01

    Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to I ??M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [14C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as 14CO2. Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of 14CO2 from [14C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [14C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O2, with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.

  2. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  3. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  4. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  5. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  6. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or butyl...

  7. Anaerobic Benzene Degradation in Petroleum-Contaminated Aquifer Sediments after Inoculation with a Benzene-Oxidizing Enrichment

    PubMed Central

    Weiner, Jonathan M.; Lovley, Derek R.

    1998-01-01

    Sediments from the sulfate-reduction zone of a petroleum-contaminated aquifer, in which benzene persisted, were inoculated with a benzene-oxidizing, sulfate-reducing enrichment from aquatic sediments. Benzene was degraded, with apparent growth of the benzene-degrading population over time. These results suggest that the lack of benzene degradation in the sulfate-reduction zones of some aquifers may result from the failure of the appropriate benzene-degrading sulfate reducers to colonize the aquifers rather than from environmental conditions that are adverse for anaerobic benzene degradation. PMID:9464422

  8. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1995-12-19

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.

  9. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1995-01-01

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.

  10. Critical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.

    PubMed

    Medinsky, M A; Schlosser, P M; Bond, J A

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes, such as enzymatic oxidation, and deactivation processes, like conjugation and excretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Percutaneous penetration of benzene and benzene contained in solvents used in the rubber industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maibach, H.I.; Anjo, D.M.

    1981-09-01

    Penetration of benzene through the skin of the rhesus monkey was determined using /sup 14/C-benzene, and quantitating the labelled metabolites in urine. The modes of application and amounts of benzene that penetrated the skin (indicated in parentheses) are as follows: (1) a single, direct cutaneous application of liquid benzene (0.172 +/- 0.139%); (2) a single application of benzene-containing (0.36%) solvent (0.0805 +/- 0.0306%); (3) multiple washes with full-strength benzene (0.848 +/- 0.0806%); (4) multiple washes with the benzene-containing (0.35%) solvent (0.431 +/- 0.258%); (5) removal of the stratum corneum followed by application of full-strength benzene (0.09 +/- 0.627%); and (6)more » application of benzene to the palmar surface (0.651 +/- 0.482%). Until more complete human data becomes available, benzene penetration in the monkey may be used to estimate penetration in man, both for industrial hygiene purposes and general toxicological use.« less

  12. A quantitative method for estimating dermal benzene absorption from benzene-containing hydrocarbon liquids.

    PubMed

    Petty, Stephen E; Nicas, Mark; Boiarski, Anthony A

    2011-01-01

    This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations < or = 5% vol/vol. When a liquid other than pure benzene is on nonoccluded skin, benzene may preferentially evaporate from the liquid, which thereby decreases the benzene flux. We present a time-averaging method here for estimating the reduced dermal flux during evaporation. Example calculations are presented for benzene at 2% vol/vol in gasoline, and for benzene at 0.1% vol/vol in a less volatile liquid. We also discuss other factors affecting dermal absorption.

  13. Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens

    PubMed Central

    Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar; Smith, Jessica A.; Bain, Timothy S.; Lovley, Derek R.

    2013-01-01

    Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation. PMID:24096430

  14. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  15. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  16. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  17. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  18. 40 CFR 80.1238 - How is a refinery's or importer's average benzene concentration determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average benzene concentration determined? 80.1238 Section 80.1238 Protection of Environment ENVIRONMENTAL... Benzene Gasoline Benzene Requirements § 80.1238 How is a refinery's or importer's average benzene concentration determined? (a) The average benzene concentration of gasoline produced at a refinery or imported...

  19. Transport properties of nonelectrolyte liquid mixtures—V. Viscosity coefficients for binary mixtures of benzene plus alkanes at saturation pressure from 283 to 393 K

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Young, K. J.

    1981-09-01

    Viscosity coefficient measurements at saturation pressure are reported for benzene + n-hexane, benzene + n-octane, benzene + n-decane, benzene + n-dodecane, benzene + n-hexadecane, and benzene + cyclohexane at temperatures from 283 to 393 K. The characteristic parameter G in the Grunberg and Nissan equation 10765_2004_Article_BF00504187_TeX2GIFE1.gif ell nη = x_1 ell nη _1 + x_2 ell nη _2 + x_1 x_2 G is found to be both composition and temperature dependent for benzene + n-alkane mixtures, but it is independent of composition for the system benzene + cyclohexane.

  20. Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus▿†

    PubMed Central

    Holmes, Dawn E.; Risso, Carla; Smith, Jessica A.; Lovley, Derek R.

    2011-01-01

    Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]benzene to [14C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [14C]benzoate was produced from [14C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms. PMID:21742914

  1. 54 FR 38044: National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By- Product Recovery Plants

    EPA Pesticide Factsheets

    Final Rule on National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.

  2. 40 CFR 61.270 - Applicability and designation of sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...

  3. 40 CFR 61.270 - Applicability and designation of sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...

  4. 40 CFR 61.270 - Applicability and designation of sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...

  5. 40 CFR 61.270 - Applicability and designation of sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...

  6. 40 CFR 61.270 - Applicability and designation of sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...

  7. Elevated Atmospheric Levels of Benzene and Benzene-Related Compounds from Unconventional Shale Extraction and Processing: Human Health Concern for Residential Communities.

    PubMed

    Rich, Alisa L; Orimoloye, Helen T

    2016-01-01

    The advancement of natural gas (NG) extraction across the United States (U.S.) raises concern for potential exposure to hazardous air pollutants (HAPs). Benzene, a HAP and a primary chemical of concern due to its classification as a known human carcinogen, is present in petroleum-rich geologic formations and is formed during the combustion of bypass NG. It is a component in solvents, paraffin breakers, and fuels used in NG extraction and processing (E&P). The objectives of this study are to confirm the presence of benzene and benzene-related compounds (benzene[s]) in residential areas, where unconventional shale E&P is occurring, and to determine if benzene[s] exists in elevated atmospheric concentrations when compared to national background levels. Ambient air sampling was conducted in six counties in the Dallas/Fort Worth Metroplex with passive samples collected in evacuated 6-L Summa canisters. Samples were analyzed by gas chromatography/mass spectrometry, with sampling performed at variable distances from the facility fence line. Elevated concentrations of benzene[s] in the atmosphere were identified when compared to U.S. Environmental Protection Agency's Urban Air Toxics Monitoring Program. The 24-hour benzene concentrations ranged from 0.6 parts per billion by volume (ppbv) to 592 ppbv, with 1-hour concentrations from 2.94 ppbv to 2,900.20 ppbv. Benzene is a known human carcinogen capable of multisystem health effects. Exposure to benzene is correlated with bone marrow and blood-forming organ damage and immune system depression. Sensitive populations (children, pregnant women, elderly, immunocompromised) and occupational workers are at increased risk for adverse health effects from elevated atmospheric levels of benzene[s] in residential areas with unconventional shale E&P.

  8. Anaerobic degradation of benzene in diverse anoxic environments

    USGS Publications Warehouse

    Kazumi, J.; Caldwell, M.E.; Suflita, J.M.; Lovely, D.R.; Young, L.Y.

    1997-01-01

    Benzene has often been observed to be resistant to microbial degradation under anoxic conditions. A number of recent studies, however, have demonstrated that anaerobic benzene utilization can occur. This study extends the previous reports of anaerobic benzene degradation to sediments that varied with respect to contamination input, predominant redox condition, and salinity. In spite of differences in methodology, microbial degradation of benzene was noted in slurries constructed with sediments from various geographical locations and range from aquifer sands to fine-grained estuarine muds, under methanogenic, sulfate-reducing, and iron-reducing conditions. In aquifer sediments under methanogenic conditions, benzene loss was concomitant with methane production, and microbial utilization of [14C]benzene yielded 14CO2 and 14CH4. In slurries with estuarine and aquifer sediments under sulfate-reducing conditions, the loss of sulfate in amounts consistent with the stoichiometric degradation of benzene or the conversion of [14C]benzene to 14CO2 indicates that benzene was mineralized. Benzene loss also occurred in the presence of Fe(III) in sediments from freshwater environments. Microbial benzene utilization, however, was not observed under denitrifying conditions. These results indicate that the potential for the anaerobic degradation of benzene, which was once thought to be resistant to non-oxygenase attack, exists in a variety of aquatic sediments from widely distributed locations.

  9. Benzene degradation in a denitrifying biofilm reactor: activity and microbial community composition.

    PubMed

    van der Waals, Marcelle J; Atashgahi, Siavash; da Rocha, Ulisses Nunes; van der Zaan, Bas M; Smidt, Hauke; Gerritse, Jan

    2017-06-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than 14 years on benzene with nitrate as electron acceptor. We determined steady state degradation rates, microbial community composition dynamics in the biofilm, and the initial anaerobic benzene degradation reactions. Benzene was degraded at a rate of 0.15 μmol/mg protein/day and a first-order rate constant of 3.04/day which was fourfold higher than rates reported previously. Bacteria belonging to the Peptococcaceae were found to play an important role in this anaerobic benzene-degrading biofilm culture, but also members of the Anaerolineaceae were predicted to be involved in benzene degradation or benzene metabolite degradation based on Illumina MiSeq analysis of 16S ribosomal RNA genes. Biomass retention in the reactor using a filtration finger resulted in reduction of benzene degradation capacity. Detection of the benzene carboxylase encoding gene, abcA, and benzoic acid in the culture vessel indicated that benzene degradation proceeds through an initial carboxylation step.

  10. Benzene patterns in different urban environments and a prediction model for benzene rates based on NOx values

    NASA Astrophysics Data System (ADS)

    Paz, Shlomit; Goldstein, Pavel; Kordova-Biezuner, Levana; Adler, Lea

    2017-04-01

    Exposure to benzene has been associated with multiple severe impacts on health. This notwithstanding, at most monitoring stations, benzene is not monitored on a regular basis. The aims of the study were to compare benzene rates in different urban environments (region with heavy traffic and industrial region), to analyse the relationship between benzene and meteorological parameters in a Mediterranean climate type, to estimate the linkages between benzene and NOx and to suggest a prediction model for benzene rates based on NOx levels in order contribute to a better estimation of benzene. Data were used from two different monitoring stations, located on the eastern Mediterranean coast: 1) a traffic monitoring station in Tel Aviv, Israel (TLV) located in an urban region with heavy traffic; 2) a general air quality monitoring station in Haifa Bay (HIB), located in Israel's main industrial region. At each station, hourly, daily, monthly, seasonal, and annual data of benzene, NOx, mean temperature, relative humidity, inversion level, and temperature gradient were analysed over three years: 2008, 2009, and 2010. A prediction model for benzene rates based on NOx levels (which are monitored regularly) was developed to contribute to a better estimation of benzene. The severity of benzene pollution was found to be considerably higher at the traffic monitoring station (TLV) than at the general air quality station (HIB), despite the location of the latter in an industrial area. Hourly, daily, monthly, seasonal, and annual patterns have been shown to coincide with anthropogenic activities (traffic), the day of the week, and atmospheric conditions. A strong correlation between NOx and benzene allowed the development of a prediction model for benzene rates, based on NOx, the day of the week, and the month. The model succeeded in predicting the benzene values throughout the year (except for September). The severity of benzene pollution was found to be considerably higher at the traffic station (TLV) than at the general air quality station (HIB), despite being located in an industrial area. Hourly, daily, seasonal, and annual patterns of benzene rates have been shown to coincide with anthropogenic activities (traffic), day of the week, and atmospheric conditions. A prediction model for benzene rates was developed, based on NOx, the day of the week, and the month. The model suggested in this study might be useful for identifying potential risk of benzene in other urban environments.

  11. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects.

    PubMed

    Carbonari, Damiano; Chiarella, Pieranna; Mansi, Antonella; Pigini, Daniela; Iavicoli, Sergio; Tranfo, Giovanna

    2016-01-01

    Benzene is a ubiquitous occupational and environmental pollutant. Improved industrial hygiene allowed airborne concentrations close to the environmental context (1-1000 µg/m(3)). Conversely, new limits for benzene levels in urban air were set (5 µg/m(3)). The biomonitoring of exposure to such low benzene concentrations are performed measuring specific and sensitive biomarkers such as S-phenylmercapturic acid, trans, trans-muconic acid and urinary benzene: many studies referred high variability in the levels of these biomarkers, suggesting the involvement of polymorphic metabolic genes in the individual susceptibility to benzene toxicity. We reviewed the influence of metabolic polymorphisms on the biomarkers levels of benzene exposure and effect, in order to understand the real impact of benzene exposure on subjects with increased susceptibility.

  12. Benzene

    Cancer.gov

    Learn about benzene, a component of crude oil and other substances. Exposure to benzene may increase the risk of leukemia and other blood disorders. Among smokers, 90 percent of benzene exposure comes from smoking. Benzene may also be found in glues, adhesives, and paint or cleaning products.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badham, Helen J.; Winn, Louise M., E-mail: winnl@queensu.c; School of Environmental Studies, Queen's University, Kingston, Ontario, K7L 3N6

    Benzene is a ubiquitous occupational and environmental toxicant. Exposures to benzene both prenatally and during adulthood are associated with the development of disorders such as aplastic anemia and leukemia. Mechanisms of benzene toxicity are unknown; however, generation of reactive oxygen species (ROS) by benzene metabolites may play a role. Little is known regarding the effects of benzene metabolites on erythropoiesis. Therefore, to determine the effects of in utero exposure to benzene on the growth and differentiation of fetal erythroid progenitor cells (CFU-E), pregnant CD-1 mice were exposed to benzene and CFU-E numbers were assessed in fetal liver (hematopoietic) tissue. Inmore » addition, to determine the effect of benzene metabolite-induced ROS generation on erythropoiesis, HD3 chicken erythroblast cells were exposed to benzene, phenol, or hydroquinone followed by stimulation of erythrocyte differentiation. Our results show that in utero exposure to benzene caused significant alterations in female offspring CFU-E numbers. In addition, exposure to hydroquinone, but not benzene or phenol, significantly reduced the percentage of differentiated HD3 cells, which was associated with an increase in ROS. Pretreatment of HD3 cells with polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) prevented hydroquinone-induced inhibition of erythropoiesis, supporting the hypothesis that ROS generation is involved in the development of benzene erythrotoxicity. In conclusion, this study provided evidence that ROS generated as a result of benzene metabolism may significantly alter erythroid differentiation, potentially leading to the development of Blood Disorders.« less

  14. [Epidemiological study of cytopenia among benzene-exposed workers and its influential factors].

    PubMed

    Peng, Juan-juan; Liu, Mei-xia; Yang, Feng; Guo, Wei-wei; Zhuang, Ran; Jia, Xian-dong

    2013-03-01

    To evaluate the benzene exposure level and cytopenia among the benzene exposed workers in Shanghai, China and to analyze the influential factors for the health of benzene-exposed workers. A total of 3314 benzene-exposed workers, who were from 85 benzene-related enterprises selected by stratified random sampling based on enterprise sizes and industries, were included in the study. The time-weighted average (TWA) concentration of benzene in each workshop was measured by individual sampling and fixed point sampling, and the benzene exposure level in workshop was evaluated accordingly. The occupational health examination results and health status of benzene-exposed workers were collected. The median of TW A concentrations of benzene was 0.3 mg/m3. The TWA concentrations measured at 7 ( 1.4%) of the 504 sampling points were above the safety limit. Of the 7 points, 3 were from large enterprises, 2 from medium enterprises, and 2 from small enterprises; 3 were from shipbuilding industry, 1 from chemical industry, and 3 from light industry. Of the 3314 benzene-exposed workers, 451 ( 13.6%) had cytopenia, including 339 males ( 339/2548, 13.3%) and 112 females ( 112/766, 14.6% ). There were significant differences in the incidence rates of leukopenia and neutropenia among the benzene-exposed workers of different sexes and ages (P<0.05); there were significant differences in the incidence rate of cytopenia among the benzene-exposed workers of different ages and working years ( P<0.05 ); there were significant differences in the incidence of neutropenia among the benzene exposed workers of different working years ( P<0.05). Monitoring and intervention measures should be enhanced to protect the benzene-exposed workers in the large enterprises in shipbuilding industry and medium and private enterprises in chemical industry from occupational hazards.

  15. Anaerobic benzene degradation by bacteria

    PubMed Central

    Vogt, Carsten; Kleinsteuber, Sabine; Richnow, Hans‐Hermann

    2011-01-01

    Summary Benzene is a widespread and toxic contaminant. The fate of benzene in contaminated aquifers seems to be primarily controlled by the abundance of oxygen: benzene is aerobically degraded at high rates by ubiquitous microorganisms, and the oxygen‐dependent pathways for its breakdown were elucidated more than 50 years ago. In contrast, benzene was thought to be persistent under anoxic conditions until 25 years ago. Nevertheless, within the last 15 years, several benzene‐degrading cultures have been enriched under varying electron acceptor conditions in laboratories around the world, and organisms involved in anaerobic benzene degradation have been identified, indicating that anaerobic benzene degradation is a relevant environmental process. However, only a few benzene degraders have been isolated in pure culture so far, and they all use nitrate as an electron acceptor. In some highly enriched strictly anaerobic cultures, benzene has been described to be mineralized cooperatively by two or more different organisms. Despite great efforts, the biochemical mechanism by which the aromatic ring of benzene is activated in the absence of oxygen is still not fully elucidated; methylation, hydroxylation and carboxylation are discussed as likely reactions. This review summarizes the current knowledge about the ‘key players’ of anaerobic benzene degradation under different electron acceptor conditions and the possible pathway(s) of anaerobic benzene degradation. PMID:21450012

  16. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  17. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  18. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  19. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  20. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  1. 40 CFR 80.1295 - How are gasoline benzene credits used?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are gasoline benzene credits used... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1295 How are gasoline benzene credits used? (a) Credit use. (1) Gasoline benzene...

  2. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  3. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  4. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  5. 40 CFR 80.1230 - What are the gasoline benzene requirements for refiners and importers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the gasoline benzene... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1230 What are the gasoline benzene requirements for refiners...

  6. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards. (a) Material safety data sheet. A material safety data sheet (MSDS) addressing benzene must be made available...

  7. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  8. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards. (a) Material safety data sheet. A material safety data sheet (MSDS) addressing benzene must be made available...

  9. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  10. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  11. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards. (a) Material safety data sheet. A material safety data sheet (MSDS) addressing benzene must be made available...

  12. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  13. 40 CFR 80.1280 - How are refinery benzene baselines calculated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are refinery benzene baselines... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1280 How are refinery benzene baselines calculated? (a) A refinery's benzene...

  14. MEASUREMENT OF BENZENE OXIDE IN THE BLOOD OF RATS FOLLOWING ADMINISTRATION OF BENZENE

    EPA Science Inventory

    Although it is generally assumed that metabolism of benzene proceeds through an initial step involving oxidation to benzene oxide (BO) by CYP450 in the liver, the production of BO has never been unambiguously confirmed in animals dosed with benzene. Furthermore, prevailing hypo...

  15. Refiners have several options for reducing gasoline benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, A.R.; Hernandez-Robinson, A.; Ram, S.

    1993-09-13

    Although the linkage between gasoline benzene content and evaporative, running, and tailpipe emission is not yet defined, the U.S. 1990 Clean Air Act Amendments mandate a benzene content of less than 1.0 vol% in reformulated gasolines. Likewise, the California Air Resources Board plans to restrict benzene to less than about 0.8 vol %. Mobil Research and Development Corp. and Badger Co. Inc. have developed several alternatives for reducing benzene levels in gasoline. Where benzene extraction is viable and maximum catalytic reformer hydrogen is needed, the companies' cumene and ethylbenzene processes are desirable. Mobil's benzene reduction process can be an alternativemore » to benzene hydrosaturation. All of these processes utilize low-value offgas from the fluid catalytic cracking (FCC) unit.« less

  16. [Factors affecting benzene diffusion from contaminated soils to the atmosphere and flux characteristics].

    PubMed

    Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng

    2013-12-01

    The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.

  17. Genotoxic effects of occupational exposure to benzene in gasoline station workers

    PubMed Central

    SALEM, Eman; EL-GARAWANI, Islam; ALLAM, Heba; EL-AAL, Bahiga Abd; HEGAZY, Mofrih

    2017-01-01

    Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability. PMID:29070767

  18. Genotoxic effects of occupational exposure to benzene in gasoline station workers.

    PubMed

    Salem, Eman; El-Garawani, Islam; Allam, Heba; El-Aal, Bahiga Abd; Hegazy, Mofrih

    2018-04-07

    Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.

  19. Concomitant aerobic biodegradation of benzene and thiophene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyreborg, S.; Arvin, E.; Broholm, K.

    The concomitant aerobic biodegradation of benzene and thiophene was investigated in microcosm experiments using a groundwater enrichment culture. Benzene was biodegraded within 1 d, whereas thiophene could not be biodegraded as the sole source of carbon and energy. Some interesting phenomena were observed when both benzene and thiophene were present. In most cases, removal of thiophene was observed, and the removal occurred concomitantly with the biodegradation of benzene, suggesting that benzene was used as a primary substrate in the cometabolic biodegradation of thiophene. No biodegradation of the two compounds was observed for some combinations of concentrations, suggesting that thiophene couldmore » act as an inhibitor to benzene biodegradation. However, this effect could be overcome if more benzene was added to the microcosm. Residual concentrations of benzene and thiophene were observed in some microcosms and the data indicated that the biodegradation of the two compounds stopped when a critical threshold ratio between the concentrations of thiophene and benzene was reached. This ratio varied between 10 and 20. Results from modeling the biodegradation data suggested that thiophene was cometabolized concomitantly with the biodegradation of benzene and that the biodegradation may be described by a modified model based on a traditional model with an inhibition term incorporated.« less

  20. Species differences in the metabolism of benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, R.F.

    1996-12-01

    The pathways of metabolism of benzene appear to be qualitatively similar in all species studied thus far. However, there are quantitative differences in the fraction of benzene metabolized by the different pathways. These species differences become important for risk assessments based on animal data. Mice have a greater overall capacity to metabolize benzene than rats or primates, based on mass balance studies conducted in vivo using radiolabled benzene. Mice and monkeys metabolize more of the benzene to hydroquinone metabolites than do rats or chimpanzees, especially at low doses. Nonhuman primates metabolize less of the benzene to muconic acid than domore » rodents or humans. In all species studied, a greater proportion of benzene is converted to hydroquinone and ring-breakage metabolites at low doses than at high doses. This finding should be considered in attempting to extrapolate the toxicity of benzene observed at high doses to predicted toxicity at low doses. Because ring-breakage metabolites and hydroquinone have both been implicated in the toxicity of benzene, the higher formation of those metabolites in the mouse may partially explain why mice are more sensitive to benzene than are rats. Metabolism of benzene in humans, the species of interest, does not exactly mimic that of any animal species studied. More information on the urinary and blood metabolites of occupationally exposed people is required to determine the fractional conversion of benzene to putative toxic metabolites and the degree of variability present in human subjects. 12 refs., 4 tabs.« less

  1. Particle-bound benzene from diesel engine exhaust.

    PubMed

    Muzyka, V; Veimer, S; Shmidt, N

    1998-12-01

    The large surface area of the carbon core of diesel exhaust particles may contribute to the adsorption or condensation of such volatile carcinogenic organic compounds as benzene. The attention of this study focused on determining the distribution of benzene between the gas and particulate phases in the breathing zone of bus garage workers. Benzene and suspended particulate matter were evaluated jointly in the air of a municipal bus garage. Personal passive monitors were used for benzene sampling in the breathing zone of the workers. Active samplers were used for sampling diesel exhaust particles and the benzene associated with them. The benzene levels were measured by gas chromatography. Diesel engine exhaust from buses was the main source of air pollution caused by benzene and particles in this study. The concentration of benzene in the gas and particulate phases showed a wide range of variation, depending on the distance of the workplace from the operating diesel engine. Benzene present in the breathing zone of the workers was distributed between the gas and particulate phases. The amounts of benzene associated with particles were significantly lower in summer than in winter. The particulate matter of diesel exhaust contains benzene in amounts comparable to the concentrations of carcinogenic polycyclic aromatic hydrocarbons (PAH) and the usually found nitro-PAH. The concentration of benzene in the gas phase and in the suspended particulate matter of air can serve as an additional indicator of exposure to diesel exhaust and its carcinogenicity.

  2. Acetyl-l-carnitine partially prevents benzene-induced hematotoxicity and oxidative stress in C3H/He mice.

    PubMed

    Sun, Rongli; Zhang, Juan; Wei, Haiyan; Meng, Xing; Ding, Qin; Sun, Fengxia; Cao, Meng; Yin, Lihong; Pu, Yuepu

    2017-04-01

    Benzene is an environmental pollutant and occupational toxicant which induces hematotoxicity. Our previous metabonomics study suggested that acetyl-l-carnitine (ALCAR) decreased in the mouse plasma and bone marrow (BM) cells due to benzene exposure. In the present study, the topic on whether ALCAR influences hematotoxicity caused by benzene exposure was explored. Thirty-two male C3H/He mice were divided into four groups: control group (C: vehicle, oil), benzene group (150mg/kg body weight (b.w.) benzene), benzene+A1 group (150mg/kg b.w. benzene+100mg/kg b.w. ALCAR), and benzene+A2 group (150mg/kg b.w. benzene+200mg/kg b.w. ALCAR). Benzene was injected subcutaneously, and ALCAR was orally administrated via gavage once daily for 4 weeks consecutively. After the experimental period, the blood routine, BM cell number and frequency of hematopoietic stem/progenitor cell (HS/PC) were assessed. The mitochondrial membrane potential and ATP level were determined to evaluate the mitochondrial function. Reactive oxygen species (ROS), hydrogen peroxide (H 2 O 2 ) and malondialdehyde (MDA) levels were also examined, and the comet assay was performed to measure oxidative stress. Results showed that ALCAR intervention can partially reduce the benzene-induced damage on BM and HS/PCs and can simultaneously alleviate the DNA damage by reducing benzene-induced H 2 O 2, ROS, and MDA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Metatranscriptome of an Anaerobic Benzene-Degrading, Nitrate-Reducing Enrichment Culture Reveals Involvement of Carboxylation in Benzene Ring Activation

    PubMed Central

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E.; Gong, Yunchen; Hug, Laura A.; Raskin, Lutgarde

    2014-01-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

  4. Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014

    NASA Astrophysics Data System (ADS)

    Halliday, Hannah S.; Thompson, Anne M.; Wisthaler, Armin; Blake, Donald R.; Hornbrook, Rebecca S.; Mikoviny, Tomas; Müller, Markus; Eichler, Philipp; Apel, Eric C.; Hills, Alan J.

    2016-09-01

    High time resolution measurements of volatile organic compounds (VOCs) were collected using a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the Platteville Atmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (O&NG) development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's "Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene = 0.53 ppbv, maximum benzene = 29.3 ppbv), primarily at night (mean nighttime benzene = 0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO.

  5. Biological monitoring of workers exposed to benzene in the coke oven industry.

    PubMed Central

    Drummond, L; Luck, R; Afacan, A S; Wilson, H K

    1988-01-01

    Workers in the coke oven industry are potentially exposed to low concentrations of benzene. There is a need to establish a well validated biological monitoring procedure for low level benzene exposure. The use of breath and blood benzene and urinary phenol has been explored in conjunction with personal monitoring data. At exposures of about 1 ppm benzene, urinary phenol is of no value as an indicator of uptake/exposure. Benzene in blood was measured by head space gas chromatography but the concentrations were only just above the detection limit. The determination of breath benzene collected before the next shift is non-specific in the case of smokers. The most useful monitor at low concentrations appears to be breath benzene measured at the end-of-shift. PMID:3378002

  6. MiR-34a, a promising novel biomarker for benzene toxicity, is involved in cell apoptosis triggered by 1,4-benzoquinone through targeting Bcl-2.

    PubMed

    Chen, Yujiao; Sun, Pengling; Guo, Xiaoli; Gao, Ai

    2017-02-01

    Exposure to benzene is inevitable, and concerns regarding the adverse health effects of benzene have been raised. Most investigators found that benzene exposure induced hematotoxicity. In this regard, Our study aimed to explore a novel potential biomarker of adverse health effects following benzene exposure and the toxic mechanisms of benzene metabolites in vitro. This study consisted of 314 benzene-exposed workers and 288 control workers, an air benzene concentration of who were 2.64 ± 1.60 mg/m 3 and 0.05 ± 0.01 mg/m 3 , respectively. In this population-based study, miR-34a expression was elevated in benzene-exposed workers. The correlation of miR-34a with the airborne benzene concentration, S-phenylmercapturic acid (S-PMA) and trans, trans-muconic acid (t, t-MA), all of which reflect benzene exposure, was found. Correlation analysis indicated that miR-34a was associated with peripheral blood count, alanine transaminase (ALT) and oxidative stress. Furthermore, multivariate analysis demonstrated that miR-34a expression was strongly associated with white blood cell count (structure loadings = 0.952). In population-based study, miR-34a had the largest contribution to altered peripheral blood counts, which reflect benzene-induced hematotoxicity. The role of miR-34a in benzene toxicity was assessed using lentiviral vector transfection. Results revealed that 1,4-benzoquinone induced abnormal cell apoptosis and simultaneously upregulated miR-34a accompanied with decreased Bcl-2. Finally, inhibition of miR-34a elevated Bcl-2 and decreased 1,4-benzoquinone-induced apoptosis. In conclusion, miR-34a was observed to be involved in benzene-induced hematotoxicity by targeting Bcl-2 and could be regarded as a potential novel biomarker for benzene toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed:more » benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.« less

  8. Mechanisms of deep benzene oxidation on the Pt(1 1 1) surface using temperature-programmed reaction methods

    NASA Astrophysics Data System (ADS)

    Marsh, Anderson L.; Gland, John L.

    2003-06-01

    The catalytic oxidation of benzene on the Pt(1 1 1) surface has been characterized using temperature-programmed reaction spectroscopy (TPRS) over a wide range of benzene and oxygen coverages. Coadsorbed atomic oxygen and benzene are the primary reactants on the surface during the initial oxidation step. Benzene is oxidized over the 300-500 K range to produce carbon dioxide and water. Carbon-hydrogen and carbon-carbon bond activation are clearly rate-limiting steps for these reactions. Preferential oxidation causes depletion of bridge-bonded benzene, suggesting enhanced reactivity in this bonding configuration. When oxygen is in excess on the surface, all of the surface carbon and hydrogen is oxidized. When benzene is in excess on the surface, hydrogen produced by dehydrogenation is desorbed after all of the surface oxygen has been consumed. Repulsive interactions between benzene and molecular oxygen dominate at low temperatures. Preadsorption of oxygen inhibits adsorption of less reactive benzene in threefold hollow sites. The desorption temperature of this non-reactive chemisorbed benzene decreases and overlaps with the multilayer desorption peak with increasing oxygen exposure. The results presented here provide a clear picture of rate-limiting steps during deep oxidation of benzene on the Pt(1 1 1) surface.

  9. Histone Deacetylase Inhibitors Trichostatin A and MCP30 Relieve Benzene-Induced Hematotoxicity via Restoring Topoisomerase IIα.

    PubMed

    Chen, Jingjing; Zheng, Zhouyi; Chen, Yi; Li, Jiaqi; Qian, Shanhu; Shi, Yifen; Sun, Lan; Han, Yixiang; Zhang, Shenghui; Yu, Kang

    2016-01-01

    Dysfunction of histone acetylation inhibits topoisomerase IIα (Topo IIα), which is implicated in benzene-induced hematotoxicity in patients with chronic benzene exposure. Whether histone deacetylase (HDAC) inhibitors can relieve benzene-induced hematotoxicity remains unclear. Here we showed that hydroquinone, a main metabolite of benzene, increased the HDAC activity, decreased the Topo IIα expression and induced apoptosis in human bone marrow mononuclear cells in vitro, and treatment with two HDAC inhibitors, namely trichostatin A (TSA) or a mixture of ribosome-inactivating proteins MCP30, almost completely reversed these effects. We further established a benzene poisoning murine model by inhaling benzene vapor in a container and found that benzene poisoning decreased the expression and activity of Topo IIα, and impaired acetylation of histone H4 and H3. The analysis of regulatory factors of Topo IIα promoter found that benzene poisoning decreased the mRNA levels of SP1 and C-MYB, and increased the mRNA level of SP3. Both TSA and MCP30 significantly enhanced the acetylation of histone H3 and H4 in Topo IIα promoter and increased the expression and activity of Topo IIα in benzene poisoning mice, which contributed to relieve the symptoms of hematotoxicity. Thus, treatment with HDAC inhibitors represents an attractive approach to reduce benzene-induced hematotoxicity.

  10. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  11. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  12. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  13. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  14. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  15. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  16. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  17. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  18. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  19. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  20. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  1. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  2. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Measurement methods for benzene and 1... Measurement methods for benzene and 1,3-butadiene. (a) Sampling for benzene and 1,3-butadiene must be... 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for...

  3. 40 CFR 80.1240 - How is a refinery's or importer's compliance with the gasoline benzene requirements of this...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance with the gasoline benzene requirements of this subpart determined? 80.1240 Section 80.1240... FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1240 How is a refinery's or importer's compliance with the gasoline benzene requirements of this subpart determined? (a) A refinery's...

  4. 40 CFR 80.1285 - How does a refiner apply for a benzene baseline?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How does a refiner apply for a benzene... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1285 How does a refiner apply for a benzene baseline? (a) A benzene baseline...

  5. Mobil-Badger technologies for benzene reduction in gasoline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goelzer, A.R.; Ram, S.; Hernandez, A.

    1993-01-01

    Many refiners will need to reduce the barrels per day of benzene entering the motor gasoline pool. Mobil and Badger have developed and now jointly license three potential refinery alternatives to conventional benzene hydrosaturation to achieve this: Mobil Benzene Reduction, Ethylbenzene and Cumene. The Mobil Benzene Reduction Process (MBR) uses dilute olefins in FCC offgas to extensively alkylate dilute benzene as found in light reformate, light FCC gasoline, or cyclic C[sub 6] naphtha. MBR raises octanes and lowers C[sub 5]+ olefins. MBR does not involve costly hydrogen addition. The refinery-based Mobil/Badger Ethylbenzene Process reacts chemical-grade benzene extracted from light reformatemore » with dilute ethylene found in treated FCC offgas to make high-purity ethylbenzene. EB is the principal feedstock for the production of styrene. The Mobil/Badger Cumene Process alkylates FCC-derived dilute propylene and extracted benzene to selectively yield isopropyl benzene (cumene). Cumene is the principal feedstock for the production of phenol. All three processes use Mobil developed catalysts.« less

  6. Genome-Wide Functional Profiling Reveals Genes Required for Tolerance to Benzene Metabolites in Yeast

    PubMed Central

    North, Matthew; Tandon, Vickram J.; Thomas, Reuben; Loguinov, Alex; Gerlovina, Inna; Hubbard, Alan E.; Zhang, Luoping; Smith, Martyn T.; Vulpe, Chris D.

    2011-01-01

    Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease. PMID:21912624

  7. Anaerobic Benzene Oxidation by Geobacter Species

    PubMed Central

    Bain, Timothy S.; Nevin, Kelly P.; Barlett, Melissa A.; Lovley, Derek R.

    2012-01-01

    The abundance of Geobacter species in contaminated aquifers in which benzene is anaerobically degraded has led to the suggestion that some Geobacter species might be capable of anaerobic benzene degradation, but this has never been documented. A strain of Geobacter, designated strain Ben, was isolated from sediments from the Fe(III)-reducing zone of a petroleum-contaminated aquifer in which there was significant capacity for anaerobic benzene oxidation. Strain Ben grew in a medium with benzene as the sole electron donor and Fe(III) oxide as the sole electron acceptor. Furthermore, additional evaluation of Geobacter metallireducens demonstrated that it could also grow in benzene-Fe(III) medium. In both strain Ben and G. metallireducens the stoichiometry of benzene metabolism and Fe(III) reduction was consistent with the oxidation of benzene to carbon dioxide with Fe(III) serving as the sole electron acceptor. With benzene as the electron donor, and Fe(III) oxide (strain Ben) or Fe(III) citrate (G. metallireducens) as the electron acceptor, the cell yields of strain Ben and G. metallireducens were 3.2 × 109 and 8.4 × 109 cells/mmol of Fe(III) reduced, respectively. Strain Ben also oxidized benzene with anthraquinone-2,6-disulfonate (AQDS) as the sole electron acceptor with cell yields of 5.9 × 109 cells/mmol of AQDS reduced. Strain Ben serves as model organism for the study of anaerobic benzene metabolism in petroleum-contaminated aquifers, and G. metallireducens is the first anaerobic benzene-degrading organism that can be genetically manipulated. PMID:23001648

  8. Evaporative Gasoline Emissions and Asthma Symptoms

    PubMed Central

    Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S

    2010-01-01

    Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946

  9. Clusters of imidazolium-based ionic liquid in benzene solutions.

    PubMed

    Shimomura, Takuya; Takamuku, Toshiyuki; Yamaguchi, Toshio

    2011-07-07

    Cluster formation of 1-dodecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (C(12)mim(+)TFSA(-)) in benzene solutions was investigated using small-angle neutron scattering (SANS), NMR, attenuated total reflectance infrared (ATR-IR), and large-angle X-ray scattering (LAXS) techniques. The SANS measurements revealed that C(12)mim(+)TFSA(-) is heterogeneously mixed with benzene in the narrow range of benzene mole fraction 0.9 ≤ x(C6D6) ≤ 0.995 with a maximum heterogeneity at x(C6D6) ≈ 0.99. The NMR results suggested that the imidazolium ring is sandwiched between benzene molecules through the cation-π interaction. Moreover, TFSA(-) probably interacts with the imidazolium ring even in the range of x(C6H6) ≥ 0.9. Thus, the imidazolium rings, benzene molecules, and TFSA(-) would form clusters in the C(12)mim(+)TFSA(-)-benzene solutions. The LAXS measurements showed that the distance between the imidazolium ring and benzene is ∼3.8 Å with that between the benzene molecules of ∼7.5 Å. On the basis of these results, we discussed a plausible reason for the liquid-liquid equilibrium of the C(12)mim(+)TFSA(-)-benzene system.

  10. Ambient air benzene at background sites in China's most developed coastal regions: exposure levels, source implications and health risks.

    PubMed

    Zhang, Zhou; Wang, Xinming; Zhang, Yanli; Lü, Sujun; Huang, Zhonghui; Huang, Xinyu; Wang, Yuesi

    2015-04-01

    Benzene is a known human carcinogen causing leukemia, yet ambient air quality objectives for benzene are not available in China. The ambient benzene levels at four background sites in China's most developed coastal regions were measured from March 2012 to February 2013. The sites are: SYNECP, in the Northeast China Plain (NECP); YCNCP, in the North China Plain (NCP); THYRD, in the Yangtze River Delta (YRD) and DHPRD, in the Pearl River Delta (PRD). It was found that the mean annual benzene levels (578-1297 ppt) at the background sites were alarmingly higher, especially when compared to those of 60-480 pptv monitored in 28 cities in the United States. Wintertime benzene levels were significantly elevated at both sites (SYNECP and YCNCP) in northern China due to heating with coal/biofuels. Even at these background sites, the lifetime cancer risks of benzene (1.7-3.7E-05) all exceeded 1E-06 set by USEPA as acceptable for adults. At both sites in northern China, good correlations between benzene and CO or chloromethane, together with much lower toluene/benzene (T/B) ratios, suggested that benzene was largely related to coal combustion and biomass/biofuel burning. At the DHPRD site in the PRD, benzene revealed a highly significant correlation with methyl tert-butyl ether (MTBE), indicating that its source was predominantly from vehicle emissions. At the THYRD site in the YRD, higher T/B ratios and correlations between benzene and tetrachloroethylene, or MTBE, implied that benzene levels were probably affected by both traffic-related and industrial emissions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadar, Haji; Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences; Mostafalou, Sara

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmentalmore » pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be evaluated in related chronic diseases. • Cigarette smoke is the main source for indoor benzene exposure. • Health outcomes associated with air pollutants are poorly characterized due to lack of comprehensive monitoring system.« less

  12. Histone Deacetylase Inhibitors Trichostatin A and MCP30 Relieve Benzene-Induced Hematotoxicity via Restoring Topoisomerase IIα

    PubMed Central

    Chen, Yi; Li, Jiaqi; Qian, Shanhu; Shi, Yifen; Sun, Lan; Han, Yixiang; Zhang, Shenghui; Yu, Kang

    2016-01-01

    Dysfunction of histone acetylation inhibits topoisomerase IIα (Topo IIα), which is implicated in benzene-induced hematotoxicity in patients with chronic benzene exposure. Whether histone deacetylase (HDAC) inhibitors can relieve benzene-induced hematotoxicity remains unclear. Here we showed that hydroquinone, a main metabolite of benzene, increased the HDAC activity, decreased the Topo IIα expression and induced apoptosis in human bone marrow mononuclear cells in vitro, and treatment with two HDAC inhibitors, namely trichostatin A (TSA) or a mixture of ribosome-inactivating proteins MCP30, almost completely reversed these effects. We further established a benzene poisoning murine model by inhaling benzene vapor in a container and found that benzene poisoning decreased the expression and activity of Topo IIα, and impaired acetylation of histone H4 and H3. The analysis of regulatory factors of Topo IIα promoter found that benzene poisoning decreased the mRNA levels of SP1 and C-MYB, and increased the mRNA level of SP3. Both TSA and MCP30 significantly enhanced the acetylation of histone H3 and H4 in Topo IIα promoter and increased the expression and activity of Topo IIα in benzene poisoning mice, which contributed to relieve the symptoms of hematotoxicity. Thus, treatment with HDAC inhibitors represents an attractive approach to reduce benzene-induced hematotoxicity. PMID:27058040

  13. Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan

    NASA Astrophysics Data System (ADS)

    Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia

    2014-08-01

    Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.

  14. Imaging charge transfer in a cation-π system: velocity-map imaging of Ag(+)(benzene) photodissociation.

    PubMed

    Maner, Jonathon A; Mauney, Daniel T; Duncan, Michael A

    2015-11-19

    Ag(+)(benzene) complexes are generated in the gas phase by laser vaporization and mass selected in a time-of-flight spectrometer. UV laser excitation at either 355 or 266 nm results in dissociative charge transfer (DCT), leading to neutral silver atom and benzene cation products. Kinetic energy release in translationally hot benzene cations is detected using a new instrument designed for photofragment imaging of mass-selected ions. Velocity-map imaging and slice imaging techniques are employed. In addition to the expected translational energy release, DCT of Ag(+)(benzene) produces a distribution of internally hot benzene cations. Compared with experiments at 355 nm, 266 nm excitation produces only slightly higher translational excitation and a much greater fraction of internally hot benzene ions. The maximum kinetic energy release in the photodissociation sets an upper limit on the Ag(+)(benzene) dissociation energy of 32.8 (+1.4/-1.5) kcal/mol.

  15. Evaluation of accelerated UV and thermal testing for benzene formation in beverages containing benzoate and ascorbic acid.

    PubMed

    Nyman, Patricia J; Wamer, Wayne G; Begley, Timothy H; Diachenko, Gregory W; Perfetti, Gracia A

    2010-04-01

    Under certain conditions, benzene can form in beverages containing benzoic and ascorbic acids. The American Beverage Assn. (ABA) has published guidelines to help manufacturers mitigate benzene formation in beverages. These guidelines recommend accelerated testing conditions to test product formulations, because exposure to ultraviolet (UV) light and elevated temperature over the shelf life of the beverage may result in benzene formation in products containing benzoic and ascorbic acids. In this study, the effects of UVA exposure on benzene formation were determined. Benzene formation was examined for samples contained in UV stabilized and non-UV stabilized packaging. Additionally, the usefulness of accelerated thermal testing to simulate end of shelf-life benzene formation was evaluated for samples containing either benzoic or ascorbic acid, or both. The 24 h studies showed that under intense UVA light benzene levels increased by as much as 53% in model solutions stored in non-UV stabilized bottles, whereas the use of UV stabilized polyethylene terephthalate bottles reduced benzene formation by about 13% relative to the non-UV stabilized bottles. Similar trends were observed for the 7 d study. Retail beverages and positive and negative controls were used to study the accelerated thermal testing conditions. The amount of benzene found in the positive controls and cranberry juice suggests that testing at 40 degrees C for 14 d may more reliably simulate end of shelf-life benzene formation in beverages. Except for cranberry juice, retail beverages were not found to contain detectable amounts of benzene (<0.05 ng/g) at the end of their shelf lives.

  16. Mechanistic considerations in benzene physiological model development.

    PubMed

    Medinsky, M A; Kenyon, E M; Seaton, M J; Schlosser, P M

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase II enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  17. Benzene: a case study in parent chemical and metabolite interactions.

    PubMed

    Medinsky, M A; Kenyon, E M; Schlosser, P M

    1995-12-28

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia and pancytopenia, and acute myelogenous leukemia. A combination of metabolites (hydroquinone and phenol for example) is apparently necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Since benzene and its hydroxylated metabolites (phenol, hydroquinone and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus, the potential exists for competition among various enzymes for phenol. However, zonal localization of Phase I and Phase II enzymes in various regions of the liver acinus regulates this competition. Biologically-based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.

  18. Non-parametric estimation of low-concentration benzene metabolism.

    PubMed

    Cox, Louis A; Schnatter, A Robert; Boogaard, Peter J; Banton, Marcy; Ketelslegers, Hans B

    2017-12-25

    Two apparently contradictory findings in the literature on low-dose human metabolism of benzene are as follows. First, metabolism is approximately linear at low concentrations, e.g., below 10 ppm. This is consistent with decades of quantitative modeling of benzene pharmacokinetics and dose-dependent metabolism. Second, measured benzene exposure and metabolite concentrations for occupationally exposed benzene workers in Tianjin, China show that dose-specific metabolism (DSM) ratios of metabolite concentrations per ppm of benzene in air decrease steadily with benzene concentration, with the steepest decreases below 3 ppm. This has been interpreted as indicating that metabolism at low concentrations of benzene is highly nonlinear. We reexamine the data using non-parametric methods. Our main conclusion is that both findings are correct; they are not contradictory. Low-concentration metabolism can be linear, with metabolite concentrations proportional to benzene concentrations in air, and yet DSM ratios can still decrease with benzene concentrations. This is because a ratio of random variables can be negatively correlated with its own denominator even if the mean of the numerator is proportional to the denominator. Interpreting DSM ratios that decrease with air benzene concentrations as evidence of nonlinear metabolism is therefore unwarranted when plots of metabolite concentrations against benzene ppm in air show approximately straight-line relationships between them, as in the Tianjin data. Thus, an apparent contradiction that has fueled heated discussions in the recent literature can be resolved by recognizing that highly nonlinear, decreasing DSM ratios are consistent with linear metabolism. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Species comparison of hepatic and pulmonary metabolism of benzene.

    PubMed

    Powley, M W; Carlson, G P

    1999-12-06

    Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, and rat to determine species differences in the metabolism of benzene to phenol, hydroquinone and catechol, indicate that the rat is most similar, both quantitatively and qualitatively, to the human in pulmonary microsomal metabolism of benzene. With hepatic microsomes, rat is most similar to human in metabolite formation at the two lower concentrations examined (24 and 200 microM), while at the two higher concentrations (700 and 1000 microM) mouse is most similar in phenol formation. In all species, the enzyme system responsible for benzene metabolism approached saturation in hepatic microsomes but not in pulmonary microsomes. In pulmonary microsomes from mouse, rat, and human, phenol appeared to competitively inhibit benzene metabolism resulting in a greater proportion of phenol being converted to hydroquinone when the benzene concentration increased. The opposite effect was seen in hepatic microsomes. These findings support the hypothesis that the lung plays an important role in benzene metabolism, and therefore, toxicity.

  20. MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene.

    PubMed

    Li, Jie; Zhang, Xinjie; He, Zhini; Sun, Qing; Qin, Fei; Huang, Zhenlie; Zhang, Xiao; Sun, Xin; Liu, Linhua; Chen, Liping; Gao, Chen; Wang, Shan; Wang, Fangping; Li, Daochuan; Zeng, Xiaowen; Deng, Qifei; Wang, Qing; Zhang, Bo; Tang, Huanwen; Chen, Wen; Xiao, Yongmei

    2017-07-01

    This study aims to assess the effects of low-dose benzene on DNA damage and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation in occupational workers. We recruited 96 nonsmoking male petrochemical industry workers exposed to low-dose benzene and 100 matched control workers. Urinary S-phenylmercapturic acid (SPMA) and S-benzylmercapturic acid (SBMA) were measured for indicating internal exposure of benzene and toluene. The degree of DNA damage was determined by the Comet assay. The levels of MGMT methylation were detected quantitatively by bisulphite-PCR pyrosequencing assay. The benzene-exposed workers had significantly higher levels of urinary SPMA, degree of DNA damage but decreased MGMT methylation than the controls (all p < 0.05). In contrast, the level of urinary SBMA does not differ between benzene-exposed workers and the controls. In all participants, MGMT methylation was negatively associated with the urinary SPMA and the degree of DNA damage, indicating that epigenetic regulation might be involved in response to low-dose benzene exposure-induced genetic damage. MGMT methylation could be a potent biomarker associated with low-dose benzene exposure and benzene-induced DNA damage.

  1. Cytokine Network Involvement in Subjects Exposed to Benzene

    PubMed Central

    Gangemi, Sebastiano

    2014-01-01

    Benzene represents an ubiquitous pollutant both in the workplace and in the general environment. Health risk and stress posed by benzene have long been a concern because of the carcinogenic effects of the compound which was classified as a Group 1 carcinogen to humans and animals. There is a close correlation between leukemia, especially acute myeloid leukemia, and benzene exposure. In addition, exposure to benzene can cause harmful effects on immunological, neurological, and reproductive systems. Benzene can directly damage hematopoietic progenitor cells, which in turn could lead to apoptosis or may decrease responsiveness to cytokines and cellular adhesion molecules. Alternatively, benzene toxicity to stromal cells or mature blood cells could disrupt the regulation of hematopoiesis, including hematopoietic commitment, maturation, or mobilization, through the network of cytokines, chemokines, and adhesion molecules. Today there is mounting evidence that benzene may alter the gene expression, production, or processing of several cytokines in vitro and in vivo. The purpose of this review was to systematically analyze the published cases of cytokine effects on human benzene exposure, particularly hematotoxicity, and atopy, and on lungs. PMID:25202711

  2. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  3. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  4. 40 CFR 61.356 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., annual average flow-weighted benzene concentration, and annual benzene quantity. (2) For each waste... measurements, calculations, and other documentation used to determine that the continuous flow of process... benzene concentrations in the waste, the annual average flow-weighted benzene concentration of the waste...

  5. Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida.

    PubMed Central

    Irie, S; Doi, S; Yorifuji, T; Takagi, M; Yano, K

    1987-01-01

    The nucleotide sequence of the genes from Pseudomonas putida encoding oxidation of benzene to catechol was determined. Five open reading frames were found in the sequence. Four corresponding protein molecules were detected by a DNA-directed in vitro translation system. Escherichia coli cells containing the fragment with the four open reading frames transformed benzene to cis-benzene glycol, which is an intermediate of the oxidation of benzene to catechol. The relation between the product of each cistron and the components of the benzene oxidation enzyme system is discussed. Images PMID:3667527

  6. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    PubMed Central

    Sun, Rongli; Cao, Meng; Zhang, Juan; Yang, Wenwen; Wei, Haiyan; Meng, Xing; Yin, Lihong; Pu, Yuepu

    2016-01-01

    Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity. PMID:27809262

  7. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study.

    PubMed

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-15

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice.

    PubMed

    Sun, Rongli; Cao, Meng; Zhang, Juan; Yang, Wenwen; Wei, Haiyan; Meng, Xing; Yin, Lihong; Pu, Yuepu

    2016-10-31

    Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H₂O₂), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  9. Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community.

    PubMed

    Posman, Kevin M; DeRito, Christopher M; Madsen, Eugene L

    2017-02-15

    Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [ 13 C]benzene enabled us to obtain 13 C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation. Copyright © 2017 American Society for Microbiology.

  10. Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community

    PubMed Central

    Posman, Kevin M.; DeRito, Christopher M.

    2016-01-01

    ABSTRACT Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation. PMID:27913419

  11. An analysis of violations of Osha's (1987) occupational exposure to benzene standard.

    PubMed

    Williams, Pamela R D

    2014-01-01

    The Occupational Safety and Health Administration (OSHA), which was formed by the Occupational Safety and Health Act of 1970 (OSH Act), establishes enforceable health and safety standards in the workplace and issues violations and penalties for non-compliance with these standards. The purpose of the current study was to evaluate the number and type of violations of the OSHA (1987) Occupational Exposure to Benzene Standard. Violations of the OSHA Hazard Communication Standard (HCS), particularly those that may pertain to specific provisions of the benzene standard, were also assessed. All analyses were based on OSHA inspection data that have been collected since the early 1970s and that are publicly available from the U.S. Department of Labor enforcement website. Analysis of these data shows that fewer than a thousand OSHA violations of the benzene standard have been issued over the last 25+ years. The results for benzene are in contrast to those for some other toxic and hazardous substances that are regulated by OSHA, such as blood-borne pathogens, lead, and asbestos, for which there have been issued tens of thousands of OSHA violations. The number of benzene standard violations also varies by time period, standard provision, industry sector, and other factors. In particular, the greatest number of benzene standard violations occurred during the late 1980s to early/mid 1990s, soon after the 1987 final benzene rule was promulgated. The majority of benzene standard violations also pertain to noncompliance with specific provisions and subprovisions of the standard dealing with initial exposure monitoring requirements, the communication of hazards to employees, and medical surveillance programs. Only a small fraction of HCS violations are attributed, at least in part, to potential benzene hazards in the workplace. In addition, most benzene standard violations are associated with specific industries within the manufacturing sector where benzene or benzene-containing products may be used or produced during production processes, such as petroleum refineries, metal industries, and chemical companies. Not surprisingly, the greatest number of benzene standard violations have been issued to private facility owners (rather than government entities), given that the OSH Act primarily covers private sector employers. More violations have also been issued during inspections where union representation was present and from complaint-driven (vs. planned or other) inspections, which is consistent with OSHA inspection priorities. Violations of the benzene standard have typically involved a single instance per facility and 10 or fewer exposed employees. Because the OSH Act prescribes penalty caps for citations, initial penalties issued for noncompliance with the benzene standard have generally been less than $5,000 per violation. Despite some potential limitations, the OSHA inspection database contains the best available data for assessing historical and current violations of the benzene standard. These data, which have not been previously analyzed or published for benzene, may be of interest to professionals and practitioners involved in benzene risk assessment, risk management, and/or public policy issues.

  12. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice.

    PubMed

    Wei, Haiyan; Zhang, Juan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Pu, Yuepu

    2015-11-12

    Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin(-) cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin(-)c-Kit⁺ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs.

  13. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice

    PubMed Central

    Wei, Haiyan; Zhang, Juan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Pu, Yuepu

    2015-01-01

    Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin− cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin−c-Kit+ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs. PMID:26569237

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksoy, M.

    The hematotoxicity of benzene exposure has been well known for a century. Benzene causes leukocytopenia, thrombocytopenia, pancytopenia, etc. The clinical and hematologic picture of aplastic anemia resulting from benzene exposure is not different from classical aplastic anemia; in some cases, mild bilirubinemia, changes in osmotic fragility, increase in lactic dehydrogenase and fecal urobilinogen, and occasionally some neurological abnormalities are found. Electromicroscopic findings in some cases of aplastic anemia with benzene exposure were similar to those observed by light microscopy. Benzene hepatitis-aplastic anemia syndrome was observed in a technician with benzene exposure. Ten months after occurrence of hepatitis B, a severemore » aplastic anemia developed. The first epidemiologic study proving the leukemogenicity of benzene was performed between 1967 and 1973 to 1974 among shoe workers in Istanbul. The incidence of leukemia was 13.59 per 100,000, which is a significant increase over that of leukemia in the general population. Following the prohibition and discontinuation of the use of benzene in Istanbul, there was a striking decrease in the number of leukemic shoe workers in Istanbul. In 23.7% of the series, consisting of 59 leukemic patients with benzene exposure, there was a preceding pancytopenic period. Furthermore, a familial connection was found in 10.2% of them. The 89.8% of the series showed the findings of acute leukemia. The possible factors that may determine the types of leukemia in benzene toxicity are discussed. The possible role of benzene exposure is presented in the development of malignant lymphoma, multiple myeloma, and lung cancer.« less

  15. Benzene observations and source appointment in a region of oil and natural gas development

    NASA Astrophysics Data System (ADS)

    Halliday, Hannah Selene

    Benzene is a primarily anthropogenic volatile organic compound (VOC) with a small number of well characterized sources. Atmospheric benzene affects human health and welfare, and low level exposure (< 0.5 ppbv) has been connected to measureable increases in cancer rates. Benzene measurements have been increasing in the region of oil and natural gas (O&NG) development located to the north of Denver. High time resolution measurements of VOCs were collected using a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the Platteville Atmospheric Observatory (PAO) in Colorado to investigate how O&NG development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's DISCOVER-AQ field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene = 0.53 ppbv, maximum benzene = 29.3 ppbv), primarily at night (mean nighttime benzene = 0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO. A limited information source attribution with the PAO dataset was completed using the EPA's positive matrix factorization (PMF) source receptor model. Six VOCs from the PTR-QMS measurement were used along with CO and NO for a total of eight chemical species. Six sources were identified in the PMF analysis: a primarily CO source, an aged vehicle emissions source, a diesel/compressed natural gas emissions source, a fugitive emissions source, and two sources that have the characteristics of a mix of fresh vehicle emissions and condensate fugitive emissions. 70% of the benzene measured at PAO on the PTR-QMS is attributed to fugitive emissions, primarily located to the SW of PAO. Comparing the PMF source attribution to source calculations done with a source array configured from the literature returns a contradictory result, with the expected sources indicting that aged vehicle emissions are the primary benzene source. However, analysis of the contradictory result indicates that the toluene to benzene ratio measured for PAO is much lower than the literature values, suggesting that the O&NG source emissions have a lower ratio of toluene to benzene than anticipated based on studies of other regions. Finally, we propose and investigate an alternative form of the source receptor model using a constrained optimization. Poor results of the proposed method are described with tests on a synthetic testing dataset, and further testing with the observation data from PAO indicate that the proposed method is not able to converge the best global solution to the system.

  16. Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate

    NASA Astrophysics Data System (ADS)

    Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi

    2017-09-01

    Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.

  17. Environmental and biological monitoring of benzene in traffic policemen, police drivers and rural outdoor male workers.

    PubMed

    Manuela, Ciarrocca; Francesco, Tomei; Tiziana, Caciari; Assunta, Capozzella; Lara, Scimitto; Nadia, Nardone; Giorgia, Andreozzi; Barbara, Scala; Maria, Fiaschetti; Carlotta, Cetica; Valeria, Di Giorgio; Pia, Schifano Maria; Gianfranco, Tomei; Angela, Sancini

    2012-05-01

    To evaluate exposure to benzene in urban and rural areas, an investigation into personal exposure to benzene in traffic policemen, police drivers and rural (roadmen) male outdoor workers was carried out. Personal samples and data acquired using fixed monitoring stations located in different areas of the city were used to measure personal exposure to benzene in 62 non-smoker traffic policemen, 22 police drivers and 57 roadmen. Blood benzene, urinary trans-trans muconic acid (t,t-MA) and S-phenyl-mercapturic acid (S-PMA) were measured at the end of work shift in 62 non-smoker traffic policemen, 22 police drivers and 57 roadmen and 34 smoker traffic policemen, 21 police drivers and 53 roadmen. Exposure to benzene was similar among non-smoker traffic policemen and police drivers and higher among non-smoker urban workers compared to rural workers. Blood benzene, t,t-MA and S-PMA were similar among non-smoker traffic policemen and police drivers; blood benzene and t,t-MA were significantly higher in non-smoker urban workers compared to rural workers. Significant increases in t,t-MA were found in smokers vs. non-smokers. In non-smoker urban workers airborne benzene and blood benzene, and t,t-MA and S-PMA were significantly correlated. This study gives an evaluation of the exposure to benzene in an urban area, comparing people working in the street or in cars, to people working in a rural area. Benzene is a certain carcinogen for humans. The results we showed should lead to more in-depth studies about the effects on health of these categories of workers.

  18. Structures, vibrational frequencies, and infrared spectra of the hexa-hydrated benzene clusters

    NASA Astrophysics Data System (ADS)

    Lee, Jin Yong; Kim, Jongseob; Lee, Han Myoung; Tarakeshwar, P.; Kim, Kwang S.

    2000-10-01

    The water hexamer is known to have a number of isoenergetic structures. The first experimental identification of the O-H stretching vibrational spectra of the water hexamer was done in the presence of benzene. It was followed by the identification of the pure water hexamer structure by vibration-rotational tunneling (VRT) spectroscopy. Although both experiments seem to have located only the Cage structure, the structure of the benzene-water hexamer complex is not clearly known, and the effect of benzene in the water hexamer is unclear. In particular, it is not obvious how the energy difference between nearly isoenergetic water hexamer conformers changes in the presence of benzene. Thus, we have compared the benzene complexes with four low-lying isoenergetic water hexamers, Ring, Book, Cage, and Prism structures, using ab initio calculations. We also investigated the effects of the presence of benzene on the structures, harmonic vibrational frequencies, and infrared (IR) intensities for the four low-lying energy conformers. There is little change in the structure of the water hexamer upon its interaction with the benzene molecule. Hence the deformation energies are very small. The dominant contribution to the benzene-water cluster interaction mainly comes from the π-H interactions between benzene and a single water molecule. As a result of this π-H interaction, O-Hπ bond length increases and the corresponding stretching vibrational frequencies are redshifted. The IR spectral features of both (H2O)6 and benzene-(H2O)6 are quite similar. From both the energetics and the comparison of calculated and experimental spectra of the benzene-(H2O)6, the water structure in these complexes is found to have the Cage form. In particular, among the four different Cage structures, only one conformer matches the experimental O-H vibrational frequencies.

  19. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions.

    PubMed

    Nicholson, Carla A; Fathepure, Babu Z

    2004-02-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment.

  20. Benzene derivatives produced by Fusarium graminearum - Short communication.

    PubMed

    Ntushelo, Khayalethu; Setshedi, Itumeleng

    2015-06-01

    Using NMR spectroscopy benzene derivatives were detected in mycelia of Fusarium graminearum, a pathogen of wheat and maize. In previous studies F. graminearum was found to cause cancer to humans and benzene derivatives were detected in breath of cancer sufferers. Surprisingly, no study found benzene derivatives to be the cancerous agents in F. graminearum. In this study we detected benzene derivatives in F. graminearum and propose to study their role as cancer agents.

  1. Benzene inhalation effects upon tetanus antitoxin. Responses and leukemogenesis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, R D; Drew, R T; Bernstein, D M

    1980-01-01

    The effects of inhaled benzene on primary and secondary antibody responses and the incidence of leukemia in mice are reported. Young adult mice were given 5, 12, or 22 exposures to 400 ppM benzene for 6 hrs/day 5 days/week. After the exposure periods, the mice were immunized with absorbed tetanus toxoid (APTT) and/or fluid tetanus toxid (FTT). Exposure to benzene increasingly suppressed primary antibody responses to both antigens. Secondary antibody responses to FTT were nearly normal in animals given 10, 15, or 20 exposures to 400 ppM benzene. Other groups of mice were exposed to either 200 ppM or 50more » ppM benzene. Primary antibody responses elicited with FTT and/or APTT were nearly normal in all mice exposed to 50 ppM benzene and in mice exposed to 200 ppM benzene for 5 days. However, 10 and 20 exposures to 200 ppM benzene inhibited antibody production. The effects of chronically inhaled 300 ppM benzene on the time of onset and incidence of leukemia in 400 7-month-old female HRS/J mice were also studied. Two genotypes were used; the (hr/hr) hairless mice are leukemia-prone, whereas the (hr/+) haired mice are more resistant to leukemia. The exposure continued for a period of 6 months. Lymphoid, myeloid, and mixed (lymphoid and myeloid) leukemias were observed. Ninety percent of the (hr/hr) mice exposed to benzene died from leukemia as compared with 91% for the (hr/hr) air control group. Eighty-five percent of the (hr/+) mice exposed to benzene died from leukemia as compared with 81% for the (hr/+) air control group. Exposures to 300 ppM benzene did not alter the time of onset or the incidence of leukemia commonly expected in HRS/J mice.« less

  2. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1,4-Benzoquinone).

    PubMed

    Chen, Yujiao; Sun, Pengling; Bai, Wenlin; Gao, Ai

    2016-11-15

    Benzene is an environmental and industrial chemical which is widely utilized in various applications. Our previous study showed that miR-133a expression was down-regulated in chronic benzene poisoning workers, but the mechanism of miR-133a in benzene-induced hematotoxicity remains unclear. In this population-based study, benzene-exposed group recruited workers whose concentration of air benzene was 3.50±1.60mg/m(3), and control workers who were exposed to 0.06±0.01mg/m(3) air benzene. By comparison, Caspase-9 and Caspase-3 was up-regulated while miR-133a expression decreased in benzene-exposed workers. Pearson correlation analysis showed that miR-133a was reversely correlated with pro-apoptotic gene Caspase-9 in population-based study. Moreover, multiple linear regressions indicated that miR-133a was positively associated with blood cells count. To explore the underlying mechanism of miR-133a in benzene-induced hematotoxicity, AO/EB staining and TEM ultrastructural analysis were conducted to verify the activation of apoptosis in Human Leukemic U937 Cells induced by benzene metabolites (1,4-Benzoquinone, 1,4-BQ), while the mechanism of miR-133a in 1,4-BQ-induced apoptosis was performed using lentivirus vectors transfection. The results demonstrated that 1,4-BQ evidently induced mitochondria-mediated apoptosis and increased pro-apoptotic genes (Caspase-9 and Caspase-3) expression in a dose-dependent manner. The mechanistic study showed 1,4-BQ decreased miR-133a expression and miR-133a over-expression attenuated 1, 4-BQ-caused upregulation of Caspase-9, Caspase-3 and apoptosis. In conclusion, our research suggested that benzene induced hematotoxicity by decreasing miR-133a and caspase-dependent apoptosis which might contribute to the underlying mechanism of miR-133a in benzene-induced hematotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of Tetrafluoroborate and Bis(trifluoromethylsulfonyl)amide Anions on the Microscopic Structures of 1-Methyl-3-octylimidazolium-Based Ionic Liquids and Benzene Mixtures: A Multiple Approach by ATR-IR, NMR, and Femtosecond Raman-Induced Kerr Effect Spectroscopy.

    PubMed

    Shirota, Hideaki; Kakinuma, Shohei; Itoyama, Yu; Umecky, Tatsuya; Takamuku, Toshiyuki

    2016-01-28

    The microscopic aspects of the two series of mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4])-benzene and 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)amide ([MOIm][NTf2])-benzene were investigated by several spectroscopic techniques such as attenuated total reflectance IR (ATR-IR), NMR, and fs-Raman-induced Kerr effect spectroscopy (fs-RIKES). All three different spectroscopic results indicate that the anions more strongly interact with the cations in the [MOIm][BF4]-benzene mixtures than in the [MOIm][NTf2]-benzene mixtures. This also explains the different miscibility features between the two mixture systems well. The xC6H6 dependences of the chemical shifts and the C-H out-of-plane bending mode of benzene are similar: the changes are large in the high benzene concentration (xC6H6 > ∼ 0.6) compared to the low benzene concentration. In contrast, the linear xC6H6 dependences of the first moments of the low-frequency spectra less than 200 cm(-1) were observed in both the [MOIm][BF4]-benzene and [MOIm][NTf2]-benzene systems. The difference in the xC6H6 dependent features between the chemical shifts and intramolecular vibrational mode and the intermolecular/interionic vibrational bands might come from the different probing space scales. The traces of the parallel aromatic ring structure and the T-shape structure were found in the ATR-IR and NMR experiments, but fs-RIKES did not observe a clear trace of the local structure. This might imply that the interactions between the imidazolium and benzene rings are not strong enough to librate the imidazolium and benzene rings together. The bulk properties, such as miscibility, density, viscosity, and surface tension, of the two ionic liquid-benzene mixture series were also compared to the microscopic aspects.

  4. Establishment of a Methanogenic Benzene-Degrading Culture and its Implication in Bioremediation

    NASA Astrophysics Data System (ADS)

    Qiao, W.; Luo, F.; Bawa, N.; Guo, S.; Ye, S.; Edwards, E.

    2017-12-01

    Benzene is a known human carcinogen and it is a common pollutant in groundwater, mainly resulting from petrochemical industry. Anaerobic degradation of benzene has significant advantages over aerobic processes for in situ bioremediation. In this study, new methanogenic and sulfate-reducing benzene degrading cultures have been enriched. Microbial community composition was characterized with two other previously established benzene-degrading cultures, and their potential use in bioaugmentation is investigated. In this study, a lab microcosm study was conducted anaerobically with contaminated soil and groundwater from a former chemical plant. Benzene degradation was observed in the presence of co-contaminants and electron donor. Through repetitive amendment of benzene, two enrichment cultures have been developed under sulfate and methanogenic conditions. Results from DNA amplicon sequencing and qPCR analysis revealed that an organism similar to previously described benzene-degrading Deltaproteobacterium has been enriched. The microbial community of this culture was compared with other two methanogenic benzene-degrading enrichment cultures that were derived from an oil refinery and a decommissioned gasoline station, and have been maintained for decades. Deltaproteobacterium ORM2-like microbes were dominate in all enrichment cultures, which brought to light benzene-degrading microbes, ORM2 were enriched under different geological conditions distributed around the world. The relative abundance of methanogens was much lower compared to previously established cultures, although substantial amount of methane was produced. The peripheral organisms also vary. To investigate effectiveness of using ORM2-dominant enrichment cultures in bioremediation, microcosm studies were set up using contaminated materials, and a ORM2-dominating methanogenic benzene-degrading culture was used for bioaugmentation. Results revealed that benzene degradation was speeded up under methanogenic or sulfate-reducing condition, and the growth of ORM2 was observed via qPCR analysis. The treatability test is on-going to establish more reliable correspondence between the benzene degraders and natural attenuation potential, to provide more insights into contaminated site management.

  5. Benzene Exposures and Risk Potential for Vehicle Mechanics from Gasoline and Petroleum-Derived Products.

    PubMed

    Williams, Pamela R D; Mani, Ashutosh

    2015-01-01

    Benzene exposures among vehicle mechanics in the United States and abroad were characterized using available data from published and unpublished studies. In the United States, the time-weighted-average (TWA) airborne concentration of benzene for vehicle mechanics averaged 0.01-0.05 ppm since at least the late 1970s, with maximal TWA concentrations ranging from 0.03 to 0.38 ppm. Benzene exposures were notably lower in the summer than winter and in the Southwest compared to other geographic regions, but significantly higher during known gasoline-related tasks such as draining a gas tank or changing a fuel pump or fuel filter. Measured airborne concentrations of benzene were also generally greater for vehicle mechanics in other countries, likely due to the higher benzene content of gasoline and other factors. Short-term airborne concentrations of benzene frequently exceeded 1 ppm during gasoline-related tasks, but remained below 0.2 ppm for tasks involving other petroleum-derived products such as carburetor and brake cleaner or parts washer solvent. Application of a two-zone mathematical model using reasonable input values from the literature yielded predicted task-based benzene concentrations during gasoline and aerosol spray cleaner scenarios similar to those measured for vehicle mechanics during these types of tasks. When evaluated using appropriate biomarkers, dermal exposures were found to contribute little to total benzene exposures for this occupational group. Available data suggest that vehicle mechanics have not experienced significant exposures to benzene in the workplace, except perhaps during short-duration gasoline-related tasks, and full-shift benzene exposures have remained well below current and contemporaneous occupational exposure limits. These findings are consistent with epidemiology studies of vehicle mechanics, which have not demonstrated an increased risk of benzene-induced health effects in this cohort of workers. Data and information presented here may be used to assess past, current, or future exposures and risks to benzene for vehicle mechanics who may be exposed to gasoline or other petroleum-derived products.

  6. Biomonitoring of gasoline station attendants exposed to benzene: Effect of gender.

    PubMed

    Moro, Angela M; Brucker, Natália; Charão, Mariele F; Baierle, Marília; Sauer, Elisa; Goethel, Gabriela; Barth, Anelise; Nascimento, Sabrina N; Gauer, Bruna; Durgante, Juliano; Amaral, Beatriz S; Neto, Francisco R A; Gioda, Adriana; Garcia, Solange C

    2017-01-01

    Women are employed in increasing numbers as gasoline station attendants, a work category with risk of exposure to benzene. We have assessed the effect of gender on biomarkers of occupational benzene exposure. Gasoline station attendants (20 men and 20 women) and 40 control individuals (20 men and 20 women) with no history of occupational benzene exposure were evaluated. Benzene exposure was monitoring by environmental and biological measurements. Urinary trans,trans-muconic acid levels, well-known genetic and hematological alterations linked to benzene exposure, and non-cancer effects on the immune, hepatic, and renal systems were investigated. Our results suggest a potential effect of gender on some effects of occupational benzene exposure, particularly the hematological parameters and trans,trans-muconic acid levels. Despite limitations of our study, our findings provide important considerations about occupational exposure of women to benzene and may contribute to the development of occupational protection standards. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Assessment of benzene induced oxidative impairment in rat isolated pancreatic islets and effect on insulin secretion.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Abdollahi, Mohammad

    2015-05-01

    Benzene (C6H6) is an organic compound used in petrochemicals and numerous other industries. It is abundantly released to our environment as a chemical pollutant causing widespread human exposure. This study mainly focused on benzene induced toxicity on rat pancreatic islets with respect to oxidative damage, insulin secretion and glucokinase (GK) activity. Benzene was dissolved in corn oil and administered orally at doses 200, 400 and 800mg/kg/day, for 4 weeks. In rats, benzene significantly raised the concentration of plasma insulin. Also the effect of benzene on the release of glucose-induced insulin was pronounced in isolated islets. Benzene caused oxidative DNA damage and lipid peroxidation, and also reduced the cell viability and total thiols groups, in the islets of exposed rats. In conclusion, the current study revealed that pancreatic glucose metabolism is susceptible to benzene toxicity and the resultant oxidative stress could lead to functional abnormalities in the pancreas. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Identification of human cell responses to benzene and benzene metabolites.

    PubMed

    Gillis, Bruce; Gavin, Igor M; Arbieva, Zarema; King, Stephen T; Jayaraman, Sundararajan; Prabhakar, Bellur S

    2007-09-01

    Benzene is a common air pollutant and confirmed carcinogen, especially in reference to the hematopoietic system. In the present study we analyzed cytokine/chemokine production by, and gene expression induction in, human peripheral blood mononuclear cells upon their exposure to the benzene metabolites catechol, hydroquinone, 1,2,4-benzenetriol, and p-benzoquinone. Protein profiling showed that benzene metabolites can stimulate the production of chemokines, the proinflammatory cytokines TNF-alpha and IL-6, and the Th2 cytokines IL-4 and IL-5. Activated cells showed concurrent suppression of anti-inflammatory cytokine IL-10 expression. We also identified changes in global gene expression patterns in response to benzene metabolite challenges by using high-density oligonucleotide microarrays. Treatment with 1,2,4-benzenetriol resulted in the suppression of genes related to the regulation of protein expression and a concomitant activation of genes that encode heat shock proteins and cytochrome P450 family members. Protein and gene expression profiling identified unique human cellular responses upon exposure to benzene and benzene metabolites.

  9. Urinary excretion of unmetabolized benzene as an indicator of benzene exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghittori, S.; Fiorentino, M.L.; Maestri, L.

    1993-03-01

    Benzene concentrations in urine samples (Cu, ng/L) from 110 workers exposed to benzene in chemical plants and gasoline pumps were determined by injecting urine supernate into a gas chromatograph. The urine was saturated with anhydrous N2SO4 to facilitate the passage of benzene in the air over the urine. The solvent was stripped from the urine surface and concentrated on an adsorbent substrate (Carbotrap tube) by means of a suction pump (flow rate 150 ml/m). Wash-up of the head space was achieved by simultaneous intake of filtered air through charcoal. Benzene was thermically desorbed and injected in a column (thermal tubemore » disorder, Supelco; 370 degrees C thermal flash; borosilicate capillary glass column SPB-1, 60 m length, 0.75 mm ID, 1 microns film thickness; GC Dani 8580-FID). Benzene concentrations in the urine from 40 non-exposed subjects (20 smokers > 20 cigarette/d and 20 nonsmokers) were also determined [median value of 790 ng/L (10.17 nmol/L) and 131 ng/L (1.70 nmol/L), respectively]. The 8-h time-weighted exposure intensity (Cl, micrograms/m3) of individual workers was monitored by means of charcoal tubes. The median value for exposure to benzene was 736 micrograms/m3 (9.42 mumol/m3) [geometric standard deviation (GSD) = 2.99; range 64 micrograms/m3 (0.82 mumol/m3) to 13,387 micrograms/m3 (171.30 mumol/m3)]. The following linear correlation was found between benzene concentrations in urine (Cu, ng/L) and benzene concentrations in the breathing zone (Cl, micrograms/m3): log(Cu) = 0.645 x log(Cl) + 1.399 r = .559, n = 110, p < .0001 With exclusion of workers who smoked from the study, the correlation between air benzene concentration and benzene measured in urine was: log(Cu) = 0.872 x log(Cl) + 0.6 r = .763, n = 63, p < .0001 The study results indicate that the urinary level of benzene is an indicator of occupational exposure to benzene.« less

  10. Compounds for neutron radiation detectors and systems thereof

    DOEpatents

    Payne, Stephen A; Stoeffl, Wolfgang; Zaitseva, Natalia P; Cherepy, Nerine J; Carman, M. Leslie

    2014-05-27

    A material according to one embodiment exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene, the material comprising a molecule selected from a group consisting of: two or more benzene rings, one or more benzene rings with a carboxylic acid group, one or more benzene rings with at least one double bound adjacent to said benzene ring, and one or more benzene rings for which at least one atom in the benzene ring is not carbon.

  11. Benzene as a Chemical Hazard in Processed Foods

    PubMed Central

    Salviano dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1–10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food. PMID:26904662

  12. Benzene as a Chemical Hazard in Processed Foods.

    PubMed

    Salviano Dos Santos, Vânia Paula; Medeiros Salgado, Andréa; Guedes Torres, Alexandre; Signori Pereira, Karen

    2015-01-01

    This paper presents a literature review on benzene in foods, including toxicological aspects, occurrence, formation mechanisms, and mitigation measures and analyzes data reporting benzene levels in foods. Benzene is recognized by the IARC (International Agency for Research on Cancer) as carcinogenic to humans, and its presence in foods has been attributed to various potential sources: packaging, storage environment, contaminated drinking water, cooking processes, irradiation processes, and degradation of food preservatives such as benzoates. Since there are no specific limits for benzene levels in beverages and food in general studies have adopted references for drinking water in a range from 1-10 ppb. The presence of benzene has been reported in various food/beverage substances with soft drinks often reported in the literature. Although the analyses reported low levels of benzene in most of the samples studied, some exceeded permissible limits. The available data on dietary exposure to benzene is minimal from the viewpoint of public health. Often benzene levels were low as to be considered negligible and not a consumer health risk, but there is still a need of more studies for a better understanding of their effects on human health through the ingestion of contaminated food.

  13. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    PubMed

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  14. Evidence for non-linear metabolism at low benzene exposures? A reanalysis of data.

    PubMed

    McNally, K; Sams, C; Loizou, G D; Jones, K

    2017-12-25

    The presence of a high-affinity metabolic pathway for low level benzene exposures of less than one part per million (ppm) has been proposed although a pathway has not been identified. The variation of metabolite molar fractions with increasing air benzene concentrations was suggested as evidence of significantly more efficient benzene metabolism at concentrations <0.1 ppm The evidence for this pathway is predicated on a rich data set from a study of Chinese shoe workers exposed to a wide range of benzene concentrations (not just "low level"). In this work we undertake a further independent re-analysis of this data with a focus on the evidence for an increase in the rate of metabolism of benzene exposures of less than 1 ppm. The analysis dataset consisted of measurements of benzene and toluene from personal air samplers, and measurements of unmetabolised benzene and toluene and five metabolites (phenol hydroquinone, catechol, trans, trans-muconic acid and s-phenylmercapturic acid) from post-shift urine samples for 213 workers with an occupational exposure to benzene (and toluene) and 139 controls. Measurements from control subjects were used to estimate metabolite concentrations resulting from non-occupational sources, including environmental sources of benzene. Data from occupationally exposed subjects were used to estimate metabolite concentrations as a function of benzene exposure. Correction for background (environmental exposure) sources of metabolites was achieved through a comparison of geometric means in occupationally exposed and control populations. The molar fractions of the five metabolites as a function of benzene exposure were computed. A supra-linear relationship between metabolite concentrations and benzene exposure was observed over the range 0.1-10 ppm benzene, however over the range benzene exposures of between 0.1 and 1 ppm only a modest departure from linearity was observed. The molar fractions estimated in this work were near constant over the range 0.1-10 ppm. No evidence of high affinity metabolism at these low level exposures was observed. Our reanalysis brings in to question the appropriateness of the dataset for commenting on low dose exposures and the use of a purely statistical approach to the analysis. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  16. BENZENE OXIDE PROTEIN ADDUCTS AS BIOMARKERS OF BENZENE EXPOSURE

    EPA Science Inventory

    Benzene is known to be hematotoxic and carcinogenic in animals and humans. While metabolism is required for toxicity, the identity of the ultimate carcinogen(s) remains unknown. Benzene oxide (BO) is the first and most abundant of the metabolites, but very little is known about...

  17. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  18. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  19. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  20. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  1. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  2. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  3. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  4. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  5. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  6. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  7. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  8. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...

  9. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  10. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  11. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  12. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  13. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  14. 46 CFR 197.501 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GENERAL PROVISIONS Benzene § 197.501 Applicability. (a) Except for vessels satisfying paragraph (b) of... barges, that are carrying benzene or benzene containing liquids in bulk as cargo. (b) This subpart does not apply to vessels that are carrying only liquid cargoes containing less than 0.5% benzene by volume...

  15. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  16. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (1-methylethyl)(2...

  17. 40 CFR 721.1230 - Benzene, ethenyl-, ar-bromo derivatives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, ethenyl-, ar-bromo... Specific Chemical Substances § 721.1230 Benzene, ethenyl-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, ethenyl-, ar...

  18. Biodegradation of Benzene by Halophilic and Halotolerant Bacteria under Aerobic Conditions

    PubMed Central

    A. Nicholson, Carla; Z. Fathepure, Babu

    2004-01-01

    A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment. PMID:14766609

  19. Self-collected breath sampling for monitoring low-level benzene exposures among automobile mechanics.

    PubMed

    Egeghy, Peter P; Nylander-French, Leena; Gwin, Kristin K; Hertz-Picciotto, Irva; Rappaport, Stephen M

    2002-07-01

    Automobile mechanics are exposed to benzene through their contact with gasoline vapor and engine exhaust. This study investigated the benzene uptake associated with these exposures. We first evaluated the reliability of self-collected breath samples among a subset of subjects and found good agreement between these samples and those collected under expert supervision (intraclass correlation coefficient 0.79, n = 69). We then used self-monitoring together with a longitudinal sampling design (with up to three measurements per worker) to measure benzene in air and benzene in end-exhaled breath among 81 workers from 12 automobile repair garages in North Carolina. A statistically significant difference (P < 0.0001, Mann-Whitney rank sum test) was observed between non-smokers and smokers for post-exposure benzene concentration in breath (median values of 18.9 and 39.1 micro g/m(3), respectively). Comparing pre- and post-exposure breath concentrations within these two groups, the difference was significant among non-smokers (P < 0.0001) but not significant among smokers (P > 0.05). Mixed effects regression analysis using backwards elimination yielded five significant predictors of benzene concentration in breath, namely benzene exposure (P < 0.0001), pre-exposure benzene concentration in breath (P = 0.021), smoking status (P < 0.0001), fuel system work (P = 0.0043) and carburetor cleaner use (P < 0.0001). The between-person variance component comprised only 28% of the total variance in benzene levels in breath, indicating that differences among individuals related to physiological and metabolic characteristics had little influence on benzene uptake among these workers.

  20. Occupational Exposure to Benzene and Non-Hodgkin Lymphoma in a Population-Based Cohort: The Shanghai Women's Health Study.

    PubMed

    Bassig, Bryan A; Friesen, Melissa C; Vermeulen, Roel; Shu, Xiao-Ou; Purdue, Mark P; Stewart, Patricia A; Xiang, Yong-Bing; Chow, Wong-Ho; Zheng, Tongzhang; Ji, Bu-Tian; Yang, Gong; Linet, Martha S; Hu, Wei; Zhang, Heping; Zheng, Wei; Gao, Yu-Tang; Rothman, Nathaniel; Lan, Qing

    2015-10-01

    The association between benzene exposure and non-Hodgkin lymphoma (NHL) has been the subject of debate as a result of inconsistent epidemiologic evidence. An International Agency for Research on Cancer (IARC) working group evaluated benzene in 2009 and noted evidence for a positive association between benzene exposure and NHL risk. We evaluated the association between occupational benzene exposure and NHL among 73,087 women enrolled in the prospective population-based Shanghai Women's Health Study. Benzene exposure estimates were derived using a previously developed exposure assessment framework that combined ordinal job-exposure matrix intensity ratings with quantitative benzene exposure measurements from an inspection database of Shanghai factories collected between 1954 and 2000. Associations between benzene exposure metrics and NHL (n = 102 cases) were assessed using Cox proportional hazard models, with study follow-up occurring from December 1996 through December 2009. Women ever exposed to benzene had a significantly higher risk of NHL [hazard ratio (HR) = 1.87, 95% CI: 1.19, 2.96]. Compared with unexposed women, significant trends in NHL risk were observed for increasing years of benzene exposure (p(trend) = 0.006) and increasing cumulative exposure levels (p(trend) = 0.005), with the highest duration and cumulative exposure tertiles having a significantly higher association with NHL (HR = 2.07, 95% CI: 1.07, 4.01 and HR = 2.16, 95% CI: 1.17, 3.98, respectively). Our findings, using a population-based prospective cohort of women with diverse occupational histories, provide additional evidence that occupational exposure to benzene is associated with NHL risk.

  1. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  2. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  3. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  4. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  5. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  6. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  7. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  8. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  9. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  10. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  11. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  12. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  13. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  14. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  15. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  16. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  17. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  18. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  19. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  20. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  1. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  2. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  3. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  4. 40 CFR 80.1360 - Who is liable for violations under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1360 Section 80.1360 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1360 Who is liable for violations under the gasoline benzene program? (a) The following...

  5. 40 CFR 80.1361 - What penalties apply under the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gasoline benzene program? 80.1361 Section 80.1361 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1361 What penalties apply under the gasoline benzene program? (a) Any person liable for a...

  6. 40 CFR 80.1356 - What are the attest engagement requirements for gasoline benzene compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for gasoline benzene compliance? 80.1356 Section 80.1356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Attest Engagements § 80.1356 What are the attest engagement requirements for gasoline benzene...

  7. 40 CFR 80.1225 - Who must register with EPA under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1225 Section 80.1225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1225 Who must register with EPA under the gasoline benzene program? (a) Refiners and...

  8. 40 CFR 80.1220 - What are the implementation dates for the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the gasoline benzene program? 80.1220 Section 80.1220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene General Information § 80.1220 What are the implementation dates for the gasoline benzene program...

  9. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  10. 40 CFR 80.1358 - What acts are prohibited under the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline benzene program? 80.1358 Section 80.1358 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Violations and Penalties § 80.1358 What acts are prohibited under the gasoline benzene program? No person shall— (a)(1...

  11. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  12. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  13. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  14. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  15. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  16. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  17. 40 CFR 61.273 - Alternative means of emission limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...

  18. 40 CFR 61.273 - Alternative means of emission limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...

  19. 77 FR 10450 - Designation of Hazardous Substances; Designation, Reportable Quantities, and Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... K169 Benzene 220.0 K170 Benzene 1.2 Benzo (a) pyrene 230.0 Dibenz (a,h) anthracene... 49.0 Benzo (a......... 27.0 7, 12-Dimethylbenz (a) 1,200.0 anthracene. K171 Benzene 500.0 Arsenic 1,600.0 K172 Benzene 100.0...

  20. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  1. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  2. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  3. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  4. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  5. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  6. 40 CFR 61.273 - Alternative means of emission limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...

  7. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  8. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  9. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  10. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  11. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  12. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  13. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  14. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  15. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  16. 40 CFR 61.273 - Alternative means of emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...

  17. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  18. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  19. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  20. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  1. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  2. 40 CFR 80.1290 - How are standard benzene credits generated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are standard benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1290 How are standard benzene credits generated? (a) The standard credit averaging...

  3. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to reporting...

  4. 40 CFR 721.10367 - Hydroxy-aryl, polymer with substituted benzene, cyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene, cyanate (generic). 721.10367 Section 721.10367 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10367 Hydroxy-aryl, polymer with substituted benzene... substance identified generically as hydroxy-aryl, polymer with substituted benzene, cyanate (PMN P-10-83) is...

  5. 40 CFR 721.1240 - Benzene, (2-bromoethyl)-, ar-bromo derivatives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (2-bromoethyl)-, ar-bromo... Specific Chemical Substances § 721.1240 Benzene, (2-bromoethyl)-, ar-bromo derivatives. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene...

  6. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  7. 40 CFR 61.273 - Alternative means of emission limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...

  8. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject to...

  9. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  10. 40 CFR 80.1275 - How are early benzene credits generated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are early benzene credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1275 How are early benzene credits generated? (a) For each averaging period per...

  11. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under this...

  12. Competitive Nitration of Benzene-Fluorobenzene and Benzene-Toluene Mixtures: Orientation and Reactivity Studies Using HPLC

    ERIC Educational Resources Information Center

    Blankespoor, Ronald L.; Hogendoorn, Stephanie; Pearson, Andrea

    2007-01-01

    The reactivity and orientation effects of a substituent are analyzed by using HPLC to determine the competitive nitration of the benzene-toluene and benzene-fluorobenzene mixtures. The results have shown that HPLC is an excellent instrumental method to use in analyzing these mixtures.

  13. Optical Absorption and Raman Spectroscopy of Multiple Shocked Liquid Benzene to 10 GPa

    NASA Astrophysics Data System (ADS)

    Root, S.

    2005-07-01

    Liquid benzene samples were multiply shocked to peak pressures ranging from 3 GPa to 10 GPa to examine physical and chemical changes in benzene. A xenon flashlamp was used to probe the visible spectrum of benzene for loses in transmitted light intensity caused by changes in the electronic structure (absorption) or a possible liquid to solid phase transition (scattering). Raman spectroscopy was used to corroborate transmission measurements by examining changes in the benzene vibrational modes. The C-C symmetric ring breathing mode (992 cm-1), C-H symmetric stretch (3061 cm-1), along with several weaker modes at 607 cm-1, 1178 cm-1, 1586 cm-1, and 1606 cm-1 were monitored during shock loading. An EOS was developed to calculate the temperature of the shock compressed benzene. The present work has demonstrated that liquid benzene remains unchanged during multiple shock loading up to 10 GPa. Work supported by ONR and DOE.

  14. Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.

    PubMed

    Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian

    2016-04-01

    Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jie; Krems, Roman V.; Li, Zhiying

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexesmore » are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.« less

  16. Structural Degradation and Swelling of Lipid Bilayer under the Action of Benzene.

    PubMed

    Odinokov, Alexey; Ostroumov, Denis

    2015-12-03

    Benzene and other nonpolar organic solvents can accumulate in the lipid bilayer of cellular membranes. Their effect on the membrane structure and fluidity determines their toxic properties and antibiotic action of the organic solvents on the bacteria. We performed molecular dynamics simulations of the interaction of benzene with the dimyristoylphosphatidylcholine (DMPC) bilayer. An increase in the membrane surface area and fluidity was clearly detected. Changes in the acyl chain ordering, tilt angle, and overall bilayer thickness were, however, much less marked. The dependence of all computed quantities on the benzene content showed two regimes separated by the solubility limit of benzene in water. When the amount of benzene exceeded this point, a layer of almost pure benzene started to grow between the membrane leaflets. This process corresponds to the nucleation of a new phase and provides a molecular mechanism for the mechanical rupture of the bilayer under the action of nonpolar compounds.

  17. Benzene construction via organocatalytic formal [3+3] cycloaddition reaction.

    PubMed

    Zhu, Tingshun; Zheng, Pengcheng; Mou, Chengli; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2014-09-25

    The benzene unit, in its substituted forms, is a most common scaffold in natural products, bioactive molecules and polymer materials. Nearly 80% of the 200 best selling small molecule drugs contain at least one benzene moiety. Not surprisingly, the synthesis of substituted benzenes receives constant attentions. At present, the dominant methods use pre-existing benzene framework to install substituents by using conventional functional group manipulations or transition metal-catalyzed carbon-hydrogen bond activations. These otherwise impressive approaches require multiple synthetic steps and are ineffective from both economic and environmental perspectives. Here we report an efficient method for the synthesis of substituted benzene molecules. Instead of relying on pre-existing aromatic rings, here we construct the benzene core through a carbene-catalyzed formal [3+3] reaction. Given the simplicity and high efficiency, we expect this strategy to be of wide use especially for large scale preparation of biomedicals and functional materials.

  18. 40 CFR 80.1235 - What gasoline is subject to the benzene requirements of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What gasoline is subject to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Gasoline Benzene Requirements § 80.1235 What gasoline is subject to the benzene requirements of...

  19. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section for...

  20. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  1. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  2. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  3. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  4. 40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1,2-dimethyl-, poly-propene... Significant New Uses for Specific Chemical Substances § 721.1225 Benzene, 1,2-dimethyl-, poly-propene... reporting. (1) The chemical substance identified as benzene, 1,2-dimethyl-, polypropene derivatives...

  5. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  6. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  7. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  8. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  9. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  10. 40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1,2-dimethyl-, poly-propene... Significant New Uses for Specific Chemical Substances § 721.1225 Benzene, 1,2-dimethyl-, poly-propene... reporting. (1) The chemical substance identified as benzene, 1,2-dimethyl-, polypropene derivatives...

  11. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section for...

  12. 78 FR 13707 - The Benzene Standard; Extension of the Office of Management and Budget's (OMB) Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Benzene Standard; Extension of the Office of Management and Budget's (OMB) Approval of Information... specified in the Benzene Standard (29 CFR 1910.1028). DATES: Comments must be submitted (postmarked, sent... information (29 U.S.C. 657). The information collection requirements specified in the Benzene Standard protect...

  13. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  14. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Benzene. 21.97 Section 21... TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  15. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section for...

  16. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  17. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  18. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  19. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  20. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section for...

  1. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  2. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Benzene. 21.97 Section 21... TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  3. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  4. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  5. 40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1,2-dimethyl-, poly-propene... Significant New Uses for Specific Chemical Substances § 721.1225 Benzene, 1,2-dimethyl-, poly-propene... reporting. (1) The chemical substance identified as benzene, 1,2-dimethyl-, polypropene derivatives...

  6. 46 CFR 30.25-3 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more benzene...

  7. 40 CFR 721.10096 - Benzene, 1,4-bis (methoxymethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1,4-bis (methoxymethyl)-. 721... Substances § 721.10096 Benzene, 1,4-bis (methoxymethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,4-bis (methoxymethyl)- (PMN P-03...

  8. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  9. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section for...

  10. 27 CFR 21.97 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are distilled...

  11. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  12. 40 CFR 80.1270 - Who may generate benzene credits under the ABT program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Who may generate benzene credits under... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Averaging, Banking and Trading (abt) Program § 80.1270 Who may generate benzene credits under the ABT program? (a...

  13. Law and regulation of benzene.

    PubMed Central

    Feitshans, I L

    1989-01-01

    OSHA has created final benzene regulations after extensive rulemakings on two occasions, 1978 and 1987. These standards have been the subject of extensive litigation for nearly 20 years. This article examines in detail the conceptual underpinnings of the Benzene Case, (which was decided by the U.S. Supreme Court in 1980) in light of U.S. administrative law precedents that have set limits upon administrative discretion under the test for "substantial evidence" and the "hard look doctrine." This article also addresses recent developments in the wake of the Benzene Case and their implications for benzene regulations following the "significant risk" doctrine in that case. This article briefly describes other national, regional, and international laws governing the use of benzene. This article concludes that the revisions of the benzene regulation and subsequent rulemaking provide substantial evidence of scientific underpinnings for regulatory action and that laws from other nations reflect an international consensus that occupational exposure to benzene is a proper subject of regulation. Such regulations and policies are therefore likely to withstand scrutiny and remain enforceable as widely accepted norms. PMID:2792048

  14. Denitrification synergized with ANAMMOX for the anaerobic degradation of benzene: performance and microbial community structure.

    PubMed

    Peng, Shuchan; Zhang, Lilan; Zhang, DaiJun; Lu, Peili; Zhang, Xiaoting; He, Qiang

    2017-05-01

    To evaluate the effect of anaerobic ammonium oxidation (ANAMMOX) on benzene degradation under denitrification, a sequencing batch reactor (SBR) under denitrification synergized with ANAMMOX (SBR-DenAna) for benzene degradation was established by inoculating anaerobic ammonium-oxidizing bacteria (AnAOB) into a SBR under denitrification reactor (SBR-Den) for benzene degradation. The average rate of benzene degradation and the maximum first-order kinetic constant in SBR-DenAna were 2.34- and 1.41-fold those in SBR-Den, respectively, indicating that ANAMMOX improved the degradation of benzene under denitrification synergized with ANAMMOX. However, the average rate of benzene degradation decreased by 35% in the denitrification-ANAMMOX synergistic reactor when 10 mg N L -1 NO 2 - was added; the rate recovered once NO 2 - was depleted, indicating that ANAMMOX might detoxify NO 2 - . Results from high-throughput sequencing analysis revealed that Azoarcus within the family Rhodocyclaceae might be associated with benzene degradation in the two SBRs. AnAOB affiliated with the family Candidatus Brocadiaceae were just detected in SBR-DenAna.

  15. Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs.

    PubMed

    Li, Jinghui; Nagamochi, Hiroshi; Akutsu, Tatsuya

    2018-01-01

    Enumeration of chemical structures is useful for drug design, which is one of the main targets of computational biology and bioinformatics. A chemical graph with no other cycles than benzene rings is called tree-like, and becomes a tree possibly with multiple edges if we contract each benzene ring into a single virtual atom of valence 6. All tree-like chemical graphs with a given tree representation are called the substituted benzene isomers of . When we replace each virtual atom in with a benzene ring to obtain a substituted benzene isomer, distinct isomers of are caused by the difference in arrangements of atom groups around a benzene ring. In this paper, we propose an efficient algorithm that enumerates all substituted benzene isomers of a given tree representation . Our algorithm first counts the number of all the isomers of the tree representation by a dynamic programming method. To enumerate all the isomers, for each , our algorithm then generates the th isomer by backtracking the counting phase of the dynamic programming. We also implemented our algorithm for computational experiments.

  16. Differential susceptibility of rats and guinea pigs to the ototoxic effects of ethyl benzene.

    PubMed

    Cappaert, Natalie L M; Klis, Sjaak F L; Muijser, Hans; Kulig, Beverly M; Ravensberg, Luco C; Smoorenburg, Guido F

    2002-01-01

    The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was found in the corresponding cochlear regions. In contrast, guinea pigs showed no threshold shifts and no OHC loss after exposure to much higher ethyl benzene levels (2500 ppm, 6 h/day, 5 days). Subsequently, a limited study (four rats and four guinea pigs) was performed in an attempt to understand these differences in susceptibility. Ethyl benzene concentration in blood was determined in both species after exposure to 500-ppm ethyl benzene (8 h/day, 3 days). At the end of the first day, blood of the rats contained 23.2+/-0.8-microg/ml ethyl benzene, whereas the concentration in guinea pig blood was 2.8+/-0.1 microg/ml. After 3 days, the concentration in both species decreased with respect to the first day, but the ethyl benzene concentration in rat blood was still 4.3 times higher than that in guinea pig blood. Thus, the difference in susceptibility between the species may be related to the ethyl benzene concentration in blood.

  17. Antioxidant Compounds in Traditional Indian Pickles May Prevent the Process-Induced Formation of Benzene.

    PubMed

    Kharat, Mahesh M; Adiani, Vanshika; Variyar, Prasad; Sharma, Arun; Singhal, Rekha S

    2016-01-01

    Pickles in the Indian market contain ascorbic acid from the raw material used and benzoate as an added preservative that are involved in the formation of benzene in soft drinks. In this work, 24 market pickle samples were surveyed for benzene content, as well as its precursors and other constituents that influence its formation. The analysis showed that pickle samples were high in acid content (low pH) and showed significant amount of ascorbic acid, minerals (Cu and Fe), and benzoic acid present in them. Also, most samples exhibited high antioxidant activity that might be attributed to the ingredients used, such as fruits and spices. The solid-phase microextraction headspace gas chromatography-mass spectrometry method was developed in-house for benzene analysis. Eleven of 24 samples had benzene, with the highest concentration of 4.36 ± 0.82 μg of benzene per kg of pickle for a lime pickle that was also reported to have highest benzoic acid and considerably less hydroxyl radical ((•)OH) scavenging activity. However, benzene levels for all 11 samples were considerably below the World Health Organization regulatory limit of 10 μg/kg for benzene in mineral water. Studies on model systems revealed that the high antioxidant activity of Indian pickles may have had a strong inhibitory effect on benzene formation.

  18. Benzene exposure is associated with epigenetic changes (Review).

    PubMed

    Fenga, Concettina; Gangemi, Silvia; Costa, Chiara

    2016-04-01

    Benzene is a volatile aromatic hydrocarbon solvent and is known as one of the predominant air pollutants in the environment. Chronic exposure to benzene is known to cause aplastic anemia and increased risk of acute myelogenous leukemia in humans. Although the mechanisms by which benzene causes toxicity remain to be fully elucidated, it is widely accepted that its metabolism is crucial to its toxicity, with involvement of one or more reactive metabolites. Novel approaches aimed at evaluating different mechanisms by which benzene can impact on human health by altering gene regulation have been developed. Among these novel approaches, epigenetics appears to be promising. The present review article summarizes the most important findings, reported from the literature, on epigenetic modifications correlated to benzene exposure. A computerized search in PubMed was performed in November 2014, using search terms, including 'benzene', 'epigenetic', 'histone modifications', 'DNA methylation' and 'microRNA'. Epidemiological and experimental studies have demonstrated the potential epigenetic effects of benzene exposure. Several of the epigenomic changes observed in response to environmental exposures may be mechanistically associated with susceptibility to diseases. However, further elucidation of the mechanisms by which benzene alters gene expression may improve prediction of the toxic potential of novel compounds introduced into the environment, and allow for more targeted and appropriate disease prevention strategies.

  19. [Analysis for the association between genetic polymorphisms of XRCC1, XPD, XRCC3, CCND1 and the latency of the occupational chronic benzene poisoning].

    PubMed

    Xu, Jian-ning; Huang, Hui-long; Wang, Quan-kai; Wang, Ya-wen; Yang, Min; Zheng, Yu-xin

    2007-03-01

    To explore the association between genetic polymorphisms of XRCC1, XPD, XRCC3 and CCND1 and latency of occupational chronic benzene poisoning. 80 patients diagnosed with occupational chronic benzene poisoning were investigated. PCR-RFLP was applied to detect the single nucleotide polymorphisms of C26304T, G27466A, G28152A, G36189A of XRCC1, C22541A, C23591T, A35931C of XPD, C18067T of XRCC3 and G870A of CCND1. Their relationship with the latency of chronic benzene poisoning was analyzed by Kaplan-Meier method. The association of XRCC1 G27466A subgroup with the latency of chronic benzene poisoning was observed, as well as that of CCDN1G870A subgroup. The benzene-exposed workers with XRCC1 27466G/G homozygous wild genotype developed chronic benzene poisoning 6.9 years later than those had homozygous (27466A/A) or heterozygous (27466G/A) mutant alleles. On the other hand, the latency developing chronic benzene poisoning was longer in workers with homozygous (CCND1 870A/A) or heterozygous (CCND1 870G/A) mutant alleles than in those carrying 870G/G homozygous wild genotype (14.9 vs. 8.7 years). The polymorphisms of XRCC1 and CCND1 potentially modify the latency of the chronic benzene poisoning among workers exposed to benzene.

  20. The use of biomonitoring data in exposure and human health risk assessment: benzene case study.

    PubMed

    Arnold, Scott M; Angerer, Juergen; Boogaard, Peter J; Hughes, Michael F; O'Lone, Raegan B; Robison, Steven H; Schnatter, A Robert

    2013-02-01

    Abstract A framework of "Common Criteria" (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m(3)), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10(-5) excess cancer risk (2.9 µg/m(3)). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects.

  1. Low-dose metabolism of benzene in humans: science and obfuscation

    PubMed Central

    Rappaport, Stephen M.

    2013-01-01

    Benzene is a ubiquitous air pollutant that causes human leukemia and hematotoxic effects. Although the mechanism by which benzene causes toxicity is unclear, metabolism is required. A series of articles by Kim et al. used air and biomonitoring data from workers in Tianjin, China, to investigate the dose-specific metabolism (DSM) of benzene over a wide range of air concentrations (0.03–88.9 p.p.m.). Kim et al. concluded that DSM of benzene is greatest at air concentrations <1 p.p.m. This provocative finding motivated the American Petroleum Institute to fund a study by Price et al. to reanalyze the original data. Although their formal ‘reanalysis’ reproduced Kim’s finding of enhanced DSM at sub-p.p.m. benzene concentrations, Price et al. argued that Kim’s methods were inappropriate for assigning benzene exposures to low exposed subjects (based on measurements of urinary benzene) and for adjusting background levels of metabolites (based on median values from the 60 lowest exposed subjects). Price et al. then performed uncertainty analyses under alternative approaches, which led them to conclude that ‘… the Tianjin data appear to be too uncertain to support any conclusions …’ regarding the DSM of benzene. They also argued that the apparent low-dose metabolism of benzene could be explained by ‘lung clearance.’ In addressing these criticisms, we show that the methods and arguments presented by Price et al. are scientifically unsound and that their results are unreliable. PMID:23222815

  2. Temporal Variation in the Association between Benzene and Leukemia Mortality

    PubMed Central

    Richardson, David B.

    2008-01-01

    Background Benzene is a human carcinogen. Exposure to benzene occurs in occupational and environmental settings. Objective I evaluated variation in benzene-related leukemia with age at exposure and time since exposure. Methods I evaluated data from a cohort of 1,845 rubber hydrochloride workers. Benzene exposure–leukemia mortality trends were estimated by applying proportional hazards regression methods. Temporal variation in the impact of benzene on leukemia rates was assessed via exposure time windows and fitting of a multistage cancer model. Results The association between leukemia mortality and benzene exposures was of greatest magnitude in the 10 years immediately after exposure [relative rate (RR) at 10 ppm-years = 1.19; 95% confidence interval (CI), 1.10–1.29]; the association was of smaller magnitude in the period 10 to < 20 years after exposure (RR at 10 ppm-years = 1.05; 95% CI, 0.97–1.13); and there was no evidence of association ≥ 20 years after exposure. Leukemia was more strongly associated with benzene exposures accrued at ≥ 45 years of age (RR at 10 ppm-years = 1.11; 95% CI, 1.04–1.17) than with exposures accrued at younger ages (RR at 10 ppm-years = 1.01; 95% CI, 0.92–1.09). Jointly, these temporal effects can be efficiently modeled as a multistage process in which benzene exposure affects the penultimate stage in disease induction. Conclusions Further attention should be given to evaluating the susceptibility of older workers to benzene-induced leukemia. PMID:18335105

  3. Health effects of benzene exposure among children following a flaring incident at the British Petroleum Refinery in Texas City.

    PubMed

    D'Andrea, Mark A; Reddy, G Kesava

    2014-02-01

    Human exposure to benzene is associated with multiple adverse health effects leading to hematological malignancies. The objective of this retrospective study was to evaluate the health consequences of benzene exposure in children following a flaring incident at the British petroleum (BP) refinery in Texas City, Texas. The study included children aged <17 years who had been exposed and unexposed to benzene. Using medical charts, clinical data including white blood cell (WBC) counts, platelets counts, hemoglobin, hematocrit, blood urea nitrogen (BUN), creatinine, alkaline phosphatase (ALP), aspartate amino transferase (AST), alanine amino transferase (ALT), and somatic symptom complaints by the children exposed to benzene were reviewed and analyzed. A total of 312 subjects (benzene exposed, n = 157 and unexposed, n = 155) were included. Hematologic analysis showed that WBC counts were significantly decreased in benzene-exposed children compared with the unexposed children (6.8 ± 2.1 versus 7.3 ± 1.7, P = .022). Conversely, platelet (X 10(3) per μL) counts were increased significantly in the benzene-exposed group compared with the unexposed group (278.4 ± 59.9 versus 261.6 ± 51.7, P = .005). Similarly, benzene-exposed children had significantly higher levels of ALP (183.7± 95.6 versus 165 ± 70.3 IU/L, P = .04), AST (23.6 ± 15.3 versus 20.5 ± 5.5 IU/L, P = .015), and ALT (19.2 ± 7.8 versus 16.9 ± 6.9 IU/L, P = .005) compared with the unexposed children. Together, the results of the study reveal that children exposed to benzene experienced significantly altered blood profiles, liver enzymes, and somatic symptoms indicating that children exposed to benzene are at a higher risk of developing hepatic or blood related disorders.

  4. Atmospheric Benzene Observations from an Oil and Gas Field in the Denver Julesburg Basin in July and August 2014

    NASA Technical Reports Server (NTRS)

    Halliday, Hannah S.; Thompson, Anne M.; Wisthaler, Armin; Blake, Donald; Hornbrook, Rebecca S.; Mikoviny, Tomas; Mueller, Markus; Eichler, Philipp; Apel, Eric C.; Hills, Alan

    2016-01-01

    High time resolution measurements of volatile organic compounds (VOCs) were collectedusing a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the PlattevilleAtmospheric Observatory (PAO) in Colorado to investigate how oil and natural gas (ONG) developmentimpacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurementswere carried out in July and August 2014 as part of NASAs Deriving Information on Surface Conditions fromColumn and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign. ThePTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontalsurveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (meanbenzene 0.53 ppbv, maximum benzene 29.3 ppbv), primarily at night (mean nighttime benzene 0.73ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurementsindicate that benzene originated from within the WGF, and typical source signatures detected in the canistersamples implicate emissions from ONG activities rather than urban vehicular emissions as primary benzenesource. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerlyflow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that trafficemissions were not responsible for the observed high benzene levels. Previous measurements at the BoulderAtmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzeneenhancements between the two atmospheric observatories. Fugitive emissions of benzene from ONGoperations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO.

  5. Combined analysis of job and task benzene air exposures among workers at four US refinery operations

    PubMed Central

    Shin, Jennifer (Mi); Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M

    2016-01-01

    Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers’ exposures to benzene over the past 30 years. PMID:26862134

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philbrook, Nicola A.; Winn, Louise M., E-mail: winnl@queensu.ca; School of Environmental Studies, Queen's University, Kingston, ON K7L3N6

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as wellmore » as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. - Highlights: • Benzene exposure in pregnant mice decreased global DNA methylation in maternal bone marrow. • Benzene exposure in pregnant mice had no effect on global DNA methylation in fetal livers. • No effect of benzene exposure was observed on p15 promoter methylation. • No effect of benzene on measured histone modifications in both maternal bone marrow and fetal livers was observed.« less

  7. Altered Expression of Genes in Signaling Pathways Regulating Proliferation of Hematopoietic Stem and Progenitor Cells in Mice with Subchronic Benzene Exposure

    PubMed Central

    Sun, Rongli; Zhang, Juan; Xiong, Mengzhen; Wei, Haiyan; Tan, Kehong; Yin, Lihong; Pu, Yuepu

    2015-01-01

    Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage- sca-1+ c-kit+ (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity. PMID:26262635

  8. Combined analysis of job and task benzene air exposures among workers at four US refinery operations.

    PubMed

    Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M

    2017-03-01

    Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.

  9. Altered Expression of Genes in Signaling Pathways Regulating Proliferation of Hematopoietic Stem and Progenitor Cells in Mice with Subchronic Benzene Exposure.

    PubMed

    Sun, Rongli; Zhang, Juan; Xiong, Mengzhen; Wei, Haiyan; Tan, Kehong; Yin, Lihong; Pu, Yuepu

    2015-08-07

    Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage(-) sca-1(+) c-kit(+) (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch 1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity.

  10. The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum.

    PubMed

    Setsungnern, Arnon; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-11-01

    Benzene, a carcinogenic compound, has been reported as a major indoor air pollutant. Chlorophytum comosum (C. comosum) was reported to be the highest efficient benzene removal plant among other screened plants. Our previous studies found that plants under light conditions could remove gaseous benzene higher than under dark conditions. Therefore, C. comosum exposure to airborne benzene was studied under different light quality at the same light intensity. C. comosum could remove 500 ppm gaseous benzene with the highest efficiency of 68.77% under Blue:Red = 1:1 LED treatments and the lowest one appeared 57.41% under white fluorescent treatment within 8 days. After benzene was uptaken by C. comosum, benzene was oxidized to be phenol in the plant cells by cytochrome P450 monooxygenase system. Then, phenol was catalyzed to be catechol that was confirmed by the up-regulation of phenol 2-monooxygenase (PMO) gene expression. After that, catechol was changed to cic, cis-muconic acid. Interestingly, cis,cis-muconic acid production was found in the plant tissues higher than phenol and catechol. The result confirmed that NADPH-cytochrome P450 reductase (CPR), cytochrome b5 (cyt b5), phenol 2-monooxygenase (PMO) and cytochrome P450 90B1 (CYP90B1) in plant cells were involved in benzene degradation or detoxification. In addition, phenol, catechol, and cis,cis-muconic acid production were found under the Blue-Red LED light conditions higher than under white fluorescent light conditions due to under LED light conditions gave higher NADPH contents. Hence, C. comosum under the Blue-Red LED light conditions had a high potential to remove benzene in a contaminated site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Environmental and biological monitoring of benzene during self-service automobile refueling.

    PubMed Central

    Egeghy, P P; Tornero-Velez, R; Rappaport, S M

    2000-01-01

    Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (SD = 5.8 mg/m(3); median duration = 3 min) with a range of < 0.076-36 mg/m(3), and postexposure breath levels averaged 160 microg/m(3) (SD = 260 microg/m(3)) with a range of < 3.2-1,400 microg/m(3). Log-transformed exposures and breath levels were significantly correlated (r = 0.77, p < 0.0001). We used mixed-effects statistical models to gauge the relative influences of environmental and subject-specific factors on benzene exposure and breath levels and to investigate the importance of various covariates obtained by questionnaire. Model fitting yielded three significant predictors of benzene exposure, namely, fuel octane grade (p = 0.0011), duration of exposure (p = 0.0054), and season of the year (p = 0.032). Likewise, another model yielded three significant predictors of benzene concentration in breath, specifically, benzene exposure (p = 0.0001), preexposure breath concentration (p = 0.0008), and duration of exposure (p = 0.038). Variability in benzene concentrations was remarkable, with 95% of the estimated values falling within a 274-fold range, and was comprised entirely of the within-person component of variance (representing exposures of the same subject at different times of refueling). The corresponding range for benzene concentrations in breath was 41-fold and was comprised primarily of the within-person variance component (74% of the total variance). Our results indicate that environmental rather than interindividual differences are primarily responsible for benzene exposure and uptake during automobile refueling. The study also demonstrates that self-administered monitoring can be efficiently used to measure environmental exposures and biomarkers among the general public. PMID:11133401

  12. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN P-10-76...

  13. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN P-10-76...

  14. 40 CFR 721.10260 - Benzene, 1,3-bis(1-chloro-1-methylethyl)-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1,3-bis(1-chloro-1... Specific Chemical Substances § 721.10260 Benzene, 1,3-bis(1-chloro-1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,3...

  15. 40 CFR 721.10280 - Benzene ethenyl-, polymer with 1,3-butadiene, brominated.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene ethenyl-, polymer with 1,3... Specific Chemical Substances § 721.10280 Benzene ethenyl-, polymer with 1,3-butadiene, brominated. (a... benzene ethenyl-, polymer with 1,3-butadiene, brominated (PMN P-10-476; CAS No. 1195978-93-8)) is subject...

  16. 40 CFR 721.2535 - Benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1,1â²-methylanebis[4... Significant New Uses for Specific Chemical Substances § 721.2535 Benzene, 1,1′-methylanebis[4-isocyanato... chemical substance identified as benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked...

  17. 40 CFR 721.10366 - Benzene, 4-bromo-1,2-dimethyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 4-bromo-1,2-dimethyl-. 721... Substances § 721.10366 Benzene, 4-bromo-1,2-dimethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 4-bromo-1,2-dimethyl-(PMN P-10-76...

  18. 40 CFR 721.10260 - Benzene, 1,3-bis(1-chloro-1-methylethyl)-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1,3-bis(1-chloro-1... Specific Chemical Substances § 721.10260 Benzene, 1,3-bis(1-chloro-1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,3...

  19. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  20. 40 CFR 721.2535 - Benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1,1â²-methylanebis[4... Significant New Uses for Specific Chemical Substances § 721.2535 Benzene, 1,1′-methylanebis[4-isocyanato... chemical substance identified as benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked...

  1. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  2. 40 CFR 721.2535 - Benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1,1â²-methylanebis[4... Significant New Uses for Specific Chemical Substances § 721.2535 Benzene, 1,1′-methylanebis[4-isocyanato... chemical substance identified as benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked...

  3. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  4. 40 CFR 721.2535 - Benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, 1,1â²-methylanebis[4... Significant New Uses for Specific Chemical Substances § 721.2535 Benzene, 1,1′-methylanebis[4-isocyanato... chemical substance identified as benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked...

  5. 40 CFR 721.10260 - Benzene, 1,3-bis(1-chloro-1-methylethyl)-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1,3-bis(1-chloro-1... Specific Chemical Substances § 721.10260 Benzene, 1,3-bis(1-chloro-1-methylethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1,3...

  6. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  7. 40 CFR 721.1193 - Benzene, 2-bromo-1,4-dimethoxy-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 2-bromo-1,4-dimethoxy-. 721... Substances § 721.1193 Benzene, 2-bromo-1,4-dimethoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 2-bromo-1,4-dimethoxy- (PMN P-95...

  8. 40 CFR 721.10280 - Benzene ethenyl-, polymer with 1,3-butadiene, brominated.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene ethenyl-, polymer with 1,3... Specific Chemical Substances § 721.10280 Benzene ethenyl-, polymer with 1,3-butadiene, brominated. (a... benzene ethenyl-, polymer with 1,3-butadiene, brominated (PMN P-10-476; CAS No. 1195978-93-8)) is subject...

  9. 40 CFR 721.2535 - Benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,1â²-methylanebis[4... Significant New Uses for Specific Chemical Substances § 721.2535 Benzene, 1,1′-methylanebis[4-isocyanato... chemical substance identified as benzene, 1,1′-methylanebis[4-isocyanato-, homopolymer, Bu alc.-blocked...

  10. Reversible intermolecular energy transfer between saturated amines and benzene in non-polar solution

    NASA Astrophysics Data System (ADS)

    Halpern, Arthur M.; Wryzykowska, Krystyna

    1981-01-01

    Excitation of a mixture of dimethylethylamine (DEMA) and benzene in n-hexane at 222 nm primarily produces excited amine, while at 261 nm excited benzene predominantly results. The fluorescence spectra appreciably overlap. With 222 nm excitation, DEMA fluorescence is quenched by benzene at the diffusion-controlled rate; this quenching results with nearly unit efficiency in sensitized benzene fluorescence. With 261 nm excitation, some sensitized DEMA fluorescence is observed: the rate constant for tins process is ≈ 2.6 × 10 9 M -1 s -1.

  11. Current collapse in tunneling transport through benzene.

    PubMed

    Hettler, M H; Wenzel, W; Wegewijs, M R; Schoeller, H

    2003-02-21

    We investigate the electrical transport through a system of benzene coupled to metal electrodes by electron tunneling. Using electronic structure calculations, a semiquantitative model for the pi electrons of the benzene is derived that includes general two-body interactions. After exact diagonalization of the benzene model the transport is computed using perturbation theory for weak electrode-benzene coupling (golden rule approximation). We include the effect of an applied electric field on the molecular states, as well as radiative relaxation. We predict a current collapse and strong negative differential conductance due to a "blocking" state when the electrode is coupled to the para-position of benzene. In contrast, for coupling to the meta-position, a series of steps in the I-V curve is found.

  12. The use of biomonitoring data in exposure and human health risk assessment: benzene case study

    PubMed Central

    Angerer, Juergen; Boogaard, Peter J.; Hughes, Michael F.; O’Lone, Raegan B.; Robison, Steven H.; Robert Schnatter, A.

    2013-01-01

    A framework of “Common Criteria” (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m3), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10−5 excess cancer risk (2.9 µg/m3). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects. PMID:23346981

  13. Benzene exposure is associated with cardiovascular disease risk.

    PubMed

    Abplanalp, Wesley; DeJarnett, Natasha; Riggs, Daniel W; Conklin, Daniel J; McCracken, James P; Srivastava, Sanjay; Xie, Zhengzhi; Rai, Shesh; Bhatnagar, Aruni; O'Toole, Timothy E

    2017-01-01

    Benzene is a ubiquitous, volatile pollutant present at high concentrations in toxins (e.g. tobacco smoke) known to increase cardiovascular disease (CVD) risk. Despite its prevalence, the cardiovascular effects of benzene have rarely been studied. Hence, we examined whether exposure to benzene is associated with increased CVD risk. The effects of benzene exposure in mice were assessed by direct inhalation, while the effects of benzene exposure in humans was assessed in 210 individuals with mild to high CVD risk by measuring urinary levels of the benzene metabolite trans,trans-muconic acid (t,t-MA). Generalized linear models were used to assess the association between benzene exposure and CVD risk. Mice inhaling volatile benzene had significantly reduced levels of circulating angiogenic cells (Flk-1+/Sca-1+) as well as an increased levels of plasma low-density lipoprotein (LDL) compared with control mice breathing filtered air. In the human cohort, urinary levels of t,t-MA were inversely associated several populations of circulating angiogenic cells (CD31+/34+/45+, CD31+/34+/45+/AC133-, CD34+/45+/AC133+). Although t,t-MA was not associated with plasma markers of inflammation or thrombosis, t,t-MA levels were higher in smokers and in individuals with dyslipidemia. In smokers, t,t-MA levels were positively associated with urinary metabolites of nicotine (cotinine) and acrolein (3-hydroxymercapturic acid). Levels of t,t-MA were also associated with CVD risk as assessed using the Framingham Risk Score and this association was independent of smoking. Thus, benzene exposure is associated with increased CVD risk and deficits in circulating angiogenic cells in both smokers and non-smokers.

  14. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    PubMed

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  15. Involvement of hypoxia-inducible factor-1 α (HIF-1α) in inhibition of benzene on mouse hematopoietic system.

    PubMed

    Meng, Xing; Zhang, Juan; Yin, Lihong; Pu, Yuepu

    2016-01-01

    Benzene is an occupational and environmental pollutant that damages the hematopoietic system through oxidant mechanisms. The aims of this study were to assess the role of oxidation in benzene-mediated damage by determination of the levels of reactive oxygen species (ROS) and to evaluate the role of hypoxia-inducible factor-1α (HIF-1α) in this process. C57BL/6 mice were exposed to benzene at varying concentrations of 60, 150, or 300 mg/kg/d for 15 d. Mice in the benzene groups displayed weight loss, and hematologic consequences including decreased red and white blood cell counts, reduced platelet count, diminished hemoglobin content, and lower number of hematopoietic stem cells in bone marrow (BM). There was an elevated proportional neutrophil count and decrease in relative thymus weight. In BM there was a significant increase in ROS levels at 150 mg/kg benzene. However, as a result of diminished cellular viability, ROS levels were not markedly different between the 300-mg/kg benzene dose and the control, as the number of hematopoietic stem cells was reduced. HIF-1α expression and protein levels were decreased in BM cells at all doses of benzene. In conclusion, data indicated that HIF-1α may be involved in benzene-induced inhibition of mouse hematopoiesis and that oxidative stress may play a role in the observed toxicity.

  16. Chromosome-wide aneuploidy study (CWAS) in workers exposed to an established leukemogen, benzene

    PubMed Central

    Zhang, Luoping; Lan, Qing; Guo, Weihong; Hubbard, Alan E.; Li, Guilan; Rappaport, Stephen M.; McHale, Cliona M.; Shen, Min; Ji, Zhiying; Vermeulen, Roel; Yin, Songnian; Rothman, Nathaniel; Smith, Martyn T.

    2011-01-01

    Evidence suggests that de novo, therapy-related and benzene-induced acute myeloid leukemias (AML) occur via similar cytogenetic and genetic pathways, several of which involve aneuploidy, the loss or gain of chromosomes. Aneuploidy of specific chromosomes has been detected in benzene-related leukemia patients as well as in healthy benzene-exposed workers, suggesting that aneuploidy precedes and may be a potential mechanism underlying benzene-induced leukemia. Here, we analyzed the peripheral blood lymphocytes of 47 exposed workers and 27 unexposed controls using a novel OctoChrome fluorescence in situ hybridization (FISH) technique that simultaneously detects aneuploidy in all 24 chromosomes. Through this chromosome-wide aneuploidy study (CWAS) approach, we found heterogeneity in the monosomy and trisomy rates of the 22 autosomes when plotted against continuous benzene exposure. In addition, statistically significant, chromosome-specific increases in the rates of monosomy [5, 6, 7, 10, 16 and 19] and trisomy [5, 6, 7, 8, 10, 14, 16, 21 and 22] were found to be dose dependently associated with benzene exposure. Furthermore, significantly higher rates of monosomy and trisomy were observed in a priori defined ‘susceptible’ chromosome sets compared with all other chromosomes. Together, these findings confirm that benzene exposure is associated with specific chromosomal aneuploidies in hematopoietic cells, which suggests that such aneuploidies may play roles in benzene-induced leukemogenesis. PMID:21216845

  17. 45 FR 380444

    EPA Pesticide Factsheets

    Federal Register notice of National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.

  18. 46 CFR Appendix A to Subpart C to... - Sample Substance Safety Data Sheet, Benzene

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Appearance and odor: Benzene is a clear, colorless liquid with a pleasant, sweet odor. The odor of benzene... where its odor is first recognizable, you may feel breathless, irritable, euphoric, or giddy and you may..., sleeves, and aprons) over any parts of your body that could be exposed to liquid benzene. (c) Eye and face...

  19. INVESTIGATION OF BENZENE OXIDE IN BONE MARROW AND OTHER TISSUES OF F344 RATS FOLLOWING METABOLISM OF BENZENE IN VITRO AND IN VIVO

    EPA Science Inventory

    This study examines the initial activation of benzene, exploring key aspects of its metabolism by measurement of benzene oxide (BO) and BO-protein adducts in vitro and in vivo. To assess the potential influence of various factors on the production of BO, microsomes were prepare...

  20. 40 CFR 721.10072 - Benzene, 1,1′-methylenebis[4-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1,1â²-methylenebis[4... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10072 Benzene, 1,1′-methylenebis[4... to reporting. (1) The chemical substance identified generically as benzene, 1,1′-methylenebis[4...

  1. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  2. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  3. 40 CFR 721.10072 - Benzene, 1,1′-methylenebis[4-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzene, 1,1â²-methylenebis[4... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10072 Benzene, 1,1′-methylenebis[4... to reporting. (1) The chemical substance identified generically as benzene, 1,1′-methylenebis[4...

  4. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  5. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  6. 40 CFR 721.1325 - Benzene, 1-(1-methyl-bu-toxy)-4-nitro-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1-(1-methyl-bu-toxy)-4-nitro... Substances § 721.1325 Benzene, 1-(1-methyl-bu-toxy)-4-nitro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, 1-(1-methylbutoxy)-4-nitro- (PMN P...

  7. 40 CFR 721.10072 - Benzene, 1,1′-methylenebis[4-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzene, 1,1â²-methylenebis[4... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10072 Benzene, 1,1′-methylenebis[4... to reporting. (1) The chemical substance identified generically as benzene, 1,1′-methylenebis[4...

  8. 40 CFR 721.10072 - Benzene, 1,1′-methylenebis[4-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzene, 1,1â²-methylenebis[4... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10072 Benzene, 1,1′-methylenebis[4... to reporting. (1) The chemical substance identified generically as benzene, 1,1′-methylenebis[4...

  9. Investigation into Variation of Endogenous Metabolites in Bone Marrow Cells and Plasma in C3H/He Mice Exposed to Benzene

    PubMed Central

    Sun, Rongli; Zhang, Juan; Yin, Lihong; Pu, Yuepu

    2014-01-01

    Benzene is identified as a carcinogen. Continued exposure of benzene may eventually lead to damage to the bone marrow, accompanied by pancytopenia, aplastic anemia or leukemia. This paper explores the variations of endogenous metabolites to provide possible clues for the molecular mechanism of benzene-induced hematotoxicity. Liquid chromatography coupled with time of flight-mass spectrometry (LC-TOF-MS) and principal component analysis (PCA) was applied to investigate the variation of endogenous metabolites in bone marrow cells and plasma of male C3H/He mice. The mice were injected subcutaneously with benzene (0, 300, 600 mg/day) once daily for seven days. The body weights, relative organ weights, blood parameters and bone marrow smears were also analyzed. The results indicated that benzene caused disturbances in the metabolism of oxidation of fatty acids and essential amino acids (lysine, phenylalanine and tyrosine) in bone marrow cells. Moreover, fatty acid oxidation was also disturbed in plasma and thus might be a common disturbed metabolic pathway induced by benzene in multiple organs. This study aims to investigate the underlying molecular mechanisms involved in benzene hematotoxicity, especially in bone marrow cells. PMID:24658442

  10. Diffusion of benzene confined in the oriented nanochannels of chrysotile asbestos fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, E.; Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115; Kumzerov, Yu.A.

    We used quasielastic neutron scattering to study the dynamics of benzene that completely fills the nanochannels of chrysotile asbestos fibers with a characteristic diameter of about 5 nm. The macroscopical alignment of the nanochannels in fibers provided an interesting opportunity to study anisotropy of the dynamics of confined benzene by means of collecting the data with the scattering vector either parallel or perpendicular to the fibers axes. The translational diffusive motion of benzene molecules was found to be isotropic. While bulk benzene freezes at 278.5 K, we observed the translational dynamics of the supercooled confined benzene on the time scalemore » of hundreds of picoseconds even below 200 K, until at about 160 K its dynamics becomes too slow for the {mu}eV resolution of the neutron backscattering spectrometer. The residence time between jumps for the benzene molecules measured in the temperature range of 260 K to 320 K demonstrated low activation energy of 2.8 kJ/mol.« less

  11. [The exposure of the population to toxic substances in the interior of motor vehicles--the example of benzene].

    PubMed

    Eikmann, T; Kramer, M; Goebel, H

    1992-06-01

    The exposure of the population to benzene is caused in the first place by emissions of the motor-vehicle traffic. The air pollution concentrations in main traffic routes and in the sphere of influence of industrial plants amount to 5-30 micrograms Benzene/m3 in the course of the year. In indoor air about 6-12 micrograms/m3 are detectable, in the interior of motor-vehicles between 50 and 200 micrograms/m3. Smoking raises the individual burden significantly; in contrast food and drinking water amount only for a small part of the total intake of benzene. In rural areas with low outdoor-air concentrations the main source of burden can be the intake of benzene during the use of motor-vehicles. Despite the relatively low carcinogenic potency of benzene but because of the unfavourable exposure conditions and the comparatively high concentrations measures for the reduction of benzene in fuel should be taken immediately.

  12. Is benzene exposure from gasoline carcinogenic?

    PubMed

    Jamall, Ijaz S; Willhite, Calvin C

    2008-02-01

    This article questions the basis for benzene as the carcinogenic surrogate in deriving health risk-based 'clean-up levels' for gasoline-impacted soil and groundwater at leaking underground storage tank properties. The epidemiological evidence suggests that acute myelogenous leukemia (AML) associated with chronic occupational benzene exposure can be best described by sigmoid dose-response relationships. A review of the molecular toxicology and kinetics of benzene points to the existence of threshold mechanisms in the induction of leukemia. The toxicological and epidemiological literature on chronic exposure to unleaded gasoline indicates that the benzene exposures required to induce a measurable carcinogenic response are substantially greater than exposures likely to be encountered from exposure to gasoline at contaminated properties. Thus, assuming that theoretical cancer risks associated with exposure to benzene from gasoline reflect actual health risks associated with such environmental exposures to gasoline and using these theoretical cancer risks and cancer potency factors for benzene to dictate soil and groundwater clean up of gasoline are not scientifically defensible.

  13. Degradation of Benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 Is Catalyzed by Enzymes Encoded in Distinct Catabolism Gene Clusters.

    PubMed

    de Lima-Morales, Daiana; Chaves-Moreno, Diego; Wos-Oxley, Melissa L; Jáuregui, Ruy; Vilchez-Vargas, Ramiro; Pieper, Dietmar H

    2016-01-01

    Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Substituent Effects in the Benzene Dimer are Due to Direct Interactions of the Substituents with the Unsubstituted Benzene

    PubMed Central

    Wheeler, Steven E.; Houk, K. N.

    2009-01-01

    The prevailing views of substituent effects in the sandwich configuration of the benzene dimer are flawed. For example, in the polar/π model of Cozzi and co-workers (J. Am. Chem. Soc. 1992, 114, 5729), electron-withdrawing substituents enhance binding in the benzene dimer by withdrawing electron density from the π-cloud of the substituted ring, reducing the repulsive electrostatic interaction with the non-substituted benzene. Conversely, electron-donating substituents donate excess electrons into the π-system and diminish the π-stacking interaction. We present computed interaction energies for the sandwich configuration of the benzene dimer and 24 substituted dimers, as well as sandwich complexes of substituted benzenes with perfluorobenzene. While the computed interaction energies correlate well with σm values for the substituents, interaction energies for related model systems demonstrate that this trend is independent of the substituted ring. Instead, the observed trends are consistent with direct electrostatic and dispersive interactions of the substituents with the unsubstituted ring. PMID:18652453

  15. Scanning-tunneling-microscopy-active empty states on the (benzene + CO)/Rh(111) surface investigated by inverse photoemission

    NASA Astrophysics Data System (ADS)

    Netzer, Falko P.; Frank, Karl-Heinz

    1989-09-01

    The unoccupied electronic states of the benzene + CO coadsorption system on Rh(111) have been investigated by inverse photoemission spectroscopy. The benzene and CO derived lowest unoccupied molecular orbitals (e2u and b2g for benzene and 2π* for CO) have been identified in the region 2.3-6.5 eV above the Fermi level. For the ordered (3×3) benzene + CO surface indications of enhanced density of states (DOS) within 0.5 eV of the Fermi level are found. This enhancement of the DOS may be associated with hybridized metal-benzene states, which have been invoked to be involved in the imaging process of the molecular entities in a recent scanning-tunneling-microscopy investigation of this system.

  16. Configuration and energy landscape of the benzonitrile anion

    NASA Astrophysics Data System (ADS)

    Kirnosov, Nikita; Adamowicz, Ludwik

    2017-05-01

    Quantum chemical calculations are employed to study the configurational isomers of the anion formed by benzene substituted with a cyano group. It is found that an excess electron can form dipole-bound (DB) states with benzonitrile and phenyl-isocyanide isomers. It can also attach to the cyano group, if this group is separated from the benzene ring by some distance, forming a covalent CN- anion. There are four positions at peripherals of the benzene ring where this anion can localize and form stable complexes with the benzene radical. In these complexes CN- is connected to the benzene radical via non-covalent interactions.

  17. UV spectral shift of benzene in sub- and supercritical water

    NASA Astrophysics Data System (ADS)

    Kometani, Noritsugu; Takemiya, Koji; Yonezawa, Yoshiro; Amita, Fujitsugu; Kajimoto, Okitsugu

    2004-08-01

    UV absorption spectra of benzene have been measured over the wide range of temperature and pressure from the ambient state to the supercritical state ( T = 400 °C and P = 40 MPa). The analysis of the spectral shift of benzene in water relative to that in the gas indicates that at T = 380 and 390 °C the local solvent density around benzene is likely to be depressed below the bulk density for densities near the critical density. It is found that π-hydrogen bond between benzene and water becomes evident with lowering temperature below T = 340 °C.

  18. Facts about Benzene

    MedlinePlus

    ... Disposal of Contaminated Clothing .” If you think your water supply may have benzene in it, drink bottled water until you are sure your water supply is safe. If someone has swallowed benzene, do ...

  19. An analysis of workplace exposures to benzene over four decades at a petrochemical processing and manufacturing facility (1962-1999).

    PubMed

    Sahmel, J; Devlin, K; Burns, A; Ferracini, T; Ground, M; Paustenbach, D

    2013-01-01

    Benzene, a known carcinogen, can be generated as a by-product during the use of petroleum-based raw materials in chemical manufacturing. The aim of this study was to analyze a large data set of benzene air concentration measurements collected over nearly 40 years during routine employee exposure monitoring at a petrochemical manufacturing facility. The facility used ethane, propane, and natural gas as raw materials in the production of common commercial materials such as polyethylene, polypropylene, waxes, adhesives, alcohols, and aldehydes. In total, 3607 benzene air samples were collected at the facility from 1962 to 1999. Of these, in total 2359 long-term (>1 h) personal exposure samples for benzene were collected during routine operations at the facility between 1974 and 1999. These samples were analyzed by division, department, and job title to establish employee benzene exposures in different areas of the facility over time. Sampling data were also analyzed by key events over time, including changes in the occupational exposure limits (OELs) for benzene and key equipment process changes at the facility. Although mean benzene concentrations varied according to operation, in nearly all cases measured benzene quantities were below the OEL in place at the time for benzene (10 ppm for 1974-1986 and 1 ppm for 1987-1999). Decreases in mean benzene air concentrations were also found when data were evaluated according to 7- to 10-yr periods following key equipment process changes. Further, an evaluation of mortality rates for a retrospective employee cohort (n = 3938) demonstrated that the average personal benzene exposures at this facility (0.89 ppm for the period 1974-1986 and 0.125 ppm for the period 1987-1999) did not result in increased standardized mortality ratio (SMRs) for diseases or malignancies of the lymphatic system. The robust nature of this data set provides comprehensive exposure information that may be useful for assessing human benzene exposures at similar facilities. The data also provide a basis for comparable measured exposure levels and the potential for adverse health effects. These data may also prove beneficial for comparing relative exposure potential for production versus nonproduction operations and the relationship between area and personal breathing zone samples.

  20. Reactions of benzene oxide with thiols including glutathione.

    PubMed

    Henderson, Alistair P; Barnes, Martine L; Bleasdale, Christine; Cameron, Richard; Clegg, William; Heath, Sarah L; Lindstrom, Andrew B; Rappaport, Stephen M; Waidyanatha, Suramya; Watson, William P; Golding, Bernard T

    2005-02-01

    S-Phenylmercapturic acid is a minor metabolite of benzene used as a biomarker for human benzene exposures. The reaction of intracellular glutathione with benzene oxide-oxepin, the initial metabolite of benzene, is presumed to give 1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which undergoes dehydration to S-phenylglutathione, the precursor of S-phenylmercapturic acid. To validate the proposed route to S-phenylglutathione, reactions of benzene oxide-oxepin with glutathione and other sulfur nucleophiles have been studied. The reaction of benzene oxide with an excess of aqueous sodium sulfide, followed by acetylation, gave bis-(6-trans-5-acetoxycyclohexa-1,3-dienyl)sulfide, the structure of which was proved by X-ray crystallography. Reactions of benzene oxide-oxepin in a 95:5 (v/v) mixture of phosphate buffer in D2O with (CD3)2SO were monitored by 1H NMR spectroscopy. In the absence of glutathione, the half-life of benzene oxide-oxepin was ca. 34 min at 25 degrees C and pD 7.0. The half-life was not affected in the range of 2-15 mM glutathione in the presence and absence of a commercial sample of human glutathione S-transferase (at pH 7.0, 8.0, 8.5, or 10.0). The adduct 1-(S-glutathionyl)-cyclohexa-3,5-diene-2-ol was identified in these reaction mixtures, especially at higher pH, by mass spectrometry and by its acid-catalyzed decomposition to S-phenylglutathione. Incubation of benzene oxide with N-acetyl-L-cysteine at 37 degrees C and pH 10.0 and subsequent mass spectrometric analysis of the mixture showed formation of pre-S-phenylmercapturic acid and the dehydration product, S-phenylmercapturic acid. The data validate the premise that benzene oxide-oxepin can be captured by glutathione to give (1R,2R)- and/or (1S,2S)-1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which dehydrate to S-phenylglutathione. The capture is a relatively inefficient process at pH 7 that is accelerated at higher pH. These studies account for the observation that the metabolism of benzene is dominated by the formation of phenol. The pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at pH 7 vs spontaneous rearrangement to phenol.

  1. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  2. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  3. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  4. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  5. 40 CFR 80.1338 - What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as a small refiner for the gasoline benzene requirements of this subpart? 80.1338 Section 80.1338... FUELS AND FUEL ADDITIVES Gasoline Benzene Small Refiner Provisions § 80.1338 What criteria must be met to qualify as a small refiner for the gasoline benzene requirements of this subpart? (a) A small...

  6. STABILITY OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE AND 1,4-BENZOQUINONE AFTER ADMINISTRATION OF BENZENE TO F344 RATS

    EPA Science Inventory

    The stability of cysteinyl adducts of benzene oxide (BO) and mono-S-substituted cysteinyl adducts of 1,4-benzoquinone (1,4-BQ) was investigated in both hemoglobin (Hb) and albumin (Alb) following administration of a single oral dose of 400 mg [U-14C/13C6]benzene/kg body weight ...

  7. Hematological and hepatic alterations in nonsmoking residents exposed to benzene following a flaring incident at the British petroleum plant in Texas City.

    PubMed

    D'Andrea, Mark A; Reddy, G Kesava

    2014-12-20

    Human exposure to benzene is associated with multiple adverse health effects with an increased risk of developing carcinogenesis. Benzene exposure is known to affect many critical organs including the hematological, hepatic, renal, lung, and cardiac functions. The purpose of this study is to examine the health effects of benzene exposure among nonsmoking subjects from a prolonged flaring incident that occurred at the British petroleum (BP) refinery in the Texas City, Texas. The study included nonsmoking subjects who had been exposed and unexposed to benzene. Using medical charts, clinical data including white blood cell (WBC) counts, platelet counts, hemoglobin, hematocrit, blood urea nitrogen (BUN), creatinine, alkaline phosphatase (ALP), aspartate amino transferase (AST), and alanine amino transferase (ALT) in nonsmoking subjects exposed to benzene were reviewed and analyzed and compared with unexposed adults. A total of 1422 nonsmoking subjects (benzene exposed, n=1093 and unexposed, n=329) were included. Benzene exposed subjects had significantly higher levels of WBC (×10(3) per μL) counts (7.7±2.2 versus 6.8±1.7, P=0.001) and platelet (×10(3) per μL) counts (288.8±59.0 versus 245.3±54.4, P=0.001) compared with the unexposed subjects. The mean serum creatinine (mg/dL) levels were also significantly increased in the benzene exposed group compared with the unexposed group (1.1±0.4 versus 0.8±0.2, P=0.001). Serum levels of ALP (IU/L) was significantly elevated in the benzene exposed subjects compared with the unexposed subjects (87.3±22.6 versus 69.6±16.5, P=0.001). Similarly, benzene exposed subjects had significantly higher levels of AST and ALT compared with those unexposed subjects. Benzene exposure from the prolonged BP flaring incident caused significant alterations in hematological and liver markers indicating that these nonsmoking residents exposed to refinery chemicals may be at a higher risk of developing hepatic or blood related disorders.

  8. Occupational Exposure to Benzene and Non-Hodgkin Lymphoma in a Population-Based Cohort: The Shanghai Women’s Health Study

    PubMed Central

    Friesen, Melissa C.; Vermeulen, Roel; Shu, Xiao-Ou; Purdue, Mark P.; Stewart, Patricia A.; Xiang, Yong-Bing; Chow, Wong-Ho; Zheng, Tongzhang; Ji, Bu-Tian; Yang, Gong; Linet, Martha S.; Hu, Wei; Zhang, Heping; Zheng, Wei; Gao, Yu-Tang; Rothman, Nathaniel; Lan, Qing

    2015-01-01

    Background The association between benzene exposure and non-Hodgkin lymphoma (NHL) has been the subject of debate as a result of inconsistent epidemiologic evidence. An International Agency for Research on Cancer (IARC) working group evaluated benzene in 2009 and noted evidence for a positive association between benzene exposure and NHL risk. Objective We evaluated the association between occupational benzene exposure and NHL among 73,087 women enrolled in the prospective population-based Shanghai Women’s Health Study. Methods Benzene exposure estimates were derived using a previously developed exposure assessment framework that combined ordinal job-exposure matrix intensity ratings with quantitative benzene exposure measurements from an inspection database of Shanghai factories collected between 1954 and 2000. Associations between benzene exposure metrics and NHL (n = 102 cases) were assessed using Cox proportional hazard models, with study follow-up occurring from December 1996 through December 2009. Results Women ever exposed to benzene had a significantly higher risk of NHL [hazard ratio (HR) = 1.87, 95% CI: 1.19, 2.96]. Compared with unexposed women, significant trends in NHL risk were observed for increasing years of benzene exposure (ptrend = 0.006) and increasing cumulative exposure levels (ptrend = 0.005), with the highest duration and cumulative exposure tertiles having a significantly higher association with NHL (HR = 2.07, 95% CI: 1.07, 4.01 and HR = 2.16, 95% CI: 1.17, 3.98, respectively). Conclusions Our findings, using a population-based prospective cohort of women with diverse occupational histories, provide additional evidence that occupational exposure to benzene is associated with NHL risk. Citation Bassig BA, Friesen MC, Vermeulen R, Shu XO, Purdue MP, Stewart PA, Xiang YB, Chow WH, Zheng T, Ji BT, Yang G, Linet MS, Hu W, Zhang H, Zheng W, Gao YT, Rothman N, Lan Q. 2015. Occupational exposure to benzene and non-Hodgkin lymphoma in a population-based cohort: the Shanghai Women’s Health Study. Environ Health Perspect 123:971–977; http://dx.doi.org/10.1289/ehp.1408307 PMID:25748391

  9. Properties of complexes formed by Na(+), Mg(2+), and Fe(2+) binding with benzene molecules.

    PubMed

    Kolakkandy, Sujitha; Pratihar, Subha; Aquino, Adelia J A; Wang, Hai; Hase, William L

    2014-10-09

    A theoretical investigation was performed to study cation-π interactions in complexes of benzene (Bz) with cations, that is, M(z+)(Bz)n for M(z+) = Na(+), Mg(2+), Fe(2+) and n = 1-3, using MP2 theory with the 6-31+G* and 6-311++G** basis sets and the DFT/(B3LYP and B3LYP-D)/6-311++G** methods. Binding energies and structures of the complexes are reported. The splitting between the quintet and single states of the Fe(2+) complexes was found to depend on the number of benzene molecules in the complex and the complex's structure. All of the M(z+)(Bz) complexes prefer a half-sandwich geometry. A geometry with the cation sandwiched between the two benzene rings was found for the M(z+)(Bz)2 complexes, with the benzene rings either in an eclipsed or staggered conformation. An approximate cyclic structure, with the cation at its center, was found for three benzene molecules interacting with the cation. The cation-benzene binding energy is substantial and equal to 22, 108, and 151 kcal/mol for the Na(+)(Bz), Mg(2+)(Bz), and Fe(2+)(Bz) complexes, respectively. The strength of the interaction of the cation with an individual benzene molecule decreases as the number of benzene molecules bound to the cation increases; for example, it is 108 kcal/mol for Mg(2+)(Bz), but only 71 kcal/mol for Mg(2+)(Bz)3. There is a range of values for the M(z+)(Bz)n intermolecular vibrational frequencies; for example, they are ∼230-360 and ∼10-330 cm(-1) for the Mg(2+)(Bz) and Mg(2+)(Bz)3 complexes, respectively. Binding of the cation to benzene both red and blue shifts the benzene vibrational frequencies. This shifting is larger for the Mg(2+) and Fe(2+) complexes, as compared to those for Na(+), as a result of the former's stronger cation-benzene binding. The present study is an initial step to understand the possible importance of cation-π interactions for polycyclic aromatic hydrocarbon aggregation processes during soot formation.

  10. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in analyses of metabolites with benzene-grown cultures, suggesting an activation of benzene via carboxylation.

  11. Benzene selectivity in competitive arene hydrogenation: effects of single-site catalyst···acidic oxide surface binding geometry.

    PubMed

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P; Bhattacharyya, Alak; Motta, Alessandro; Gallagher, James R; Zhang, Guanghui; Miller, Jeffrey T; Kobayashi, Takeshi; Pruski, Marek; Delferro, Massimiliano; Marks, Tobin J

    2015-06-03

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO2 (ZrS), sulfated Al2O3 (AlS), and ZrO2-WO3 (ZrW). Under mild conditions (25 °C, 1 atm H2), the supported Cp*ZrMe3, Cp*ZrBz3, and Cp*ZrPh3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS ≫ AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures, and selectivities for benzene hydrogenation vary with catalyst as ZrBz3(+)/ZrS(-), 83% > Cp*ZrMe2(+)/ZrS(-), 80% > Cp*ZrBz2(+)/ZrS(-), 67% > Cp*ZrPh2(+)/ZrS(-), 57%. For Cp*ZrBz2(+)/ZrS(-), which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe3 and Cp*ZrBz3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz2(+)/AlS(-) vs Cp*ZrMe2(+)/AlS(-). The combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the "cationic" metal center-anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.

  12. Velocity-dependent emission factors of benzene, toluene and C 2-benzenes of a passenger car equipped with and without a regulated 3-way catalyst

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Forss, Anna-Maria; Bach, Christian; Mattrel, Peter

    Time-resolved chemical ionization mass spectrometry (CI-MS) has been used to investigate the velocity-dependent emission factors for benzene, toluene, the C 2-benzenes (xylenes and ethyl benzene) and nitrogen monoxide of a gasoline-driven passenger car (1.4 l, model year 1995) driven with or without catalytic exhaust gas treatment. A set of seven different driving cycles - including the European Driving Cycle (EDC), the US Urban (FTP 75) and the Highway driving cycles - with a total driving time of 12,000 s have been studied. From the obtained emission data, two sets of 15,300 and 17,200 data points which represent transient driving in the velocity range of 0-150 km h -1 and in an acceleration window of -2-3 m s -2 were explored to gain velocity-dependent emission factors. The passenger car, equipped with a regulated rhodium-platinum based three-way catalyst, showed optimal conversion efficiency (>95%) for benzene in the velocity range of 60-120 km h -1. The conversion of benzene was reduced (<80%) when driving below 50 km h -1 and the BTXE emissions significantly increased when driven at higher speed and engine load (>130 km h -1). Whereas the conversion efficiency for the class of C 2-benzenes was reduced to 10%, no net conversion could be found for toluene and benzene when driven above 130 km h -1. In contrast, the benzene and toluene emissions exceeded those of the untreated exhaust gas in the velocity range of 130-150 km h -1 by 50-92% and by 10-34%, respectively. Thus, benzene and toluene were formed across the examined three-way catalyst if the engine is operated for an extended time in a fuel-rich mode (lambda<1).

  13. Biological monitoring of benzene exposure for process operators during ordinary activity in the upstream petroleum industry.

    PubMed

    Bråtveit, Magne; Kirkeleit, Jorunn; Hollund, Bjørg Eli; Moen, Bente E

    2007-07-01

    This study characterized the exposure of crude oil process operators to benzene and related aromatics during ordinary activity and investigated whether the operators take up benzene at this level of exposure. We performed the study on a fixed, integrated oil and gas production facility on Norway's continental shelf. The study population included 12 operators and 9 referents. We measured personal exposure to benzene, toluene, ethylbenzene and xylene during three consecutive 12-h work shifts using organic vapour passive dosimeter badges. We sampled blood and urine before departure to the production facility (pre-shift), immediately after the work shift on Day 13 of the work period (post-shift) and immediately before the following work shift (pre-next shift). We also measured the exposure to hydrocarbons during short-term tasks by active sampling using Tenax tubes. The arithmetic mean exposure over the 3 days was 0.042 ppm for benzene (range <0.001-0.69 ppm), 0.05 ppm for toluene, 0.02 ppm for ethylbenzene and 0.03 ppm for xylene. Full-shift personal exposure was significantly higher when the process operators performed flotation work during the shift versus other tasks. Work in the flotation area was associated with short-term (6-15 min) arithmetic mean exposure to benzene of 1.06 ppm (range 0.09-2.33 ppm). The concentrations of benzene in blood and urine did not differ between operators and referents at any time point. When we adjusted for current smoking in regression analysis, benzene exposure was significantly associated with the post-shift concentration of benzene in blood (P = 0.01) and urine (P = 0.03), respectively. Although these operators perform tasks with relatively high short-term exposure to benzene, the full-shift mean exposure is low during ordinary activity. Some evidence indicates benzene uptake within this range of exposure.

  14. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  15. Benzene selectivity in competitive arene hydrogenation: Effects of single-site catalyst···acidic oxide surface binding geometry

    DOE PAGES

    Gu, Weixing; Stalzer, Madelyn Marie; Nicholas, Christopher P.; ...

    2015-04-17

    Organozirconium complexes are chemisorbed on Brønsted acidic sulfated ZrO 2 (ZrS), sulfated Al 2O 3 (AlS), and ZrO 2–WO 3 (ZrW). Under mild conditions (25 °C, 1 atm H 2), the supported Cp*ZrMe 3, Cp*ZrBz 3, and Cp*ZrPh 3 catalysts are very active for benzene hydrogenation with activities declining with decreasing acidity, ZrS >> AlS ≈ ZrW, arguing that more Brønsted acidic oxides (those having weaker corresponding conjugate bases) yield stronger surface organometallic electrophiles and for this reason have higher benzene hydrogenation activity. Benzene selective hydrogenation, a potential approach for carcinogenic benzene removal from gasoline, is probed using benzene/toluene mixtures,more » and selectivities for benzene hydrogenation vary with catalyst as ZrBz 3 +/ZrS –, 83% > Cp*ZrMe 2 +/ZrS –, 80% > Cp*ZrBz 2 +/ZrS –, 67% > Cp*ZrPh 2 +/ZrS –, 57%. For Cp*ZrBz 2+/ZrS –, which displays the highest benzene hydrogenation activity with moderate selectivity in benzene/toluene mixtures. Other benzene/arene mixtures are examined, and benzene selectivities vary with arene as mesitylene, 99%, > ethylbenzene, 86% > toluene, 67%. Structural and computational studies by solid-state NMR spectroscopy, XAS, and periodic DFT methods applied to supported Cp*ZrMe 3 and Cp*ZrBz 3 indicate that larger Zr···surface distances are present in more sterically encumbered Cp*ZrBz 2 +/AlS – vs Cp*ZrMe 2 +/AlS –. Furthermore, the combined XAS, solid state NMR, and DFT data argue that the bulky catalyst benzyl groups expand the “cationic” metal center–anionic sulfated oxide surface distances, and this separation/weakened ion-pairing enables the activation/insertion of more sterically encumbered arenes and influences hydrogenation rates and selectivity patterns.« less

  16. Small scale spatial gradients of outdoor and indoor benzene in proximity of an integrated steel plant.

    PubMed

    Licen, Sabina; Tolloi, Arianna; Briguglio, Sara; Piazzalunga, Andrea; Adami, Gianpiero; Barbieri, Pierluigi

    2016-05-15

    Benzene is known as a human carcinogen, whose annual mean concentration exceeded the EU limit value (5 μg/m(3)) only in very few locations in Europe during 2012. Nevertheless 10% to 12% of the EU-28 urban population was still exposed to benzene concentrations above the WHO reference level of 1.7 μg/m(3). WHO recommended a wise choice of monitoring stations positioning in proximity of "hot spots" to define and assess the representativeness of each site paying attention to micro-scale conditions. In this context benzene and other VOCs of health concern (toluene, ethylbenzene, xylenes) concentrations have been investigated, with weekly passive sampling for one year, both in outdoor and indoor air in inhabited buildings in close proximity (180 m far up to 1100 m) of an integrated steel plant in NE of Italy. Even though the outdoor mean annual benzene concentration was below the EU limit in every site, in the site closest to the works the benzene concentration was above 5 μg/m(3) in 14 weeks. These events were related to a benzene over toluene ratio above one, which is diagnostic for the presence of an industrial source, and to meteorological factors. These information pointed at the identification of the coke ovens of the plant as the dominant outdoor source of benzene. Benzene gradients with the increasing distance from coke ovens have been found for both outdoor and indoor air. Linear models linking outdoor to indoor benzene concentrations have been then identified, allowing to estimate indoor exposure from ambient air benzene data. In the considered period, a narrow area of about 250 m appeared impacted at a higher degree than the other sites both considering outdoor and indoor air. Passive BTEX sampling permits to collect information on both ambient air and daily life settings, allowing to assemble a valuable data support for further environmental cost-benefit analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Aromatic hydrocarbons at urban, sub-urban, rural (8°52'N; 67°19'W) and remote sites in Venezuela

    NASA Astrophysics Data System (ADS)

    Holzinger, R.; Kleiss, B.; Donoso, L.; Sanhueza, E.

    Using the novel on-line proton transfer reaction mass spectrometry (PTR-MS) technique, atmospheric concentrations of benzene, toluene, xylenes, and C 9-benzenes were measured in Caracas (urban), Altos de Pipe (sub-urban), Calabozo (rural) and Parupa (remote), during various campaigns in 1999 and 2000. Average daytime mixing ratios measured in Caracas are 1.1, 3.2, 3.7, and 2.7 nmol/mol for benzene, toluene, xylenes, and C 9-benzenes. At the sub-urban site, located only few km from Caracas, relatively low levels (˜20% of the levels measured in Caracas) of these aromatic hydrocarbons were observed. At the rural site during the dry season, higher concentrations of benzene (0.15 nmol/mol) were recorded, whereas those of toluene (0.08 nmol/mol) were lower during that time. The aromatic hydrocarbon ratios in the wet season (benzene: 0.08 nmol/mol; toluene: 0.09 nmol/mol) are consistent with an aged urban plume, whereas biomass burning emissions dominate during the dry season. From rural and urban [benzene]/[toluene] ratios a mean HO concentration of 2.6×10 6 molecules/cm 3 was estimated during the wet season. This value must be considered an overestimate because it does not account for background concentrations which are likely for benzene and toluene. At the remote "La Gran Sabana" region (Parupa) very low mixing ratios (0.031 and 0.015 nmol/mol for benzene and toluene) are showing the pristine region to be unaffected by local sources. From the [benzene]/[toluene] ratio we deduced, that "urban" air arriving from the coastline (350 km) is likely mixed with air containing some background of benzene and toluene. Urban emissions (automobiles) should be the major source of aromatic compounds, however, during the dry season biomass burning seems to make an important contribution.

  18. The contribution of benzene to smoking-induced leukemia.

    PubMed

    Korte, J E; Hertz-Picciotto, I; Schulz, M R; Ball, L M; Duell, E J

    2000-04-01

    Cigarette smoking is associated with an increased risk of leukemia; benzene, an established leukemogen, is present in cigarette smoke. By combining epidemiologic data on the health effects of smoking with risk assessment techniques for low-dose extrapolation, we assessed the proportion of smoking-induced total leukemia and acute myeloid leukemia (AML) attributable to the benzene in cigarette smoke. We fit both linear and quadratic models to data from two benzene-exposed occupational cohorts to estimate the leukemogenic potency of benzene. Using multiple-decrement life tables, we calculated lifetime risks of total leukemia and AML deaths for never, light, and heavy smokers. We repeated these calculations, removing the effect of benzene in cigarettes based on the estimated potencies. From these life tables we determined smoking-attributable risks and benzene-attributable risks. The ratio of the latter to the former constitutes the proportion of smoking-induced cases attributable to benzene. Based on linear potency models, the benzene in cigarette smoke contributed from 8 to 48% of smoking-induced total leukemia deaths [95% upper confidence limit (UCL), 20-66%], and from 12 to 58% of smoking-induced AML deaths (95% UCL, 19-121%). The inclusion of a quadratic term yielded results that were comparable; however, potency models with only quadratic terms resulted in much lower attributable fractions--all < 1%. Thus, benzene is estimated to be responsible for approximately one-tenth to one-half of smoking-induced total leukemia mortality and up to three-fifths of smoking-related AML mortality. In contrast to theoretical arguments that linear models substantially overestimate low-dose risk, linear extrapolations from empirical data over a dose range of 10- to 100-fold resulted in plausible predictions.

  19. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites.

    PubMed

    Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E

    2015-01-01

    Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends. © 2014 GSI Environmental Inc. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  20. Benzene exposure from the BP refinery flaring incident alters hematological and hepatic functions among smoking subjects.

    PubMed

    D'Andrea, Mark A; Reddy, G Kesava

    2017-10-06

    To evaluate the health effects of benzene exposure among smoking subjects from a prolonged flaring incident that occurred at the British Petroleum (BP) refinery in Texas City, USA. The study included smoking subjects who had been exposed and unexposed to the benzene release. Using medical charts, clinical data including white blood cell (WBC) counts, platelet counts, hemoglobin, hematocrit, blood urea nitrogen (BUN), creatinine, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the case of smoking subjects exposed to benzene was reviewed and analyzed. A total of 791 tobacco smoking subjects (benzene-exposed: N = 733, unexposed: N = 58) were included. Benzene-exposed subjects had significantly higher levels of WBC (×103/μl) counts (8±2.1 vs. 7.5±1.6, p = 0.003) and platelet (×103/μl) counts (263.7±69.7 vs. 222.9±44.3, p = 0.000) as compared with the unexposed subjects. The mean hemoglobin, hematocrit, BUN, and creatinine levels did not differ significantly between the benzene-exposed and -unexposed smoking subjects. Serum levels of ALP (IU/l) was significantly elevated in the benzene-exposed subjects compared with the unexposed subjects (84.5±16.9 vs. 73.8±15.9, p = 0.002). Similarly, benzene-exposed subjects had significantly higher levels of AST and ALT as compared with those unexposed subjects. Despite a smoking history, residents exposed to benzene from the prolonged BP flaring incident experienced significant alterations in hematological and hepatic functions indicating their vulnerability to the risk of developing hepatic or blood related disorders. Int J Occup Med Environ Health 2017;30(6):849-860. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  1. Personal exposure to benzene and 1,3-butadiene during petroleum refinery turnarounds and work in the oil harbour.

    PubMed

    Akerstrom, M; Almerud, P; Andersson, E M; Strandberg, B; Sallsten, G

    2016-11-01

    Petroleum refinery workers' exposure to the carcinogens benzene and 1,3-butadiene has decreased during normal operations. However, certain occupational groups or events at the refineries still involve a risk of higher exposures. The aim of this study was to examine the personal exposure to benzene and 1,3-butadiene at refinery turnarounds and during work in the oil harbour. Personal exposure measurements of benzene and 1,3-butadiene were taken during work shifts, with a priori assumed higher benzene exposure, using PerkinElmer diffusive samplers filled with Carbopack X. Mean exposure levels were calculated, and repeated exposure measurements, when available, were assessed using mixed effect models. Group and individual compliance with the Swedish occupational exposure limit (OEL) was tested for the different exposure groups. Mean benzene exposure levels for refinery workers during the three measured turnarounds were 150, 610 and 960 µg/m 3 , and mean exposures for oil harbour workers and sewage tanker drivers were 310 and 360 µg/m 3 , respectively. Higher exposures were associated with handling benzene-rich products. Most occupational groups did not comply with the Swedish OEL for benzene nor did the individuals within the groups. The exposure to 1,3-butadiene was very low, between <1 and 3 % of the Swedish OEL. Work within the petroleum refinery industry, with potential exposure to open product streams containing higher fractions of benzene, pose a risk of personal benzene exposures exceeding the OEL. Refinery workers performing these work tasks frequently, such as contractors, sewage tanker drivers and oil harbour workers, need to be identified and protected.

  2. Benzene exposure is associated with cardiovascular disease risk

    PubMed Central

    Riggs, Daniel W.; Conklin, Daniel J.; McCracken, James P.; Srivastava, Sanjay; Xie, Zhengzhi; Rai, Shesh; Bhatnagar, Aruni; O’Toole, Timothy E.

    2017-01-01

    Benzene is a ubiquitous, volatile pollutant present at high concentrations in toxins (e.g. tobacco smoke) known to increase cardiovascular disease (CVD) risk. Despite its prevalence, the cardiovascular effects of benzene have rarely been studied. Hence, we examined whether exposure to benzene is associated with increased CVD risk. The effects of benzene exposure in mice were assessed by direct inhalation, while the effects of benzene exposure in humans was assessed in 210 individuals with mild to high CVD risk by measuring urinary levels of the benzene metabolite trans,trans-muconic acid (t,t-MA). Generalized linear models were used to assess the association between benzene exposure and CVD risk. Mice inhaling volatile benzene had significantly reduced levels of circulating angiogenic cells (Flk-1+/Sca-1+) as well as an increased levels of plasma low-density lipoprotein (LDL) compared with control mice breathing filtered air. In the human cohort, urinary levels of t,t-MA were inversely associated several populations of circulating angiogenic cells (CD31+/34+/45+, CD31+/34+/45+/AC133–, CD34+/45+/AC133+). Although t,t-MA was not associated with plasma markers of inflammation or thrombosis, t,t-MA levels were higher in smokers and in individuals with dyslipidemia. In smokers, t,t-MA levels were positively associated with urinary metabolites of nicotine (cotinine) and acrolein (3-hydroxymercapturic acid). Levels of t,t-MA were also associated with CVD risk as assessed using the Framingham Risk Score and this association was independent of smoking. Thus, benzene exposure is associated with increased CVD risk and deficits in circulating angiogenic cells in both smokers and non-smokers. PMID:28886060

  3. Clinical analysis of 43 cases of chronic benzene poisoning.

    PubMed

    Kuang, Shouren; Liang, Weihui

    2005-05-30

    Benzene can result in bone marrow suppression. Chronic benzene poisoning (CBP) can be found among workers with excessive benzene exposure. CBP could give the appearance of different types of disorders such as leukopenia, agranulocytosis, anemia, pancytopenia, aplastic anemia (AA), myelodysplastic syndrome (MDS), and leukemia. This paper describes 43 CBP cases with the patients' ages ranging from 18 to 36 years (average: 23 years). Among them, 13 (30%) were male and 30 (70%) were female. Their job titles were furniture maker, shoemaker, industrial painter and metal shop worker. Their work durations ranged from 1.5 to 72 months (average: 14 months). Benzene levels in these workplaces exceeded 30 mg/m3. Ten of the 43 cases (23%) were diagnosed as mild cases of CBP, another 10 (23%) were moderate, and 23 (53%) were severe. Treatment for CBP included the following: cessation of benzene exposure, general supportive therapy, antibiotics, vitamins, corticosteroids, androgens, colony-stimulating factors (G-CSF, GM-CSF), blood component therapy, and traditional Chinese medicine. Thirty-three (77%) of the cases recovered completely, nine (21%) cases improved, and one (2%) died. In general, prognosis of CBP cases is optimistic when appropriate treatment is given. However, a few of the benzene-induced AA cases showed no response to treatment, which raises questions about the traditional view of the pathogenesis of the illness. Furthermore, only a part of the population with the same level of benzene exposure would suffer from the disease. Still, CBP cases with the same benzene exposure level exhibited different extents of severity of the illness. This evidence suggests strongly the existence of individual susceptibility. Detection of the biological markers regarding the individual susceptibility would be valuable for screening workers who are not suitable to be exposed to benzene.

  4. [Association between polymorphisms of XPD gene and susceptibility to chronic benzene poisoning].

    PubMed

    Huang, Hui-long; Xu, Jian-ning; Wang, Quan-kai; Wang, Ya-wen; Yang, Min; Chen, Yan; Li, Gui-lan

    2006-07-01

    To explore the relationship between genetic polymorphisms of XPD gene and susceptibility to chronic benzene poisoning. A case control study was conducted. Eighty patients diagnosed with chronic benzene poisoning and 62 workers occupationally exposed to benzene who were engaged in the same working time and job title as patients were investigated. PCR-RFLP was used for detecting the single nucleotide polymorphisms (SNPs) on codon156, codon312 and codon751 of XPD gene. There was a 2.903 times (95% CI: 1.054 - 7.959, P = 0.039 2) increased risk of chronic benzene poisoning in the subjects carrying XPD 751Gln variant allele compared with those carrying XPD 751Lys/Lys genotype, after adjusted for sex, length of service, smoking and drinking status. The subjects with XPD 751Gln variant allele are more susceptive to benzene.

  5. Process for the preparation of cumene

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1991-01-01

    Cumene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding propylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with propylene, thereby reacting substantially all of the propylene and recovering benzene as the principal overhead and cumene and diisopropyl benzene in the bottoms. The bottoms are fractionated, the cumene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diisopropyl benzene to cumene which is again separated and recovered.

  6. Influence of Benzene on the Optical Properties of Titan Haze Laboratory Analogs in the Mid-Visible

    NASA Technical Reports Server (NTRS)

    Yoon, Y. Heidi; Trainer, Melissa G.; Tolbert, Margaret A.

    2012-01-01

    The Cassini Ion and Neutral Mass Spectrometer (Waite, Jr., et al., 2007) and the Composite Infrared Spectrometer (Coustenis, A., et al., 2007) have detected benzene in the upper atmosphere and stratosphere of Titan. Photochemical reactions involving benzene in Titan's atmosphere may influence polycyclic aromatic hydrocarbon formation, aerosol formation, and the radiative balance of Titan's atmosphere. We measure the effect of benzene on the optical properties of Titan analog particles in the laboratory. Using cavity ring-down aerosol extinction spectroscopy, we determine the real and imaginary refractive index at 532 nm of particles formed by benzene photolysis and Titan analog particles formed with ppm-levels of benzene. These studies are compared to the previous study by Hasenkopf, et a1. (2010) of Titan analog particles formed by methane photolysis.

  7. Aromaticity of benzene derivatives: an exploration of the Cambridge Structural Database.

    PubMed

    Majerz, Irena; Dziembowska, Teresa

    2018-04-01

    The harmonic oscillator model of aromaticity (HOMA) index, one of the most popular aromaticity indices for solid-state benzene rings in the Cambridge Structural Database (CSD), has been analyzed. The histograms of HOMA for benzene, for benzene derivatives with one formyl, nitro, amino or hydroxy group as well as the histograms for the derivatives with two formyl, nitro, amino or hydroxy groups in ortho, meta and para positions were investigated. The majority of the substituted benzene derivatives in the CSD are characterized by a high value of HOMA, indicating fully aromatic character; however, the distribution of the HOMA value from 1 to about 0 indicates decreasing aromaticity down to non-aromatic character. Among the benzene derivatives investigated, a significant decrease in aromaticity can be related to compounds with diamino and dinitro groups in the meta position.

  8. Process for the preparation of cumene

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1991-10-08

    Cumene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 500 C, using as the catalyst a molecular sieve characterized as acidic by feeding propylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with propylene, thereby reacting substantially all of the propylene and recovering benzene as the principal overhead and cumene and diisopropyl benzene in the bottoms. The bottoms are fractionated, the cumene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diisopropyl benzene to cumene which is again separated and recovered. 2 figures.

  9. Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions.

    PubMed

    Vu, Tuan Hoang; Cable, Morgan L; Choukroun, Mathieu; Hodyss, Robert; Beauchamp, Patricia

    2014-06-12

    We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

  10. Molecular simulation study on Hofmeister cations and the aqueous solubility of benzene.

    PubMed

    Ganguly, Pritam; Hajari, Timir; van der Vegt, Nico F A

    2014-05-22

    We study the ion-specific salting-out process of benzene in aqueous alkali chloride solutions using Kirkwood-Buff (KB) theory of solutions and molecular dynamics simulations with different empirical force field models for the ions and benzene. Despite inaccuracies in the force fields, the simulations indicate that the decrease of the Setchenow salting-out coefficient for the series NaCl > KCl > RbCl > CsCl is determined by direct benzene-cation correlations, with the larger cations showing weak interactions with benzene. Although ion-specific aqueous solubilities of benzene may be affected by indirect ion-ion, ion-water, and water-water correlations, too, these correlations are found to be unimportant, with little to no effect on the Setchenow salting-out coefficients of the various salts. We further considered LiCl, which is experimentally known to be a weaker salting-out agent than NaCl and KCl and, therefore, ranks at an unusual position within the Hofmeister cation series. The simulations indicate that hydrated Li(+) ions can take part of the benzene hydration shell while the other cations are repelled by it. This causes weaker Li(+) exclusion around the solute and a resulting, weaker salting-out propensity of LiCl compared to that of the other salts. Removing benzene-water and benzene-salt electrostatic interactions in the simulations does not affect this mechanism, which may therefore also explain the smaller effect of LiCl, as compared to that of NaCl or KCl, on aqueous solvation and hydrophobic interaction of nonpolar molecules.

  11. Why Is Benzene Unique? Screening Magnetic Properties of C6 H6 Isomers.

    PubMed

    Janda, Tomáš; Foroutan-Nejad, Cina

    2018-05-25

    Magnetic properties are commonly used to identify new aromatic molecules because it is generally believed that magnetization and energetic stability are correlated. To verify the potential correlation between the energy and magnetic response properties, we examined a set of 198 isomers of C 6 H 6 . The energy and magnetic properties of these molecules can be directly compared with no need to invoke any arbitrary reference state because the studied systems are all isomers. Benzene is the global minimum on the potential energy surface of C 6 H 6 , 35 kcal mol -1 lower in energy than the second most stable isomer, fulvene. Unlike its electronic energy, isotropic magnetizability of benzene is slightly lower than the average magnetizability of its isomers. Altogether, 44 isomers of C 6 H 6 were identified to have more negative magnetic susceptibility than benzene but were between 67.0 to 168.6 kcal mol -1 higher in energy than benzene. However, benzene is unique in two ways. Analyzing the paramagnetic contribution to the magnetic susceptibility as originally suggested by Bilde and Hansen (Mol. Phys., 1997, 92, 237) revealed that 53 molecules have lower paramagnetic susceptibility than benzene but among monocyclic systems benzene has the least paramagnetic susceptibility. Furthermore, benzene has the largest out-of-plane magnetic susceptibility that originates from the strongest ring current among all studied species. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment

    PubMed Central

    McHale, Cliona M.; Zhang, Luoping; Smith, Martyn T.

    2012-01-01

    Benzene causes acute myeloid leukemia and probably other hematological malignancies. As benzene also causes hematotoxicity even in workers exposed to levels below the US permissible occupational exposure limit of 1 part per million, further assessment of the health risks associated with its exposure, particularly at low levels, is needed. Here, we describe the probable mechanism by which benzene induces leukemia involving the targeting of critical genes and pathways through the induction of genetic, chromosomal or epigenetic abnormalities and genomic instability, in a hematopoietic stem cell (HSC); stromal cell dysregulation; apoptosis of HSCs and stromal cells and altered proliferation and differentiation of HSCs. These effects modulated by benzene-induced oxidative stress, aryl hydrocarbon receptor dysregulation and reduced immunosurveillance, lead to the generation of leukemic stem cells and subsequent clonal evolution to leukemia. A mode of action (MOA) approach to the risk assessment of benzene was recently proposed. This approach is limited, however, by the challenges of defining a simple stochastic MOA of benzene-induced leukemogenesis and of identifying relevant and quantifiable parameters associated with potential key events. An alternative risk assessment approach is the application of toxicogenomics and systems biology in human populations, animals and in vitro models of the HSC stem cell niche, exposed to a range of levels of benzene. These approaches will inform our understanding of the mechanisms of benzene toxicity and identify additional biomarkers of exposure, early effect and susceptibility useful for risk assessment. PMID:22166497

  13. Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Forss, Anna-Maria; Saxer, Christian J.; Wilhelm, Patrick

    The US urban driving cycle (FTP-75) is widely used to estimate both the emissions under hot engine conditions as well as those associated with the cold start. Applying fast analysis techniques such as chemical ionization mass spectrometry (CI-MS) the warm-up behavior of individual vehicles can be monitored at a time resolution of 1 s. CI-MS has been used to investigate the emissions of methane, benzene and the alkyl benzene class of compounds. The amount of the emissions at cold start influence was deduced from the time-resolved emission data of four gasoline-driven vehicle classes representing the vehicle technology of the last two decades. Overall, the emissions of five EURO-0, 20 EURO-1, 18 EURO-2 and so far of six EURO-3 passenger cars were recorded. The test vehicles were selected from the currently operating Swiss car fleet based on the car sales statistics. The average methane, benzene and alkyl benzene cold start emissions are reported using both, the traditional bag method as well as the regression model. At room temperature a clear reduction of 94%, 81% and 85% was found for the methane, benzene and alkyl benzene cold start emissions from EURO-0 to EURO-3 technology, respectively.

  14. [Biological monitoring in oil refinery workers].

    PubMed

    Valentino, M; Rapisarda, V; Scorcelletti, M; Caldaroni, M; Mariani, F

    2007-01-01

    The effectiveness of t,t-muconic acid (t,t-MA) has been investigated as indicator of benzene exposure in workers of an oil refinery. 196 blue collar workers that operate in the field and 25 white collar workers who work in administration have been studied. Workers had not chronic diseases; all workers resulted fit to work. The environmental monitoring, effected with personal and fixed samplers (141 samplings), has shown that benzene air levels were lower than 170 mcg/m3. Biological monitoring was performed with measurements of blood benzene, urinary t,t-MA and urinary phenols. Each worker has been questioned regarding smoking habit, consumption of food containing sorbic acid and non-occupational exposure to benzene. Values of biological index were: t,t-MA 88 +/- 94.1 mcg/g cr, phenols 17.7 +/- 2.9 mg/g cr, blood benzene 25.4 +/- 4.3 ng/l. No significant differences were found between blue and white collars respect t,t-MA, phenols, blood benzene, non-occupational exposure to benzene, smoking habit, consumption of food containing sorbic acid. A meaningful correlation was found between the t,t-MA and the ingestion of the number of foods containing sorbic acid (r = 0.87). The results confirm that the t,t-MA seems incapable to distinguish occupationally exposed workers, at low levels of benzene exposure, from unexposed.

  15. Acute myeloid and chronic lymphoid leukaemias and exposure to low-level benzene among petroleum workers

    PubMed Central

    Rushton, L; Schnatter, A R; Tang, G; Glass, D C

    2014-01-01

    Background: High benzene exposure causes acute myeloid leukaemia (AML). Three petroleum case–control studies identified 60 cases (241 matched controls) for AML and 80 cases (345 matched controls) for chronic lymphoid leukaemia (CLL). Methods: Cases were classified and scored regarding uncertainty by two haematologists using available diagnostic information. Blinded quantitative benzene exposure assessment used work histories and exposure measurements adjusted for era-specific circumstances. Statistical analyses included conditional logistic regression and penalised smoothing splines. Results: Benzene exposures were much lower than previous studies. Categorical analyses showed increased ORs for AML with several exposure metrics, although patterns were unclear; neither continuous exposure metrics nor spline analyses gave increased risks. ORs were highest in terminal workers, particularly for Tanker Drivers. No relationship was found between benzene exposure and risk of CLL, although the Australian study showed increased risks in refinery workers. Conclusion: Overall, this study does not persuasively demonstrate a risk between benzene and AML. A previously reported strong relationship between myelodysplastic syndrome (MDS) (potentially previously reported as AML) at our study's low benzene levels suggests that MDS may be the more relevant health risk for lower exposure. Higher CLL risks in refinery workers may be due to more diverse exposures than benzene alone. PMID:24357793

  16. Residual toxicity after biodegradation: interactions among benzene, toluene, and chloroform.

    PubMed

    da Silva Nunes-Halldorson, Vânia; Steiner, Robert L; Smith, Geoffrey B

    2004-02-01

    A microbial enrichment originating from a pristine aquifer was found to aerobically biodegrade benzene and toluene, but not chloroform. This enrichment culture was used to study changes in pollutant toxicity as affected by biodegradative activity. Two assays for toxicity were used: (1) a 48-h acute toxicity test using the freshwater invertebrate Ceriodaphnia dubia and (2) microbial biodegradation activity as affected by the presence of mixed pollutants. At 20-ppm concentrations, toluene was significantly more toxic (99% mortality) to C. dubia than benzene (48% mortality) or chloroform (40% mortality). Also at 20-ppm concentrations, but before biodegradation, toluene was significantly more toxic (88% mortality) to C. dubia than benzene (33% mortality). After biodegradation of 98% of toluene and benzene, significant residual toxicity still remained in the bacterial supernatant: toluene-degraded supernatant caused 33% mortality in C. dubia and benzene-degraded supernatant caused 24% mortality. In the second toxicity assay, examining the effect of mixed pollutants on biodegradation activity, the presence of benzene slowed the biodegradation of toluene, but chloroform had no effect on either benzene or toluene biodegradation. Results indicate that significant toxicity remain after biodegradation and that halogenated aliphatic hydrocarbons may have little or no effect on aromatic hydrocarbon biodegradation at sites impacted by mixed pollutants.

  17. Isomer-Specific Spectroscopy of Benzene-(H2O)n, n = 6,7: Benzene's Role in Reshaping Water's Three-Dimensional Networks.

    PubMed

    Tabor, Daniel P; Kusaka, Ryoji; Walsh, Patrick S; Sibert, Edwin L; Zwier, Timothy S

    2015-05-21

    The water hexamer and heptamer are the smallest sized water clusters that support three-dimensional hydrogen-bonded networks, with several competing structures that could be altered by interactions with a solute. Using infrared-ultraviolet double resonance spectroscopy, we record isomer-specific OH stretch infrared spectra of gas-phase benzene-(H2O)(6,7) clusters that demonstrate benzene's surprising role in reshaping (H2O)(6,7). The single observed isomer of benzene-(H2O)6 incorporates an inverted book structure rather than the cage or prism. The main conformer of benzene-(H2O)7 is an inserted-cubic structure in which benzene replaces one water molecule in the S4-symmetry cube of the water octamer, inserting itself into the water cluster by engaging as a π H-bond acceptor with one water and via C-H···O donor interactions with two others. The corresponding D(2d)-symmetry inserted-cube structure is not observed, consistent with the calculated energetic preference for the S4 over the D(2d) inserted cube. A reduced-dimension model that incorporates stretch-bend Fermi resonance accounts for the spectra in detail and sheds light on the hydrogen-bonding networks themselves and on the perturbations imposed on them by benzene.

  18. The immunotoxicological pattern of subchronic and chronic benzene exposure in rats.

    PubMed

    Karaulov, Alexander V; Mikhaylova, Irina V; Smolyagin, Alexander I; Boev, Viktor M; Kalogeraki, Alexandra; Tsatsakis, Aristides M; Engin, Ayse Basak

    2017-06-05

    Exposure to benzene and its inevitable metabolites can result in deleterious effects on human health, including lymphocytopenia, hematotoxicity and cancer. However, the duration of exposure might alter the effects including immune consequences. The aim of this study was to determine whether benzene could modulate lymphocyte proliferation induced by the T cell mitogen concanavalin A, in rats, at different exposure durations. 386 Wistar rats were assigned into control and treatment groups which were subdivided into groups for 45, 90 and 135days for 0,6mL/kg of drinking water mixed benzene treatment. The percentage of CD3+, CD4+, CD8+ spleen lymphocytes was defined using the flow cytometer. Interleukin (IL)-4, IL-6, IL-10 and interferon-gamma, in supernatants of splenocyte cultures stimulated with Concanavalin A, were assessed by enzyme-linked immunosorbent assay (ELISA) technique. The decrease in the total lymphocyte and T cell counts were associated with increased benzene exposure duration. Th2-type cytokine, IL-4 significantly increased, whereas IL-6, CD4+T cells, CD4+/CD8+ ratio and CD3+ T cells decreased. Despite the positive correlation between benzene toxicity and indicated increased immune responses, 45-day exposure to benzene appeared to be the most sensitive time point for evaluating benzene cytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. New findings on the influence of carbon surface curvature on energetics of benzene adsorption from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Marek; Werengowska-Ciećwierz, Karolina; Terzyk, Artur P.

    2015-01-01

    Immersional measurements of benzene adsorption form dilute aqueous solutions are reported for the first time together with the measurements of the enthalpy of benzene adsorption. Benzene adsorption from aqueous solution is an exothermic process. Our results show that with the decrease in carbon nanotube diameter the process becomes more exothermic, and the enthalpy of benzene adsorption correlates with the BET surface area and the electrostatic field strength of the tubes. Possible explanations of the results are proposed, and the most probable is that the change in carbon hybridisation with curvature leads to creation of stronger energetically adsorption sites than observed for graphite.

  20. 55 FR 14037 Correction to the National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    Correction to the National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke Byproduct Recovery Plants.

  1. The high-temperature oxidation of aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Brezinsky, K.

    1986-01-01

    Chemical mechanisms of the atmospheric pressure, high-temperature (875-1500 K) gas-phase oxidation of benzene, toluene, ethylbenzene, and propylbenzene are described and discussed. Oxidation trends evident from turbulent flow reactor experiments serve as the basis for the mechanisms of the oxidation of benzene and alkylated aromatics. The potential effects of very high temperatures and pressures on the chemistry of oxidation of aromatics are described. The oxidation of benzene and phenyl radical has been found to proceed in a stepwise C6-C5-C4 sequence. Species profiles obtained from flow-reactor experiments suggest that the oxidation of benzene and phenyl radical follows the generalized route via phenoxy, cyclopentadienyl and butadienyl radical. The oxidation of the C4 species branches into multiple pathways that yield copious amounts of ethylene and acetylene. Certain major trends are evident: the alkylated aromatics on initial attack either form styrene, benzyl radical or benzene. The styrene reacts further to produce a benzyl radical or benzene. The oxidation of an alkylated aromatic hydrocarbon appears eventually to reduce to the oxidation of either phenyl radical or benzene.

  2. Treatment of co-mingled benzene, toluene and TCE in groundwater.

    PubMed

    Chen, Liang; Liu, Yulong; Liu, Fei; Jin, Song

    2014-06-30

    This work addressed a hypothetical but practical scenario that includes biological oxidation and reductive dechlorination in treating groundwater containing co-mingled plume of trichloroethene (TCE), benzene and toluene. Groundwater immediately downgradient from the commonly used zero-valent iron (ZVI) has shown alkaline pH (up to 10.7). The elevated pH may influence BTEX compounds (i.e., benzene, toluene, ethyl benzene, and xylenes) biodegradation, which could also be inhibited by elevated concentrations of TCE. Data from this work suggests that the inhibition coefficients (IC) value for 100 μg/L and 500 μg/L of TCE on benzene and toluene degradation are 2.1-2.8 at pH 7.9, and 3.5-6.1 at pH 10.5. For a co-mingled plume, it appears to be more effective to reduce TCE by ZVI before addressing benzene and toluene biodegradation. The ample buffering capacity of most groundwater and the adaptation of benzene and toluene-degrading microbes are likely able to eliminate the adverse influence of pH shifts downgradient from a ZVI-PRB. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The toxicity of benzene and its metabolism and molecular pathology in human risk assessment.

    PubMed Central

    Yardley-Jones, A; Anderson, D; Parke, D V

    1991-01-01

    Benzene, a common industrial chemical and a component of gasoline, is radiomimetic and exposure may lead progressively to aplastic anaemia, leukaemia, and multiple myeloma. Although benzene has been shown to cause many types of genetic damage, it has consistently been classified as a non-mutagen in the Ames test, possibly because of the inadequacy of the S9 microsomal activation system. The metabolism of benzene is complex, yielding glucuronide and sulphate conjugates of phenol, quinol, and catechol, L-phenylmercapturic acid, and muconaldehyde and trans, trans-muconic acid by ring scission. Quinol is oxidised to p-benzoquinone, which binds to vital cellular components or undergoes redox cycling to generate oxygen radicals; muconaldehyde, like p-benzoquinone, is toxic through depletion of intracellular glutathione. Exposure to benzene may also induce the microsomal mixed function oxidase, cytochrome P450 IIE1, which is probably responsible for the oxygenation of benzene, but also has a propensity to generate oxygen radicals. The radiomimetic nature of benzene and its ability to induce different sites of neoplasia indicate that formation of oxygen radicals is a major cause of benzene toxicity, which involves multiple mechanisms including synergism between arylating and glutathione-depleting reactive metabolites and oxygen radicals. The occupational exposure limit in the United Kingdom (MEL) and the United States (PEL) was 10 ppm based on the association of benzene exposure with aplastic anaemia, but recently was lowered to 5 ppm and 1 ppm respectively, reflecting a concern for the risk of neoplasia. The American Conference of Governmental Industrial Hygienists (ACGIH) has even more recently recommended that, as benzene is considered an A1 carcinogen, the threshold limit value (TLV) should be decreased to 0.1 ppm. Only one study in man, based on nine cases of benzene associated fatal neoplasia, has been considered suitable for risk assessment. Recent re-evaluation of these data indicated that past assessments may have overestimated the risk, and different authors have considered that lifetime exposure to benzene at 1 ppm would result in an excess of leukaemia deaths of 9.5 to 1.0 per 1000. Although in this study, deaths at low levels of benzene exposure were associated with multiple myeloma and a long latency period, instead of leukaemia, which might justify further lowering of the exposure limit, the risk assessment model has been found to be non-significant for response at low levels of exposure. The paucity of data for man, the complexity of the metabolic activation of benzene, the interactive and synergistic mechanisms of benzene toxicity and carcinogenicity, the different disease endpoints (aplastic anaemia, leukaemia, and multiple myeloma), and different individual susceptibilities, all indicate that in such a complex scenario, regulators should proceed with caution before making further changes to the exposure limit for this chemical. PMID:1854646

  4. Peer Review Comments on the IRIS Assessment of Benzene

    EPA Pesticide Factsheets

    Attachment to IRIS file for benzene, January 19, 2000, RESPONSE TO THE PEER REVIEW COMMENTS, II. Extrapolation of the Benzene Inhalation Unit Risk Estimate to the Oral Route of Exposure (EPA/NCEA-W-0517, July 1999)

  5. Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C-H Amination and Hydroxylation.

    PubMed

    Zheng, Yi-Wen; Chen, Bin; Ye, Pan; Feng, Ke; Wang, Wenguang; Meng, Qing-Yuan; Wu, Li-Zhu; Tung, Chen-Ho

    2016-08-17

    We present a blueprint for aromatic C-H functionalization via a combination of photocatalysis and cobalt catalysis and describe the utility of this strategy for benzene amination and hydroxylation. Without any sacrificial oxidant, we could use the dual catalyst system to produce aniline directly from benzene and ammonia, and phenol from benzene and water, both with evolution of hydrogen gas under unusually mild conditions in excellent yields and selectivities.

  6. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  7. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  8. Environmental and biological monitoring of occupational exposure to organic micropollutants in gasoline.

    PubMed

    Senzolo, C; Frignani, S; Pavoni, B

    2001-07-01

    An exposure risk assessment of workers in a refinery production unit was undertaken. Gasoline and its main components were investigated through environmental and biological monitoring. Measured variables were environmental benzene, toluene, pentane and hexane; benzene and toluene in blood and urine; tt-MA (metabolite of benzene) in urine. Multivariate statistical analysis of the data showed that worker's exposure to the above substances fell within the limits specified by organisations such as ACGIH. Also, biological values complied with reference values (RV) for non-occupationally-exposed population. Different values of biological variables were determined by separating smokers from non-smokers: smokers had hematic and urinary benzene values significantly higher than non-smokers. During a 3-yr sampling, it was possible to identify a significant decrease of benzene in the workplace air and of hematic benzene for non-smokers. The most exposed department, one in which tank-lorries were loaded, needs further investigation and extended monitoring.

  9. Photodissociation spectroscopy of (benzene-toluene) +. Charge delocalization in the hetero-dimer ion

    NASA Astrophysics Data System (ADS)

    Ohashi, Kazuhiko; Nakane, Youko; Inokuchi, Yoshiya; Nakai, Yasuhiro; Nishi, Nobuyuki

    1998-12-01

    The electronic spectrum of the benzene-toluene hetero-dimer ion is measured in the 380-1400 nm region. The spectrum shows intense bands around 1175 and 670 nm and a weaker band around 920 nm, which correspond to charge resonance (CR) bands of homo-dimer ions. The observation indicates that the positive charge stays on the benzene part in some probability, although the ionization potential of benzene is 0.4162 eV higher than that of toluene. A local excitation (LE) band is observed around 420 nm, where a π←π transition is locally excited in the charged benzene or toluene molecule. On the basis of the positions of the CR-like bands, as well as the intensity of the LE band relative to that of homo-dimer ions, the probability of finding the charge on the benzene molecule is analyzed to be approximately 36%.

  10. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    PubMed

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  11. Validation of Armadillo officinalis Dumèril, 1816 (Crustacea, Isopoda, Oniscidea) as a bioindicator: in vivo study of air benzene exposure.

    PubMed

    Agodi, A; Oliveri Conti, G; Barchitta, M; Quattrocchi, A; Lombardo, B M; Montesanto, G; Messina, G; Fiore, M; Ferrante, M

    2015-04-01

    This study tests the potential for using Armadillo officinalis as a bioindicator of exposure to and activation of benzene metabolic pathways using an in vivo model. A. officinalis specimens collected in a natural reserve were divided into a control and three test groups exposed to 2.00, 5.32 or 9.09 µg/m(3) benzene for 24h. Three independent tests were performed to assess model reproducibility. Animals were dissected to obtain three pooled tissue samples per group: hepatopancreas (HEP), other organs and tissues (OOT), and exoskeleton (EXO). Muconic acid (MA), S-phenylmercapturic acid (S-PMA), two human metabolites of benzene, and changes in mtDNA copy number, a human biomarker of benzene exposure, were determined in each sample; benzene was determined only in EXO. MA was measured by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection, S-PMA by triple quadrupole mass spectrometer liquid chromatography with electro spray ionization (LC-MS-ESI-TQD), mtDNA by real-time quantitative PCR and end-point PCR, and benzene by quadrupole mass spectrometer head-space gas chromatography (HSGC-MS). MA and S-PMA levels rose both in HEP and OOT; EXO exhibited increasing benzene concentrations; and mtDNA copy number rose in HEP but not in OOT samples. Overall, our findings demonstrate that A. officinalis is a sensitive bioindicator of air benzene exposure and show for the first time its ability to reproduce human metabolic dynamics. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Oxidation Mechanisms of Toluene and Benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1995-01-01

    An expanded and improved version of a previously published benzene oxidation mechanism is presented and shown to model published experimental data fairly successfully. This benzene submodel is coupled to a modified version of a toluene oxidation submodel from the recent literature. This complete mechanism is shown to successfully model published experimental toluene oxidation data for a highly mixed flow reactor and for higher temperature ignition delay times in a shock tube. A comprehensive sensitivity analysis showing the most important reactions is presented for both the benzene and toluene reacting systems. The NASA Lewis toluene mechanism's modeling capability is found to be equivalent to that of the previously published mechanism which contains a somewhat different benzene submodel.

  13. Distorted allotropes of bi-benzene: vibronic interactions and electronic excitations

    NASA Astrophysics Data System (ADS)

    Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.

    2017-05-01

    Bi-benzene - chemically bound two benzene molecules in stuck position is studied both analytically and numerically. There are several allotropes of bi-benzene having different geometry. The reason of the existence of sundry distorted structures is the pseudo-Jahn-Teller effect. The parameters of vibronic couplings causing distortions are found. For the calculation of these parameters both, the vibronic coupling of carbon atoms in different C6 rings and the vibronic coupling in the rings are considered. The contribution of the distortion of C6-planes to the latter coupling is also found. The energies of all the electronic states of π-electrons in all bi-benzene allotropes are determined by using the calculated vibronic interaction parameters.

  14. An Improved Analysis of the Sevoflurane-Benzene Structure by Chirped Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seifert, Nathan A.; Perez, Cristobal; Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Lesarri, Alberto; Vallejo, Montserrat; Cocinero, Emilio J.; Castano, Fernando; Kleiner, Isabelle

    2013-06-01

    Recent improvements to the 2-8 GHz CP-FTMW spectrometer at University of Virginia have improved the structural and spectroscopic analysis of the sevoflurane-benzene cluster. Previously reported results, although robust, were limited to a fit of the a-type transitions of the normal species in the determination of the six-fold barrier to benzene internal rotation. Structural analysis was limited to the benzene hydrogen atom positions using benzene-d_{1}. The increased sensitivity of the new 2-8 GHz setup allows for a full internal rotation analysis of the a- and c-type transitions of the normal species, which was performed with BELGI. A fit value for V_{6} of 32.868(11) cm^{-1} is determined. Additionally, a full substitution structure of the benzene carbon atom positions was determined in natural abundance. Also, new measurements of a sevoflurane/benzene-d_{1} mixture enabled detection of 33 of the 60 possible ^{2}D / ^{13}C double isotopologues. This abundance of isotopic data, a total of 45 isotopologues, enabled a full heavy atom least-squares r_{0} structure fit for the complex, including positions for all seven fluorines in sevoflurane. N. A. Seifert, D. P. Zaleski, J. L. Neill, B. H. Pate, A. Lesarri, M. Vallejo, E. J. Cocinero, F. Castańo. 67th OSU Int. Symp. On Mol. Spectrosc., Columbus, OH, 2012, MH13.

  15. Variational RRKM theory calculation of thermal rate constant for carbon—hydrogen bond fission reaction of nitro benzene

    NASA Astrophysics Data System (ADS)

    Manesh, Afshin Taghva; Heidarnezhad, Zabi alah; Masnabadi, Nasrin

    2013-07-01

    The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k( T) = 2.1 × 1017exp(-56575.98/ T), k( T) = 2.1 × 1017exp(-57587.45/ T), and k( T) = 3.3 × 1016exp(-57594.79/ T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k( T) = 2 × 1018exp(-59343.48.18/ T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.

  16. Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy.

    PubMed

    Jochum, Tobias; Michalzik, Beate; Bachmann, Anne; Popp, Jürgen; Frosch, Torsten

    2015-05-07

    Soil and groundwater contamination with benzene can cause serious environmental damage. However, many soil microorganisms are capable to adapt and are known to strongly control the fate of organic contamination. Innovative cavity enhanced Raman multi-gas spectroscopy (CERS) was applied to investigate the short-term response of the soil micro-flora to sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. (13)C-labeled benzene was spiked on a silty-loamy soil column in order to track and separate the changes in heterotrophic soil respiration - involving (12)CO2 and O2- from the natural attenuation process of benzene degradation to ultimately form (13)CO2. The respiratory quotient (RQ) decreased from a value 0.98 to 0.46 directly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with the maximum (13)CO2 concentration rate (0.63 μmol m(-2) s(-1)), indicating the highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into (13)CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore. The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration.

  17. Assessment of occupational exposure to BTEX compounds at a bus diesel-refueling bay: A case study in Johannesburg, South Africa.

    PubMed

    Moolla, Raeesa; Curtis, Christopher J; Knight, Jasper

    2015-12-15

    Of increasing concern is pollution by volatile organic compounds, with particular reference to five aromatic hydrocarbons (benzene, toluene, ethyl benzene and two isomeric xylenes; BTEX). These pollutants are classified as hazardous air pollutants. Due to the potential health risks associated with these pollutants, BTEX concentrations were monitored at a bus diesel-refueling bay, in Johannesburg, South Africa, using gas chromatography, coupled with a photo-ionization detector. Results indicate that o-xylene (29-50%) and benzene (13-33%) were found to be the most abundant species of total BTEX at the site. Benzene was within South African occupational limits, but above international occupational exposure limits. On the other hand, occupational concentrations of toluene, ethyl-benzene and xylenes were within national and international occupational limits throughout the monitoring period, based on 8-hour workday weighted averages. Ethyl-benzene and p-xylene concentrations, during winter, correspond to activity at the site, and thus idling of buses during refueling may elevate results. Overall, occupational air quality at the refueling bay is a matter of health concern, especially with regards to benzene exposure, and future reduction strategies are crucial. Discrepancies between national and international limit values merit further investigation to determine whether South African guidelines for benzene are sufficiently precautionary. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    PubMed

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  19. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene

    PubMed Central

    Bassig, Bryan A.; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Li, Guilan; Hu, Wei; Guo, Weihong; Purdue, Mark P.; Yin, Songnian; Rappaport, Stephen M.; Shen, Min; Ji, Zhiying; Qiu, Chuangyi; Ge, Yichen; Hosgood, H.Dean; Reiss, Boris; Wu, Banghua; Xie, Yuxuan; Li, Laiyu; Yue, Fei; Freeman, Laura E.Beane; Blair, Aaron; Hayes, Richard B.; Huang, Hanlin; Smith, Martyn T.; Rothman, Nathaniel; Lan, Qing

    2016-01-01

    Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk. PMID:27207665

  20. Increased leukemia-associated gene expression in benzene-exposed workers

    PubMed Central

    Li, Keqiu; Jing, Yaqing; Yang, Caihong; Liu, Shasha; Zhao, Yuxia; He, Xiaobo; Li, Fei; Han, Jiayi; Li, Guang

    2014-01-01

    Long-term exposure to benzene causes several adverse health effects, including an increased risk of acute myeloid leukemia. This study was to identify genetic alternations involved in pathogenesis of leukemia in benzene-exposed workers without clinical symptoms of leukemia. This study included 33 shoe-factory workers exposed to benzene at levels from 1 ppm to 10 ppm. These workers were divided into 3 groups based on the benzene exposure time, 1- < 7, 7- < 12, and 12- < 24 years. 17 individuals without benzene exposure history were recruited as controls. Cytogenetic analysis using Affymetrix Cytogenetics Array found copy-number variations (CNVs) in several chromosomes of benzene-exposed workers. Expression of targeted genes in these altered chromosomes, NOTCH1 and BSG, which play roles in leukemia pathogenesis, was further examined using real-time PCR. The NOTCH1 mRNA level was significantly increased in all 3 groups of workers, and the NOTCH1 mRNA level in the 12- < 24 years group was significantly higher than that in 1- < 7 and 7- < 12 years groups. Compared to the controls, the BSG mRNA level was significantly increased in 7- < 12 and 12- < 24 years groups, but not in the 1- < 7 years group. These results suggest that CNVs and leukemia-related gene expression might play roles in leukemia development in benzene-exposed workers. PMID:24993241

  1. Single Silver Adatoms on Nanostructured Manganese Oxide Surfaces: Boosting Oxygen Activation for Benzene Abatement.

    PubMed

    Chen, Yaxin; Huang, Zhiwei; Zhou, Meijuan; Ma, Zhen; Chen, Jianmin; Tang, Xingfu

    2017-02-21

    The involvement of a great amount of active oxygen species is a crucial requirement for catalytic oxidation of benzene, because complete mineralization of one benzene molecule needs 15 oxygen atoms. Here, we disperse single silver adatoms on nanostructured hollandite manganese oxide (HMO) surfaces by using a thermal diffusion method. The single-atom silver catalyst (Ag 1 /HMO) shows high catalytic activity in benzene oxidation, and 100% conversion is achieved at 220 °C at a high space velocity of 23 000 h -1 . The Mars-van Krevelen mechanism is valid in our case as the reaction orders for both benzene and O 2 approach one, according to reaction kinetics data. Data from H 2 temperature-programmed reduction and O core-level X-ray photoelectron spectra (XPS) reveal that Ag 1 /HMO possesses a great amount of active surface lattice oxygen available for benzene oxidation. Valence-band XPS and density functional theoretical calculations demonstrate that the single Ag adatoms have the upshifted 4d orbitals, thus facilitating the activation of gaseous oxygen. Therefore, the excellent activation abilities of Ag 1 /HMO toward both surface lattice oxygen and gaseous oxygen account for its high catalytic activity in benzene oxidation. This work may assist with the rational design of efficient metal-oxide catalysts for the abatement of volatile organic compounds such as benzene.

  2. Differences in the metabolism and disposition of inhaled (3H)benzene by F344/N rats and B6C3F1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.J.; Bechtold, W.E.; Birnbaum, L.S.

    1988-06-15

    Benzene is a potent hematotoxin and has been shown to cause leukemia in man. Chronic toxicity studies indicate that B6C3F1 mice are more susceptible than F334/N rats to benzene toxicity. The purpose of the studies presented in this paper was to determine if there were metabolic differences between F344/N rats and B6C3F1 mice which might be responsible for this increased susceptibility. Metabolites of benzene in blood, liver, lung, and bone marrow were measured during and following a 6-hr 50 ppm exposure to benzene vapor. Hydroquinone glucuronide, hydroquinone, and muconic acid, which reflect pathways leading to potential toxic metabolites of benzene,more » were present in much greater concentrations in the mouse than in rat tissues. Phenylsulfate, a detoxified metabolite, and an unknown water-soluble metabolite were present in approximately equal concentrations in these two species. These results indicate that the proportion of benzene metabolized via pathways leading to the formation of potentially toxic metabolites as opposed to detoxification pathways was much higher in B6C3F1 mice than in F344 rats, which may explain the higher susceptibility of mice to benzene-induced hematotoxicity and carcinogenicity.« less

  3. Dermal exposure assessment to benzene and toluene using charcoal cloth pads.

    PubMed

    van Wendel de Joode, Berna; Tielemans, Erik; Vermeulen, Roel; Wegh, Hillion; Kromhout, Hans

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and toluene in workers of a petrochemical plant. Inhalation and dermal exposure levels to benzene and toluene were assessed for workers of a petrochemical plant performing different jobs. Benzene uptake was assessed by determining S-phenylmercapturic acid in workers' urine samples. Dermal exposure levels on the charcoal pads were adjusted for ambient air levels of benzene and toluene by subtracting the amount of benzene or toluene measured in personal air from the amount of benzene or toluene measured on the charcoal pad. In general, measured external and internal exposure levels were low. The estimated contribution of the dermal route to internal benzene exposure levels was less than 0.06% for all jobs. Toluene personal air concentrations and benzene and toluene dermal exposure levels differed statistically significantly between job titles. For benzene, differences between jobs were larger for adjusted dermal exposures (maximum 17-fold, P = 0.02) than for inhalation exposures (maximum two-fold, P = 0.08). Also for toluene, although less clear, differences between jobs were larger for adjusted dermal exposures (maximum 23-fold, P = 0.01) as compared to inhalation exposures (maximum 10-fold, P = 0.01). Charcoal pads appeared to measure dermal exposures to benzene and toluene in addition to ambient air levels. Future studies applying charcoal cloth pads for the dermal exposure assessment at workplaces with higher dermal exposure to organic solvents may provide more insight into the biological relevance of dermal exposure levels measured by charcoal cloth pads. In addition, the design of the dermal sampler might be improved by configuring a dermal sampler, where part of the sampler is protected against direct contact and splashes, but still permeable for the gas phase. This design would most likely result in a better ability to correct for airborne concentrations at a given body location.

  4. Diallyl trisulfide (DATS) suppresses benzene-induced cytopenia by modulating haematopoietic cell apoptosis.

    PubMed

    Han, Wenting; Wang, Shuo; Jiang, Lulu; Wang, Hui; Li, Ming; Wang, Xujing; Xie, Keqin

    2017-12-01

    Benzene is a well-known occupational and environmental toxicant associated with cytopenia, which is characterized by a disorder in the peripheral blood cell counts. However, no effective preventive strategy has been developed yet to tackle the exposure to benzene in daily life. The aim of this study was to evaluate the protective effects of diallyl trisulfide (DATS) on benzene-induced haematopoietic damage and to reveal its potential mechanisms of action. In our study, male Sprague-Dawley rats were divided into six groups. Rats were administered with benzene (1.3 g/kg BW by gavage) to establish the benzene poisoning model, while the DATS treatment groups were treated with benzene plus DATS (15 mg/kg, 30 mg/kg, 45 mg/kg, respectively, by gavage) for 28 days. Our results demonstrated that the counts of peripheral blood WBC and RBC decreased to 31.0% and 79.2%, respectively, in the benzene poisoning model group compared to the control. However, blood cell counts were restored by DATS treatment (30 mg/kg, 45 mg/kg). The apoptosis rates of peripheral blood mononuclear cells (PBMCs) and bone marrow cells (BMCs) were increased to 274% and 284%, respectively, following benzene exposure. Furthermore, expression levels of Bcl-2, PI3K and p-Akt were downregulated and those of Bax were upregulated in both cell types. Moreover, the oxidative parameters (oxygen species, malonaldehyde) were significantly increased, while the non-enzymatic GSH/GSSG ratios and the activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and catalase) were decreased. Interestingly, DATS treatment can restore the WBC number by 267.1% and 304.8% while RBC number by 108.6% and 117.7% in 30,45 mg/k DATS treated groups. In summary, we demonstrated that benzene-induced cytopenia was related to the apoptosis of PBMCs and BMCs, and DATS treatment could prevent benzene-induced cytopenia by suppressing oxidative stress-mediated cell apoptosis via the PI3K/Akt pathway. Copyright © 2017. Published by Elsevier Ltd.

  5. 40 CFR 61.301 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.301 Definitions. As used in this subpart, all terms not defined herein... means any facility which receives liquid product containing benzene by pipelines, marine vessels, tank...

  6. 40 CFR 61.301 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.301 Definitions. As used in this subpart, all terms not defined herein... means any facility which receives liquid product containing benzene by pipelines, marine vessels, tank...

  7. 40 CFR 61.301 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.301 Definitions. As used in this subpart, all terms not defined herein... means any facility which receives liquid product containing benzene by pipelines, marine vessels, tank...

  8. 40 CFR 61.301 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.301 Definitions. As used in this subpart, all terms not defined herein... means any facility which receives liquid product containing benzene by pipelines, marine vessels, tank...

  9. 40 CFR 61.301 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.301 Definitions. As used in this subpart, all terms not defined herein... means any facility which receives liquid product containing benzene by pipelines, marine vessels, tank...

  10. Benzene and toluene in the surface air of northern Eurasia from TROICA-12 campaign along the Trans-Siberian Railway

    NASA Astrophysics Data System (ADS)

    Skorokhod, Andrey I.; Berezina, Elena V.; Moiseenko, Konstantin B.; Elansky, Nikolay F.; Belikov, Igor B.

    2017-05-01

    Volatile organic compounds (VOCs) were measured by proton transfer reaction mass spectrometry (PTR-MS) on a mobile laboratory in a transcontinental TROICA-12 (21 July-4 August 2008) campaign along the Trans-Siberian Railway from Moscow to Vladivostok. Surface concentrations of benzene (C6H6) and toluene (C7H8) along with non-methane hydrocarbons (NMHCs), CO, O3, SO2, NO, NO2 and meteorology are analyzed in this study to identify the main sources of benzene and toluene along the Trans-Siberian Railway. The most measurements in the TROICA-12 campaign were conducted under low-wind/stagnant conditions in moderately ( ˜ 78 % of measurements) to weakly polluted ( ˜ 20 % of measurements) air directly affected by regional anthropogenic sources adjacent to the railway. Only 2 % of measurements were identified as characteristic of highly polluted urban atmosphere. Maximum values of benzene and toluene during the campaign reached 36.5 and 45.6 ppb, respectively, which is significantly less than their short-term exposure limits (94 and 159 ppb for benzene and toluene, respectively). About 90 % of benzene and 65 % of toluene content is attributed to motor vehicle transport and 10 and 20 %, respectively, provided by the other local- and regional-scale sources. The highest average concentrations of benzene and toluene are measured in the industrial regions of the European Russia (up to 0.3 and 0.4 ppb for benzene and toluene, respectively) and south Siberia (up to 0.2 and 0.4 ppb for benzene and toluene, respectively). Total contribution of benzene and toluene to photochemical ozone production along the Trans-Siberian Railway is about 16 % compared to the most abundant organic VOC - isoprene. This contribution, however, is found to be substantially higher (up to 60-70 %) in urbanized areas along the railway, suggesting an important role of anthropogenic pollutant sources in regional ozone photochemistry and air quality.

  11. Benzene exposure: An overview of monitoring methods and their findings

    PubMed Central

    Weisel, Clifford P.

    2014-01-01

    Benzene has been measured throughout the environment and is commonly emitted in several industrial and transportation settings leading to widespread environmental and occupational exposures. Inhalation is the most common exposure route but benzene rapidly penetrates the skin and can contaminant water and food resulting in dermal and ingestion exposures. While less toxic solvents have been substituted for benzene, it still is a component of petroleum products, including gasoline, and is a trace impurity in industrial products resulting in continued sub to low ppm occupational exposures, though higher exposures exist in small, uncontrolled workshops in developing countries. Emissions from gasoline/petrochemical industry are its main sources to the ambient air, but a person’s total inhalation exposure can be elevated from emissions from cigarettes, consumer products and gasoline powered engines/tools stored in garages attached to homes. Air samples are collected in canisters or on adsorbent with subsequent quantification by gas chromatography. Ambient air concentrations vary from sub-ppb range, low ppb, and tens of ppb in rural/suburban, urban, and source impacted areas, respectively. Short-term environmental exposures of ppm occur during vehicle fueling. Indoor air concentrations of tens of ppb occur in microenvironments containing indoor sources. Occupational and environmental exposures have declined where regulations limit benzene in gasoline (<1%) and cigarette smoking has been banned from public and work places. Similar controls should be implemented worldwide to reduce benzene exposure. Biomarkers of benzene used to estimate exposure and risk include: benzene in breath, blood and urine; its urinary metabolites: phenol, t,t-muconic acid (t,tMA) and S-phenylmercapturic acid (sPMA); and blood protein adducts. The biomarker studies suggest benzene environmental exposures are in the sub to low ppb range though non-benzene sources for urinary metabolites, differences in metabolic rates compared to occupational or animal doses, and the presence of polymorphisms need to be considered when evaluating risks from environmental exposures to individuals or potentially susceptible populations. PMID:20056112

  12. Benzene formation in electronic cigarettes.

    PubMed

    Pankow, James F; Kim, Kilsun; McWhirter, Kevin J; Luo, Wentai; Escobedo, Jorge O; Strongin, Robert M; Duell, Anna K; Peyton, David H

    2017-01-01

    The heating of the fluids used in electronic cigarettes ("e-cigarettes") used to create "vaping" aerosols is capable of causing a wide range of degradation reaction products. We investigated formation of benzene (an important human carcinogen) from e-cigarette fluids containing propylene glycol (PG), glycerol (GL), benzoic acid, the flavor chemical benzaldehyde, and nicotine. Three e-cigarette devices were used: the JUULTM "pod" system (provides no user accessible settings other than flavor cartridge choice), and two refill tank systems that allowed a range of user accessible power settings. Benzene in the e-cigarette aerosols was determined by gas chromatography/mass spectrometry. Benzene formation was ND (not detected) in the JUUL system. In the two tank systems benzene was found to form from propylene glycol (PG) and glycerol (GL), and from the additives benzoic acid and benzaldehyde, especially at high power settings. With 50:50 PG+GL, for tank device 1 at 6W and 13W, the formed benzene concentrations were 1.9 and 750 μg/m3. For tank device 2, at 6W and 25W, the formed concentrations were ND and 1.8 μg/m3. With benzoic acid and benzaldehyde at ~10 mg/mL, for tank device 1, values at 13W were as high as 5000 μg/m3. For tank device 2 at 25W, all values were ≤~100 μg/m3. These values may be compared with what can be expected in a conventional (tobacco) cigarette, namely 200,000 μg/m3. Thus, the risks from benzene will be lower from e-cigarettes than from conventional cigarettes. However, ambient benzene air concentrations in the U.S. have typically been 1 μg/m3, so that benzene has been named the largest single known cancer-risk air toxic in the U.S. For non-smokers, chronically repeated exposure to benzene from e-cigarettes at levels such as 100 or higher μg/m3 will not be of negligible risk.

  13. Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity.

    PubMed

    Zheng, Min; Lin, Feiliang; Hou, Fenxia; Li, Guilan; Zhu, Caiying; Xu, Peiyu; Xing, Caihong; Wang, Qianfei

    2017-08-16

    Benzene is a primary industrial chemical and a ubiquitous environmental pollutant. ERCC3 is a key player in nucleotide excision repair. Recent studies suggested that site-specific methylation is a possible mechanism of the transcriptional dysregulation by blocking transcription factors binding. We previously found that the average promoter methylation level of ERCC3 was increased in benzene-exposed workers. In order to test whether specific CpG sites of ERCC3 play an important role in benzene-induced epigenetic changes and whether the specific methylation patterns are associated with benzene hematotoxicity, we analyzed the promoter methylation levels of individual CpG sites, transcription factor binding motif and the correlation between aberrant CpG methylation and hematotoxicity in 76 benzene-exposed workers and 24 unexposed controls in China. Out of all the CpGs analyzed, two CpG units located 43 bp upstream and 99 bp downstream of the transcription start site of ERCC3 (CpG 2-4 and CpG 17-18, respectively), showed the most pronounced increase in methylation levels in benzene-exposed workers, compared with unexposed controls (Mean ± SD: 5.86 ± 2.77% vs. 4.92 ± 1.53%, p = 0.032; 8.45 ± 4.09% vs. 6.79 ± 2.50%, p = 0.024, respectively). Using the JASPAR CORE Database, we found that CpG 2-4 and CpG 17-18 were bound by three putative transcription factors (TFAP2A, E2F4 and MZF1). Furthermore, the methylation levels for CpG 2-4 were correlated negatively with the percentage of neutrophils ( β = -0.676, p = 0.005) in benzene-exposed workers. This study demonstrates that CpG-specific DNA methylation in the ERCC3 promoter region may be involved in benzene-induced epigenetic modification and it may contribute to benzene-induced hematotoxicity.

  14. Association between Promoter Methylation of Gene ERCC3 and Benzene Hematotoxicity

    PubMed Central

    Lin, Feiliang; Hou, Fenxia; Li, Guilan; Zhu, Caiying; Xu, Peiyu; Xing, Caihong; Wang, Qianfei

    2017-01-01

    Benzene is a primary industrial chemical and a ubiquitous environmental pollutant. ERCC3 is a key player in nucleotide excision repair. Recent studies suggested that site-specific methylation is a possible mechanism of the transcriptional dysregulation by blocking transcription factors binding. We previously found that the average promoter methylation level of ERCC3 was increased in benzene-exposed workers. In order to test whether specific CpG sites of ERCC3 play an important role in benzene-induced epigenetic changes and whether the specific methylation patterns are associated with benzene hematotoxicity, we analyzed the promoter methylation levels of individual CpG sites, transcription factor binding motif and the correlation between aberrant CpG methylation and hematotoxicity in 76 benzene-exposed workers and 24 unexposed controls in China. Out of all the CpGs analyzed, two CpG units located 43 bp upstream and 99 bp downstream of the transcription start site of ERCC3 (CpG 2–4 and CpG 17–18, respectively), showed the most pronounced increase in methylation levels in benzene-exposed workers, compared with unexposed controls (Mean ± SD: 5.86 ± 2.77% vs. 4.92 ± 1.53%, p = 0.032; 8.45 ± 4.09% vs. 6.79 ± 2.50%, p = 0.024, respectively). Using the JASPAR CORE Database, we found that CpG 2–4 and CpG 17–18 were bound by three putative transcription factors (TFAP2A, E2F4 and MZF1). Furthermore, the methylation levels for CpG 2–4 were correlated negatively with the percentage of neutrophils (β = −0.676, p = 0.005) in benzene-exposed workers. This study demonstrates that CpG-specific DNA methylation in the ERCC3 promoter region may be involved in benzene-induced epigenetic modification and it may contribute to benzene-induced hematotoxicity. PMID:28813025

  15. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    NASA Astrophysics Data System (ADS)

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.

  16. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    PubMed Central

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway. PMID:24413448

  17. Near infrared study of water-benzene mixtures at high temperatures and pressures.

    PubMed

    Jin, Yusuke; Ikawa, Shun-Ichi

    2004-08-08

    Near-infrared absorption of water-benzene mixtures has been measured at temperatures and pressures in the ranges of 473-673 K and 100-400 bar, respectively. Concentrations of water and benzene in the water-rich phase of the mixtures were obtained from the integrated absorption intensities of the OH stretching overtone transition of water and the CH stretching overtone transition of benzene, respectively. Using these concentrations, the densities of the water-rich phase were estimated and compared with the average densities before mixing, which were calculated from literature densities of neat water and neat benzene. It is found that anomalously large volume expansion on the mixing occurs in the region enclosed by an extended line of the three-phase equilibrium curve and the one-phase critical curve of the mixtures, and the gas-liquid equilibrium curve of water. Furthermore, magnitude of the relative volume change increases with decreasing molar fraction of benzene in the present experimental range. It is suggested that dissolving a small amount of benzene in water induces a change in the fluid density from a liquidlike condition to a gaslike condition in the vicinity of the critical region.

  18. Investigation into adsorption and photocatalytic degradation of gaseous benzene in an annular fluidized bed photocatalytic reactor.

    PubMed

    Geng, Qijin; Tang, Shankang; Wang, Lintong; Zhang, Yunchen

    2015-01-01

    The adsorption and photocatalytic degradation of gaseous benzene were investigated considering the operating variables and kinetic mechanism using nano-titania agglomerates in an annular fluidized bed photocatalytic reactor (AFBPR) designed. The special adsorption equilibrium constant, adsorption active sites, and apparent reaction rate coefficient of benzene were determined by linear regression analysis at various gas velocities and relative humidities (RH). Based on a series of photocatalytic degradation kinetic equations, the influences of operating variables on degradation efficiency, apparent reaction rate coefficient and half-life were explored. The findings indicated that the operating variables have obviously influenced the adsorption/photocatalytic degradation and corresponding kinetic parameters. In the photocatalytic degradation process, the relationship between photocatalytic degradation efficiency and RH indicated that water molecules have a dual-function which was related to the structure characteristics of benzene. The optimal operating conditions for photocatalytic degradation of gaseous benzene in AFBPR were determined as the fluidization number at 1.9 and RH required related to benzene concentration. This investigation highlights the importance of controlling RH and benzene concentration in order to obtain the desired synergy effect in photocatalytic degradation processes.

  19. Structural features of small benzene clusters (C6H6)n (n ≤ 30) as investigated with the all-atom OPLS potential.

    PubMed

    Takeuchi, Hiroshi

    2012-10-18

    The structures of the simplest aromatic clusters, benzene clusters (C(6)H(6))(n), are not well elucidated. In the present study, benzene clusters (C(6)H(6))(n) (n ≤ 30) were investigated with the all-atom optimized parameters for liquid simulation (OPLS) potential. The global minima and low-lying minima of the benzene clusters were searched with the heuristic method combined with geometrical perturbations. The structural features and growth sequence of the clusters were examined by carrying out local structure analyses and structural similarity evaluation with rotational constants. Because of the anisotropic interaction between the benzene molecules, the local structures consisting of 13 molecules are considerably deviated from regular icosahedron, and the geometries of some of the clusters are inconsistent with the shapes constructed by the interior molecules. The distribution of the angle between the lines normal to two neighboring benzene rings is anisotropic in the clusters, whereas that in the liquid benzene is nearly isotropic. The geometries and energies of the low-lying configurations and the saddle points between them suggest that most of the configurations previously detected in supersonic expansions take different orientations for one to four neighboring molecules.

  20. Beyond the benzene dimer: an investigation of the additivity of pi-pi interactions.

    PubMed

    Tauer, Tony P; Sherrill, C David

    2005-11-24

    The benzene dimer is the simplest prototype of pi-pi interactions and has been used to understand the fundamental physics of these interactions as they are observed in more complex systems. In biological systems, however, aromatic rings are rarely found in isolated pairs; thus, it is important to understand whether aromatic pairs remain a good model of pi-pi interactions in clusters. In this study, ab initio methods are used to compute the binding energies of several benzene trimers and tetramers, most of them in 1D stacked configurations. The two-body terms change only slightly relative to the dimer, and except for the cyclic trimer, the three- and four-body terms are negligible. This indicates that aromatic clusters do not feature any large nonadditive effects in their binding energies, and polarization effects in benzene clusters do not greatly change the binding that would be anticipated from unperturbed benzene-benzene interactions, at least for the 1D stacked systems considered. Three-body effects are larger for the cyclic trimer, but for all systems considered, the computed binding energies are within 10% of what would be estimated from benzene dimer energies at the same geometries.

  1. Interpretation of Urinary and Blood Benzene biomarkers of Exposure for Non-Occupationally Exposed Individuals

    EPA Science Inventory

    Non-occupational exposure to benzene occurs primarily through inhalation ofair impacted by motor vehicle exhaust, fuel sources, and cigarette smoke. This study relates published measurements ofbenzene biomarkers to air exposure concentrations. Benzene has three reliable biomar...

  2. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  3. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  4. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  5. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  6. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  7. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  8. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  9. 29 CFR 1915.1028 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical to...

  10. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  11. 29 CFR 1926.1128 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene. Note...

  12. Benzene uptake in Hookah smokers and non-smokers attending Hookah social events: regulatory implications.

    PubMed

    Kassem, Nada O F; Kassem, Noura O; Jackson, Sheila R; Liles, Sandy; Daffa, Reem M; Zarth, Adam T; Younis, Maram A; Carmella, Steven G; Hofstetter, C Richard; Chatfield, Dale A; Matt, Georg E; Hecht, Stephen S; Hovell, Melbourne F

    2014-12-01

    Benzene is a human hematotoxicant and a leukemogen that causes lymphohematopoietic cancers, especially acute myelogenous leukemia. We investigated uptake of benzene in hookah smokers and non-smokers attending hookah social events in naturalistic settings where hookah tobacco was smoked exclusively. We quantified S-phenylmercapturic acid (SPMA), a metabolite of benzene, in the urine of 105 hookah smokers and 103 non-smokers. Participants provided spot urine samples the morning of and the morning after attending an indoor hookah-only smoking social event at a hookah lounge or in a private home. Urinary SPMA levels in hookah smokers increased significantly following a hookah social event (P < 0.001). This increase was 4.2 times higher after hookah lounge events (P < 0.001) and 1.9 times higher after home events (P = 0.003). In non-smokers, urinary SPMA levels increased 2.6 times after hookah lounge events (P = 0.055); however, similar urinary SPMA levels were detected before and after home events, possibly indicating chronic exposure to benzene (P = 0.933). Our data provide the first evidence for uptake of benzene in hookah smokers and non-smokers exposed to hookah tobacco secondhand smoke at social events in private homes compared with their counterparts in hookah lounges. Hookah tobacco smoke is a source of benzene exposure, a risk factor for leukemia. Because there is no safe level of exposure to benzene, our results call for interventions to reduce or prevent hookah tobacco use, regulatory actions to limit hookah-related exposure to toxicants including benzene, initiate labeling of hookah-related products, and include hookah smoking in clean indoor air legislation.

  13. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction.

    PubMed

    Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro

    2018-04-05

    A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Acute suppression of serum IgM and IgA in tank workers exposed to benzene.

    PubMed

    Kirkeleit, J; Ulvestad, E; Riise, T; Bråtveit, M; Moen, B E

    2006-12-01

    We investigated associations between benzene exposure and alterations of proteins and cells of the immune system among workers maintaining cargo tanks containing crude oil residues. Individual exposure to benzene, benzene in blood and urine, peripheral blood lymphocytes (total lymphocytes, lymphocytes in subpopulations CD3, CD4, CD8, CD19, CD56 and CD4/CD8 ratio), complement factors C3 and C4 and serum concentration of immunoglobulins (IgG, IgA, IgM and IgE) were analysed among 13 tank workers and nine unexposed referents (catering section). Benzene exposure was measured during three consecutive 12-h work days. Blood and urine samples were collected pre-shift on the first day (baseline), post-shift on the third day, and pre-next shift on the following morning. The time spent in the cargo tank was logged. The individual geometric mean benzene exposure in the breathing zone of tank workers over 3 days was 0.15 p.p.m. (range 0.01-0.62 p.p.m.) (n = 26). The geometric mean benzene concentration in blood post-shift was 12.3 nmol/l among tank workers versus 0.7 nmol/l among the referents. Tank workers showed a decline (versus referents) in IgM from baseline to post-shift (t-test, P = 0.04) and IgA from baseline to pre-next shift (t-test, P = 0.01). They also showed a decline in CD4 T cells from baseline to post-shift (t-test, P = 0.04). Suppression correlated with benzene exposure, benzene concentrations in blood and urine and time spent in the tank. The groups did not differ significantly in the change in other immune parameters. The clinical significance is unknown and warrants further studies.

  15. Pressure-induced oligomerization of benzene at room temperature as a precursory reaction of amorphization.

    PubMed

    Shinozaki, Ayako; Mimura, Koichi; Kagi, Hiroyuki; Komatu, Kazuki; Noguchi, Naoki; Gotou, Hirotada

    2014-08-28

    Oligomerization of benzene at high pressures up to 16 GPa was investigated at room temperature using an opposed-anvil type pressure apparatus. The recovered samples were analyzed using GC-MS to identify and quantify the products after the high-pressure experiments. Some structural isomers of benzene dimer as well as biphenyl, naphthalene, and terphenyl isomers were detected at pressures higher than 13 GPa. The molar yield of the polycyclic aromatic hydrocarbons increased concomitantly with increasing pressure, although benzene still remained. The oligomerization is likely to occur when the neighbor distance of the benzene molecules exceeds the threshold of the reaction distance. The oligomerization is regarded as a precursory phenomenon of the amorphization that occurs at higher pressure.

  16. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  17. Carcinogenic Effects of Benzene: An Update (Draft Report)

    EPA Science Inventory

    The major issue addressed in this document involves the nature and magnitude of the risk of cancer to humans exposed to low levels of benzene. Occupational studies continue to provide the bulk of evidence of benzenes carcinogenicity. Workers are exposed at much higher levels than...

  18. SPECIES COMPARISON OF HEPATIC AND PULMONARY METABOLISM OF BENZENE. (R826191)

    EPA Science Inventory

    Abstract

    Benzene is an occupational hazard and environmental toxicant found in cigarette smoke, gasoline, and the chemical industry. The major health concern associated with benzene exposure is leukemia. Studies using microsomal preparations from human, mouse, rabbit, ...

  19. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  20. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  1. 40 CFR 61.302 - Standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...

  2. 40 CFR 61.302 - Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...

  3. 40 CFR 61.302 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...

  4. 40 CFR 61.302 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...

  5. 40 CFR 61.302 - Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Transfer Operations § 61.302 Standards. (a) The owner or operator of an affected facility shall equip each loading rack with a vapor collection system that is: (1) Designed to collect all benzene...

  6. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  7. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  8. 46 CFR 153.1060 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060 Benzene...

  9. Benzene Case Study Final Report - Second Prospective Report Study Science Advisory Board Review, July 2009

    EPA Pesticide Factsheets

    EPA developed a methodology for estimating the health benefits of benzene reductions and has applied it in a metropolitan-scale case study of the benefits of CAA controls on benzene emissions to accompany the main 812 analysis.

  10. Draft Benzene Case Study Review - Second Prospective Report Study Science Advisory Board Review, March 2008

    EPA Pesticide Factsheets

    EPA developed a methodology for estimating the health benefits of benzene reductions and has applied it in a metropolitan-scale case study of the benefits of CAA controls on benzene emissions to accompany the main 812 analysis.

  11. Benzene Adsorption on C24, Si@C24, Si-Doped C24, and C20 Fullerenes

    NASA Astrophysics Data System (ADS)

    Baei, Mohammad T.

    2017-12-01

    The absorption feasibility of benzene molecule in the C24, Si@C24, Si-doped C24, and C20 fullerenes has been studied based on calculated electronic properties of these fullerenes using Density functional Theory (DFT). It is found that energy of benzene adsorption on C24, Si@C24, and Si-doped C24 fullerenes were in range of -2.93 and -51.19 kJ/mol with little changes in their electronic structure. The results demonstrated that the C24, Si@C24, and Si-doped C24 fullerenes cannot be employed as a chemical adsorbent or sensor for benzene. Silicon doping cannot significantly modify both the electronic properties and benzene adsorption energy of C24 fullerene. On the other hand, C20 fullerene exhibits a high sensitivity, so that the energy gap of the fullerene is changed almost 89.19% after the adsorption process. We concluded that the C20 fullerene can be employed as a reliable material for benzene detection.

  12. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    PubMed

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A co-crystal between benzene and ethane: a potential evaporite material for Saturn’s moon Titan

    PubMed Central

    Maynard-Casely, Helen E.; Hodyss, Robert; Cable, Morgan L.; Vu, Tuan Hoang; Rahm, Martin

    2016-01-01

    Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H⋯π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group with a = 15.977 (1) Å and c = 5.581 (1) Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn’s moon Titan’s lakes, an evaporite material. PMID:27158505

  14. Component composition of the extracts and essential oils from the Alhagi canescens, growing in Uzbekistan and their antimicrobial activity.

    PubMed

    Nishanbaev, Sabir; Bobakulov, Khayrulla; Okhundedaev, Bakhodir; Sasmakov, Sobirdjan; Yusupova, Elvira; Azimova, Shakhnoz; Abdullaev, Nasrulla

    2018-05-17

    The volatile compounds of hexane, benzene extracts and essential oils (EOs) isolated by steam- and hydrodistillation methods from aerial part of Alhagi canescens were studied by GC-MS analysis. Seventeen components were found in the hexane and benzene extracts, among them palmitic acid (25.2 and 22.1%), neophytadiene (7.3 and 22.3%), cis-chrysanthenyl acetate (11.0% in benzene), cis-geranyl acetate (7.8% in benzene) were major components. The first time fifty-six volatile compounds were identified in the EOs and camphor (5.9 and 27.8%), bicyclogermacrene (13.4 and 4.0%), α-copaene (6.1 and 2.6%), (-)-germacrene D (10.8 and 3.6%) and eucalyptol (3.7 and 8.1%) were the main components. The benzene, hexane extracts and EOs were screened for their antibacterial and antifungal activity. The benzene extract possess the highest antibacterial activity against Bacillus subtilis (12.12 ± 0.20) and Staphylococcus aureus (10.04 ± 0.10).

  15. Marine environmental protection: An application of the nanometer photo catalyst method on decomposition of benzene.

    PubMed

    Lin, Mu-Chien; Kao, Jui-Chung

    2016-04-15

    Bioremediation is currently extensively employed in the elimination of coastal oil pollution, but it is not very effective as the process takes several months to degrade oil. Among the components of oil, benzene degradation is difficult due to its stable characteristics. This paper describes an experimental study on the decomposition of benzene by titanium dioxide (TiO2) nanometer photocatalysis. The photocatalyst is illuminated with 360-nm ultraviolet light for generation of peroxide ions. This results in complete decomposition of benzene, thus yielding CO2 and H2O. In this study, a nonwoven fabric is coated with the photocatalyst and benzene. Using the Double-Shot Py-GC system on the residual component, complete decomposition of the benzene was verified by 4h of exposure to ultraviolet light. The method proposed in this study can be directly applied to elimination of marine oil pollution. Further studies will be conducted on coastal oil pollution in situ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    PubMed

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, p<0.0001). In the case of cherry flavoured beverages, industrial best practices should include monitoring for benzene. Formulations containing either benzoic acid or benzaldehyde in combination with ascorbic acid should be avoided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Spin polarization properties of benzene/graphene with transition metals as dopants: First principles calculations

    NASA Astrophysics Data System (ADS)

    Yuan, X. B.; Tian, Y. L.; Zhao, X. W.; Yue, W. W.; Hu, G. C.; Ren, J. F.

    2018-05-01

    First principles calculations are used to study the spin polarization properties of benzene molecule adsorbed on the graphene surface which doped with transition metals including Mn, Cr, Fe, Co, and Ni. The densities of states (DOS) of the benzene molecule can be induced to be spin split at the Fermi level only when it is adsorbed on Mn-, and Cr-doped graphene. The p-orbital of the benzene molecule will interact with the d orbital of the doped atoms, which will generate new spin coupling states and lead to obvious spin polarization of the benzene molecule. The spin-polarized density distributions as well as the differential charge density distributions of the systems also suggest that Mn-doped graphene will induce bigger spin polarization than that of Cr-doped graphene. Benzene molecule could be spin-polarized when it is adsorbed on the graphene surface with transition metal dopants, which could be a new method for researching graphene-based organic spintronic devices.

  18. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    NASA Astrophysics Data System (ADS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  19. Benzene exposure monitoring of Tunisian workers.

    PubMed

    Chakroun, Radhouane; Kaabachi, Néziha; Hedhili, Abderrazek; Feki, Moncef; Nouaigui, Habib; Ben Laiba, Mohamed; Mebazaa, Abderraouf

    2002-12-01

    To monitor benzene exposure and to check reliability of urinary trans,trans-Muconic Acid (t,t-MA) as a bio-marker of benzene exposure in local conditions, a study was conducted on 30 Tunisian exposed workers (20 tanker fillers and 10 filling station attendants). The analyses were carried out on environmental air and urinary t,t-MA before (t,t-MAA) and at the end of work shift (t,t-MAB). 20 nonoccupationally exposed subjects were also investigated. The average value of environmental benzene concentration was 0.17 ppm. The differences between t,t-MAA and t,t-MAB concentrations and between t,t-MAB and t,t-MA measured in controls (t,t-MAC) were both significant (p < 0.001). Benzene air concentrations were well correlated with t,t-MAB: R = 0.76. In the nonexposed group, average t,t-MA concentrations is significantly higher among smokers than nonsmokers (P < 0.02). Analysis of urinary t,t-MA offers a relatively simple and suitable method for benzene exposure monitoring.

  20. Accurate O2 delivery enabled benzene biodegradation through aerobic activation followed by denitrification-coupled mineralization.

    PubMed

    Liu, Zhuolin; Zhou, Chen; Ontiveros-Valencia, Aura; Luo, Yi-Hao; Long, Min; Xu, Hua; Rittmann, Bruce E

    2018-04-28

    Although benzene can be biodegraded when dissolved oxygen is sufficient, delivering oxygen is energy intensive and can lead to air stripping the benzene. Anaerobes can biodegrade benzene by using electron acceptors other than O 2 , and this may reduce costs and exposure risks; the drawback is a remarkably slower growth rate. We evaluated a two-step strategy that involved O 2 -dependent benzene activation and cleavage followed by intermediate oxidation coupled to NO 3 - respiration. We employed a membrane biofilm reactor (MBfR) featuring nonporous hollow fibers as the means to deliver O 2 directly to a biofilm at an accurately controlled rate. Benzene was mineralized aerobically when the O 2 -supply rate was more than sufficient for mineralization. As the O 2 -supply capacity was systematically lowered, O 2 respiration was gradually replaced by NO 3 - respiration. When the maximum O 2 -supply capacity was only 20% of the demand for benzene mineralization, O 2 was used almost exclusively for benzene activation and cleavage, while respiration was almost only by denitrification. Analyses of microbial community structure and predicted metagenomic function reveal that Burkholderiales was dominant and probably utilized monooxygenase activation, with subsequent mineralization coupled to denitrification; strict anaerobes capable of carboxylative activation were not detected. These results open the door for a promising treatment strategy that simultaneously ameliorates technical and economic challenges of aeration and slow kinetics of anaerobic activation of aromatics. © 2018 Wiley Periodicals, Inc.

  1. Investigation of gasoline distributions within petrol stations: spatial and seasonal concentrations, sources, mitigation measures, and occupationally exposed symptoms.

    PubMed

    Sairat, Theerapong; Homwuttiwong, Sahalaph; Homwutthiwong, Kritsana; Ongwandee, Maneerat

    2015-09-01

    We measured levels of VOCs and determined the distributions of benzene concentrations over the area of two petrol stations in all three seasons. Using the concentrations and sampling positions, we created isoconcentration contour maps. The average concentrations ranged 18-1288 μg m(-3) for benzene and 12-81 μg m(-3) for toluene. The contour maps indicate that high-level contours of benzene were found not only at the fuel dispenser areas but also at the storage tank refilling points, open drainage areas where gasoline-polluted wastewater was flowing, and the auto service center located within the station area. An assessment of the benzene to toluene ratio contour plots implicates that airborne benzene and toluene near the fuel dispenser area were attributed to gasoline evaporation although one of the studied stations may be influenced by other VOC sources besides gasoline evaporation. Additionally, during the routine refilling of the underground fuel storage tanks by a tank truck, the ambient levels of benzene and toluene increased tremendously. The implementation of source control by replacing old dispensers with new fuel dispensers that have an efficient cutoff feature and increased delivery speed can reduce spatial benzene concentrations by 77%. Furthermore, a questionnaire survey among 63 service attendants in ten stations revealed that headache was the most reported health complaint with a response rate of 32%, followed by fatigue with 20%. These prominent symptoms could be related to an exposure to high benzene concentrations.

  2. The molecular mechanisms of liver and islets of Langerhans toxicity by benzene and its metabolite hydroquinone in vivo and in vitro.

    PubMed

    Bahadar, Haji; Maqbool, Faheem; Mostafalou, Sara; Baeeri, Maryam; Gholami, Mahdi; Ghafour-Boroujerdi, Elmira; Abdollahi, Mohammad

    2015-01-01

    Benzene (C6H6) is one of the most commonly used industrial chemicals causing environmental pollution. This study aimed to examine the effect of benzene and its metabolite hydroquinone on glucose regulating organs, liver and pancreas, and to reveal the involved toxic mechanisms, in rats. In the in vivo part, benzene was dissolved in corn oil and administered through intragastric route at doses of 200, 400 and 800 mg/kg/day, for 4 weeks. And, in the in vitro part, toxic mechanisms responsible for weakening the antioxidant system in islets of Langerhans by hydroquinone at different concentrations (0.25, 0.5 and 1 mM), were revealed. Benzene exposure raised the activity of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6Pase) enzymes and increased fasting blood sugar (FBS) in comparison to control animals. Also, the activity of hepatic glucokinase (GK) was decreased significantly. Along with, a significant increase was observed in hepatic tumor necrosis factor (TNF-α) and plasma insulin in benzene treated rats. Moreover, benzene caused a significant rise in hepatic lipid peroxidation, DNA damage and oxidation of proteins. In islets of Langerhans, hydroquinone was found to decrease the capability of antioxidant system to fight free radicals. Also, the level of death proteases (caspase 3 and caspase 9) was found higher in hydroquinone exposed islets. The current study demonstrated that benzene and hydroquinone causes toxic effects on liver and pancreatic islets by causing oxidative impairment.

  3. Benzene exposure and risk of non-Hodgkin lymphoma.

    PubMed

    Smith, Martyn T; Jones, Rachael M; Smith, Allan H

    2007-03-01

    Exposure to benzene, an important industrial chemical and component of gasoline, is a widely recognized cause of leukemia, but its association with non-Hodgkin lymphoma (NHL) is less clear. To clarify this issue, we undertook a systematic review of all case-control and cohort studies that identified probable occupational exposures to benzene and NHL morbidity or mortality. We identified 43 case-control studies of NHL outcomes that recognized persons with probable occupational exposure to benzene. Forty of these 43 (93%) studies show some elevation of NHL risk, with 23 of 43 (53%) studies finding statistically significant associations between NHL risk and probable benzene exposure. We also identified 26 studies of petroleum refinery workers reporting morbidity or mortality for lymphomas and all neoplasms and found that in 23 (88%), the rate of lymphoma morbidity or mortality was higher than that for all neoplasms. A substantial healthy-worker effect was evident in many of the studies and a comprehensive reevaluation of these studies with appropriate adjustments should be undertaken. Numerous studies have also reported associations between benzene exposure and the induction of lymphomas in mice. Further, because benzene is similar to alkylating drugs and radiation in producing leukemia, it is plausible that it might also produce lymphoma as they do and by similar mechanisms. Potential mechanisms include immunotoxicity and the induction of double-strand breaks with subsequent chromosome damage resulting in translocations and deletions. We conclude that, overall, the evidence supports an association between occupational benzene exposure and NHL.

  4. Investigating the effects of in utero benzene exposure on epigenetic modifications in maternal and fetal CD-1 mice.

    PubMed

    Philbrook, Nicola A; Winn, Louise M

    2015-11-15

    Exposure to the ubiquitous environmental pollutant benzene is positively correlated with leukemia in adults and may be associated with childhood leukemia following in utero exposure. While numerous studies implicate oxidative stress and DNA damage as playing a role in benzene-mediated carcinogenicity, emerging evidence suggests that alterations in epigenetic regulations may be involved. The present study aimed to determine whether DNA methylation and/or various histone modifications were altered following in utero benzene exposure in CD-1 mice. Global DNA methylation and promoter-specific methylation of the tumor suppressor gene, p15, were assessed. Additionally, levels of acetylated histones H3, H4, and H3K56, as well as methylated histones H3K9 and H3K27 were assessed by Western blotting. A significant decrease in global DNA methylation of maternal bone marrow was observed following benzene exposure; however no effect on global DNA methylation was detected in fetal livers. Additionally, no effect of benzene exposure was observed on p15 promoter methylation or any measured histone modifications in both maternal bone marrow and fetal livers. These results suggest that the methodology used in the present study did not reveal alterations in DNA methylation and histone modifications following in utero exposure to benzene; however further experimentation investigating these modifications at the whole genome/epigenome level, as well as at later stages of benzene-induced carcinogenesis, are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Comparison of hematological alterations and markers of B-cell activation in workers exposed to benzene, formaldehyde and trichloroethylene.

    PubMed

    Bassig, Bryan A; Zhang, Luoping; Vermeulen, Roel; Tang, Xiaojiang; Li, Guilan; Hu, Wei; Guo, Weihong; Purdue, Mark P; Yin, Songnian; Rappaport, Stephen M; Shen, Min; Ji, Zhiying; Qiu, Chuangyi; Ge, Yichen; Hosgood, H Dean; Reiss, Boris; Wu, Banghua; Xie, Yuxuan; Li, Laiyu; Yue, Fei; Freeman, Laura E Beane; Blair, Aaron; Hayes, Richard B; Huang, Hanlin; Smith, Martyn T; Rothman, Nathaniel; Lan, Qing

    2016-07-01

    Benzene, formaldehyde (FA) and trichloroethylene (TCE) are ubiquitous chemicals in workplaces and the general environment. Benzene is an established myeloid leukemogen and probable lymphomagen. FA is classified as a myeloid leukemogen but has not been associated with non-Hodgkin lymphoma (NHL), whereas TCE has been associated with NHL but not myeloid leukemia. Epidemiologic associations between FA and myeloid leukemia, and between benzene, TCE and NHL are, however, still debated. Previously, we showed that these chemicals are associated with hematotoxicity in cross-sectional studies of factory workers in China, which included extensive personal monitoring and biological sample collection. Here, we compare and contrast patterns of hematotoxicity, monosomy 7 in myeloid progenitor cells (MPCs), and B-cell activation biomarkers across these studies to further evaluate possible mechanisms of action and consistency of effects with observed hematologic cancer risks. Workers exposed to benzene or FA, but not TCE, showed declines in cell types derived from MPCs, including granulocytes and platelets. Alterations in lymphoid cell types, including B cells and CD4+ T cells, and B-cell activation markers were apparent in workers exposed to benzene or TCE. Given that alterations in myeloid and lymphoid cell types are associated with hematological malignancies, our data provide biologic insight into the epidemiological evidence linking benzene and FA exposure with myeloid leukemia risk, and TCE and benzene exposure with NHL risk. Published by Oxford University Press 2016.

  6. Outdoor and indoor benzene evaluation by GC-FID and GC-MS/MS.

    PubMed

    Sousa, José A; Domingues, Valentina F; Rosas, Mónica S; Ribeiro, Susana O; Alvim-Ferraz, Conceiçao M; Delerue-Matos, Cristina F

    2011-01-01

    The evaluation of benzene in different environments such as indoor (with and without tobacco smoke), a city area, countryside, gas stations and near exhaust pipes from cars running on different types of fuels was performed. The samples were analyzed using gas chromatography (GC) with flame ionization detection (FID) and tandem mass spectrometric detection (MS/MS) (to confirm the identification of benzene in the air samples). Operating conditions for the GC-MS analysis were optimized as well as the sampling and sample preparation. The results obtained in this work indicate that i) the type of fuel directly influences the benzene concentration in the air. Gasoline with additives provided the highest amount of benzene followed by unleaded gasoline and diesel; ii) the benzene concentration in the gas station was always higher than the advisable limit established by law (5 μg m⁻³) and during the unloading of gasoline the achieved concentration was 8371 μg m⁻³; iii) the data from the countryside (Taliscas) and the urban city (Matosinhos) were below 5 μg m⁻³ except 5 days after a fire on a petroleum refinery plant located near the city; iv) it was proven that in coffee shops where smoking is allowed the benzene concentration is higher (6 μg m⁻³) than in coffee shops where this is forbidden (4 μg m⁻³). This method may also be helpful for environmental analytical chemists who use GC-MS/MS for the confirmation or/and quantification of benzene.

  7. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor.

    PubMed

    Karimi, Ali; Golbabaei, Farideh; Neghab, Masoud; Pourmand, Mohammad Reza; Nikpey, Ahmad; Mohammad, Kazem; Mehrnia, Momammad Reza

    2013-01-15

    The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil) has been emphasized, so at the first stage the removal efficiency (RE) and elimination capacity (EC) of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs) are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  8. 40 CFR 61.275 - Periodic report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...

  9. 46 CFR 197.570 - Recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... GENERAL PROVISIONS Benzene § 197.570 Recordkeeping. (a) Record of personal exposure monitoring. (1) The...; (iii) A list of medical complaints, if any, by the employee related to exposure to benzene; (iv) A copy... copy of the employee's medical and work history related to exposure to benzene or other hematologic...

  10. 40 CFR 61.275 - Periodic report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...

  11. 40 CFR 61.353 - Alternative means of emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Benzene Waste Operations § 61.353 Alternative means of emission limitation. (a) If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in benzene emissions at least equivalent to the reduction in benzene emissions from the source achieved by the...

  12. 40 CFR 61.342 - Standards: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Waste... benzene quantity from facility waste is less than 10 megagrams per year (Mg/yr) (11 ton/yr) shall be exempt from the requirements of paragraphs (b) and (c) of this section. The total annual benzene quantity...

  13. 40 CFR 61.272 - Compliance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.272 Compliance provisions. (a) For each vessel complying with § 61... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal...

  14. 46 CFR 197.570 - Recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GENERAL PROVISIONS Benzene § 197.570 Recordkeeping. (a) Record of personal exposure monitoring. (1) The...; (iii) A list of medical complaints, if any, by the employee related to exposure to benzene; (iv) A copy... copy of the employee's medical and work history related to exposure to benzene or other hematologic...

  15. 46 CFR 197.570 - Recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... GENERAL PROVISIONS Benzene § 197.570 Recordkeeping. (a) Record of personal exposure monitoring. (1) The...; (iii) A list of medical complaints, if any, by the employee related to exposure to benzene; (iv) A copy... copy of the employee's medical and work history related to exposure to benzene or other hematologic...

  16. 46 CFR 197.570 - Recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GENERAL PROVISIONS Benzene § 197.570 Recordkeeping. (a) Record of personal exposure monitoring. (1) The...; (iii) A list of medical complaints, if any, by the employee related to exposure to benzene; (iv) A copy... copy of the employee's medical and work history related to exposure to benzene or other hematologic...

  17. 40 CFR 61.272 - Compliance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.272 Compliance provisions. (a) For each vessel complying with § 61... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal...

  18. 40 CFR 61.342 - Standards: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Waste... benzene quantity from facility waste is less than 10 megagrams per year (Mg/yr) (11 ton/yr) shall be exempt from the requirements of paragraphs (b) and (c) of this section. The total annual benzene quantity...

  19. 40 CFR 61.272 - Compliance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.272 Compliance provisions. (a) For each vessel complying with § 61... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal...

  20. 40 CFR 61.342 - Standards: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Waste... benzene quantity from facility waste is less than 10 megagrams per year (Mg/yr) (11 ton/yr) shall be exempt from the requirements of paragraphs (b) and (c) of this section. The total annual benzene quantity...

  1. 46 CFR 197.570 - Recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL PROVISIONS Benzene § 197.570 Recordkeeping. (a) Record of personal exposure monitoring. (1) The...; (iii) A list of medical complaints, if any, by the employee related to exposure to benzene; (iv) A copy... copy of the employee's medical and work history related to exposure to benzene or other hematologic...

  2. 40 CFR 61.275 - Periodic report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...

  3. 40 CFR 61.272 - Compliance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.272 Compliance provisions. (a) For each vessel complying with § 61... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal...

  4. 40 CFR 61.275 - Periodic report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...

  5. Hydrogeologic characterization and assessment of bioremediation of chlorinated benzenes and benzene in wetland areas, Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2009-12

    USGS Publications Warehouse

    Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Emily Majcher,; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.

    2015-01-01

    Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and desorption from the sediments.When highly reducing, methanogenic, or sulfate-reducing conditions existed in the wetland groundwater, molar composition of the volatile organic compounds (VOCs) showed that chlorobenzene and benzene were predominant, indicating biodegradation of the chlorinated benzenes through reductive dechlorination pathways. Temporal changes in redox conditions between 2009 and 2011–12 have shifted the locations in the wetland study area where reductive dechlorination is evident. Microbial community analyses of sediment showed relatively high cell numbers and diversity of populations (Dehalococcoides, Dehalobacter, Desulfitobacterium, and Geobacter) that are known to contain species capable of reductive dechlorination, confirming groundwater geochemistry evidence of the occurrence of reductive dechlorination. Natural attenuation was not sufficient, however, to reduce total VOC concentrations along upward groundwater flowpaths in the wetland sediments, most likely due to the additional source of contaminants in the upper sediments. In situ microcosms that were unamended except for the addition of 13C-labeled contaminants in some treatments, confirmed that the native microbial community was able to biodegrade the higher chlorinated benzenes through reductive dechlorination and that 1,2-dichlorobenzene, chlorobenzene, and benzene could be degraded to carbon dioxide through oxidation pathways. Microcosms that were bioaugmented with the anaerobic dechlorinating consortium WBC-2 and deployed in the wetland sediments showed reductive dechlorination of tri-, di-, and monochlorobenzene, and 13C-chlorobenzene treatments showed complete degradation of chlorobenzene to carbon dioxide under anaerobic conditions.Experiments with a continuous flow, fixed-film bioreactor seeded with native microorganisms in groundwater from the wetland area showed both aerobic and anaerobic biodegradation of dichlorobenzenes, monochlorobenzene, and benzene, although monochlorobenzene and benzene degradation rates decreased under anaerobic conditions compared to aerobic conditions. In two bioreactors with established biofilms of WBC-2, percent removals of all chlorinated benzene compounds (medians of 86 to 94 percent) under anaerobic conditions were as high as those observed for the bioreactors seeded only with native microorganisms from the site groundwater, and benzene removal was greater in the WBC-2 bioaugmented bioreactors. The high percent removals in the WBC-2 bioreactors without the need for an acclimation period indicates that the same dechlorinators are involved in the chlorinated benzene degradation as those for the chlorinated ethanes and ethenes that the culture was developed to degrade. The ability of the WBC-2 culture to completely reduce the chlorinated benzenes and benzene, even in the presence of high sulfate and sulfide concentrations, is unique for known dechlorinating cultures. The availability of the established culture WBC-2, as well as the ability of the native wetland microbial community to degrade the site contaminants under anaerobic and aerobic conditions, provides flexibility in considering bioremediation options for the wetland areas at SCD.

  6. 46 CFR Appendix C to Subpart C to... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... produce primary irritation due to repeated or prolonged contact with the skin. High concentrations are... Direct skin contact with benzene may cause erythema. Repeated or prolonged contact may result in drying, scaling dermatitis or development of secondary skin infections. In addition, benzene is absorbed through...

  7. ATMOSPHERIC PHOTOCHEMICAL OXIDATION OF BENZENE: BENZENE + OH AND THE BENZENE - OH ADDUCT (HYDROXYL-2,4-CYCLOHEXADIENYL) + O2. (R824970)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  9. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  10. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  11. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  12. 40 CFR 80.1354 - What are the reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for the gasoline benzene program? 80.1354 Section 80.1354 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... gasoline benzene program? (a) Beginning with earliest applicable date specified in § 80.1347(a)(2), any...

  13. 40 CFR 80.1352 - What are the pre-compliance reporting requirements for the gasoline benzene program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Benzene concentration. An estimate of the average gasoline benzene concentration corresponding to the time... engineering and permitting, Procurement and Construction, and Commissioning and startup. (7) Basic information regarding the selected technology pathway for compliance (e.g., precursor re-routing or other technologies...

  14. 46 CFR 151.50-60 - Benzene.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of a...

  15. 40 CFR 80.1350 - What records must be kept?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Recordkeeping and Reporting Requirements... include the following information, as applicable: (i) Its compliance benzene value per § 80.1240, and the calculations used to obtain that value. (ii) Its benzene baseline value, per § 80.1280, if the refinery or...

  16. 46 CFR 151.50-60 - Benzene.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of a...

  17. 40 CFR 80.1350 - What records must be kept?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Recordkeeping and Reporting Requirements... include the following information, as applicable: (i) Its compliance benzene value per § 80.1240, and the calculations used to obtain that value. (ii) Its benzene baseline value, per § 80.1280, if the refinery or...

  18. 46 CFR 151.50-60 - Benzene.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of a...

  19. 40 CFR 61.274 - Initial report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.274 Initial report. (a) The owner or operator of each storage vessel to which... filled) with benzene. [54 FR 38077, Sept. 14, 1989, as amended at 65 FR 78284, Dec. 14, 2000] ...

  20. 46 CFR 197.540 - Determination of personal exposure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.540 Determination of personal exposure. (a) General. (1... which involves the handling of or potential exposure to benzene are monitored. The monitoring must be... operation involving benzene. Monitoring one vessel of a class is sufficient for all vessels of that class...

Top