Martins, Rodrigo Molina; Siqueira, Silvia; Fonseca, Maria José Vieira; Freitas, Luis Alexandre Pedro
2014-01-01
Solid-lipid microparticles loaded with high amounts of the sunscreen UV filter benzophenone-3 were prepared by spray congealing with the objective of decreasing its skin penetration and evaluate whether the sunscreen's photoprotection were impaired by the microencapsulation process. The microparticles were produced using the natural lipids carnauba wax or bees wax and three different concentrations of benzophenone-3 (30, 50 and 70%) using spray congealing technique. The microparticles presented properties suitable for topical application, such as spherical morphology, high encapsulation efficiency (95.53-102.2%), average particle sizes between 28.5 and 60.0 µm with polydispersivities from 1.2 to 2.5. In studies of in vitro skin penetration and preliminary stability, formulations of gel cream containing carnauba wax solid lipid microparticles and 70% benzophenone-3 when compared to the formulation added of bees wax solid-lipid microparticles containing 70% benzophenone-3, was stable considering the several parameters evaluated and were able to decrease the penetration of the UV filter into pig skin. Moreover, the formulations containing solid lipid microparticles with 70% benzophenone-3 increased the photoprotective capacity of benzophenone-3 under UV irradiation. The results show that spray-congealed microparticles are interesting solid forms to decrease the penetration solar filters in the skin without compromising their photoprotection.
Lacerda, S P; Cerize, N N P; Ré, M I
2011-08-01
Nanostructured lipid carriers (NLCs) are potential active delivery systems based on mixtures of solid lipids and liquid oil. In this paper, aqueous dispersions of NLCs were prepared by a hot high-pressure homogenization technique using carnauba wax as the solid lipid and isodecyl oleate as the liquid oil. The preparation and stability parameters of benzophenone-3-loaded NLCs have been investigated concerning particle size, zeta potential and loading capacity to encapsulate benzophenone-3, a molecular sunscreen. The current investigation illustrates the effect of the composition of the lipid mixture on the entrapment efficiency, in vitro release and stability of benzophenone-3-loaded in these NLCs. A loading capacity of approximately 5% of benzophenone-3 (m(BZ-3) /m(lipids) ) was characteristic of these systems. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Technical Reports Server (NTRS)
Glasgow, D. G.
1976-01-01
The effects of novel aromatic diamine structures on the adhesive properties of epoxy and polyurethane adhesives were studied. Aromatic diamines based on benzophenone and diphenyl-methane isomers were evaluated as curing agents for epoxy resins and benzophenone and diphenyl-methane based diamine isomers were evaluated as curing agents for polyurethane adhesives. Polyurethane adhesives were prepared based on m, m prime-diisocyanato-diphenyl-methane and m, m prime-diisocyanato-benzophenone. The m, m prime-diisocayanato-diphenyl-methane based adhesive had properties comparable to state-of-the-art adhesives. The m, m prime-diisocyanato-benzophenone based adhesive was extremely reactive.
Application of solar photo-Fenton for benzophenone-type UV filters removal.
Zúñiga-Benítez, Henry; Peñuela, Gustavo A
2018-07-01
Benzophenones (BPs) family is one of the most frequently used groups of UV-filters. However, it has been reported by different authors that this kind of chemical compounds could be associated with some endocrine disrupting activity, genotoxicity and reproductive toxicity. In addition, different studies have evidenced the presence of BPs in several environmental matrices, indicating that conventional technologies of water treatment are not able to remove them, which generates the necessity of evaluating new alternatives of remediation. In this way, the main objective of this paper was to consider the potential removal of the benzophenone-type compounds, Benzophenone-1 and Benzophenone-2 in aqueous solutions using photo-Fenton under simulated sunlight radiation. Effects of different operational parameters, including H 2 O 2 and Fe 2+ initial concentrations, on pollutants elimination were assessed, and conditions that allow to get higher degradation rates were established. In general, results indicated that evaluated photo-catalytic system is able to remove completely the studied benzophenones, and to increase the samples biodegradability after a notable reduction of the organic carbon present in the solutions. Additionally, the identification of some of the reaction byproducts showed that hydroxylation of the substrates molecules is one of the main stages that conduct to its elimination under the evaluated experimental conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Determination of personal care products -benzophenones and parabens- in human menstrual blood.
Jiménez-Díaz, I; Iribarne-Durán, L M; Ocón, O; Salamanca, E; Fernández, M F; Olea, N; Barranco, E
2016-11-01
Benzophenones and parabens are synthetic chemicals used in many personal care products, foods and pharmaceuticals. Benzophenones are used to protect the skin and materials from the adverse effects of UV-radiation, and parabens are used as preservatives. Despite their widespread occurrence and proven endocrine disrupting activity, relatively little is known about human exposure to these compounds. In the present work, an analytical method based on sample treatment using dispersive liquid-liquid microextraction (DLLME) for the extraction of six benzophenones (benzophenone-1, -2, -3, -6, -8 and 4-hydroxybenzophenone) and four parabens (methyl-, ethyl-, propyl- and butyl- paraben) from human menstrual blood samples, followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, is proposed and validated. The method was validated using matrix-matched standard calibration followed by a recovery assay with spiked samples. The limits of detection ranged from 0.1 to 0.3ngmL -1 , with recoveries of 93.8% to 108.9%, and precision (evaluated as relative standard deviation) lower than 14% for all selected compounds. This method was successfully applied for the determination of the target compounds in 25 samples of human menstrual blood. Methylparaben and benzophenone-3 were the most frequently detected compounds (96%). Copyright © 2016 Elsevier B.V. All rights reserved.
Kotnik, Kristina; Kosjek, Tina; Žegura, Bojana; Filipič, Metka; Heath, Ester
2016-03-01
This study investigates the environmental fate of eight benzophenone derivatives (the pharmaceutical ketoprofen, its phototransformation products 3-ethylbenzophenone and 3-acetylbenzophenone, and five benzophenone-type UV filters) by evaluating their photolytic behaviour. In addition, the genotoxicity of these compounds and the produced photodegradation mixtures was studied. Laboratory-scale irradiation experiments using a medium pressure UV lamp revealed that photodegradation of benzophenones follows pseudo-first-order kinetics. Ketoprofen was the most photolabile (t1/2 = 0.8 min), while UV filters were more resistant to UV light with t1/2 between 17 and 99 h. The compounds were also exposed to irradiation by natural sunlight and showed similar photostability as predicted under laboratory conditions. Solar photodegradation experiments were performed in distilled water, lake and seawater, and revealed that photosensitizers present in natural waters significantly affect the photolytic behaviour of the investigated compounds. In this case, the presence of lake water resulted in accelerated photodecomposition, while seawater showed different effects on photodegradation, depending on a compound. Further, it was shown that the transformation products of ketoprofen 3-ethylbenzophenone and 3-acetylbenzophenone were formed under environmental conditions when ketoprofen was exposed to natural sunlight. Genotoxicity testing of parent benzophenone compounds using the SOS/umuC assay revealed that UV filters exhibited weak genotoxic activity in the presence of a metabolic activation system, however the concentrations tested were much higher than found in the environment (≥125 μg mL(-1)). After irradiation of benzophenones, the produced photodegradation mixtures showed that, with the exception of benzophenone that exhibited weak genotoxic activity, all the other compounds tested did not elicit any activity when exposed to UV light. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of anatomical site and topical formulation on skin penetration of sunscreens
Benson, Heather AE; Sarveiya, Vikram; Risk, Stacey; Roberts, Michael S
2005-01-01
Sunscreen products are widely used to protect the skin from sun-related damage. Previous studies have shown that some sunscreen chemicals are absorbed across the skin to the systemic circulation. The current study shows that absorption into the skin of sunscreen chemicals applied to the face is up to four times greater than that of the same product applied to the back. This has implications for the way sunscreen products are formulated and may allow the use of less potent products on the face compared with the rest of the body. The effect of formulation vehicles on the release and skin penetration of the common sunscreen agent benzophenone-3 (common name oxybenzone) was also assessed. Penetration of benzophenone-3 across excised human epidermis and high-density polyethylene (HDPE) membrane was measured using in vitro Franz-type diffusion cells. Penetration and epidermal retention was measured following application of infinite and finite (epidermis only) doses of benzophenone-3 in five vehicles: liquid paraffin, coconut oil, 50:50 ethanol:coconut oil, aqueous cream BP, and oily cream BP. Highest benzophenone-3 skin retention was observed for the ethanol:coconut oil combination. Maximal and minimal benzophenone-3 fluxes were observed from liquid paraffin and coconut oil, respectively. The alcohol-based vehicle exhibited low benzophenone-3 release from the vehicle but high skin penetration and retention. PMID:18360561
NASA Astrophysics Data System (ADS)
West, Channing; Sedo, Galen; van Wijngaarden, Jennifer
2017-05-01
Microwave spectra of 9-fluorenone and benzophenone have been observed using a broadband chirped-pulse Fourier Transform Microwave (cp-FTMW) Spectrometer. An analysis of the microwave spectra allowed for the assignment of 178 b-type rotational transitions for 9-fluorenone in the 8.0-13.0 GHz region, the assignment of 166 b-type transitions for benzophenone in the 8.0-14.0 GHz region, and effectively quadrupled the total number of pure rotational transitions observed for these molecules. This new microwave data and the previously published millimeter wave data of Maris et al. have been analyzed together in a global fit, where the resulting rotational constants accurately reproduce the spectra over the entire 8-80 GHz region for both molecules. In addition, the resulting constants have been found to be consistent with the expected planar C2v structure for 9-fluorenone and the paddle-wheel like C2 structure of benzophenone. The rotational constants of the combined global fit have allowed for a more precise determination of the inertial defects (Δ) and second moments of inertia (Pcc) for 9-fluoreneone and benzophenone. Specific focus has been paid to the second moment of benzophenone, which when used in conjunction with theory strongly suggests an ∼32.9° torsional angle out of the ab-plane for the paddle-wheel structure of the gas-phase molecule.
Lycopene control of benzophenone-sensitized lipid peroxidation
NASA Astrophysics Data System (ADS)
Cvetković, Dragan; Marković, Dejan
2012-05-01
Lycopene antioxidant activity in the presence of two different mixtures of phospholipids in hexane solution, under continuous regime of UV-irradiation from three different ranges (UV-A, UV-B, and UV-C) has been evaluated in this work. Lycopene expected role was to control lipid peroxidation, by scavenging free radicals generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone. This work shows that lycopene undergoes to UV-induced destruction (bleaching), highly dependent on the incident photons energy input, more expressed in the presence than in the absence of benzophenone. The further increase ("excess") of its bleaching is undoubtedly related to the further increase of its antioxidant activity in the presence of benzophenone, having the same cause: increase of (phospholipids peroxidation) chain-breaking activities.
Shimoda, Kei; Hamada, Hiroki
2009-01-01
Cultured cells of Pavlova sp. glycosylated bisphenol A to its mono-glucoside, 2-(4-β-D-glucopyranosyloxyphenyl)-2-hydroxyphenylpropane (9%). Use of immobilized Pavlova cells in sodium alginate gel improved yield of the product (17%). On the other hand, Pavlova cell cultures converted benzophenone into diphenylmethanol (49%) and diphenylmethyl β-D-glucopyranoside (6%). Incubation of benzophenone with immobilized Pavlova cells gave products in higher yields; the yields of diphenylmethanol and diphenylmethyl β-D-glucopyranoside were 85 and 15%, respectively. PMID:20508758
2011-03-29
Ethanol Benzophenone Benzophenone Stearyl alcohol Stearyl alcohol Fragrances Fragrances Shampoo Lipstick Benzaldehyde Glycerin Methylene Chloride...MatchInconclusiveMatchConclusion NO YES Unknown Coastal Background Sediments: National Survey 0 10 cm depth composites A- Analytical Methods (EPA SW
Schmitt, Mark R; Carzaniga, Raffaella; Cotter, H Van T; O'Connell, Richard; Hollomon, Derek
2006-05-01
The benzophenones are a new class of agricultural fungicides that demonstrate protectant, curative and eradicative/antisporulant activity against powdery mildews. The chemistry is represented in the marketplace by the fungicide metrafenone, recently introduced by BASF and discussed in the following paper. The benzophenones show no evidence of acting by previously identified biochemical mechanisms, nor do they show cross-resistance with existing fungicides. The value of microscopy in elucidating fungicide mode of action is demonstrated through identification of the effects of an early benzophenone, eBZO, on mildew development. eBZO caused profound alterations in the morphology of powdery mildews of both monocotyledons and dicotyledons, affecting multiple stages of fungal development, including spore germination, appressorial formation, penetration, surface hyphal morphology and sporogenesis. Identification of analogous effects of eBZO on sporulation in the model organism Aspergillus nidulans (Eidam) Winter provides a unique opportunity to elucidate important morphogenetic regulatory sites in the economically important obligate pathogens, the powdery mildews. Benzophenones provide a further example of the benefits of whole-organism testing in the search for novel fungicide modes of action. Copyright 2006 Society of Chemical Industry.
Explanation to the difference in the ketyl radical formation yields of benzophenone and benzil
NASA Astrophysics Data System (ADS)
Okutsu, Tetsuo; Muramatsu, Hidenori; Horiuchi, Hiroaki; Hiratsuka, Hiroshi
2005-03-01
p Ka values of benzophenone ketyl and benzil ketyl radicals were determined as 9.4 and 12.4, respectively. We can successfully explain the difference in quantum yield of the proton transfer between benzophenone ketyl and benzil ketyl radicals by these values. Reaction enthalpies of the proton transfer are the same (-80 kJ mol -1) for these radicals, and the difference in p Ka value can be explained by that reaction entropies. Reaction entropies between two radicals are discussed by the possible structure of the radicals.
40 CFR 721.1747 - Substituted benzophenone (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
...). 721.1747 Section 721.1747 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1747 Substituted benzophenone (generic). (a) Chemical substance and significant new uses...
Lyles, James T; Negrin, Adam; Khan, Shabana I; He, Kan; Kennelly, Edward J
2014-06-01
Species of Garcinia have been used to combat malaria in traditional African and Asian medicines, including Ayurveda. In the current study, we have identified antiplasmodial benzophenone and xanthone compounds from edible Garcinia species by testing for in vitro inhibitory activity against Plasmodium falciparum. Whole fruits of Garcinia xanthochymus, G. mangostana, G. spicata, and G. livingstonei were extracted and tested for antiplasmodial activity. Garcinia xanthochymus was subjected to bioactivity-guided fractionation to identify active partitions. Purified benzophenones (1-9) and xanthones (10-18) were then screened in the plasmodial lactate dehydrogenase assay and tested for cytotoxicity against mammalian (Vero) cells. The benzophenones guttiferone E (4), isoxanthochymol (5), and guttiferone H (6), isolated from G. xanthochymus, and the xanthones α-mangostin (15), β-mangostin (16), and 3-isomangostin (17), known from G. mangostana, showed antiplasmodial activity with IC50 values in the range of 4.71-11.40 µM. Artemisinin and chloroquine were used as positive controls and exhibited IC50 values in the range of 0.01-0.24 µM. The identification of antiplasmodial benzophenone and xanthone compounds from G. xanthochymus and G. mangostana provides evidence for the antiplasmodial activity of Garcinia species and warrants further investigation of these fruits as dietary sources of chemopreventive compounds. Georg Thieme Verlag KG Stuttgart · New York.
Ultraviolet absorbing copolymers
Gupta, Amitava; Yavrouian, Andre H.
1982-01-01
Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.
Asimakopoulos, Alexandros G; Elangovan, Madhavan; Kannan, Kurunthachalam
2016-12-20
Parabens (p-hydroxybenzoic acid esters), bisphenols, benzophenone-type UV filters, triclosan, and triclocarban are used in a variety of consumer products, including baby teethers. Nevertheless, the exposure of infants to these chemicals through the use of teethers is still unknown. In this study, 59 teethers, encompassing three types, namely solid plastic, gel-filled, and water-filled (most labeled "bisphenol A-free"), were collected from the U.S. market and analyzed for 26 potential endocrine-disrupting chemicals (EDCs) from intact surfaces through migration/leaching tests performed with Milli-Q water and methanol. The total amount of the sum of six parent parabens (Σ 6 Parabens) leached from teethers ranged from 2.0 to 1990 ng, whereas that of their four transformation products (Σ 4 Parabens) ranged from 0.47 to 839 ng. The total amount of the sum of nine bisphenols (Σ 9 bisphenols) and 5 benzophenones (Σ 5 benzophenones) leached from teethers ranged from 1.93 to 213 ng and 0.59 to 297 ng, respectively. Triclosan and triclocarban were found in the extracts of teethers at approximately 10-fold less amounts than were bisphenols and benzophenones. Based on the amount leached into Milli-Q water, daily intake of these chemicals was estimated from the use of teethers by infants at 12 months of age. This is the first study to document the occurrence and migration of a wide range EDCs from intact surfaces of baby teethers.
Nickel-Catalyzed Molybdenum-Promoted Carbonylative Synthesis of Benzophenones.
Peng, Jin-Bao; Wu, Fu-Peng; Li, Da; Qi, Xinxin; Ying, Jun; Wu, Xiao-Feng
2018-06-01
A nickel-catalyzed molybdenum-promoted carbonylative coupling reaction for the synthesis of benzophenones from aryl iodides has been developed. Various substituted diaryl ketones were synthesized in moderate to excellent yields under CO-gas-free conditions. A synergetic effect of both nickel and molybdenum has been observed, which is also responsible for the success of this transformation.
Hayashi, Yoshiki; Takeno, Haruka; Chinen, Takumi; Muguruma, Kyohei; Okuyama, Kohei; Taguchi, Akihiro; Takayama, Kentaro; Yakushiji, Fumika; Miura, Masahiko; Usui, Takeo; Hayashi, Yoshio
2014-10-09
A new benzophenone-diketopiperazine-type potent antimicrotubule agent was developed by modifying the structure of the clinical candidate plinabulin (1). Although the right-hand imidazole ring with a branched alkyl chain at the 5-position in 1 was critical for the potency of the antimicrotubule activity, we successfully substituted this moiety with a simpler 2-pyridyl structure by converting the left-hand ring from a phenyl to a benzophenone structure without decreasing the potency. The resultant compound 6b (KPU-300) exhibited a potent cytotoxicity, with an IC50 value of 7.0 nM against HT-29 cells, by strongly binding to tubulin (K d = 1.3 μM) and inducing microtubule depolymerization.
Zhang, Yi; Han, Lifeng; Ge, Dandan; Liu, Xuefeng; Liu, Erwei; Wu, Chunhua; Gao, Xiumei; Wang, Tao
2013-02-27
Seventy percent ethanol-water extract from the leaves of Mangifera indica L. (Anacardiaceae) was found to show an inhibitory effect on triglyceride (TG) accumulation in 3T3-L1 cells. From the active fraction, six new benzophenone C-glucosides, foliamangiferosides A(3) (1), A(4) (2), C(4) (3), C(5) (4), C(6) (5), and C(7) (6) together with 11 known benzophenone C-glucosides (7-17) were obtained. In this paper, isolation, structure elucidation (1-6), and MS fragment cleavage pathways of all 17 isolates were studied. 1-6 showed inhibitory effects on TG and free fatty acid accumulation in 3T3-L1 cells at 10 μM.
An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone.
Mozo Mulero, Cristina; Sáez, Alfonso; Iniesta, Jesús; Montiel, Vicente
2018-01-01
The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (L Pd ) of 0.2 and 0.02 mg cm -2 . The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H 2 SO 4 . Current densities of 10, 15 and 20 mA cm -2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (X R ) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity.
An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone
Mozo Mulero, Cristina; Iniesta, Jesús; Montiel, Vicente
2018-01-01
The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (LPd) of 0.2 and 0.02 mg cm−2. The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H2SO4. Current densities of 10, 15 and 20 mA cm−2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (XR) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity. PMID:29623115
Molecular architectures of benzoic acid-specific type III polyketide synthases
Stewart, Charles; Woods, Kate; Macias, Greg; Allan, Andrew C.; Noel, Joseph P.
2017-01-01
Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure–function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants. PMID:29199980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.S.; Freilich, S.C.; Schaeffer, C.G.
Studies were initiated utilizing picosecond (ps) absorption spectroscopy, to directly monitor the dynamics of electron transfer from 1,4-diazabicyclo(2.2.2)octane (Dabco) to the excited states of benzophenone and fluorenone. These two systems were chosen because of their contrasting photochemistry. The quantum yield for photoreduction of benzophenone in polar solvents is generally greater than 0.1, while that of fluorenone is zero. In polar solvents, the proposed mechanism dictates that an electron is transferred to the excited singlet state fluorenone, which then back-transfers the electron, regenerating ground-state fluorenone and amine. Photolysis of benzophenone in the presence of an amine transfers an electron to anmore » excited triplet state, forming an ion pair that is stable relative to diffusional separation. The results of this study verify this proposal.« less
Benzophenone as a photoprobe of polymer films
NASA Astrophysics Data System (ADS)
Levin, Peter P.; Efremkin, Alexei F.; Khudyakov, Igor V.
2017-09-01
The review article is devoted to kinetics of fast reactions following photoexcitation of benzophenone in polymer films. We observed three processes by ns laser flash photolysis in elastomers: (i) decay of a triple state of benzophenone with hydrogen abstraction from polymer matrix, (ii) formation and decay of geminate radical pairs, (iii) cross-termination of the formed radicals in the polymer bulk. Application of external magnetic field (MF) of B = 0.2 T essentially affects recombination of geminate (G-) and a bimolecular recombination of free radicals, which escaped polymer cage (F-pairs). Theoretical calculation of MF effects on G- and F-pairs is in agreement with corresponding experimental data. Elongation of elastomer leads to an unexpected observation: recombination in the bulk becomes slower. An explanation of this phenomenon based on elastomer free volume Vf approach was suggested.
Almeida, C; Stępkowska, A; Alegre, A; Nogueira, J M F
2013-10-11
Bar adsorptive micro-extraction (BAμE), using selective sorbent phases, followed by liquid desorption in combination with high performance liquid chromatography-diode array detection (BAμE-LD/HPLC-DAD), is proposed for the determination of trace levels of four benzophenone-type UV filters (benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2,4-hydroxybenzophenone and 4-hydroxybenzophenone) in real matrices. By comparing three polymers (P1, P2 and P3) and five activated carbons (AC1, AC2, AC3, AC4 and AC5) phases, P2 (a modified pyrrolidone polymer) and AC4 coatings showed much higher selectivity and capacity through BAμE, where the former offers multiple mechanisms of interaction and faster equilibrium kinetics. Assays performed on 25mL of ultra-pure water samples spiked at the 8.0μg/L level, yielded recoveries ranging from 76.6±8.3% to 103.5±6.4% depending on the sorbent phase used (P2 or AC4), under optimized experimental conditions. The analytical performance showed convenient detection limits (0.3-0.5μg/L) and good linear dynamic ranges (1.0-24.0μg/L) with remarkable determination coefficients (r(2)>0.9969). Excellent repeatability was also achieved through intraday (RSD<13.0%) and interday (RSD<8.9%) experiments. By using the standard addition methodology, the application of the present analytical approach on sea water, wastewater, commercial cosmetic products and urine samples revealed good sensitivity, absence of matrix effects and the occurrence of levels of some benzophenones. The proposed methodology that uses nanostructured particles and operates under the floating sampling technology proved to be a sorption-based static micro-extraction alternative to monitor benzophenone-type UV filters in real matrices. Moreover, is easy to implement, reliable, sensitive, requiring low sample volume and the possibility to choose the most selective sorbent coating according to the target compounds involved. Copyright © 2013. Published by Elsevier B.V.
Exposure to UV filters during summer and winter in Danish kindergarten children.
Krause, Marianna; Andersson, Anna-Maria; Skakkebaek, Niels E; Frederiksen, Hanne
2017-02-01
Ultra violet (UV) filters with known or suspected endocrine disrupting properties are widely used in sunscreens and other personal care products, clothing, food packaging and many other consumer products. Danish kindergarten children have sunscreens applied daily during summer to prevent skin burns. To estimate the assumed contribution of sunscreens to the total exposure to UV filters, we measured the urinary excretion of UV filters during summer and winter in kindergarten children. Spot- and first morning urines were collected during a summer and a winter day in 2013. A total of 266 urine samples were collected from 55 children and were analysed for content of benzophenone (BP), benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), 5-chloro-2-hydroxybenzophenone (BP-7), 4-methyl-benzophenone (4-MBP), 4-hydroxybenzophenone (4-HBP), 3-(4-methylbenzylidene)-camphor (4-MBC), and 3-benzylidene camphor (3-BC) by LC-MS/MS. Of the analysed UV filters, the children excreted predominantly BP-1, BP-3 and 4-HBP. The urine levels were significantly higher in summer samples compared to winter samples, however exposure during winter was still evident. Furthermore, children with the highest concentrations of UV filters in summer urines also tended to be among those with the highest winter levels. Exposures to UV filters during summertime can partly be explained by the intended use of UV filters in sunscreens, which is considered to be beneficial for children during outdoor activities. However, exposure to UV filters all year round together with large inter-individual variation indicate that children's exposure to UV filters also comes from other consumer items, presumably highly influenced by the general lifestyle of an individual child: this is completely unintended, without benefit, and potentially harmful. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heffernan, A.L.; Baduel, C.; Toms, L.M.L.; Calafat, A.M.; Ye, X.; Hobson, P.; Broomhall, S.; Mueller, J.F.
2017-01-01
Parabens, benzophenone-3 and triclosan are common ingredients used as preservatives, ultraviolet radiation filters and antimicrobial agents, respectively. Human exposure occurs through consumption of processed food and use of cosmetics and consumer products. The aim of this study was to provide a preliminary characterisation of exposure to selected personal care product chemicals in the general Australian population. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n = 24 pools of 100). Concentrations of free and total (sum of free plus conjugated) species of methyl, ethyl, propyl and butyl paraben, benzophenone-3 and triclosan were quantified using isotope dilution tandem mass spectrometry; with geometric means 232, 33.5, 60.6, 4.32, 61.5 and 87.7 ng/mL, respectively. Age was inversely associated with paraben concentration, and females had concentrations approximately two times higher than males. Total paraben and benzophenone-3 concentrations are significantly higher than reported worldwide, and the average triclosan concentration was more than one order of magnitude higher than in many other populations. This study provides the first data on exposure of the general Australian population to a range of common personal care product chemical ingredients, which appears to be prevalent and warrants further investigation. PMID:26368661
A direct ab initio molecular dynamics (MD) study on the benzophenone-water 1 : 1 complex.
Tachikawa, Hiroto; Iyama, Tetsuji; Kato, Kohichi
2009-07-28
Direct ab initio molecular dynamics (MD) method has been applied to a benzophenone-water 1 : 1 complex Bp(H(2)O) and free benzophenone (Bp) to elucidate the effects of zero-point energy (ZPE) vibration and temperature on the absorption spectra of Bp(H(2)O). The n-pi transition of free-Bp (S(1) state) was blue-shifted by the interaction with a water molecule, whereas three pi-pi transitions (S(2), S(3) and S(4)) were red-shifted. The effects of the ZPE vibration and temperature of Bp(H(2)O) increased the intensity of the n-pi transition of Bp(H(2)O) and caused broadening of the pi-pi transitions. In case of the temperature effect, the intensity of n-pi transition increases with increasing temperature. The electronic states of Bp(H(2)O) were discussed on the basis of the theoretical results.
Kinetic study on UV-absorber photodegradation under different conditions
NASA Astrophysics Data System (ADS)
Bubev, Emil; Georgiev, Anton; Machkova, Maria
2016-09-01
The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV-vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.
A possible glycosidic benzophenone with full substitution on B-ring from Psidium guajava leaves.
Venditti, Alessandro; Ukwueze, Stanley E
2017-04-01
Bidimensional NMR analysis may be a useful tool to resolve the structure of chemical compounds also in mixture. This letter would demonstrate how these techniques could be applied e.g. to the reported case on identification of benzophenone glycoside from Psidium guajava. A tentative structure for the secondary component, not yet described, was possibly proposed on the basis of observation and critic review of available 1D and 2D NMR spectra.
Bargar, Timothy A.; Alvarez, David; Garrison, Virginia H.
2015-01-01
Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r2 = 0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.
Derivative spectrophotometric analysis of benzophenone (as an impurity) in phenytoin
2011-01-01
Three simple and rapid spectrophotometric methods were developed for detection and trace determination of benzophenone (the main impurity) in phenytoin bulk powder and pharmaceutical formulations. The first method, zero-crossing first derivative spectrophotometry, depends on measuring the first derivative trough values at 257.6 nm for benzophenone. The second method, zero-crossing third derivative spectrophotometry, depends on measuring the third derivative peak values at 263.2 nm. The third method, ratio first derivative spectrophotometry, depends on measuring the peak amplitudes of the first derivative of the ratio spectra (the spectra of benzophenone divided by the spectrum of 5.0 μg/mL phenytoin solution) at 272 nm. The calibration graphs were linear over the range of 1-10 μg/mL. The detection limits of the first and the third derivative methods were found to be 0.04 μg/mL and 0.11 μg/mL and the quantitation limits were 0.13 μg/mL and 0.34 μg/mL, respectively, while for the ratio derivative method, the detection limit was 0.06 μg/mL and the quantitation limit was 0.18 μg/mL. The proposed methods were applied successfully to the assay of the studied drug in phenytoin bulk powder and certain pharmaceutical preparations. The results were statistically compared to those obtained using a polarographic method and were found to be in good agreement. PMID:22152156
NASA Astrophysics Data System (ADS)
Brémard, C.; Buntinx, G.; Ginestet, G.
1997-06-01
Combined experimental spectroscopy (Raman and DRIFT), Monte Carlo simulations and geometry optimizations were used to investigate the location and conformation of benzophenone and benzil molecules incorporated into faujasitic Na 56FAU zeolite. The benzophenone and benzil molecules are located within the supercage, the CO fragment pointing towards the extraframework Na + cations. The geometry of the incorporated molecules is found to be slightly modified relative to the free molecule. At high coverage, the benzil molecules are associated in pairs in the supercage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blüthgen, Nancy; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel; Zucchi, Sara
Organic UV filters including benzophenone-3 (BP-3) are widely used to protect humans and materials from damage by UV irradiation. Despite the environmental occurrence of BP-3 in the aquatic environment, little is known about its effects and modes of action. In the present study we assess molecular and physiological effects of BP-3 in adult male zebrafish (Danio rerio) and in eleuthero-embryos by a targeted gene expression approach focusing on the sex hormone system. Fish and embryos are exposed for 14 days and 120 hours post fertilization, respectively, to 2.4–312 μg/L and 8.2–438 μg/L BP-3. Chemical analysis of water and fish demonstratesmore » that BP-3 is partly transformed to benzophenone-1 (BP-1) and both compounds are accumulated in adult fish. Biotransformation to BP-1 is absent in eleuthero-embryos. BP-3 exposure leads to similar alterations of gene expression in both adult fish and eleuthero-embryos. In the brain of adult males esr1, ar and cyp19b are down-regulated at 84 μg/L BP-3. There is no induction of vitellogenin expression by BP-3, both at the transcriptional and protein level. An overall down-regulation of the hsd3b, hsd17b3, hsd11b2 and cyp11b2 transcripts is observed in the testes, suggesting an antiandrogenic activity. No histological changes were observed in the testes after BP-3 treatment. The study leads to the conclusion that low concentrations of BP-3 exhibit similar multiple hormonal activities at the transcription level in two different life stages of zebrafish. Forthcoming studies should show whether this translates to additional physiological effects. Highlights: ► Activity of UV filter benzophenone-3 (BP-3) is assessed in zebrafish. ► BP-3 is partly metabolized to benzophenone-1 by adult fish but not embryos. ► Alterations of gene expression are similar in adult males and embryos. ► Gene expression alterations point to multiple hormonal activity of BP-3.« less
Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Ma, Qingjuan; Zhong, Jialiang; Liu, Yonghong; Sun, Tiemin; Wang, Jinhui; Huang, Xueshi
2017-03-13
Four new compounds, including two isocoumarins, pestaloisocoumarins A and B ( 1 , 2 ), one sesquiterpenoid degradation, isopolisin B ( 4 ), and one furan derivative, pestalotiol A ( 5 ), together with one known isocoumarin, gamahorin ( 3 ), and three chlorinated benzophenone derivatives, pestalachloride B ( 6 ), pestalachloride E ( 7 ) and a mixture of pestalalactone atropisomers ( 8a/8b ), were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge Phakellia fusca . These new chemical structures were established using NMR and MS spectroscopic data, as well as single-crystal X-ray crystallographic analysis and CD Cotton effects. All of the isolated compounds were evaluated for their antimicrobial and cytotoxic activities. Isocoumarins 1 - 3 , showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL and weak antifungal activities. Chlorinated benzophenone derivatives 6 - 8 exhibited antibacterial activities against S. aureus and B. subtilis with MIC values ranging from 3.0 to 50 μg/mL and cytotoxicities against four human cancer cell lines with IC 50 values of 6.8-87.8 μM.
Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth
2015-06-10
Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.
Terreaux, Christian; Wang, Qi; Ioset, Jean-Robert; Ndjoko, Karine; Grimminger, Wolf; Hostettmann, Kurt
2002-04-01
The hydroalcoholic extract of Tinnevelli senna is widely used as a laxative phytomedicine. In order to improve the knowledge of the chemical composition of this extract, LC/MS and LC/MS(n) studies were performed, allowing the on-line identification of most of the known constituents, i. e., flavonoids, anthraquinones and the typical dianthronic sennosides. However, the identity of four compounds could not be ascertained on-line under the given LC/MS conditions. These substances were isolated and their structures elucidated as kaempferol, the naphthalene derivative tinnevellin 8-glucoside and two new carboxylated benzophenone glucosides.
Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Ma, Qingjuan; Zhong, Jialiang; Liu, Yonghong; Sun, Tiemin; Wang, Jinhui; Huang, Xueshi
2017-01-01
Four new compounds, including two isocoumarins, pestaloisocoumarins A and B (1, 2), one sesquiterpenoid degradation, isopolisin B (4), and one furan derivative, pestalotiol A (5), together with one known isocoumarin, gamahorin (3), and three chlorinated benzophenone derivatives, pestalachloride B (6), pestalachloride E (7) and a mixture of pestalalactone atropisomers (8a/8b), were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge Phakellia fusca. These new chemical structures were established using NMR and MS spectroscopic data, as well as single-crystal X-ray crystallographic analysis and CD Cotton effects. All of the isolated compounds were evaluated for their antimicrobial and cytotoxic activities. Isocoumarins 1–3, showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL and weak antifungal activities. Chlorinated benzophenone derivatives 6–8 exhibited antibacterial activities against S. aureus and B. subtilis with MIC values ranging from 3.0 to 50 μg/mL and cytotoxicities against four human cancer cell lines with IC50 values of 6.8–87.8 μM. PMID:28335391
Bisphenols, Benzophenones, and Bisphenol A Diglycidyl Ethers in Textiles and Infant Clothing.
Xue, Jingchuan; Liu, Wenbin; Kannan, Kurunthachalam
2017-05-02
Little is known with regard to the occurrence of potentially toxic chemicals in textiles and clothes. In this study, 77 textiles and infant clothing pieces were analyzed for the determination of bisphenols including bisphenol A (BPA) and bisphenol S (BPS), benzophenones, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs). BPA and BPS occurred in 82% and 53% of the textile samples, respectively, and at mean concentrations of 366 and 15 ng/g, respectively. Benzophenone-3 (BP3) occurred in 70% of the samples at a mean concentration of 11.3 ng/g. Among 11 BADGEs and NOGEs analyzed, BFDGE was the predominant compound, with a mean concentration of 13.6 ng/g. Concentrations of target chemicals were assessed by fabric type, color, and uses. Socks contained the highest concentrations of BPA (mean: 1810 ng/g) with concentrations as high as 13 300 ng/g in a 97% polyester fabric marketed for infants. Calculated dermal exposure dose to BPA by infants via textiles was as high as 7280 pg/kg BW/d. This is the first study to report the occurrence of, and exposure to, BPA, BPS, BADGEs, and NOGEs in textiles and clothing.
Pardo, L C; Lunkenheimer, P; Loidl, A
2007-09-01
We report a thorough characterization of the glassy dynamics of benzophenone by broadband dielectric spectroscopy. We detect a well-pronounced beta relaxation peak developing into an excess wing with increasing temperature. A previous analysis of results from Optical-Kerr-effect measurements of this material within the mode-coupling theory revealed a high-frequency Cole-Cole peak. We address the question if this phenomenon also may explain the Johari-Goldstein beta relaxation, a so-far unexplained spectral feature inherent to glass-forming matter, mainly observed in dielectric spectra. Our results demonstrate that according to the present status of theory, both spectral features seem not to be directly related.
New benzophenone and quercetin galloyl glycosides from Psidium guajava L.
Matsuzaki, Keiichi; Ishii, Rie; Kobiyama, Kaori; Kitanaka, Susumu
2010-07-01
New benzophenone and flavonol galloyl glycosides were isolated from an 80% MeOH extract of Psidium guajava L. (Myrtaceae) together with five known quercetin glycosides. The structures of the novel glycosides were elucidated to be 2,4,6-trihydroxybenzophenone 4-O-(6''-O-galloyl)-beta-D: -glucopyranoside (1, guavinoside A), 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-beta-D: -glucopyranoside (2, guavinoside B), and quercetin 3-O-(5''-O-galloyl)-alpha-L: -arabinofuranoside (3, guavinoside C) by NMR, MS, UV, and IR spectroscopies. Isolated phenolic glycosides showed significant inhibitory activities against histamine release from rat peritoneal mast cells, and nitric oxide production from a murine macrophage-like cell line, RAW 264.7.
Cytotoxic garcimultiflorones K-Q, lavandulyl benzophenones from Garcinia multiflora branches.
Wang, Zhao-Quan; Li, Xing-Yu; Hu, Dong-Bao; Long, Chun-Lin
2018-08-01
Seven undescribed lavandulyl benzophenones garcimultiflorones K-Q, and fourteen known compounds were isolated from the CHCl 3 soluble fraction of 95% EtOH extract of Garcinia multiflora branches. Their structures and absolute configurations were determined by spectroscopic techniques including NMR spectroscopy, MS analysis, and ECD calculations. Seven isolated compounds expect for garcimultiflorone L and garcimultiflorone O exhibited cytotoxic activities in vitro against five cancer cell lines (HL-60, A549, SMMC-7721, MCF-7, and SW480). It is worth mentioning that garcimultiflorone Q exhibited most significant cytotoxicities against five cancer cell lines with IC 50 values ranging from 3.07-12.56 μM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Synthesis, Spectral investigation (¹H, ¹³C) and Anti-microbial Screening of benzophenone imines.
Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Saif, Muhammad Jawad; Muneer, Majid; Rehman, Fazalur; Farman, Muhammad; Shoaib, Hafiz Muhammad; Shahid, Muhammad; Hameed, Shabnam
2015-11-01
New series of benzophenone imines with general formula Ph2-C=NR; R = Benzyl, 4-Fluorobenzyl, Naphthyl, Phenyl, 4-Nitrophenyl were synthesized by condensation of dichlorodiphenylmethane and different aromatic primary amines (1:1) Those imines were characterized by different physiochemical and spectroscopic techniques like melting point, elemental analysis, FT-IR, multinuclear NMR (¹H, ¹³C). After characterization, imines were subjected to anti-microbial activities. All compounds showed promising activity against different bacterial strains like Escherichia coli, Bacillussubtilis, Pasturellam ultocida and Staphylococcus aureus as well as fungal strains like Alternata alternaria, Ganoderma lucidium, Penicillium notatum and Trichoderma harzianum using Amoxicillin and Flucanazole as a standard drugs respectively.
Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G
2005-04-28
Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.
Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo
2011-01-01
A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.
Wu, Ming-Hong; Xie, Deng-Guo; Xu, Gang; Sun, Rui; Xia, Xiao-Yu; Liu, Wen-Long; Tang, Liang
2017-07-01
Benzophenone-type UV filters (BP-UV filters) are frequently introduced into aquatic environment from several sources. The occurrence and fate of select BP-UV filters and their metabolites were investigated in this study. All target compounds were detected in water samples, except for 2, 3, 4-trihydroxybenzophenone (2, 3, 4-OH-BP). The concentration reached up 131ngL -1 for 5-benzoyl-4-hydroxy-2-ethoxybenzenesulfonic acid (BP-4), 30.0ngL -1 for 2-hydroxy-4-methoxybenzophenone (BP-3), and mean value of 158ngL -1 for benzophenone (BP). Concentrations of BP-UV filters were not related to recreational waters but with high population frequencies. In addition, five BP-UV filters, namely 2,2',4,4'-tetrahydroxybenzophenone (BP-2), 2,3,4-OH-BP, 2,4-dihydroxybenzophenone (BP-1), 4-hydroxybenzophenone (4-OH-BP) and BP were investigated for probable sources, and found that they originate from BP-3 metabolism. There is a similar source for BP-3, BP-4, BP-1, 4-OH-BP and BP. Environmental risk assessment (ERA) showed that risk quotients (RQs) of BP-4, BP-3 and BP were 2.7, 0.8 and 0.5, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortensen, Mary E., E-mail: MMortensen@cdc.gov; Calafat, Antonia M.; Ye, Xiaoyun
Environmental phenols are a group of chemicals with widespread uses in consumer and personal care products, food and beverage processing, and in pesticides. We assessed exposure to benzophenone-3, bisphenol A (BPA), triclosan, methyl- and propyl parabens, and 2,4- and 2,5-dichlorophenol or their precursors in 506 pregnant women enrolled in the National Children's Study (NCS) Vanguard Study. We measured the urinary concentrations of the target phenols by using online solid-phase extraction–isotope dilution high performance liquid chromatography–tandem mass spectrometry. NCS women results were compared to those of 524 similar-aged women in the National Health and Nutrition Examination Survey (NHANES) 2009–2010, and tomore » 174 pregnant women in NHANES 2005–2010. In the NCS women, we found significant racial/ethnic differences (p<0.05) in regression adjusted mean concentrations of benzophenone-3, triclosan, 2,4- and 2,5-dichlorophenol, but not of BPA. Urinary 2,4- and 2,5-dichlorophenol concentrations were highly correlated (r=0.66, p<0.0001). Except for BPA and triclosan, adjusted mean concentrations were significantly different across the 7 study sites. Education was marginally significant for benzophenone-3, triclosan, propyl paraben, and 2,5-dichlorophenol. Urinary concentrations of target phenols in NCS pregnant women and U.S. women and pregnant women were similar. In NCS pregnant women, race/ethnicity and geographic location determined urinary concentrations of most phenols (except BPA), suggesting differential exposures. NCS Main Study protocols should collect urine biospecimens and information about exposures to environmental phenols. - Highlights: • Limited biomonitoring data are available in pregnant women. • Seven urinary phenols were measured in 506 third trimester women enrolled in the NCS. • Urine benzophenone-3, triclosan, 2,4- and 2,5-dichlorophenol differed by race/ethnicity. • Urinary concentrations of 2,4- and 2,5-dichlorophenol were highly correlated. • Exposure information can expand the utility of biospecimens in the NCS Main Study.« less
Scinicariello, Franco; Buser, Melanie C.
2016-01-01
Background: Exposure to environmental phenols (e.g., bisphenol A, benzophenone-3, and triclosan) and parabens is widespread in the population. Many of these chemicals have been shown to have anti-androgenic effects both in vitro and in vivo. Objective: We examined the association of bisphenol A (BPA), benzophenone-3 (BP-3), triclosan (TCS), and parabens with serum total testosterone (TT) levels in child and adolescent participants (ages 6–19 years) in the National Health and Nutrition Examination Survey (NHANES) 2011–2012. Methods: We performed multivariable linear regression to estimate associations between natural log–transformed serum TT and quartiles of urinary BPA, BP-3, TCS, and parabens in male and female children (ages 6–11 years) and adolescents (ages 12–19 years). Results: BP-3 and BPA were associated with significantly lower TT in male adolescents, and BPA was associated with significantly higher TT in female adolescents. TT was not consistently associated with TCS or total parabens in children or adolescents of either sex. Conclusions: To our knowledge, this is the first study to report an association of both BP-3 and BPA with serum TT in adolescents. Associations between BPA and TT differed according to sex in adolescents, with inverse associations in boys and positive associations in girls. BP-3 was associated with significantly lower TT in adolescent boys only. However, because of the limitations inherent to the cross-sectional study design, further studies are needed to confirm and elucidate on our findings. Citation: Scinicariello F, Buser MC. 2016. Serum testosterone concentrations and urinary bisphenol A, benzophenone-3, triclosan, and paraben levels in male and female children and adolescents: NHANES 2011–2012. Environ Health Perspect 124:1898–1904; http://dx.doi.org/10.1289/EHP150 PMID:27383665
Kung, Te An; Lee, Shu Hui; Yang, Ting Chi; Wang, Wei Hsien
2018-04-23
Kenting National Park (KNP) located in the Hengchun Peninsula in southern Taiwan is a popular tourist spot, annually attracting millions of visitors, who engage in water sport and amusement activities. In this region, sewage is directly discharged into the marine environment. In this study, the concentrations of five organic UV filters [benzophenone (BP), 2,4-dihydroxy benzophenone (BP-1), 2-hydroxy-4-methoxy benzophenone (BP-3), 2,2'-dihydroxy-4-methoxy benzophenone (BP-8), and 4-methylbenzylidene camphor], five preservatives [methylparaben (MeP), ethylparaben, propylparaben (PrP), butylparaben, and benzylparaben], one disinfectant [triclosan (TCS)], and twenty-four detergent derivatives [nonylphenol (NP), nonylphenol ethoxylates (NP2EO-NP12EO), octylphenol (OP) and octylphenol ethoxylates OP2EO-OP12EO] were detected in seawater and river water samples collected from eight beaches in KNP and two major river estuaries in the Hengchun Peninsula. BP-3 was detected at all sampling sites and was higher in concentration than the other organic UV filters. The highest concentration of BP-3 was 1233 ng/L collected from Wanlitong Beach. MeP and PrP were the main preservative components in seawater. The highest total content of preservative agents was 164 ng/L collected from Houwan Beach. Moreover, NP was detected at all sampling sites, with the highest concentration found at Sail Rock Beach (26.5 ng/L). The highest concentration of OP was 113 ng/L in the Boli River estuary. The widespread use of personal care products (PCPs) has resulted in the release of their major ingredients into natural ecosystems. Therefore, the potential long-term effects of multi-PCPs at low concentration exposure to on the coral reef ecosystem in KNP must be considered and monitored. Copyright © 2018 Elsevier B.V. All rights reserved.
[n-Butyl Alcohol-soluble Chemical Constituents of Psidium guajava Leaves].
Chen, Gang; Wan, Kai-hua; Fu, Hui-zheng; Yan, Qing-wei
2015-03-01
To study the chemical constituents of the leaves of Psidium guajava. The chemical constituents were isolated by column chromatography on silica gel, Sephadex LH-20 and MPLC. Their chemical structures were elucidated on the basis of special analysis. Seven compounds were isolated from n-butyl alcohol fraction, whose structures were elucidated as morin-3-O-α-L-arabopyranoside (1), morin-3-O-α-L-iyxopyranoside (2), 2,6-dihydroxy-4-O-β-D-glucopyranosyl-benzophenone (3), casuarictin (4),2,6-dihydroxy-3,5-dimethyl-4-O-(6"-O-galloyl-β-D-glucopyranosyl)-benzophenone(5), globulusin A(6), and kaempferol-3-O-β-D-(6"-galloyl) galactopyranoside (7). Compounds 3 and 5 ~ 7 are isolated from this plant for the first time.
Paseiro-Cerrato, Rafael; Rodríguez-Bernaldo de Quirós, Ana; Otero-Pazos, Pablo; Sendón, Raquel; Paseiro-Losada, Perfecto
2018-03-01
The aim of the present study was to determine the migration kinetics of one photoinitiator, benzophenone, and two optical brighteners, Uvitex OB and 1,4-diphenyl-1,3-butadiene (DPBD), from low-density polyethylene (LDPE) films into cake. Transfer was assessed by both direct contact and also the vapour phase. To perform the migration tests by direct contact, plastic films enriched with the additives were placed between two cake slices. To evaluate the migration through the gas phase, cake and the fortified LDPE film were placed with no direct contact in a glass container that was hermetically closed. Samples were stored at different time-temperature conditions. Target compounds were extracted from the films with ethanol (70°C, 24 h) and analysed by HPLC-DAD. Relevant parameters such as partition and diffusion coefficients between food and plastic film were calculated. The Arrhenius equation was applied to estimate the diffusion coefficient at any temperature. The data indicate that migration of benzophenone occurs in a significant extent into cake by both direct contact and through the gas phase (no direct contact). Conversely, very little migration occurred for Uvitex OB by direct contact and none through the gas phase. Results for benzophenone suggest that migration through the gas phase should be considered when evaluating migration from food packaging materials into food.
Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin
2018-04-01
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Migration of photoinitiators from cardboard into dry food: evaluation of Tenax® as a food simulant.
Van Den Houwe, Kathy; Evrard, Caroline; Van Loco, Joris; Lynen, Frederic; Van Hoeck, Els
2016-05-01
Photoinitiators are widely used to cure ink on packaging materials used in food applications such as cardboards for the packaging of dry foods. Conventional migration testing for long-term storage at ambient temperature with Tenax(®) was applied to paperboard for the following photoinitiators: benzophenone (BP), 4,4'-bis(diethylamino)benzophenone (DEAB), 2-chloro-9H-thioxanthen-9-one (CTX), 1-chloro-4-propoxy-9H-thioxanthen-9-one (CPTX), 4-(dimethylamino)benzophenone (DMBP), 2-ethylanthraquinone (EA), 2-ethylhexyl-4-dimethylaminobenzoate (EDB), ethyl-4-dimethylaminobenzoate (EDMAB), 4-hydroxybenzophenone (4-HBP), 2-hydroxy-4-methoxybenzophenone (HMBP), 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (HMMP), 2-isopropyl-9H-thioxanthen-9-one (ITX), 4-methylbenzophenone (MBP) and Michler's ketone (MK). Test conditions (10 days at 60°C) were according to Regulation (EU) No. 10/2011 and showed different migration patterns for the different photoinitiators. The results were compared with the migration in cereals after a storage of 6 months at room temperature. The simulation with Tenax at 60°C overestimated actual migration in cereals up to a maximum of 92%. In addition, the effect of a lower contact temperature and the impact of the Tenax pore size were investigated. Analogous simulation performed with rice instead of Tenax resulted in insufficiently low migration rates, showing Tenax is a much stronger adsorbent than rice and cereals.
Polyimides Derived from Novel Asymmetric Benzophenone Dianhydrides
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2015-01-01
This invention relates to the composition and processes for preparing thermoset polyimides derived from an asymmetric dianhydride, namely 2,3,3',4'-benzophenone dianhydride (a-BTDA) with at least one diamine, and a monofunctional terminal endcaps. The monofunctional terminating groups include 4-phenylethynylphthalic anhydride ester-acid derivatives, phenylethyl trimellitic anhydride (PETA) and its ester derivatives as well as 3-phenylethynylaniline. The process of polyimide composite comprises impregnating monomer reactants of dianhydride or its ester-acid derivatives, diamine and with monofunctional reactive endcaps into glass, carbon, quartz or synthetic fibers and fabrics, and then stack up into laminates and subsequently heated to between 150-375.degree. C. either at atmosphere or under pressure to promote the curing and crosslinking of the reactive endcaps to form a network of thermoset polyimides.
One new diphenylmethane glycoside from the leaves of Psidium guajava L.
Shu, Ji-Cheng; Chou, Gui-Xin; Wang, Zheng-Tao
2012-11-01
To investigate the chemical constituents of Psidium guajava L, the EtOH/H(2)O extract of the fresh leaves was subjected to various chromatography. One diphenylmethane, one benzophenone, and eight flavonoids were isolated and elucidated as 2,6-dihydroxy-3-formaldehyde-5-methyl-4-O-(6″-O-galloyl-β-D-glucopyranosyl)-diphenylmethane (1), 2,6-dihydroxy-3,5-dimethyl-4-O-(6″-O-galloyl-β-D-glucopyranosyl)-benzophenone (2), kaempferol (3), quercetin (4), quercitrin (5), isoquercitrin (6), guaijaverin (7), avicularin (8), hyperoside (9), reynoutrin (10) by spectroscopic methods, including 1D and 2D NMR and HR-ESI-MS spectrometry as well as by comparison with published data. Compounds 5 and 10 are obtained from P. guajava for the first time, and compound 1 is a new diphenylmethane compound.
Jadhav, Amol G; Shinde, Suvidha S; Lanke, Sandip K; Sekar, Nagaiyan
2017-03-05
Synthesis of novel benzophenone-based chemosensor is presented for the selective sensing of Sn 2+ ion. Screening of competitive metal ions was performed by competitive experiments. The specific cation recognition ability of chemosensor towards Sn 2+ was investigated by experimental (UV-visible, fluorescence spectroscopy, 1 H NMR, 13 C NMR, FTIR and HRMS) methods and further supported by Density Functional Theory study. The stoichiometric binding ratio and binding constant (K a ) for complex is found to be 1:1 and 1.50×10 4 , respectively. The detection limit of Sn 2+ towards chemosensor was found to be 0.3898ppb. Specific selectivity and superiority of chemosensor over another recently reported chemosensor is presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Frederiksen, Hanne; Nielsen, Ole; Skakkebaek, Niels E; Juul, Anders; Andersson, Anna-Maria
2017-03-01
Experimental studies indicate that some chemicals with UV blocking properties (known as UV filters) can act as endocrine disruptors. UV filters are used in sunscreens and other cosmetic- and personal care products, as well as in other consumer products such as food packaging, clothing and furniture textiles to protect the products against UV radiation. Here we present the urinary excretion of suspected endocrine active UV filters in Danish children and adolescents recruited from the general population. The content of benzophenone (BP), benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), 5-chloro-2- hydroxybenzophenone (BP-7), 4-hydroxybenzophenone (4-HBP), 4-methyl-benzophenone (4-MBP), 3-(4- methylbenzylidene)-camphor (4-MBC) and 3-benzylidene camphor (3-BC) were monitored in 24h urine and two consecutive first morning samples from 129 healthy Danish children and adolescents (6-21 yrs). All 387 samples were collected during the autumn (Nov. 2007) and were analyzed by a new on-line TurboFlow-LC-MS/MS method developed for simultaneous biomonitoring of these nine UV filters in urine. BP-3 and BP-1 were detected in more than 80% of the 24h samples and were significantly correlated (R 2 =0.815). BP, 4-HBP and BP-2 were found in 43, 15 and 5% of the samples, respectively. The median (range) concentrations of the UV-filters in 24-h urine were as follows: BP-3, 0.92 (LOD-115); BP-1, 0.54 (LOD-44.6); BP,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.S.
The mechanism of the photoreduction of aromatic ketones by amines has been investigated using picosecond absorption spectroscopy. The experiments reveal that the process involves complete electron transfer occurring within a half-life of 20 picoseconds for benzophenone/Dabco and fluorenone/Dabco.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, S.G.
The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by ..cap alpha..-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition withmore » coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water.« less
Deepa, K; Lingappa, Y
2014-04-24
2,4-Dihydroxy benzophenone-2-amino thiophenol (BPBT) has been proposed as new analytical reagent for the direct non-extractive spectrophotometric determination of arsenic. The reagent reacts with arsenic in acidic medium (pH=6.0, sodium acetate-acetic acid buffer) to form light greenish yellow colored 1:1 (M:L) complex. Maximum absorbance was obtained at 343 nm and remains constant for over 24 h. The molar absorptivity and Sandell's sensitivity of BPBT are found to be 6.01×10(4) L mol(-1)cm(-1) and 0.0016 μg cm(-2) respectively. The system obeys Beer's law in the range of 0.125-2.637 μg/ml of As (III). Since BPBT method is more sensitive, it was applied for the determination of arsenic in some environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Secondary metabolites from endemic species Iris adriatica Trinajstić ex Mitić (Iridaceae).
Bukvički, Danka; Novaković, Miroslav; Ab Ghani, Nurunajah; Marin, Petar D; Asakawa, Yoshinori
2018-08-01
This manuscript describes the first detailed chemical investigation of endemic species Iris adriatica, including isolation and structure elucidation. Chemical analyses of the rhizome CH 2 Cl 2 /MeOH (2:1) extract revealed fourteen secondary metabolites, mainly isoflavonoids. Among isoflavonoids, two groups have been found: nigricin-type and tectorigenin-type. Dominant group of the isolated compounds has been nigricin-type isoflavones: nigricin, nigricin-4'-(1-O-β-D-glucopyranoside) and nigricin-4'-(1-O-β-D-glucopyranosyl (1-6)-β-D-glucopyranoside) with 2.5, 10 and 1% of the total extract, respectively. Irisxanthone - xanthone C-glucoside, β-sitosterol, benzophenone and one of its derivatives have also been found. Nigricin-type isoflavonoids and irisxanthone can be considered as possible chemotaxonomic markers for I. adriatica. 5,3',5'-Trimethoxy-6,7-methylenedioxyisoflavone-4'-(1-O-β-D-glucopyranoside) and benzophenone have been isolated from Iris species for the first time.
Tantapakul, Cholpisut; Maneerat, Wisanu; Sripisut, Tawanun; Ritthiwigrom, Thunwadee; Andersen, Raymond J; Cheng, Ping; Cheenpracha, Sarot; Raksat, Achara; Laphookhieo, Surat
2016-11-23
Two new benzophenones (1 and 2) and four new xanthones (4-6 and 17) together with 24 known compounds (3, 7-16, and 18-30) were isolated from the roots and twigs of Cratoxylum sumatranum ssp. neriifolium. Their structures were elucidated by spectroscopic methods. Compounds 5 and 26 showed antibacterial activity against Micrococcus luteus, Bacillus cereus, and Staphylococcus epidermis with minimum inhibitory concentrations ranging from 4 to 8 μg/mL, whereas compounds 7, 20, and 26 displayed selective antibacterial activities against Staphylococcus aureus (8 μg/mL), Salmonella typhimurium (4 μg/mL), and Pseudomonas aeruginosa (4 μg/mL), respectively. The radical scavenging effects of some isolated compounds were investigated. Compounds 11 and 21 exhibited potent activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with IC 50 values of 7.0 ± 1.0 and 6.0 ± 0.2 μM, respectively.
A new antibacterial benzophenone glycoside from Psidium guajava (Linn.) leaves.
Ukwueze, Stanley E; Osadebe, Patience O; Okoye, Festus B C
2015-01-01
Bioactivity-guided fractionation of methanol extract from the leaves of Psidium guajava L. (Myrtaceae) yielded a new benzophenone glycoside, Guajaphenone A (2) together with two known compounds, Garcimangosone D (1) and Guaijaverin (3). Their structures were elucidated by analysis of spectroscopic data including 1D and 2D NMR and electrospray ionisation mass spectrometry (ESI-MS). The isolated compounds were screened against standard strains of Gram-positive and Gram-negative bacteria using broth dilution assay method, and the MIC values determined and compared with reference antibiotic ceftriaxone. They were found to have significant antibacterial activities against Escherichia coli and Staphylococcus aureus with all of them showing better activities against S. aureus, but displaying weaker activities, in comparison to ceftriaxone. However, despite reduced effect of these compounds against the organisms, this work opens the perspective to use these molecules as 'leads' for the design of novel and selective drug candidates for some tropical infectious diseases.
Zhang, Qiuya; Ma, Xiaoyan; Dzakpasu, Mawuli; Wang, Xiaochang C
2017-08-01
The widespread use of organic ultraviolet (UV) filters in personal care products raises concerns about their potentially hazardous effects on human and ecosystem health. In this study, the toxicities of four commonly used benzophenones (BPs) UV filters including benzophenone (BP), 2-Hydroxybenzophenone (2HB), 2-Hydroxy-4-methoxybenzophenone (BP3), and 2-Hydroxy-4-methoxybenzophenone-5-sulfonicacid (BP4) in water were assayed in vitro using Vibrio fischeri, SOS/umu assay, and yeast estrogen screen (YES) assay, as well as in vivo using zebrafish larvae. The results showed that the luminescent bacteria toxicity, expressed as logEC 50 , increased with the lipophilicity (logKow) of BPs UV filters. Especially, since 2HB, BP3 and BP4 had different substituent groups, namely -OH, -OCH 3 and -SO 3 H, respectively, these substituent functional groups had a major contribution to the lipophilicity and acute toxicity of these BPs. Similar tendency was observed for the genotoxicity, expressed as the value of induction ratio=1.5. Moreover, all the target BPs UV filters showed estrogenic activity, but no significant influences of lipophilicity on the estrogenicity were observed, with BP3 having the weakest estrogenic efficiency in vitro. Although BP3 displayed no noticeable adverse effects in any in vitro assays, multiple hormonal activities were observed in zebrafish larvae including estrogenicity, anti-estrogenicity and anti-androgenicity by regulating the expression of target genes. The results indicated potential hazardous effects of BPs UV filters and the importance of the combination of toxicological evaluation methods including in vitro and in vivo assays. Copyright © 2017 Elsevier Inc. All rights reserved.
Krause, M; Frederiksen, H; Sundberg, K; Jørgensen, F S; Jensen, L N; Nørgaard, P; Jørgensen, C; Ertberg, P; Petersen, J H; Feldt-Rasmussen, U; Juul, A; Drzewiecki, K T; Skakkebaek, N E; Andersson, A M
2018-02-01
Several chemical UV filters/absorbers ('UV filters' hereafter) have endocrine-disrupting properties in vitro and in vivo . Exposure to these chemicals, especially during prenatal development, is of concern. To examine maternal exposure to UV filters, associations with maternal thyroid hormone, with growth factor concentrations as well as to birth outcomes. Prospective study of 183 pregnant women with 2nd trimester serum and urine samples available. Maternal concentrations of the chemical UV filters benzophenone-1 (BP-1) and benzophenone-3 (BP-3) in urine and 4-hydroxy-benzophenone (4-HBP) in serum were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships between 2nd trimester maternal concentrations of the three chemical UV filters and maternal serum concentrations of thyroid hormones and growth factors, as well as birth outcomes (weight, height, and head and abdominal circumferences) were examined. Positive associations between maternal serum concentrations of 4-HBP and triiodothyronine (T 3 ), thyroxine (T 4 ), insulin-like growth factor I (IGF-I) and its binding protein IGFBP3 were observed in mothers carrying male fetuses. Male infants of mothers in the middle 4-HBP exposure group had statistically significantly lower weight and shorter head and abdominal circumferences at birth compared to the low exposure group. Widespread exposure of pregnant women to chemical UV filters and the possible impact on maternal thyroid hormones and growth factors, and on fetal growth, calls for further studies on possible long-term consequences of the exposure to UV filters on fetal development and children's health. © 2018 The authors.
Phosphorescence and Energy Transfer in Rigid Solutions.
ERIC Educational Resources Information Center
Enciso, E.; Cabello, A.
1980-01-01
Describes an experiment which illustrates the general aspects of intermolecular energy transfer between triplet states in rigid solutions of organic compounds solved in an ethanol-ether mixture. Measurements of quenching and energy transfer processes are made using the chemicals of benzophenone and naphthalene. (CS)
Blüthgen, Nancy; Zucchi, Sara; Fent, Karl
2012-09-01
Organic UV filters including benzophenone-3 (BP-3) are widely used to protect humans and materials from damage by UV irradiation. Despite the environmental occurrence of BP-3 in the aquatic environment, little is known about its effects and modes of action. In the present study we assess molecular and physiological effects of BP-3 in adult male zebrafish (Danio rerio) and in eleuthero-embryos by a targeted gene expression approach focusing on the sex hormone system. Fish and embryos are exposed for 14 days and 120 hours post fertilization, respectively, to 2.4-312 μg/L and 8.2-438 μg/L BP-3. Chemical analysis of water and fish demonstrates that BP-3 is partly transformed to benzophenone-1 (BP-1) and both compounds are accumulated in adult fish. Biotransformation to BP-1 is absent in eleuthero-embryos. BP-3 exposure leads to similar alterations of gene expression in both adult fish and eleuthero-embryos. In the brain of adult males esr1, ar and cyp19b are down-regulated at 84 μg/L BP-3. There is no induction of vitellogenin expression by BP-3, both at the transcriptional and protein level. An overall down-regulation of the hsd3b, hsd17b3, hsd11b2 and cyp11b2 transcripts is observed in the testes, suggesting an antiandrogenic activity. No histological changes were observed in the testes after BP-3 treatment. The study leads to the conclusion that low concentrations of BP-3 exhibit similar multiple hormonal activities at the transcription level in two different life stages of zebrafish. Forthcoming studies should show whether this translates to additional physiological effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Jian; Ma, Li-Yun; Xu, Li; Shi, Zhi-Guo
2015-08-01
Benzophenone-type UV filters (BPs) are ubiquitous in the environment. Transformation products (TPs) of BPs with suspected toxicity are likely to be produced during disinfection of water by chlorination. To quickly predict the toxicity of TPs, in this study, a novel two-dimensional liquid-chromatography (2D-LC) method was established in which the objective of the first dimension was to separate the multiple components of the BPs sample after chlorination, using a reversed-phase liquid-chromatography mode. A biochromatographic system, i.e. bio-partitioning micellar chromatography with the polyoxyethylene (23) lauryl ether aqueous solution as the mobile phase, served as the second dimension to predict the toxicity of the fraction from the first dimension on the basis of the quantitative retention-activity relationships (QRARs) model. Six BPs, namely 2,4-dihydroxybenzophenone, oxybenzone, 4-hydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and 2,2'-dihydroxy-4-methoxybenzophenone, were the target analytes subjected to chlorination. The products of these BPs after chlorination were directly injected to the 2D-LC system for analysis. The results indicated that most TPs may be less toxic than their parent chemicals, but some may be more toxic, and that intestinal toxicity of TPs may be more obvious than blood toxicity. The proposed method is time-saving, high-throughput, and reliable, and has great potential for predicting toxicity or bioactivity of unknown and/or known components in a complex sample. Graphical Abstract The scheme for the 2D-LC online prediction of toxicity of the transformation products of benzophenone-type UV filters after chlorination.
Rodríguez-Gómez, R; Jiménez-Díaz, I; Zafra-Gómez, A; Ballesteros, O; Navalón, A
2014-12-01
In recent decades, in parallel to industrial development, a large amount of new chemicals have emerged that are able to produce disorders in human endocrine system. These groups of substances, so-called endocrine disrupting chemicals (EDCs), include many families of compounds, such as parabens, benzophenone-UV filters and bisphenols. Given the demonstrated biological activity of those compounds, it is necessary to develop new analytical procedures to evaluate the exposure with the final objective of establishing, in an accurate way, relationships between EDCs concentrations and the harmful health effects observed in population. In the present work, a method based on a simplified sample treatment involving steps of precipitation, evaporation and clean-up of the extracts with C18 followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis for the determination of bisphenol A and its chlorinated derivatives (monochloro-, dichloro-, trichloro- and tetrachlorobisphenol A), parabens (methyl-, ethyl-, propyl- and butylparaben) and benzophenone-UV filters (benzophenone -1,-2, -3, -6, -8 and 4-hydroxybenzophenone) in human breast milk samples is proposed and validated. The limits of detections found ranged from 0.02 to 0.05 ng mL(-1). The method was validated using matrix-matched standard calibration followed by a recovery assay with spiked samples. Recovery rates ranged from 91% to 110% and the precision (evaluated as relative standard deviation) was lower than 15% for all compounds, being within the acceptable limits for the selected bioanalytical method validation guide. The method was satisfactorily applied for the determination of these compounds in human breast milk samples collected from 10 randomly selected women. Copyright © 2014 Elsevier B.V. All rights reserved.
Castro, G T; Blanco, S E; Arce, S L; Ferretti, F H
2003-10-01
The complexation reaction between AlCl(3) and 2,4-dihydroxy-benzophenone with varying permittivity and ionic strength of the reaction medium was investigated by theoretical and experimental procedures, namely, density functional (DFT) and UV-vis spectroscopic methods, respectively. The stoichiometric composition of the complex formed, which was determined by means of the molar ratio method, is 1:1. The molar absorptivity and stability constant of the complex were determined using a method designed by the authors. It was observed that the stoichiometric composition of the complex does not change with the used solvents and that the stability constant in methanol is higher than ethanol. Kinetic experiments in solutions with different ionic strength were also performed. The results obtained permit to conclude that the complex is formed through of a mechanism whose rate-determining step is a reaction between two ions with opposite unitary charges. In the theoretical study performed at the B3LYP/6-31G(d) level of theory using Tomasi's model, it was proposed that the formation of the complex involves one simple covalent bond between the aluminum atom and the oxygen atom of o-hydroxyl group of the ligand and a stronger coulombic attraction (or a second covalent bond) between the central atom and the carbonyl oxygen atom of 2,4-dihydroxy-benzophenone. Using the calculated magnitudes, it was predicted that the complex formed has higher thermodynamic stability in methanol than ethanol. It was also concluded that the planarity of the chelate ring favors a greater planarity of 4-hydroxy-benzoyl group of the complex with respect to the ligand, which agrees with the observed batochromic shifts. The formulated theoretical conclusions satisfactorily match the experimental determinations performed.
Photoreactions of biacetyl, benzophenone, and benzil with electron-rich alkenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gersdorf, J.; Mattay, J.; Goerner, H.
1987-02-18
The rate constants (k/sub q/) for fluorescence and phosphorescence quenching of biacetyl by electron-rich alkenes were measured in acetonitrile solution at room temperature. A weak dependence of log k/sub q/ on the free enthalpy change (..delta..G/sub 2/) for electron transfer in the triplet state in the range 0 < ..delta..G/sub 2/ < 1.0 eV indicates formation of a polar exciplex. The strong enhancement of k/sub q/ for 0 > ..delta..G/sub 2/ > -0.70 eV points to electron-transfer processes in singlet and triplet states. Quenching of the phosphorescence and the T-T absorption of benzophenone reveals larger (smaller) k/sub q/ values inmore » the endergonic (exergonic) region, as compared to the Rehm-Weller correlation. The slope of the plot of log k/sub q/ vs. ..delta..G/sub 2/ is similar to that of biacetyl in the endergonic region. The latter indicates that electron transfer in this instance is not the primary step. For benzil the plot of log k/sub q/ vs ..delta..G/sub 2/ resembles more closely that of biacetyl, pointing to a similar mechanism. In the exergonic region electron transfer is observed for benzil (major process) and benzophenone (minor process) by detection of the radical anion with use of nanosecond laser flash photolysis. The yield and half-life of the radical anion depend on the nature of the electron donor and the ketone, the solvent polarity, and the additives (e.g., LiClO/sub 4/, special salt effect). The solvent effect on the photoproducts (oxetanes) is correlated with the free enthalpies of radical ion pair formation.« less
Wei, Mei-Yan; Li, Dan; Shao, Chang-Lun; Deng, Dong-Sheng; Wang, Chang-Yun
2013-03-28
A new antibacterial chlorinated benzophenone derivative, (±)-pestalachloride D (1), along with a related analog, (±)-pestalachloride C (2), was recently isolated from the marine-derived fungus Pestalotiopsis sp. isolated from a soft coral Sarcophyton sp. collected from Yongxing Island in the South China Sea. Both chiral HPLC analysis and single-crystal X-ray data indicated that 1 is a racemic mixture. Interestingly, 1 did not exhibit any effect in the zebrafish embryo teratogenicity assay, while 2 led to abnormal growth. The potential impact on zebrafish embryo growth is discussed based on their crystal structures. The main difference of crystal structures between 1 and 2 is that the six-member non-aromatic ring (O4, C10, C9, C8, C2', and C3') in 1 exhibits a distorted chair conformation, while 2 shows a distorted boat conformation. Moreover, compounds 1 and 2 both exhibited moderate antibacterial activity.
Maia, Joaquim; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Cruz, José Manuel; Seiler, Annika; Franz, Roland; Simoneau, Catherine; Castle, Laurence; Driffield, Malcolm; Mercea, Peter; Oldring, Peter; Tosa, Valer; Paseiro, Perfecto
2016-01-01
The mass transport process (migration) of a model substance, benzophenone (BZP), from LDPE into selected foodstuffs at three temperatures was studied. A mathematical model based on Fick's Second Law of Diffusion was used to simulate the migration process and a good correlation between experimental and predicted values was found. The acquired results contribute to a better understanding of this phenomenon and the parameters so-derived were incorporated into the migration module of the recently launched FACET tool (Flavourings, Additives and Food Contact Materials Exposure Tool). The migration tests were carried out at different time-temperature conditions, and BZP was extracted from LDPE and analysed by HPLC-DAD. With all data, the parameters for migration modelling (diffusion and partition coefficients) were calculated. Results showed that the diffusion coefficients (within both the polymer and the foodstuff) are greatly affected by the temperature and food's physical state, whereas the partition coefficient was affected significantly only by food characteristics, particularly fat content.
Enhanced Stability and Bioconjugation of Photo-cross-linked Polystyrene-Shell, Au-Core Nanoparticles
Chen, Ying; Cho, Juhee; Young, Alexi; Taton, T. Andrew
2008-01-01
Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 nm to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-crosslinked polystyrene microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled polystyrene nanospheres. PMID:17530871
Muttach, Fabian; Mäsing, Florian; Studer, Armido; Rentmeister, Andrea
2017-05-02
Elucidation of biomolecular interactions is of utmost importance in biochemistry. Photo-cross-linking offers the possibility to precisely determine RNA-protein interactions. However, despite the inherent specificity of enzymes, approaches for site-specific introduction of photo-cross-linking moieties into nucleic acids are scarce. Methyltransferases in combination with synthetic analogues of their natural cosubstrate S-adenosyl-l-methionine (AdoMet) allow for the post-synthetic site-specific modification of biomolecules. We report on three novel AdoMet analogues bearing the most widespread photo-cross-linking moieties (aryl azide, diazirine, and benzophenone). We show that these photo-cross-linkers can be enzymatically transferred to the methyltransferase target, that is, the mRNA cap, with high efficiency. Photo-cross-linking of the resulting modified mRNAs with the cap interacting protein eIF4E was successful with aryl azide and diazirine but not benzophenone, reflecting the affinity of the modified 5' caps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
UV Filters, Ingredients with a Recognized Anti-Inflammatory Effect
Couteau, Céline; Chauvet, Catherine; Paparis, Eva; Coiffard, Laurence
2012-01-01
Background To explain observed differences during SPF determination using either an in vivo or in vitro method, we hypothesized on the presence of ingredients having anti-inflammatory properties. Methodology/Principal Findings To research our hypothesis, we studied the 21 UV filters both available on the market and authorized by European regulations and subjected these filters to the phorbol-myristate-acetate test using mice. We then catalogued the 13 filters demonstrating a significant anti-inflammatory effect with edema inhibition percentages of more than 70%. The filters are: diethylhexyl butamido triazone (92%), benzophenone-5 and titanium dioxide (90%), benzophenone-3 (83%), octocrylène and isoamyl p-methoxycinnamate (82%), PEG-25 PABA and homosalate (80%), octyl triazone and phenylbenzimidazole sulfonic acid (78%), octyl dimethyl PABA (75%), bis-ethylhexyloxyphenol methoxyphenyl triazine and diethylamino hydroxybenzoyl hexylbenzoate (70%). These filters were tested at various concentrations, including their maximum authorized dose. We detected a dose-response relationship. Conclusions/Significance The anti-inflammatory effect of a sunscreen ingredient may affect the in vivo SPF value. PMID:23284607
Hines, Erin P.; Mendola, Pauline; vonEhrenstein, Ondine S.; Ye, Xiaoyun; Calafat, Antonia M.; Fenton, Suzanne E.
2015-01-01
Phenols and parabens show some evidence for endocrine disruption in laboratory animals. The goal of the Methods Advancement for Milk Analysis (MAMA) Study was to develop or adapt methods to measure parabens (methyl, ethyl, butyl, propyl) and phenols (bisphenol A (BPA), 2,4- and 2,5-dichlorophenol, benzophenone-3, triclosan) in urine, milk and serum twice during lactation, to compare concentrations across matrices and with endogenous biomarkers among 34 North Carolina women. These non-persistent chemicals were detected in most urine samples (53-100%) and less frequently in milk or serum; concentrations differed by matrix. Although urinary parabens, triclosan and dichlorophenols concentrations correlated significantly at two time points, those of BPA and benzophenone-3 did not, suggesting considerable variability in those exposures. These pilot data suggest that nursing mothers are exposed to phenols and parabens; urine is the best measurement matrix; and correlations between chemical and endogenous immune-related biomarkers merit further investigation. PMID:25463527
Wei, Mei-Yan; Li, Dan; Shao, Chang-Lun; Deng, Dong-Sheng; Wang, Chang-Yun
2013-01-01
A new antibacterial chlorinated benzophenone derivative, (±)-pestalachloride D (1), along with a related analog, (±)-pestalachloride C (2), was recently isolated from the marine-derived fungus Pestalotiopsis sp. isolated from a soft coral Sarcophyton sp. collected from Yongxing Island in the South China Sea. Both chiral HPLC analysis and single-crystal X-ray data indicated that 1 is a racemic mixture. Interestingly, 1 did not exhibit any effect in the zebrafish embryo teratogenicity assay, while 2 led to abnormal growth. The potential impact on zebrafish embryo growth is discussed based on their crystal structures. The main difference of crystal structures between 1 and 2 is that the six-member non-aromatic ring (O4, C10, C9, C8, C2′, and C3′) in 1 exhibits a distorted chair conformation, while 2 shows a distorted boat conformation. Moreover, compounds 1 and 2 both exhibited moderate antibacterial activity. PMID:23538869
Kim, Sujin; Choi, Kyungho
2014-09-01
Benzophenone-3 (BP-3) has been widely used in sunscreens and many other consumer products, including cosmetics. The widespread use of BP-3 has resulted in its release into the water environment, and hence its potential impact on aquatic ecosystem is of concern. To better understand the risk associated with BP-3 in aquatic ecosystems, we conducted a thorough review of available articles regarding the physicochemical properties, toxicokinetics, environmental occurrence, and toxic effects of BP-3 and its suspected metabolites. BP-3 is lipophilic, photostable, and bioaccumulative, and can be rapidly absorbed via oral and dermal routes. BP-3 is reported to be transformed into three major metabolites in vivo, i.e., benzophenone-1 (BP-1), benzophenone-8 (BP-8), and 2,3,4-trihydroxybenzophenone (THB). BP-1 has a longer biological half-life than its parent compound and exhibits greater estrogenic potency in vitro. BP-3 has been detected in water, soil, sediments, sludge, and biota. The maximum detected level in ambient freshwater and seawater is 125ng/L and 577.5ng/L, respectively, and in wastewater influent is 10,400ng/L. The major sources of BP-3 are reported to be human recreational activities and wastewater treatment plant (WWTP) effluents. BP-3 and its derivatives have been also detected in fish lipid. In humans, BP-3 has been detected in urine, serum, and breast milk samples worldwide. BP-1 has also been detected in placental tissues of delivering women. While sunscreens and cosmetics are known to be major sources of exposure, the fact that BP-3 has been detected frequently among young children and men suggests other sources. An increasing number of in vitro studies have indicated the endocrine disrupting capacity of BP-3. Based on a receptor binding assay, BP-3 has shown strong anti-androgenic and weak estrogenic activities but at the same time BP-3 displays anti-estrogenic activity as well. Predicted no effect concentration (PNEC) for BP-3 was derived at 1.32μg/L. The levels observed in ambient water are generally an order of magnitude lower than the PNEC, but in wastewater influents, hazard quotients (HQs) greater than 1 were noted. Considering limited ecotoxicological information and significant seasonal and spatial variations of BP-3 in water, further studies on environmental monitoring and potential consequences of long-term exposure in aquatic ecosystem are warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a ...
MIS-based sensors with hydrogen selectivity
Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA
2008-03-11
The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.
Jackson, Desmond N.; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J.
2015-01-01
Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis. PMID:26195512
Landers, Maeran; Law, Sandra; Storrs, Frances J
2003-03-01
There is little literature regarding conventional patch tests and photopatch tests to oxybenzone resulting in both immediate- and delayed-type hypersensitivity reactions. A patient was patch-tested and photopatch-tested to various sunscreen chemicals. Both immediate- and delayed-type hypersensitivity reactions were observed with oxybenzone. The positive patch tests were also photoaccentuated. Oxybenzone, a common sunscreen allergen, can result in both contact urticaria and delayed-type hypersensitivity on both conventional patch testing and photopatch testing. Allergic contact dermatitis to sunscreen chemicals has traditionally included contact urticaria, allergic contact dermatitis, and photoallergic contact dermatitis. Due to the recognition of p-aminobenzoic acid (PABA) and its esters as sensitizers, the presence of benzophenones in "PABA-free" sunscreens has become more prevalent, especially in sunscreens with a sun protection factor (SPF) greater than 8. In our patient, immediate- and delayed-type hypersensitivity reactions were seen to oxybenzone (2-hydroxy-4-methoxybenzophenone, 2-benzoyl-5-methoxyphenol, benzophenone-3, Eusolex 4360, Escalol 567, EUSORB 228, Spectra-Sorb UV-9, Uvinul M-40) upon conventional patch testing and photopatch testing.
Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging
Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu
2016-01-01
In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2-ynyloxy)phenyl)(phenyl)methanone at ambient temperature for affording the desired PVC-based UV-absorbers (PVC-UV) with different amounts of benzophenone moieties, which displayed great resistance to photoaging without degradation while exposed to UV irradiation. These polymeric UV-absorbers also showed good solubilities in common organic solvents and no cytotoxicity vs. HaCat cell. Small amounts of PVC-UV were homogeneously mixed with PVC as additive for stabilizing PVC against UV-photoaging without degradation and releasing small molecule even after 200 h while keeping thermal stability. This route of polymeric additive clearly paved an efficient way for solving the puzzle of separation of small molecule additive. PMID:27138547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimura, Takashi; Hou, Z.; Wakatsuki, Yasua
1995-11-01
Reaction of the ytterbium-benzophenone dianion complex (1), which was formed by reaction of Yb metal with benzophenone in THF/HMPA, with 2,6-di-tert-butyl-4-methylphenol, yielded the ytterbium(II) aryloxide complex Yb(OAr){sub 2}(HMPA){sub 2} (2, Ar= C{sub 6}H{sub 2} -{sup t}Bu{sub 2}-2,6-Me-4) as a major product (80%) and the ytterbium(III) enolate complex (3) as a minor one (ca. 5% yield). The mechanisms of these reactions are discussed. X-ray crystallographic studies reveal that 3, 4a, and 7b are isostructural, and so are 5a and 6. The central metal ions in these complexes are all five-coordinated in a trigonal bipyramid form (highly distorted in the case ofmore » 5a and 6) with two HMPA ligands at the apical and three anionic oxygen ligands at the equatorial positions. 25 refs., 7 figs., 7 tabs.« less
Interface interactions in benzophenone doped by multiwalled carbon nanotubes
NASA Astrophysics Data System (ADS)
Lebovka, N. I.; Goncharuk, A.; Melnyk, V. I.; Puchkovska, G. A.
2009-08-01
The interface interactions were studied by methods of conductometry, low-temperature phosphorescence and differential scanning calorimetry (DSC) in multiwalled carbon nanotubes (MWCNT) and benzophenone (BP) composite. The concentration of MWCNTs was varied within 0-1 wt%. A percolative threshold was found at MWCNT concentrations exceeding 0.1 wt%. The integration of MWCNTs caused melting temperature increase (≈3 K for 1 wt% of MWCNTs). The effect of positive thermal resistively coefficient, as well as substantial hysteretic behaviour of electrical conductivity σ in a heating-cooling cycle, was observed near the melting point of BP ( T m=321.5 K). The activation-type temperature behaviour of electrical conductivity was observed in the temperature range of supercooled BP. The activation energy was decreasing with increase of MWCNT concentration. The observed nonlinear dependencies of electrical conductivity σ vs. applied voltage U reflect the transport mechanism of the charge carriers through amorphous interface films formed near the surface of the MWCNTs. The thermal shifts of phosphorescence spectra measured within the temperature range 5-200 K evidence existence of such interface films of amorphous BP with width of the order of 0.1 μm.
Enhanced photochemical conversion of NO2 to HONO on humic acids in the presence of benzophenone.
Han, Chong; Yang, Wangjin; Yang, He; Xue, Xiangxin
2017-12-01
The photochemical conversion of NO 2 to HONO on humic acids (HA) in the presence of benzophenone (BP) was investigated using a flow tube reactor coupled to a NO x analyzer at ambient pressure. BP significantly enhanced the reduction of NO 2 to HONO on HA under simulated sunlight, as shown by the increase of NO 2 uptake coefficient (γ) and HONO yield with the mass ratio of BP to HA. The γ and HONO yield on the mixtures of HA and BP obviously depended on the environmental conditions. Both γ and HONO yield increased with the increase of irradiation intensity and temperature, whereas they decreased with pH. The γ exhibited a negative dependence on the NO 2 concentration, which had slight influences on the HONO yield. There were maximum values for the γ and HONO yield at relative humidity (RH) of 22%. Finally, atmospheric implications about the photochemical reaction of NO 2 and HA in the presence of photosensitive species were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lopardo, Luigi; Adams, David; Cummins, Andrew; Kasprzyk-Hordern, Barbara
2018-06-14
This study aimed to identify human specific metabolites of selected known or suspected endocrine disruptors (EDCs), mainly UV filters, used in personal care and consumer products whose metabolism has hardly been explored and to select suitable candidate biomarkers for human exposure studies using wastewater based epidemiology (WBE). The analysis of metabolic biomarkers of target chemicals is crucial in order to distinguish between internal and external exposure, since many sources contribute to chemicals being discharged into wastewater. This was achieved through the employment of a new analytical framework for verification of biomarkers of exposure to chemicals combining human biomonitoring and water fingerprinting. Eight EDCs with unknown metabolic pathways (benzophenone-1 (BP-1); benzophenone-2 (BP-2); 4,4'-dihydroxybenzophenone (4,4'-DHBP); 4-benzylphenol (4-BenzPh); homosalate (HO); octocrylene (OC); 3-benzylidene camphor (3-BC), and two EDCs with known metabolism (bisphenol A (BPA) and benzophenone-3 (BP-3)) were tested. The biotransformation observed consisted mainly of phase I processes such as hydrolysis and hydroxylation together with phase II conjugation reactions such as sulphation and glucuronidation. Only two chemicals (BP-1, BP-3) were identified in urine and three chemicals (BPA, BP-1, BP-3) in wastewater. Five newly discovered metabolites (HO-Met1, OC-Met1, 4-BenzPh-Met4, 4-BenzPh-Met5 and 4-BenzPh-Met6) and one previously known metabolite (BPA-Met3) were detected in tested urine/wastewater samples from five WWTPs serving large communities ranging between 17 and 100 thousand inhabitants. The presence of metabolic biotransformation products of OC, 4-BenzPh, BPA and HO in wastewater provides evidence for internal exposure of studied populations to these chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Advances in analytical methods and occurrence of organic UV-filters in the environment--A review.
Ramos, Sara; Homem, Vera; Alves, Arminda; Santos, Lúcia
2015-09-01
UV-filters are a group of compounds designed mainly to protect skin against UVA and UVB radiation, but they are also included in plastics, furniture, etc., to protect products from light damage. Their massive use in sunscreens for skin protection has been increasing due to the awareness of the chronic and acute effects of UV radiation. Some organic UV-filters have raised significant concerns in the past few years for their continuous usage, persistent input and potential threat to ecological environment and human health. UV-filters end up in wastewater and because wastewater treatment plants are not efficient in removing them, lipophilic compounds tend to sorb onto sludge and hydrophilics end up in river water, contaminating the existing biota. To better understand the risk associated with UV-filters in the environment a thorough review regarding their physicochemical properties, toxicity and environmental degradation, analytical methods and their occurrence was conducted. Higher UV-filter concentrations were found in rivers, reaching 0.3mg/L for the most studied family, the benzophenone derivatives. Concentrations in the ng to μg/L range were also detected for the p-aminobenzoic acid, cinnamate, crylene and benzoyl methane derivatives in lake and sea water. Although at lower levels (few ng/L), UV-filters were also found in tap and groundwater. Swimming pool water is also a sink for UV-filters and its chlorine by-products, at the μg/L range, highlighting the benzophenone and benzimidazole derivatives. Soils and sediments are not frequently studied, but concentrations in the μg/L range have already been found especially for the benzophenone and crylene derivatives. Aquatic biota is frequently studied and UV-filters are found in the ng/g-dw range with higher values for fish and mussels. It has been concluded that more information regarding UV-filter degradation studies both in water and sediments is necessary and environmental occurrences should be monitored more frequently and deeply. Copyright © 2015 Elsevier B.V. All rights reserved.
Messerlian, Carmen; Mustieles, Vicente; Minguez-Alarcon, Lidia; Ford, Jennifer B; Calafat, Antonia M; Souter, Irene; Williams, Paige L; Hauser, Russ
2018-05-01
Although pregnancy concentrations of some phenols have been associated with infant size at birth, there is limited data on the effect of preconception exposure. We aimed to examine paternal and maternal preconception and maternal prenatal urinary phenol concentrations in relation to birth weight and head circumference. We evaluated 346 singletons born to 346 mothers and 184 fathers (184 couples) from a prospective preconception cohort of subfertile couples from the Environment and Reproductive Health (EARTH) Study in Boston, USA. We used multiple urine samples collected before the index pregnancy in both men and women to estimate mean preconception urinary benzophenone-3, triclosan, butylparaben, propylparaben, methylparaben, or ethylparaben concentrations. We also estimated mean maternal prenatal urinary phenol concentrations by averaging trimester-specific urine samples. Birth weight and head circumference were abstracted from delivery records. We estimated the association of natural log-phenol concentrations with birth outcomes using multivariable linear regression models, adjusting for known confounders. In adjusted models, each log-unit increase in paternal preconception benzophenone-3 concentration was associated with a 137 g increase in birth weight (95% CI: 60, 214). Additional adjustment for prenatal benzophenone-3 concentration strengthened this association. None of the maternal preconception phenol concentrations were associated with birth weight. However, maternal prenatal triclosan concentrations were associated with a 38 g decrease in birth weight (95% CI: -76, 0). Few associations were observed between phenols and head circumference except for a decrease of 0.27 cm (95% CI: -54, 0) in relation to maternal preconception methylparaben concentration. Although our findings should be interpreted in light of inherent study limitations, these results suggest potential evidence of associations between some paternal or maternal phenol concentrations and birth size. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Rosenberg, Robert E.
2007-01-01
The guided-inquiry approach is applied to the reactions of sodium borohydride and phenyl magnesium bromide with benzaldehyde, benzophenone, benzoic anhydride, and ethyl benzoate. Each team of four students receives four unknowns. Students identify the unknowns and their reaction products by using the physical state of the unknown, an…
40 CFR 60.489 - List of chemicals produced by affected facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 75-07-0 Acetaldehyde. 107-89-1 Acetaldol. 60-35-5 Acetamide. 103-84-4 Acetanilide. 64-19-7 Acetic.... 119-53-9 Benzoin. 100-47-0 Benzonitrile. 119-61-9 Benzophenone. 98-07-7 Benzotrichloride. 98-88-4...-4 Bromonaphthalene. 106-99-0 Butadiene. 106-98-9 1-butene. 123-86-4 n-butyl acetate. 141-32-2 n...
Saracino, M; Pretali, L; Capobianco, M L; Emmi, S S; Navacchia, M L; Bezzi, F; Mingazzini, C; Burresi, E; Zanelli, A
2018-01-01
Many emerging contaminants pass through conventional wastewater treatment plants, contaminating surface and drinking water. The implementation of advanced oxidation processes in existing plants for emerging contaminant remediation is one of the challenges for the enhancement of water quality in the industrialised countries. This paper reports on the production of a TiO 2 nano-layer on quartz wool in a relevant amount, its characterisation by X-ray diffraction and scanning electron microscopy, and its use as a photocatalyst under ultraviolet radiation for the simultaneous mineralisation of five emerging organic contaminants (benzophenone-3, benzophenone-4, carbamazepine, diclofenac, and triton X-100) dissolved in deionised water and tap water. This treatment was compared with direct ultraviolet photolysis and with photocatalytic degradation on commercial TiO 2 micropearls. The disappearance of every pollutant was measured by high performance liquid chromatography and mineralisation was assessed by the determination of total organic carbon. After 4 hours of treatment with the TiO 2 nano-coated quartz wool, the mineralisation exceeds 90% in deionised water and is about 70% in tap water. This catalyst was reused for seven cycles without significant efficiency loss.
Dewalque, Lucas; Pirard, Catherine; Charlier, Corinne
2014-01-01
Parabens, benzophenone-3 (BP3), and phthalates are commonly used as antimicrobial conservator, UV-filter, and plasticizer, respectively, and are thought to exhibit endocrine disrupting properties. These endocrine disrupting activities have been recently assumed to lead to cutaneous malignant melanoma. Humans are exposed to these chemicals through different sources such as food, personal care products, or cosmetics. In this study, we measured urinary levels of 4 parabens, BP3, and 7 metabolites of phthalates in samples collected from 261 participants living in and around Liege (Belgium). The analyses were carried out by liquid chromatography tandem mass spectrometry (LC-MS/MS) using isotopic dilution. To the best of our knowledge, this is the first time that the urinary levels of these 3 classes of chemicals are reported for the same general population in Belgium. Most of the parabens, the BP3, and all the phthalate metabolites were detected in 82.8 to 100.0% of the samples. For most of these chemicals, the exposure patterns significantly differ not only between children and adults, but also between males and females, especially with higher concentrations of parabens and phthalate metabolites in female and children subjects, respectively. PMID:24719881
Li, Jun; Gao, Ruixi; Zhao, Dan; Huang, Xianju; Chen, Yu; Gan, Fei; Liu, Hui; Yang, Guangzhong
2017-08-18
Xanthochymol (XCM) and guttiferone E (GFE), a pair of π bond benzophenone isomers from Garcinia xanthochymus, were once reported to be difficult or impossible to separate. The present study reports the successful separation of these two isomers through high performance liquid chromatography (HPLC), as well as their effective isolation using high speed counter-current chromatography (HSCCC) based on the silver nitrate (AgNO 3 ) coordination reaction. First, an effective HPLC separation system was developed, achieving a successful baseline separation with resolution of 2.0. Based on the partition coefficient (K) resolved by HPLC, the two-phase solvent system was determined as n-hexane, methanol and water with the uncommon volume ratio of 4:6:1. A crude extract of Garcinia xanthochymus (0.2g) was purified by normal HSCCC and refined with AgNO 3 -HSCCC. Monomers of XCM and GFE were identified by HPLC, mass spectrometry (MS) and nuclear magnetic resonance (NMR). The results demonstrate the separation and isolation of π bond benzophenone isomers using ordinary octadecyl silane (C 18 ) columns and HSCCC. Copyright © 2017 Elsevier B.V. All rights reserved.
Pailee, Phanruethai; Kuhakarn, Chutima; Sangsuwan, Chanyapat; Hongthong, Sakchai; Piyachaturawat, Pawinee; Suksen, Kanoknetr; Jariyawat, Surawat; Akkarawongsapat, Radeekorn; Limthongkul, Jitra; Napaswad, Chanita; Kongsaeree, Palangpon; Prabpai, Samran; Jaipetch, Thaworn; Pohmakotr, Manat; Tuchinda, Patoomratana; Reutrakul, Vichai
2018-03-01
Eleven previously undescribed compounds, including four benzophenones (garciosones A-D), four xanthones (garciosones E-H) and three biphenyls (garciosines A-C), along with eighteen known compounds were isolated from the stems, leaves and twigs of Garcinia speciosa Wall. (Clusiaceae). Their structures were established by extensive spectroscopic analysis. For garciosines A-C, the structures were confirmed by single crystal X-ray diffraction analysis. Most of the isolated compounds were evaluated for their cytotoxic activity and anti-HIV-1 activity using the syncytium inhibition assay and HIV-1 reverse transcriptase (RT) assay. The known compounds, 4,6,3',4'-tetrahydroxy-2-methoxybenzophenone and macluraxanthone, displayed significant cytotoxic activity with the ED 50 in the range of 1.85-11.76 μM. 1,5-Dihydroxyxanthone exhibited the most potent anti-HIV activity against syncytium formation with EC 50 < 17.13 μM (SI > 25.28) and 2-(3,3-dimethylallyl)-1,3,7-trihydroxyxanthone was the most active compound in the HIV-1 reverse transcriptase assay with IC 50 value of 58.24 μM. Structure-activity relationship of some isolated compounds were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Figueredo, Yanier Núñez; García-Pupo, Laura; Cuesta Rubio, Osmany; Delgado Hernández, René; Naal, Zeki; Curti, Carlos; Pardo Andreu, Gilberto L
2011-01-01
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 µM. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA-Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.
Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.
Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang
2013-09-15
A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Determination of ultraviolet filter activity on coconut oil cosmetic cream
NASA Astrophysics Data System (ADS)
Widiyati, Eni
2017-08-01
A research on determination of ultraviolet (UV) filter activity of cosmetic cream with coconut oil as raw material has been done. The cream was made by mixing the oil phase (coconut oil, stearic acid, lanolin and cetyl alcohol) at 70°C and the water phase (glycerin, aquadest and triethanolamine) at 70°C, while stirring until reached a temperature of 35°C. It was made also a cream with inorganic sunscreen TiO2 and organic sunscreen benzophenone-3 as a comparison. To study the UV filter activity, each cream was determined the UV absorption using UV spectrophotometer. The results show that cosmetic cream with coconut oil as raw material absorbs UV rays in the region of UV-C, whereas the cream with TiO2 absorbs the UV rays from UV-C to UV-A and cream with benzophenone-3 absorbs the UV rays from UV-B to UV-A region. This means that, the cosmetic cream with coconut oil as raw material has an activity as UV-C filter. If this cream is expected to have an activity as a sunscreen, it must be added an inorganic or organic sunscreen or a mixture of both as an active materials.
Shan, Lanlan; Wu, Yuanyuan; Yuan, Lei; Zhang, Yani
2017-01-01
Rhizoma Anemarrhenae, a famous traditional Chinese medicine (TCM), is the dried rhizome of Anemarrhena asphodeloides Bge. (Anemarrhena Bunge of Liliaceae). The medicine presents anti-inflammatory, antipyretic, sedative, and diuretic effects. The chemical constituents of Rhizoma Anemarrhenae are complex and diverse, mainly including steroidal saponins, flavonoids, phenylpropanoids, benzophenones, and alkaloids. In this study, UPLC-Q-TOF/MS was used in combination with data postprocessing techniques, including characteristic fragments filter and neutral loss filter, to rapidly classify and identify the five types of substances in Rhizoma Anemarrhenae. On the basis of numerous literature reviews and according to the corresponding characteristic fragments produced by different types of compounds in combination with neutral loss filtering, we summarized the fragmentation patterns of the main five types of compounds and successfully screened and identified 32 chemical constituents in Rhizoma Anemarrhenae. The components included 18 steroidal saponins, 6 flavonoids, 4 phenylpropanoids, 2 alkaloids, and 2 benzophenones. The method established in this study provided necessary data for the study on the pharmacological effects of Rhizoma Anemarrhenae and also provided the basis for the chemical analysis and quality control of TCMs to promote the development of a method for chemical research on TCMs. PMID:29234389
Tsai, Dung-Ying; Chen, Chien-Liang; Ding, Wang-Hsien
2014-07-01
A simple and effective method for the rapid determination of five salicylate and benzophenone-type UV absorbing substances in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by on-line silylation gas chromatography tandem mass spectrometry (GC-MS/MS). The parameters that affect the extraction efficiency were optimized using a Box-Behnken design method. The optimal extraction conditions involved dispersing 0.5g of freeze-dried powdered fish with 1.0g of Florisil using a mortar and pestle. This blend was then transferred to a solid-phase extraction (SPE) cartridge containing 1.0g of octadecyl bonded silica (C18), as the clean-up co-sorbent. The target analytes were then eluted with 7mL of acetonitrile. The extract was derivatized on-line in the GC injection-port by reaction with a trimethylsilylating (TMS) reagent. The TMS-derivatives were then identified and quantitated by GC-MS/MS. The limits of quantitation (LOQs) were less than 0.1ng/g. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sun, Hong-Qin; Du, Yang; Zhang, Zi-Yang; Jiang, Wen-Jing; Guo, Yan-Min; Lu, Xi-Wu; Zhang, Yi-Min; Sun, Li-Wei
2016-09-19
Benzophenone (BP) and N,N -diethyl-3-methylbenzamide (DEET) are two chemicals often used in personal care products (PCPs). There is a lack of systematic ecotoxicological evaluations about the two chemicals to aquatic organisms. In the present study, the acute toxic effects on Chlorella vulgaris , Daphnia Magana , and Brachydanio rerio were tested and the ecotoxicological risks were evaluated. For BP, the 96-h half-maximal effective concentration (EC 50 ) on C. vulgaris was 6.86 mg/L; the 24-h median lethal concentration (LC 50 ) on D. magana was 7.63 mg/L; the 96-h LC 50 on B. rerio was 14.73 mg/L. For DEET, those were 270.72 mg/L, 40.74 mg/L, and 109.67 mg/L, respectively. The mixture toxicity of BP and DEET, on C. vulgaris , D. magana , and B. rerio all showed an additive effect. The induced predicted no-effect concentrations (PNECs) for BP and DEET by assessment factor (AF) method are 0.003 mg/L and 0.407 mg/L, respectively. Both are lower than the concentrations detected from environment at present, verifying that BP and DEET are low-risk chemicals to the environment.
Lopez-Gazpio, Josu; Garcia-Arrona, Rosa; Millán, Esmeralda
2015-04-01
In this work, a simple and reliable micellar electrokinetic chromatography method for the separation and quantification of 14 preservatives, including isothiazolinones, and two benzophenone-type UV filters in household, cosmetic and personal care products was developed. The selected priority compounds are widely used as ingredients in many personal care products, and are included in the European Regulation concerning cosmetic products. The electrophoretic separation parameters were optimized by means of a modified chromatographic response function in combination with an experimental design, namely a central composite design. After optimization of experimental conditions, the BGE selected for the separation of the targets consisted of 60 mM SDS, 18 mM sodium tetraborate, pH 9.4 and 10% v/v methanol. The MEKC method was checked in terms of linearity, LODs and quantification, repeatability, intermediate precision, and accuracy, providing appropriate values (i.e. R(2) ≥ 0.992, repeatability RSD values ˂9%, and accuracy 90-115%). Applicability of the validated method was successfully assessed by quantifying preservatives and UV filters in commercial consumer products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Hong-Qin; Du, Yang; Zhang, Zi-Yang; Jiang, Wen-Jing; Guo, Yan-Min; Lu, Xi-Wu; Zhang, Yi-Min; Sun, Li-Wei
2016-01-01
Benzophenone (BP) and N,N-diethyl-3-methylbenzamide (DEET) are two chemicals often used in personal care products (PCPs). There is a lack of systematic ecotoxicological evaluations about the two chemicals to aquatic organisms. In the present study, the acute toxic effects on Chlorella vulgaris, Daphnia Magana, and Brachydanio rerio were tested and the ecotoxicological risks were evaluated. For BP, the 96-h half-maximal effective concentration (EC50) on C. vulgaris was 6.86 mg/L; the 24-h median lethal concentration (LC50) on D. magana was 7.63 mg/L; the 96-h LC50 on B. rerio was 14.73 mg/L. For DEET, those were 270.72 mg/L, 40.74 mg/L, and 109.67 mg/L, respectively. The mixture toxicity of BP and DEET, on C. vulgaris, D. magana, and B. rerio all showed an additive effect. The induced predicted no-effect concentrations (PNECs) for BP and DEET by assessment factor (AF) method are 0.003 mg/L and 0.407 mg/L, respectively. Both are lower than the concentrations detected from environment at present, verifying that BP and DEET are low-risk chemicals to the environment. PMID:27657095
Shan, Lanlan; Wu, Yuanyuan; Yuan, Lei; Zhang, Yani; Xu, Yanyan; Li, Yubo
2017-01-01
Rhizoma Anemarrhenae , a famous traditional Chinese medicine (TCM), is the dried rhizome of Anemarrhena asphodeloides Bge. ( Anemarrhena Bunge of Liliaceae). The medicine presents anti-inflammatory, antipyretic, sedative, and diuretic effects. The chemical constituents of Rhizoma Anemarrhenae are complex and diverse, mainly including steroidal saponins, flavonoids, phenylpropanoids, benzophenones, and alkaloids. In this study, UPLC-Q-TOF/MS was used in combination with data postprocessing techniques, including characteristic fragments filter and neutral loss filter, to rapidly classify and identify the five types of substances in Rhizoma Anemarrhenae . On the basis of numerous literature reviews and according to the corresponding characteristic fragments produced by different types of compounds in combination with neutral loss filtering, we summarized the fragmentation patterns of the main five types of compounds and successfully screened and identified 32 chemical constituents in Rhizoma Anemarrhenae . The components included 18 steroidal saponins, 6 flavonoids, 4 phenylpropanoids, 2 alkaloids, and 2 benzophenones. The method established in this study provided necessary data for the study on the pharmacological effects of Rhizoma Anemarrhenae and also provided the basis for the chemical analysis and quality control of TCMs to promote the development of a method for chemical research on TCMs.
Kokotkiewicz, Adam; Luczkiewicz, Maria; Pawlowska, Justyna; Luczkiewicz, Piotr; Sowinski, Pawel; Witkowski, Jacek; Bryl, Ewa; Bucinski, Adam
2013-10-01
A fast and efficient method for the isolation of the C-glucosidated xanthones mangiferin and isomangiferin from the South-African plant Cyclopia genistoides was developed for the first time. The procedure involved extraction, liquid-liquid partitioning with ethyl acetate and subsequent precipitation of mangiferin and isomangiferin from methanol and acetonitrile-water fractions, respectively. Additionally, two benzophenone derivatives: 3-C-β-glucosides of maclurin and iriflophenone, were isolated from C. genistoides extracts using semi-preparative HPLC. Apart from the above, the isolation procedure also yielded hesperidin and small amounts of luteolin. The structures of the compounds were determined by 1D and 2D NMR experiments and/or LC-DAD-ESI-MS. The selected Cyclopia constituents were screened for pro-apoptotic activity on TNF-α-stimulated synovial cells isolated from rheumatoid arthritis patients. The strongest effect, measured as percent of apoptotic cells, was recorded for isomangiferin (75%), followed by iriflophenone 3-C-β-glucoside (71%), hesperidin (67%) and mangiferin (65%). The results are encouraging for further studies on the use of the above compounds in the treatment of rheumatoid arthritis. © 2013.
Phenylethynl-terminated poly(arylene ethers)
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Bryant, Robert G. (Inventor); Hergenrother, Paul M. (Inventor)
1993-01-01
Phenylethynyl-terminated poly(arylene ethers) are prepared in a wide range of molecular weights by adjusting monomer ratio and adding an appropriate amount of 4-fluoro- 4'-phenylethynyl benzophenone during polymer synthesis. The resulting phenylethynyl-terminated poly(arylene ethers) react and crosslink upon curing for one hour at 350 C to provide materials with improved solvent resistance, higher modulus, and better high temperature properties than the linear, uncrosslinked polymers.
Exudate Chemical Profiles Derived from Lespedeza and Other Tallgrass Prairie Plant Species
2017-05-01
assayed by liquid chromatography–tandem mass spec- trometry (LC-MS/MS) and gas chromatography/mass spectrometry (GC/MS). The objective was to elucidate...molecular weight compounds were identified via gas chromatography/mass spectrometry (GC/MS) and tentatively identified as benzophenone and 1,4...diacetylbenzene. Three higher molecular weight compounds were identified by liquid chromatography-electrospray ionization- mass spectrometry (LC-ESI-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamoiski, Rachel D., E-mail: rachel.zamoiski@nih.gov; Cahoon, Elizabeth K.; Michal Freedman, D.
Background: Sunscreens protect against skin cancer and other harmful effects of solar ultraviolet radiation (UVR). Epidemiologic and public health surveys often rely on self-reported sunscreen use to estimate sun exposure and avoidance, but questions remain about the validity of self-reports. Benzophenone-3 (BP-3), a common sunscreen ingredient, can be detected in the urine. Prior studies suggest that BP-3 concentrations increase after application of sunscreen. Objectives: The goal of this study was to assess the validity of self-reported frequency of sunscreen use in relation to urinary BP-3 concentrations in a representative sample of the general US population, including in sub-groups defined bymore » age, sex and race/ethnicity. Methods: To assess the relationship between categorical self-reported sunscreen use and creatinine-corrected urinary BP-3 concentrations, we conducted a linear regression adjusted for age, sex, race/ethnicity, six-month time period, body mass index, education, and sun avoidance behaviors. We tested for effect modification by age, sex, ethnicity and time period of measurement using multiplicative interaction terms and a F test. Results: BP-3 was positively associated with self-reported frequency of sunscreen use across all ages, sexes, race/ethnicities, and time periods. Crude and multivariate adjusted models were all statistically significant. R-square was relatively low for all models, ranging from 0.15 to 0.43. Conclusions: Urinary BP-3 is positively associated with self-reported frequency of sunscreen use in the general US population, even in groups with overall low sunscreen use. These results suggest that self-report is a valid, although weak, way of assessing relative frequencies of sunscreen usage in a population-based study. - Highlights: • Urinary benzophenone-3 (BP-3) is a metabolite of a common sunscreen ingredient. • We modeled urinary BP-3 against self-reported sunscreen usage. • We observed a positive association between sunscreen use and urinary BP-3. • R{sup 2} was low, suggesting self-report is a valid but weak way to assess sunscreen use.« less
Broniowska, Żaneta; Ślusarczyk, Joanna; Starek-Świechowicz, Beata; Trojan, Ewa; Pomierny, Bartosz; Krzyżanowska, Weronika; Basta-Kaim, Agnieszka; Budziszewska, Bogusława
2018-04-13
Benzophenones used as UV filters, in addition to the effects on the skin, can be absorbed into the blood and affect the function of certain organs. So far, their effects on the sex hormone receptors and gonadal function have been studied, but not much is known about their potential action on other systems. The aim of the present study was to determine the effect of benzophenone-2 (BP-2) on immune system activity, hypothalamic-pituitary-thyroid (HPT) axis activity and hematological parameters. BP-2 was administered dermally, twice daily at a dose of 100 mg/kg for 4-weeks to male Wistar rats. Immunological and hematological parameters and HPT axis activity were assayed 24 h after the last administration. It was found that BP-2 did not change relative weights of the thymus and spleen and did not exert toxic effect on tymocytes and splenocytes. However, this compound increased proliferative activity of splenocytes, enhanced metabolic activity of splenocytes and thymocytes and nitric oxide production of these cells. In animals exposed to BP-2, the HPT axis activity was increased, as evidenced by reduction in the thyroid stimulating hormone (TRH) level and increase in free fraction of triiodothyronine (fT3) and thyroxin (fT4) in blood. BP-2 had no effect on leukocyte, erythrocyte and platelet counts or on morphology and hemoglobin content in erythrocytes. The conducted research showed that dermal, sub-chronic BP-2 administration evoked hyperthyroidism, increased activity or function of the immune cells but did not affect hematological parameters. We suggest that topical administration of BP-2 leading to a prolonged elevated BP-2 level in blood causes hyperthyroidism, which in turn may be responsible for the increased immune cell activity or function. However, only future research can explain the mechanism and functional importance of the changes in thyroid hormones and immunological parameters observed after exposure to BP-2. Copyright © 2018 Elsevier B.V. All rights reserved.
Electrochemical Studies of Benzophenone and Fluorenone Imines, Amines and Diphenyldiazomethane.
1982-01-01
exhaustive, controlled-potential electrolyses has also been described. 2 Cells. electrodes. and electrolysis procedures. All electrochemical experiments...scale electrolyses was monitored periodically by cyclic voltammetry. At the conclusion of the experiment, the electrolysis mixture was protonated in a...stainless steel * column packed with LiChrosorb RP8 or LiChrosorb RP18, 10-pm mean particle size. The eluting solvent was a mixture of methanol and water
ERIC Educational Resources Information Center
Hein, Sara M.; Kopitzke, Robert W.; Nalli, Thomas W.; Esselman, Brian J.; Hill, Nicholas J.
2015-01-01
A discovery-based Grignard experiment for a second-year undergraduate organic chemistry course is described. The exclusive Grignard reagent formed by the reaction of 1-bromo-4-fluorobenzene (1) with Mg is 4-fluorophenylmagnesium bromide (2), which is treated with either benzophenone or CO[subscript 2] to produce the corresponding fluorinated…
A Potential New Threat to Wild Life: Presence of UV Filters in Bird Eggs from a Preserved Area.
Molins-Delgado, Daniel; Máñez, Manuel; Andreu, Ana; Hiraldo, Fernando; Eljarrat, Ethel; Barceló, Damià; Díaz-Cruz, M Silvia
2017-10-03
The present study uses bird eggs of seven wild species as a biomonitoring tool for sunscreens occurrence. Seven UV filters (UV-Fs), including 3 hydroxy-metabolites of oxybenzone (benzophenone 3, BP3) were characterized in unhatched eggs from Doñana Natural Space (Spain). High frequency of detection was observed for all UV-Fs, ranging from 95% to 100%. The oxybenzone metabolite 4-hydroxybenzophenone (4HB) was ubiquitous at concentrations in the range 12.0-3348 ng g -1 dry weight (dw). The parent compound, oxybenzone, was also present in all samples at lower concentrations (16.9-49.3 ng g -1 dw). Due to the three BP3's metabolites, benzophenone 1 (BP1), 4HB, and 4,4'-dihydroxybenzophenone (4DHB) presence in unhatched eggs, it can be inferred that parent compounds are absorbed into the bird through the upper gut and the OH-derivatives formed are transferred by the mother to the egg before the lying. White stork (Ciconia ciconia) and western marsh harrier (Circus aeruginosus) were the most contaminated species, with mean total UV-Fs concentrations of 834 and 985 ng g -1 dw, respectively. Results evidenced that biomagnification process across the bird species studied cannot be ruled out.
Degradation Products of Benzophenone-3 in Chlorinated Seawater Swimming Pools.
Manasfi, Tarek; Storck, Veronika; Ravier, Sylvain; Demelas, Carine; Coulomb, Bruno; Boudenne, Jean-Luc
2015-08-04
Oxybenzone (2-hydroxy-4-methoxyphenone, benzophenone-3) is one of the UV filters commonly found in sunscreens. Its presence in swimming pools and its reactivity with chlorine has already been demonstrated but never in seawater swimming pools. In these pools, chlorine added for disinfection results in the formation of bromine, due to the high levels of bromide in seawater, and leads to the formation of brominated disinfection byproducts, known to be more toxic than chlorinated ones. Therefore, it seems important to determine the transformation products of oxybenzone in chlorinated seawater swimming pools; especially that users of seawater swimming pools may apply sunscreens and other personal-care products containing oxybenzone before going to pools. This leads to the introduction of oxybenzone to pools, where it reacts with bromine. For this purpose, the reactivity of oxybenzone has been examined as a function of chlorine dose and temperature in artificial seawater to assess its potential to produce trihalomethanes and to determine the byproducts generated following chlorination. Increasing doses of chlorine and increasing temperatures enhanced the formation of bromoform. Experiments carried out with excess doses of chlorine resulted in the degradation of oxybenzone and allowed the determination of the degradation mechanisms leading to the formation of bromoform. In total, ten transformation products were identified, based on which the transformation pathway was proposed.
Direct observation of slow intersystem crossing in an aromatic ketone, fluorenone.
Soep, Benoît; Mestdagh, Jean-Michel; Briant, Marc; Gaveau, Marc-André; Poisson, Lionel
2016-08-17
Direct measurements of Single vibronic Level InterSystem Crossing (SLISC) have been performed on the fluorenone molecule in the gas phase, by time resolved photoelectron and photoion spectroscopy. Vibronic transitions above the S1 nπ* origin were excited in the 432-420 nm region and the decay of S1 and growth of T1(3)ππ* could be observed within a 10 ns time domain. The ionization potential is measured as 8.33 ± 0.04 eV. The energy of the first excited triplet state of fluorenone, T1 has been characterized directly at 18 640 ± 250 cm(-1). The internal conversion of S1 to S0 is found to amount to ∼15% of the population decay, thus ISC is the dominant electronic relaxation process. ISC, although favored by the S1(1)nπ*-T1(3)ππ* coupling scheme, is 3 orders of magnitude less efficient than in the similar molecule benzophenone. Thus, the planarity of the fluorenone molecule disfavors the exploration of the configuration space where surface crossings would create high ISC probability, which occurs in benzophenone through surface crossings. The time evolution of S1 fluorenone is well accounted for by the statistical decay of individual levels into a quasi-continuum of T1 vibronic levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nahum, T.; Dodiuk, H.; Dotan, A.
Superhydrophobic surfaces with contact angle (CA) >150 and sliding angle (SA) <10 have been aroused curiosity over the years due to their various applications. Superhydrophobicity can be obtained tailoring the chemistry and the roughness of the surface, mimicking the Lotus flower. Most superhydrophobic surfaces based on secondary bonding lose their roughness in harsh conditions and are unsuitable for practical applications. Photoreactive SiO{sub 2} nanoparticles (NPs) based on benzophenone (BP) can be a very effective tool for formation of reactive species that function as a molecular bridge by covalent bonding between the NP and any polymer matrix with C-C and C-Hmore » bonds. The present work focused on thermoset radiation curing urethane acrylate. Upon UV irradiation reactive excited nπ* triplet benzophenone species are formed and react through hydrogen abstraction to form ketyl radicals which interact with a radicals from the UV irradiated polymer matrix to yield covalent bonding. Roughness was achieved by dipping the substrate in SiO{sub 2}@BPs NPs dispersion followed by irradiation. Fluoroalkylsilane was used to obtain hydrophobic top layer. AFM nano manipulation was used to verify the immobilization of NPs. Evaluation of durability was made using air flow at 300 km/hr. Preliminary results indicate the formation of super hydrophobic surfaces (CA>150 and SA<10) with improved stability.« less
Phiboonchaiyanan, Preeyaporn Plaimee; Busaranon, Kesarin; Ninsontia, Chuanpit; Chanvorachote, Pithi
2017-06-01
Exposure to compounds with cancer-potentiating effects can contribute to the progression of cancer. Herein we have discovered for the first time that benzophenone-3 (BP-3), a chemical used as sunscreen in various cosmetic products, enhances the ability of lung cancer cells to undergo metastasis. The exposure of the lung cancer cells to BP-3 at non-toxic concentrations significantly increased the number of anoikis resistant cells in a dose-dependent manner. Also, BP-3 increased the growth rate as well as the number of colonies accessed by anchorage-independent growth assay. We found that the underlying mechanisms of such behaviors were the epithelial to mesenchymal transition (EMT) process of cancer cells, and the increase in caveolin-1 (Cav-1) expression. As both mechanistic events mediated anoikis resistance via augmentation of cellular survival signals, our results further revealed that the BP-3 treatment significantly up-regulated extracellular-signal-regulated kinase (ERK). Also, such compounds increased the cellular levels of anti-apoptotic Bcl-2 and Mcl-1 proteins. As the presence of a substantial level of BP-3 in plasma of the consumers has been reported, this finding may facilitate further investigations that lead to better understanding and evidence concerning the safety of use in cancer patients.
Feng, Xin-xin; Du, Er-deng; Guo, Ying-qing; Li, Hua-jie; Liu, Xiang; Zhou, Fang
2015-06-01
Organic sunscreens continue to enter the environment through people's daily consumption, and become a kind of emerging contaminants. The photochemical degradation of benzophenone-3 (BP-3) in water by UV/H2O2 process was investigated. Several factors, including the initial BP-3 concentration, H2O2 concentration, UV light intensity, coexisting cations and anions, humic acid and tert-butyl alcohol, were also discussed. The results showed that BP-3 degradation rate constant decreased with increasing initial BP-3 concentration, while increased with increasing H2O2 dosage and UV intensity. Coexisting anions could reduce the degradation rate, while coexisting ferric ions could stimulate the production of OH through Fenton-like reaction, further significantly accelerated BP-3 degradation process. The BP-3 degradation would be inhibited by humic acid or tert-butyl alcohol. The electrical energy per order (E(Eo)) values were also calculated to evaluate the cost of BP-3 degradation by UV/H2O2 process. The addition of ferric ions significantly reduced the value of E(Eo). The investigation of processing parameter could provide a reference for the practical engineering applications of benzophenone compounds removal by UV/H2O2 process.
Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.
Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana
2016-12-01
Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Clary, Dan
Cyclodextrins are cyclic molecules composed of glucose units. The inner cavity of cyclodextrins is noted for its ability to form stable inclusion complexes with a wide variety of guests. A cyclodextrin-glucose host-guest complex was prepared and utilized as both a salt reductant and a particle stabilizer in the generation of aqueous metal colloids including Ag, Au, Pd, and Pt. The resulting colloids demonstrated remarkable stability---3 years and running, in some cases---and have been evaluated for thermal conductivity. Evaluation of the reaction products when the complex is used to reduce Pd 2+ demonstrated a unique comproportionation reaction in which the guest undergoes a two electron oxidation to produce a Pd atom. The resulting atom reduces a neighboring Pd2+ ion to yield two Pd + ions. The monovalent species, in contrast to Pd2+, can then oxidize the host to form atoms which rapidly aggregate to yield particles. Highly stable, crystalline copper(II) oxide particles were prepared which can be isolated as a powder and redispursed in low dielectric media such as hydrocarbons or chloroform. Mass concentrations of up to 20% (1.65 M) were achieved in octane, dodecane, and eicosane and remained stable for at least ten days at room temperature as observed by visible spectroscopy. Quasi-spherical particle shape was observed with the largest fraction possessing a diameter of 9 nm and 90% of the population existing within the range of 5 to 15 nm. The colloidal systems were characterized using FAA, XRD, TEM, UV-Vis, DSC, and a simple device inspired by Newton's Law of cooling which was employed to measure cooling/heating rates. Thermodynamic measurements of sodium oleate-stabilized CuO particles suspended in dodecane and eicosane reveal a decrease in Cp, DeltaH fus , and cooling/heating rates of the resulting colloid with large increases in particle mass concentration. Irradiation with 350 nm photons of anhydrous, air-free octane or toluene solutions of copper(II) oleate containing benzophenone as a photosensitizer and oleoylsarcosine as a stabilizer resulted in metallic Cu particles with nanometer dimensions. Evidence is presented that implicates the hydrocarbon as the predominant H-atom donor in the generation of reductive benzophenone ketyl radicals and a kinetic model is constructed to rationalize the rate dependencies with respect to the Cu2+/Cu+ step. Rates of both Cu2+ consumption and Cu formation vary linearly with light intensity and exhibit a first-order dependence on benzophenone concentration but the latter step shows little dependence otherwise. The initial rate of reactant consumption decreases with increasing concentration of cupric ions or sarcosine. Quenching of the excited state of benzophenone by the stabilizer occurs with a rate constant of k4 = 1.6 x 105 M-1 s-1 and is explained by the formation of a contact ion pair between the reduced chromophore and oxidized sarcosine which ultimately decays by back electron transfer. UV irradiation of octane solutions containing Ag neodecanoate, Pd(acac) 2, or Pt(acac)2 in the presence of benzophenone and oleoyl sarcosine resulted in crystalline metal particles. Rates of metal formation in the absence of BP for Pd(acac)2 and Pt(acac)2 were ri = 3.4x10-8 M/s and ri = 4.7x10 -8 M/s, respectively, which are 2-4 times slower than the analgous reactions conducted in the presence of the chromophore. The direct irradiation of Ag(OOR), on the other hand, resulted in no reaction. In the presence of BP, silver atoms were formed with a rate constant of 4.2x10-7 M/s. The resulting octane colloids were evaluated for enhancements in thermal conductivity (TC) using the Thermal HotDisk method. Increases in krel of up to 10% were observed for the Ag and Pt systems at [M] = 5 mM which are far larger than what Maxwell's theory predicts for a colloid of such low volume fraction (˜5x10-5 vol%). (Abstract shortened by UMI.)
Site-specific photoconjugation of antibodies using chemically synthesized IgG-binding domains.
Perols, Anna; Karlström, Amelie Eriksson
2014-03-19
Site-specific labeling of antibodies can be performed using the immunoglobulin-binding Z domain, derived from staphylococcal protein A (SpA), which has a well-characterized binding site in the Fc region of antibodies. By introducing a photoactivable probe in the Z domain, a covalent bond can be formed between the Z domain and the antibody by irradiation with UV light. The aim of this study was to improve the conjugation yield for labeling of different subclasses of IgG having different sequence composition, using a photoactivated Z domain variant. Four different variants of the Z domain (Z5BPA, Z5BBA, Z32BPA, and Z32BBA) were synthesized to investigate the influence of the position of the photoactivable probe and the presence of a flexible linker between the probe and the protein. For two of the variants, the photoreactive benzophenone group was introduced as part of an amino acid side chain by incorporation of the unnatural amino acid benzoylphenylalanine (BPA) during peptide synthesis. For the other two variants, the photoreactive benzophenone group was attached via a flexible linker by coupling of benzoylbenzoic acid (BBA) to the ε-amino group of a selectively deprotected lysine residue. Photoconjugation experiments using human IgG1, mouse IgG1, and mouse IgG2A demonstrated efficient conjugation for all antibodies. It was shown that differences in linker length had a large impact on the conjugation efficiency for labeling of mouse IgG1, whereas the positioning of the photoactivable probe in the sequence of the protein had a larger effect for mouse IgG2A. Conjugation to human IgG1 was only to a minor extent affected by position or linker length. For each subclass of antibody, the best variant tested using a standard conjugation protocol resulted in conjugation efficiencies of 41-66%, which corresponds to on average approximately one Z domain attached to each antibody. As a combination of the two best performing variants, Z5BBA and Z32BPA, a Z domain variant with two photoactivable probes (Z5BBA32BPA) was also synthesized with the aim of targeting a wider panel of antibody subclasses and species. This new reagent could efficiently couple to all antibody subclasses that were targeted by the single benzophenone-labeled Z domain variants, with conjugation efficiencies of 26-41%.
Environmentally stable polymers and coatings for space application: CH-5, supplement 10
NASA Technical Reports Server (NTRS)
Sykes, G.
1986-01-01
High molecular weight, randomly coupled poly(imide siloxane) soluble block copolymers were synthesized from bis(amino propyl) polydimethylsiloxane equilibrates of various molecular weights, aromatic metalinked diamines, and 3,3'-4,4'-benzophenone tetracarboxylic dianhydride (BTDA). Two synthetic procedures were successfully used to synthesize the poly(amic acid siloxane) intermediates. For both synthetic procedures, a cosolvent system was employed to achieve complete solvation of all components throughout the polymerization. Physical property characterization is continuing.
2007-03-01
alkaloid piperine and 12 syn- thetic derivatives have been evaluated against epimas- tigote and amastigote forms of the protozoan parasite Trypanosoma...O. Kris- tiansen, P. Maienfisch, A. Pascual, and A. Rindlisbacher. 2001. Synthesis and structure-activity relationships of benzophenone hydrazone...Am. J. Trop. Med. Hyg. 22: 124Ð 129. Creemer, L. C., H. A. Kirst, J.W. Paschal, and T. V.Worden. 2000. Synthesis and insecticidal activity of spinosyn
Emnet, Philipp; Gaw, Sally; Northcott, Grant; Storey, Bryan; Graham, Lisa
2015-01-01
Pharmaceutical and personal care products (PPCPs) are a major source of micropollutants to the aquatic environment. Despite intense research on the fate and effects of PPCPs in temperate climates, there is a paucity of data on their presence in polar environments. This study reports the presence of selected PPCPs in sewage effluents from two Antarctic research stations, the adjacent coastal seawater, sea ice, and biota. Sewage effluents contained bisphenol-A, ethinylestradiol, estrone, methyl triclosan, octylphenol, triclosan, and three UV-filters. The maximum sewage effluent concentrations of 4-methyl-benzylidene camphor, benzophenone-1, estrone, ethinylestradiol, and octylphenol exceeded concentrations previously reported. Coastal seawaters contained bisphenol-A, octylphenol, triclosan, three paraben preservatives, and four UV-filters. The sea ice contained a similar range and concentration of PPCPs as the seawater. Benzophenone-3 (preferential accumulation in clams), estradiol, ethinylestradiol, methyl paraben (preferential accumulation in fish, with concentrations correlating negatively with fillet size), octylphenol, and propyl paraben were detected in biota samples. PPCPs were detected in seawater and biota at distances up to 25 km from the research stations WWTP discharges. Sewage effluent discharges and disposal of raw human waste through sea ice cracks have been identified as sources of PPCPs to Antarctic coastal environments. Copyright © 2014 Elsevier Inc. All rights reserved.
Thermochemistry and gas-phase ion energetics of 2-hydroxy-4-methoxy-benzophenone (oxybenzone).
Lago, A F; Jimenez, P; Herrero, R; Dávalos, J Z; Abboud, J-L M
2008-04-10
We have investigated the thermochemistry and ion energetics of the oxybenzone (2-hydroxy-4-methoxy-benzophenone, C14H12O3, 1H) molecule. The following parameters have been determined for this species: gas-phase enthalpy for the of neutral molecule at 298.15K, (Delta(f)H0(m)(g) = -303.5 +/- 5.1 kJ x mol-1), the intrinsic (gas-phase) acidity (GA(1H) = 1402.1 +/- 8.4 kJ x mol-1), enthalpy of formation for the oxybenzone anion (Delta(f)H0(m)(1-,g) = -402.3 +/- 9.8 kJ x mol-1). We also have obtained the enthalpy of formation of, 4-hydroxy-4'-methoxybenzophenone (Delta(f)H0(m)(g) = -275.4 +/- 10 kJ x mol-1) and 3-methoxyphenol anion (Delta(f)H0(m)(C7H7O2-,g) = -317.7 +/- 8.7 kJ x mol-1). A reliable experimental estimation of enthalpy related to intramolecular hydrogen bonding in oxybenzone has also been obtained (30.1 +/- 6.3 kJ x mol-1) and compared with our theoretical calculations at the B3LYP/6-311++G** level of theory, by means of an isodesmic reaction scheme. In addition, heat capacities, temperature, and enthalpy of fusion have been determined for this molecule by differential scanning calorimetry.
Chang, Fu-Kuei; Shiea, Jentaie; Tsai, Hsin-Jen
2017-01-01
The purpose of this study was to determine the levels of urinary triclosan (TCS), benzophenone-3 (BP-3), and bisphenol A (BPA) in 52 children and 71 adolescents. The effects of age and sex on the levels of urinary TCS, BP-3, and BPA were explored, respectively. Results demonstrated the overall detection rates of urinary TCS, BP-3, and BPA were 18.7%, 8.1%, and 49.6%, respectively. The females had higher TCS concentrations than males (p = 0.051). The detection rate of urinary BP-3 in females (12.3%) was higher than that in males (0%) (p = 0.015). Moreover, the detection rate of urinary BP-3 in adolescents (14.1%) was higher than that in children (0%) (p = 0.005). For children, no urinary BP-3 was found. There were no differences in detection rates and concentrations of urinary TCS, BP-3, and BPA between males and females, respectively. For adolescents, urinary BP-3 was only found in the females. Urinary TCS levels in females were higher than those in males (p = 0.047). The present study showed that urinary TCS concentrations in females were significantly higher than those in males, respectively. In addition, BP-3 was only detected in urine samples of female adolescents. Sex and age were the important factors influencing urinary TCS and BP-3 concentrations. PMID:29232866
Dermal Uptake of Benzophenone-3 from Clothing.
Morrison, Glenn C; Bekö, Gabriel; Weschler, Charles J; Schripp, Tobias; Salthammer, Tunga; Hill, Jonathan; Andersson, Anna-Maria; Toftum, Jørn; Clausen, Geo; Frederiksen, Hanne
2017-10-03
Benzophenone-3 (also known as BP-3 or oxybenzone) is added to sunscreens, plastics, and some coatings to filter UV radiation. The suspected endocrine disruptor BP-3 has been detected in the air and settled dust of homes and is expected to redistribute from its original sources to other indoor compartments, including clothing. Given its physical and chemical properties, we hypothesized that dermal uptake from clothing could contribute to the body burden of this compound. First, cotton shirts were exposed to air at an elevated concentration of BP-3 for 32 days; the final air concentration was 4.4 μg/m 3 . Next, three participants wore the exposed shirts for 3 h. After 3 h of exposure, participants wore their usual clothing during the collection of urine samples for the next 48 h. Urine was analyzed for BP-3, a metabolite (BP-1), and six other UV filters. The rate of urinary excretion of the sum of BP-1 and BP-3 increased for all participants during and following the 3 h of exposure. The summed mass of BP-1 and BP-3 excreted during the first 24 h attributable to wearing exposed t-shirts were 12, 9.9, and 82 μg for participants 1, 2, and 3, respectively. Analysis of these results, coupled with predictions of steady-state models, suggest that dermal uptake of BP-3 from clothing could meaningfully contribute to overall body burden.
Liu, T; Wu, D
2011-10-01
A method of gradient elution high-performance liquid chromatography (HPLC) for simultaneous determination of 11 different ultraviolet-absorbing chemicals of phenylbenzlmldazole sulphonic acid, 4-aminobenzoic acid, benzophenone-4, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl methoxycinnamate, homosalate, ethylhexyl salicylate, methylene bis-benzotriazolyl tetramethylbutyl phenol was developed for the application to sunscreen cosmetic products. In this study, an Agilent SB-C18 analytical column (250 × 4.6 mm, 5 μm) was utilized and methanol, tetrahydrofuran and perchloric acid aqueous solution (0.2 mL HClO(4) + 300 mL H(2)O) were used for gradient elution at a total flow rate of 1.0 mL min(-1). The optimum conditions for 11 different ultraviolet-absorbing chemicals analyses were investigated. All calibration curves showed good linear regression with UV detection (311 nm) within test ranges. The correlation coefficients were better than 0.999 in all cases. The assay was simple, selective, convenient and reproducible and is suitable for the determination of ultraviolet-absorbing chemicals in commercial sunscreen cosmetic products. The use frequency of 11 different ultraviolet absorbents in 100 sunscreen cosmetics was investigated and statistically analysed. The ultraviolet absorbent of maximum use frequency was ethylhexyl methoxycinnamate. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Pitre, Spencer P.; McTiernan, Christopher D.; Vine, Wyatt; DiPucchio, Rebecca; Grenier, Michel; Scaiano, Juan C.
2015-01-01
Photoredox catalysis provides many green opportunities for radical-mediated synthetic transformations. However, the determination of the underlying mechanisms has been challenging due to lack of quantitative methods that can be easily implemented in synthetic labs, where this research tends to be centered. We report here on the development, characterization and calibration of a novel actinometer based on the photocatalyst tris(2,2′-bipyridyl)ruthenium(II) chloride (Ru(bpy)3Cl2). By using the same molecule as the photocatalyst and the actinometer, we eliminate problems associated with matching sample spectral distribution, lamp-sample spectral overlap and other problems intrinsic to doing quantitative photochemistry in a laboratory that has little expertise in this area. In order to validate our actinometer system in determining the quantum yield of a Ru(bpy)3Cl2 photosensitized reaction, we test the Ru(bpy)3Cl2 catalyzed oxidation of benzhydrol to benzophenone as a model chain reaction. We also revive the rotating sector method by updating the technique for modern LED technologies and demonstrate how intermittent illumination on the timescale of milliseconds to seconds can help probe a chain reaction, using the benzhydrol to benzophenone oxidation to validate the technique. We envision these methods to have great implications in the field of photoredox catalysis, providing researchers with valuable research tools. PMID:26578341
Ghazipura, Marya; McGowan, Richard; Arslan, Alan; Hossain, Tanzib
2017-10-01
Hydroxy-4-methoxybenzophenone, also known as benzophenone-3 (BP-3), is a commonly used ultraviolet filter in skincare and as a food additive. Large concentrations of similar phenolic compounds have been detected in urine, amniotic fluid, and placental tissue, thereby raising questions about its impact on reproduction. The objective of this paper was to investigate the reproductive toxicity of BP-3 in humans and animals. In humans, studies showed that high levels of BP-3 exposure could be linked to an increase in male birth weight but a decline in female birth weight and male gestational age. In fish, BP-3 exposure resulted in a decline in egg production, hatching, and testosterone, along with a down-regulation of steroidogenic genes. In rats, a decrease in epididymal sperm density and a prolonged estrous cycle for females was observed. These positive associations may be attributed to an altered estrogen and testosterone balance as a result of endocrine disrupting effects of BP-3. However, the current body of literature is limited by non-uniform exposure and outcome measurements in studies both across and within species and future studies will need to be conducted in a standardized fashion to allow for a more significant contribution to the literature that allows for better comparison across studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad
2016-10-01
In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, C C; Chen, Y T; Lin, Y T; Sie, S F; Chen-Yang, Y W
2014-03-01
In the present study, about 45 and 34 wt% of benzophenone-3 (BP-3), an organic UV filter, was adsorbed on a high surface area mesoporous silica (MS) drug carrier to prepare BP-3-bearing MS (MSBP) sunscreen materials MSBP-1 and MSBP-2, respectively. The effect of the adsorption of BP-3 by MS on the UV protection ability of MSBP was demonstrated and a synergistic UV protection effect was observed in the as-prepared MSBP UV filters. Compared with free BP-3, adsorbed BP-3 had greatly reduced crystallinity and the dispersion of MSBP was significantly improved in the sunscreen. The in vitro sun protection factor (SPF) and in vitro UV-A values of the MSBP-2-based sunscreen was about 17.3% and 17.0% higher than that of free BP-3-based sunscreen, respectively, indicating that the ability of the sunscreen to protect against UV-B and UV-A improved because of the BP-3 content of the MS matrix. In addition, the decrease in SPF and UV-A values over time was significantly less in the MSBP-based sunscreens than in free BP-3-based sunscreen. Results of this study reveal that MS is a promising organic sunscreen carrier as well as a potential carrier for other topical drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Hongju; Chen, Senhua; Liu, Weiyang; Liu, Yayue; Huang, Xishan; She, Zhigang
2016-11-25
Nine polyketides, including two new benzophenone derivatives, peniphenone ( 1 ) and methyl peniphenone ( 2 ), along with seven known xanthones ( 3 - 9 ) were obtained from mangrove endophytic fungus Penicillium sp. ZJ-SY₂ isolated from the leaves of Sonneratia apetala . Their structures were elucidated on the basis of MS, 1D, and 2D NMR data. Compounds 1 , 3 , 5 , and 7 showed potent immunosuppressive activity with IC 50 values ranging from 5.9 to 9.3 μg/mL.
Giampietro, Letizia; D'Angelo, Alessandra; Giancristofaro, Antonella; Ammazzalorso, Alessandra; De Filippis, Barbara; Di Matteo, Mauro; Fantacuzzi, Marialuigia; Linciano, Pasquale; Maccallini, Cristina; Amoroso, Rosa
2014-01-01
In an effort to develop safe and efficacious compounds for the treatment of metabolic disorders, new compounds based on a combination of clofibric acid, the active metabolite of clofibrate, and trans-stilbene, chalcone, and other lipophilic groups were synthesized. They were evaluated for PPARα transactivation activity; all branched derivatives showed an increase of the transcriptional activity of receptor compared to the linear ones. Noteworthy, stilbene and benzophenone branched derivatives activated the PPARα better than clofibric acid.
Isomer effects on polyimide properties
NASA Technical Reports Server (NTRS)
Stump, B. L.
1974-01-01
The polymerization of 2,4'-methylene-dianiline with benzophenone tetracarboxylic acid dianhydride yields high molecular weight polyamic acid. Polyimide is formed when films of the polyamic acid are cured between 200 - 300 C. A lower molecular weight polyamic acid is obtained from 2,2'-MDA with BTDA, but it appears that a lowering of the reaction temperature will yield high molecular weight polymer. Evaluation of these polymers is underway. Continued efforts to synthesize 2,3'- MDA and 2,3'-diaminobenzophenone have met with little success.
Palladium-Catalyzed α-Arylation of Aryl Nitromethanes
2015-01-01
Catalytic conditions for the α-arylation of aryl nitromethanes have been discovered using parallel microscale experimentation, despite two prior reports of the lack of reactivity of these aryl nitromethane precursors. The method efficiently provides a variety of substituted, isolable diaryl nitromethanes. In addition, it is possible to sequentially append two different aryl groups to nitromethane. Mild oxidation conditions were identified to afford the corresponding benzophenones via the Nef reaction, and reduction conditions were optimized to afford several diaryl methylamines. PMID:26584680
Isomer effects on polyimide properties
NASA Technical Reports Server (NTRS)
Stump, B. L.
1975-01-01
Polyimide polymers which are thermally stable and processable are developed. The addition of alkyl substituents to an aromatic ring in the polymer backbone is examined along with polyimide precursor amines containing functional groups that allow for post-cure crosslinking. The synthesis of key monomers is reported, including 2,4,6-tris (m-aminobenzyl) 1,3,5-trimethyl benzene and 2,4,6-tris (p-aminobenzyl) 1,3,5-trimethyl benzene. The preparation of a key monomer, 2,5,3-triamino benzophenone, is reported.
Merocyanine-type dyes from barbituric acid derivatives.
Rezende, M C; Campodonico, P; Abuin, E; Kossanyi, J
2001-05-01
The preparation and the solvatochromic behavior of two dyes, obtained by condensation of N,N'-dimethylbarbituric acid with dimethylaminobenzaldehyde and with 4,4'-bis(N,N-dimethylamino)benzophenone (Michler's ketone) are described. The latter dye is rather sensitive to the polarity of the medium, and in particular, to the hydrogen-bond-donor ability of protic solvents. The solvatochromism of both compounds is discussed in terms of the pi* and E(T)(30) solvent polarity scales and their differences in behavior interpreted with the aid of semiempirical calculations.
Rodríguez-Fuentes, Gabriela; Sandoval-Gío, Juan J; Arroyo-Silva, Anita; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Olvera-Espinosa, Francisco
2015-05-01
Personal care products have been detected in superficial waters, representing an environmental risk to the biota. Some studies indicated that 3-benzophenone (3BP) alters hormones, inducing vitellogenesis and having adverse effects on fish reproduction. Other studies have reported generation of free radicals and changes in antioxidant enzymes. Therefore, the aim of the present study was to test acute exposure to 3BP at concentrations within and beyond that found environmentally to provide important toxicological information regarding this chemical. We evaluated the effect of 3BP on vitellogenin 1 (VTG1) gene expression and the transcription of the enzymes catalase (CAT), superoxide dismutase (SOD) or glutathione peroxidase (GPx), which are involved in cellular redox balance. Zebrafish eluthero-embryos (168hpf) were exposed to 1,10, 100, 1000µg/L 3BP, in addition to a negative control and a 0.1% ethanol control for 48h. The results of our study indicated a positive significant correlation between exposure concentrations and VTG1 expression (r=0.986, p=0.0028) but only 1000µg/L 3BP produced a significant increase from control. Acute exposure showed no significant differences in transcription levels of CAT, SOD or GPx at the tested conditions. Nevertheless, a trend toward increase in GPx expression was observed as a positive significant correlation (r=0.928, p=0.017) was noted. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, Chiing-Chang; Lu, Chung-Shin
2007-06-15
The methyl green (MG) dye dissolves into an alkaline solution when the pH value is too high (pH 9). The cationic MG dye molecules are converted into the colorless carbinol base (CB) and produce crystal violet (CV) dye and ethanol by hydroxide anion. Thirty-three intermediates of the process were separated, identified, and characterized by HPLC-ESI-MS technique in this study and their evolution during the photocatalytic reaction is presented. Moreover, the other intermediates formed in the photocatalytic degradation MG processes were separated and identified by HPLC-PDA technique. The results indicated that the N-de-methylated degradation of CV dye took place in a stepwise manner to yield N-de-methylated CV species, and the N-de-alkylated degradation of CB also took place in a stepwise manner to yield N-de-alkylated CB species generated during the processes. Moreover, the oxidative degradation of the CV dye (or CB) occurs to yield 4-(N,N-dimethylamino)phenol (DAP), 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino)benzophenone (DDBP) and their N-de-methylated products [or to yield 4-(N-ethyl-N,N-dimethyl)aminophenol (EDAP), DDBP, 4-(N-ethyl-N,N-dimethylamino)-4'-(N',N'-dimethylamino)benzophenone (EDDBP), DAP, and their N-de-alkylated products], which were found for the first time. A proposed degradation pathway of CV and CB is presented, involving mainly the N-de-alkylation and oxidation reaction.
Pan, Xiaoxue; Yan, Liqing; Qu, Ruijuan; Wang, Zunyao
2018-04-01
The goals of this study were to bring forward new data and insights into the effect of activation methods, operational variables and reaction pathways during sulfate radicals-based oxidation of benzophenone-3 (BP-3) in aqueous solution. Heat, transition metal ions (Fe 2+ , Cu 2+ , Co 2+ ), UV and visible light irradiation were used to activate persulfate (PS) to degrade BP-3. The results showed that these three activation methods can remarkably enhance BP-3 removal efficiency. Under the conditions of [BP-3] 0 : [PS] 0 = 1: 500, pH = 7.0, and 40 °C, complete removal of BP-3 (1.31 μM) was observed in 3 h. In the pH range of 3.0-9.0, the degradation of BP-3 decreased with increasing pH. Increasing the PS dosage accelerated the reaction, while the presence of humic acid (HA) significantly inhibited the efficiency of BP-3 removal. Based on electron paramagnetic resonance (EPR) and radical quenching studies, sulfate and hydroxyl radicals contributed to the oxidation process. According to the evolution of BP-3 and its 7 by-products, as well as frontier electron densities (FED) calculation, two routes were proposed involving hydroxylation, demethylation and direct oxidation. On the whole, this work is a unique contribution to the systematic elucidation of BP-3 removal by PS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Feiran; Huber, Christian; May, Robert; Schröder, Peter
2016-04-05
Oxybenzone (OBZ), known as Benzophenone-3, is a commonly used UV filter in sun tans and skin protectants, entering aquatic systems either directly during recreational activities or indirectly through wastewater treatment plants discharge. To study the potential degradation capacity of plants for OBZ in phytotreatment, a well-established hairy root culture (Armoracia rusticana) was treated with OBZ. More than 20% of spiked OBZ (100μM) was eliminated from the medium by hairy roots after 3h of exposure. Two metabolites were identified as oxybenzone-glucoside (OBZ-Glu) and oxybenzone-(6-O-malonyl)-glucoside (OBZ-Mal-Glu) by LC-MS/MS and TOF-MS. Formation of these metabolites was confirmed by enzymatic synthesis, as well as enzymatic and alkaline hydrolysis. Incubation with O-glucosyltransferase (O-GT) extracted from roots formed OBZ-Glu; whereas β-d-Glucosidase hydrolyzed OBZ-Glu. However, alkaline hydrolysis led to cleavage of OBZ-Mal-Glu and yielded OBZ-Glu. In the hairy root culture, an excretion of OBZ-Glu into the growth medium was observed while the corresponding OBZ-Mal-Glu remained stored in root cells over the incubation time. We propose that metabolism of oxybenzone in plants involves initial conjugation with glucose to form OBZ-Glu followed by malonylation to yield OBZ-Mal-Glu. To our best knowledge this first finding presenting the potential of plants to degrade benzophenone type UV filters by phytoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.
DiNardo, Joseph C; Downs, Craig A
2018-02-01
Oxybenzone (Benzophenone-3) is an emerging human and environmental contaminant used in sunscreens and personal care products to help minimize the damaging effects of ultraviolet radiation. The Center for Disease Control fourth national report on human exposure to environmental chemicals demonstrated that approximately 97% of the people tested have oxybenzone present in their urine, and independent scientists have reported various concentrations in waterways and fish worldwide. Oxybenzone can also react with chlorine, producing hazardous by-products that can concentrate in swimming pools and wastewater treatment plants. Moreover, adverse reactions could very well be increased by the closed loop of ingesting fish contaminated with oxybenzone and/or washing the ingredient off our bodies and having it return in drinking water as treatment plants do not effectively remove the chemical as part of their processing protocols. In humans, oxybenzone has been reported to produce contact and photocontact allergy reactions, implemented as a possible endocrine disruptor and has been linked to Hirschsprung's disease. Environmentally, oxybenzone has been shown to produce a variety of toxic reactions in coral and fish ranging from reef bleaching to mortality. Lastly, with the rise in skin cancer rates and the availability of more effective sunscreen actives such as micronized zinc oxide and titanium dioxide, serious doubts about the relative prevention benefit of personal care products containing oxybenzone must be raised and compared with the potential negative health and environmental effects caused by the accumulation of this and other chemicals in the ecosystem. © 2017 Wiley Periodicals, Inc.
Kim, Hyoung-June; Lee, Eunyoung; Lee, Moonyoung; Ahn, Sungjin; Kim, Jungmin; Liu, Jingjing; Jin, Sun Hee; Ha, Jaehyoun; Bae, Il Hong; Lee, Tae Ryong; Noh, Minsoo
2018-01-01
Benzophenone-3 (BP-3), which is extensively used in organic sunscreen, has phototoxic potential in human skin. Phosphodiesterase 4B (PDE4B) has a well-established role in inflammatory responses in immune cells. Currently, it is unknown if PDE4B is associated with BP-3-induced phototoxicity in normal human keratinocytes (NHKs). We found that BP-3 significantly increased PDE4B expression in ultraviolet B (UVB)-irradiated NHKs. Notably, BP-8, a sunscreen agent that shares the 2-hydroxy-4-methoxyphenyl methanone moiety with BP-3, also upregulated PDE4B expression in NHKs. Upon UVB irradiation, BP-3 upregulated the expression of pro-inflammatory factors, such as prostaglandin endoperoxide synthase 2, tumor necrosis factor α, interleukin 8, and S100A7, and downregulated the level of cornified envelope associated proteins, which are important in the development of the epidermal permeability barrier. The additive effects of UVB-activated BP-3 on the expression of both pro-inflammatory mediators and cornified envelope associated proteins were antagonized by treatment with the PDE4 inhibitor rolipram. The BP-3 and UVB co-stimulation-induced PDE4B upregulation and its association with the upregulation of pro-inflammatory mediators and the downregulation of epidermal differentiation markers were confirmed in a reconstituted three dimensional human epidermis model. Therefore, PDE4B has a role in the mechanism of BP-3-induced phototoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Bokyung; Kwon, Bareum; Jang, Sol; Kim, Pan-Gyi; Ji, Kyunghee
2016-09-15
Benzophenones (BPs) have been used as sunscreen agents and as ultraviolet stabilizers in plastic surface coatings for food packaging. However, few studies have been performed to examine the level of human exposure to BPs and the potential sources of such exposure. We evaluated the exposure levels to six major BPs (BP-1, BP-2, BP-3, BP-4, BP-8, and 4-hydroxybenzophenone (4-OH-BP)) among the adult population in two cities in Korea, and investigated the potential dietary sources of the BPs. Urinary levels of malondialdehyde (MDA) as an oxidative stress biomarker as well as their association with the levels of BPs were also analyzed. Among the six BPs analyzed, 4-OH-BP, BP-1, BP-3, and BP-4 were detected in 77%, 49%, 27%, and 21% of the population, respectively. BP concentrations were relatively higher in younger (people in their 20s and 30s) cosmetic users and leaner women. Even after the adjustment of age, body mass index, and cosmetic use, the consumption of frozen storage food, instant noodles, and instant coffee was significantly correlated with urinary BPs, and these associations were sex-dependent. No significant correlation was observed between the levels of BPs and levels of MDA. The results of the present study will be useful for developing plans of public health management of BPs. Copyright © 2016 Elsevier B.V. All rights reserved.
Sang, Ziye; Leung, Kelvin Sze-Yin
2016-10-01
Organic UV filters, now considered to be emerging contaminants in aquatic ecosystems, are being intensively tracked in environmental waters worldwide. However, their environmental fate and impact of these contaminants on marine organisms remains largely unknown, especially in Asia. This work elucidates the occurrence and the ecological risks of seven UV filters detected in farmed fish, wild mussels and some other wild organisms collected from local mariculture farms in Hong Kong. For all of the organisms, ethylhexyl methoxycinnamate (EHMC) and octyl dimethyl p-aminobenzoic acid (OD-PABA) were the predominant contaminants with the highest concentrations up to 51.3 and 24.1ng/g (dw), respectively; lower levels were found for benzophenone-8 (BP-8), octocrylene (OC) and benzophenone-3 (BP-3) from
Paredes, E; Perez, S; Rodil, R; Quintana, J B; Beiras, R
2014-06-01
Due to the concern about the negative effects of exposure to sunlight, combinations of UV filters like 4-Methylbenzylidene-camphor (4-MBC), Benzophenone-3 (BP-3), Benzophenone-4 (BP-4) and 2-Ethylhexyl-4-methoxycinnamate (EHMC) are being introduced in all kind of cosmetic formulas. These chemicals are acquiring a concerning status due to their increasingly common use and the potential risk for the environment. The aim of this study is to assess the behaviour of these compounds in seawater, the toxicity to marine organisms from three trophic levels including autotrophs (Isochrysis galbana), herbivores (Mytilus galloprovincialis and Paracentrotus lividus) and carnivores (Siriella armata), and set a preliminary assessment of potential ecological risk of UV filters in coastal ecosystems. In general, EC50 results show that both EHMC and 4-MBC are the most toxic for our test species, followed by BP-3 and finally BP-4. The most affected species by the presence of these UV filters are the microalgae I. galbana, which showed toxicity thresholds in the range of μg L(-1) units, followed by S. armata>P. Lividus>M. galloprovincialis. The UV filter concentrations measured in the sampled beach water were in the range of tens or even hundreds of ng L(-1). The resulting risk quotients showed appreciable environmental risk in coastal environments for BP-3 and 4-MBC. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chaitanya, K.
2012-02-01
The FT-IR (4000-450 cm -1) and FT-Raman spectra (3500-100 cm -1) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability ( β0) and related properties ( β, α0 and Δ α) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.
Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma.
Sales, Leilane; Pezuk, Julia Alejandra; Borges, Kleiton Silva; Brassesco, María Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; dos Santos, Marcelo Henrique; Ionta, Marisa; de Oliveira, Jaqueline Carvalho
2015-10-30
Glioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG). Cell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells. Viability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells. The present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.
Interaction of triplet sensitizers with chlorophyll: Formation of singlet chlorophyll
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohne, C.; Scaiano, J.C.
1989-03-29
The interaction of several triplet sensitizers with chlorophyll a (Chla) has been examined using laser techniques. For the carbonyl sensitizers (with triplet energies > 53 kcal/mol) it was possible to measure the quenching rate constants; these were systematically {>=} 10{sup 10} M{sup {minus}1} s{sup {minus}1}. In the cases of acetone, benzophenone, and p-methoxyacetophenone the quenching process leads to the formation of the fluorescent singlet state of Chla. For benzophenone (k{sub q} = 2.4 {times} 10{sup 10} M{sup {minus}1} s{sup {minus}1}) approximately 3% of the quenching events lead to the formation of excited Chla. Several sensitizers (decafluorobenzophenone, benzil, and fluorenone) domore » not induce Chla fluorescence (or do it very inefficiently) in spite of having triplet energies above the S{sub 1} level of Chla. In light of their results the most probable mechanism involves energy transfer from the triplet sensitizer to an upper triple state of Chla ({sup 3}Chla**) which can undergo reverse intersystem crossing to the singlet manifold of Chla and thus induce fluorescence. The inefficient sensitizers are those where electron transfer between the excited singlet of Chla or {sup 3}Chla** and ground-state sensitizers is energetically favorable, leading to rapid in-cage quenching of the initially formed excited states of Chla. Formation of radical-ion pair between the triplet sensitizer and Chla followed by the generation of singlet Chla in the recombination of the radical ions could not be completely discarded.« less
Negreira, N; Rodríguez, I; Rodil, R; Cela, R
2012-09-19
The stability of the UV filter benzophenone-4 (BP-4) in free chlorine-containing water was investigated, for the first time, by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS). High mass accuracy and resolution capabilities of this hybrid mass spectrometer were used for the reliable assignation of empirical formulae and chemical structures of BP-4 derivatives. Time-course profiles of the parent compound and its by-products were simultaneously recorded by direct injection of sample aliquots, after quenching the excess of chlorine, in the LC-QqTOF-MS system. At neutral pHs, in excess of chlorine, BP-4 showed a limited stability fitting a pseudo-first-order degradation kinetics. A noticeable reduction in the half-lives of BP-4 was observed when increasing the sample pH between 6 and 8 units and also in presence of bromide traces. The reaction pathway of this UV filter involved a first electrophilic substitution of hydrogen per chlorine (or bromide) in the phenolic ring, followed by oxidation of the carbonyl moiety to an ester group, which induced a further electrophilic substitution in the same aromatic ring. Above reactions were also noticed when mixing a BP-4 containing personal care product with chlorinated tap water and in chlorinated swimming pool and sewage water, previously spiked with a BP-4 standard. Copyright © 2012 Elsevier B.V. All rights reserved.
Konry, T; Novoa, A; Shemer-Avni, Y; Hanuka, N; Cosnier, S; Lepellec, Arielle; Marks, R S
2005-03-15
We describe herein a newly developed optical microbiosensor for the diagnosis of hepatitis C virus (HCV) by using a novel photoimmobilization methodology based on a photoactivable electrogenerated polymer film deposited upon surface-conductive fiber optics, which are then used to link a biological receptor to the fiber tip through light mediation. This fiber-optic electroconductive surface modification is done by the deposition of a thin layer of indium tin oxide on the silica surface of the fiber optics. Monomers are then electropolymerized onto the conductive metal oxide surface; thereafter, the fibers are immersed in a solution containing HCV-E2 envelope protein antigen and illuminated with UV light (wavelength approximately 345 nm). As a result of the photochemical reaction, a thin layer of the antigen becomes covalently bound to the benzophenone-modified surface. The photochemically modified fiber optics were tested as immunosensors for the detection of anti-E2 protein antibody analyte that was measured through chemiluminescence reaction. The biosensor was tested for sensitivity, specificity, and overall practicality. Our results suggest that the detection of anti-E2 antibodies with this microbiosensor may enhance significantly HCV serological standard testing especially among patients during dialysis, which were diagnosed as HCV negative, by standard immunological tests, but were known to carry the virus. If transformed into an easy to use procedure, this assay might be used in the future as an important clinical tool for HCV screening in blood banks.
Berens, C; Courtoy, P J; Sonveaux, E
1999-01-01
To study the interactions between oligonucleotides and proteins, an original photoaffinity radiolabeling probe has been synthesized. Starting with a 5'-pyridyldithio-3'-amino-oligonucleotide, the photophore benzophenone was first coupled to the 3' end, through acylation by an activated ester of benzoylbenzoic acid. A fluorescein molecule was grafted by alkylation of the free 5'-SH. This compound was finally radiolabeled with 125I using IodoBeads. The selective photolabeling of thrombin in a complex protein mixture by the radioiodinated probe validates this strategy to identify oligonucleotide-binding proteins.
Abe, Y; Hosoda, H; Arikawa, Y; Nagai, T; Kojima, S; Sakata, S; Inoue, H; Iwasa, Y; Iwano, K; Yamanoi, K; Fujioka, S; Nakai, M; Sarukura, N; Shiraga, H; Norimatsu, T; Azechi, H
2014-11-01
The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.
Photoallergic contact dermatitis to oxybenzone.
Collins, P; Ferguson, J
1994-07-01
A 21-year-old woman developed an erythematous papulovesicular eruption of photo-exposed sites, following the use of an oxybenzone-containing sunscreen. Patch testing, photopatch testing, phototesting, and histology produced findings strongly suggestive of oxybenzone photoallergy. Photopatch testing with a monochromator source showed abnormal UVA responses, with evidence of immediate urticaria, and delayed-onset dermatitis. Sun-barrier use is associated with a risk of the development of contact or photocontact allergic reactions. The benzophenones are frequently used in high-protection factor sun-barrier preparations, and appear to have a particular ability to induce such responses.
NASA Astrophysics Data System (ADS)
Lasri, Jamal; Aly, Magda M.; Eltayeb, Naser Eltaher; Babgi, Bandar A.
2018-07-01
9-Fluorenone azine 2a and benzophenone azine 2b were synthesized, respectively, by treatment of 9-fluorenone hydrazone 1a or benzophenone hydrazone 1b with FeCl3 in chloroform. Ferrocenecarboxaldehyde 3 reacts with 1a or 1b, in ethanol, to furnish novel asymmetrical azine products 1-((ferrocenyl)methylene)-2-(9H-fluoren-9-ylidene)hydrazine 3a or 1-((ferrocenyl)methylene)-2-(diphenylmethylene)hydrazine 3b, respectively. The compounds were characterized by IR,1H, 13C and DEPT-135 NMR spectroscopy, high resolution ESI+-MS or EI, and also by single crystal X-ray diffraction analysis (in the case of 2b and 3b). The contribution of the azine functional group (3a) in the LUMO orbital was justified by observing a red shift in the MLCT upon its protonation. The antimicrobial activities of 2a, 2b, 3a and 3b were determined against some Gram-positive and Gram-negative bacteria in addition to Candida albicans and Aspergillus niger using paper disc diffusion method. Moderate antibacterial activities were found for 3a and 3b while weak activities were recorded for 2a and 2b compared to Ampicillin, positive control. No antifungal or antitumor activities were found for all the tested compounds, except 3a which showed antitumor activity. Low toxicity was recorded for 3a and 3b using Artemia salina as test organism. Hence, the prepared products 3a and 3b can be used as antimicrobial agents due to their antibacterial activities and low cell toxicity.
Dias, Adriana Neves; da Silva, Ana Cristine; Simão, Vanessa; Merib, Josias; Carasek, Eduardo
2015-08-12
This study describes the use of cork as a new coating for bar adsorptive microextraction (BAμE) and its application in determining benzophenone, triclocarban and parabens in aqueous samples by HPLC-DAD. In this study bars with 7.5 and 15 mm of length were used. The extraction and liquid desorption steps for BAμE were optimized employing multivariate and univariate procedures. The desorption time and solvent used for liquid desorption were optimized by univariate and multivariate studies, respectively. For the extraction step the sample pH was optimized by univariate experiments while the parameters extraction time and ionic strength were evaluated using the Doehlert design. The optimum extraction conditions were sample pH 5.5, NaCl concentration 25% and extraction time 90 min. Liquid desorption was carried out for 30 min with 250 μL (bar length of 15 mm) or 100 μL (bar length of 7.5 mm) of ACN:MeOH (50:50, v/v). The quantification limits varied between 1.6 and 20 μg L(-1) (bar length of 15 mm) and 0.64 and 8 μg L(-1) (bar length of 7.5 mm). The linear correlation coefficients were higher than 0.98 for both bars. The method with 7.5 mm bar length showed recovery values between 65 and 123%. The bar-to-bar reproducibility and the repeatability were lower than 13% (n = 2) and 14% (n = 3), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Janko, Marek; Jocher, Michael; Boehm, Alexander; Babel, Laura; Bump, Steven; Biesalski, Markus; Meckel, Tobias; Stark, Robert W
2015-07-13
The properties of paper sheets can be tuned by adjusting the surface or bulk chemistry using functional polymers that are applied during (online) or after (offline) papermaking processes. In particular, polymers are widely used to enhance the mechanical strength of the wet state of paper sheets. However, the mechanical strength depends not only on the chemical nature of the polymeric additives but also on the distribution of the polymer on and in the lignocellulosic paper. Here, we analyze the photochemical attachment and distribution of hydrophilic polydimethylacrylamide-co-methacrylate-benzophenone P(DMAA-co-MABP) copolymers with defined amounts of photoreactive benzophenone moieties in model paper sheets. Raman microscopy was used for the unambiguous identification of P(DMAA-co-MABP) and cellulose specific bands and thus the copolymer distribution within the cellulose matrix. Two-dimensional Raman spectral maps at the intersections of overlapping cellulose fibers document that the macromolecules only partially surround the cellulose fibers, favor to attach to the fiber surface, and connect the cellulose fibers at crossings. Moreover, the copolymer appears to accumulate preferentially in holes, vacancies, and dips on the cellulose fiber surface. Correlative brightfield, Raman, and confocal laser scanning microscopy finally reveal a reticular three-dimensional distribution of the polymer and show that the polymer is predominately deposited in regions of high capillarity (i.e., in proximity to fine cellulose fibrils). These data provide deeper insights into the effects of paper functionalization with a copolymer and aid in understanding how these agents ultimately influence the local and overall properties of paper.
Li, Yingjie; Qiao, Xianliang; Zhou, Chengzhi; Zhang, Ya-Nan; Fu, Zhiqiang; Chen, Jingwen
2016-06-01
The occurrence of sunscreen agents and their metabolites in surface waters gives rise to public concerns. However, little is known about the environmental fate of these pollutants at present, especially for their metabolites. In this study, we investigated the photochemical of sunscreen agents and their metabolites in natural waters, adopting benzophenone-3 (BP-3) and its human metabolite 4-hydroxybenzophenone (4-OH-BP3) as examples. Results show that only anionic forms of both BP-3 and 4-OH-BP3 can undergo direct photodegradation. The photolytic rates of both compounds in natural waters are faster as compared to those in pure water. Radical scavenging experiments revealed that triplet-excited dissolved organic matter ((3)DOM(∗)) was responsible for the indirect photodegradation of BP-3 and 4-OH-BP3 in seawater, whereas in freshwater, the indirect photodegradation of these two compounds was attributed to (3)DOM(∗) and ·OH. (1)O2 plays a negligible role in their photodegradation because of the weak (1)O2 reactivity. Furthermore, we probed the contribution of ·OH and (3)DOM(∗) to the photodegradation of both compounds in freshwater, and the results revealed that ·OH accounted for 56% and 59% of the observed photodegradation for BP-3 and 4-OH-BP3, respectively, whereas (3)DOM(∗) accounted for 43% and 12% of the observed photodegradation for BP-3 and 4-OH-BP3, respectively. These results are helpful in assessing the ecological risk of BP-3 and its metabolite in the aquatic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cunha, S C; Trabalón, L; Jacobs, S; Castro, M; Fernandez-Tejedor, M; Granby, K; Verbeke, W; Kwadijk, C; Ferrari, F; Robbens, J; Sioen, I; Pocurull, E; Marques, A; Fernandes, J O; Domingo, J L
2018-02-01
In the framework of the FP7 ECsafeSeafood project, 62 seafood samples commercialized in Europe Union from several representative species - mackerel, tuna, salmon, seabream, cod, monkfish, crab, shrimp, octopus, perch and plaice - were analysed for residues of 21 personal care products (PCPs), including 11 UV-filters (UV-Fs) and 10 musk fragrances (musks). PCPs analysis were performed by Quick, Easy, Cheap, Effective Rugged, Safe (QuEChERS), combined with liquid-liquid extraction (LLE) or dispersive solid-phase extraction (dSPE), followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The results showed the presence in a wide range of samples of nine out of eleven UV-Fs compounds analysed, namely 2-ethylhexyl salicylate (EHS), 2-ethylhexyl,4-methoxycinnamate (EHMC), 4-methylbenzylidenecamphor (4-MBC), benzophenone-1 (BP1), benzophenone-3 (BP3), isoamyl-4-methoxycinnamate (IMC), 2,2'-dihydroxy-4,4'-dimethoxybenzophenone (DHMB), homosalate (HS), and octocrylene (OC), whereas galaxolide (HHCB), galaxolide lactone (HHCB-lactone), and tonalide (AHTN) were the most found musks. The potential risks to human health associated with the exposure to eight of the more prevalent PCPs - EHS, EHMC, 4-MBC, BP1, BP3, IMC, HHCB, and AHTN - through seafood consumption were assessed for consumers from five European countries (Belgium, Ireland, Italy, Portugal and Spain). Results showed that the human exposure to UV-Fs and musks estimated from the concentration values found in seafood and the daily consumption of concerned seafood species, were far below toxicological reference values. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Dojung; Kim, Sangseop; Kim, Seol-A; Choi, Myoengsin; Kwon, Kyoung-Jin; Kim, Mijeong; Kim, Dong-Sup; Kim, Seung-Hee; Choi, Bo-Kyung
2012-01-01
Sixteen UV filters were simultaneously analyzed using the high-performance liquid chromatographic method. They were drometrizole (USAN Drometrizole), 4-methylbenzylidene camphor (USAN Enzacamene), menthyl anthranilate (USAN Menthyl anthranilate), benzophenone-3 (USAN Oxybenzone), benzophenone-8 (USAN Dioxybenzone), butyl methoxydibenzoylmethane (USAN Avobenzone), ethylhexyl triazone (USAN Octyl triazone), octocrylene (USAN Octocrylene), ethylhexyl dimethyl p-aminobenzoic acid (USAN Padimate O), ethylhexyl methoxycinnamate (USAN Octinoxate), p-aminobenzoic acid (USAN Aminobenzoic acid), 2-phenylbenzimidazole-5-sulfonic acid (USAN Ensulizole), isoamyl p-methoxycinnamate (USAN Amiloxate), and recent UV filters such as diethylhexyl butamidotriazone (USAN Iscotrizinol), methylene bis-benzotriazolyl tetramethylbutylphenol (USAN Bisoctrizole), and terephthalylidene dicamphor sulfonic acid (USAN Ecamsule). Separation of the UV filters was carried out in a C(18) column with a gradient of methanol-phosphate buffer, and the UV detection was at 300, 320, or 360 nm without any interference. The limits of detection were between 0.08 and 1.94 μg/ml, and the limits of quantitation were between 0.24 and 5.89 μg/ml. The extracting solvent for the UV filters was methanol, except for ethylhexyl triazone and methylene bis-benzotriazolyl tetramethylbutylphenol, which were prepared with tetrahydrofuran. The recoveries from spiked samples were between 94.90% and 116.54%, depending on the matrixes used. The developed method was applied to 23 sunscreens obtained from local markets, and the results were acceptable to their own criteria and to maximum authorized concentrations. Consequently, these results would provide a simple extracting method and a simultaneous determination for various UV filters, which can improve the quality control process as well as the environmental monitoring of sunscreens.
Kim, Sujin; Kim, Sunmi; Won, Sungho; Choi, Kyungho
2017-10-01
Epidemiological studies have shown that thyroid hormone balances can be disrupted by chemical exposure. However, many association studies have often failed to consider multiple chemicals with possible common sources of exposure, rendering their conclusions less reliable. In the 2007-2008 National Health and Nutrition Examination Survey (NHANES) from the U.S.A., urinary levels of environmental phenols, parabens, and phthalate metabolites as well as serum thyroid hormones were measured in a general U.S. population (≥12years old, n=1829). Employing these data, first, the chemicals or their metabolites associated with thyroid hormone measures were identified. Then, the chemicals/metabolites with possible common exposure sources were included in the analytical model to test the sensitivities of their association with thyroid hormone levels. Benzophenone-3 (BP-3), bisphenol A (BPA), and a metabolite of di(2-ethylhexyl) phthalate (DEHP) were identified as significant determinants of decreased serum thyroid hormones. However, significant positive correlations were detected (p-value<0.05, r=0.23 to 0.45) between these chemicals/metabolites, which suggests that they might share similar exposure sources. In the subsequent sensitivity analysis, which included the chemicals/metabolite with potentially similar exposure sources in the model, we found that urinary BP-3 and DEHP exposure were associated with decreased thyroid hormones among the general population but BPA exposure was not. In association studies, the presence of possible common exposure sources should be considered to circumvent possible false-positive conclusions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of the UV filter benzophenone-2 on reproduction in fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbrod, Christin J.; Kunz, Petra Y.; Zenker, Armin K.
2007-12-15
The UV filter benzophenone-2 (BP-2) is largely used in personal care products such as cosmetics and in numerous other materials for UV protection. Like other UV filters, BP-2 has been found to be estrogenic in vitro and in vivo, but potential effects on reproduction of fish are unknown. In this study, we evaluate whether BP-2 affects important reproductive parameters such as fecundity, gametogenesis and secondary sex characteristics. After a pre-exposure period of 19 days, reproductively mature fathead minnows (Pimephales promelas) were exposed to 0.002, 0.1, 1.2, 5.0 and 9.7 mg/L BP-2 for 15 days. BP-2 was accumulated in fish upmore » to 3.1 {mu}g/g body weight. In males, a dose-dependent vitellogenin induction and decrease in the number of nuptial tubercles occurred. Moreover, significant dose-related effects on gonads of male and female fish were observed. At concentrations of 1.2 mg/L and higher, spermatocyte and oocyte development was significantly inhibited in male and female fish, respectively. Testes of exposed males had much fewer spermatocytes and ovaries of exposed females had much fewer mature and more atretic follicles. Reproduction was negatively affected in a dose-dependent manner with a decrease in egg production at 5.0 mg/L and a complete cessation of spawning activity at 9.7 mg/L BP-2. Our findings show significant estrogenic effects of the common UV filter BP-2 on vitellogenin induction, secondary sex characteristics, gonadal development, and reproduction in fish.« less
Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models.
Teng, S; Tebby, C; Barcellini-Couget, S; De Sousa, G; Brochot, C; Rahmani, R; Pery, A R R
2016-08-15
Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro - in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. Copyright © 2016 Elsevier Inc. All rights reserved.
1990-12-01
benzophenone (Aldrich 23:985-2), tetrabutylammonium nitrate (Kodak 9664), sodium lauryl sulfate (dodecyl sulfide, sodium salt) (Aldrich 86-201-0), helium gas...phase buffer for the initial identity confirmation using a Supelco LC-I column by dissolving 6.0 g of sodium lauryl sulfate and 1.0 g of...water, glacial acetic acid (Baker Reagent’Grade), tetrabutylammonium chloride (Aldrich g8. percent), sodium lauryl sulfate (Aldrich 98 percent), sodium
The effect of packaging materials on the stability of sunscreen emulsions.
Santoro, Maria Inês R M; Da Costa E Oliveira, Daniella Almança Gonçalves; Kedor-Hackmann, Erika R M; Singh, Anil K
2005-06-13
The purpose of this research was to study the stability of a emulsion containing UVA, UVB and infrared sunscreens after storage in different types of packaging materials (glass and plastic flasks; plastic and metallic tubes). The samples, emulsions containing benzophenone-3 (B-3), octyl methoxycinnamate (OM) and Phycocorail, were stored at 10, 25, 35 and 45 degrees C and representative samples were analyzed after 2, 7, 30, 60 and 90 days period. The stability studies were conducted by analyzing samples at pre-determined intervals by high performance liquid chromatography (HPLC) along with periodic rheological measurements.
Adsorption of methyl green on montmorillonite
NASA Astrophysics Data System (ADS)
Margulies, Leon; Rozen, Harel
1986-03-01
Adsorption of the dye methyl green (MG) on Na -montmorillonite (Clay) takes place through a cation exchange mechanism. At low and high MG loads, each MG molecule replaces approximately two and one Na + ions, respectively. Interactions between MG and Clay were studied using visible absorption and FTIR spectroscopies, and the orientation of the adsorbed molecules were determined by infrared linear dichroism and X-ray powder diffraction. The dye molecules are preferentially oriented with their plane parallel to the clay surface. The influence of MG load on the adsorption of two additional organic molecules, benzyl benzoate and benzophenone, was also studied.
Addition-type polyimides from solutions of monomeric reactants
NASA Technical Reports Server (NTRS)
Delvigs, P.; Serafini, T. T.; Lightsey, G. R.
1972-01-01
The monomeric reactants approach was used to fabricate addition-type polyimide/graphite fiber composites with improved mechanical properties and thermal stability characteristics over those of composites derived from addition-type amide acid prepolymers. A screening study of 24 different monomer combinations was performed. The results of a more extensive investigation of a selected number of monomer combinations showed that the combination providing the best thermomechanical properties was 5-norbornene-2,3-dicarboxylic acid monomethyl ester/4,4'-methylenedianiline/3,3'4,4'-benzophenone tetracarboxylic acid dimethyl ester at a molar ratio of 2/3.09/2.09.
Fire-resistant phosphorus containing polyimides and copolyimides
NASA Technical Reports Server (NTRS)
Mikroyannidis, J. A. (Inventor)
1985-01-01
Phosphorus-containing polyimides and copolyimides are synthesized in a two-step polycondensation reaction from 1- (diorganooxyphosphonl)methly 2,4- and 2,6-diaminobenzenes and tetracarboxylic anhydride. The diorgano position of the diorganooxyphosphonyl group includes alkyl, such as ethyl, substituted alkyl, such as 2-chloroethyl, and aryl such as phenyl. The tetracarboxylic anhydries include compounds such as pyrometallitic dianhydride and benzophenone tetracarboxylic dianhydride. The glass transition temperature (Tg) of the polyimides is reduced by incorporation of the (dialkoxyphosphonyl)methyl groups. The phosphorus-containing copolyimides show a considerably higher degree of fire-resistance as compared to that of the corresponding common polyimides.
Synthesis of tin-containing polyimide films
NASA Technical Reports Server (NTRS)
Ezzell, S. A.; Taylor, L. T.
1984-01-01
A series of tin-containing polyimide films derived from either 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride or pyromellitic dianhydride and 4,4'-oxydianiline have been synthesized and their electrical properties examined. Highest quality materials (i.e., homogeneous, smooth surface, flexible) with the best electrical properties were doped with either SnCl2.2H2O or (n-Bu)2SnCl2. In all cases, extensive reactivity of the tin dopant with water, air or polyamic acid during imidization is observed. Lowered electrical surface resistivities appear to be correlatable with the presence of surface tin oxide on the film surface.
Radical production from photosensitization of imidazoles, benzophenone and 4-benzoylbenzoic acid
NASA Astrophysics Data System (ADS)
Corral Arroyo, Pablo; González, Laura; Steimer, Sarah; Volkamer, Rainer; George, Christian; Bartels-Rausch, Thorsten; Ammann, Markus
2016-04-01
Reactions promoted by light are key in atmospheric chemistry. Some of them occur in the condensed phase of aerosols which may contain light absorbing organic compounds that provoke photochemical reactions such as humic like material (GEORGE 2005). Our aim is to understand the role these reactions play in atmospheric photochemistry. This work explores the radical reactions initiated by UV light in mixtures of citric acid (CA) and imidazole-2-carboxaldehyde (IC), benzophenone and 4-Benzoylbenzoic acid (BBA) using NO as a probe molecule for HO2, by means of coated wall flow tube experiments. The loss of NO was measured by a chemiluminescence detector (CLD), also configured for the distinction of the products (HONO or NO2). The dependence of the NO loss on the initial NO concentration, the photosensitizer concentration in the film, relative humidity, light intensity, oxygen molar fraction were investigated as well as the HONO and NO2 yields. We found a clear correlation between the loss of NO above the film and the molar ratio of photosensitizer/CA, and also between the NO loss and the light intensity. The variation of the observed NO loss with oxygen corroborates a mechanism, in which the triplet excited state of the photosensitizer is reduced likely by the predominant donor in the system, citric acid, to a reduced ketyl radical. This reactive species is transferring an electron to molecular oxygen, which in turn leads to production of HO2 radicals, which are released to the gas phase. Therefore, in absence of gas phase oxidants, the loss of NO in the gas phase could be related to the production of HO2 radicals in the condensed phase. Relative humidity had a strong impact on the HO2 output, which shows a maximum value at intermediate humidity around 30%, likely due to different competing effects of dilution and reactant mobility. The observed NO2/HONO ratio was around 1.4 consistent with the secondary chemistry of HO2 in presence of NO in the gas phase, indicating no additional direct release of OH to the gas phase nor direct conversion of NO2 to HONO at the film surface. IC and BBA showed similar HO2 production rates, while the HO2 yield with benzophenone was around 50 times higher. We could preliminary quantify for the first time the contribution of these processes to the oxidative capacity in the atmosphere and conclude that their role is significant for aerosol aging. References George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K., and Ammann, M.: Photoenhanced uptake of gaseous NO2 on solid organic compounds: a photochemical source of HONO?, Faraday Discussions, 130, 195, 2005.
Tsui, Mirabelle M P; Leung, H W; Lam, Paul K S; Murphy, Margaret B
2014-04-15
Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (≥80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and <20% of compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zucchi, Sara; Bluethgen, Nancy; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel
Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. Inmore » eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.« less
Buckley, Jessie P; Quirós-Alcalá, Lesliam; Teitelbaum, Susan L; Calafat, Antonia M; Wolff, Mary S; Engel, Stephanie M
2018-06-01
Prenatal environmental phenol and phthalate exposures may alter immune or inflammatory responses leading to respiratory and allergic disease. We estimated associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic outcomes among children in the Mount Sinai Children's Environmental Health Study. We quantified urinary biomarkers of benzophenone-3, bisphenol A, paradichlorobenzene (as 2,5-dichlorophenol), triclosan, and 10 phthalate metabolites in third trimester maternal samples and assessed asthma, wheeze, and atopic skin conditions via parent questionnaires at ages 6 and 7 years (n = 164 children with 240 observations). We used logistic regression to estimate covariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) per standard deviation difference in natural log biomarker concentrations and examined effect measure modification by child's sex. Associations of prenatal 2,5-dichlorophenol (all outcomes) and bisphenol A (asthma outcomes) were modified by child's sex, with increased odds of outcomes among boys but not girls. Among boys, ORs for asthma diagnosis per standard deviation difference in biomarker concentration were 3.00 (95% CI: 1.36, 6.59) for 2,5-dichlorophenol and 3.04 (95% CI: 1.38, 6.68) for bisphenol A. Wheeze in the past 12 months was inversely associated with low molecular weight phthalate metabolites among girls only (OR: 0.27, 95% CI: 0.13, 0.59) and with benzophenone-3 among all children (OR: 0.65, 95% CI: 0.44, 0.96). Prenatal bisphenol A and paradichlorobenzene exposures were associated with pediatric respiratory outcomes among boys. Future studies may shed light on biological mechanisms and potential sexually-dimorphic effects of select phenols and phthalates on respiratory disease development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Calafat, Antonia M.; Wong, Lee-Yang; Ye, Xiaoyun; Reidy, John A.; Needham, Larry L.
2008-01-01
Background The capability of benzophenone-3 (BP-3) to absorb and dissipate ultraviolet radiation facilitates its use as a sunscreen agent. BP-3 has other uses in many consumer products (e.g., as fragrance and flavor enhancer, photoinitiator, ultraviolet curing agent, polymerization inhibitor). Objectives Our goal was to assess exposure to BP-3 in a representative sample of the U.S. general population ≥ 6 years of age. Methods Using automated solid-phase extraction coupled to high-performance liquid chromatography–tandem mass spectrometry, we analyzed 2,517 urine samples collected as part of the 2003–2004 National Health and Nutrition Examination Survey. Results We detected BP-3 in 96.8% of the samples. The geometric mean and 95th percentile concentrations were 22.9 μg/L (22.2 μg/g creatinine) and 1,040 μg/L (1,070 μg/g creatinine), respectively. Least-square geometric mean (LSGM) concentrations were significantly higher (p ≤ 0.04) for females than for males, regardless of age. LSGM concentrations were significantly higher for non-Hispanic whites than for non-Hispanic blacks (p ≤ 0.01), regardless of age. Females were more likely than males [adjusted odds ratio (OR) = 3.5; 95% confidence interval (95% CI), 1.9–6.5], and non-Hispanic whites were more likely than non-Hispanic blacks (adjusted OR = 6.8; 95% CI, 2.9–16.2) to have concentrations above the 95th percentile. Conclusions Exposure to BP-3 was prevalent in the general U.S. population during 2003–2004. Differences by sex and race/ethnicity probably reflect differences in use of personal care products containing BP-3. PMID:18629311
Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization
Savage, Jessica H.; Matsui, Elizabeth C.; Wood, Robert A.; Keet, Corinne A.
2013-01-01
Background Endocrine-disrupting compounds (EDCs) have immune-modulating effects. We were interested in determining their association with allergic sensitization. Objective To determine the association between EDCs and allergic sensitization and if this relationship depended on the antimicrobial properties of the EDCs and/or gender. Methods Data were obtained from the 2005–2006 National Health and Nutrition Examination Survey in which urinary bisphenol A, triclosan, benzophenone-3, and propyl, methyl, butyl and ethyl paraben, and specific IgE were available on 860 children. Aeroallergen and food sensitization were defined as having at least one positive (≥0.35 kU/L) specific IgE to an aeroallergen or a food. Logistic regression was used to determine the association of EDCs and sensitization. Analyses were adjusted for urinary creatinine, age, ethnicity, and poverty index ratio. Results The odds of aeroallergen sensitization significantly increased with the level of the antimicrobial EDCs triclosan and propyl and butyl paraben (p≤0.04). The odds of food sensitization significantly increased with the level of urinary triclosan among male subjects (odds ratio for 3rd versus 1st tertile 3.9, p=0.02 for trend). There was a significant interaction between gender and triclosan, with males being more likely to be food sensitized with exposure (p=0.03). Similar associations were not identified for the non-antimicrobial EDCs bisphenol A and benzophenone-3 (p>0.2). Conclusions As a group, EDCs are not associated with allergen sensitization. However, levels of the antimicrobial EDCs triclosan and parabens were significantly associated with allergic sensitization. The potential role of antimicrobial EDCs in allergic disease warrants further study as they are commonly used in Western society. PMID:22704536
Zamoiski, Rachel D.; Cahoon, Elizabeth K.; Freedman, D. Michal; Linet, Martha S.
2015-01-01
Background Sunscreens protect against skin cancer and other harmful effects of solar ultraviolet radiation (UVR). Epidemiologic and public health surveys often rely on self-reported sunscreen use to estimate sun exposure and avoidance, but questions remain about the validity of self-reports. Benzophenone-3 (BP-3), a common sunscreen ingredient, can be detected in the urine. Prior studies suggest that BP-3 concentrations increase after application of sunscreen. Objectives The goal of this study was to assess the validity of self-reported frequency of sunscreen use in relation to urinary BP-3 concentrations in a representative sample of the general US population, including in sub-groups defined by age, sex and race/ethnicity. Methods To assess the relationship between categorical self-reported sunscreen use and creatinine-corrected urinary BP-3 concentrations, we conducted a linear regression adjusted for age, sex, race/ethnicity, six-month time period, body mass index, education, and sun avoidance behaviors. We tested for effect modification by age, sex, ethnicity and time period of measurement using multiplicative interaction terms and a F test. Results BP-3 was positively associated with self-reported frequency of sunscreen use across all ages, sexes, race/ethnicities, and time periods. Crude and multivariate adjusted models were all statistically significant. R-square was relatively low for all models, ranging from 0.15-0.43. Conclusions Urinary BP-3 is positively associated with self-reported frequency of sunscreen use in the general US population, even in groups with overall low sunscreen use. These results suggest that self-report is a valid, although weak, way of assessing relative frequencies of sunscreen usage in a population-based study. PMID:26298557
Pence, Jacquelyn C; Gonnerman, Emily A; Bailey, Ryan C; Harley, Brendan A C
2014-09-01
Strategies to integrate instructive biomolecular signals into a biomaterial are becoming increasingly complex and bioinspired. While a large majority of reports still use repeated treatments with soluble factors, this approach can be prohibitively costly and difficult to translate in vivo for applications where spatial control over signal presentation is necessary. Recent efforts have explored the use of covalent immobilization of biomolecules to the biomaterial, via both bulk (ubiquitous) as well as spatially-selective light-based crosslinking, as a means to both enhance stability and bioactivity. However, little is known about how processing conditions during immobilization impact the degree of unintended non-covalent interactions, or fouling, that takes place between the biomaterial and the biomolecule of interest. Here we demonstrate the impact of processing conditions for bulk carbodiimide (EDC) and photolithography-based benzophenone (BP) crosslinking on specific attachment vs. fouling of a model protein (Concanavalin A, ConA) within collagen-glycosaminoglycan (CG) scaffolds. Collagen source significantly impacts the selectivity of biomolecule immobilization. EDC crosslinking intensity and ligand concentration significantly impacted selective immobilization. For benzophenone photoimmobilization we observed that increased UV exposure time leads to increased ConA immobilization. Immobilization efficiency for both EDC and BP strategies was maximal at physiological pH. Increasing ligand concentration during immobilization process led to enhanced immobilization for EDC chemistry, no impact on BP immobilization, but significant increases in non-specific fouling. Given recent efforts to covalently immobilize biomolecules to a biomaterial surface to enhance bioactivity, improved understanding of the impact of crosslinking conditions on selective attachment versus non-specific fouling will inform the design of instructive biomaterials for applications across tissue engineering.
Zamoiski, Rachel D; Cahoon, Elizabeth K; Michal Freedman, D; Linet, Martha S
2015-10-01
Sunscreens protect against skin cancer and other harmful effects of solar ultraviolet radiation (UVR). Epidemiologic and public health surveys often rely on self-reported sunscreen use to estimate sun exposure and avoidance, but questions remain about the validity of self-reports. Benzophenone-3 (BP-3), a common sunscreen ingredient, can be detected in the urine. Prior studies suggest that BP-3 concentrations increase after application of sunscreen. The goal of this study was to assess the validity of self-reported frequency of sunscreen use in relation to urinary BP-3 concentrations in a representative sample of the general US population, including in sub-groups defined by age, sex and race/ethnicity. To assess the relationship between categorical self-reported sunscreen use and creatinine-corrected urinary BP-3 concentrations, we conducted a linear regression adjusted for age, sex, race/ethnicity, six-month time period, body mass index, education, and sun avoidance behaviors. We tested for effect modification by age, sex, ethnicity and time period of measurement using multiplicative interaction terms and a F test. BP-3 was positively associated with self-reported frequency of sunscreen use across all ages, sexes, race/ethnicities, and time periods. Crude and multivariate adjusted models were all statistically significant. R-square was relatively low for all models, ranging from 0.15 to 0.43. Urinary BP-3 is positively associated with self-reported frequency of sunscreen use in the general US population, even in groups with overall low sunscreen use. These results suggest that self-report is a valid, although weak, way of assessing relative frequencies of sunscreen usage in a population-based study. Published by Elsevier Inc.
Photoinduced Reactions of Benzophenone in Biaxially Oriented Polypropylene.
Levin, Peter P; Efremkin, Alexei F; Krivandin, Aleksey V; Lomakin, Sergei M; Shatalova, Olga V; Khudyakov, Igor V
2018-05-03
The photoinduced reactions of benzophenone (B) in biaxially oriented polypropylene (BOPP) were studied with nanosecond laser photolysis (N 2 laser, λ337.1 nm). The first observed transient was a triplet state 3 B*. Decay of 3 B* led to formation of a radical pair (RP) of BH • and R • , where R • is a radical formed by hydrogen abstraction from BOPP (RH) by 3 B*. We studied BOPP after the preheating for a short time in a temperature range 298-423 K, which is essentially lower than its melting point of 453 K. All measurements with not-heated and with preheated (annealed) BOPP were made at 298 K. A radical pair (RP) apparently decays as a contact pair 3 [BH • , R • ] in nonheated BOPP. A critical phenomenon takes place: dissociation of RP with a formation of free radicals in the polymer bulk is observed at preheating temperature T crit ≈ 403 K and at a higher T. The physical process of heating and cooling of BOPP apparently resulted in the restructuring of crystallites, their agglomeration, shrinking of the distribution of crystallites according to their sizes in BOPP. Overall BOPP becomes softer which manifests itself in the radical kinetics. The decay kinetics of 3 B* and RP in the cage fits well the first-order law. Rate constants were obtained. Radicals BH • , which exit into the polymer bulk at temperatures of preheating T ≥ 403 K, decay by cross-termination according to the second-order law. A relatively high rate constant ∼10 8 M -1 ·s -1 for this reaction was obtained due to diffusion of BH • enclosed in the soft amorphous phase of BOPP. Properties of BOPP containing B were studied with ESR, DSC, IR, and WAXD.
Nguyen, Truong X; Kattnig, Daniel; Mansha, Asim; Grampp, Günter; Yurkovskaya, Alexandra V; Lukzen, Nikita
2012-11-08
The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are k(q) = 2.3 × 10(9) (4.7 < pH < 9.9), k(q) = 4.0 × 10(9) (3.5 < pH < 4.7), k(q) = 1.0 × 10(9) (4.7 < pH < 9.9), and k(q) = 4.0 × 10(8) M(-1) s(-1) (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto-enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ -59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer.
2012-01-01
The kinetics of triplet state quenching of 3,3′,4,4′-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λmax = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are kq = 2.3 × 109 (4.7 < pH < 9.9), kq = 4.0 × 109 (3.5 < pH < 4.7), kq = 1.0 × 109 (4.7 < pH < 9.9), and kq = 4.0 × 108 M–1 s–1 (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto–enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ −59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer. PMID:23038981
Tsui, Mirabelle M P; Leung, H W; Wai, Tak-Cheung; Yamashita, Nobuyoshi; Taniyasu, Sachi; Liu, Wenhua; Lam, Paul K S; Murphy, Margaret B
2014-12-15
Organic UV filters are common ingredients of personal care products (PCPs), but little is known about their distribution in and potential impacts to the marine environment. This study reports the occurrence and risk assessment of twelve widely used organic UV filters in surface water collected in eight cities in four countries (China, the United States, Japan, and Thailand) and the North American Arctic. The number of compounds detected, Hong Kong (12), Tokyo (9), Bangkok (9), New York (8), Los Angeles (8), Arctic (6), Shantou (5) and Chaozhou (5), generally increased with population density. Median concentrations of all detectable UV filters were <250 ng/L. The presence of these compounds in the Arctic is likely due to a combination of inadequate wastewater treatment and long-range oceanic transport. Principal component analysis (PCA) and two-way analysis of variance (ANOVA) were conducted to explore spatiotemporal patterns and difference in organic UV filter levels in Hong Kong. In general, spatial patterns varied with sampling month and all compounds showed higher concentrations in the wet season except benzophenone-4 (BP-4). Probabilistic risk assessment showed that 4-methylbenzylidene camphor (4-MBC) posed greater risk to algae, while benzophenone-3 (BP-3) and ethylhexyl methoxycinnamate (EHMC) were more likely to pose a risk to fishes and also posed high risk of bleaching in hard corals in aquatic recreational areas in Hong Kong. This study is the first to report the occurrence of organic UV filters in the Arctic and provides a wider assessment of their potential negative impacts in the marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Pengyan; Chen, Yanjie; Zhao, Chunxia; Tian, Lei
2013-12-01
A method for the determination of ten photoinitiators (PIs), benzophenone, ethyl 4-dimethylaminobenzoate, 1-hydroxycyclohexyl-phenylketone, 4-methylbenzophenone, 2-ethylhexyl-4-dimethylaminobenzoate, 4-chlorobenzophenone, 2-chlorothioxanthone, 2-isopropylthio-xanthone, 2,2-dimethoxy-2-phenylacetophenone, methyl 2-benzoylbenzoate, in 13 kinds of fruit juice and 3 kinds of tea beverage has been established, using solid-phase micro-extraction (SPME) combined with chromatography/mass spectrometry (GC/MS). At first, the major factors of SPME, extraction time and temperature, were studied through orthogonal experiment. Then the optimal operation conditions were obtained via the refinement of various factors. After the sample was extracted by SPME, it was desorbed for target analytes in sampling inlet for 3 min, and separated on an HP-5MS column, then detected by MS in selected ion monitoring mode, and quantified through calibration curve. The working curves were obtained using sample matrix in order to eliminate the matrix interference. The linear range was from 0.3 microg/L to 60 microg/L and the detection limit range was from 3 ng/L to 16 ng/L. The samples were determined five times with four different spiked levels individually and the relative standard deviations of all the samples were less than 14.5%. This determination method was applied in 16 kinds of packed beverages with different brands and different species. Benzophenone had been detected from all the samples. 4-Methylbenzophenone, 2-ethylhexyl-4-dimethylaminobenzoate, 2-isopropylthioxanthone, 1-hydroxycyclohexyl-phenylketone and 2-chlorothioxanthone had been detected from a portion of samples. Simultaneous determination was achieved for the ten PIs. These results provide a reference to determine the PIs migrated from packing materials in beverage. This method is simple, high sensitive and non-polluting.
Liu, Wei; Wei, Dongbin; Liu, Qi; Du, Yuguo
2016-07-01
Benzophenones compounds (BPs) are widely used as UV filters, and have been frequently found in multiple environmental matrices. The residual of BPs in water would cause potential threats on ecological safety and human health. Chlorination disinfection is necessary in water treatment process, in which many chemicals remained in water would react with disinfectant chlorine and form toxic by-products. By using ultra performance liquid phase chromatography quadrupole time of flight mass spectrometer (UPLC-QTOF-MS), nuclear magnetic resonance (NMR), the transformation of 4-hydroxyl benezophenone (4HB) with free available chlorine (FAC) was characterized. Eight major products were detected and seven of them were identified. Transformation pathways of 4HB under acid, neutral, and alkaline conditions were proposed respectively. The transformation mechanisms involved electrophilic chlorine substitution of 4HB, Baeyer-Villiger oxidation of ketones, hydrolysis of esters and oxidative breakage of benzene ring. The orthogonal experiments of pH and dosages of disinfectant chlorine were conducted. The results suggested that pH conditions determined the occurrence of reaction types, and the dosages of disinfectant chlorine affected the extent of reactions. Photobacterium assay demonstrated that acute toxicity had significant increase after chlorination disinfection of 4HB. It was proved that 3,5-dichloro-4HB, one of the major transformation products, was responsible for the increasing acute toxicity after chlorination. It is notable that, 4HB at low level in real ambient water matrices could be transformed during simulated chlorination disinfection practice. Especially, two major products 3-chloro-4HB and 3,5-dichloro-4HB were detected out, implying the potential ecological risk after chlorination disinfection of 4HB. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jurado, Anna; Pau Serra, Maria; Díaz-Cruz, M. Silvia; Vázquez-Suñé, Enric; Pujades, Estanislao; Barceló, Damià
2016-04-01
This work presents the occurrence and fate of selected personal care products (PCPs) in the urban river-groundwater interface. To this end, urban groundwater and river samples were collected in Sant Adrià del Besòs (NE of Spain) and a total of 16 PCPs were analyzed including benzophenone derivatives, camphor derivatives, p-aminobenzoic acid derivatives, triazoles and parabens in three different campaigns (from May 2010 to July 2014). These compounds reach the aquifer through the recharge of River Besòs that receives large amounts of effluents from waste water treatment plants. Results shown that most of compounds were not or barely detected (maximum concentrations around 30 ng/L) in groundwater samples during the different sampling campaigns. Only two triazoles, named as benzotriazole (BZT) and methyl benzotriazol (MeBZT) were found at high concentrations in groundwater samples (maximum concentration around 2000 ng/L). The fate of PCPs in the aquifer was assessed using mixing analysis considering the temporal variability of the River Besòs. Overall, measured groundwater concentrations were significantly much lower than those estimated by the mixing of the river water. This observation suggested that most of the PCPs are naturally removed when river water infiltrates the aquifer. However, some compounds were more persistent in the aquifer. These compounds were in descending order: the triazoles MeBZT and BZT followed by the camphor derivative 4MBC. The measured concentrations allowed us to assess the environmental risk posed by the selected UV-Fs (e.g. benzophenone derivatives) in the river-groundwater samples. Hazard Quotients (HQs) for diferent aquatic species were calculated in order to characterise the ecotoxicity potential of the studied compounds in the river-groundwater interface. HQ values will be presented and discussed in the presentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inbar, S.; Linschitz, H.; Cohen, S.G.
Nanosecond flash photolysis, steady irradiation, and deuterium substitution studies have been carried out on solutions of benzophenone with added reductants. Quantum yields (phi/sub ketyl/) for reduction in benzene of benzophenone triplet to ketyl radical, based on phi = 2 for benzhydrol (I), were approx. 1 for cyclohexane (II), tert-butylamine (III), 2-aminobutane (IV), cyclohexylamine (V), di-n-propylamine (VI), and triethylamine (VII), approx. 0.7 for 1,4-diazabicyclo(2.2.2)octane (VIII), and approx. 0 for tert-butyl alcohol (IX). Thus, quenching, without radical formation by H abstraction from N and/or ..cap alpha..-C, does not occur with common aliphatic amines but does with Dabco (VIII). The latter quenching ismore » markedly increased by small additions of acetonitrile; the flash spectrum from this compound indicates formation of a triplet amine CT complex or radical ion pair. Triplet-reductant interaction rate constants, k/sur ir/, are high for the amines (approx. 10/sup 8/-10/sup 9/ M/sup -1/ s/sup -1/) but also show significant deuterium kinetic isotope effects: 1.9 with III-N-d/sub 2/; 1.4 with IV-N-d/sub 2/; 1.2-1.3 with IV-..cap alpha..-C-d. It is proposed that k/sub ir/ measures H atom abstraction, favored in the transition state by an initial charge-transfer interaction. Overall steady irradiation quantum yields of reduction by amines, phi/sub Red/, are much lower than phi/sub ketyl/. This is attributed to disproportionationreactions of ketyl and alkylaminyl radicals for primary and secondary amines, and, possibly, aminoalkyl radicals for tertiary amines. In the case of tert-butylamine, the rate constant for disproportionation is obtained from the decay kinetics of ketyl radical and leads to phi/sub Red/ in agreement with that directly measured.« less
Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, S.; Tebby, C.
Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-timemore » cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.« less
Haselman, Jonathan T; Sakurai, Maki; Watanabe, Naoko; Goto, Yasushi; Onishi, Yuta; Ito, Yuki; Onoda, Yu; Kosian, Patricia A; Korte, Joseph J; Johnson, Rodney D; Iguchi, Taisen; Degitz, Sigmund J
2016-12-01
The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan's Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in a model amphibian species, Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg l -1 BP-2 until 2 months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg l -1 treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genetic males showing both testis and ovary tissues (1.5 mg l -1 ) and 100% of the genetic males in the 3.0 and 6.0 mg l -1 treatments experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely vitellogenin and other estrogen-responsive yolk proteins. This is the first study that demonstrates the endocrine effects of this mixed mode of action chemical in an amphibian species and demonstrates the utility of the LAGDA design for supporting chemical risk assessment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Synthesis of asymmetric tetracarboxylic acids and corresponding dianhydrides
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2008-01-01
This invention relates to processes for preparing asymmetrical biphenyl tetracarboxylic acids and the corresponding asymmetrical dianhydrides, namely 2,3,3',4'-biphenyl dianhydride (a-BPDA), 2,3,3',4'-benzophenone dianhydride (a-BTDA) and 3,4'-methylenediphthalic anhydride (-MDPA). By cross-coupling reactions of reactive metal substituted o-xylenes or by cross-coupling o-xylene derivatives in the presence of catalysts, this invention specifically produces asymmetrical biphenyl intermediates that are subsequently oxidized or hydrolyzed and oxidized to provide asymmetric biphenyl tetracarboxylic acids in comparatively high yields. These asymmetrical biphenyl tetracarboxylic acids are subsequently converted to the corresponding asymmetrical dianhydrides without contamination by symmetrical biphenyl dianhydrides.
The Al(I) molecule, Ph2COAl and its anion
NASA Astrophysics Data System (ADS)
Zhang, Xinxing; Eichhorn, Bryan; Schnöckel, Hansgeorg; Bowen, Kit
2016-08-01
We have formed the Al(I)-containing molecule, benzophenone-aluminum, i.e., Ph2COAl, and studied it by conducting density functional theory calculations on both its neutral and anionic forms and by measuring the photoelectron spectrum of its anion. Our calculations identified two nearly iso-energetic anion isomers, (Ph2COAl)-, the vertical detachment energies (VDE) of which are in excellent agreement with our photoelectron spectrum. Natural population analysis (NPA) of Ph2COAl found the Al moiety to be positively charged by +0.81 e, indicating a strongly ionic bond between Al and Ph2CO, i.e., Ph2CO-Al+.
Wang, Lei; Hisano, Wataru; Murai, Yuta; Sakurai, Munenori; Muto, Yasuyuki; Ikemoto, Haruka; Okamoto, Masashi; Murotani, Takashi; Isoda, Reika; Kim, Dongyeop; Sakihama, Yasuko; Sitepu, Irnayuli R; Hashidoko, Yasuyuki; Hatanaka, Yasumaru; Hashimoto, Makoto
2013-07-16
Photoaffinity labeling is a reliable analytical method for biological functional analysis. Three major photophores--aryl azide, benzophenone and trifluoromethyldiazirine--are utilized in analysis. Photophore-bearing L-phenylalanine derivatives, which are used for biological functional analysis, were inoculated into a Klebsiella sp. isolated from the rhizosphere of a wild dipterocarp sapling in Central Kalimantan, Indonesia, under nitrogen-limiting conditions. The proportions of metabolites were quite distinct for each photophore. These results indicated that photophores affected substrate recognition in rhizobacterial metabolic pathways, and differential photoaffinity labeling could be achieved using different photophore-containing L-phenylalanine derivatives.
Wang, Su-Min; Yu, Mao-Lin; Ding, Jie; Tung, Chen-Ho; Wu, Li-Zhu
2008-05-01
Phosphorescence quenching and flash photolysis experiments demonstrate that photoinduced intra-assembly triplet-triplet energy transfer can take place via a 2-ureido-4[1H]-pyrimidinone-bridged benzophenone-naphthalene assembly I with a rate constant of 3.0 x 106 s-1 and an efficiency of 95% in CH2Cl2. This new finding suggests that with high binding strength and directionality, the 2-ureido-4[1H]-pyrimidinone hydrogen-bonded module may serve as a new model to illustrate the fundamental principles governing the triplet-triplet energy-transfer process through hydrogen bonds.
Two-color two-laser fabrication of gold nanoparticles in a PVA film
NASA Astrophysics Data System (ADS)
Sakamoto, Masanori; Tachikawa, Takashi; Fujitsuka, Mamoru; Majima, Tetsuro
2006-03-01
We developed a new method for the fabrication of gold nanoparticles (AuNps) in a poly(vinyl alcohol) film using a two-color two-laser irradiation. The benzophenone ketyl radical (BPH rad ) in the excited state (BPH rad (D 1)) was used as a reducing agent. Although BPH rad in the ground state also reduced AuCl4- to produce AuNps, the formation of AuNp was significantly enhanced by the BPH rad (D 1) generated by the two-color two-laser irradiation. Because the electron transfer from the BPH rad (D 1) to AuCl4- enhanced the formation of AuNps.
New polymer systems: Chain extension by dianhydrides
NASA Technical Reports Server (NTRS)
Rhein, R. A.; Ingham, J. D.
1972-01-01
The results are presented for a systematic investigation on the use of anhydrides to prepare stable elastomeric materials for space use, under mild reaction conditions. The three anhydrides investigated were found to provide effective chain extension of hydroxy-terminated poly(alkylene oxides) and poly(butadienes). These were tetrahydrofuran tetracarboxylic dianhydride, pyromellitic dianhydride, and benzophenone tetracarboxylic diahydride. The most effective catalyst investigated was ferric acetylacetonate, which resulted in chain extension at 333 K (60 C). One feature of these anhydride reactants is that they are difunctional as anhydrides, but tetrafunctional if conditions are selected that lead to reaction of all carboxyl groups. Therefore, chain extension can be effected and then followed by crosslinking via the residual carboxyl groups.
Quantitative analysis of the mixtures of illicit drugs using terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Jiang, Dejun; Zhao, Shusen; Shen, Jingling
2008-03-01
A method was proposed to quantitatively inspect the mixtures of illicit drugs with terahertz time-domain spectroscopy technique. The mass percentages of all components in a mixture can be obtained by linear regression analysis, on the assumption that all components in the mixture and their absorption features be known. For illicit drugs were scarce and expensive, firstly we used common chemicals, Benzophenone, Anthraquinone, Pyridoxine hydrochloride and L-Ascorbic acid in the experiment. Then illicit drugs and a common adulterant, methamphetamine and flour, were selected for our experiment. Experimental results were in significant agreement with actual content, which suggested that it could be an effective method for quantitative identification of illicit drugs.
Kozhushkov, Sergei I; Yufit, Dmitrii S; Grosse, Christian; Kaiser, Marcel
2014-01-01
Summary Efficient and scalable syntheses of enantiomerically pure (2R,1'S,2'R)- and (2S,1'S,2'R)-3-[2-mono(di,tri)fluoromethylcyclopropyl]alanines 9a–c, as well as allo-D-threonine (4) and (2S,3R)-β-methylphenylalanine (3), using the Belokon' approach with (S)- and (R)-2-[(N-benzylprolyl)amino]benzophenone [(S)- and (R)-10] as reusable chiral auxiliaries have been developed. Three new fluoromethyl analogues of the naturally occurring octadepsipeptide hormaomycin (1) with (fluoromethylcyclopropyl)alanine moieties have been synthesized and subjected to preliminary tests of their antibiotic activity. PMID:25550751
Salmi, Zakaria; Benzarti, Karim; Chehimi, Mohamed M
2013-11-05
We describe a simple, off-the-beaten-path strategy for making clay/polymer nanocomposites through tandem diazonium salt interface chemistry and radical photopolymerization. Prior to photopolymerization, sodium montmorillonite (MMT) was ion exchanged with N,N'-dimethylbenzenediazonium cation (DMA) from the tetrafluoroborate salt precursor. DMA acts as a hydrogen donor for benzophenone in solution; this pair of co-initiators permits us to photopolymerize glycidyl methacrylate (GMA) between the lamellae of the diazonium-modified clay, therefore providing intercalated MMT-PGMA nanocomposites with an onset of exfoliation. This work conclusively provides a new approach for bridging reactive and functional polymers to layered nanomaterials via aryl diazonium salts in a simple, fast, efficient cation-exchange approach.
Vione, Davide; Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio
2013-10-01
The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield ΦBP3=(3.1±0.3)·10(-5) and the following second-order reaction rate constants: with (•)OH, k(BP3,(•)OH)=(2.0±0.4)·10(10) M(-1) s(-1); with the triplet states of chromophoric dissolved organic matter ((3)CDOM*), K(BP3,(3)CDOM*)=(1.1±0.1)·10(9) M(-1) s(-1); with (1)O2, k(BP3,(1)O2)=(2.0±0.1)·10(5) M(-1) s(-1), and with CO3(-•), k(BP3,CO3(-•))<5·10(7) M(-1) s(-1). These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with (•)OH and (3)CDOM* would be the main processes of BP3 phototransformation. Reaction with (•)OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L(-1)), and reaction with (3)CDOM* at high DOC. If the reaction rate constant with CO3(-•) is near the upper limit of experimental measures (5·10(7) M(-1) s(-1)), the CO3(-•) degradation process could be somewhat important for DOC<1 mg C L(-1). The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with (•)OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ~10% of initial BP3) and benzaldehyde (1%). Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, Ming-Hong; Li, Jian; Xu, Gang; Ma, Luo-Dan; Li, Jia-Jun; Li, Jin-Song; Tang, Liang
2018-05-15
The environmental behaviors of emerging pollutants, benzophenone-type UV filters (BP-UV filters) and their derivatives were investigated in four wastewater treatment plants (WWTPs), and their receiving surface waters in Shanghai. The concentration level of selected BP-UV filters in the WWTPs was detected from ngL -1 to μgL -1 . BP (621-951ngL -1 ) and BP-3 (841-1.32 × 10 3 ngL -1 ) were the most abundant and highest detection frequency individuals among the target BP-UV filters in influents, whereas BP (198-400ngL -1 ), BP-4 (93.3-288ngL -1 ) and BP-3 (146-258ngL -1 ) were predominant in effluents. BP-UV filters cannot be completely removed and the total removal efficiency varied widely (-456% to 100%) during the treatment process. It can be inferred that the usage of BP and BP-3 are higher than other BP-UV filters in the study area. The lowest and highest levels were BP-2 (ND-7.66ngL -1 ) and BP-3 (68.5-5.01 × 10 3 ng L -1 ) in the receiving surface water, respectively. Interestingly, the seasonal variation of BP-3 is larger than those of other BP-UV filters in surface water from Shanghai. There is no obvious pollution pattern of BP-UV filters in the surface water from the cosmetic factory area. The correlation analysis of BP-UV filters between WWTPs effluents and nearby downstream water samples suggested that BP-UV filters emitted from some WWTPs might be the main source of receiving surface water. Preliminary risk assessment indicated that the levels of BP-UV filters detected by the effluent posed medium to high risk to fish as well as other aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.
The effect of UV-filters on the viability of neuroblastoma (SH-SY5Y) cell line.
Broniowska, Żaneta; Pomierny, Bartosz; Smaga, Irena; Filip, Małgorzata; Budziszewska, Bogusława
2016-05-01
Topical application of cosmetic products, containing ultraviolet filters (UV filters) are recommended as a protection against sunburns and in order to reduce the risk of skin cancer. However, some UV filters can be absorbed through skin and by consuming contaminated food. Among the chemical UV filters, benzophenone-3 (BP-3), 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl-4-methoxycinnamate (OMC) are absorbed through the skin to the greatest extent. So far, these lipophilic compounds were demonstrated to influence the gonadal and thyroid hormone function, but their effect on central nervous system cells has not been investigated, yet. In the present study, we investigated the effect of some UV filters on cell viability and caspase-3 activity in SH-SY5Y cells. It has been found that benzophenone-2 (BP-2), BP-3, 4-methylbenzophenone (4-MBP) and OMC present in the culture medium for 72h in high concentration (10(-5) and 10(-4)M) and 4-MBC only 10(-4)M produced a significant cytotoxic effect, as determined both by the MTT reduction test and LDH release assay. In contrast to necrotic changes, all tested UV filters increased caspase-3 activity in much lower concentrations (from 10(-8) to 10(-7)M). Proapoptotic properties of the test compounds were positively verified by Hoechst staining. The obtained results indicated that UV filters adversely affected the viability of nerve cells, most likely by enhancing the process of apoptosis. The most potent effect was exerted by BP-3 and 4-MBC and at concentrations that may be reached in vivo. Since human exposure to UV filters is significant these compound should be taken into consideration as one of the possible factors involved in pathogenesis of neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Palmiotto, Marinella; Castiglioni, Sara; Zuccato, Ettore; Manenti, Angela; Riva, Francesco; Davoli, Enrico
2018-05-15
The use and discharge of personal care products (PCPs) result in their presence in the aquatic environment. This study investigates the occurrence and fate of some PCPs in wastewater, surface and groundwater in an urbanized area in the North of Italy. We investigated four UV filters: phenylbenzimidazole sulfonic acid (PBSA), benzophenone-3 (BP3), benzophenone-4 (BP4) and 4 methyl-benzilidine-camphor (4-MBC), and two antibacterial agents: triclosan (TCS) and triclocarban (TCC). BP3, BP4 and PBSA were detected in all WWTPs and concentrations ranged 27-822 ng/L (BP4 > PBSA > BP3). TCS was the only disinfectant detected in wastewater and ranged from <0.2 to 1690 ng/L. Removal efficiencies in WWTPs were good for BP3 and TCS (80-100%), but were quite low for PBSA and BP4 (0-40%). Consequently, PBSA and BP4 were the most abundant substances in surface water, detected up to 560.4 ng/L. TCS was also found in surface water (<0.2-161.0 ng/L). Only PBSA and TCS were found in untreated groundwater, and levels were higher in wells close to rivers, suggesting the contribution of surface water to this contamination, but not from the catchment and the sewer networks. These PCPs were confirmed to be ubiquitous in all the aquifers sampled, being reliable descriptors of human presence. The use of these data as direct indicators of pollutant's loads for the aquifers deriving from human presence could provide early warnings on chemicals that are continuously introduced into surface waters, identifying dynamic urban trends and suggesting paths for the planning in urban regions and for appropriate investment and rehabilitation strategies of infrastructure. Copyright © 2018 Elsevier Ltd. All rights reserved.
do Nascimento, Débora Freitas; Silva, Anna Claudia; Mansur, Claudia Regina Elias; Presgrave, Rosaura de Faria; Alves, Eloisa Nunes; Silva, Ronald Santos; Ricci-Júnior, Eduardo; de Freitas, Zaida Maria Faria; dos Santos, Elisabete Pereira
2012-09-01
Ultraviolet radiation can bring both harm and benefits to human health. Among those harms are erythemas, photosensitivity, photoaging, and the most worrying, skin cancer. Nanoencapsulation of sunscreen agents (SA) by using a biocompatible and biodegradable polymer such as poly(epsilon-caprolactone) (PCL) is advantageous as it increases the retention of UV absorbers in the skin, avoids systemic absorption, and consequently, improves water resistance and stability of the preparation. The aim of this work is to develop, characterize, and study the encapsulation of 3 different SA: 2-ethylhexyl-p-methoxycinnamate, benzophenone-3, and octocrylene in PCL nanoparticles (Nps). Nps were prepared by the solvent emulsification and evaporation method. The process yield was calculated, and the Nps were characterized in terms of size, polydispersity index (PI), morphology, zeta potential (ZP), encapsulation efficiency (EE) (%), and sunscreen agent content (SAC). The final formulations were submitted to the hen's egg test-chorioallantoic membrane (HET-CAM), chorioallantoic membrane-trypan blue staining (CAM-TBS), red blood cell (RBC), Draize tests, in vitro release, in vitro sun protection factor (SPF), UVA protection factor (PF-UVA), and photostability. All the Nps were in the nanometric scale. PI showed monodisperse systems. ZP became more negative as the Np were lyophilized and were added to the formulations. EE varied from 84 to 90%. The SAC went from 44 to 65 microg of sunscreen agents by milligram of Np. The process yield went from 60 to 76%. Nps were predominantly spherical and elliptical forms. The addition of Np diminished the release of the SA. The SPF increased with Np presence and helped to maintain the PF-UVA after irradiation. The HET-CAM assay evaluated the formulation as slightly irritant, CAM-TBS and RBC tests as non irritant, and the Draize test as moderately irritant.
Moos, Rebecca K; Angerer, Jürgen; Wittsiepe, Jürgen; Wilhelm, Michael; Brüning, Thomas; Koch, Holger M
2014-11-01
We developed a fast, selective and sensitive on-line LC/LC-MS/MS method for the simultaneous determination of nine parabens and seven environmental phenols in urine. Parabens are widely used as antimicrobial preservatives. Bisphenol A, triclosan, triclocarban, 2-phenylphenol, and benzophenones are used inter alia in disinfectants, sunscreens and in polymers. Some of these substances are suspected endocrine disruptors. Limits of quantification and analytical quality criteria fully met the needs for determining exposure levels occurring in the general population. We analyzed 157 spot urine samples from the general German population (59 females, 39 males and 59 children). For the parabens, we found methyl, ethyl and n-propyl paraben with high detection rates (77-98%), followed by n-butyl (36%), iso-butyl (17%), iso-propyl (3%) and benzyl paraben (3%). We detected no pentyl and heptyl paraben. Urinary concentrations were highest for methyl paraben (median 24.5 μg/L; 95th percentile 379 μg/L) followed by ethyl (1.4 μg/L; 35.2 μg/L) and n-propyl paraben (1.2 μg/L; 68.1 μg/L). Other environmental phenols with high detection rates were BPA (95%), triclosan (45%) and benzophenone 1 and 3 (26%). For most of the parabens/environmental phenols we found higher urinary levels in females than in males or children, probably due to differences in (personal care) product use. However, high levels (in the mg/L range) were also observed in children. Exposure to the above substances is occurring worldwide. Differences between countries do seem to exist and might be caused by different product compositions or different use habits. Human metabolism data is urgently needed to extrapolate from urinary biomarker levels to doses actually taken up. Copyright © 2014 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li
2015-12-15
Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were alsomore » investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.« less
Nyeborg, M; Pissavini, M; Lemasson, Y; Doucet, O
2010-02-01
The aim of the study was the validation of a high-performance liquid chromatography (HPLC) method for the simultaneous and quantitative determination of twelve commonly used organic UV-filters (phenylbenzimidazole sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, diethylamino hydroxybenzoyl hexyl benzoate, octocrylene, ethylhexyl methoxycinnamate, ethylhexyl salicylate, butyl methoxydibenzoylmethane, diethylhexyl butamido triazone, ethylhexyl triazone, methylene bis-benzotriazolyl tetramethylbutylphenol and bis-ethylhexyloxyphenol methoxyphenyl triazine) contained in suncare products. The separation and quantitative determination was performed in <30 min, using a Symmetry Shield(R) C18 (5 microm) column from Waters and a mobile phase (gradient mode) consisting of ethanol and acidified water. UV measurements were carried out at multi-wavelengths, according to the absorption of the analytes.
Ayers, Sloan; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Shen, Qi; Swanson, Steven M; Matthew, Susan; Carcache de Blanco, Esperanza J; Wani, Mansukh C; Darveaux, Blaise A; Pearce, Cedric J; Oberlies, Nicholas H
2012-01-01
Two new xanthone-anthraquinone heterodimers, acremoxanthone C (5) and acremoxanthone D (2), have been isolated from an extract of an unidentified fungus of the order Hypocreales (MSX 17022) by bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Two known related compounds, acremonidin A (4) and acremonidin C (3) were also isolated, as was a known benzophenone, moniliphenone (1). The structures of these isolates were determined via extensive use of spectroscopic and spectrometric tools in conjunction with comparisons to the literature. All compounds (1-5) were evaluated against a suite of biological assays, including those for cytotoxicity, inhibition of the 20S proteasome, mitochondrial transmembrane potential and nuclear factor-κB.
The examination of berberine excited state by laser flash photolysis
NASA Astrophysics Data System (ADS)
Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong
2009-07-01
The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.
Vela-Soria, Fernando; Jiménez-Díaz, Inmaculada; Díaz, Caridad; Pérez, José; Iribarne-Durán, Luz María; Serrano-López, Laura; Arrebola, Juan Pedro; Fernández, Mariana Fátima; Olea, Nicolás
2016-09-01
Human populations are widely exposed to numerous so-called endocrine-disrupting chemicals, exogenous compounds able to interfere with the endocrine system. This exposure has been associated with several health disorders. New analytical procedures are needed for biomonitoring these xenobiotics in human matrices. A quick and inexpensive methodological procedure, based on sample treatment by dispersive liquid-liquid microextraction, is proposed for the determination of bisphenols, parabens and benzophenones in samples. LOQs ranged from 0.4 to 0.7 ng ml(-1) and RSDs from 4.3 to 14.8%. This methodology was satisfactorily applied in the simultaneous determination of a wide range of endocrine-disrupting chemicals in human milk samples and is suitable for application in biomonitoring studies.
Ma, Y M; Li, Y; Liu, J Y; Song, Y C; Tan, R X
2004-07-01
A new benzophenone, named rhizoctonic acid (1), together with three known compounds monomethylsulochrin (2), ergosterol (3) and 3beta,5alpha,6beta-trihydroxyergosta-7,22-diene (4) were isolated through bioassay-guided fractionations from the culture of Rhizoctonia sp. (Cy064), an endophytic fungus in the leaf of Cynodon dactylon. The structure of the new acid 1 was elucidated to be 5-hydroxy-2-(2-hydroxy-6-methoxy-4-methylbenzoyl)-3-methoxybenzoic acid by a combination of spectral analyses. Furthermore, the structure of monomethylsulochrin 2 was confirmed by 13C-NMR analysis. All four metabolites were subjected to a more detailed in vitro assessment of their antibacterial action against five clinically isolated and one reference (ATCC 43504) Helicobacter pylori strains.
Light-harvesting organic photoinitiators of polymerization.
Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre
2013-02-12
Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uchida, Noriyuki; Okuro, Kou; Niitani, Yamato; Ling, Xiao; Ariga, Takayuki; Tomishige, Michio; Aida, Takuzo
2013-03-27
A water-soluble dendron with a fluorescein isothiocyanate (FITC) fluorescent label and bearing nine pendant guanidinium ion (Gu(+))/benzophenone (BP) pairs at its periphery (Glue(BP)-FITC) serves as a "photoclickable molecular glue". By multivalent salt-bridge formation between Gu(+) ions and oxyanions, Glue(BP)-FITC temporarily adheres to a kinesin/microtubule hybrid. Upon subsequent exposure to UV light, this noncovalent binding is made permanent via a cross-linking reaction mediated by carbon radicals derived from the photoexcited BP units. This temporal-to-permanent transformation by light occurs quickly and efficiently in this preorganized state, allowing the movements of microtubules on a kinesin-coated glass plate to be photochemically controlled. A fundamental difference between such temporal and permanent bindings was visualized by the use of "optical tweezers".
A new screening method for flunitrazepam in vodka and tequila by fluorescence spectroscopy.
Leesakul, Nararak; Pongampai, Sirintip; Kanatharana, Proespichaya; Sudkeaw, Pravit; Tantirungrotechai, Yuthana; Buranachai, Chittanon
2013-01-01
A new screening method for flunitrazepam in colourless alcoholic beverages based on a spectroscopic technique is proposed. Absorption and steady-state fluorescence of flunitrazepam and its protonated form with various acids were investigated. The redshift of the wavelength of maximum absorption was distinctively observed in protonated flunitrazepam. An emissive fluorescence at 472 nm was detected in colourless spirits (vodka and tequila) at room temperature. 2-M perchloric acid was the most appropriated proton source. By using electron ionization mass spectrometry and time-dependent density functional theory calculations, the possible structure of protonated flunitrazepam was identified to be 2-nitro-N-methylacridone, an acridone derivative as opposed to 2-methylamino-5-nitro-2'-fluorobenzophenone, a benzophenone derivative. Copyright © 2012 John Wiley & Sons, Ltd.
Mbah, C J
2007-01-01
Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin.
Addition Polyimides from Non-Mutagenic Diamines
NASA Technical Reports Server (NTRS)
Delvigs, Peter; Klopotek, David L.; Hardy-Green, DeNise; Meador, Michael A. (Technical Monitor)
2001-01-01
Studies were conducted to find an acceptable non-mutagenic diamine to replace 4,4'-methylenedianiline (MDA), a suspect carcinogen, which is currently being used in PMR-15 polyimide applications. Several diamines containing fluorine and trifluoromethyl substituent groups were synthesized. The diamines were polymerized with the dimethyl ester of 3,3',4,4'-benzophenone tetracarboxylic acid (BTDE), using the monomethyl ester of nadic acid (NE) as an endcap. The effect of diamine structure on rheological properties, glass transition temperature, and thermo-oxidative stability was investigated. Unidirectional laminates were fabricated from selected resins, using carbon fiber as the reinforcement. The results indicate that some of the diamines containing trifluoromethyl groups are non-mutagenic, and have potential to replace MDA in PMR polyimides for long-term applications at temperatures up to 300 C.
NASA Technical Reports Server (NTRS)
Sugg, E.; Mason, J. G.
1983-01-01
Work has revealed that diamine derivatives of diphenylmethane (IV), diphenyl ether (V), benzophenone (IV), fluorene (VII), and fluorenone (VIII) polymerizations with pyromellitic dianhydride in DMA were dependent on the basicity of the amine compound. The correlation between the basicity of the amine and its reactivity with phthalic anhydride was determined. Basicity measurements were made by potentiometric titration of each amine in an acetonitrile-water solvent system, from which the pKa of the amine could be determined. Reactivity was defined in terms of the second order rate constant derived form spectrophotometric examination of the reaction between each amine and phthalic anhydride in DMA. This reaction was expected to proceed in either one (for a monoamine) or two (for a diamine) stages.
Recent Advances on Endocrine Disrupting Effects of UV Filters.
Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin
2016-08-03
Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.
Wolff, Mary S.; Calafat, Antonia M.; Ye, Xiaoyun; Bausell, Rebecca; Meadows, Molly; Stone, Joanne; Slama, Rémy; Engel, Stephanie M.
2013-01-01
Background: Maternal urinary biomarkers are often used to assess fetal exposure to phenols and their precursors. Their effectiveness as a measure of exposure in epidemiological studies depends on their variability during pregnancy and their ability to accurately predict fetal exposure. Objectives: We assessed the relationship between urinary and amniotic fluid concentrations of nine environmental phenols, and the reproducibility of urinary concentrations, among pregnant women. Methods: Seventy-one women referred for amniocentesis were included. Maternal urine was collected at the time of the amniocentesis appointment and on two subsequent occasions. Urine and amniotic fluid were analyzed for 2,4- and 2,5-dichlorophenols, bisphenol A, benzophenone-3, triclosan, and methyl-, ethyl-, propyl-, and butylparabens using online solid phase extraction–high performance liquid chromatography–isotope dilution tandem mass spectrometry. Results: Only benzophenone-3 and propylparaben were detectable in more than half of the amniotic fluid samples; for these phenols, concentrations in amniotic fluid and maternal urine collected on the same day were positively correlated (ρ = 0.53 and 0.32, respectively). Other phenols were detected infrequently in amniotic fluid (e.g., bisphenol A was detected in only two samples). The intraclass correlation coefficients (ICCs) of urinary concentrations in samples from individual women ranged from 0.48 and 0.62 for all phenols except bisphenol A (ICC = 0.11). Conclusion: Amniotic fluid detection frequencies for most phenols were low. The reproducibility of urine measures was poor for bisphenol A, but good for the other phenols. Although a single sample may provide a reasonable estimate of exposure for some phenols, collecting multiple urine samples during pregnancy is an option to reduce exposure measurement error in studies regarding the effects of phenol prenatal exposure on health. Citation: Philippat C, Wolff MS, Calafat AM, Ye X, Bausell R, Meadows M, Stone J, Slama R, Engel SM. 2013. Prenatal exposure to environmental phenols: concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environ Health Perspect 121:1225–1231; http://dx.doi.org/10.1289/ehp.1206335 PMID:23942273
Longnecker, Matthew P.; Aase, Heidi; Eggesbø, Merete; Zeiner, Pål; Reichborn-Kjennerud, Ted; Knudsen, Gun P.; Bertelsen, Randi J.; Ye, Xiaoyun; Calafat, Antonia M.; Engel, Stephanie M.
2015-01-01
Background Exposures to environmental phenols and parabens may be harmful, especially in utero. Prior studies have demonstrated high within-person variability of urinary concentrations across pregnancy. Objectives We sought to measure phenol and paraben biomarker concentrations for the Norwegian Mother and Child Cohort (MoBa) study, assess within-person variability, and investigate any possible external phenol or paraben contamination of specimens. Methods We collected three spot urine samples at approximately 17, 23, and 29 weeks gestation in a hospital setting and added a preservative containing ethyl paraben. We measured urinary concentrations and within-person variability for phenols and parabens in a MoBa sample (n = 45), including a subgroup of 15 participants previously randomly selected for a bisphenol A (BPA) exposure study who had unusually high total BPA concentrations. Additionally, we compared reliability results for total, conjugated, and free concentrations of phenolic compounds. Results We detected total and free BPA, butyl paraben, propyl paraben, and methyl paraben in 100% of samples, total benzophenone-3 in 95% of samples, and infrequently detected free benzophenone-3 and total and free 2,4-dichlorophenol and 2,5-dichlorophenol. Intraclass correlation coefficients (ICCs) for total, conjugated, and free concentrations ranged from relatively low for BPA to moderate for propyl paraben. ICCs were generally similar overall and by subgroup. Conclusions Using conjugated concentrations improved reliability estimates only for BPA. Measuring total and free concentrations, an approach that may be useful for future studies, allowed us to identify likely BPA and butyl paraben contamination of archived MoBa urine specimens. Citation Guidry VT, Longnecker MP, Aase H, Eggesbø M, Zeiner P, Reichborn-Kjennerud T, Knudsen GP, Bertelsen RJ, Ye X, Calafat AM, Engel SM. 2015. Measurement of total and free urinary phenol and paraben concentrations over the course of pregnancy: assessing reliability and contamination of specimens in the Norwegian Mother and Child Cohort Study. Environ Health Perspect 123:705–711; http://dx.doi.org/10.1289/ehp.1408325 PMID:25782115
Liu, Yung-Yu; Lin, Yi-Siou; Yen, Chia-Hung; Miaw, Chang-Ling; Chen, Ting-Chien; Wu, Meng-Chun; Hsieh, Chi-Ying
2018-04-27
We assessed 22 selected endocrine-disrupting compounds (EDCs) and other emerging, potentially endocrine-active compounds with estrogenic activity from the waters of the Wuluo River, southern Taiwan. This watershed receives high amounts of livestock and untreated household wastewaters. The river is surrounded by concentrated animal feedlot operations (CAFOs). River water samples were analyzed for selected compounds by liquid chromatography-tandem mass spectrometry (LC-MS/MS), T47D-KBluc reporter gene assay, and E-screen cell proliferation in vitro bioassay. Total concentrations of ∑alkylphenolic compounds (bisphenol A, 4-nonylphenol, t-nonylphenol, octylphenol, nonylphenol mono-ethoxylate, nonylphenol di-ethoxylate) were much higher than ∑estrogens (estrone, 17 β-estradiol, estriol, 17ß-ethynylestradiol, diethylstilbestrol), ∑preservatives (methyl paraben, ethyl paraben, propyl paraben, butyl paraben), ∑UV-filters (benzophenone, methyl benzylidene camphor, benzophenone-3), ∑antimicrobials (triclocarben, triclosan, chloroxylenol), and an insect repellent (diethyltoluamide) over four seasonal sampling periods. The highest concentration was found for bisphenol A with a mean of 302 ng/L. However, its contribution to estrogenic activity was not significant due to its relatively low estrogenic potency. Lower detection rates were found for BP, EE2, TCS, and PCMX, while DES and EP were not detected. E1 and E2 levels in raw water samples were 50% higher than the predicted no-effect concentrations (PNEC) for aquatic organisms of 6 and 2 ng/L, respectively. The potency of estrogenic activity ranged from 11.7 to 190.1 ng/L E2 T47D-Kbluc and 6.63 to 84.5 ng/L E2 E-Screen for extracted samples. Importantly, estrone contributed 50% of the overall activity in 60% and 44% of the samples based on T47D-KBluc and MCF-7 bioassays, followed by 17 ß-estradiol, highlighting the importance of total steroid estrogen loading. This study demonstrates that the estrogenic activity of target chemicals was comparable to levels found in different countries worldwide. More intense wastewater treatment is required in areas of intensive agriculture in order to prevent adverse impacts on the ambient environment and aquatic ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.
Ozáez, Irene; Martínez-Guitarte, José Luis; Morcillo, Gloria
2013-07-01
There is increasing evidence indicating that several UV filters might have endocrine disruptive effects. Numerous studies have evaluated hormonal effects in vertebrates, mainly reporting estrogenic and androgenic activities in mammals and fishes. There is only limited knowledge about potential endocrine activity in invertebrate hormonal systems. In this work, the effects on endocrine signaling genes of six frequently used UV filters were investigated in Chironomus riparius, a reference organism in aquatic toxicology. The UV filters studied were: octyl-p-methoxycinnamate (OMC) also called 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4-MBC); benzophenone-3 (BP-3); 4-hidroxybenzophenone (4-HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). After in vivo exposure at different dosages, expression levels of the genes coding for the ecdysone receptor (EcR), the ultraspiracle (usp, ortholog of the RXR) and the estrogen-related receptor (ERR) were quantified by Real Time PCR. The EcR gene was significantly upregulated by 4-MBC, OMC/EHMC and OD-PABA, with a dose-related response following 24h exposure. In contrast, the benzophenones, BP-3 and 4-HB, as well as OC did not alter this gene at the same exposure conditions. The transcription profiles of the usp and ERR genes were not significantly affected, except for BP-3 that inhibited the usp gene at the highest concentration. To our knowledge, this is the first experimental evidence in invertebrates of a direct effect of UV filters on endocrine-related genes, and is consistent with the known effects on vertebrate hormonal receptor genes. The capability of 4-MBC, OMC/EHMC and OD-PABA to stimulate the expression of the ecdysone receptor, a key transcription factor for the ecdysone-genomic response in arthropods, suggests the possibility of a broad and long-term effect on this hormonal pathway. These findings strengthen the need for further research about the ecotoxicological implications of chronic exposure to these compounds in aquatic invertebrates. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Bo
Photochemical methods were introduced to develop important extrusion processes, through which polymers can either be functionalized or modified by altering molecular weight characteristics. Therefore, poly(methyl methacrylate) (PMMA) incorporated with a small amount of light-reactive functional groups was synthesized. These functional groups can be activated by UV irradiation in a post extrusion process to produce high molecular weight polymer and/or crosslinked polymer. Environmental stress cracking resistance of these polymers was examined and correlated to damping using dynamic mechanic analysis. To improve industrial reactive extrusion process of preparing maleic anhydride grafted polypropylene (MAR-g-PP), photografting was proposed and studied. Using benzophenone (BP) as the initiator, grafting efficiency was significantly improved compared to peroxide initiated grafting. Moreover, nearly constant conversion of maleic anhydride was observed in photografting. The high efficiency of benzophenone initiated photografting was attributed to the formation of the excited triplet state maleic anhydride. A rate constant of 6.0*109 M-1*sec-1 for the quenching of triplet state BP with MAH was obtained using laser photolysis spectroscopy. In a comparison, the hydrogen abstraction process from polypropylene by the triplet state BP molecules has a rate constant of 4.1*105 M-1*sec-1. In solution grafting with the use of benzene as the solvent, a facile triplet state energy transfer process may also occur leading to the formation of the excited triplet state MAH. Spectroscopic methods involving light were also used for the study of the guest-host interactions in polymer systems. The use of ionomers as the matrix for the oriented guest/host systems, cationic dye systems in particular, was shown to enhance polarization efficiency as well as dye uptake as comparing to conventional polymers, such as poly(vinyl alcohol). It was found that the dye molecules in carboxylated EVOH (EVOH-COONa) have higher degree of orientation than in EVOH, while polymer chain orientation is quite similar in these two polymers. The difference in the dye orientation was attributed to the ion-ion interactions between dye molecules and carboxylate groups of the modified polymer.
Jiménez-Díaz, I; Molina-Molina, J M; Zafra-Gómez, A; Ballesteros, O; Navalón, A; Real, M; Sáenz, J M; Fernández, M F; Olea, N
2013-10-01
UV-filters are widely used in many personal care products and cosmetics. Recent studies indicate that some organic UV-filters can accumulate in biota and act as endocrine disruptors, but there are few studies on the occurrence and fate of these compounds in humans. In the present work, a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to assess the presence of six UV-filters in current use (benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor, and 3-benzylidene camphor) in human placental tissue is proposed. The method involves the extraction of the analytes from the samples using ethyl acetate, followed by a clean-up step using centrifugation prior to their quantification by LC-MS/MS using an atmospheric pressure chemical ionization (APCI) interface. Bisphenol A-d16 was used as surrogate for the determination of benzyl salicylate, phenyl salicylate, octyl salicylate and homosalate in negative mode and benzophenone-d10, was used as surrogate for the determination of 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in positive mode. The found limits of detection ranged from 0.4 to 0.6ngg(-1) and the limits of quantification ranged from 1.3 to 2.0ngg(-1), while variability was under 13.7%. Recovery rates for spiked samples ranged from 97% to 104%. Moreover, the interactions of these compounds with the human estrogen receptor alpha (hERα) and androgen receptor (hAR), using two in vitro bioassays based on reporter gene expression and cell proliferation assessment, were also investigated. All tested compounds, except benzyl salicylate and octyl salicylate, showed estrogenic activity in the E-Screen bioassay whereas only homosalate and 3-(4-methylbenzylidene) camphor were potent hAR antagonists. Although free salicylate derivatives and free camphor derivatives were not detected in the human placenta samples analyzed, the observed estrogenic and anti-androgenic activities of some of these compounds support the analysis of their occurrence and their role as endocrine disrupters in humans. Copyright © 2013 Elsevier B.V. All rights reserved.
Kajiya, Daisuke; Saitow, Ken-ichi
2013-08-07
Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone < acetophenone < benzophenone. The Mulliken charges of the three solutes and CO2 molecules obtained by using quantum chemistry calculations described the order of the magnitude of the attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of the solute-solvent interactions of the ketones in scCO2.
Neutral, ion gas-phase energetics and structural properties of hydroxybenzophenones.
Dávalos, Juan Z; Guerrero, Andrés; Herrero, Rebeca; Jimenez, Pilar; Chana, Antonio; Abboud, José Luis M; Lima, Carlos F R A C; Santos, Luís M N B F; Lago, Alexsandre F
2010-04-16
We have carried out a study of the energetics, structural, and physical properties of o-, m-, and p-hydroxybenzophenone neutral molecules, C(13)H(10)O(2), and their corresponding anions. In particular, the standard enthalpies of formation in the gas phase at 298.15 K for all of these species were determined. A reliable experimental estimation of the enthalpy associated with intramolecular hydrogen bonding in chelated species was experimentally obtained. The gas-phase acidities (GA) of benzophenones, substituted phenols, and several aliphatic alcohols are compared with the corresponding aqueous acidities (pK(a)), covering a range of 278 kJ.mol(-1) in GA and 11.4 in pK(a). A computational study of the various species shed light on structural effects and further confirmed the self-consistency of the experimental results.
Recent Advances on Endocrine Disrupting Effects of UV Filters
Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin
2016-01-01
Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives. PMID:27527194
NASA Technical Reports Server (NTRS)
Mikroyannidis, John A. (Inventor); Kourtides, Demetrius A. (Inventor)
1987-01-01
A class of fire and heat resistant bisimide resins prepared by thermal polymerization of maleimido or citraconimido substituted 1-((dialkoxyphosphonyl) methyl)-2-4 and -2,6-diaminobenzenes are described. The polymer precursors are prepared by reacting 1-((diorganooxyphosphonyl) methyl)-2-4 and -2,6-diaminobenzenes with maleic anhydride or citraconic anhydride in a mole ratio 1:2. Chain extension of the monomers is achieved by reacting the mono-N-maleimido derivatives of 1-((diorganooxyphosphonyl) methyl)-2,4 and -2,6-diaminobenzenes with aryl tetracarboxylic dianhydrides, such as benzophenone tetracarbocylic dianhydride, or aryl diisocyanates, such as methylenebis (4-phenylisocyanate), in a mole ratio 2:1. The polymerization of the monomers is studied by differential scanning calorimetry (DSC) and the thermal stability of the polymers is ascertained by thermogravimetric analysis (TGA).
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.
1982-01-01
The polyimide resin, LARC-160, was prepared from diethyl-3, 3', 4,4'-benzophenone tetracarboxylate, ethyl-5-norbornene-2,3-dicarboxylate and Jeffamine AP-22. The imidization reactions of NE and BTDE were studied by HPLC, C-13-NMR and IR. NE imidizes slowly at 12 C; BTDE imidizes when the resin is heated above 100 C. Both imidization reactions proceed directly to the imide. Neither amic acid is present in significant quantities at any stage of the imidization reactions. The monomer mixture was stored at 12 C for periods up to 14 months. The effects of resin aging at this temperature on the chemical composition of the resin monomer mixture and the imidized polymer formed on curing were investigated. Aging the resin monomer mixture has the effect of partially advancing the imidization reaction. The average size of the cured polymer increases slightly with resin age.
Cross, S E; Jiang, R; Benson, H A; Roberts, M S
2001-07-01
The effect of adding thickening agents on the penetration of a sunscreen benzophenone-3 through epidermal and a high-density polyethylene membrane was studied using both very thick (infinite dose) and thin (in use) applications. Contradictory results were obtained. Thickening agents retard skin penetration, in a manner consistent with a diffusional resistance in the formulation, when applied as an infinite dose. In contrast, when applied as in thin (in use) doses, thickening agents promote penetration, most likely through greater stratum corneum diffusivity arising from an enhanced hydration by the thicker formulations. The two key implications from this work are (i) a recognition of the danger in the potential extrapolation of infinite dosing to in use situations, and (ii) to recognize that thicker formulations may sometimes enhance the penetration of other topical agents when applied "in use".
Easy access to nucleophilic boron through diborane to magnesium boryl metathesis
NASA Astrophysics Data System (ADS)
Pécharman, Anne-Frédérique; Colebatch, Annie L.; Hill, Michael S.; McMullin, Claire L.; Mahon, Mary F.; Weetman, Catherine
2017-04-01
Organoboranes are some of the most synthetically valuable and widely used intermediates in organic and pharmaceutical chemistry. Their synthesis, however, is limited by the behaviour of common boron starting materials as archetypal Lewis acids such that common routes to organoboranes rely on the reactivity of boron as an electrophile. While the realization of convenient sources of nucleophilic boryl anions would open up a wealth of opportunity for the development of new routes to organoboranes, the synthesis of current candidates is generally limited by a need for highly reducing reaction conditions. Here, we report a simple synthesis of a magnesium boryl through the heterolytic activation of the B-B bond of bis(pinacolato)diboron, which is achieved by treatment of an easily generated magnesium diboranate complex with 4-dimethylaminopyridine. The magnesium boryl is shown to act as an unambiguous nucleophile through its reactions with iodomethane, benzophenone and N,N'-di-isopropyl carbodiimide and by density functional theory.
P7C3 neuroprotective chemicals function by activating the rate-limiting enzyme in NAD salvage.
Wang, Gelin; Han, Ting; Nijhawan, Deepak; Theodoropoulos, Pano; Naidoo, Jacinth; Yadavalli, Sivaramakrishnan; Mirzaei, Hamid; Pieper, Andrew A; Ready, Joseph M; McKnight, Steven L
2014-09-11
The P7C3 class of aminopropyl carbazole chemicals fosters the survival of neurons in a variety of rodent models of neurodegeneration or nerve cell injury. To uncover its mechanism of action, an active derivative of P7C3 was modified to contain both a benzophenone for photocrosslinking and an alkyne for CLICK chemistry. This derivative was found to bind nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme involved in the conversion of nicotinamide into nicotinamide adenine dinucleotide (NAD). Administration of active P7C3 chemicals to cells treated with doxorubicin, which induces NAD depletion, led to a rebound in intracellular levels of NAD and concomitant protection from doxorubicin-mediated toxicity. Active P7C3 variants likewise enhanced the activity of the purified NAMPT enzyme, providing further evidence that they act by increasing NAD levels through its NAMPT-mediated salvage. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Shuaifei; Qian, Xiaoyan; Chang, Yuanyu; Sun, Jiayue; Xing, Xiujing; Ballard, Wendy F; Chruma, Jason J
2018-04-06
The impact of the steric and electronic factors in both the para-substituted benzaldimine and 2,2-diarylglycine components on the regioselectivity and enantioselectivity of the palladium-catalyzed decarboxylative allylation of allyl 2,2-diarylglycinate aryl imines was explored. These studies revealed that using 2,2-di(2-methoxyphenyl)glycine as the amino acid linchpin allowed for the exclusive synthesis of the desired homoallylic benzophenone imine regioisomers, independent of the nature of the imine moiety, in typically high yields. The resulting enantiomeric ratios, however, are slightly decreased in comparison to the transformations involving the corresponding allyl 2,2-diphenylglycinate imines, but this is more than balanced out by the increases in yield and regioselectivity. Overall, these studies suggest a general strategy for the highly regioselective functionalization of 2-azaallyl anions.
NASA Technical Reports Server (NTRS)
Mikroyannidis, John A.; Kourtides, Demetrius A. (Inventor)
1987-01-01
A novel class of fire and heat resistant bisimide resins prepared by thermal polymerization of maleimido or citraconimido substituted 1-(dialkox phosphonyl) methyl-2-4 and -2,6-diamino benzenes was presented. The polymer precursors are prepared by reacting 1-(diorgano oxyphosphonyl) methyl-2-4- and -2,6-diamino benzenes with maliec anhydride or citraconic anhydride in a mole ratio 1:2. Chain extension of the monomers is achieved by reacting the mono-N-maleimido derivaties of 1 (diorgano oxyphosphonyl) methyl -2,4- and -2,6-diamino benzenes with aryl tetracarboxylic dianhydrides, such as benzophenone tetracarboxylic dianhydride, or aryl diisocyanates, such as methylene bis(4-phenyl isocyanate), in a mole ratio 2:1. The polymerization of the monomers is studied by diferential scanning calorimetry and the thermal stability of the polymers is ascertained by thermogravimetric analysis.
Isomeric oxydiphthalic anhydride polyimides
NASA Technical Reports Server (NTRS)
Gerber, Margaret K.; Pratt, J. Richard; Stclair, Terry L.
1988-01-01
Much of the polyimide research at Langley Research Center has focused on isomeric modification of the diamine component; polyimides having considerably improved processability and adhesion have resulted. The present structure-property study was designed to investigate how isomeric attachment of the three oxydiphthalic anhydride (ODPA) polyimides affects their properties. Each dianhydride, 3,4,3',4'-oxydiphthalic anhydride (4,4'-OPDA,I), 2,3,2',3'-oxydiphthalic anhydride (3,3'-ODPA,II), and 2,3,3',4'-oxydiphthalic anhydride (3,4'-OPDA,III), was reacted with p-phenylenediamine, 4,4'-oxydianiline, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, and 4,4'-bis(3-aminophenoxy)benzophenone in DMAc. The inherent viscosities of the resulting poly(amic acids) were determined. Thermally imidized films were studied for their creasability and solubility, as well as by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide angle X-ray scattering (WAXS). A comparison of these properties will be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Hiroyuki; Kondo, Shin; Kato, Ryohei
2007-07-01
An acridone-producing novel type III polyketide synthase from H. serrata has been overexpressed in E. coli, purified and crystallized. Diffraction data have been collected to 2.0 Å. Polyketide synthase 1 (PKS1) from Huperzia serrata is a plant-specific type III polyketide synthase that shows an unusually versatile catalytic potential, producing various aromatic tetraketides, including chalcones, benzophenones, phlorogulucinols and acridones. Recombinant H. serrata PKS1 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 73.3, b = 85.0, c = 137.7 Å, α =more » β = γ = 90.0°. Diffraction data were collected to 2.0 Å resolution using synchrotron radiation at BL24XU of SPring-8.« less
Changes in UV absorption of sunscreens after UV irradiation
NASA Astrophysics Data System (ADS)
Tarras-Wahlberg, N.; Stenhagen, G.; Larkö, O.; Rosén, A.; Wennberg, A.-M.; Wennerström, O.
2000-03-01
In the present investigation we have studied the change in the absorption spectrum of some photoactive organic species in sunscreens after UVA and UVB irradiation in a dose normally encountered during a full day in the sun. The absorbance of 2-ethylhexyl 4-methoxycinnamate was reduced significantly, while 3-(4-methylbenzyliden)camphor seemed to be rather stable. The benzophenones studied seemed to be relatively stable. In the case of 4-tert.butyl-4´-methoxy-dibenzoylmethane there was a rapid decrease in the UVA absorption leading to unsatisfactory protection in the UVA region. 4-Isopropyl-dibenzoylmethane also lost most of its UV protective capacity after irradiation with UVA. UVB seemed to have a minor effect on all the samples. The present study including gas chromatography and mass spectrometry analysis indicates that some of the photoactive organic species commonly used today in sunscreens are unstable following UV irradiation.
Polyimides Derived from Novel Asymmetric Dianhydrides
NASA Technical Reports Server (NTRS)
Chuang, Chun-Hua (Inventor)
2012-01-01
This invention relates to the compositions and processes for preparing thermoset and thermoplastic polyimides derived from novel asymmetrical dianhydrides: specifically 2,3,3',4' benzophenone dianhydride (a-BTDA), and 3,4'-(hexafluoroisopropylidene)diphthalic anhydride (a-6FDA). The a-BTDA anhydride is prepared by Suzuki coupling with catalysts from a mixed anhydride of 3,4-dimethylbenzoic acid or 2,3-dimethylbenzoic acid with 2,3-dimethylphenylboronic acid or 3,4-dimethylphenylboronic acid respectively, to form 2,3,3',4'-tetramethylbenzophenone which is oxidized to form 2,3,3',4'-benzophenonetetracarboxylic acid followed by cyclodehydration to obtain a-BTDA. The a-6FDA is prepared by nucleophilic triflouoromethylation of 2,3,3',4'-tetramethylbenzophenone with trifluoromethyltrimethylsilane to form 3,4'-(trifluoromethylmethanol)-bis(o-xylene) which is converted to 3,4'-(hexafluoroisopropylidene-bis(o-xylene). The 3,4'-(hexafluoroisopropylidene)-bis(o-xylene) is oxidized to the corresponding tetraacid followed by cyclodehydration to yield a-6FDA.
Arshia; Khan, Anum Khalid; Khan, Khalid Mohammed; Ahmed, Ayaz; Taha, Muhammad; Perveen, Shahnaz
2017-09-01
Antibacterial/antibiofilm potential of microwave-assisted synthetic thirty-three 2-amino-5-chloro benzophenone Schiff bases have been carried out against four bacterial strains i.e. Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus and Streptococcus mutans. Among them compounds 5, 6, 8, 9, 14, 16, 22, 24, 26, and 30-32 showed antibiofilm activities against isolates at less than 100 μg/ml concentrations. These compounds showed enhanced antibiofilm activity against S. aureus as compared to cefixime used as control. However, remaining compounds were found to be active but at higher concentration. Fluorescence microscopy has been employed for confirmation of antibiofilm results. The structures of all synthetic molecules have been characterized on the basis of spectroscopic techniques including 1 H NMR, 13 C NMR, EI-MS, HREI-MS, and IR spectroscopy and their structure-activity relationship have been established. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana.
Jamila, Nargis; Khairuddean, Melati; Yeong, Khaw Kooi; Osman, Hasnah; Murugaiyah, Vikneswaran
2015-02-01
Context: Garcinia hombroniana Pierre, known as manggis hutan in Malaysia is a rich source of xanthones and benzophenones. This study was aimed to isolate and characterize potential cholinesterase inhibitors from the extracts of G. hombroniana bark and investigate their interactions with the enzymes. The dichloromethane extract afforded five triterpenoids which were characterized by NMR and mass spectral techniques. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds were also tested for their antioxidant capacity. The isolated triterpenoids were identified as: 2β-hydroxy-3α-O-caffeoyltaraxar-14-en-28-oic acid (1), taraxerol (2), taraxerone (3), betulin (4) and betulinic acid (5). Compound 1 was the most active dual inhibitor of both AChE and BChE. Compound 1 also showed good antioxidant activities. Compound 1 had dual and moderate inhibitory activity on AChE and BChE worthy for further investigations.
A preliminary review of organic materials single crystal growth by the Czochralski technique
NASA Astrophysics Data System (ADS)
Penn, B. G.; Shields, A. W.; Frazier, D. O.
1988-09-01
The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.
Polyimides with pendant alkyl groups
NASA Technical Reports Server (NTRS)
Jensen, B. J.; Young, P. R.
1982-01-01
The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.
Polyimide characterization studies - Effect of pendant alkyl groups
NASA Technical Reports Server (NTRS)
Jensen, B. J.; Young, P. R.
1984-01-01
The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.
Photo-crosslinkable polymers for fabrication of photonic multilayer sensors
NASA Astrophysics Data System (ADS)
Chiappelli, Maria; Hayward, Ryan C.
2013-03-01
We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.
A preliminary review of organic materials single crystal growth by the Czochralski technique
NASA Technical Reports Server (NTRS)
Penn, B. G.; Shields, A. W.; Frazier, D. O.
1988-01-01
The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.
NASA Technical Reports Server (NTRS)
Glasgow, D. G.; Garthwait, C.
1977-01-01
Aromatic diamines based on diphenyl sulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m prime-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m prime-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p prime-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m prime-methylene dianiline-cured epoxy appeared to be equivalent to the p,p prime-methylene dianiline-cured epoxy as judged by short beam shear tests.
Wnuk, A; Rzemieniec, J; Lasoń, W; Krzeptowski, W; Kajta, M
2018-03-01
Although benzophenone-3 (BP-3) has frequently been reported to play a role in endocrine disruption, there is insufficient data regarding the impact of BP-3 on the nervous system, including its possible adverse effects on the developing brain. Our study demonstrated that BP-3 caused neurotoxicity and activated apoptosis via an intrinsic pathway involving the loss of mitochondrial membrane potential and the activation of caspases-9 and -3 and kinases p38/MAPK and Gsk3β. These biochemical alterations were accompanied by ROS production, increased apoptotic body formation and impaired cell survival, and by an upregulation of the genes involved in apoptosis. The BP-3-induced effects were tissue-specific and age-dependent with the most pronounced effects observed in neocortical cells at 7 days in vitro. BP-3 changed the messenger RNA (mRNA) expression levels of Erα, Erβ, Gpr30, and Pparγ in a time-dependent manner. At 3 h of exposure, BP-3 downregulated estrogen receptor mRNAs but upregulated Pparγ mRNA. After prolonged exposures, BP-3 downregulated the receptor mRNAs except for Erβ mRNA that was upregulated. The BP-3-induced patterns of mRNA expression measured at 6 and 24 h of exposure reflected alterations in the protein levels of the receptors and paralleled their immunofluorescent labeling. Erα and Pparγ agonists diminished, but Erβ and Gpr30 agonists stimulated the BP-3-induced apoptotic and neurotoxic effects. Receptor antagonists caused the opposite effects, except for ICI 182,780. This is in line with a substantial reduction in the effects of BP-3 in cells with siRNA-silenced Erβ/Gpr30 and the maintenance of BP-3 effects in Erα- and Pparγ siRNA-transfected cells. We showed for the first time that BP-3-affected mRNA and protein expression levels of Erα, Erβ, Gpr30, and Pparγ, paralleled BP-3-induced apoptosis and neurotoxicity. Therefore, we suggest that BP-3-evoked apoptosis of neuronal cells is mediated via attenuation of Erα/Pparγ and stimulation of Erβ/Gpr30 signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp; Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806; Kojima, Hiroyuki
2015-01-15
Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOHmore » BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver microsomes. • Structural requirements for the activities of BP-3 derivatives were demonstrated.« less
Stiefel, C; Schwack, W
2014-12-01
Organic UV filters are used as active ingredients in most sunscreens and also in a variety of daily care products. Their good (photo) stability is of special interest to guarantee protective function and to prevent interactions with the human skin. Due to the mostly electrophilic character of the UV filters, reactions with nucleophilic protein moieties like lysine side chains are conceivable. Prior studies showed that the UV filters octocrylene (OCR), butyl methoxydibenzoylmethane (BM-DBM), ethylhexyl salicylate (EHS), ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), ethylhexyl triazone (EHT) and dibenzoylmethane (DBM) were able to covalently bind to an HPTLC amino phase and the amino acid models ethanolamine and butylamine after slightly heating and/or radiation. Boc-protected lysine, the tetrapeptide Boc-Gly-Phe-Gly-Lys-OH, bovine serum albumin (BSA) and porcine gelatin were used as more complex models to determine the reactivity of the mentioned UV filters towards skin proteins under thermal or UV irradiation conditions. After gentle heating at 37°C, benzophenone imines were identified as reaction products of BP-3 and OCR with Boc-lysine and the tetrapeptide, whereas DBM and BM-DBM yielded enamines. For EHMC, a Michael-type reaction occurred, which resulted in addition of Boc-lysine or the tetrapeptide to the conjugated double bond. Ester aminolysis of EHS and EHT mainly afforded the corresponding amides. Reactions of the UV filters with BSA changed the UV spectrum of BSA, generally associated with an increase of the absorption strength in the UVA or UVB range. For all protein models, the UV filters showed an increasing reactivity in the order EHT < EHMC < EHS < BP-3 < OCR < DBM < BM-DBM. Especially the UV absorbers BM-DBM, OCR and BP-3, which are seen as common allergens or photoallergens, showed a high reactivity towards the different skin protein models. As the formation of protein adducts is recognized as important key element in the induction of skin sensitization, the results of this study can contribute to a better understanding of the underlying chemical mechanisms of such reactions. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Abdallah, Hossam M; El-Bassossy, Hany M; Mohamed, Gamal A; El-Halawany, Ali M; Alshali, Khalid Z; Banjar, Zainy M
2016-09-13
Exaggerated vasoconstriction plays a very important role in the hypertension, a major component of metabolic syndrome (MetS). In the current work, the potential protective effect of methanol extract of fruit hulls of Garcinia mangostana L. on the exaggerated vasoconstriction in MetS has been investigated. In addition, the bioactive fraction and compounds as well as the possible mechanism of action have been illustrated. The effect of methanol extract of G. mangostana (GMT) fruit hulls on the vascular reactivity of aorta isolated from animals with MetS was investigated through bioassay-guided fractionation procedures. GMT was partitioned with chloroform (I) and the remaining mother liquor was fractionated on a Diaion HP-20 with H2O, 50 and 100 % methanol to give fractions II, III, and IV, respectively. The effect of total extract (GMT), bioactive fraction and the bioactive compounds on the vasoconstriction were examined in aortae isolated from animals with MetS by incubation for 30 min before exposing aortae to cumulative concentrations of phenylephrine (PE). The direct relaxant effect was also examined by adding cumulative concentrations of the bioactive fraction and its bioactive compounds to PE precontracted vessels. In addition, aortic nitric oxide (NO) and reactive oxygen species (ROS) production was investigated. Bioassay-guided fractionation of GMT revealed isolation of garcimangosone D (1), aromadendrin-8-C-β-D-glucopyranoside (2), 2,4,3'-trihydroxy benzophenone-6-O-β-D-glucopyranoside (3), maclurin-6-O-β-D-glucopyranoside (rhodanthenone) (4), epicatechin (5), and 2,3',4,5',6-pentahydroxy benzophenone (6). Only compounds 2, 4, and 5 significantly alleviated the exaggerated vasoconstriction of MetS aortae and in the same time showed significant vasodilation of PE pre-contracted aortae. To further illustrate the mechanism of action, the observed vasodilation was completely blocked by the nitric oxide (NO) synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride and inhibited by guanylate cyclase inhibitor, methylene blue. However, vasodilation was not affected by the potassium channel blocker, tetraethylammonium or the cyclooxygenase inhibitor, indomethacin. In addition, compounds 2, 4, and 5 stimulated NO generation from isolated aortae to levels comparable with acetylcholine. Furthermore, 4 and 5 inhibited reactive oxygen species generation in MetS aortae. The phenolic compounds 2, 4, and 5 ameliorated the exaggerated vasoconstriction in MetS aortae through vasodilatation-NO generation mechanism.
Yamamoto, K; Matsushita, A; Sawada, T; Naito, Y; Yoshimura, K; Takesue, H; Utsumi, S; Kawasaki, K; Hirono, S; Koshida, H
1984-07-01
The sleep-inducing activity and effect on the motor system of the 1H-1,2,4-triazolyl benzophenone derivative 450191-S were examined behaviorally, electroencephalographically and electro-physiologically with various species of animals and were compared with those of diazepam, nitrazepam, estazolam and triazolam. In the rhesus monkey, rabbit and rat with chronically indwelling brain electrodes, 0.6 to 3 mg/kg, p.o. of 450191-S caused a shorter latency of sleep onset, an increase of and a stable continuity of slow wave deep sleep (SWDS) with higher amplitude, and the appearance of clear spindle bursts in the slow wave light sleeping (SWLS) state with little muscle relaxation. Animals treated with nitrazepam and/or estazolam showed a smaller increase in SWDS and its unstable continuity with remarkable disturbance of gait. The doses needed to induce sleep in the rhesus monkey were 0.6 to 1 mg/kg p.o. for 450191-S, 3 mg/kg for nitrazepam, 1 mg/kg for estazolam and 0.3 mg/kg for triazolam. The cat treated with 450191-S showed the phenomena caused by benzodiazepines (BDZ), i.e., behavioral excitation and decrease of frequencies in the hippocampal theta waves. The suppressive effects of 450191-S on the EEG arousal reaction and/or blood pressure elevation induced by hypothalamic stimulation in the rabbit suggested that the inhibitory effects acted on the posterior hypothalamus to the limbic system. The inhibitory effect of 450191-S on the amygdaloid kindling in the rat was as potent as those of diazepam and nitrazepam. Successive daily oral administration of both 3 mg/kg of 450191-S and/or 3 to 6 mg/kg of nitrazepam for 15 days in the rabbit caused slight decrease of SWDS and increase of fast wave (REM) sleep (FWS). During the withdrawal period of both compounds, a slight but insignificant increase in the waking state was noticed for 1 to 2 days, but not a rebound increase of FWS. Intravenously administered 450191-S showed the same action as BDZ on the spinal reflex and the dorsal root potential of the rat; it particularly acted on the crossed extensor reflex in the same manner as the commercial BDZ sleep inducers.(ABSTRACT TRUNCATED AT 400 WORDS)
Adam, Waldemar; Moorthy, Jarugu N.; Nau, Werner M.; Scaiano, J. C.
1997-11-14
A mechanistic investigation of the photoreduction of the n,pi triplet-excited azo chromophore has been carried out on azoalkanes 1, which exhibit efficient intersystem-crossing quantum yields (ca. 0.5). The azoalkanes 1a and 1b undergo facile photoreduction to the corresponding hydrazines in the presence of a variety of hydrogen donors, which include 2-propanol, benzhydrol, 1,4-cyclohexadiene, tributylstannane, and tris(trimethylsilyl)silane. In contrast, the hydrazine yields derived for the azoalkanes 1c and 1d are significantly lower even at high hydrogen donor concentrations due to their lower triplet yields and shorter triplet lifetimes. A clear dependence of the hydrazine yields on the bond dissociation energies of the hydrogen donors has been observed, which is reflected in the quenching rate constants obtained from time-resolved transient absorption spectroscopy. The absolute rate constants for interaction of the triplet azoalkane 1a with hydrogen donors are generally lower (ca. 10-100-fold) than for benzophenone, in line with the less favorable reaction thermodynamics. The comparison of the rate constants for quenching of the triplet-excited azoalkane 1a and of the singlet-excited state of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) reveals a similar reactivity of excited azoalkanes toward hydrogen donors; differences can be accounted for in terms of variations in the energies of the excited states. The interactions of the excited azoalkanes with tributylstannane and benzhydrol produce the radicals characteristic for hydrogen abstraction from these substrates, namely tributylstannyl and hydroxydiphenylmethyl radicals, which were detected through their transient absorptions at 390 and 550 nm, respectively. Interestingly, compared to the photoreduction of benzophenone with benzhydrol, for which the quantum yield for conversion to radicals is unity, between the azoalkane 1a and benzhydrol this efficiency is only ca. 12%. An associative effect through N.H-O bonding is held responsible, which promotes hydrogen transfer versus diffusion out of the caged radical pair. The quenching of the singlet-excited DBO by toluene was also employed to monitor the formation of benzyl radicals (at 317 nm). The photolysis of DBO in tetrahydrofuran as solvent and quencher produced an absorption at ca. 290 nm, which was tentatively assigned to the corresponding hydrazinyl radical.
Process for stabilization of coal liquid fractions
Davies, Geoffrey; El-Toukhy, Ahmed
1987-01-01
Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.
Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors.
Kim, Chae Bin; Jeong, Ki Beom; Yang, Beom Joo; Song, Jong-Won; Ku, Bon-Cheol; Lee, Seunghyun; Lee, Seoung-Ki; Park, Chiyoung
2017-12-18
We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re-mendable properties. This simple method using cost-competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Dawei; Chen, Ridao; Wang, Ruishan; Li, Jianhua; Xie, Kebo; Bian, Chuancai; Sun, Lili; Zhang, Xiaolin; Liu, Jimei; Yang, Lin; Ye, Fei; Yu, Xiaoming; Dai, Jungui
2015-10-19
The catalytic promiscuity of the novel benzophenone C-glycosyltransferase, MiCGT, which is involved in the biosynthesis of mangiferin from Mangifera indica, was explored. MiCGT exhibited a robust capability to regio- and stereospecific C-glycosylation of 35 structurally diverse druglike scaffolds and simple phenolics with UDP-glucose, and also formed O- and N-glycosides. Moreover, MiCGT was able to generate C-xylosides with UDP-xylose. The OGT-reversibility of MiCGT was also exploited to generate C-glucosides with simple sugar donor. Three aryl-C-glycosides exhibited potent SGLT2 inhibitory activities with IC50 values of 2.6×, 7.6×, and 7.6×10(-7) M, respectively. These findings demonstrate for the first time the significant potential of an enzymatic approach to diversification through C-glycosidation of bioactive natural and unnatural products in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Xinxin; Liu, Ling; Zhang, Fan; Wang, Wenzhao; Li, Jinyang; Guo, Liangdong; Che, Yongsheng; Liu, Gang
2014-01-24
The diphenyl ether pestheic acid was isolated from the endophytic fungus Pestalotiopsis fici, which is proposed to be the biosynthetic precursor of the unique chloropupukeananes. The pestheic acid biosynthetic gene (pta) cluster was identified in the fungus through genome scanning. Sequence analysis revealed that this gene cluster encodes a nonreducing polyketide synthase, a number of modification enzymes, and three regulators. Gene disruption and intermediate analysis demonstrated that the biosynthesis proceeded through formation of the polyketide backbone, cyclization of a polyketo acid to a benzophenone, chlorination, and formation of the diphenyl ether skeleton through oxidation and hydrolyzation. A dihydrogeodin oxidase gene, ptaE, was essential for diphenyl ether formation, and ptaM encoded a flavin-dependent halogenase catalyzing chlorination in the biosynthesis. Identification of the pta cluster laid the foundation to decipher the genetic and biochemical mechanisms involved in the pathway. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brummel, Olaf; Waidhas, Fabian; Bauer, Udo; Wu, Yanlin; Bochmann, Sebastian; Steinrück, Hans-Peter; Papp, Christian; Bachmann, Julien; Libuda, Jörg
2017-07-06
The two valence isomers norbornadiene (NBD) and quadricyclane (QC) enable solar energy storage in a single molecule system. We present a new photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) experiment, which allows monitoring of the complete energy storage and release cycle by in situ vibrational spectroscopy. Both processes were investigated, the photochemical conversion from NBD to QC using the photosensitizer 4,4'-bis(dimethylamino)benzophenone (Michler's ketone, MK) and the electrochemically triggered cycloreversion from QC to NBD. Photochemical conversion was obtained with characteristic conversion times on the order of 500 ms. All experiments were performed under full potential control in a thin-layer configuration with a Pt(111) working electrode. The vibrational spectra of NBD, QC, and MK were analyzed in the fingerprint region, permitting quantitative analysis of the spectroscopic data. We determined selectivities for both the photochemical conversion and the electrochemical cycloreversion and identified the critical steps that limit the reversibility of the storage cycle.
Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko
2017-01-01
Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%. PMID:28139768
NASA Astrophysics Data System (ADS)
Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko
2017-01-01
Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.
Yellowing reaction in encapsulant of photovoltaic modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigekuni, T.; Kumano, M.
1997-12-31
To clarify the mechanism of the yellowing reaction in encapsulant used for photovoltaic (PV) modules, a low molecular weight substance in EVA (Ethylene vinyl acetate) under accelerated weathering test (Dew cycle test, 1000 hours) with yellow change and virgin EVA were extracted with methanol. Extracts were chemically analyzed by GCIR (Gas Chromatography Infrared-Ray spectroscopic analysis), GC-AED (Gas Chromatography Atomic Emission Detector), and FDMS (Field Desorption Mass Spectroscopy). The conditions of this accelerated test were based on JIS-K9117. The analysis results showed that 2,6-di-t-butyl-4-methyl phenol of antioxidant and 2-hydroxy-4-octoxy-benzophenone of UV absorbent were consumed after the weathering test and that 3,5-di-t-butyl-4-hydroxy-benzaldehydemore » having yellow color was newly produced. A mechanism of the yellowing reaction in encapsulant was presented here that 2,6-di-t-N-O radical from Bis-2,2,6,6-tetramethyl-4-piperidinyl sebacate to produce 3,5 di-t-butyl-4-hydroxy benzaldehyde.« less
Antiproliferative Constituents of Geopropolis from the Bee Melipona scutellaris.
da Cunha, Marcos Guilherme; Rosalen, Pedro Luiz; Franchin, Marcelo; de Alencar, Severino Matias; Ikegaki, Masaharu; Ransom, Tanya; Beutler, John Albert
2016-02-01
Fractionation of geopropolis from Melipona scutellaris, guided by antiproliferative activity against two colon cancer cell lines (COLO205 and KM12), led to the isolation of two new cinnamic acid esters, mammea-type coumarins 5,7-dihydroxy-6-(3-methyl-2-butenyl)-8-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-propyl-coumarin (1) and 5,7-dihydroxy-6-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-phenylcoumarin (2), along with five known coumarins, mammeigin (3), hydroxymammeigin (4), mammeisin (5), cinnamoyloxy-mammeisin (6), and mammein (7), and the prenylated benzophenone ent-nemorosone (8). Among the isolated compounds, 5 and 7 showed the highest cell growth inhibition against COLO205 (GI50 9.7 and 10.7 µM, respectively) and KM12 (GI50 12.0 and 10.9 µM, respectively). The presence of these compounds suggests that plants of Clusiaceae family, especially the genera Kielmeyera and Clusia, are likely to be major sources of geopropolis produced by M. scutellaris. Georg Thieme Verlag KG Stuttgart · New York.
Antiproliferative Constituents of Geopropolis from the Bee Melipona scutellaris
da Cunha, Marcos Guilherme; Rosalen, Pedro Luiz; Franchin, Marcelo; de Alencar, Severino Matias; Ikegaki, Masaharu; Ransom, Tanya; Beutler, John Albert
2016-01-01
Fractionation of geopropolis from Melipona scutellaris, guided by antiproliferative activity against two colon cancer cell lines (COLO205 and KM12), led to the isolation of two new cinnamic acid esters, mammea-type coumarins 5,7-dihydroxy-6-(3-methyl-2-butenyl)-8-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-propyl-coumarin (1) and 5,7-dihydroxy-6-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-phenylcoumarin (2), along with five known coumarins, mammeigin (3), hydroxymammeigin (4), mammeisin (5), cinnamoyloxy-mammeisin (6), and mammein (7), and the prenylated benzophenone ent-nemorosone (8). Among the isolated compounds, 5 and 7 showed the highest cell growth inhibition against COLO205 (GI50 9.7 and 10.7 μM, respectively) and KM12 (GI50 12.0 and 10.9 μM, respectively). The presence of these compounds suggests that plants of Clusiaceae family, especially the genera Kielmeyera and Clusia, are likely to be major sources of geopropolis produced by M. scutellaris. PMID:26544117
Heo, Sukyoung; Hwang, Hee Sook; Jeong, Yohan; Na, Kun
2018-09-01
Sunscreen materials have been developed to protect skin from UV radiation. However, many organic sunscreen materials are small molecules and absorbed into human skin after topical application and lead to systemic side effects. To improve the adverse effects of conventional sunscreen materials, we designed a sunscreen agent using an organic sunscreen material and a polymer. Dioxybenzone, an organic sunscreen compound is selected and polymerized with natural polymer pullulan. Polymerization not only provides a long polymer backbone to dioxybenzone, but also keeps the distance between benzene rings of the dioxybenzone and prevents reduction of photoabsorption intensity. UV/vis spectrophotometry confirmed that dioxybenzone-pullulan polymer (DOB-PUL) and dioxybenzone (DOB) demonstrated similar UV absorption. To measure the accumulation of sunscreen materials on skin, Franz diffusion cell was used to confirm the accumulation of DOB and lack of penetration of DOB-PUL. Most importantly, DOB showed higher plasma concentration after multiple applications compared to that of DOB-PUL. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Z.; Yoshimura, Takashi; Wakatsuki, Yasuo
1994-11-30
The reduction of aromatic compounds into their dihydro derivatives by dissolving metal/alcohol systems (the Birch reduction) is a useful methodology in organic synthesis. Of particular importance is the reduction of aromatic carbonyl compounds such as aromatic acids, esters, amides, and monoaryl ketones, which usually generates in situ useful metal enolate intermediates that upon further reaction with electrophiles yield a variety of cyclohexadiene derivatives. One of the possible processes to generate these metal enolate intermediates is thought to be the monoprotonation of dianionic species at the para position of the aromatic rings. On the other hand, the reduction of diaryl ketonesmore » by alkali metals in liquid ammonia or by lanthanide metals in THF/HMPA or DME has been well known to afford the corresponding ketone dianions. The first X-ray structure of metal ketone dianion complexes, [Yb([mu]-[eta][sup 1],[eta][sup 2]-OCPh[sub 2]) (HMPA)[sub 2
Photogeneration of refractive-index patterns in doped polyimide films.
Chakravorty, K K
1993-05-01
A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devadoss, C.; Fessenden, R.W.
The transient that is produced in the quenching of triplet benzophenone by 1,4-diazabicyclo(2.2.2)octane (DABCO) has been examined by use of nano- and picosecond laser photolysis. The initial step in all solvents, both polar and nonpolar, is electron transfer to form a triplet contact ion pair. In nonpolar solvents, the ion pair remains in this form until it decays. For polar solvents, the spectra change somewhat over the first 100 ps showing that the solvation changes and the ion pair becomes solvent separated. The lifetime of the ion pair varies greatly with the solvent. In saturated hydrocarbons it is about 80more » ps. Nonpolar solvents with either {pi} electrons or a lone pair of electrons stabilize the ion pair on the nanosecond to microsecond time scale. A small amount of alcohol in benzene also stabilizes the ion pair by hydrogen bonding. A shift in the peak position with time toward the blue accompanies the formation of hydrogen bonds in this case.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fessenden, R.W.; Carton, P.M.; Shimamori, H.
1982-09-16
Time-resolved changes in microwave dielectric absorption have been used to study transients formed by laser flash photolysis. Details of the method and apparatus are given. Applications both to the measurements of the dipole moments of transients and to decay kinetics are given. The dipole moments of the lowest triplet states of a number of aromatic compounds (mostly ketones) have been measured in benzene solution at room temperature. States of n..pi..* character generally possess smaller dipole moments than the corresponding ground states while states of ..pi pi..* character (for example, fluorenone) have larger values than the ground state. The triplets ofmore » 4-(dimethylamino)benzaldehyde and 4,4'-bis(dimethylamino)benzophenone have rather high values of dipole moment (10.5 and 8.4 D, respectively) showing their charge-transfer character. The triplet state of benzil was found to have zero or near-zero dipole moment, thus confirming that the triplet state is of a transstructure. 7 figures, 1 table.« less
Karpuzcu, M Ekrem; McCabe, Andrew J; Arnold, William A
2016-02-01
Photochemical reactions involving a variety of photosensitizers contribute to the abiotic transformation of pesticides in prairie pothole lakes (PPLs). Despite the fact that triplet excited state dissolved organic matter (DOM) enhances phototransformation of pesticides by acting as a photosensitizer, it may also decrease the overall phototransformation rate through various mechanisms. In this study, the effect of DOM on the phototransformation of four commonly applied pesticides in four different PPL waters was investigated under simulated sunlight using photoexcited benzophenone-4-carboxylate as the oxidant with DOM serving as an anti-oxidant. For atrazine and mesotrione, a decrease in phototransformation rates was observed, while phototransformations of metolachlor and isoproturon were not affected by DOM inhibition. Phototransformation rates and the extent of inhibition/enhancement by DOM varied spatially and temporally across the wetlands studied. Characterization of DOM from the sites and different seasons suggested that the DOM type and variations in the DOM structure are important factors controlling phototransformation rates of pesticides in PPLs.
Photogeneration of refractive-index patterns in doped polyimide films
NASA Astrophysics Data System (ADS)
Chakravorty, K. K.
1993-05-01
A photosensitive benzophenone tetracarboxylic dianhyride-alkylated diamine polyimide formulation has been evaluated for application in an optical interconnection area. The refractive-index patterns in this material were optically recorded by UV-assisted photodoping of sensitizers. The polyimide films were selectively doped with benzoin-type photosensitizers such as benzildimethylketal and benzoin ethyl ether, which cause a decrease in the refractive index. High-dose UV irradiation that causes cross linking of the polyimide chains was also employed for augmenting the refractive-index difference to 0.017 between the doped and undoped regions. Refractive-index variations and lightguiding properties were investigated as a function of doping concentrations and other processing conditions. The author utilized this technique for the fabrication of embedded polyimide channel waveguides. The two photosensitizers have different effects on the waveguiding characteristics of the polyimide films. Losses for benzoin ethyl ether remained low whereas doping with benzildimethylketal caused significant increase in the waveguiding loss at high doping concentrations. Near-field imaging of the output from such waveguides shows good confinement of 815-nm light.
Identification of suspected hazardous chemical contaminants in recycled pastry packaging.
Ahmadkhaniha, Reza; Rastkari, Noushin
2017-01-01
The safe use of recycled paper and cardboard material for food packaging applications is an important area of investigation. Therefore, the aim of this study was to determine which hazardous chemi- cal pollutants were found in paper and cardboard samples used for pastry packaging, and to measure the migration of pollutants over time into the pastries. In this study, the presence of some organic pollutants in common confectionery packaging, and the effects of storage time and type of pastry on pollutant migration, were investigated. The results of the study indicate that harmful compounds such as benzophenone, pentachlorophenol, bis(2-ethylhexyl) phthalate and dibutyl phthalate are present at high concentrations in most recycled boxes used for pastry packaging. Since the migration of some of the hazardous compounds from the packaging materials into the pastries under normal conditions was indicated, it is recommended that the procedure for preparing pastry packaging materials should be reconsidered and improved.
Tunable photonic multilayer sensors from photo-crosslinkable polymers
NASA Astrophysics Data System (ADS)
Chiappelli, Maria; Hayward, Ryan
2014-03-01
The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.
NASA Astrophysics Data System (ADS)
Natarajan, V.; Usharani, S.; Arivanandhan, M.; Anandan, P.; Hayakawa, Y.
2015-06-01
Although 4-aminobenzophenone (4-ABP) is the best derivative of benzophenone with 260 times higher second harmonic generation (SHG) efficiency than potassium dihydrogen phosphate (KDP), growth of high quality bulk crystal still remains a difficult task. In the present work, the effect of solvents on solubility and growth aspects of 4-ABP was investigated to grow inclusion free 4-ABP crystals. The growth processes were discussed based on solute-solvent interaction in two different growth media of ethyl acetate and ethanol. The growth rate and thereby solvent inclusions are relatively higher in ethyl acetate grown crystal than the crystal grown from ethanol. The structural, thermal and optical properties of 4-ABP crystals were studied. The enthalpy of 4-ABP melting process was estimated from differential thermal analysis. The optical transmission study shows that 4-ABP crystals grown from ethanol has high transparency compared to ethyl acetate grown sample due to solvent inclusion in the later crystal.
Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP
NASA Astrophysics Data System (ADS)
Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming
2018-03-01
Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.
Duirk, Stephen E; Bridenstine, David R; Leslie, Daniel C
2013-02-01
The transformation of two benzophenone UV filters (Oxybenzone and Dioxybenzone) was examined over the pH range 6-11 in the presence of excess aqueous chlorine. Under these conditions, both UV filters were rapidly transformed by aqueous chlorine just above circumneutral pH while transformation rates were significantly lower near the extremes of the pH range investigated. Observed first-order rate coefficients (k(obs)) were obtained at each pH for aqueous chlorine concentrations ranging from 10 to 75 μM. The k(obs) were used to determine the apparent second-order rate coefficient (k(app)) at each pH investigated as well as determine the reaction order of aqueous chlorine with each UV filter. The reaction of aqueous chlorine with either UV filter was found to be an overall second-order reaction, first-order with respect to each reactant. Assuming elemental stoichiometry described the reaction between aqueous chlorine and each UV filter, models were developed to determine intrinsic rate coefficients (k(int)) from the k(app) as a function of pH for both UV filters. The rate coefficients for the reaction of HOCl with 3-methoxyphenol moieties of oxybenzone (OXY) and dioxybenzone (DiOXY) were k(1,OxY) = 306 ± 81 M⁻¹s⁻¹ and k(1,DiOxY) = 154 ± 76 M⁻¹s⁻¹, respectively. The k(int) for the reaction of aqueous chlorine with the 3-methoxyphenolate forms were orders of magnitude greater than the un-ionized species, k(2,OxY) = 1.03(±0.52) × 10⁶ M⁻¹s⁻¹ and k(2_1,DiOxY) = 4.14(±0.68) × 10⁵ M⁻¹s⁻¹. Also, k(int) for the reaction of aqueous chlorine with the DiOXY ortho-substituted phenolate moiety was k(2_2,DiOxY) = 2.17(±0.30) × 10³ M⁻¹s⁻¹. Finally, chloroform formation potential for OXY and DiOXY was assessed over the pH range 6-10. While chloroform formation decreased as pH increased for OXY, chloroform formation increased as pH increased from 6 to 10 for DiOXY. Ultimate molar yields of chloroform per mole of UV filter were pH dependent; however, chloroform to UV filter molar yields at pH 8 were 0.221 CHCl₃/OXY and 0.212 CHCl₃/DiOXY. Copyright © 2012 Elsevier Ltd. All rights reserved.
Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.
Pocoví-Martínez, Salvador; Parreño-Romero, Miriam; Agouram, Said; Pérez-Prieto, Julia
2011-05-03
Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca. 240 nm < λ < 280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.
Warshaw, Erin M; Wang, Michael Z; Maibach, Howard I; Belsito, Donald V; Zug, Kathryn A; Taylor, James S; Mathias, C G Toby; Sasseville, Denis; Zirwas, Matthew J; Fowler, Joseph F; DeKoven, Joel G; Fransway, Anthony F; DeLeo, Vincent A; Marks, James G; Pratt, Melanie D; Storrs, Frances J
2013-01-01
Both active and inactive ingredients in sunscreen may cause contact dermatitis. This study aimed to describe allergens associated with a sunscreen source. A cross-sectional analysis of patients patch tested by the North American Contact Dermatitis Group between 2001 and 2010 was performed. Of 23,908 patients patch tested, 219 (0.9%) had sunscreen coded as an allergen source. Patients who were male, with occupational dermatitis, or older (older than 40 years) had significantly lower rates of allergic reactions to sunscreens; the most commonly affected areas were the face and exposed sites (P < 0.0001). The top 3 most frequent allergens in sunscreens were benzophenone-3 (70.2% for 10% concentration, 64.4% for 3% concentration), DL-alpha-tocopherol (4.8%), and fragrance mix I (4.0%). Less than 40% of positive patch test reactions were detected by the North American Contact Dermatitis Group screening series of 65 to 70 allergens. A supplemental antigen series is important in detecting allergy to sunscreens.
Polyimides Based on Asymmetric Dianhydrides (II) (a-BPDA vs a-BTDA) for Resin Transfer Molding (RTM)
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.
2010-01-01
A new series of low-melt viscosity imide resins (10-20 poise at 280 C) were formulated from asymmetric 2,3,3',4' -benzophenone dianhydride (a-BTDA) and 4-phenylethynylphthalic endcaps, along with 3,4' -oxydianiline, 3,3' -methylenedianiline and 3,3'- diaminobenzophenone, using a solvent-free melt process. a-BTDA RTM resins exhibited higher glass transition temperatures (Tg's = 330-400 C) compared to those prepared by asymmetric 2,3,3',4' -biphenyl dianhydride, (a-BPDA, Tg's = 320-370 C). These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fiber composites by a RTM process. Composites properties of a-BTDA resins, such as open-hole compression and short-beam shear strength, are compared to those of composites made from a-BPDA based resin at room temperature, 288 C and 315 C. These novel, high temperature RTM imide resins exhibit outstanding properties beyond the performance of conventional RTM resins, such as epoxy and BMI resins which have use-temperatures around 177 C and 232 C for aerospace applications.
Grozea, Claudia M; Gunari, Nikhil; Finlay, John A; Grozea, Daniel; Callow, Maureen E; Callow, James A; Lu, Zheng-Hong; Walker, Gilbert C
2009-04-13
Nanopatterned surfaces with hydrophobic and hydrophilic domains were produced using the diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA). The PS-b-P2VP diblock copolymer, mixed with the cross-linker benzophenone and spin-coated onto silicon wafers, showed self-assembled cylindrical structures, which were retained after UV treatment for cross-linking. The thin films displayed cylindrical domains after immersion in water. This study shows that pattern retention in water is possible for a long period of time, at least for two weeks in pure water and three weeks in artificial seawater. The PS-b-PMMA diblock showed self-assembled cylindrical structures. PS-b-P2VP and PS-b-PMMA cylindrical patterned surfaces showed reduced settlement of zoospores of the green alga Ulva compared to unpatterned surfaces. The copolymers were investigated using atomic force microscopy and X-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Lin, Changhong; Zhou, Yan; Yang, Yuming
2018-06-01
We first reported a strategy to prepare functional poly(vinylidene fluoride) (PVDF) membranes with excellent ultraviolet-absorbing property through chemically induced grafting. Herein, the polymerizable ultraviolet (UV) absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) made by ourselves was grafted onto the PVDF chains that have been pretreated with tetraethylammonium hydroxide (TEAH) alkaline solution. Moreover, the effect of experiment conditions such as the alkali and monomer concentrations, alkali treatment time on the UV-absorbing property of the obtained PVDF-g-PBPMA membranes were studied in detail. The chemical structure of the modified membranes was confirmed by 1H NMR, FT-IR and XPS measurements. Meanwhile, the thermal and UV-absorbing properties were characterized by TGA, DSC and UV-Vis spectrophotometer, respectively. The results indicated that BPMA side chains were successfully introduced onto PVDF backbones. Most importantly, the obtained PVDF-g-PBPMA membranes exhibited excellent UV-absorbing property. The transmittance of UV light at 300 nm decreased to as low as 0.02% and the UV light below 388 nm could be completely absorbed by the PVDF-g-PBPMA membrane made under optimal condition.
NASA Astrophysics Data System (ADS)
Rodríguez, Julia L.; Valenzuela, Miguel A.; Tiznado, Hugo; Poznyak, Tatiana; Chairez, Isaac; Magallanes, Diana
2017-02-01
The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH)2, NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.
Incorporation of metal ions into polyimides
NASA Technical Reports Server (NTRS)
Taylor, L. T.; Carver, V. C.; Furtsch, T. A.; Saint Clair, A. K.
1980-01-01
The effects of the incorporation of metal ions into various polyimides on polyimide properties are investigated. Polyimide films derived from 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BDTA) 3,3'-diaminobenzophenone (m,m'-DABP), 4,4'-diaminobenzophenone (p,p'-DABP) or 4,4'-oxydianiline were prepared with the concurrent addition of approximately 20 metals in a variety of forms. In general, it is found that the films derived from BDTA + p,p'-DABP were brittle and of poor quality, with brittle films also produced in most of the BDTA + m, m'-DABP polyimides regardless of whether the added metal was hydrate or anhydrous. Thermomechanical analysis, torsional braid analysis, thermal gravimetric analysis, infrared spectral analysis and isothermal studies on many of the polyimide films produced indicate that the softening temperature is generally increased upon the addition of metal ions, at the expense of thermal stability, while no changes in chemical functionality are observed. The best system studied in regard to polymer property enhancement appears to be tri(acetylacetonato)aluminum(III) added to the m, m'-DABP polyamide, which has been found to exhibit four times the lap shear strength of the polyimide alone.
da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues
2015-01-01
This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.
Measurement, analysis and prediction of topical UV filter bioavailability.
Roussel, L; Gilbert, E; Salmon, D; Serre, C; Gabard, B; Haftek, M; Maibach, H I; Pirot, F
2015-01-30
The aim of the present study was to objectively quantify and predict bioavailability of three sunscreen agents (i.e., benzophenone-3, 2-ethylhexylsalicylate, and 2 ethylhexyl-4-methoxycinnamate) in epidermis treated by petrolatum and emulsion-based formulations for 7 and 30min on four human volunteers. Profiles of sunscreen agents through stratum corneum (SC), derived from the assessment of chemical amounts in SC layers collected by successive adhesive tape-stripping, were successfully fitted to Fick's second law of diffusion. Therefore, permeability coefficients of sunscreen agents were found lower with petrolatum than with emulsion based formulations confirming the crucial role of vehicle in topical delivery. Furthermore, the robustness of that methodology was confirmed by the linear relationship between the chemical absorption measured after 30min and that predicted from the 7-min exposure experiment. Interestingly, in this dermatopharmacokinetic method, the deconvolution of permeability coefficients in their respective partition coefficients and absorption constants allowed a better understanding of vehicle effects upon topical bioavailability mechanisms and bioequivalence of skin products. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Glasgow, D. Gerald; Garthwait, Clayborn
1977-01-01
This report covers the results of investigations directed toward studying the effects of novel aromatic diamine structures on epoxy adhesive properties and includes work done under a modification to the original contract. Three aromatic diamines based on diphenylsulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m'-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m'-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p'-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m'-methylene dianiline-cured epoxy appeared to be equivalent to the p,p'-methylene dianiline-cured epoxy as judged by short beam shear tests.
Photoactivable antibody binding protein: site-selective and covalent coupling of antibody.
Jung, Yongwon; Lee, Jeong Min; Kim, Jung-won; Yoon, Jeongwon; Cho, Hyunmin; Chung, Bong Hyun
2009-02-01
Here we report new photoactivable antibody binding proteins, which site-selectively capture antibodies and form covalent conjugates with captured antibodies upon irradiation. The proteins allow the site-selective tagging and/or immobilization of antibodies with a highly preferred orientation and omit the need for prior antibody modifications. The minimal Fc-binding domain of protein G, a widely used antibody binding protein, was genetically and chemically engineered to contain a site-specific photo cross-linker, benzophenone. In addition, the domain was further mutated to have an enhanced Fc-targeting ability. This small engineered protein was successfully cross-linked only to the Fc region of the antibody without any nonspecific reactivity. SPR analysis indicated that antibodies can be site-selectively biotinylated through the present photoactivable protein. Furthermore, the system enabled light-induced covalent immobilization of antibodies directly on various solid surfaces, such as those of glass slides, gold chips, and small particles. Antibody coupling via photoactivable antibody binding proteins overcomes several limitations of conventional approaches, such as random chemical reactions or reversible protein binding, and offers a versatile tool for the field of immunosensors.
Adhesive evaluation of new polyimides
NASA Technical Reports Server (NTRS)
Stclair, Terry L.; Progar, Donald J.
1987-01-01
During the past 10 to 15 years, the Materials Division at NASA Langley Research Center (LaRC) has developed several novel high temperature polyimide adhesives for anticipated needs of the aerospace industry. These developments have resulted from fundamental studies of structure-property relationships in polyimides. Recent research at LaRC has involved the synthesis and evaluation of copolyimides which incorporate both flexibilizing bridging groups and meta-linked benzene rings. The purpose was to develop systems based on low cost, readily available monomers. Two of these copolyimides evaluated as adhesives for bonding titanium alloy, Ti(6Al-4V), are identified as LARC-STPI and STPI-LARC-2. Lap shear strength (LSS) measurements were used to determine the strength and durability of the adhesive materials. LSS results are presented for LARC-TPI and LARC-STPI lap shear specimens thermally exposed in air at 232 C for up to 5000 hrs. LARC-TPI was shown to perform better than the copolymer LARC-STPI which exhibited poor thermooxidative performance possibly due to the amines used which would tend to oxidize easier than the benzophenone system in LARC-TPI.
Polyimides with pendent ethynyl groups
NASA Technical Reports Server (NTRS)
Jensen, Brian J.; Hergenrother, Paul M.; Nwokogu, Godson
1992-01-01
Several new polyimides containing pendent ethynyl groups were prepared and characterized. The new polyimides were prepared from the following novel ethynyl containing diamines; 1,1-bis(p aminophenyl)-1-(p ethynylphenyl) 2,2,2-trifluoroethane, and 1,1-bis(p aminophenyl)-1-(p phenylethynylphenyl)-2,2,2 trifluoroethane, and 1,1-bis(p aminophenyl)-1-(p hexynylphenyl)-2,2,2 trifluoroethane by reacting with either 3,3',4,4' benzophenone tetracarboxylic dianhydride or 2,2-bis(3,4 dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). Inherent viscosities for the polymers ranged from 0.26 to 0.94 dL/g. Three copolymers prepared by reacting 10 mole pct. of one of the ethynyl containing diamines and 90 mole pct. of 2,2-bis-(4-(4 aminophenoxy)phenyl) hexafluoropropane with 6FDA were also prepared and characterized. Inherent viscosities for these copolymers ranged from 1.08 to 1.54 dL/g. Original polyimide glass transition temperatures were approx. 265 C while curing at 300 to 350 C for 1 hr in air increased the Tgs by approx. 10 C. Film properties and thermal stability were also measured for these copolyimides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, S.; Gottschalk, P.; Davis, P.D.
1988-03-30
Photoinitiation of polymerization is a process of immense practical, economic, and theoretical importance. In typical examples the polymerization of an acrylate or styrene-derived monomer is initiated by irradiation of a sensitizer with ultraviolet light. The excited state of the sensitizer may dissociate directly to form active free radicals as in the case of the benzoin ethers, or it may first undergo a bimolecular electron-transfer reaction whose products initiate polymerization as is the case in the benzophenone-dimethylaniline system. Efforts to extend the range of useful photoinitiators of free-radical polymerization to the visible region of the spectrum have heretofore met with onlymore » modest success. These special initiators typically are sensitive only to blue light or suffer from thermal instability and have low quantum efficiencies. The authors report herein the discovery that triphenylalkylborate salts of cyanine dyes (Chart I) are photoinitiators of free-radical polymerization whose sensitivity throughout the entire visible spectral region is the result of a novel intra-ion-pair electron-transfer reaction.« less
Ketone EC50 values in the Microtox test.
Chen, H F; Hee, S S
1995-03-01
The Microtox EC50 values for the following ketones are reported in the following homologous series: straight chain methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hepatonone, 2-octanone, 2-decanone, and 2-tridecanone); methyl ketones substituted at one alpha carbon (3-methyl-2-butanone; 3,3-dimethyl-2-butanone); methyl substituted at two alpha carbons (2,4-dimethyl-3-pentanone; 2,2,4,4-tetramethyl-3-pentanone); phenyl groups replacing methyl in acetone (acetophenone; benzophenone); methyl groups substituted at the alpha carbons of cyclohexanone; and 2,3- 2,4-, and 2,5-hexanediones, most for the first time. While there were linear relationships between log EC50 and MW for the straight chain methyl ketones, and for methyl substitution at the alpha carbon for methyl ketones, there were no other linear relationships. As molecular weight increased, the EC50 values of soluble ketones decreased; as distance between two carbonyl groups decreased so too did EC50 values. Thus, for the ketones the geometry around the carbonyl group is an important determinant of toxicity as well as MW, water solubility, and octanol/water coefficient.
Inhibition of HIF-1{alpha} activity by BP-1 ameliorates adjuvant induced arthritis in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankar, J.; Thippegowda, P.B., E-mail: btprabha@uic.edu; Kanum, S.A.
Rheumatoid arthritis (RA) is a chronic inflammatory, angiogenic disease. Inflamed synovitis is a hallmark of RA which is hypoxic in nature. Vascular endothelial growth factor (VEGF), one of the key regulators of angiogenesis, is overexpressed in the pathogenesis of RA. VEGF expression is regulated by hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), a master regulator of homeostasis which plays a pivotal role in hypoxia-induced angiogenesis. In this study we show that synthetic benzophenone analogue, 2-benzoyl-phenoxy acetamide (BP-1) can act as a novel anti-arthritic agent in an experimental adjuvant induced arthritis (AIA) rat model by targeting VEGF and HIF-1{alpha}. BP-1 administered hypoxic endothelial cells andmore » arthritic animals clearly showed down regulation of VEGF expression. Further, BP-1 inhibits nuclear translocation of HIF-1{alpha}, which in turn suppresses transcription of the VEGF gene. These results suggest a further possible clinical application of the BP-1 derivative as an anti-arthritic agent in association with conventional chemotherapeutic agents.« less
Romeiro, Andreia; Freitas, Diana; Emília Azenha, M; Canle, Moisés; Burrows, Hugh D
2017-06-14
We report a comparative study on the photodegradation of the widely used benzodiazepine psychoactive drug alprazolam (8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine, ALP) using direct photolysis, and titanium dioxide photocatalyzed reaction. Titanium dioxide photocatalysts were prepared as nanoparticles by acidic sol-gel methods, calcined at two different temperatures, and their behavior compared with P25 (Degussa type) TiO 2 . Efficient photodegradation was observed in the photocatalytic process, with over 90% degradation after 90 minutes under optimized conditions. Triazolaminoquinoline, 5-chloro-(5-methyl-4H-1,2,4-triazol-4-yl)benzophenone, triazolbenzophenone, and α-hydroxyalprazolam were identified as the degradation products by fluorescence spectroscopy and HPLC-MS. A comparison with the literature suggests that 8H-alprazolam may also be formed. Good mineralization was observed with TiO 2 photocatalysts. ALP photodegradation with TiO 2 follows pseudo-first order kinetics, with rates depending on the photocatalyst used. The effects of the quantity of the photocatalyst and concentration of alprazolam were studied.
Vlaisavljevich, Bess; Shiozaki, Toru
2016-08-09
We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License.
[Hazards for health related to migration of substances from packaging into food].
Cwiek-Ludwicka, Kazimiera
2010-01-01
The release of the substances from food packaging into food triggers the problem for food safety and is the matter of particular interest in the European Commission (EC) and Member States. The problems concerning the presence of these substances in the food which result from their migration from food contact materials, and the EC activities to discover the causes of this phenomenon including an assessment of possible health impact are presented in this article. The risk assessment is provided by the European Food Safety Authority which is obliged to issue a scientific opinion on expected heath effects. Food contact articles which do not conform to the food safety provisions are reported to the Rapid Alert System for Food and Feed (RASFF). The health hazards due to the presence in food of the semicarbazide (SEM), photoinitiators (isopropylthioxantone (ITX), benzophenone compounds), primary aromatic amines (PAAs) and bisphenol A (BPA) were discussed and the relevant European Commission actions aiming at consumers health protection as a reaction to reduce the expected risk were also presented in this article.
Adoamnei, Evdochia; Mendiola, Jaime; Moñino-García, Miriam; Vela-Soria, Fernando; Iribarne-Durán, Luz M; Fernández, Mariana F; Olea, Nicolás; Jørgensen, Niels; Swan, Shanna H; Torres-Cantero, Alberto M
2018-04-01
Benzophenone (BP)-type ultraviolet (UV) light filters are chemicals frequently added to personal care products, insect repellents, sunscreens, and beverage and food packaging to diminish the harmful effects of UV sunlight on human skin or foodstuffs. BP-type UV filters have shown negative effects on male reproduction function in in vitro and animal models, but human epidemiologic studies are limited. The goal of this study was to examine associations between urinary concentrations of BP-type UV filters and semen quality and reproductive hormone levels. This is a cross-sectional study with 215 young university students (18-23 years old) recruited between 2010 and 2011 in Southern Spain (Murcia Region). All men provided a urine, blood and semen sample on a single day. Urinary concentrations of 2,4-dihydroxybenzophenone (BP-1); 2,2',4,4'-tetrahydroxybenzophenone (BP-2); 2-hydroxy-4-methoxybenzophenone (BP-3); 2,2'-dihydroxy-4-methoxybenzophenone (BP-8) and 4-hydroxybenzophenone (4OH-BP) were measured by dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography with tandem mass spectrometry detection. Semen quality was evaluated by measuring volume, sperm counts, motility and morphology. Serum samples were analyzed for reproductive hormones, including follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), inhibin B and estradiol (E2). Associations between urinary concentrations of BP-type UV filters and semen quality parameters and reproductive hormone levels were examined using linear regression, adjusting for potential confounders. Ninety-seven percent of the men had detectable urinary concentrations of at least one of the five BP-type UV filters quantified. After adjustment for important covariates (body mass index, smoking status and time of blood sample collection), there was a significant positive association between urinary BP-1 and BP-3 concentrations and serum FSH levels (β = 0.08, 95%CI: 0.009; 0.15 and β = 0.04, 95%CI: 0.0002; 0.08, respectively). Urinary BP-1 concentration was also significantly positively associated with T/E2 (β = 0.04, 95%CI: 0.002; 0.07) and negatively with inhibin b/FSH (β = -0.11, 95%CI: -0.21; -0.006) ratio. No significant associations were found between other urinary BP-type UV filters and other reproductive hormone levels or between any semen parameters and any of the urinary BP-type UV filters quantified. Our results suggest that, in young men, urinary BP-type UV filters may be associated with a modest alteration of some reproductive hormones, but the effects we report on reproductive function are likely to be small, and of unclear clinical significance. Further research is needed to replicate these findings in other male populations. Copyright © 2018 Elsevier GmbH. All rights reserved.
Martin, Teresa A.; Herman, Christine T.; Limpoco, Francis T.; Michael, Madeline C.; Potts, Gregory K.; Bailey, Ryan C.
2014-01-01
Methods for the generation of substrates presenting biomolecules in a spatially controlled manner are enabling tools for applications in biosensor systems, microarray technologies, fundamental biological studies and biointerface science. We have implemented a method to create biomolecular patterns by using light to control the direct covalent immobilization of biomolecules onto benzophenone-modified glass substrates. We have generated substrates presenting up to three different biomolecules patterned in sequence, and demonstrate biomolecular photopatterning on corrugated substrates. The chemistry of the underlying monolayer was optimized to incorporate poly(ethylene glycol) to enable adhesive cell adhesion onto patterned extracellular matrix proteins. Substrates were characterized with contact angle goniometry, AFM, and immunofluorescence microscopy. Importantly, radioimmunoassays were performed to quantify the site density of immobilized biomolecules on photopatterned substrates. Retention of function of photopatterned proteins was demonstrated both by native ligand recognition and cell adhesion to photopatterned substrates, revealing that substrates generated with this method are suitable for probing specific cell receptor-ligand interactions. This molecularly general photochemical patterning method is an enabling tool that will allow the creation of substrates presenting both biochemical and topographical variation, which is an important feature of many native biointerfaces. PMID:21793535
[Safety verification for reuse of PET and glass bottles].
Hayashi, Eiichi; Imai, Toshio; Niimi, Hiroji
2011-01-01
In order to verify the safety associated with reusing PET and glass bottles, a challenge test was conducted with five surrogate contaminants: 1,1,1-trichloroethane, chlorobenzene, toluene, benzophenone and phenyl cyclohexane. Bottles were filled with a cocktail solution of these contaminants and stored at 50 °C for 7 days, then washed with water and alkaline solutions. Material and migration tests were conducted at each step. The material test results showed that 430-1,440 µg/g of the contaminants were retained after water washing, and that even after washing with a 3.5% NaOH solution, 225-925 µg/g of the contaminants were retained. The migration tests revealed that 0.095-7.35 µg/mL of the contaminants were eluted. Similar tests were conducted with a soft drink ingredient, limonene. The results revealed that 48 µg/g of limonene was retained even after washing with NaOH solution, and that 0.16 µg/mL of limonene was eluted. Conversely, no contaminants were eluted from glass bottles after washing with the NaOH solution. Thus, from the viewpoint of safety and the preservation of content quality, PET bottles are not considered suitable for reuse when compared with glass bottles.
The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.
Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J
2010-09-02
The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.
Zhu, Yindi; Liu, Yue; Zhan, Ying; Liu, Lin; Xu, Yajuan; Xu, Tunhai; Liu, Tonghua
2013-12-16
Psidium guajava leaves have a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids and triterpenes, responsible for the biological activities of the medicinal parts. In particular, flavonol glycosides show beneficial effects on type II diabetes mellitus. A simple and efficient HSCCC method has been developed for the preparative separation of five flavonoid glycosides and one diphenylmethane glycoside from P. guajava. A solvent system composed of n-hexane-ethyl acetate-methanol-water (0.7:4:0.8:4, v/v/v/v) was optimized for the separation. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. Under the optimized conditions, hyperoside (15.3 mg), isoquercitrin (21.1 mg), reynoutrin (65.2 mg), quercetin-3-O-β-D-arabinopyranoside (71.7 mg), quercetin-3-O-α-L-arabinofuranoside (105.6 mg) and 2,4,6-trihydroxy-3,5-dimethylbenzophenone 4-O-(6''-O-galloyl)-β-D-glucopyranoside (98.4 mg) were separated from crude sample (19.8 g). The structures of all the isolates were identified by ESI-MS, 1H- and 13C-NMR analyses and their purities (>95%) were determined using HPLC.
Vega-Garzon, Lina Patricia; Gomez-Miranda, Ingry Natalia; Peñuela, Gustavo A
2018-05-01
Response Surface Methodology was used for optimizing operating variables for a multi-frequency ultrasound reactor using BP-3 as a model compound. The response variable was the Triclosan degradation percent after 10 sonication min. Frequency at levels from 574, 856 and 1134 kHz were used. Power density, pulse time (PT), silent time (ST) and PT/ST ratio effects were also analyzed. 2 2 and 2 3 experimental designs were used for screening purposes and a central composite design was used for optimization. An optimum value of 79.2% was obtained for a frequency of 574 kHz, a power density of 200 W/L, and a PT/ST ratio of 10. Significant variables were frequency and power level, the first having an optimum value after which degradation decreases while power density level had a strong positive effect on the whole operational range. PT, ST, and PT/ST ratio were not significant variables although it was shown that pulsed mode ultrasound has better degradation rates than continuous mode ultrasound; the effect less significant at higher power levels. Copyright © 2017. Published by Elsevier B.V.
A Novel Photosynthesis of Carboxymethyl Starch-Stabilized Silver Nanoparticles
El-Sheikh, M. A.
2014-01-01
The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3 concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively. PMID:24672325
Animal model for evaluation of topical photoprotection against ultraviolet A (320-380 nm) radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chew, S.; DeLeo, V.A.; Harber, L.C.
Recent studies reporting UVA (ultraviolet A radiation 320-380 nm) as an integral part of the cumulative sun-induced damage in human skin have prompted an interest in developing effective UVA photoprotective agents. The development of such compounds has been impeded by the absence of a clinically relevant animal model for evaluating their efficacy. This report describes the development and use of such a laboratory animal system. Selected concentrations of oxybenzone (2-hydroxy-4-methoxybenzophenone) in vehicle (0.1% to 6%) or vehicle alone were applied to the depilated dorsal skin of 30 Hartley strain female albino guinea pigs. The skin was irradiated with solar simulatedmore » UVA from a xenon light source. Acute radiation-induced damage was assayed by erythema grading and inhibition of (/sup 3/H)thymidine incorporation into epidermal DNA. Data from erythema grading studies indicated that a significant degree of photoprotection was achieved with 6%, 3%, and 1% solutions of benzophenone compared with the control vehicle; the 6% solution was significantly more photoprotective than the 3% and 1% solutions. A 6% solution afforded significant photoprotection when assayed by (/sup 3/H)thymidine incorporation.« less
Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1 O 2 generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wenting; Han, Congcong; Zhang, Qinhua
advanced photosensitizers for singlet oxygen (1O2) generation. However, the intersystem crossing (ISC) process is quite insufficient in carbon nitride, limiting the 1O2 generation. Here, we report a facile and general strategy to confined benzophenone as a heavy atom-free spin converter dopant in carbon nitride via the facile copolymerization. With proper energy level matching between the heavy atom-free spin converter and various ligands based on carbon nitride precursors, the proper combination can decrease the singlet-triplet energy gap (DEST) and hence generate 1O2 effectively. Due to its significant and selectivity for 1O2 generation, the as-prepared carbon nitride-based photosensitizer shows a high selectivemore » photooxidation activity for 1,5-dihydroxy-naphthalene (1,5-DHN). The product yield reached 71.8% after irradiation for 60 min, which was higher than that of cyclometalated PtII complexes (53.6%) in homogeneous photooxidation. This study can broaden the application of carbon nitride in the field of selective heterogeneous photooxidation due to simple operation, low cost, and high efficiency, making it a strong candidate for future industrialization.« less
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung
1995-01-01
A phenylethynyl terminated imide oligomer formed from the reaction of benzophenone tetracarboxylic acid dianhydride, an 75:25 molar ratio of 4,4'-oxydianiline and meta-phenylenediamine and 4-phenylethynylphthalic anhydride as the endcapper at a theoretical number average molecular weight (Mn) of approximately 3,700 g/mol was evaluated as a composite resin matrix. A glass transition temperature (Tg) of 315 deg C was reached after 250 deg C/1 hr annealing of the matrix resin. Unidirectional prepreg was made by coating an N-methylpyrrolidinone solution of the amide acid oligomer onto unsized IM7 graphite fibers. The thermal and rheological properties and the solvent/volatile depletion rates of the amide acid/NMP system were determined. This information was used to successfully design a molding cycle for composite fabrication. Composites molded under 800 Psi at 371 C consistently yielded good consolidation as measured by C-scan and optical photomicrography. The composite's short beam shear strength (SBS), longitudinal and transverse flexural strengths and moduli were measured at various temperatures. These composites exhibited excellent room temperature (RT) longitudinal flexural strength and modulus and RT SBS strength retention at 177 C.
Sánchez Rodríguez, A; Rodrigo Sanz, M; Betancort Rodríguez, J R
2015-07-01
Due to the growing concern about human health effects of ultraviolet (UV) radiation, the use of UV filters has increased in recent decades. Unfortunately, some common UV filters are bioaccumulated in aquatic organisms and show a potential for estrogenic activity. The aim of the present study is to determine the presence of some UV filters in the coastal waters of six beaches around Gran Canaria Island as consequence of recreational seaside activities. Eight commonly used UV filters: benzophenone-3 (BP-3), octocrylene (OC), octyl-dimethyl-PABA (OD-PABA), ethylhexyl methoxy cinnamate (EHMC), homosalate (HMS), butyl methoxydibenzoyl methane (BMDBM), 4-methylbenzylidene camphor (4-MBC) and diethylamino hydroxybenzoyl hexyl benzoate (DHHB), were monitored and, with the exception of OD-PABA, all were detected in the samples collected. 99% of the samples showed some UV filters and concentration levels reached up to 3316.7 ng/L for BP-3. Environmental risk assessment (ERA) approach showed risk quotients (RQ) higher than 10, which means that there is a significant potential for adverse effects, for 4-MBC and EHMC for those samples with highest levels of UV filters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cerqueira, Maristela B R; Guilherme, Juliana R; Caldas, Sergiane S; Martins, Manoel L; Zanella, Renato; Primel, Ednei G
2014-07-01
A modified version of the QuEChERS method has been evaluated for the determination of 21 pharmaceuticals and 6 personal care products (PPCPs) in drinking-water sludge samples by employing ultra high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The performance of the method was evaluated through linearity, recovery, precision (intra-day), method detection and quantification limits (MDL and MQL) and matrix effect. The calibration curves prepared in acetonitrile and in the matrix extract showed a correlation coefficient ranging from 0.98 to 0.99. MQLs values were on the ng g(-1) order of magnitude for most compounds. Recoveries between 50% and 93% were reached with RSDs lower than 10% for most compounds. Matrix effect was almost absent with values lower than 16% for 93% of the compounds. By coupling a quick and simple extraction called QuEChERS with the UPLC-MS/MS analysis, a method that is both selective and sensitive was obtained. This methodology was successfully applied to real samples and caffeine and benzophenone-3 were detected in ng g(-1) levels. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulakhatov, Murat; Bartenev, Sergey; Firsin, Nikolai
Available in abstract form only. Full text of publication follows: Conditions for immobilization of long-lived radionuclides {sup 99}Tc, {sup 129}I and {sup 241}Am in carbon matrices were investigated by using their chemical analogs. Stable isotopes of rhenium, iodine and europium were used as chemical analogs of {sup 99}Tc, {sup 129}I and {sup 241}Am, respectively. It is shown that the carbon matrices incorporating the above elements can be produced by carbonization of composites with ITA-31 polyimide binder of the following composition: equal molar ratio between dianhydride of 3,3/,4,4/-benzophenone-tetracarboxylic acid and tetraacetyl derivative of 4,4/-diaminodiphenyl ester, radionuclide being investigated or its chemicalmore » analog and carbon fabric as reinforcing component. The elements under investigation were used both in the form of salts or oxides and in the form of their complexes with ion-exchange resins. The produced composites were carbonized in inert gas (argon) or in vacuum. The physical-chemical properties of the samples were studied. It was revealed that the resultant matrices meet the requirements imposed on waste storage and final disposal. (authors)« less
Guart, Albert; Calabuig, Ignacio; Lacorte, Silvia; Borrell, Antonio
2014-02-01
This study was aimed to determine the presence of 69 organic contaminants in 77 representative bottled waters collected from 27 countries all over the world. All water samples were contained in polyethylene terephthalate bottles. Target compounds were (1) environmental contaminants (including 13 polycyclic aromatic hydrocarbons (PAHs), 31 pesticides including organochlorine (OCPs), organophosphorus, and pyrethroids; 7 polychlorinated biphenyls (PCBs); and 7 triazines) and (2) plasticizers (including 6 phthalates and 5 other compounds). Samples were analyzed by stir bar sorptive extraction followed by gas chromatography-tandem mass spectrometry. PAHs, OCPs, PCBs, and triazines, which are indicators of groundwater pollution, were not detected in most of the samples, except for naphthalene (0.005-0.202 μg/L, n = 16). On the other hand, plastic components were detected in 77 % of the samples. Most frequently detected compounds were dimethyl phthalate and benzophenone at concentrations of 0.005-0.125 (n = 41) and 0.014-0.921 (n = 32), respectively. Levels detected are discussed in terms of contamination origin and geographical distribution. Target compounds were detected at low concentrations. Results obtained showed the high quality of bottled water in the different countries around the world.
Photostability of cosmetic UV filters on mammalian skin under UV exposure.
Stiefel, Constanze; Schwack, Wolfgang; Nguyen, Yen-Thi Hai
2015-01-01
Previous studies showed that the common UV filter substances benzophenone-3 (BP-3), butyl methoxydibenzoylmethane (BM-DBM), octocrylene (OCR), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate (EHS) and ethylhexyl triazone (EHT) were able to react with amino side chains of different proteins in vitro. To transfer the results to mammalian skin conditions, sunscreen products were applied on both prepared fresh porcine skin and glass plates, followed by UV irradiation and the determination of depletion of the respective UV filters. Significantly lower recoveries of the UV filters extracted from skin samples than from glass plates indicated the additional reaction of the UV filters with skin constituents, when proteins will be the most important reactants. Among the products tested, BP-3 showed the greatest differences in recoveries between glass and skin samples of about 13% and 24% after 2 and 4 h of irradiation, respectively, followed by EHS > BM-DBM > OCR > EHMC > EHT. The obtained results raise the question, whether the common in vitro evaluations of sunscreens, using inert substrate materials like roughened quartz or polymethyl methacrylate (PMMA) plates are really suitable to fully replace in vivo methods, as they cannot include skin-typical reactions. © 2014 The American Society of Photobiology.
2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification.
Herner, András; Marjanovic, Jasmina; Lewandowski, Tracey M; Marin, Violeta; Patterson, Melanie; Miesbauer, Laura; Ready, Damien; Williams, Jon; Vasudevan, Anil; Lin, Qing
2016-11-09
Photoaffinity labels are powerful tools for dissecting ligand-protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C-H/X-H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery.
Observation of excited state charge transfer with fs/ps-CARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blom, Alex Jason
2009-01-01
Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using densitymore » functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.« less
A lateral electrophoretic flow diagnostic assay
Lin, Robert; Skandarajah, Arunan; Gerver, Rachel E.; Neira, Hector D.; Fletcher, Daniel A.
2015-01-01
Immunochromatographic assays are a cornerstone tool in disease screening. To complement existing lateral flow assays (based on wicking flow) we introduce a lateral flow format that employs directed electrophoretic transport. The format is termed a “lateral e-flow assay” and is designed to support multiplexed detection using immobilized reaction volumes of capture antigen. To fabricate the lateral e-flow device, we employ mask-based UV photopatterning to selectively immobilize unmodified capture antigen along the microchannel in a barcode-like pattern. The channel-filling polyacrylamide hydrogel incorporates a photoactive moiety (benzophenone) to immobilize capture antigen to the hydrogel without a priori antigen modification. We report a heterogeneous sandwich assay using low-power electrophoresis to drive biospecimen through the capture antigen barcode. Fluorescence barcode readout is collected via a low-resource appropriate imaging system (CellScope). We characterize lateral e-flow assay performance and demonstrate a serum assay for antibodies to the hepatitis C virus (HCV). In a pilot study, the lateral e-flow assay positively identifies HCV+ human sera in 60 min. The lateral e-flow assay provides a flexible format for conducting multiplexed immunoassays relevant to confirmatory diagnosis in near-patient settings. PMID:25608872
The study of the thermal behavior of a new semicrystalline polyimide
NASA Technical Reports Server (NTRS)
Cheng, Stephen Z. D.; Chalmers, Tammy M.
1992-01-01
Thermal properties of a new semicrystalline polyimide synthesized from 3,3',4,4' benzophenone tetracarboxylic dianhydride (BTDA) and 2,2 dimethyl 1,2-(4 aminophenoxy) propane (DMDA) were studied. Heat capacities in the solid and liquid states of BTDA-DMDA were measured. The heat capacity increase at the glass transition temperature (T sub g = 230 C) is 145 J/(C mol) for amorphous BTDA-DMDA. The equilibrium heat of fusion of the BTDA-DMDA crystals was obtained using wide angle X ray diffraction and differential scanning calorimetry measurements, and it is 75.8 kJ/mol. Based on the information of crystallinity and the heat capacity increase at T sub g, a rigid amorphous fraction is identified in semicrystalline BTDA-DMDA samples. The rigid amorphous fraction represents an interfacial region between the crystalline and amorphous states. In particular, this fraction increases with the crystallinity of the sample which should be associated with crystal sizes, and therefore, with crystal morphology. It was also found that this polymer has a high temperature crystal phase upon annealing above its original melting temperature. The thermal degradation activation energies are determined to be 154 and 150 kJ/mol in nitrogen and air, respectively.
NASA Astrophysics Data System (ADS)
Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto
2017-11-01
The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.
NASA Astrophysics Data System (ADS)
Thijs, R.; Zeegers-Huyskens, Th.
The hydrogen bonded complexes between phenol derivatives and acetone ( I), acetophenone ( II) and benzophenone ( III) have been studied in carbon tetrachloride solution by i.r. spectroscopy. The formation constants, the enthalpies of complex formation, the Δν OH and Δν CO values have been determined. For a given phenol derivative, the thermodynamic constants and Δν OH are ordered according to I > II > III and the influence of a substituent implanted on the phenolic ring can be expressed by the Hammett relationship. The ϱ coefficients of the Hammett equation are related to the complexation enthalpies. The Badger—Bauer relation is valid for the three bases. The comparison with complexes involving other carbonyl bases allows to precise the influence of the substituent implanted on the carbonyl group. The Δν OH values obey the dual substituent parameter equation using σ I and σ +R; the ϱ I/ϱ R ratio is higher than one. The Δν CO values are shown to depend on the complexation enthalpy and on the delocalization effect of the substituents.
2-Aryl-5-carboxytetrazole as a New Photoaffinity Label for Drug Target Identification
2016-01-01
Photoaffinity labels are powerful tools for dissecting ligand–protein interactions, and they have a broad utility in medicinal chemistry and drug discovery. Traditional photoaffinity labels work through nonspecific C–H/X–H bond insertion reactions with the protein of interest by the highly reactive photogenerated intermediate. Herein, we report a new photoaffinity label, 2-aryl-5-carboxytetrazole (ACT), that interacts with the target protein via a unique mechanism in which the photogenerated carboxynitrile imine reacts with a proximal nucleophile near the target active site. In two distinct case studies, we demonstrate that the attachment of ACT to a ligand does not significantly alter the binding affinity and specificity of the parent drug. Compared with diazirine and benzophenone, two commonly used photoaffinity labels, in two case studies ACT showed higher photo-cross-linking yields toward their protein targets in vitro based on mass spectrometry analysis. In the in situ target identification studies, ACT successfully captured the desired targets with an efficiency comparable to the diazirine. We expect that further development of this class of photoaffinity labels will lead to a broad range of applications across target identification, and validation and elucidation of the binding site in drug discovery. PMID:27740749
Photocatalytic degradation of sunscreen active ingredients mediated by nanostructured materials
NASA Astrophysics Data System (ADS)
Soto-Vazquez, Loraine
Water scarcity and pollution are environmental issues with terrible consequences. In recent years several pharmaceutical and personal care products, such as sunscreen active ingredients, have been detected in different water matrices. Its recalcitrant behavior in the environment has caused controversies and generated countless questions about its safety. During this research, we employed an advanced oxidation process (photocatalysis) to degrade sunscreen active ingredients. For this study, we used a 3x3 system, evaluating three photocatalysts and three different contaminants. From the three catalysts employed, two of them were synthesized. ZnO nanoparticles were obtained using zinc acetate dihydrated as the precursor, and TiO2 nanowires were synthesized from titanium tetrachloride precursor. The third catalyst employed (namely, P25) was obtained commercially. The synthesized photocatalysts were characterized in terms of the morphology, elemental composition, crystalline structure, elemental oxidation states, vibrational modes and surface area, using SEM-EDS, XRD, XPS, Raman spectroscopy and BET measurements, respectively. The photocatalysts were employed during the study of the degradation of p-aminobenzoic acid, phenylbenzimidazole sulfonic acid, and benzophenone-4. In all the cases, at least 50% degradation was achieved. P25 showed degradation efficiencies above 90%, and from the nine systems, 7 of them degraded at least 86%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, K.; Das, P.K.
In the course of benzophenone triplet quenching by triethylamine (TEA) at high concentrations in alkaline aqueous acetonitrile, two temporally distinct processes are observed for ketyl radical anion formation. The fast component occurs on a nanosecond time scale, has kinetics sensitive to basicity and water content of the medium, and is ascribed to the deprotonation of the diphenylhydroxymethyl radical initially produced as a result of subnanosecond intra-ion-pair proton transfer. The slow process occurs on a microsecond time scale and is characterized by pseudo-first-order rate constants linearly dependent on ketone ground-state concentration; this is assigned to the one-electron reduction of the ketonemore » by the methyl(diethylamino)methyl radical (derived from TEA). Substituent effects on the kinetics of the two processes follow trends expected from those of the acidity of diarylhydroxymethyl radicals and of the behavior of diaryl ketones as oxidants. Neither of the two processes is observed with N,N-dimethylaniline (DMA) and 1,4-diazabicyclo(2.2.2)octane (DABCO) as quenchers. The electron or hydrogen transfer yields in the course of diaryl ketone triplet quenching by the three amines are all close to unity, suggesting that the back electron transfer in the triplet ion pairs is relatively unimportant.« less
Raeisi, Ahmad; Faghihi, Khalil; Shabanian, Meisam
2017-10-15
The easy migration of di(2-ethylhexyl) phthalate (DEHP) from the plasticized PVC (P-PVC) poses a serious threat to human health and the ecosystems. Thus, its control migration from the P-PVC products is very important. In this work, a poly(β-cyclodextrin-ester) network (β-CDP) was synthesized via reaction of β-cyclodextrin with 3,3',4,4'-benzophenone tetracarboxylic dianhydride. As a potential inhibitor for reduction of the DEHP migration, the β-CDP was grafted to Fe 3 O 4 nanoparticles. Poly(β-cyclodextrin-ester) functionalized Fe 3 O 4 nanoparticles (MNP-CDP) has been used in PVC/DEHP system as a reactive nano-inhibitor to reduce DEHP migration. Thermal stability and mechanical properties of obtained films were investigated. DEHP migration tests of the P-PVC films were also carried out by using Gas chromatography. It was found that by incorporating the small amounts of nano-inhibitor in PVC/DEHP system, the migration of DEHP effectively reduced from the P-PVC samples about 65% without any serious changes in mechanical and thermal properties of the P-PVC films. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M
2006-01-01
The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.
Principles and methodology for identification of fragrance allergens in consumer products.
Gimenez-Arnau, A; Gimenez-Arnau, E; Serra-Baldrich, E; Lepoittevin, J-P; Camarasa, J G
2002-12-01
Fragrances contain several hundreds of different chemicals, a few major and many minor, which are responsible for the complexity of the odour. Fragrances are a major cause of allergic contact dermatitis. As a diagnostic tool, the current fragrance mix is very useful though not ideal. A 50-year-old woman presented with a pruriginous, erythematous eruption, characterized by papules, vesicles, exudation and crusting over the neck and chest. With the suspicion of fragrance allergy, patch testing was performed. Initially, the only positive reaction observed was with her own eau de toilette named Woman. The TRUE Test fragrance mix patch test was negative. Chemical fractionation of Woman perfume concentrate was combined with a sequenced patch testing procedure and with structure-activity relationship studies. Ingredients supplied by the manufacturer were also included in the study. Benzophenone-2, Lyral, alpha-hexyl cinnamic aldehyde and alpha-damascone were found to be responsible for the patient's contact allergy to the commercial product. These substances contain chemical structural alerts giving them antigenic ability. The common use of new chemicals to manufacture fragrances, and the increased number of patients sensitive to them but with negative fragrance mix reactions, makes it necessary to identify new potential fragrance sensitizers in commercial products.
BK/TD models for analyzing in vitro impedance data on cytotoxicity.
Teng, S; Barcellini-Couget, S; Beaudouin, R; Brochot, C; Desousa, G; Rahmani, R; Pery, A R R
2015-06-01
The ban of animal testing has enhanced the development of new in vitro technologies for cosmetics safety assessment. Impedance metrics is one such technology which enables monitoring of cell viability in real time. However, analyzing real time data requires moving from static to dynamic toxicity assessment. In the present study, we built mechanistic biokinetic/toxicodynamic (BK/TD) models to analyze the time course of cell viability in cytotoxicity assay using impedance. These models account for the fate of the tested compounds during the assay. BK/TD models were applied to analyze HepaRG cell viability, after single (48 h) and repeated (4 weeks) exposures to three hepatotoxic compounds (coumarin, isoeugenol and benzophenone-2). The BK/TD models properly fit the data used for their calibration that was obtained for single or repeated exposure. Only for one out of the three compounds, the models calibrated with a single exposure were able to predict repeated exposure data. We therefore recommend the use of long-term exposure in vitro data in order to adequately account for chronic hepatotoxic effects. The models we propose here are capable of being coupled with human biokinetic models in order to relate dose exposure and human hepatotoxicity. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Peng, Xianzhi; Fan, Yujuan; Jin, Jiabin; Xiong, Songsong; Liu, Jun; Tang, Caiming
2017-06-01
Bioaccumulation and trophic transfer in ecosystems is an important criterion for assessing environmental risks of contaminants. This study investigated bioaccumulation and biomagnification of 13 organic ultraviolet absorbents (UVAs) in marine wildlife organisms in the Pearl River Estuary, South China Sea. The UVAs could accumulate in the organisms with biota - sediment accumulation factors (BSAF) of 0.003-2.152. UV531 was the most abundant and showed the highest tendency to accumulate in the organisms with a median BSAF of 1.105. The UVAs demonstrated species - and compound-specific accumulation in the marine organism. Fishes showed significantly higher capability than the cephalopods and crustaceans in accumulation of the UVAs. Habitat did not demonstrate obvious impact on accumulation of the UVA. On the other hand, benzophenone-3, UV328, and UV234 showed significantly higher concentration in the detritus feeding fishes than carnivorous and planktivorous fishes, suggesting governing effect of dietary habits of the organisms on bioaccumulation of these UVAs. Direct uptake from growth media was a significant exposure pathway of the organisms to the UVAs. The estimated trophic magnification factors and biomagnification factors revealed that UV329, UV531, and octocrylene could potentially biomagnify in the marine food web. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baranov, Dmitry; Hill, Robert J.; Ryu, Jisu; Park, Samuel D.; Huerta-Viga, Adriana; Carollo, Alexa R.; Jonas, David M.
2017-01-01
In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.
Cole-Cole law for critical dynamics in glass-forming liquids.
Sperl, Matthias
2006-07-01
Within the mode-coupling theory (MCT) for glassy dynamics, the asymptotic low-frequency expansions for the dynamical susceptibilities at critical points are compared to the expansions for the dynamic moduli; this shows that the convergence properties of the two expansions can be quite different. In some parameter regions, the leading-order expansion formula for the modulus describes the solutions of the MCT equations of motion outside the transient regime successfully; at the same time, the leading- and next-to-leading-order expansion formulas for the susceptibility fail. In these cases, one can derive a Cole-Cole law for the susceptibilities; and this law accounts for the dynamics for frequencies below the band of microscopic excitations and above the high-frequency part of the alpha peak. It is shown that this scenario explains the optical-Kerr-effect data measured for salol and benzophenone (BZP). For BZP it is inferred that the depolarized light-scattering spectra exhibit a wing for the alpha peak within the Gigahertz band. This wing results from the crossover of the von Schweidler law part of the alpha peak to the high-frequency part of the Cole-Cole peak; and this crossover can be described quantitatively by the leading-order formulas of MCT for the modulus.
Wu, Ya-Pan; Li, Dong-Sheng; Xia, Wei; Guo, Sha-Sha; Dong, Wen-Wen
2014-09-11
Three novel Ln(III)-based coordination polymers, {[Ln2 (2,4-bpda)3 (H2O)x]·yH2O}n (Ln = La (III) (1), x = 2, y = 0, Ce (III) (2), Pr (III) (3), x = 4, y = 1) (2,4-H2bpda = benzophenone-2,4-dicarboxylic acid) have been prepared via a solvothermal method and characterized by elemental analysis, IR, and single-crystal X-ray diffraction techniques. Complex 1 exhibits a 3D complicated framework with a new 2-nodal (3,7)-connected (42·5) (44·51·66·8) topology. Complexes 2 and 3 are isomorphous, and feature a 3D 4-connected (65·8)-CdSO4 network. Moreover, solid-state properties such as thermal stabilities and luminescent properties of 1 and 2 were also investigated. Complex 1 crystallized in a monoclinic space group P21/c with a = 14.800 (3), b = 14.500 (3), c = 18.800 (4) Å, β = 91.00 (3), V = 4033.9 (14) Å3 and Z = 4. Complex 2 crystallized in a monoclinic space group Cc with a = 13.5432 (4), b = 12.9981 (4), c = 25.7567 (11) Å, β = 104.028 (4), V = 1374.16 (7) Å3 and Z = 4.
Throckmorton, Kurt; Wiemann, Philipp; Keller, Nancy P.
2015-01-01
Fungal polyketides are a diverse class of natural products, or secondary metabolites (SMs), with a wide range of bioactivities often associated with toxicity. Here, we focus on a group of non-reducing polyketide synthases (NR-PKSs) in the fungal phylum Ascomycota that lack a thioesterase domain for product release, group V. Although widespread in ascomycete taxa, this group of NR-PKSs is notably absent in the mycotoxigenic genus Fusarium and, surprisingly, found in genera not known for their secondary metabolite production (e.g., the mycorrhizal genus Oidiodendron, the powdery mildew genus Blumeria, and the causative agent of white-nose syndrome in bats, Pseudogymnoascus destructans). This group of NR-PKSs, in association with the other enzymes encoded by their gene clusters, produces a variety of different chemical classes including naphthacenediones, anthraquinones, benzophenones, grisandienes, and diphenyl ethers. We discuss the modification of and transitions between these chemical classes, the requisite enzymes, and the evolution of the SM gene clusters that encode them. Integrating this information, we predict the likely products of related but uncharacterized SM clusters, and we speculate upon the utility of these classes of SMs as virulence factors or chemical defenses to various plant, animal, and insect pathogens, as well as mutualistic fungi. PMID:26378577
Effects of electrolytes on redox potentials through ion pairing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas
Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less
Duan, Xiaotao; Zhong, Dafang; Chen, Xiaoyan
2008-06-01
Houttuynin (decanoyl acetaldehyde), a beta-dicarbonyl compound, is the major antibacterial constituent in the volatile oil of Houttuynina cordata Thunb. In the present work, detection of houttuynin in human plasma based on the chemical derivatization with 2,4-dinitrophenylhydrazine (DNPH) coupled with liquid chromatography/tandem mass spectrometry was described. The primary reaction products between the beta-dicarbonyl compound and DNPH in aqueous phase were identified as heterocyclic structures, of which the mass spectrometric ionization and fragmentation behavior were characterized with the aid of high-resolution multistage mass spectral analysis. For quantification, houttuynin and internal standard (IS, benzophenone) in plasma were firstly converted to their DNPH derivatives without sample purification, then extracted from human plasma with n-hexane and detected by liquid chromatography tandem mass spectrometry performed in selected reaction monitoring (SRM) mode. This method allowed for a lower limit of quantification (LLOQ) of 1.0 ng/ml using 100-microl plasma. The validation results showed high accuracy (%bias < 2.1) and precision (%CV < 7.2) at broad linear dynamic range (1.0-5000 ng/ml). The simple and quantitative derivatization coupled with tandem mass spectrometric analysis facilitates a sensitive and robust method for the determination of plasma houttuynin in pharmacokinetic studies.
Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter
2017-11-07
In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.
Aznar, Ramón; Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Martín-Girela, Isabel; Tadeo, José L
2017-03-01
A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides, and flame retardants) in aquatic plants. Analytes were extracted by ultrasound-assisted matrix solid-phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation, The method was validated for different aquatic plants (Typha angustifolia, Arundo donax, and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g -1 wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g -1 wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts, and therefore, quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed, and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin, and cypermethrin. The levels found ranged from 6 to 25 ng g -1 wet weight except for cypermethrin that was detected at 235 ng g -1 wet weight in O. sativa samples.
Ogawa, Yuko; Kawamura, Yoko; Wakui, Chiseko; Mutsuga, Motoh; Nishimura, Tetsuji; Tanamoto, Kenichi
2006-04-01
Food contact plastics and rubbers possibly contain many kinds of chemicals such as monomers, oligomers, additives, degradation products of polymers and additives, and impurities. Among them, bisphenol A, nonylphenol, benzylbutyl phthalate, styrene oligomers and hydroxylated benzophenones have been reported to possess estrogenic activities. In this study, other chemicals related to food contact plastics and rubbers, and their metabolites induced by the S9-mixture were tested for their estrogenic activities using the yeast two-hybrid assay. Among the 150 chemicals, 10 chemicals such as bis(4-hydroxyphenyl) methane, 4-cyclohexylphenol, 4-phenylphenol, 4,4'-isopropylidenediphenol alkylphosphite, two type of styrenated phenol (including mono type), tris(nonylphenyl) phosphite, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone and 2,4-diphenyl-4-methyl-1-pentene, their metabolites and the metabolites of 6 other chemicals, such as 2-(phenylmethyl) phenol, styrenated phenol (di and tri type), 1-(N-phenylamino)naphthalene, 4-tert-butylphenylsalicylate, nonylphenol ethoxylates and 2-methyl-6-tert-butylphenol, displayed estrogenic activities. All of them contained a phenol group in their chemical structures or formed one easily by hydrolysis or metabolism. However, most of the chemicals related to food contact plastics and rubbers, and their metabolites did not show any estrogenicity.
The Photostabilizing Effect of Grape Seed Extract on Three Common Sunscreen Absorbers.
Martincigh, Bice S; Ollengo, Moses A
2016-11-01
The photostabilizing ability of grape seed extract on three common sunscreen absorbers, 2-ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP3) and tert-butylmethoxy dibenzoylmethane (BMDBM), was investigated. Samples were exposed to simulated solar radiation and monitored by spectrophotometric and chromatographic methods. The chemical composition of the grape seed extract was determined by GC-MS and HPLC-MS, and the major secondary metabolites were found to be epicatechin and catechin. Exposure of the extract to UV radiation increased the UV absorption capacity of the extract. All sunscreens showed an improved photostability in the extract. The inherent photo-instability of BMDBM when exposed to UV radiation was almost eliminated in the presence of grape seed extract. A mixture of all three sunscreens in the extract showed very high photostability and a red shift covering the entire UVB and UVA regions, thereby improving the broad-spectrum protection. The incorporation of grape seed extract in sunscreen and other cosmetic formulations for topical application boosts photoprotection by stabilizing the UV filters and enhancing broad-spectrum coverage. This in turn helps in reducing the amounts of absorbers and other additives incorporated in a sunscreen product and consequently lowers the risk of an unprecedented buildup of photoproducts whose toxicities are currently unknown. © 2016 The American Society of Photobiology.
Jang, Gun Hyuk; Park, Chang-Beom; Kang, Benedict J; Kim, Young Jun; Lee, Kwan Hyi
2016-09-01
Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of polyphenylquinoxaline graphite composites
NASA Technical Reports Server (NTRS)
Hoggatt, J. T.; Hill, S. G.; Shdo, J. G.
1974-01-01
This exploratory program was divided into four basic tasks. The initial phase was devoted toward investigating processing variables associated with previously developed PPO resins. These polymers were derived from p-bis(phenyl glyoxalyl)benzene reacted with 3,3'-diamino benzidine and/or 3,3',4,4'-tetramino benzophenone. Four new phenyl quinoxaline polymers were synthesized and characterized in Tasks 2 and 3. These consisted of a hydroxyl group containing PPQ synthesized from 3,3'-diamino benzidine (DAB), m-bis(phenyl glyoxal)benzene and m-bis(p'-hydroxy phenyl glyoxalyl) benzene; a cyano group containing PPQ from the reaction of DAB and p-bis(p'-cyano phenoxy phenyl glyoxalyl)benzene; an end-capped block copolymer; and a polymer from the reaction of 3,3',4,4'-tetraamino benzo phenone and m-bis(phenyl glyoxalyl)benzene. The latter two polymers were chosen for composite studies in the latter two tasks of the program. Mechanical properties of the graphite reinforced PPQ composites were determined over the temperature range of +21 C to 316 C. Flexural strengths of the HMS graphite fiber composites were in excess of 8.97 X 10 to the 8th power N/sq m (130,000 psi) at +21 C (70 F) with over 50% strength retention at +316 C.
Li, Xue; Salzano, Giuseppina; Zhang, Jiwen; Gref, Ruxandra
2017-01-01
Supramolecular cyclodextrin-based nanoparticles (CD-NPs) mediated by host-guest interactions have gained increased popularity because of their "green" and simple preparation procedure, as well as their versatility in terms of inclusion of active molecules. Herein, we showed that original CD-NPs of around 100 nm are spontaneously formed in water, by mixing 2 aqueous solutions of (1) a CD polymer and (2) dextran grafted with benzophenone moieties. For the first time, CD-NPs were instantaneously produced in a microfluidic interaction chamber by mixing 2 aqueous solutions of neutral polymers, in the absence of organic solvents. Whatever the mixing conditions, CD-NPs with narrow size distributions were immediately formed upon contact of the 2 polymeric solutions. In situ size measurements showed that the CD-NPs were spontaneously formed. Nanoparticle tracking analysis was used to individually follow the CD-NPs in their Brownian motions, to gain insights on their size distribution, concentration, and stability on extreme dilution. Nanoparticle tracking analysis allowed to establish that despite their non-covalent nature, and the CD-NPs were remarkably stable in terms of concentration and size distribution, even on extreme dilution (concentrations as low as 100 ng/mL). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Buttachon, Suradet; May Zin, War War; Dethoup, Tida; Gales, Luís; Pereira, José A; Silva, Artur M S; Kijjoa, Anake
2016-06-01
Wortmin (1), meso-1,4-bis(4-methoxybenzyl)-2,3-butanediol (2), and a new isocoumarin derivative tratenopyrone (3) were isolated from the marine sponge-associated fungus Talaromyces tratensis KUFA 0091. A new diphenyl ether derivative, circinophoric acid (4), was isolated, together with the previously reported anthraquinones catenarin and physcion, the benzophenone monomethylsoluchrin, and β-ergosterol-5,8-endoperoxide, from the marine sponge-associated fungus Sporidesmium circinophorum KUFA 0043. The structures of the new compounds were established based on an extensive analysis of 1D and 2D NMR spectra, and, in the case of compounds 2-4, also by X-ray analysis. All of the isolated compounds were tested for their antibacterial activity against Gram-positive and Gram-negative bacteria, and multidrug-resistant isolates from the environment, as well as for their anti-quorum sensing based on the pigment production of Chromobacterium violaceum ATCC 31523. None of the compounds exhibited either antibacterial (MIC > 256 µg/mL) or anti-quorum sensing activities. The compounds were also inactive in the antifungal (MIC > 512 µg/mL) and cancer cell line (GI50 > 150 µM) assays. Georg Thieme Verlag KG Stuttgart · New York.
Kapelewska, Justyna; Kotowska, Urszula; Wiśniewska, Katarzyna
2016-01-01
Determination of the endocrine disrupting compounds (EDCs) in leachate and groundwater samples from the landfill sites is very important because of the proven harmful effects of these compounds on human and animal organisms. A method combining ultrasound-assisted emulsification microextraction (USAEME) and gas chromatography-mass spectrometry (GC-MS) was developed for simultaneous determination of seven personal care products (PCPs): methylparaben (MP), ethylparaben (EP), propylparaben (PP), buthylparaben (BP), benzophenone (BPh), 3-(4-methylbenzylidene)camphor (4-MBC), N,N-diethyltoluamide (DEET), and two hormones: estrone (E1) and β-estradiol (E2) in landfill leachate and groundwater samples. The limit of detection (LOD)/limit of quantification (LOQ) values in landfill leachate and groundwater samples were in the range of 0.003-0.083/0.009-0.277 μg L(-1) and 0.001-0.015/0.002-0.049 μg L(-1), respectively. Quantitative recoveries and satisfactory precision were obtained. All studied compounds were found in the landfill leachates from Polish municipal solid waste (MSW) landfills; the concentrations were between 0.66 and 202.42 μg L(-1). The concentration of pollutants in groundwater samples was generally below 0.1 μg L(-1).
Baranov, Dmitry; Hill, Robert J; Ryu, Jisu; Park, Samuel D; Huerta-Viga, Adriana; Carollo, Alexa R; Jonas, David M
2017-01-01
In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.
Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior
NASA Astrophysics Data System (ADS)
Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo
2005-04-01
Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.
Oliveira, Éder Costa; Echegoyen, Yolanda; Cruz, Sandra Andrea; Nerin, Cristina
2014-09-01
Hollow fiber liquid phase microextraction (HFLPME) and solid phase microextraction (SPME) methods for pre-concentration of contaminants (toluene, benzophenone, tetracosane and chloroform) in food simulants were investigated. For HFLPME 1-heptanol, 2-octanone and dibutyl-ether were studied as extracting solvents. Analysis by gas chromatography coupled to mass spectrometry (GC-MS), flame ionization (GC-FID) and electron capture detectors (GC-ECD) were carried out. In addition, the methods were employed to evaluate the safety in use of a PET material after the recycling process (comprising washing, extrusion and solid state polymerization (SSP)) through extractability studies of the contaminants using 10% (v/v) ethanol in deionized water and 3% (w/v) acetic acid in deionized water as food simulants in different conditions: 10 days at 40°C and 2h at 70°C. The HFLPME preconcentration method provided increased sensitivity when compared to the SPME method and allowed to analyze concentration levels below 10 µg surrogate per kg food simulant. The results of the extractability studies showed considerable reductions after the extrusion and SSP processes and indicated the compliance with regulations for using recycled PET in contact with food. Copyright © 2014 Elsevier B.V. All rights reserved.
Unsymmetrical and symmetrical azines toward application in organic photovoltaic
NASA Astrophysics Data System (ADS)
Jarczyk-Jedryka, Anna; Bijak, Katarzyna; Sek, Danuta; Siwy, Mariola; Filapek, Michal; Malecki, Grzegorz; Kula, Slawomir; Lewinska, Gabriela; Nowak, Elzbieta M.; Sanetra, Jerzy; Janeczek, Henryk; Smolarek, Karolina; Mackowski, Sebastian; Schab-Balcerzak, Ewa
2015-01-01
The unsymmetrical and symmetrical azines prepared by condensation of benzophenone hydrazone with (di)aldehydes with thiophene rings were reported in this study The structures of obtained compounds were characterized by FTIR, 1H NMR, and 13C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of azines were investigated. The unsymmetrical azine with bithiophene unit exhibited liquid crystalline properties as was detected by DSC and POM experiments. All compounds are electrochemically active, however, only azines with bithiophene structure undergo reversible reduction process as was found in cyclic and differential pulse voltammetry (CV and DPV) studies. Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). The photovoltaic properties of two azines as active layer in organic solar cells at the configuration ITO/PEDOT:PSS/active layer/Al under an illumination of 1.3 mW/cm2 were studied. Active cell layers blends of poly 3-hekxylthiophene (P3HT) or poly 3-butylthiophene (P3OT) with azines were applied. The device comprising P3HT with symmetrical azine containing bithiophene unit showed the highest value of power conversion efficiency (0.82%). To the best of our knowledge, the azines are very seldom considered as potential compounds in active layer in bulk heterojunction (BHJ) solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samanta, A.; Fessenden, R.W.
1989-07-27
The triplet state of acenaphthylene has been examined by nanosecond laser flash photolysis using sensitization and heavy atom perturbation techniques. Although acenaphthylene does not form any observable triplet upon direct flash excitation, a transient with microsecond lifetime ({lambda}{sub max} = 315 nm) is observable when a solution of the sample is excited by sensitizers (benzophenone, thioxanthone, benzil). This transient is ascribed to the triplet of acenaphthylene on the basis of its quenching behavior toward oxygen, ferrocene, azulene, and {beta}-carotene. Quantitative data concerning the triplet-triplet absorption and quenching constants are presented. The triplet energy is estimated to lie between 46 andmore » 47 kcal/mol. The triplet can also be produced by direct excitation in solvents containing heavy atoms (ethyl bromide, ethyl iodide). The triplet yield is found to increase with an increase of the amount of the heavy atom containing solvent. No saturation limit is obtained. These facts together with the effect of heavy atoms on the T{sub 1} {yields} S{sub 0} process allow the differing behavior of ethyl bromide and ethyl iodide on the photodimerization process of acenaphthylene to be explained. Triplet-state parameters (extinction coefficient and triplet yield) have been estimated in these solvents by the energy-transfer technique and actinometry.« less
Effects of electrolytes on redox potentials through ion pairing
Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas; ...
2017-09-21
Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less
Preparation of Mach-Zehnder interferometric photonic biosensors by inkjet printing technology
NASA Astrophysics Data System (ADS)
Strasser, Florian; Melnik, Eva; Muellner, Paul; Jiménez-Meneses, Pilar; Nechvile, Magdalena; Koppitsch, Guenther; Lieberzeit, Peter; Laemmerhofer, Michael; Heer, Rudolf; Hainberger, Rainer
2017-05-01
Inkjet printing is a versatile method to apply surface modification procedures in a spatially controlled, cost-effective and mass-fabrication compatible manner. Utilizing this technology, we investigate two different approaches for functionalizing label-free optical waveguide based biosensors: a) surface modification with amine-based functional polymers (biotin-modified polyethylenimine (PEI-B)) employing active ester chemistry and b) modification with dextran based hydrogel thin films employing photoactive benzophenone crosslinker moieties. Whereas the modification with PEI-B ensures high receptor density at the surface, the hydrogel films can serve both as a voluminous matrix binding matrix and as a semipermeable separation layer between the sensor surface and the sample. We use the two surface modification strategies both individually and in combination for binding studies towards the detection of the protein inflammation biomarker, C-reactive protein (CRP). For the specific detection of CRP, we compare two kinds of capture molecules, namely biotinylated antibodies and biotinylated CRP-specific DNA based aptamers. Both kinds of capture molecules were immobilized on the PEI-B by means of streptavidin-biotin affinity binding. As transducer, we use an integrated four-channel silicon nitride (Si3N4) waveguide based Mach-Zehnder interferometric (MZI) photonic sensing platform operating at a wavelength of 850nm (TM-mode).
Korchev, A S; Konovalova, T; Cammarata, V; Kispert, L; Slaten, L; Mills, G
2006-01-03
The present study is centered on the processes involved in the photochemical generation of nanometer-sized Ag particles via illumination at 350 nm of aqueous solutions and cross linked films containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol). Optical and electron paramagnetic resonance experiments, including electron nuclear double resonance data, proved conclusively that the photogenerated chromophore exhibiting a band with lambda(max) = 565 nm is an alpha-hydroxy aromatic (ketyl) radical of the polymeric ketone. This reducing species was produced by illumination of either solutions or films, but the radical lifetime extended from minutes in the fluid phase to hours in the solid. Direct evidence is presented that this long-lived chromophore reduces Ag(I), Cu(II), and Au(III) ions in solution. A rate constant of k = 1.4 x 10(3) M(-)(1) s(-)(1) was obtained for the reduction of Ag(+) by the ketyl radical from the post-irradiation formation of Ag crystallites. FTIR results confirmed that the photoprocess yielding polymeric ketyl radicals involves a reaction between the macromolecules. The photochemical oxidation of the polymeric alcohol, as well as the formation of light-absorbing macromolecular products and polyols, indicates that the sulfonated polyketone experienced transformations similar to those encountered during illumination of the benzophenone/2-propanol system.
[Effect of Environmental Factors on the Ecotoxicity of Pharmaceuticals and Personal Care Products].
Sugihara, Kazumi
2018-01-01
In recent years, pharmaceuticals and personal care products (PPCPs) have emerged as significant pollutants of aquatic environments and have been detected at levels in the range of ng/L to μg/L. The source of PPCPs is humans and livestock that have been administered pharmaceuticals and subsequently excreted them via urine and feces. Unlike agricultural chemicals, the environmental dynamics of PPCPs is not examined and they would undergo structural transformation by environmental factors, e.g., sunlight, microorganisms and treatments in sewage treatment plants (STPs). Processing at STPs can remove various PPCPs; however, they are not removed completely and some persist in the effluents. In this study, we examined the degradation of 9 pharmaceuticals (acetaminophen, amiodarone, dapsone, dexamethasone, indomethacin, raloxifene, phenytoin, naproxen, and sulindac) by sunlight or UV, and investigated the ecotoxicological variation of degradation products. Sunlight (UVA and UVB) degraded most pharmaceuticals, except acetaminophen and phenytoin. Similar results were obtained with UVB and UVA. All the pharmaceuticals were photodegraded by UVC, which is used for sterilization in STPs. Ecotoxicity assay using the luminescent bacteria test (ISO11348) indicated that UVC irradiation increased the toxicity of acetaminophen and phenytoin significantly. The photodegraded product of acetaminophen was identified as 1-(2-amino-5-hydroxyphenyl)ethanone and that of phenytoin as benzophenone, and the authentic compounds showed high toxicity. Photodegraded products of PPCPs are a concern in ecotoxicology.
Shamoto, Yuta; Yagi, Mikio; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Kikuchi, Azusa
2017-09-13
Hexyl diethylaminohydroxybenzoylbenzoate (DHHB, Uvinul A Plus) is a photostable UV-A absorber. The photophysical properties of DHHB have been studied by obtaining the transient absorption, total emission, phosphorescence and electron paramagnetic resonance spectra. DHHB exhibits an intense phosphorescence in a hydrogen-bonding solvent (e.g., ethanol) at 77 K, whereas it is weakly phosphorescent in a non-hydrogen-bonding solvent (e.g., 3-methylpentane). The triplet-triplet absorption and EPR spectra for the lowest excited triplet state of DHHB were observed in ethanol, while they were not observed in 3-methylpentane. These results are explained by the proposal that in the benzophenone derivatives possessing an intramolecular hydrogen bond, intramolecular proton transfer is an efficient mechanism of the very fast radiationless decay from the excited singlet state. The energy level of the lowest excited triplet state of DHHB is higher than those of the most widely used UV-B absorbers, octyl methoxycinnamate (OMC) and octocrylene (OCR). DHHB may act as a triplet energy donor for OMC and OCR in the mixtures of UV-A and UV-B absorbers. The bimolecular rate constant for the quenching of singlet oxygen by DHHB was determined by measuring the near-IR phosphorescence of singlet oxygen. The photophysical properties of diethylaminohydroxybenzoylbenzoic acid (DHBA) have been studied for comparison. It is a closely related building block to assist in interpreting the observed data.
Hopkins, Zachary R; Snowberger, Sebastian; Blaney, Lee
2017-09-15
UV-filters (UVFs) are active ingredients in personal care products that protect skin from exposure to UV light. Environmentally-relevant concentrations of UVFs have recently been linked to toxicity in aquatic organisms, necessitating research into improved UVF removal in water/wastewater treatment. Here, we investigated ozonation of the three most commonly employed UVFs: octinoxate (OMC), octocrylene (OC), and oxybenzone (OXY). Specific second-order rate constants for UVF reaction with ozone were identified as follows: OMC, 5.25×10 4 M -1 s -1 ; OC, 1.58M -1 s -1 ; OXY (neutral), 3.80×10 2 M -1 s -1 ; and, OXY (anion), 1.51×10 6 M -1 s -1 . These kinetic parameters indicated that OMC and OXY undergo significant (2-log or greater) transformation for typical ozone exposures in disinfection processes; however, minimal oxidation is expected for OC. UV absorbance mapping was employed to characterize the loss of UVF activity (i.e., absorbance across the UV-A, UV-B, and UV-C ranges) during ozonation. These 4-dimensional maps also confirmed ozone attack mechanisms, namely reaction at phenolate (OXY) and olefin (OMC, OC) groups. Primary transformation products from these reactions were identified for all three UVFs of concern. For OC and OXY, the benzophenone structure is conserved, suggesting that transformation products retain toxicity concerns. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of the larval amphibian growth and development ...
The Larval Amphibian Growth and Development Assay (LAGDA) is a globally harmonized chemical testing guideline developed by the U.S. Environmental Protection Agency in collaboration with Japan’s Ministry of Environment to support risk assessment. The assay is employed as a higher tiered approach to evaluate effects of chronic chemical exposure throughout multiple life stages in model amphibian species Xenopus laevis. To evaluate the utility of the initial LAGDA design, the assay was performed using a mixed mode of action endocrine disrupting chemical, benzophenone-2 (BP-2). X. laevis embryos were exposed in flow-through conditions to 0, 1.5, 3.0 or 6.0 mg/L BP-2 until two months post-metamorphosis. Overt toxicity was evident throughout the exposure period in the 6.0 mg/L treatment due to elevated mortality rates and observed liver and kidney pathologies. Concentration-dependent increases in severity of thyroid follicular cell hypertrophy and hyperplasia occurred in larval tadpoles indicating BP-2-induced impacts on the thyroid axis. Additionally, gonads were impacted in all treatments with some genotypic males showing both testis and ovary tissues (1.5 mg/L) and 100% of the genotypic males in the higher treatments (3.0 and 6.0 mg/L) experiencing complete male-to-female sex reversal. Concentration-dependent vitellogenin (Vtg) induction occurred in both genders with associated accumulations of protein in the livers, kidneys and gonads, which was likely Vtg
Simultaneous Liquid Chromatographic Determination of 10 Ultra-Violet Filters in Sunscreens.
Wharton, Mary; Geary, Michael; O'Connor, Niamh; Curtin, Laura; Ketcher, Krystal
2015-09-01
A rapid HPLC method was developed for the simultaneous determination of 10 UV filters found in sunscreen. The following UV filters were analyzed in this method; 2-phenylbenzimidazole-5-sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl dimethyl 4-aminobenzoic acid, ethylhexyl methoxycinnamate, butyl methoxydibenzoylmethane, ethylhexyl salicylate and homosalate. The method was developed on two columns; a Thermo Hypersil C18 BDS, 3 µm column (4.6 × 100 mm) and a Chromolith RP-18e Monolithic column (4.6 × 100 mm). The same mobile phase of ethanol and 1% acetic acid (70:30, v/v) was employed for both columns. The separation of the 10 UV filters was carried out successfully on both columns; the optimal resolution was obtained on the Thermo Scientific Hypersil column in a time frame of 7 min. An isocratic elution utilizing ethanol and acetic acid (70:30, v/v) at a temperature of 35°C was employed. The method was applied to a number of commercial samples of sunscreen and lotions and was validated according to International Conference on Harmonisation guidelines for selectivity, linearity, accuracy, precision and robustness. A comparison of the performances of both columns was also carried out. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ding, Yiran; Huang, Yun; Zhao, Tingting; Cai, Qian; Luo, Yu; Huang, Bin; Zhang, Yuxia; Pan, Xuejun
2014-06-01
A method for the determination of five representative organic UV filters: ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methylbenzylidene camphor (4-MBC), octocrylene (OC), homosalate (HMS) in water was investigated. The method was ased on derivatization, solid phase extraction (SPE), followed by determination with gas chromatography-mass spectrometry (GC-MS). The variables involved in the derivatization of BP-3 and HMS were optimized, and SPE conditions were studied. For derivatization, 100 microL N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) was used as derivatization reagent and reacted with BP-3 and HMS at 100 degrees C for 100 min. For SPE, the pH value of water sample was adjusted to 3-5. The Oasis HLB cartridges were employed and the solution of ethyl acetate and dichloromethane (1 : 1, v/v) was used as the eluting solvent, and good recoveries of the target compounds were obtained. The limits of detection (LODs) and the limits of quantification (LOQs) for the five target compounds in water samples were 0.5-1.2 ng/L and 1.4-4.0 ng/L, respectively. The recoveries of spiked water samples were 87.85%-102.34% with good repeatability and reproducibility (RSD < 5%, n = 3) for all the target compounds. Finally, the validated method was applied to analysis the representative UV filters in water samples collected from a wastewater treatment plant in Kunming city of Yunnan province.
Analysis of UV filters in tap water and other clean waters in Spain.
Díaz-Cruz, M Silvia; Gago-Ferrero, Pablo; Llorca, Marta; Barceló, Damià
2012-03-01
The present paper describes the development of a method for the simultaneous determination of five hormonally active UV filters namely benzophenone-3 (BP3), 3-(4-methylbenzylidene) camphor (4MBC), 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA), 2-ethylhexyl 4-methoxycinnamate (EHMC) and octocrylene (OC) by means of solid-phase extraction and gas chromatography-electron impact ionization-mass spectrometry. Under optimized conditions, this methodology achieved low method limits of detection (needed for clean waters, especially drinking water analysis), between 0.02 and 8.42 ng/L, and quantitative recovery rates higher than 73% in all cases. Inter- and intraday precision for all compounds were lower than 7% and 11%, respectively. The optimized methodology was applied to perform the first survey of UV absorbing compounds in tap water from the metropolitan area and the city of Barcelona (Catalonia, Spain). In addition, other types of clean water matrices (mineral bottled water, well water and tap water treated with an ion-exchange resin) were investigated as well. Results evidenced that all the UV filters investigated were detected in the water samples analyzed. The compounds most frequently found were EHMC and OC. Maximum concentrations reached in tap water were 290 (BP3), 35 (4MBC), 110 (OD-PABA), 260 (EHMC), and 170 ng/L (OC). This study constitutes the first evidence of the presence of UV filter residues in tap water in Europe.
Denardi-Souza, Taiana; Luz, Carlos; Mañes, Jordi; Badiale-Furlong, Eliana; Meca, Giuseppe
2018-03-30
In this study the antifungal potential of a phenolic extract obtained from rice bran fermented with Rhizopus oryzae CECT 7560 and its application in the elaboration of bread was assessed. Eighteen compounds with antifungal potential were identified by LC-ESI-qTOF-MS in the extract: organic acids, gallates and gallotannins, flavonoids, ellagic acid and benzophenone derivatives. The extract was active against strains of Fusarium, Aspergillus and Penicillium, with minimum inhibitory concentration ranging from 390 to 3100 µg mL -1 and minimum fungicidal concentration variable from 780 to 6300 µg mL -1 . The strains that were most sensitive to the phenolic extract were F. graminearum, F. culmorum, F. poae, P. roqueforti, P. expansum and A. niger. The phenolic extract added at 5 and 1 g kg -1 concentrations in the preparation of bread loaves contaminated with P. expansum produced a reduction of 0.6 and 0.7 log CFU g -1 . The bread loaves treated with calcium propionate and 10 g kg -1 of the phenolic extract evidenced an improvement in their shelf lives of 3 days. The phenolic extract assessed in this study could be considered as an alternative for inhibiting toxigenic fungi and as a substitute for synthetic compounds in food preservation. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A
2014-01-01
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.
Development of a thyroperoxidase inhibition assay for high ...
High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluorescent peroxidase substrate, Amplex UltraRed (AUR, LifeTechnologies), were employed in an endpoint assay for comparison to the existing kinetic guaiacol (GUA) oxidation assay. Following optimization of assay metrics including Z’, dynamic range, and activity using methimazole (MMI), the assay was tested with a 21-chemical training set. The potency of MMI-induced TPO inhibition was greater with AUR compared to GUA. The dynamic range and Z’ score with MMI were as follows: 127-fold and 0.62 for the GUA assay, 18-fold and 0.86 for the 96-well AUR assay, and 11.5-fold and 0.93 for the 384-well AUR assay. The 384-well AUR assay drastically reduced animal use, requiring one-tenth of the rat thyroid microsomal protein needed for the GUA 96-well format assay. Fourteen chemicals inhibited TPO, with a relative potency ranking of MMI > ethylene thiourea > 6-propylthiouracil > 2,2’,4,4’-tetrahydroxy-benzophenone > 2-mercaptobenzothiazole > 3-amino-1,2,4-triazole > genistein > 4-propoxyphenol > sulfamethazine > daidzein > 4-nonylphenol > triclosan > iopanoic acid > resorcinol. These data demonstrate the capacity of this assay to detect diverse TPO inhibitors. Seven chemicals acted as negati
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turro, N.J.; Khudyakov, I.V.; Bossmann, S.H.
1993-02-11
Time-resolved electron spin resonance (TR ESR) has been used to investigate the chemically induced dynamic electron polarization (CIDEP) generated by the interaction of stable free radicals with the triplet states of benzophenone, benzil, and 2-acetylnaphthalene. The stable radicals were mono-, di-, tri-, and tetranitroxyl free radicals possessing the 2,2,6,6-tetramethylpiperidine-N-oxyl moiety. All of the stable radical systems investigated were found to be emissively polarized by interaction with the triplet states, and the phase of polarization was independent of the sign of zero-field splitting (D) of the interacting triple molecule. Possible and likely mechanisms of polarization transfer (creation) resulting from the interactionmore » of photoexcited triplet molecules with nitroxyls in the strong electron exchange are discussed. The emissive CIDEP of nitroxyls observed in the interactions with triplet benzil, which has D > 0, provides strong support for the operation of the radical-triplet pair mechanism. Within the time scale of TR ESR experiments ([approximately]10[sup [minus]7]--10[sup [minus]6] s) no significant variation in the shape of the CIDEP spectra of the nitroxyls was observed, either in viscous media or in micelles. It is concluded that intramolecular spin exchange (or conformational change) of polynitroyls occurs much faster than the time resolution of the experiment. 24 refs., 6 figs., 1 tab.« less
2013-01-01
Background Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity. Methods The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells. Results Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results. Conclusion These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer. PMID:23902919
Franklin, Gregory; Conceição, Luis F R; Kombrink, Erich; Dias, Alberto C P
2009-01-01
Xanthone production in Hypericum perforatum (HP) suspension cultures in response to elicitation by Agrobacterium tumefaciens co-cultivation has been studied. RNA blot analyses of HP cells co-cultivated with A. tumefaciens have shown a rapid up-regulation of genes encoding important enzymes of the general phenylpropanoid pathway (PAL, phenylalanine ammonia lyase and 4CL, 4-coumarate:CoA ligase) and xanthone biosynthesis (BPS, benzophenone synthase). Analyses of HPLC chromatograms of methanolic extracts of control and elicited cells (HP cells that were co-cultivated for 24h with A. tumefaciens) have revealed a 12-fold increase in total xanthone concentration and also the emergence of many xanthones after elicitation. Methanolic extract of elicited cells exhibited significantly higher antioxidant and antimicrobial competence than the equivalent extract of control HP cells indicating that these properties have been significantly increased in HP cells after elicitation. Four major de novo synthesized xanthones have been identified as 1,3,6,7-tetrahydroxy-8-prenyl xanthone, 1,3,6,7-tetrahydroxy-2-prenyl xanthone, 1,3,7-trihydroxy-6-methoxy-8-prenyl xanthone and paxanthone. Antioxidant and antimicrobial characterization of these de novo xanthones have revealed that xanthones play dual function in plant cells during biotic stress: (1) as antioxidants to protect the cells from oxidative damage and (2) as phytoalexins to impair the pathogen growth.
Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain
van der Meer, Thomas P.; Artacho-Cordón, Francisco; Swaab, Dick F.; Struik, Dicky; Makris, Konstantinos C.; Wolffenbuttel, Bruce H. R.; Frederiksen, Hanne; van Vliet-Ostaptchouk, Jana V.
2017-01-01
Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain regions: the hypothalamus and white-matter tissue. In addition, a potential association between these npEDCs concentrations and obesity was investigated. Post-mortem brain material was obtained from 24 individuals, made up of 12 obese and 12 normal-weight subjects (defined as body mass index (BMI) > 30 and BMI < 25 kg/m2, respectively). Nine phenols and seven parabens were measured by isotope dilution TurboFlow-LC-MS/MS. In the hypothalamus, seven suspect npEDCs (bisphenol A, triclosan, triclocarban and methyl-, ethyl-, n-propyl-, and benzyl paraben) were detected, while five npEDCs (bisphenol A, benzophenone-3, triclocarban, methyl-, and n-propyl paraben) were found in the white-matter brain tissue. We observed higher levels of methylparaben (MeP) in the hypothalamic tissue of obese subjects as compared to controls (p = 0.008). Our findings indicate that some suspected npEDCs are able to cross the blood–brain barrier. Whether the presence of npEDCs can adversely affect brain function and to which extent the detected concentrations are physiologically relevant needs to be further investigated. PMID:28902174
Ionic liquid based multifunctional double network gel
NASA Astrophysics Data System (ADS)
Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu
2015-04-01
Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.
Stockton, Amanda M; Tjin, Caroline Chandra; Huang, Grace L; Benhabib, Merwan; Chiesl, Thomas N; Mathies, Richard A
2010-11-01
A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼ 15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5-6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schmitt, M.
2015-05-01
The migration and transport of polymerization initiators are problematic for commercially used polymerization procedures. For example, UV printing of packaging generates products with potentially harmful components that come in contact with food. Enlarging the size of the initiator is the only way to prevent contamination, e.g., by gas phase transport. In this manuscript, the synthesis and advanced and full analyses of novel nanoparticle-based types of non-migration, fragmenting and non-fragmenting photo-initiators will be presented in detail. This study introduces non-fragmenting/``Norrish type II'' and fragmenting/``Norrish type I'' ZnO nanoparticle-based initiators and compares them with two commercial products, a ``Norrish type I'' initiator and a ``Norrish type II'' initiator. Therefore, inter alia, the recently developed analysis involves examining the solidification by UV-vis and the double bond content by Raman. Irradiation is performed using absolute and spectrally calibrated xenon flash lights. A novel procedure for absolute and spectral calibration of such light sources is also presented. The non-optimized ``Norrish type II'' particle-based initiator is already many times faster than benzophenone, which is a molecular initiator of the same non-fragmenting type. This experimentally observed difference in reactive particle-based systems without co-initiators is unexpected. Co-initiators are normally an additional molecular species, which leads to migration problems. The discovery of significant initiation potential resulting in a very well-dispersed organic-inorganic hybrid material suggests a new field of research opportunities at the interface of physical chemistry, polymer chemistry and engineering science, with enormous value for human health.The migration and transport of polymerization initiators are problematic for commercially used polymerization procedures. For example, UV printing of packaging generates products with potentially harmful components that come in contact with food. Enlarging the size of the initiator is the only way to prevent contamination, e.g., by gas phase transport. In this manuscript, the synthesis and advanced and full analyses of novel nanoparticle-based types of non-migration, fragmenting and non-fragmenting photo-initiators will be presented in detail. This study introduces non-fragmenting/``Norrish type II'' and fragmenting/``Norrish type I'' ZnO nanoparticle-based initiators and compares them with two commercial products, a ``Norrish type I'' initiator and a ``Norrish type II'' initiator. Therefore, inter alia, the recently developed analysis involves examining the solidification by UV-vis and the double bond content by Raman. Irradiation is performed using absolute and spectrally calibrated xenon flash lights. A novel procedure for absolute and spectral calibration of such light sources is also presented. The non-optimized ``Norrish type II'' particle-based initiator is already many times faster than benzophenone, which is a molecular initiator of the same non-fragmenting type. This experimentally observed difference in reactive particle-based systems without co-initiators is unexpected. Co-initiators are normally an additional molecular species, which leads to migration problems. The discovery of significant initiation potential resulting in a very well-dispersed organic-inorganic hybrid material suggests a new field of research opportunities at the interface of physical chemistry, polymer chemistry and engineering science, with enormous value for human health. Electronic supplementary information (ESI) available: Multiple additional figures and images concerning the synthesis, characterization, data evaluation, TEMs and ESR spectra are available free of charge. See DOI: 10.1039/c5nr00850f
[Determination of photoinitiators in printing inks used in food contact materials].
Han, Wei; Yu, Yanjun; Li, Ningtao; Wang, Libing
2011-05-01
A new analytical method based on gas chromatography-mass spectrometry (GC-MS) techniques was developed for the determination of five photoinitiators (PIs), benzophenone (BP), 4-methylbenzophenone (MBP), ethyl-4-dimethylaminobenzoate (EDAB), 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB) and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), in the printing inks used in food contact materials. The test solutions were extracted from selected food contact materials using Soxhlet extractor with ethyl acetate as the extraction solvent. By adding 50 and 200 microg/L of a standard mixture of photoinitiators into the extracts of the blank packaging materials, the recoveries obtained were in the range of 66.7%-89.4%. The repeatability of the method was assessed by determining the contents of the photoinitiators in five types of food contact materials, and the results were lower than 10%. The instrumental detection limits (IDLs) and method quantification limits (MQLs) were in the range of 2.9-6.0 microg/L and 0.0017-0.0036 mg/dm2, respectively. The method was applied in the analysis of about twenty real samples (yogurt carton, milk carton, fruit juice carton and plastic bags samples). The most significant pollutants were BP and MBP. The concentrations of Irgacure 184, EDAB and EHDAB found in three individual samples were 0.84 mg/dm2, 0.2 mg/dm2 and 1.2 mg/dm2, respectively. The work proposed a new method to analyze the migration level of initiators from the inks.
Lin, Tien-Sung; Rajagopalan, Raghavan; Shen, Yuefei; Park, Sungho; Poreddy, Amruta R; Asmelash, Bethel; Karwa, Amolkumar S; Taylor, John-Stephen A
2013-07-03
Detailed analyses of the electron spin resonance (ESR) spectra, cell viability, and DNA degradation studies are presented for the photolyzed Type I phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates. The ESR studies provided evidence that copious free radicals can be generated from these N-H, N-S, and S-O containing compounds upon photoirradiation with UV/visible light. The analyses of spectral data allowed us to identify the free radical species. The cell viability studies showed that these agents after exposure to light exert cytotoxicity to kill cancer cells (U937 leukemia cell lines HTC11, KB, and HT29 cell lines) in a dosage- and time-dependent manner. We examined a possible pathway of cell death via DNA degradation by a plasmid cleavage assay for several compounds. The effects of photosensitization with benzophenone in the presence of oxygen were examined. The studies indicate that planar tricyclic amines and sulfenamides tend to form π-electron delocalized aminyl radicals, whereas nonplanar ones tend to yield nitroxide radicals resulting from the recombination of aminyl radicals with oxygen. The ESR studies coupled with the results of cell viability measurements and DNA degradation reveal that planar N-centered radicals can provide higher potency in cell death and allow us to provide some insights on the reaction mechanisms. We also found the formation of azatropylium cations possessing high aromaticity derived from azepines can facilitate secondary electron transfer to form toxic O2(•-) radicals, which can further exert oxidative stress and cause cell death.
Suzuki, Tadashi; Shinoda, Mio; Osanai, Yohei; Isozaki, Tasuku
2013-08-22
Photoreaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen, KP) with basic amino acids (histidine, lysine, and arginine) and dipeptides (carnosine and anserine) including a histidine moiety in phosphate buffer solution (pH 7.4) has been investigated with transient absorption spectroscopy. With UV irradiation KP(-) gave rise to a carbanion through a decarboxylation reaction, and the carbanion easily abstracted a proton from the surrounding molecule to yield a 3-ethylbenzophenone ketyl biradical (EBPH). The dipeptides as well as the basic amino acids were found to accelerate the proton transfer reaction whereas alanine and glycine had no effect on the reaction, revealing that these amino acids having a protonated side chain act as a proton donor. The formation quantum yield of EBPH was estimated to be fairly large by means of an actinometrical method with benzophenone, and the bimolecular reaction rate constant for the proton transfer between the carbanion and the protonated basic amino acids or the protonated dipeptides was successfully determined. It has become apparent that the bimolecular reaction rate constant for the proton transfer depended on the acid dissociation constant for the side chain of the amino acids for the first time. This reaction mechanism was interpreted by difference of the heat of reaction for each basic amino acid based on the thermodynamical consideration. These results strongly suggest that the side chain of the basic amino acid residue in protein should play an important role for photochemistry of KP in vivo.
Nuñez-Figueredo, Y; García-Pupo, L; Ramírez-Sánchez, J; Alcántara-Isaac, Y; Cuesta-Rubio, O; Hernández, R D; Naal, Z; Curti, C; Pardo-Andreu, G L
2012-12-01
Reactive oxygen species (ROS) are important mediators in a number of neurodegenerative diseases and molecules capable of scavenging ROS may be a feasible strategy for protecting neuronal cells. We previously demonstrated a powerful iron-chelating action of Guttiferone-A (GA), a naturally occurring polyphenol, on oxidative stress injuries initiated by iron overload. Here we addressed the neuroprotective potential of GA in hydrogen peroxide and glutamate-induced injury on rat's primary culture of cortical neurons and PC12 cells, respectively, and antioxidant properties concerning scavenging and anti-lipoperoxidative activities in cell-free models. The decrease in cell viability induced by each of the toxins, assessed by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay, was significantly attenuated by GA. In addition, GA was found to be a potent antioxidant, as shown by (i) inhibition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical reduction (EC50=20.0 μM), (ii) prevention against chemically or electrochemically generated superoxide radicals, (iii) inhibition of spontaneous brain lipid peroxidation and (iv) interference with the Fenton reaction. These results indicate that GA exerts neuroprotective effects against H2O2 or glutamate toxicity and its antioxidant activity, demonstrated in vitro, could be at least partly involved. They also suggest a promising potential for GA as a therapeutic agent against neurodegenerative diseases involving ROS and oxidative damage. © Georg Thieme Verlag KG Stuttgart · New York.
Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta
2016-04-01
The stability and photochemical transformations of cosmetic preservatives in topical applications exposed to UV-light is a serious but poorly understood problem. In this study, a high throughput extraction and selective method based on pressurized liquid extraction (PLE) coupled to gas chromatography-mass spectrometry (GC-MS) was validated and applied to investigate the photochemical transformation of the antioxidant butylated hydroxytoluene (BHT), as well as the antimicrobials triclosan (TCS) and phenyl benzoate (PhBz) in an artificial skin model. Two sets of photodegradation experiments were performed: (i) UV-Irradiation (8W, 254nm) of artificial skin directly spiked with the target preservatives, and (ii) UV-irradiation of artificial skin after the application of a cosmetic cream fortified with the target compounds. After irradiation, PLE was used to isolate the target preservatives and their transformation products. The follow-up of the photodegradation kinetics of the parent preservatives, the identification of the arising by-products, and the monitorization of their kinetic profiles was performed by GC-MS. The photochemical transformation of triclosan into 2,8-dichloro-dibenzo-p-dioxin (2,8-DCDD) and other dioxin-like photoproducts has been confirmed in this work. Furthermore, seven BHT photoproducts, and three benzophenones as PhBz by-products, have been also identified. These findings reveal the first evidences of cosmetic ingredients phototransformation into unwanted photoproducts on an artificial skin model. Copyright © 2016 Elsevier B.V. All rights reserved.
Ecotoxicity of two organic UV-filters to the freshwater caddisfly Sericostoma vittatum.
Campos, Diana; Gravato, Carlos; Fedorova, Ganna; Burkina, Viktoriia; Soares, Amadeu M V M; Pestana, João L T
2017-09-01
Organic ultraviolet filters (UV-filters) used for protection against radiation in personal care products and other materials (e.g. textiles, plastic products) are considered emerging contaminants of aquatic ecosystem. Benzophenone-3 (BP3) and 3-(4-methylbenzylidene)camphor (4-MBC) are the most commonly used organic UV-filters and have been reported in freshwater environments due to contamination through discharges from wastewater treatment plants and swimming pools or by direct contamination from recreational activities. Our aim was to evaluate the ecotoxicological effects of these UV-filters using the freshwater caddisfly Sericostoma vittatum' biochemical biomarkers and energy processing related endpoints (feeding behaviour, energy reserves and cellular metabolism). In laboratory trials, both compounds induced feeding inhibition of S. vittatum at 3.55 mg/kg of BP3 and at concentrations ≥2.57 mg/kg of 4-MBC, decreased carbohydrates content at 3.55 and 6.95 mg/kg of BP3 and 4-MBC respectively, and increased total glutathione levels at concentrations ≥1.45 and 1.35 mg/kg of BP3 and 4-MBC respectively. No significant effects were observed on endpoints associated with oxidative stress, antioxidant defences, phase II biotransformation or neurotoxicity after exposure to the two UV-filters. Our results show that environmental relevant concentrations of BP3 and 4-MBC, can negatively impact freshwater insects and demonstrate the importance of monitoring the ecological effects of organic UV-filters using non-model invertebrate species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toxicity of organic UV-filters to the aquatic midge Chironomus riparius.
Campos, Diana; Gravato, Carlos; Quintaneiro, Carla; Golovko, Oksana; Žlábek, Vladimír; Soares, Amadeu M V M; Pestana, João L T
2017-09-01
Despite the frequent detection of organic ultraviolet-filters (UV-filters) in freshwater sediments, there is a lack of ecotoxicological data undermining a correct risk assessment for these emerging contaminants. The present study assessed the effects of three of the most commonly used UV-filters (benzophenone-3 - BP3; 3-(4-methylbenzylidene)camphor - 4-MBC and octocrylene - OC) on Chironomus riparius life history and biochemical responses. Standard ecotoxicological assays confirmed that all compounds impaired growth of C. riparius larvae and induced developmental effects such as delayed emergence and a reduction of imagoes weight. Concerning the biochemical responses analysed no evidences of oxidative damage in lipids or neurotoxicity (tested assessing acetylcholinesterase activity) were observed for any of the tested compounds. However, 4-MBC exposure induced a decrease in catalase activity and an increase in glutathione-S-transferase activity at 14.13mg/Kg while OC exposure caused an increase in total glutathione levels at 0.23 and 18.23mg/Kg. Exposure to all UV-filters tested, increased energy consumption on C. riparius with significant differences above 1.00mg/Kg for BP3, 0.09mg/Kg for 4-MBC and 2.13mg/Kg for OC. These results suggest that environmental relevant concentrations of UV-filters can cause deleterious effects to aquatic benthic species, such as C. riparius, and call for further research concerning effects of organic UV-filters on natural invertebrate communities and ecosystem functioning. Copyright © 2017 Elsevier Inc. All rights reserved.
Kumar, Ashutosh; Khan, Musharib; Fang, Liping; Lo, Irene M C
2017-07-24
TiO 2 -based photocatalysis offers certain advantages like rapid degradation and mineralization of organic compounds. However, the practical applicability of photocatalysts in degradation of pharmaceuticals and personal care products (PPCPs) is still restricted by challenges including their limited photocatalytic activity under visible light and difficulty in their separation from suspension. To overcome these challenges, a visible-light-driven magnetic N-TiO 2 @SiO 2 @Fe 3 O 4 nanophotocatalyst was developed through fine-tuning the pertinent factors (calcination temperature, Fe 3 O 4 loading, and nitrogen doping) involved during synthesis process, on the basis of degradation of ibuprofen (a typical PPCP). The TEM-EDX, XRD and XPS analyses confirmed the successful synthesis of nanophotocatalyst. By comparing nanophotocatalyst's performance on ibuprofen under two visible light sources, i.e., compact fluorescent lamps (CFLs) and light emitting diodes (LEDs) of similar irradiance, CFLs of irradiance 320μWcm -2 and peak emissive wavelength 543nm served as a better source, resulting in 94% degradation. Furthermore, 93% of benzophenone-3 within 5h and 71% of carbamazepine within 9h was degraded under visible light emitted by CFLs. The superparamagnetic behavior of the nanophotocatalyst enabled its successful magnetic separation (95% efficiency) from the suspension within 20-25min under an electromagnetic field of ∼200mT. Copyright © 2017 Elsevier B.V. All rights reserved.
Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko
2015-01-01
KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300.
de Beer, Dalene; Schulze, Alexandra E; Joubert, Elizabeth; de Villiers, André; Malherbe, Christiaan J; Stander, Maria A
2012-12-07
Cyclopia subternata plants are traditionally used for the production of the South African herbal tea, honeybush, and recently as aqueous extracts for the food industry. A C. subternata aqueous extract and mangiferin (a major constituent) are known to have anti-diabetic properties. Variation in phenolic composition and antioxidant capacity is expected due to cultivation largely from seedlings, having implications for extract standardization and quality control. Aqueous extracts from 64 seedlings of the same age, cultivated under the same environmental conditions, were analyzed for individual compound content, total polyphenol (TP) content and total antioxidant capacity (TAC) in a number of assays. An HPLC method was developed and validated to allow quantification of xanthones (mangiferin, isomangiferin), flavanones (hesperidin, eriocitrin), a flavone (scolymoside), a benzophenone (iriflophenone-3-C-β-glucoside) and dihydrochalcones (phloretin-3',5'-di-C-β-glucoside, 3-hydroxyphloretin-3',5'-di-C-hexoside). Additional compounds were tentatively identified using mass spectrometric detection, with the presence of the 3-hydroxyphloretin-glycoside, an iriflophenone-di-O,C-hexoside, an eriodictyol-di-C-hexoside and vicenin-2 being demonstrated for the first time. Variability of the individual phenolic compound contents was generally higher than that of the TP content and TAC values. Among the phenolic compounds, scolymoside, hesperidin and iriflophenone-3-C-β-glucoside contents were the most variable. A combination of the measured parameters could be useful in product standardization by providing a basis for specifying minimum levels.
Sieratowicz, Agnes; Kaiser, Dominic; Behr, Maximilian; Oetken, Matthias; Oehlmann, Jörg
2011-01-01
As a consequence of growing public concern about UV radiation effects on human health chemical and physical UV filters are increasingly used in personal care and other products. The release of these lipophilic and often persistent compounds into surface waters may pose a risk for aquatic organisms. The aim of the study was to determine effects of four frequently used UV filters on primary aquatic producers and consumers, the green alga Desmodesmus subspicatus and the crustacean Daphnia magna. Exposure to benzophenone 3 (BP3), ethylhexyl methoxycinnamate (EHMC), 3-benzylidene camphor (3-BC) and 3-(4'-methylbenzylidene)-camphor (4-MBC) resulted in growth inhibition of D. subspicatus with 72 h IC(10) values of 0.56 mg/L (BP 3), 0.24 mg/L (EHMC), 0.27 mg/L (3-BC) and 0.21 mg/L (4-MBC). EC(50) concentrations in the acute test with D. magna were 1.67, 0.57, 3.61 and 0.80 mg/L for BP3, EHMC, 3-BC and 4-MBC, respectively. Chronic exposure of D. magna resulted in NOECs of 0.04 mg/L (EHMC) and 0.1 mg/L (3-BC and 4-MBC). BP 3 showed no effects on neonate production or the length of adults. Rapid dissipation of these substances from the water phase was observed indicating the need for more frequent test medium renewal in chronic tests or the use of flow-through test systems.
Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo
2017-11-01
In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Feifan; Alesand, Veronica; Nygren, Per-Åke
2018-02-27
Protein fragment complementation assays (PCA) rely on a proximity-driven reconstitution of a split reporter protein activity, typically via interaction between bait and prey units separately fused to the reporter protein halves. The PCA principle can also be formatted for use in immunossays for analyte detection, e.g., via the use of small immunoglobulin binding proteins (IgBp) as fusion partners to split-reporter protein fragments for conversion of pairs of antibodies into split-protein half-probes. However, the non-covalent binding between IgBp and antibodies is not ideal for development of robust assays. Here, the authors describe how split-enzyme reporter halves can be both site-specifically and covalently photoconjugated at antibody Fc-parts for use in homogeneous dual-antibody in vitro immunoassays based on analyte-dependent split-enzyme fragment complementation. The half-probes consist of parts of a beta-lactamase split-protein reporter fused to an immunoglobulin Fc binding domain equipped with a unique cysteine residue at which a photoactivable maleimide benzophenone group (MBP) is attached. Using such antibody conjugates the authors obtain an analyte-driven complementation of the reporter enzyme fragments monitored via conversion of a chromogenic substrate. Results from detection of human interferon-gamma and the extracellular domain of HER2 is shown. The described principles for site-specific conjugation of proteins to antibodies should be broadly applicable. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aparicio, Irene; Martín, Julia; Abril, Concepción; Santos, Juan Luis; Alonso, Esteban
2018-01-19
A multiresidue method has been developed for the determination of emerging pollutants in leafy and root vegetables. Selected compounds were 6 perfluoroalkyl compounds (5 perfluorocarboxylic acids and perfluorooctanesulfonic acid), 3 non-ionic surfactants (nonylphenol and nonylphenolethoxylates), 8 anionic surfactants (4 alkylsulfates and 4 linear alkylbenzene sulfonates), 4 preservatives (parabens), 2 biocides (triclosan and triclocarban), 2 plasticizers (bisphenol A and di-(2-ethylhexyl)phthalate), 6 UV-filters (benzophenones) and 4 hormones. The method is based on ultrasound-assisted extraction, clean-up by dispersive solid-phase extraction (d-SPE) and liquid chromatography-tandem mass spectrometry analysis. Due to the diversity of the physico-chemical properties of the target compounds, and to better evaluate the influence of sample treatment variables in extraction efficiencies, Box-Behnken design was applied to optimize extraction solvent volume, number of extraction cycles and d-SPE sorbent amount. Linearity (R 2 ) higher than 0.992, accuracy (expressed as relative recoveries) in the range from 81 to 126%, precision (expressed as relative standard deviation) lower than 19% and limits of detection between 0.025 and 12.5ngg -1 dry weight were achieved. The method was applied to leafy vegetables (lettuce, spinach and chard) and root vegetables (carrot, turnip and potato) from a local market. The highest concentrations corresponded to the surfactants reaching levels up to 114ngg -1 (dry weight), in one of the lettuce samples analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Shengliu; Yue, Kai; Liu, Lianying; Yang, Wantai
2013-01-01
When dispersion polymerization of styrene (St) had run for 3h, after particle rapidly growing stage, 4,4'-dimethacryloyloxybenzophenone (DMABP) cross-linker was added to reaction system and photoreactive, core(PSt)-shell(Poly(St-co-DMABP)) particles with rich benzophenone (BP) groups on surface were prepared. Polymerization of DMABP could occurred mainly on the preformed core of PSt because its diffusion could be impeded by (1) compactness of particles formed at the moment of cross-linker addition (more than 80% of monomer had been consumed, particles were no longer fully swollen by monomer), (2) reduced polarity of continuous phase, and (3) immediate occurrence of cross-linking. Subsequently, photoreactive, cross-linked hollow particles were yielded by removal of uncross-linked core in THF. SEM and TEM observation demonstrated the formation of core-shell structure and improvement of shell thickness when DMABP content increased. UV-vis spectra analysis on polymer dissolved in THF indicated that there is no polymer of DMABP in core. FTIR spectra analysis and XPS measurement further revealed that BP component on particle surface was enriched when amount of DMABP increased. Finally, an anti-fouling polymer (poly (ethylene glycol), PEG) and protein of mouse IgG was immobilized on particle surface under UV irradiation, as confirmed by FTIR spectra analysis, SEM observation and TMB color reaction. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Bent CNN bond of diazo compounds, RR'(Cdbnd N+dbnd N-)
NASA Astrophysics Data System (ADS)
Akita, Motoko; Takahashi, Mai; Kobayashi, Keiji; Hayashi, Naoto; Tukada, Hideyuki
2013-02-01
The reaction of ninhydrin with benzophenone hydrazone afforded 2-diazo-3-diphenylmethylenehydrazono-1-indanone 1 and 2-diazo-1,3-bis(diphenylmethylenehydrazono)indan 2. X-ray crystal structure analyses of these products showed that the diazo functional group Cdbnd N+dbnd N- of 1 is bent by 172.9°, while that of 2 has a linear geometry. The crystal structure data of diazo compounds have been retrieved from the Cambridge Structural Database (CSD), which hit 177 entries to indicate that the angle of 172.9° in 1 lies in one of the most bent structures. The CSD search also indicated that diazo compounds consisting of a distorted diazo carbon tend to bend the Cdbnd N+dbnd N- bond. On the basis of DFT calculations (B3LYP/6-311++G(d,p)) of model compounds, it was revealed that the bending of the CNN bond is principally induced by steric factors and that the neighboring carbonyl group also plays a role in bending toward the carbonyl side owing to an electrostatic attractive interaction. The potential surface along the path of Cdbnd N+dbnd N- bending in 2-diazopropane shows a significantly shallow profile with only 4 kcal/mol needed to bend the Cdbnd N+dbnd N- bond from 180° to 160°. Thus, the bending of the diazo group in 1 is reasonable as it is provided with all of the factors for facile bending disclosed in this investigation.
Hernández, F; Portolés, T; Ibáñez, M; Bustos-López, M C; Díaz, R; Botero-Coy, A M; Fuentes, C L; Peñuela, G
2012-11-15
The irrigate district of Usosaldaña, an important agricultural area in Colombia mainly devoted to rice crop production, is subjected to an intensive use of pesticides. Monitoring these compounds is necessary to know the impact of phytosanitary products in the different environmental compartments. In this work, surface water and soil samples from different sites of this area have been analyzed by applying an analytical methodology for large screening based on the use of time-of-flight mass spectrometry (TOF MS) hyphenated to liquid chromatography (LC) and gas chromatography (GC). Several pesticides were detected and unequivocally identified, such as the herbicides atrazine, diuron or clomazone. Some of their main metabolites and/or transformation products (TPs) like deethylatrazine (DEA), deisopropylatrazine (DIA) and 3,4-dichloroaniline were also identified in the samples. Among fungicides, carbendazim, azoxystrobin, propiconazole and epoxiconazole were the most frequently detected. Insecticides such as thiacloprid, or p,p'-DDT metabolites (p,p'-DDD and p,p'-DDE) were also found. Thanks to the accurate-mass full-spectrum acquisition in TOF MS it was feasible to widen the number of compounds to be investigated to other families of contaminants. This allowed the detection of emerging contaminants, such as the antioxidant 3,5-di-tertbutyl-4-hydroxy-toluene (BHT), its metabolite 3,5-di-tert-butyl-4-hydroxy-benzaldehyde (BHT-CHO), or the solar filter benzophenone, among others. Copyright © 2012 Elsevier B.V. All rights reserved.
Guo, Yang; Song, Zilong; Xu, Bingbing; Li, Yanning; Qi, Fei; Croue, Jean-Philippe; Yuan, Donghai
2018-02-15
A novel catalytic ceramic membrane (CM) for improving ozonation and filtration performance was fabricated by surface coating CuMn 2 O 4 particles on a tubular CM. The degradation of ultraviolet (UV) absorbers, reduction of toxicity, elimination of membrane fouling and catalytic mechanism were investigated. The characterization results suggested the particles were well-fixed on membrane surface. The modified membrane showed improved benzophenone-3 removal performance (from 28% to 34%), detoxification (EC 50 as 12.77%) and the stability of catalytic activity. In the degradation performance of model UV absorbers, the developed membrane significantly decreased the UV254 and DOC values in effluent. Compared with a virgin CM, this CM ozonation increased water flux as 29.9% by in-situ degrade effluent organic matters. The CuMn 2 O 4 modified membrane enhanced the ozone self-decompose to generate O 2 - and initiated the chain reaction of ozone decomposition, and subsequently reacted with molecule ozone to produce OH. Additionally, CM was able to promote the interaction between ozone and catalyst/organic chemicals to form H 2 O 2 that promoted the formation of OH. This catalytic ceramic membrane combining with ozonation showed potential applications in emerging pollutant degradation and membrane fouling elimination, and acted as a novel ternary technology for wastewater treatment and water reuse. Copyright © 2017 Elsevier B.V. All rights reserved.
Lakade, Sameer S; Borrull, Francesc; Furton, Kenneth G; Kabir, Abuzar; Marcé, Rosa Maria; Fontanals, Núria
2018-05-01
A novel sample preparation technique named capsule phase microextraction (CPME) is presented here. The technique utilizes a miniaturized microextraction capsule (MEC) as the extraction medium. The MEC consists of two conjoined porous tubular polypropylene membranes, one of which encapsulates the sorbent through sol-gel technology, while the other encapsulates a magnetic metal rod. As such, MEC integrates both the extraction and stirring mechanisms into a single device. The aim of this article is to demonstrate the application potential of CPME as sample preparation technique for the extraction of a group of personal care products (PCPs) from water matrices. Among the different sol-gel sorbent materials (UCON ® , poly(caprolactone-dimethylsiloxane-caprolactone) (PCAP-DMS-CAP) and Carbowax 20M (CW-20M)) evaluated, CW-20M MEC demonstrated the best extraction performance for the selected PCPs. The extraction conditions for sol-gel CW-20M MEC were optimized, including sample pH, stirring speed, addition of salt, extraction time, sample volume, liquid desorption solvent, and time. Under the optimal conditions, sol-gel CW-20M MEC provided recoveries, ranging between 47 and 90% for all analytes, except for ethylparaben, which showed a recovery of 26%. The method based on CPME with sol-gel CW-20M followed by liquid chromatography-tandem mass spectrometry was developed and validated for the extraction of PCPs from river water and effluent wastewater samples. When analyzing different environmental samples, some analytes such as 2,4-dihydroxybenzophenone, 2,2-dihydroxy-4-4 methoxybenzophenone and 3-benzophenone were found at low ng L -1 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, M.; Forbush, B. III
(Na + K + Cl) cotransport is the major mechanism of salt transport across the apical membrane of the epithelial cells of the thick ascending limb of Henle's loop of mammalian kidney and the site of action of loop diuretics such as furosemide and bumetanide. We have identified a 150-kDa protein in membranes from dog kidney cortex that is photolabeled by a radiolabeled, benzophenone analogue of bumetanide, (/sup 3/H)4-benzoyl-5-sulfamoyl-3-(3-thenyloxy)benzoic acid ((/sup 3/H)BSTBA). Several pieces of evidence strongly suggest that this 150-kDa protein is at least part of the (Na + K + Cl) cotransport system. 1) Photoincorporation of (/sup 3/H)BSTBAmore » into this protein is completely blocked by inclusion of 10 microM unlabeled bumetanide in the photolysis medium. 2) Photoincorporation of (/sup 3/H)BSTBA into this protein shows a saturable dependence on (/sup 3/H)BSTBA concentration, with a K 1/2 (approximately 0.1 microM) very similar to that for reversible (/sup 3/H)BSTBA binding to kidney membranes. 3) Photolabeling of this protein by (/sup 3/H)BSTBA requires the simultaneous presence of Na, K, and Cl in the photolysis medium. 4) When crude membranes from dog kidney cortex are centrifuged on sucrose density gradients, saturable (/sup 3/H)bumetanide binding and photoincorporation of (/sup 3/H)BSTBA in the 150-kDa region show a very similar distribution among the 15 gradient fractions collected. (/sup 3/H)BSTBA is also photoincorporated into at least two lower molecular mass proteins, the largest of which is approximately 50 kDa.« less
Chen, Feiran; Huber, Christian; Schröder, Peter
2017-09-01
Oxybenzone (OBZ), a common ingredient in sunscreens and personal care products, has been frequently detected in effluents from municipal wastewater treatment plants and also in surface waters. OBZ is an emerging contaminant due to its adverse impacts on marine/aquatic ecosystems. To investigate the removal and degradation capacity of phytotreatment for OBZ, the common wetland plant species Cyperus alternifolius L. was exposed to this compound at 5, 25 and 50 μM for 120 h, respectively. Continuous uptake by roots and accumulation in plant tissues was observed over the exposure time, and depletion of spiked OBZ from the aqueous medium exceeded 73.9 ± 9.1% after 120 h. Similar to its fate in mammalian cells, OBZ is activated in a phase I reaction resulting in the hydroxylated metabolite 2,4-dihydroxybenzophenone (DHB). Independently, two phase II metabolites were identified as oxybenzone-glucoside (OBZ-Glu) and oxybenzone-(6-O-malonyl)-glucoside (OBZ-Mal-Glu) by LC-MS/MS. Formation of these metabolites increased over the experimental period. To our knowledge this is the first time that DHB, OBZ-Glu and OBZ-Mal-Glu are shown to be formed in higher plant tissues. Furthermore, plant defense systems-antioxidative enzymes (SOD, CAT, APOX and POX) were found to be elevated to counteract stress caused by exposure to OBZ. This study presents the huge potential of aquatic plants to cope with benzophenone type UV filters in contaminated water bodies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of Substrate-Selective Probes for Affinity Pulldown of Histone Demethylases
2015-01-01
JmjC-domain containing histone demethylases (JHDMs) play critical roles in many key cellular processes and have been implicated in multiple disease conditions. Each enzyme within this family is known to have a strict substrate scope, specifically the position of the lysine within the histone and its degree of methylation. While much progress has been made in determining the substrates of each enzyme, new methods with which to systematically profile each histone mark are greatly needed. Novel chemical tools have the potential to fill this role and, furthermore, can be used as probes to answer fundamental questions about these enzymes and serve as potential therapeutic leads. In this work, we first investigated three small-molecule probes differing in the degree of “methylation state” and their differential bindings to JHDM1A (an H3K36me1/2 demethylase) using a fluorescence polarization-based competition assay. We then applied this specificity toward the “methylation state” and combined it with specificity toward lysine position in the design and synthesis of a peptidic probe targeting H3K36me2 JHDMs. The probe is further functionalized with a benzophenone cross-linking moiety and a biotin for affinity purification. Results showed binding of the peptidic probe to JHDM1A and specific enrichment of this protein in the presence of its native histone substrates. Affinity purification pulldown experiments from nuclear lysate coupled with mass spectrometry revealed the capability of the probe to pull out and enrich JHDMs along with other epigenetic proteins and transcriptional regulators. PMID:25335116
Hypericum grandifolium Choisy: a species native to Macaronesian Region with antidepressant effect.
Sánchez-Mateo, C C; Bonkanka, C X; Rabanal, R M
2009-01-21
Various species of Hypericum genus have been used in the Canary Islands as sedative, diuretic, vermifuge, wound healing, antihysteric and antidepressant agent. Studies have shown that methanol extract of Hypericum grandifolium Choisy is active in tetrabenazine-induced ptosis and forced swimming tests. In the current study, the aqueous, butanol and chloroform fractions obtained from the methanol extract as well as three sub-fractions derived from the chloroform fraction were evaluated for their central nervous effects in mice, particularly their antidepressant activity. The central nervous effect of different fractions and sub-fractions of Hypericum grandifolium was evaluated in mice using various behavioural models including locomotor and muscle relaxant activity, forced swimming test, effect on normal body temperature, barbiturate-induced sleep, tetrabenazine-induced syndrome and 5-hydroxytryptohan-induced head twitches and syndrome. We found that the butanol and chloroform fractions and all sub-fractions showed an antidepressant effect in the forced swimming test, the chloroform fraction being the most active. They produced no effects or only a slight depression of locomotor activity. Chloroform fraction significantly increased the pentobarbital-induced sleeping time, produced a slight but significant hypothermia and antagonized tetrabenazine-induced ptosis, whereas the butanol fraction produced a slight potentiation of 5-HTP-induced head twitches and syndrome. The present results, together with previous pharmacological and phytochemical data, indicated that Hypericum grandifolium possess antidepressant-like effects in mice and that different constituents, such as the flavonoids and the benzophenone derivatives, could be responsible at least in part for the antidepressant effects observed for this species.
Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2016-11-01
The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically. A model assessment is here provided of lake-water photoreactivity in field conditions, based on experimental data of lake water absorption spectra, chemistry and photochemistry obtained previously, taking into account the water depth and the irradiation conditions of the Antarctic summer. The chosen sample contaminants were the solar filter benzophenone-3 and the antimicrobial agent triclosan, which have very well known photoreactivity and have been found in a variety of environmental matrices in the Antarctic continent. The two compounds would have a half-life time of just a few days or less in the lake water during the Antarctic summertime, largely due to reaction with CDOM triplet states ((3)CDOM*). In general, pollutants that occur in the ice and could be released to lake water upon ice melting (around or soon after the December solstice) would be quickly photodegraded if they undergo fast reaction with (3)CDOM*. With some compounds, the important (3)CDOM* reactions might favour the production of harmful secondary pollutants, such as 2,8-dichlorodibenzodioxin from the basic (anionic) form of triclosan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rodríguez-Gómez, R; Zafra-Gómez, A; Camino-Sánchez, F J; Ballesteros, O; Navalón, A
2014-07-04
In the present work, two specific, accurate and sensitive methods for the determination of endocrine disrupting chemicals (EDCs) in human breast milk are developed and validated. Bisphenol A and its main chlorinated derivatives, five benzophenone-UV filters and four parabens were selected as target analytes. The method involves a stir-bar sorptive extraction (SBSE) procedure followed by a solvent desorption prior to GC-MS/MS or UHPLC-MS/MS analysis. A derivatization step is also necessary when GC analysis is performed. The GC column used was a capillary HP-5MS with a run time of 26min. For UHPLC analysis, the stationary phase was a non-polar Acquity UPLC(®) BEH C18 column and the run time was 10min. In both cases, the analytes were detected and quantified using a triple quadrupole mass spectrometer (QqQ). Quality parameters such as linearity, accuracy (trueness and precision), sensitivity and selectivity were examined and yielded good results. The limits of quantification (LOQs) ranged from 0.3 to 5.0ngmL(-1) for GC and from 0.2 to 1.0ngmL(-1) for LC. The relative standard deviation (RSD) was lower than 15% and the recoveries ranged from 92 to 114% in all cases, being slightly unfavorable the results obtained with LC. The methods were satisfactorily applied for the determination of target compounds in human milk samples from 10 randomly selected women. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Xiaojiao; Chen, Minjian; Xu, Bo; Tang, Rong; Han, Xiumei; Qin, Yufeng; Xu, Bin; Hang, Bo; Mao, Zhilei; Huo, Weiwei; Xia, Yankai; Xu, Zhengfeng; Wang, Xinru
2013-09-01
Widespread use of phenols has led to ubiquitous exposure to phenols. In experimental animals, phenols increased resorptions, reduced live litter size and fetal body weights. However, there are limited epidemiological evidences of the relationships between exposure to phenols and pregnancy outcomes. We evaluated the associations between parental urinary levels of various phenols and spontaneous abortion in a Chinese population residing in the middle and lower reaches of the Yangtze River. A case-control study was conducted that included 70 case couples with medically unexplained spontaneous abortion and 180 control couples who did not have a history of spontaneous abortion and had at least one living child. Both parental urinary phenols were measured by ultra-high performance liquid chromatography-tandem mass spectrometry including bisphenol A (BPA), benzophenone-3 (BP-3), 2,3,4-trichlorophenol (2,3,4-TCP), pentachlorophenol (PCP), 4-n-octylphenol (4-n-OP) and 4-n-nonylphenol (4-n-NP). Compared with the low exposure group, there was an increased risk of spontaneous abortion with high paternal urinary PCP concentration [odds ratio (OR)=2.09, 95% Confidence Interval (CI), 1.05-4.14], and maternal exposure to 4-n-OP and alkylphenol(s) also significantly increased the risk of spontaneous abortion (OR=2.21, 95% CI, 1.02-4.80; OR=2.81, 95% CI, 1.39-5.65, respectively). Our study firstly provides the evidence that paternal PCP exposure, maternal 4-n-OP and alkylphenol(s) exposure are associated with spontaneous abortion in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hojerová, Jarmila; Peráčková, Zuzana; Beránková, Martina
2017-05-01
Sunscreens are intended to work on the skin. To be both efficient and safe, the lowest possible percutaneous permeation of UV filters should occur. The potential for systemic absorption of Benzophenone-3 (BP3, 10%) and Ethylhexyl Triazone (EHT, 5%) in a silicone-based water-in-oil emulsion was assessed in vitro using a full-thickness porcine-ear skin mimicking in-use conditions. The estimated Systemic Exposure Dose (SED) after the sunscreen application at 1.0 mg/cm 2 for 6 h (i) on the face; (ii) on the whole-body skin, was (i) 136 and 30; (ii) 4200 and 933 μg/kg_bw/d for BP3 and EHT, respectively. Reapplication does not mean the double risk; the SED values were only 1.40-1.37-fold greater. Skin shaving increased BP3 and EHT bioavailability 1.38 and 1.80-fold, respectively. Margin of Safety values were estimated according to guidelines applicable for European Union. For three realistic exposure scenarios, MoS of 48, 34 and 34 for BP3 in the sunscreen applied on the whole-body indicate some concerns regarding the safety for consumers (MoS<100). Despite undeniable functional benefits in sunscreens, BP3 concentration allowed in EU cosmetics (max. 10%) should be reviewed, especially in products intended for whole-body applications. The development of new UV filters should be focused on their specific physico-chemical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
The occurrence of UV filters in natural and drinking water in São Paulo State (Brazil).
da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues
2015-12-01
Ultraviolet (UV) filters are widely used in the formulation of personal care products (PCPs) to prevent damage to the skin, lips, and hair caused by excessive UV radiation. Therefore, large amounts of these substances are released daily into the aquatic environment through either recreational activities or the release of domestic sewage. The concern regarding the presence of such substances in the environment and the exposure of aquatic organisms is based on their potential for bioaccumulation and their potential as endocrine disruptors. Although there are several reports regarding the occurrence and fate of UV filters in the aquatic environment, these compounds are still overlooked in tropical areas. In this study, we investigated the occurrence of the organic UV filters benzophenone-3 (BP-3), ethylhexyl salicylate (ES), ethylhexyl methoxycinnamate (EHMC), and octocrylene (OC) in six water treatment plants in various cities in Southeast Brazil over a period of 6 months to 1 year. All of the UV filters studied were detected at some time during the sampling period; however, only EHMC and BP-3 were found in quantifiable concentrations, ranging from 55 to 101 and 18 to 115 ng L(-1), respectively. Seasonal variation of BP-3 was most clearly noticed in the water treatment plant in Araraquara, São Paulo, where sampling was performed for 12 months. BP-3 was not quantifiable in winter but was quantifiable in summer. The levels of BP-3 were in the same range in raw, treated and chlorinated water, indicating that the compound was not removed by the water treatment process.
Non-porous membrane-assisted liquid-liquid extraction of UV filter compounds from water samples.
Rodil, Rosario; Schrader, Steffi; Moeder, Monika
2009-06-12
A method for the determination of nine UV filter compounds [benzophenone-3 (BP-3), isoamyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene (OC), butyl methoxydibenzoylmethane, ethylhexyl dimethyl p-aminobenzoate (OD-PABA), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate and homosalate] in water samples was developed and evaluated. The procedure includes non-porous membrane-assisted liquid-liquid extraction (MALLE) and LC-atmospheric pressure photoionization (APPI)-MS/MS. Membrane bags made of different polymeric materials were examined to enable a fast and simple extraction of the target analytes. Among the polymeric materials tested, low- and high-density polyethylene membranes proved to be well suited to adsorb the analytes from water samples. Finally, 2 cm length tailor-made membrane bags were prepared from low-density polyethylene in order to accommodate 100 microL of propanol. The fully optimised protocol provides recoveries from 76% to 101% and limits of detection (LOD) between 0.4 ng L(-1) (OD-PABA) and 16 ng L(-1) (EHMC). The interday repeatability of the whole protocol was below 18%. The effective separation of matrix molecules was proved by only marginal matrix influence during the APPI-MS analysis since no ion suppression effects were observed. During the extraction step, the influence of the matrix was only significant when non-treated wastewater was analysed. The analysis of lake water indicated the presence of seven UV filter compounds included in this study at concentrations between 40 ng L(-1) (BP-3) and 4381 ng L(-1) (OC). In non-treated wastewater several UV filters were also detected at concentration levels as high as 5322 ng L(-1) (OC).
Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo
2017-12-15
A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.
Klimová, Z; Hojerová, J; Beránková, M
2015-09-01
Due to health concerns about safety, three UV-filters (Benzophenone-3, BP3, 10%; Ethylhexyl Methoxycinnamate, EHMC, 10%; Butyl Methoxydibenzoylmethane, BMDBM; 5%) were examined in vitro for absorption on full-thickness pig-ear skin, mimicking human in-use conditions. Kinetic profiles confirmed the rapid permeation of BP3; after the first hour of skin (frozen-stored) exposure to 2 mg/cm(2) (W/O sunscreen; recommended but unrealistic amount), about 0.5% of the applied dose passed into the receptor fluid. The absorption rate of filters was higher from W/O than from O/W emulsions. The fresh/frozen-stored skin permeability coefficient (0.83-0.54) for each UV filter was taken into account. Systemic Exposure Dosage of BP3, EHMC, BMDBM for humans as a consequence of (i) whole-body and (ii) face treatment with 0.5 mg/cm(2) of W/O sunscreen for 6-h skin exposure followed by washing and subsequent 18-h permeation (a realistic scenario) were estimated to be (i) 4744, 1032 and 1036 μg/kg-bw/day, and (ii) 153, 33 and 34 μg/kg-bw/day, respectively. From Margin of Safety for BP3, EHMC and BMDBM (i) 42, 485 and 192 as well as (ii) 1307; 15,151 and 5882, respectively, only the value of 42 (<100) for BP3 indicated a possible health risk. Escalation of a phobia towards all organic UV filters is undesirable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schmitt, M
2015-06-07
The migration and transport of polymerization initiators are problematic for commercially used polymerization procedures. For example, UV printing of packaging generates products with potentially harmful components that come in contact with food. Enlarging the size of the initiator is the only way to prevent contamination, e.g., by gas phase transport. In this manuscript, the synthesis and advanced and full analyses of novel nanoparticle-based types of non-migration, fragmenting and non-fragmenting photo-initiators will be presented in detail. This study introduces non-fragmenting/"Norrish type II" and fragmenting/"Norrish type I" ZnO nanoparticle-based initiators and compares them with two commercial products, a "Norrish type I" initiator and a "Norrish type II" initiator. Therefore, inter alia, the recently developed analysis involves examining the solidification by UV-vis and the double bond content by Raman. Irradiation is performed using absolute and spectrally calibrated xenon flash lights. A novel procedure for absolute and spectral calibration of such light sources is also presented. The non-optimized "Norrish type II" particle-based initiator is already many times faster than benzophenone, which is a molecular initiator of the same non-fragmenting type. This experimentally observed difference in reactive particle-based systems without co-initiators is unexpected. Co-initiators are normally an additional molecular species, which leads to migration problems. The discovery of significant initiation potential resulting in a very well-dispersed organic-inorganic hybrid material suggests a new field of research opportunities at the interface of physical chemistry, polymer chemistry and engineering science, with enormous value for human health.
Wang, Huazi; Hu, Lu; Liu, Xinya; Yin, Shujun; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang
2017-09-22
In the present study, a simple and rapid sample preparation method designated ultrasound-assisted dispersive liquid-liquid microextraction based on a deep eutectic solvent (DES) followed by high-performance liquid chromatography with ultraviolet (UV) detection (HPLC-UVD) was developed for the extraction and determination of UV filters from water samples. The model analytes were 2,4-dihydroxybenzophenone (BP-1), benzophenone (BP) and 2-hydroxy-4-methoxybenzophenone (BP-3). The hydrophobic DES was prepared by mixing trioctylmethylammonium chloride (TAC) and decanoic acid (DecA). Various influencing factors (selection of the extractant, amount of DES, ultrasound duration, salt addition, sample volume, sample pH, centrifuge rate and duration) on UV filter recovery were systematically investigated. Under optimal conditions, the proposed method provided good recoveries in the range of 90.2-103.5% and relative standard deviations (inter-day and intra-day precision, n=5) below 5.9%. The enrichment factors for the analytes ranged from 67 to 76. The limits of detection varied from 0.15 to 0.30ngmL -1 , depending on the analytes. The linearities were between 0.5 and 500ngmL -1 for BP-1 and BP and between 1 and 500ngmL -1 for BP-3, with coefficients of determination greater than 0.99. Finally, the proposed method was applied to the determination of UV filters in swimming pool and river water samples, and acceptable relative recoveries ranging from 82.1 to 106.5% were obtained. Copyright © 2017. Published by Elsevier B.V.
Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain).
Rodil, Rosario; Quintana, José Benito; Concha-Graña, Estefanía; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío
2012-03-01
A monitoring programme was carried out on wastewater, surface and drinking water on the NW area of Spain during the four seasons of a year period (November 2007-September 2008). This study covered a series of emerging pollutants of different classes, including pharmaceuticals, neutral and acidic organophosphorus flame retardant/plasticizers (OPs), triclosan, phenoxy-herbicides, insect repellents and UV filters. From the total set of 53 compounds, 19 were found in raw wastewater with median concentrations higher than 0.1 μg L(-1). Among them, salicylic acid, ibuprofen and the UV filter benzophenone-4 (BP-4) were the most concentrated, exceeding the 1 μg L(-1) median value. Subsequently, 11 of these contaminants are not efficiently enough removed in the small WWTPs tested and their median concentrations in effluents still surpassed the 0.1 μg L(-1), so that they can spread through surface water. These chemicals are the pharmaceuticals naproxen, diclofenac and atenolol; the OPs tri(2-chloroethyl) phosphate (TCEP), tri(chloropropyl) phosphate (TCPP), tri-n-butyl phosphate (TnBP), diphenyl phosphate (DPhP) and diethylhexyl phosphate (DEHP); and the sulphonate UV filters BP-4 and 2-phenylbenzimidazole-5-sulphonic acid (PBSA). These OPs were then the dominant emerging pollutants occurring in surface and drinking water, where they are detected in the 20-200 ng L(-1) range. Pharmaceuticals and UV filters are typically below the 10 ng L(-1) level. Finally, herbicides were only detected in the last sampling campaign under the 100 ng L(-1) drinking water European Union limit. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dey, Tanusri; Praveena, Koduru Sri Shanthi; Pal, Sarbani; Mukherjee, Alok Kumar
2017-06-01
Three oxime ether derivatives, (E)-3-methoxy-4-(prop-2-ynyloxy)-benzaldehyde-O-prop-2-ynyl-oxime (C14H13NO3) (2), benzophenone-O-prop-2-ynyl-oxime (C16H13NO) (3) and (E)-2-chloro-6-methylquinoline-3-carbaldehyde-O-prop-2-ynyl-oxime (C14H11ClN2O) (4), have been synthesized and their crystal structures have been determined. The DFT optimized molecular geometries in 2-4 agree closely with those obtained from the crystallographic study. An interplay of intermolecular Csbnd H⋯O, Csbnd H⋯N, Csbnd H⋯Cl and Csbnd H···π(arene) hydrogen bonds and π···π interactions assembles molecules into a 2D columnar architecture in 2, a 1D molecular ribbon in 3 and a 3D framework in 4. Hirshfeld surface analysis showed that the structures of 2 and 3 are mainly characterized by H⋯H, H⋯C and H⋯O contacts but some contribution of H⋯N and H⋯Cl contacts is also observed in 4. Hydrogen-bond based interactions in 2-4 have been complemented by calculating molecular electrostatic potential (MEP) surfaces. The electronic structures of molecules reveal that the estimated band gap in 3, in which both aldehyde hydrogen atoms of formaldehyde-O-prop-2-ynyl-oxime (1) have been substituted by two benzene rings, is higher than that of 2 and 4 with only one aldehyde hydrogen atom replaced.
Zhao, D; Gao, J; Wang, Y; Jiang, J; Li, R
2012-08-01
Tessaratoma papillosa (Drury) (Hemiptera: Tessaratomidae) is a serious insect pest of litchi and longan in South China. When disturbed, this insect could release large quantities of disagreeable odorous volatiles from its scent gland. Knowledge on the scent gland and its secretion is crucial for developing the semiochemical methods to manage this pest. Morphology and ultrastructure of the metathoracic scent glands (MTGs) were studied under stereo and scanning electron microscopy, and the volatile compounds of MTGs from both male and female T. papillosa were analyzed with coupled gas chromatography-mass spectrometry (GC-MS). The MTG complex is located between the metathorax and the first abdominal segment at the ventral surface of the insect, which has a well-developed single double valve cystic-shaped orange median reservoir, paired colorless lateral glands in both sides, and a long and wavy tubular accessory gland that inlays tightly into the ventral edge around the median reservoir. The MTG opens to the body surface through paired ostioles located between the meso- and metacoxae of the evaporatorium with mushroom bodies. The GC-MS analyses showed that female and male adults have nine major volatile components in common. Tridecane is the most abundant in both females and males, reaching up to 47.1% and 51.8% of relative amount, respectively. The minor component is benzophenone with only 0.28% and 0.14%. Furthermore, undecane, tetradecane, 3-methyl-tridecane, and cyclopentadecane were found only in males. The possible function of volatile compounds of MTG contents in T. papillosa is addressed.
Sridharan, Makuteswaran; Prasad, K J Rajendra; Madhumitha, G; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan
2016-09-01
A conventional approach has been used to synthesis Indole fused acridine, 4a-e. In this paper to achieve the target molecule, 4 the reaction was performed via two steps. In step 1, there was a reaction between Carbazolone, 1 and benzophenone, 2 to get dihydroindoloacridine, 3. In step 2, compound, 3 was treated with 5% Palladium/Carbon in the presence of diphenyl ether for 5h to give a dark brown product, 4. The column chromatography was used to purify final product, 4. All the synthesized compounds such as 3 and 4 were characterized by melting point, FTIR, (1)H NMR, and Mass spectra. Further to check the purity of the compounds it was subjected to CHN analyzer. The target molecules such as 3 and 4 were screened for antimicrobial studies against bacteria such as Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Salmonella typhi (S. typhi); and fungi like Aspergillus niger (A. niger), Aspergillus fumigatus (A. fumigatus). The obtained results clearly proves that the target molecules shown reasonable activity against K. pneumonia and A. niger. Further the compounds were screened for free radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH). The free radical scavenging property was performed using UV-Visible spectroscopy. The results were compared with the standard BHT (Butylated Hydroxy Toluene). Compounds, 4a and 4e were shown higher percentage of inhibition when compare to the standard. The result confirms that further research on indoloacridine will leads effective drug to the market. Copyright © 2016 Elsevier B.V. All rights reserved.
Archana, G; Dhodapkar, Rita; Kumar, Anupama
2017-08-10
This paper reports the seasonal variation and environmental quality control data for five fingerprint pharmaceuticals and personal care products (PPCPs) (acetaminophen ciprofloxacin, caffeine, irgasan and benzophenone) in the influent and the effluent of the sewage treatment plant (STP) and surface water bodies (six major lakes) in and around Nagpur, one of the "A class city" in the central India over a period of 1 year. The target compounds were analysed using developed offline solid-phase extraction (SPE) coupled with reversed phase high-performance liquid chromatography (RP-HPLC-PDA) method. All the five PPCPs were found in the influent, whereas four were found in the effluent of the STP. However, in the surface water bodies, three PPCPs were detected in all the seasons. Above PPCPs were present in the concentration range of 1-174 μg L -1 in the surface water bodies, 12-373 μg L -1 in the influent and 11-233 μg L -1 in the effluent of the STP. Amongst the five PPCPs, caffeine was found to be in higher concentration as compared to others. The seasonal trends indicate higher concentrations of PPCPs in summer season and lowest in the rainy season. Additionally, physico-chemical characterisations (inorganic and organic parameters) of the collected samples were performed to access the anthropogenic pollution. Ecotoxicological risk assessment was done to appraise the degree of toxicity of the targeted compounds. Hazard quotient (HQ) values were found to be < 1 indicating no adverse effect on the targeted organism.
Photochemical generation of antimicrobial Ag-nanoparticles in intraocular lenses
NASA Astrophysics Data System (ADS)
Badur, Thorben; Kim, Hee-Cheol; Hampp, Norbert
2017-02-01
The antimicrobial properties of silver (Ag) nanoparticles (NP) have been investigated in depth during the last decades.[1] For cataract treatment minimal invasive surgery has become state-of-the-art. The physicians are still fighting against postoperative inflammations, such as endophthalmitis.[2] We present a novel approach to reduce these postoperative complications by equipping the hydrophilic intraocular lenses (IOL) with a Ag NP depot. As the Ag NP are completely entrapped inside the polymeric IOL no direct contact of the nanoparticles with epithelial cells may occur. Using 1-hydroxybenzotriazole (HOBt) or 7-hydroxycumarine (7HOCum) as photo reduction mediators (PRM) the formation of the Ag NP is accomplished in situ. PRM and Ag nitrate are diffused into the ready made IOL. By means of two-photon-absorption (TPA) photochemistry at λTPA = 532 nm the Ag NP generation is precisely controlled to occur inside the IOL only. At no point NP are directly exposed to the surface.[3] Interesting dependencies between the used PRM and the resulting particle size distribution or the effectiveness of the silver ion reduction inside the polymer matrix are reported. The Ag NP were prepared in the outer area of the IOL not to affect the optical properties of the ophthalmic implant. The amount of Ag ions released was determined and found to be sufficient to effectively reduce the counts of airborne germs. Besides HOBt and 7HOCum we also investigated the photo reductive properties of several other organic reagents, such as benzophenone (BP) and 4-hydroxybenzophenone (4HOBP) for the ability to produce even three-dimensional nanoparticle structures inside a polymer matrix.
Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection.
Xiao, Ming; Wei, Dongbin; Yin, Junxia; Wei, Guohua; Du, Yuguo
2013-10-15
The UV-filter BP-4 (2-hydroxy-4-methoxybenzophenone-5-sulfonic acid) has been frequently observed in the environment, showing high potentials to invade drinking water, swimming water, or wastewater reclamation treatment systems. With the help of high performance liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy, 10 new products from free chlorine-promoted BP-4 disinfection have been disclosed and their possible transformation routes have been investigated. The first route is chlorine substitution of BP-4 and its transformation products, forming mono-, di-, and tri-chlorinated BP-4 analogs. The second is Baeyer-Villiger-Type oxidation, converting diphenyl ketone to phenyl ester derivatives. The third is ester hydrolysis, generating corresponding phenolic and benzoic products. The fourth is decarboxylation, replacing the carboxyl group by chloride in the benzoic-type intermediate. The fifth is desulfonation, degrading the sulfonic group through an alternative chlorine substitution on the benzene ring. Orthogonal experiments have been established to investigate the species transformed from BP-4 at different pH values and free available chlorine (FAC) dosages. The reaction pathways are strongly dependent on pH conditions, while an excessive amount of FAC eliminates BP-4 to the smaller molecules. The initial transformation of BP-4 in chlorination system follows pseudo-first-order kinetics, and its half-lives ranged from 7.48 s to 1.26 × 10(2) s. More importantly, we have observed that the FAC-treated BP-4 aqueous solution might increase the genotoxic potentials due to the generation of chlorinated disinfection by-products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tay, Pei Yin; Tan, Chin Ping; Abas, Faridah; Yim, Hip Seng; Ho, Chun Wai
2014-08-14
The effects of ethanol concentration (0%-100%, v/v), solid-to-solvent ratio (1:10-1:60, w/v) and extraction time (30-180 min) on the extraction of polyphenols from agarwood (Aquilaria crassna) were examined. Total phenolic content (TPC), total flavonoid content (TFC) and total flavanol (TF) assays and HPLC-DAD were used for the determination and quantification of polyphenols, flavanol gallates (epigallocatechin gallate--EGCG and epicatechin gallate--ECG) and a benzophenone (iriflophenone 3-C-β-glucoside) from the crude polyphenol extract (CPE) of A. crassna. 2,2'-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was used to evaluate the antioxidant capacity of the CPE. Experimental results concluded that ethanol concentration and solid-to-solvent ratio had significant effects (p<0.05) on the yields of polyphenol and antioxidant capacity. Extraction time had an insignificant influence on the recovery of EGCG, ECG and iriflophenone 3-C-β-glucoside, as well as radical scavenging capacity from the CPE. The extraction parameters that exhibited maximum yields were 40% (v/v) ethanol, 1:60 (w/v) for 30 min where the TPC, TFC, TF, DPPH, EGCG, ECG and iriflophenone 3-C-β-glucoside levels achieved were 183.5 mg GAE/g DW, 249.0 mg QE/g DW, 4.9 mg CE/g DW, 93.7%, 29.1 mg EGCG/g DW, 44.3 mg ECG/g DW and 39.9 mg iriflophenone 3-C-β-glucoside/g DW respectively. The IC50 of the CPE was 24.6 mg/L.
NASA Astrophysics Data System (ADS)
Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.
2016-07-01
We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral attenuation.We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral attenuation. Electronic supplementary information (ESI) available: GPC chromatograms, additional transmission electron micrographs, digital photographs, visible absorption spectra and laser diffraction data, further optical and fluorescence micrographs. See DOI: 10.1039/c6nr03856e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Molina, Jose-Manuel; INSERM, U896, Montpellier, F-34298; Universite Montpellier1, Montpellier, F-34298
Benzophenone (BP) derivatives, BP1 (2,4-dihydroxybenzophenone), BP2 (2,2',4,4'-tetrahydroxybenzophenone), BP3 (2-hydroxy-4-methoxybenzophenone), and THB (2,4,4'-trihydroxybenzophenone) are UV-absorbing chemicals widely used in pharmaceutical, cosmetics, and industrial applications, such as topical sunscreens in lotions and hair sprays to protect skin and hair from UV irradiation. Studies on their endocrine disrupting properties have mostly focused on their interaction with human estrogen receptor alpha (hER{alpha}), and there has been no comprehensive analysis of their potency in a system allowing comparison between hER{alpha} and hER{beta} activities. The objective of this study was to provide a comprehensive ER activation profile of BP derivatives using ER from human and fishmore » origin in a battery of in vitro tests, i.e., competitive binding, reporter gene based assays, vitellogenin (Vtg) induction in isolated rainbow trout hepatocytes, and proliferation based assays. The ability to induce human androgen receptor (hAR)-mediated reporter gene expression was also examined. All BP derivatives tested except BP3 were full hER{alpha} and hER{beta} agonists (BP2 > THB > BP1) and displayed a stronger activation of hER{beta} compared with hER{alpha}, the opposite effect to that of estradiol (E{sub 2}). Unlike E{sub 2}, BPs were more active in rainbow trout ER{alpha} (rtER{alpha}) than in hER{alpha} assay. All four BP derivatives showed anti-androgenic activity (THB > BP2 > BP1 > BP3). Overall, the observed anti-androgenic potencies of BP derivatives, together with their proposed greater effect on ER{beta} versus ER{alpha} activation, support further investigation of their role as endocrine disrupters in humans and wildlife.« less
Petersen, Karina; Heiaas, Harald Hasle; Tollefsen, Knut Erik
2014-05-01
Organisms in the environment are exposed to a number of pollutants from different compound groups. In addition to the classic pollutants like the polychlorinated biphenyls, polyaromatic hydrocarbons (PAHs), alkylphenols, biocides, etc. other compound groups of concern are constantly emerging. Pharmaceuticals and personal care products (PPCPs) can be expected to co-occur with other organic contaminants like biocides, PAHs and alkylphenols in areas affected by wastewater, industrial effluents and intensive recreational activity. In this study, representatives from these four different compound groups were tested individually and in mixtures in a growth inhibition assay with the marine algae Skeletonema pseudocostatum (formerly Skeletonema costatum) to determine whether the combined effects could be predicted by models for additive effects; the concentration addition (CA) and independent action (IA) prediction model. The eleven tested compounds reduced the growth of S. pseudocostatum in the microplate test in a concentration-dependent manner. The order of toxicity of these chemicals were irgarol>fluoxetine>diuron>benzo(a)pyrene>thioguanine>triclosan>propranolol>benzophenone 3>cetrimonium bromide>4-tert-octylphenol>endosulfan. Several binary mixtures and a mixture of eight compounds from the four different compound groups were tested. All tested mixtures were additive as model deviation ratios, the deviation between experimental and predicted effect concentrations, were within a factor of 2 from one or both prediction models (e.g. CA and IA). Interestingly, a concentration dependent shift from IA to CA, potentially due to activation of similar toxicity pathways at higher concentrations, was observed for the mixture of eight compounds. The combined effects of the multi-compound mixture were clearly additive and it should therefore be expected that PPCPs, biocides, PAHs and alkylphenols will collectively contribute to the risk in areas contaminated by such complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
G Archana; Dhodapkar, Rita; Kumar, Anupama
2016-09-01
The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.
Hao, Fang; Jia, Li-Hua; Li, Xiao-Wan; Zhang, Ying-Rui; Liu, Xue-Wu
2016-01-01
Background Epilepsy is the most predominant neurological disorder characterized by recurrent seizures. Despite treatment with antiepileptic drugs, epilepsy still is a challenge to treat, due to the associated adverse effects of the drugs. Previous investigations have shown critical roles of BDNF-TrkB signalling and expression of glutamic acid decarboxylase 65 (GAD65) and GABAA in the brain during epilepsy. Thus, drugs that could modulate BDNF-TrkB signal and expression of GAD65 and GABAA could aid in therapy. Recent experimental data have focussed on plant-derived compounds in treatments. Garcinol (camboginol), is a polyisoprenylated benzophenone derived from the fruit of Garcinia indica. We investigated the effects of garcinol in pentylenetetrazole (PTZ)-induced epileptic models. Material/Methods Seizure scores were measured in epilepsy kindled mice. Neuronal degeneration and apoptosis were assessed by Nissl staining, TUNEL assay, and Fluoro-Jade B staining. Immunohistochemistry was performed to evaluate cleaved caspase-3 expressions. Expression of BDNF, TrkB, GABAA, GAD65, Bad, Bcl-2, Bcl-xL, and Bax were determined by western blots. Results Significantly reduced seizure scores and mortality rates were observed with pretreatment with garcinol. Elevated expression of apoptotic proteins and caspase-3 in kindled mice were effectively downregulated by garcinol. Epileptogenic mice presented increased BDNF and TrkB with considerably decreased GABAA and GAD65 expression. Garcinol significantly enhanced GABAA and GAD65 while it suppressed BDNF and TrkB. Garcinol enhanced the performance of mice in Morris water maze tests. Conclusions Garcinol exerts neuroprotective effects via supressing apoptosis and modulating BDNF-TrkB signalling and GAD65/GABAA expressions and also enhanced cognition and memory of the mice. PMID:27855137
Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States
Masoner, Jason R.; Kolpin, Dana W.; Furlong, Edward T.; Cozzarelli, Isabelle M.; Gray, James L.; Schwab, Eric A.
2014-01-01
To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L−1 to mg L−1. Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7020000 ng L−1), BPA (6380000 ng L−1), and phenol (1550000 ng L−1), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.
Exposure to Bisphenol A and Other Phenols in Neonatal Intensive Care Unit Premature Infants
Calafat, Antonia M.; Weuve, Jennifer; Ye, Xiaoyun; Jia, Lily T.; Hu, Howard; Ringer, Steven; Huttner, Ken; Hauser, Russ
2009-01-01
Objective We previously demonstrated that exposure to polyvinyl chloride plastic medical devices containing di(2-ethylhexyl) phthalate (DEHP) was associated with higher urinary concentrations of several DEHP metabolites in 54 premature infants in two neonatal intensive care units than in the general population. For 42 of these infants, we evaluated urinary concentrations of several phenols, including bisphenol A (BPA), in association with the use of the same medical devices. Measurements We measured the urinary concentrations of free and total (free plus conjugated) species of BPA, triclosan, benzophenone-3, methyl paraben, and propyl paraben. Results The percentage of BPA present as its conjugated species was > 90% in more than three-quarters of the premature infants. Intensity of use of products containing DEHP was strongly associated with BPA total concentrations but not with any other phenol. Adjusting for institution and sex, BPA total concentrations among infants in the group of high use of DEHP-containing products were 8.75 times as high as among infants in the low use group (p < 0.0001). Similarly, after adjusting for sex and DEHP-containing product use category, BPA total concentrations among infants in Institution A were 16.6 times as high as those among infants in Institution B (p < 0.0001). Conclusion BPA geometric mean urinary concentration (30.3 μg/L) among premature infants undergoing intensive therapeutic medical interventions was one order of magnitude higher than that among the general population. Conjugated species were the primary urinary metabolites of BPA, suggesting that premature infants have some capacity to metabolize BPA. The differences in exposure to BPA by intensity of use of DEHP-containing medical products highlight the need for further studies to determine the specific source(s) of exposure to BPA. PMID:19440505
Santovito, Alfredo; Ruberto, Stefano; Galli, Gabriella; Menghi, Costanza; Girotti, Marilena; Cervella, Piero
2018-04-12
Oxybenzone or benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is a filter used in a variety of personal care products for protection of human skin and hair from damage by ultraviolet radiation. BP-3 is suspected to exhibit endocrine disruptive properties. Indeed, it was found to be able to interact with the endocrine system causing alteration of its homeostasis, with consequent adverse health effects. Moreover, it is ubiquitously present in the environment, mostly in aquatic ecosystems, with consequent risks to the health of aquatic organisms and humans. In the present study, we analyzed the cytogenetic effects of BP-3 on human lymphocytes using in vitro chromosomal aberrations and micronuclei assays. Blood samples were obtained from five healthy Italian subjects. Lymphocyte cultures were exposed to five concentrations of BP-3 (0.20, 0.10, 0.05, 0.025, and 0.0125 μg/mL) for 24 and 48 h (for chromosomal aberrations and micronuclei tests, respectively). The concentration of 0.10 µg/mL represents the acceptable/tolerable daily intake reference dose established by European Union, whereas 0.20, 0.05, 0.025, and 0.0125 µg/mL represent multiple and sub-multiple of this concentration value. Our results reported cytogenetic effects of BP-3 on cultured human lymphocytes in terms of increased micronuclei and chromosomal aberrations' frequencies at all tested concentrations, including concentrations lower than those established by European Union. Vice versa, after 48-h exposure, a significant reduction of the cytokinesis-block proliferation index value in cultures treated with BP-3 was not observed, indicating that BP-3 does not seem to produce effects on the proliferation/mitotic index when its concentration is equal to or less than 0.20 μg/mL.
Downs, C A; Kramarsky-Winter, Esti; Segal, Roee; Fauth, John; Knutson, Sean; Bronstein, Omri; Ciner, Frederic R; Jeger, Rina; Lichtenfeld, Yona; Woodley, Cheryl M; Pennington, Paul; Cadenas, Kelli; Kushmaro, Ariel; Loya, Yossi
2016-02-01
Toxicity persistence to the nontarget amphipod Hyalella curvispina in runoff events following chlorpyrifos applications to soy experimental plots was compared in conventional and no-till management. Two application scenarios were compared: an early-season application with the soil almost bare and a late-season application after the foliage had attained complete soil cover. H. curvispina was exposed to chlorpyrifos using two different test systems: a short-term (48 h) runoff water exposure and a long-term (10 days) soil exposure. Both commonly used crop management practices for soybean production resulted in runoff toxicity following pesticide applications and represent a toxicity risk for adjacent inland waters. Toxicity persistence was longer after the earlier than the late season application, likely because of higher volatilization and photodecomposition losses from the soy canopy than from the soil. For the early-season application, toxicity persisted longer in the no-till plots than in the conventional tillage plots. Suspended matter was higher in the conventional treatment. Chlorpyrifos sorption to suspended matter likely contributed to the shorter persistence. For the late-season application, toxicity persisted longer in the conventional treatment. The causes remain conjectural. The soil organic carbon content was higher in the no-till treatment. Sorption to organic matter might have contributed to the shorter chlorpyrifos toxicity persistence in no-till management. Late applications are more frequent and prevail longer throughout the soy growing season. Overall, the no-till management practice seems preferably because shorter toxicity persistence in runoff represents a lower environmental risk for the adjacent inland waters.
In vitro and in vivo estrogenicity of UV screens.
Schlumpf, M; Cotton, B; Conscience, M; Haller, V; Steinmann, B; Lichtensteiger, W
2001-01-01
Ultraviolet (UV) screens are increasingly used as a result of growing concern about UV radiation and skin cancer; they are also added to cosmetics and other products for light stability. Recent data on bioaccumulation in wildlife and humans point to a need for in-depth analyses of systemic toxicology, in particular with respect to reproduction and ontogeny. We examined six frequently used UVA and UVB screens for estrogenicity in vitro and in vivo. In MCF-7 breast cancer cells, five out of six chemicals, that is, benzophenone-3 (Bp-3), homosalate (HMS), 4-methyl-benzylidene camphor (4-MBC), octyl-methoxycinnamate (OMC), and octyl-dimethyl-PABA (OD-PABA), increased cell proliferation with median effective concentrations (EC(50)) values between 1.56 and 3.73 microM, whereas butyl-methoxydibenzoylmethane (B-MDM) was inactive. Further evidence for estrogenic activity was the induction of pS2 protein in MCF-7 cells and the blockade of the proliferative effect of 4-MBC by the estrogen antagonist ICI 182,780. In the uterotrophic assay using immature Long-Evans rats that received the chemicals for 4 days in powdered feed, uterine weight was dose-dependently increased by 4-MBC (ED(50 )309mg/kg/day), OMC (ED(50) 935 mg/kg/day), and weakly by Bp-3 (active at 1,525 mg/kg/day). Three compounds were inactive by the oral route in the doses tested. Dermal application of 4-MBC to immature hairless (hr/hr) rats also increased uterine weight at concentrations of 5 and 7.5% in olive oil. Our findings indicate that UV screens should be tested for endocrine activity, in view of possible long-term effects in humans and wildlife. PMID:11333184
Protection against UV-induced oxidative stress and DNA damage by Amazon moss extracts.
Fernandes, A S; Mazzei, J L; Evangelista, H; Marques, M R C; Ferraz, E R A; Felzenszwalb, I
2018-04-27
Amazon mosses, such as Holomitriopsis laevifolia and Leucobryum sp. are naturally exposed to high levels of solar ultraviolet (UV) radiation. Theoretically, under environmental stress conditions these mosses have developed protective chemical and metabolic strategies against UV damage, by way of biosynthesis of secondary metabolites, such as flavonoids. The present paper aimed to evaluate the free-radical scavenging activity, and the photoprotective, mutagenic and photomutagenic potencies of the methanolic (ME), aqueous (AE), hydroalcoholic (HE), ethanolic (EE) extracts of H. laevifolia and Leucobryum sp. The phenolic contents were evaluated by spectrophotometry and by High-Performance Liquid Chromatography (HPLC). The present findings showed that the AE and HE of H. laevifolia and the AE of Leucobryum sp. presented the highest phenolic contents. The HPLC analysis indicated the presence mainly of phenolic and cinnamic acids, flavonols, flavones and flavanones. The AE and EE of H. laevifolia and the AE and HE of Leucobryum sp. efficiently scavenged the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical. All extracts showed significant values of in vitro Sun Protection Factor alone, and HE of Leucobryum sp. showed a synergistic effect in association with benzophenone-3. None of the extracts induced mutagenicity in the auxotrophic strains for histidine of Salmonella typhimurium, and photomutagenicity of the TA102 and TA104 strains was not detected after exposure to UV-A radiation. Besides, all extracts showed photoprotective activity against UV-A radiation for the TA104 strain, including synergistic protection in association with BP-3. Thus, the constituents in H. Laevifolia and Leucobryum sp. could be good candidates for cosmetic and dermatological applications, particularly in association with synthetic UV filters, since the concentration of the filters in the final product could be reduced. Copyright © 2018 Elsevier B.V. All rights reserved.
The effects of binary UV filter mixtures on the midge Chironomus riparius.
Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis
2016-06-15
Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints. Copyright © 2016 Elsevier B.V. All rights reserved.
Guzman-Duque, Fernando; Pétrier, Christian; Pulgarin, Cesar; Peñuela, Gustavo; Torres-Palma, Ricardo A
2011-01-01
This work deals with the ultrasonic degradation (800 kHz) of crystal violet (CV) under different experimental conditions. The effects of saturating gas (argon, carbon dioxide and air), CV concentration (2.45-1225 μmol L(-1)), pH (3-9) and power (20-80 W) were evaluated. The best performances were obtained at 80 W with argon as a saturating gas. The pH had no significant effect. The influence of several water matrices containing anions (chloride, sulphate and bicarbonate) and cations (Fe(2+)) on the sonolytic degradation of CV was also investigated. Significant differences were not observed with the presence of chloride and sulphate. However, at relatively low pollutant concentration (2.45 μmol L(-1)) bicarbonate showed a particular effect: a high bicarbonate concentration (350 mmol L(-1)) produced a detrimental effect, while a low bicarbonate concentration (3 mmol L(-1)) increased the efficiency of the process. The presence of Fe(2+) (1 mmol L(-1)) also increased the CV (49 μmol L(-1)) degradation by 32% after 180 min. Analyses of intermediates by GC-MS led to the identification of several sonochemical by-products: N,N-dimethylaminobenzene, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino)benzophenone, and N,N,N',N'-tetramethyl-4,4'-diaminodiphenylmethane. The presence of these aromatic structures showed that the main ultrasonic CV degradation pathway is linked to the reaction with *OH radicals. At the end of the treatment, these early products were converted into biodegradable organic by-products which could be easily treated in a subsequent biological treatment. Copyright © 2010 Elsevier B.V. All rights reserved.
Le Fol, Vincent; Brion, François; Hillenweck, Anne; Perdu, Elisabeth; Bruel, Sandrine; Aït-Aïssa, Selim; Cravedi, Jean-Pierre; Zalko, Daniel
2017-01-01
Zebrafish embryo assays are increasingly used in the toxicological assessment of endocrine disruptors. Among other advantages, these models are 3R-compliant and are fit for screening purposes. Biotransformation processes are well-recognized as a critical factor influencing toxic response, but major gaps of knowledge exist regarding the characterization of functional metabolic capacities expressed in zebrafish. Comparative metabolic studies between embryos and adults are even scarcer. Using 3H-labeled chemicals, we examined the fate of two estrogenic emerging contaminants, benzophenone-2 (BP2) and bisphenol S (BPS), in 4-day embryos and adult zebrafish. BPS and BP2 were exclusively metabolized through phase II pathways, with no major qualitative difference between larvae and adults except the occurrence of a BP2-di-glucuronide in adults. Quantitatively, the biotransformation of both molecules was more extensive in adults. For BPS, glucuronidation was the predominant pathway in adults and larvae. For BP2, glucuronidation was the major pathway in larvae, but sulfation predominated in adults, with ca. 40% conversion of parent BP2 and an extensive release of several conjugates into water. Further larvae/adults quantitative differences were demonstrated for both molecules, with higher residue concentrations measured in larvae. The study contributes novel data regarding the metabolism of BPS and BP2 in a fish model and shows that phase II conjugation pathways are already functional in 4-dpf-old zebrafish. Comparative analysis of BP2 and BPS metabolic profiles in zebrafish larvae and adults further supports the use of zebrafish embryo as a relevant model in which toxicity and estrogenic activity can be assessed, while taking into account the absorption and fate of tested substances. PMID:28346357
Le Fol, Vincent; Brion, François; Hillenweck, Anne; Perdu, Elisabeth; Bruel, Sandrine; Aït-Aïssa, Selim; Cravedi, Jean-Pierre; Zalko, Daniel
2017-03-25
Zebrafish embryo assays are increasingly used in the toxicological assessment of endocrine disruptors. Among other advantages, these models are 3R-compliant and are fit for screening purposes. Biotransformation processes are well-recognized as a critical factor influencing toxic response, but major gaps of knowledge exist regarding the characterization of functional metabolic capacities expressed in zebrafish. Comparative metabolic studies between embryos and adults are even scarcer. Using ³H-labeled chemicals, we examined the fate of two estrogenic emerging contaminants, benzophenone-2 (BP2) and bisphenol S (BPS), in 4-day embryos and adult zebrafish. BPS and BP2 were exclusively metabolized through phase II pathways, with no major qualitative difference between larvae and adults except the occurrence of a BP2-di-glucuronide in adults. Quantitatively, the biotransformation of both molecules was more extensive in adults. For BPS, glucuronidation was the predominant pathway in adults and larvae. For BP2, glucuronidation was the major pathway in larvae, but sulfation predominated in adults, with ca. 40% conversion of parent BP2 and an extensive release of several conjugates into water. Further larvae/adults quantitative differences were demonstrated for both molecules, with higher residue concentrations measured in larvae. The study contributes novel data regarding the metabolism of BPS and BP2 in a fish model and shows that phase II conjugation pathways are already functional in 4-dpf-old zebrafish. Comparative analysis of BP2 and BPS metabolic profiles in zebrafish larvae and adults further supports the use of zebrafish embryo as a relevant model in which toxicity and estrogenic activity can be assessed, while taking into account the absorption and fate of tested substances.
Shiue, Ivy
2017-01-01
Links between environmental chemicals and human health have emerged, but the effects on sleep health were less studied. Therefore, the aim of the present study was to investigate the relationships of different sets of environmental chemicals and common sleep troubles in a national and population-based setting. Data were retrieved from the United States National Health and Nutrition Examination Surveys, 2005-2006 including demographics, serum measurements, lifestyle factors, self-reported sleep troubles, and urinary environmental chemical concentrations. Statistical analyses including descriptive statistics, t-test, chi-square test, and survey-weighted logistic regression models were performed. Of all 5563 Americans aged 18-85, 2331 (42.0%) had wake-up at night, 2914 (52.5%) felt unrested during the day, 740 (13.4%) had leg jerks while sleeping, and 1059 (19.1%) had leg cramps for 2+ times a month. Higher levels of urinary arsenic, phthalates, and polyfluoroalkyl compounds were associated with wake-up at night. Higher levels of urinary 4-tert-octylphenol and polyfluoroalkyl compounds were associated with being unrested during the day. Higher levels of urinary arsenic, polyaromatic hydrocarbons, and polyfluoroalkyl compounds were associated with leg jerks while sleeping. Higher levels of urinary pesticides, heavy metals, phthalates, and polyaromatic hydrocarbons were associated with leg cramps while sleeping. However, there were no significant associations with other environmental chemicals such as parabens, bisphenol A, benzophenone-3, triclosan, perchlorate, nitrate, or thiocyanate. Eliminating arsenic, heavy metals, phthalate, pesticides, polyaromatic hydrocarbons, and polyfluoroalkyl compounds to improve sleep health might be considered while understanding the biological pathway with a longitudinal or experimental approach in future research would be suggested.
Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis
2013-01-01
Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties. PMID:23356696
Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis.
da Cunha, Marcos Guilherme; Franchin, Marcelo; de Carvalho Galvão, Lívia Câmara; de Ruiz, Ana Lúcia Tasca Góis; de Carvalho, João Ernesto; Ikegaki, Masarahu; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz
2013-01-28
Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography-mass spectrometry. EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardo-Andreu, Gilberto L., E-mail: gilbertopardo@infomed.sld.cu; Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP; Nunez-Figueredo, Yanier
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 {mu}M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca{sup 2+} efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. Allmore » effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP{sup +} transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. - Graphical abstract: Guttiferone-A permeabilizes mitochondrial membrane and induces cancer cell death Display Omitted Highlights: > We addressed the involvement of mitochondria in guttiferone (GA) toxicity toward cancer cells. > GA promoted membrane permeabilization, membrane potential dissipation, NAD(P)H depletion, ROS accumulation and ATP depletion. > These actions could be implicated in the well-documented anti-cancer property of GA/structure related compounds.« less
Ozáez, Irene; Aquilino, Mónica; Morcillo, Gloria; Martínez-Guitarte, José-Luis
2016-07-01
Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo
2016-06-01
Estrogens, phytoestrogens, and mycoestrogens may enter into the surface waters from different sources, such as effluents of municipal wastewater treatment plants, industrial plants, and animal farms and runoff from agricultural areas. In this work, a multiresidue analytical method for the determination of 17 natural estrogenic compounds, including four steroid estrogens, six mycoestrogens, and seven phytoestrogens, in river water samples has been developed. (Fe3O4)-based magnetic nanoparticles coated by polydopamine (Fe3O4@pDA) were used for dispersive solid-phase extraction, and the final extract was analyzed by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The Fe3O4 magnetic nanoparticles were prepared by a co-precipitation procedure, coated by pDA, and characterized by scanning electron microscopy, infrared spectroscopy, and elemental analysis. The sample preparation method was optimized in terms of extraction recovery, matrix effect, selectivity, trueness, precision, method limits of detection, and method limits of quantification (MLOQs). For all the 17 analytes, recoveries were >70 % and matrix effects were below 30 % when 25 mL of river water sample was treated with 90 mg of Fe3O4@pDA nanoparticles. Selectivity was tested by spiking river water samples with 50 other compounds (mycotoxins, antibacterials, conjugated hormones, UV filters, alkylphenols, etc.), and only aflatoxins and some benzophenones showed recoveries >60 %. This method proved to be simple and robust and allowed the determination of natural estrogenic compounds belonging to different classes in surface waters with MLOQs ranging between 0.003 and 0.1 μg L(-1). Graphical Abstract Determination of natural estrogenic compounds in water by magnetic solid phase extraction followed by liquid chromatography-tandem mass spectrometry analysis.
Aristizabal-Ciro, Carolina; Botero-Coy, Ana María; López, Francisco J; Peñuela, Gustavo A
2017-03-01
In this work, the presence of selected emerging contaminants has been investigated in two reservoirs, La Fe (LF) and Rio Grande (RG), which supply water to two drinking water treatment plants (DWTPs) of Medellin, one of the most populated cities of Colombia. An analytical method based on solid-phase extraction (SPE) of the sample followed by measurement by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated for this purpose. Five monitoring campaigns were performed in each reservoir, collecting samples from 7 sites (LF) and 10 sites (RG) at 3 different depths of the water column. In addition, water samples entering in the DWTPs and treated water samples from these plans were also analysed for the selected compounds. Data from this work showed that parabens, UV filters and the pharmaceutical ibuprofen were commonly present in most of the reservoir samples. Thus, methyl paraben was detected in around 90% of the samples collected, while ibuprofen was found in around 60% of the samples. Water samples feeding the DWTPs also contained these two compounds, as well as benzophenone at low concentrations, which was in general agreement with the results from the reservoir samples. After treatment in the DWTPs, these three compounds were still present in the samples although at low concentrations (<40 ng/L), which evidenced that they were not completely removed after the conventional treatment applied. The potential effects of the presence of these compounds at the ppt levels in drinking water are still unknown. Further research is needed to evaluate the effect of chronic exposure to these compounds via consumption of drinking water.
Shiue, Ivy
2015-10-01
Links between environmental chemicals and human health have emerged over the last few decades, but the effects on oral health have been less studied. Therefore, it was aimed to study the relationships of different sets of urinary chemical concentrations and adult oral health conditions in a national and population-based setting. Data was retrieved from the United States National Health and Nutrition Examination Surveys, 2011-2012 including demographics, self-reported oral health conditions and urinary environmental chemical concentrations (one third representative sample of the study population). Chi-square test, t test, and survey-weighted logistic and multi-nominal regression modeling were performed. Of 4566 American adults aged 30-80, 541 adults (11.9 %) reported poor teeth health while 1020 adults (22.4 %) reported fair teeth. Eight hundred fifty-five people (19.1 %) claimed to have gum disease, presented with higher levels of urinary cadmium, cobalt and polyaromatic hydrocarbons. Six hundred three adults (13.3 %) had bone loss around the mouth, presented with higher levels of cadmium, nitrate, thiocyanate, propyl paraben and polyaromatic hydrocarbons. Eight hundred forty-five adults (18.5 %) had tooth loose not due to injury, presented with higher level of cadmium, thiocyanate and polyaromatic hydrocarbons. Eight hundred forty-five adults (18.5 %) with higher levels of lead, uranium, polyaromatic hydrocarbons but lower level of triclosan noticed their teeth did not look right. Three hundred fifty-one adults (7.7 %) often had aching in the mouth and 650 (14.3 %) had it occasionally, presented with higher levels of phthalates, pesticides and polyaromatic hydrocarbons. Benzophenone-3 and triclosan elicited protective effects. Regulation of environmental chemicals in prevention of adult oral health might need to be considered in future health and environmental policies.
García Ibarra, Verónica; Rodríguez Bernaldo de Quirós, Ana; Paseiro Losada, Perfecto; Sendón, Raquel
2018-05-07
Plastic materials are widely used in food packaging applications; however, there is increased concern because of the possible release of undesirable components into foodstuffs. Migration of plastic constituents not only has the potential to affect product quality but also constitutes a risk to consumer health. In order to check the safety of food contact materials, analytical methodologies to identify potential migrants are required. In the first part of this work, a GC/MS screening method was developed for the identification of components from plastic packaging materials including intentionally and "non-intentionally added substances" (NIAS) as potential migrants. In the second part of this study, the presence of seven compounds (bis (2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), butylated hydroxytoluene (BHT), acetyl tributyl citrate (ATBC), benzophenone (BP)) previously identified in packaging materials were investigated in food products (corn and potatoes snacks, cookies, and cakes). For this purpose, a suitable extraction method was developed and quantification was performed using GC-MS. The developed method was validated in terms of linearity, recovery, repeatability, and limits of detection and quantification. The spiked recoveries varied between 82.7 and 116.1%, and relative standard deviation (RSD) was in the range of 2.22-15.9%. The plasticizer ATBC was the most detected compound (94% samples), followed by DEP (65%), DEHP (47%), BP (44%), DBP (35%), DIBP (21%), and BHT (12%). Regarding phthalates, DEP and DEHP were the most frequently detected compounds in concentrations up to 1.44 μg g -1 . In some samples, only DBP exceeded the European SML of 0.3 mg kg -1 established in Regulation 10/2011. Graphical abstract Chemical migration from plastic packaging into food.
Guazzotti, V; Marti, A; Piergiovanni, L; Limbo, S
2014-01-01
Partition and diffusion experiments were carried out with paper and board samples coated with different biopolymers. The aim was to evaluate the physicochemical behaviour and barrier properties of bio-coatings against migration of typical contaminants from recycled paper packaging. Focus was directed towards water-based, renewable biopolymers, such as modified starches (cationic starch and cationic waxy starch), plant and animal proteins (gluten and gelatine), poured onto paper with an automatic applicator. Additionally, a comparison with polyethylene-laminated paper was performed. Microstructural observations of the bio-coated paper allowed the characterisation of samples. From the partitioning studies, considerable differences in the adsorption behaviour of the selected contaminants between bio-coated or uncoated paper and air were highlighted. For both the polar and non-polar compounds considered (benzophenone and diisobutyl phthalate, respectively), the lowest values of partition coefficients were found when paper was bio-coated, making it evident that biopolymers acted as chemical/physical barriers towards these contaminants. These findings are discussed considering the characteristics of the tested biopolymers. Diffusion studies into the solid food simulant poly 2,6-diphenyl-p-phenylene oxide, also known as Tenax(®), confirmed that all the tested biopolymers slowed down migration. The Weibull kinetic model was fitted to the experimental data to compare migration from paper and bio-coated paper. Values found for β, an index determining the pattern of curvature, ranged from 1.1 to 1.7 for uncoated and polyethylene paper, whereas for bio-coated papers they ranged from 2.2 to 4.9, corresponding to the presence of an evident lag phase due to barrier properties of the tested bio-coatings.
Development and application of a HPLC method for eight sunscreen agents in suncare products.
Peruchi, L M; Rath, S
2012-06-01
This work describes the development, validation and application of a simple and fast high-performance liquid chromatography-with diode array dectection (HPLC-DAD) method for the determination of eight sunscreen agents: benzophenone-3, octocrylene, ethylhexyl methoxycinnamate, ethylhexyl salicylate, homosalate (used in two isomeric forms), butyl methoxydibenzoylmethane, 4-methylbenzylidene camphor and ethylhexyl dimethyl PABA in sunscreen formulations. The separation of the eight sunscreen compounds was achieved using an ACE C18 column (250 × 4.6 mm, 5 μm), with a column temperature 20°C, and a mobile phase of 88 : 12 (v/v) methanol-water with isocratic elution. Column temperature strongly influences the retention time and resolution of the compounds. The flow rate was 1.0 mL min(-1) and quantitation was performed by external calibration at the maximum wavelength of each compound. The sample preparation was simple and consisted basically of sample dilution with methanol, centrifugation and filtration in syringe filters before quantitation. Total run time was 18 min. The method was validated according to the parameters: linear range, linearity, selectivity, intra-day and inter-day precision and accuracy. Ten samples of sunscreen emulsions commercially available in Brazil (SPF 30) from different manufacturers were analysed using the proposed method. The number of the sunscreen agents varied between one and five in a single sample. The concentrations of all compounds were in the range of 0.9-10% (w/w) and were in accordance with the current Brazilian legislation. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Bianchi, Anna; Marchetti, Nicola; Scalia, Santo
2011-12-05
The aim of the study was to examine the photostability of the major catechin of green tea, (-)-epigallocatechin-3-gallate (EGCG), which possesses important antioxidant and skin photoprotective properties. In order to simulate realistic conditions of use of topical preparations, the photolysis studies were performed in model creams (oil-in-water emulsions) containing 1% (w/w) EGCG and exposed to a solar simulator at an irradiance corresponding to natural sunlight. The extent of photodegradation was measured by HPLC-UV and HPLC-ESI-MS. EGCG was found to decompose by 68.9±2.3%, after 1h irradiation. Addition of the coantioxidants, vitamin E or butylated hydroxytoluene to the emulsion formulation, significantly enhanced the photolability of the catechin, the EGCG loss reached 85.7±1.3% and 80.5±1.4%, respectively. On the other hand, inclusion of the UVB (290-320nm) filter, ethylhexyl methoxycinnamate in the cream produced a small but significant reduction of EGCG photodegradation to 61.0±2.9%, while the UVA (320-400nm) filter, butyl methoxydibenzoylmethane was ineffective (EGCG degradation, 67.8±1.5%). A more marked decrease in the light-induced decomposition of EGCG to 51.6±2.7% was achieved, under the same conditions, using the water-soluble UVB filter, benzophenone-4 (BP-4). This effect was concentration dependent, maximal EGCG photostabilization (catechin loss, 29.4±2.2%) was attained in the presence of 2.1% (w/w) BP-4. Therefore, BP-4 represents a useful additive to improve the light stability of EGCG in topical formulations for skin photoprotection. Copyright © 2011 Elsevier B.V. All rights reserved.
UV filters bioaccumulation in fish from Iberian river basins.
Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià
2015-06-15
The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web. Copyright © 2015. Published by Elsevier B.V.
Broad spectrum bioactive sunscreens.
Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim
2008-11-03
The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm.
Shiue, Ivy
2016-01-01
This study was aimed to examine the prevalence of food insecurity and what social, health, and environmental characteristics could constitute such situation in a national and population-based setting. Data was retrieved from the National Health and Nutrition Examination Survey, 2005-2006. Information on demographics, lifestyle factors, self-reported ever medical conditions in the past and self-reported food security conditions in the last 12 months calculated on the household level was obtained by household interview. Bloods and urines (subsample) were collected at the interview as well. Only adults aged 20 years and above (n = 4979) were included for statistical analysis in the present study. Chi-square test, t test, and survey-weighted logistic regression modeling were performed. Three thousand eight hundred thirty-four (77.9%) people were with full food security, 466 (9.5%) people were with marginal food security and 624 (12.7%) people were with low or very low food security. Being younger, having higher ratios of family income to poverty thresholds (due to low level of education or lack of financial support), having prior asthma, arthritis, chronic bronchitis, depression, diabetes, eczema, emphysema or liver problems, having higher levels of serum cotinine, urinary antimony, bisphenol A, pesticides, or having lower levels of urinary Benzophenone-3 were associated with food insecurity. In addition to socioeconomic and smoking conditions, evidence on people with several prior health conditions and being exposed to environmental chemicals and food insecurity is further provided. Future social, health and environmental policy, and programs protecting people from food insecurity by considering both health and environmental factors mentioned above would be suggested.
Vasorelaxant and cardiovascular properties of the essential oil of Pogostemon elsholtzioides.
Shiva Kumar, Arumugasamy; Jeyaprakash, Karnan; Chellappan, David Raj; Murugan, Ramar
2017-03-06
Pogostemon elsholtzioides Benth. (Lamiaceae) is an aromatic shrub, endemic to eastern Himalaya region. The leaves are used for treating goiter and high blood pressure (BP) by indigenous people in Arunachal Pradesh, India. Young leaves are used as vegetable and leaf decoction is also used for cough, cold and headache by some indigenous communities in Northeast India. This species is used for treating hypertension and the genus Pogostemon is rich in essential oil. Therefore, the present study was aimed at investigation of the chemical constituents, vasorelaxant and cardiovascular effects of the essential oil of P. elsholtzioides. P. elsholtzioides was collected from Pasighat, Arunachal Pradesh, India and essential oil was extracted from shade dried leaves. Essential oil was analyzed by GC-FID and GC-MS and the volatile constituents were identified. Vasorelaxant and cardiovascular properties of the essential oil were studied against phenylephrine induced contraction in isolated endothelium intact aortic preparations and by measuring systolic and diastolic BP, mean arterial pressure (MAP) and heart rate (HR) after carotid artery cannulation in Wistar rats. The essential oil was rich in sesquiterpenes and curzerene, benzophenone, α-cadinol and germacrone were major constituents. The essential oil exhibited significant vasodilation effect in phenylephrine induced contracted aortic rings. Vasorelaxant effect of the essential oil was also observed both in the presence and absence of Nitro-L-arginine methyl ester against phenylephrine-contracted aortic rings. It also induced reduction of systolic and diastolic BP, MAP and HR. Essential oil of P. elsholtzioides exhibited significant vasorelaxant effect against endothelium intact aortic preparation mediated through nitric oxide dependent pathway and also reduced BP. However, further study is needed to screen the role of calcium ions in both intracellular and extracellular pathway. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Soloshonok*, Vadim A.; Cai, Chaozhong; Yamada, Takeshi; Ueki, Hisanori; Ohfune, Yasufumi; Hruby, Victor J.
2006-01-01
This paper describes a systematic study of addition reactions between the chiral Ni(II) complex of the Schiff base of glycine with (S)-o-[N-(N-benzylprolyl)amino]benzophenone and (S)- or (R)-3-[(E)-enoyl]-4-phenyl-1,3-oxazolidin-2-ones as a general and synthetically efficient approach to β-substituted pyroglutamic acids and relevant compounds. These reactions were shown to occur at room temperature in the presence of nonchelating organic bases and, most notably, with very high (>98% diastereomeric excess (de)) stereoselectivity at both newly formed stereogenic centers. The stereochemical outcome of the reactions was found to be overwhelmingly controlled by the stereochemical preferences of the Michael acceptors, and the chirality of the glycine complex influenced only the reaction rate. Thus, in the reactions of both the (S)-configured Ni(II) complex and the Michael acceptors, the reaction rates were exceptionally high, allowing preparation of the corresponding products with virtually quantitative (>98%) chemical and stereochemical yields. In contrast, reactions of the (S)-configured Ni(II) complex and (R)-configured Michael acceptors proceeded at noticeably lower rates, but the addition products were obtained in high diastereo-and enantiomeric purity. To rationalize the remarkably high and robust stereoselectivity observed in these reactions, we consider an enzyme–substrate-like mode of interaction involing a topographical match or mismatch of two geometric figures. Excellent chemical and stereochemical yields, combined with the simplicity and operational convenience of the experimental procedures, render the present method of immediate use for preparing various β-substituted pyroglutamic acids and related compounds. PMID:16248672
Soloshonok, Vadim A; Cai, Chaozhong; Yamada, Takeshi; Ueki, Hisanori; Ohfune, Yasufumi; Hruby, Victor J
2005-11-02
This paper describes a systematic study of addition reactions between the chiral Ni(II) complex of the Schiff base of glycine with (S)-o-[N-(N-benzylprolyl)amino]benzophenone and (S)- or (R)-3-[(E)-enoyl]-4-phenyl-1,3-oxazolidin-2-ones as a general and synthetically efficient approach to beta-substituted pyroglutamic acids and relevant compounds. These reactions were shown to occur at room temperature in the presence of nonchelating organic bases and, most notably, with very high (>98% diastereomeric excess (de)) stereoselectivity at both newly formed stereogenic centers. The stereochemical outcome of the reactions was found to be overwhelmingly controlled by the stereochemical preferences of the Michael acceptors, and the chirality of the glycine complex influenced only the reaction rate. Thus, in the reactions of both the (S)-configured Ni(II) complex and the Michael acceptors, the reaction rates were exceptionally high, allowing preparation of the corresponding products with virtually quantitative (>98%) chemical and stereochemical yields. In contrast, reactions of the (S)-configured Ni(II) complex and (R)-configured Michael acceptors proceeded at noticeably lower rates, but the addition products were obtained in high diastereo- and enantiomeric purity. To rationalize the remarkably high and robust stereoselectivity observed in these reactions, we consider an enzyme-substrate-like mode of interaction involving a topographical match or mismatch of two geometric figures. Excellent chemical and stereochemical yields, combined with the simplicity and operational convenience of the experimental procedures, render the present method of immediate use for preparing various beta-substituted pyroglutamic acids and related compounds.
Martín, J; Zafra-Gómez, A; Hidalgo, F; Ibáñez-Yuste, A J; Alonso, E; Vilchez, J L
2017-05-01
Marine echinoderms are filter-feeding invertebrates widely distributed along the coasts, and which are therefore extensively exposed to anthropogenic xenobiotics. They can serve as good sentinels for monitoring a large variety of contaminants in marine ecosystems. In this context, a multi-residue analytical method has been validated and applied to Holothuria tubulosa specimens and marine sediments for the determination of 36 organic compounds, which belong to some of the most problematic groups of emerging and priority pollutants (perfluoroalkyl compounds, estrogens, parabens, benzophenones, plasticizers, surfactants, brominated flame retardants and alkylphenols). Lyophilization of samples prior to solvent extraction and clean-up of extracts with C18, followed by liquid chromatography-tandem mass spectrometry analysis, is proposed. A Box-Behnken design was used for optimization of the most influential variables affecting the extraction and clean-up steps. For validation, matrix-matched calibration and recovery assay were applied. Linearity (% r 2 ) higher than 99%, recoveries between 80% and 114% (except in LAS and NP1EO), RSD (precision) lower than 15% and limits of quantification between 0.03 and 12.5ngg -1 dry weight (d.w.) were achieved. The method was applied to nine samples of Holothuria collected along the coast of Granada (Spain), and to marine sediments around the animals. The results demonstrated high bioaccumulation of certain pollutants. A total of 25 out of the 36 studied compounds were quantified, being surfactants, alkylphenols, perfluoroalkyl compounds, triclocarban and parabens the most frequently detected. Nonylphenol was found in the highest concentration (340 and 323ngg -1 d.w. in sediment and Holothuria samples, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.
Sänger, Inge; Kückmann, Theresa I; Dornhaus, Franz; Bolte, Michael; Wagner, Matthias; Lerner, Hans-Wolfram
2012-06-14
The dimeric iron carbonyl [CpFe(CO)(2)](2) and the iodosilanes tBu(2)RSiI were obtained from the reaction of [CpFe(CO)(2)]I with the silanides Na[SiRtBu(2)] (R = Me, tBu) in THF. By the reactions of [CpFe(CO)(2)]I and Na[SiRtBu(2)] (R = Me, tBu) the disilanes tBu(2)RSiSiRtBu(2) (R = Me, tBu) were additionally formed using more than one equivalent of the silanide. In this context it should be noted that reduction of [CpFe(CO)(2)](2) with Na[SitBu(3)] gives the disilanes tBu(3)SiSitBu(3) along with the sodium ferrate [(Na(18-crown-6))(2)Cp][CpFe(CO)(2)]. The potassium analogue [(K(18-crown-6))(2)Cp][CpFe(CO)(2)] (orthorhombic, space group Pmc2(1)), however, could be isolated as a minor product from the reaction of [CpFe(CO)(2)]I with [K(18-crown-6)][PtBu(2)BH(3)]. The reaction of [CpFe(CO)(2)](2) with the potassium benzophenone ketyl radical and subsequent treatment with 18-crown-6 yielded the ferrate [K(18-crown-6)][CpFe(CO)(2)] in THF at room temperature. The crown ether complex [K(18-crown-6)][CpFe(CO)(2)] was analyzed using X-ray crystallography (orthorhombic, space group Pna2(1)) and its thermal behaviour was investigated.
Seoane, Marta; Esperanza, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles
2017-03-01
Large quantities of personal care products (PCPs) are used daily and many of their chemical ingredients are subsequently released into marine environments. Cultures of the marine microalga Tetraselmis suecica were exposed for 24 h to three emerging compounds included in the main classes of PCPs: the UV filter benzophenone-3 (BP-3), the disinfectant triclosan (TCS) and the fragrance tonalide (AHTN). Concentrations tested, expressed as cellular quota (pg cell -1 ), ranged from 5 to 40 for BP-3, from 2 to 16 for TCS and from 1.2 to 2.4 for AHTN. A small cytometric panel was carried out to evaluate key cytotoxicity biomarkers including inherent cell properties, growth and metabolic activity and cytoplasmic membrane properties. BP-3 caused a significant increase in growth rate, metabolic activity and chlorophyll a fluorescence from 10 pg cell -1 . However, growth and esterase activity decreased in cells exposed to all TCS and AHTN concentrations, except the lowest ones. Also these two compounds provoked a significant swelling of cells, more pronounced in the case of TCS-exposed cells. Although all treated cells remained viable, changes in membrane potential were observed. BP-3 and AHTN caused a significant depolarization of cells from 10 to 1.6 pg cell -1 , respectively; however all TCS concentrations assayed caused a noticeable hyperpolarization of cells. Metabolic activity and cytoplasmic membrane potential were the most sensitive parameters. It can be concluded that the toxicological model used and the toxicological parameters evaluated are suitable to assess the toxicity of these emerging contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oliveira, A H; de Oliveira, G G; Carnevale Neto, F; Portuondo, D F; Batista-Duharte, A; Carlos, I Z
2017-01-04
Vismia guianensis (Aubl.) Pers. is traditionally used in North and Northeast of Brazil for the treatment of dermatomycoses. Since the strategy associating immunomodulators with antifungal drugs seems to be promissory to improve the treatment efficacy in fungal infections, we aimed to investigate the antifungal activity of V. guianensis ethanolic extract of leaves (VGL) and bark (VGB) against Sporothrix schenckii ATCC 16345 and their antinflammatory activities. The extracts were analyzed by HPLC-DAD-IT MS/MS for in situ identification of major compounds. Antifungal activity was evaluated in vitro (microdilution test) and in vivo using a murine model of S. schenckii infection. The production of TNF-α, IFN-γ, IL-4, IL-10 and IL-12 by measured by ELISA, as well as measured the production and inhibition of the NO after treatment with the plant extracts or itraconazole (ITR). Two O-glucosyl-flavonoids and 16 prenylated benzophenone derivatives already described for Vismia were detected. Both VGL and VGB showed significant antifungal activity either in in vitro assay of microdilution (MIC=3.9µg/mL) and in vivo model of infection with reduction of S. schenckii load in spleen. It was also observed a predominance of reduction in the production of NO and the proinflammatory cytokines evaluated except TNFα, but with stimulation of IL-10, as evidence of a potential anti-inflammatory effect associated. The results showed that both VGL and VGB have a significant antifungal against S. schenckii and an anti-inflammatory activity. These results can support the use of these extracts for alternative treatment of sporotrichosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Pressure dependence of zero-field splittings in organic triplets. II. Carbonyls
NASA Astrophysics Data System (ADS)
Chan, I. Y.; Qian, X. Q.
1990-01-01
We have conducted optically detected magnetic resonance (ODMR) experiments at pressure up to 40 kbar for neat biactyl (BA), neat benzil (BZ), and acetophenone (AP) doped in dibromobenzene (DBB). The pressure dependences of their zero-field splitting (ZFS) parameters D and E are reported. For BA and BZ systems, the ‖D‖ value decreases greatly with increasing pressure. This behavior is in contrast with that of benzophenone (BP), whose ‖D‖ value increases sigmoidally 13% over the same pressure range. These results may be rationalized in a qualitative theory based on pressure modulation of the spin-orbit coupling (SOC) contribution to the ZFS. ln aromatic ketones, lattice compression modifies the twist angle of the phenyl ring(s) relative to the carbonyl frame, thus changing the energy of the 3ππ* state relative to that of the 3nπ* state. This variation of the energy denominator in a second order perturbation enhances the SOC contribution to the ZFS. In comparison, the increase of spin-spin (SS) dipolar interaction by isotropic compression is relatively unimportant. Consistent with this picture, the very small 3ππ*-3nπ* energy gap produces an enormous pressure sensitivity of D and E in AP/DBB. The behavior of the ZFS in this case may be interpreted as a consequence of pressure tuning of the 3ππ* state through an anticrossing region. In addition, a new set of high frequency ODMR signals appears under pressure. This is attributed to a new site of AP having the 3nπ* as the phosphorescent triplet state. The pressure dependence of ZFS for benzil shows complicated fine structure. This is a testimony to the flexible nature of benzil in both the dihedral angle of the dicarbonyl fragment and the phenyl twist angle.
Bradley, E L; Castle, L; Speck, D R
2014-01-01
Four samples of paper and board (P/B) of a type used for packaging dry foods were subjected to migration tests using mushrooms, apples, potatoes and bananas, and using the polymeric powder Tenax as a food simulant. The P/B samples contained only low levels of diisopropylnaphthalene (DiPN) and diisobutyl phthalate (DiBP) and so the experiments were conducted after impregnating the P/B with added model substances. These were o-xylene, acetophenone, dodecane, benzophenone, DiPN and DiBP. Migration levels depended strongly on the nature of the substance and on the nature of the food and much less on the characteristics of the P/B, except insofar as they affected the contact area - flexible papers giving more extensive contact with the food than thick rigid board. Migration into Tenax was at least a factor of 10 higher than migration into the fresh fruit and vegetables. The food samples were placed in contact with the P/B and then overwrapped loosely with aluminium foil and so this correction factor will tend to be conservative compared with a more open storage of the packed foods. Washing, peeling or cooking the fruits and vegetables after contact with the P/B had a surprisingly small effect on contaminant levels in general, and no one processing step was effective in giving a significant reduction of all the types of chemicals studied. This was because either they had penetrated into the food (so resisting peeling), or were not freely water-soluble (so resisting washing) or were not particularly volatile (so resisting loss by evaporation during cooking).
Ibii, N; Horiuchi, M; Yamamoto, K
1984-08-01
Interactions between 450191-S and other representative drugs which might be clinically used with 450191-S were behaviorally investigated in mice, and compared with the cases of nitrazepam, estazolam and triazolam. The potencies of 450191-S and nitrazepam in preventing pentetrazol convulsions were markedly decreased by aminopyrine, whereas that of estazolam was remarkably increased by phenytoin. Administration of nitrazepam with other drugs, except aminopyrine, or of estazolam together with haloperidol exhibited an anticonvulsive pattern different from the case of dosing with either drug alone. Only the effect of triazolam was not influenced by any drugs used. The potency of haloperidol against apomorphine-induced climbing behavior was significantly reduced by nitrazepam, and the pattern of the haloperidol effect was changed by treatment together with 450191-S or estazolam. However, triazolam had no influence on the effect of haloperidol. The antagonistic activity of imipramine to reserpine-induced hypothermia was slightly decreased by 450191-S, estazolam and triazolam, but little affected by nitrazepam. In the protection from maximal electroshock convulsions (MEC), the potency of phenytoin was significantly decreased by 450191-S and triazolam. Moreover, the anti-MES pattern of phenytoin was altered by nitrazepam. Estazolam exerted no significant influence on the effect of phenytoin. Analgesic activities of morphine and/or aminopyrine were potentiated by pretreatment with sleep-inducers, but not 450191-S. Thus, judging from the potency and stability of the anti-pentetrazol effect, 450191-S seems to be inferior to triazolam, but superior to nitrazepam and estazolam. Also, 450191-S may be differentiated from other sleep-inducers by the fact that only 450191-S did not potentiate the analgesic activities of morphine and aminopyrine.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.
Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng
2016-05-01
Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.
Berger, Kimberly; Gunier, Robert B; Chevrier, Jonathan; Calafat, Antonia M; Ye, Xiaoyun; Eskenazi, Brenda; Harley, Kim G
2018-05-24
Environmental phenols and parabens are commonly used in personal care products and other consumer products and human exposure to these chemicals is widespread. Although human and animal studies suggest an association between exposure to phenols and parabens and thyroid hormone levels, few studies have investigated the association of in utero exposure to these chemicals and thyroid hormones in pregnant women and their neonates. We measured four environmental phenols (triclosan, benzophenone-3, and 2,4- and 2,5-dichlorophenol), and three parabens (methyl-, propyl-, and butyl paraben) in urine collected from mothers at two time points during pregnancy as part of the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in serum of the pregnant women (N = 454) and TSH in their neonates (N = 365). We examined potential confounding by a large number of additional chemical exposures and used Bayesian Model Averaging (BMA) to select the most influential chemicals to include in regression models. We observed negative associations of prenatal urinary concentrations of propyl paraben and maternal TSH (β for two-fold increase = -3.26%, 95% CI: -5.55, -0.90) and negative associations of 2,4-dichlorophenol and maternal free T4 (β for two-fold increase = -0.05, 95% CI: -0.08, -0.02), after controlling for other chemical exposures. We observed negative associations of triclosan with maternal total T4 after controlling for demographic variables, but this association became non-significant after controlling for other chemicals (β for two-fold increase = -0.05, 95% CI: -0.11, 0.00). We found evidence that environmental phenols and parabens are associated with lower TSH and free T4 in pregnant women after controlling for related chemical exposures. Copyright © 2018 Elsevier Inc. All rights reserved.
Gerona, Roy R; Schwartz, Jackie M; Pan, Janet; Friesen, Matthew M; Lin, Thomas; Woodruff, Tracey J
2018-03-01
The use and advantages of high-resolution mass spectrometry (MS) as a discovery tool for environmental chemical monitoring has been demonstrated for environmental samples but not for biological samples. We developed a method using liquid chromatography-quadrupole time-of-flight MS (LC-QTOF/MS) for discovery of previously unmeasured environmental chemicals in human serum. Using non-targeted data acquisition (full scan MS analysis) we were able to screen for environmental organic acids (EOAs) in 20 serum samples from second trimester pregnant women. We define EOAs as environmental organic compounds with at least one dissociable proton which are utilized in commerce. EOAs include environmental phenols, phthalate metabolites, perfluorinated compounds, phenolic metabolites of polybrominated diphenyl ethers and polychlorinated biphenyls, and acidic pesticides and/or predicted acidic pesticide metabolites. Our validated method used solid phase extraction, reversed-phase chromatography in a C18 column with gradient elution, electrospray ionization in negative polarity and automated tandem MS (MS/MS) data acquisition to maximize true positive rates. We identified "suspect EOAs" using Agilent MassHunter Qualitative Analysis software, to match chemical formulas generated from each sample run with molecular formulas in our unique database of 693 EOAs assembled from multiple environmental literature sources. We found potential matches for 282 (41%) of the EOAs in our database. Sixty-five of these suspect EOAs were detected in at least 75% of the samples; only 19 of these compounds are currently biomonitored in National Health and Nutrition Examination Survey. We confirmed two of three suspect EOAs by LC-QTOF/MS using a targeted method developed through LC-MS/MS, reporting the first confirmation of benzophenone-1 and bisphenol S in pregnant women's sera. Our suspect screening workflow provides an approach to comprehensively scan environmental chemical exposures in humans. This can provide a better source of exposure information to help improve exposure and risk evaluation of industrial chemicals.
Moon, Chang Hoon; Lee, Seung Ju; Lee, Ho Yong; Dung, Le Thi Kim; Cho, Wha Ja; Cha, HeeJeong; Park, Jeong Woo; Min, Young Joo
2014-06-01
CKD-516 is a benzophenone analog in which the B ring is modified by replacement with a carbonyl group. The study assessed CKD-516 as a vascular disrupting agent or anti-cancer drug. To assess the effect of S516 on vascularization, we analyzed the effect on human umbilical vein endothelial cells (HUVECs). To determine the inhibition of cell proliferation of S516, we used H460 lung carcinoma cells. The alteration of microtubules was analyzed using immunoblot, RT-PCR and confocal imaging. To evaluate the anti-tumor effects of gemcitabine and/or CKD-516, H460 xenograft mice were treated with CKD-516 (2.5 mg/kg) and/or gemcitabine (40 mg/kg), and tumor growth was compared with vehicle-treated control. For histologic analysis, liver, spleen and tumor tissues from H460 xenograft mice were obtained 12 and 24 h after CKD-516 injection. Cytoskeletal changes of HUVECs treated with 10 nM S516 were assessed by immunoblot and confocal imaging. S516 disrupted tubulin assembly and resulted in microtubule dysfunction, which induced cell cycle arrest (G2/M). S516 markedly enhanced the depolymerization of microtubules, perhaps due to the vascular disrupting properties of S516. Interestingly, S516 decreased the amount of total tubulin protein in HUVECs. Especially, S516 decreased mRNA expression α-tubulin (HUVECs only) and β-tubulin (HUVECs and H460 cells) at an early time point (4 h). Immunocytochemical analysis showed that S516 changed the cellular microtubule network and inhibited the formation of polymerized microtubules. Extensive central necrosis of tumors was evident by 12 h after treatment with CKD-516 (2.5 mg/kg, i.p.). In H460 xenografts, CKD-516 combined with gemcitabine significantly delayed tumor growth up to 57 % and 36 % as compared to control and gemcitabine alone, respectively. CKD-516 is a novel agent with vascular disrupting properties and enhances anti-tumor activity in combination with chemotherapy.
Coronado, Michael; De Haro, Hector; Deng, Xin; Rempel, Mary Ann; Lavado, Ramon; Schlenk, Daniel
2008-11-21
Previous studies in extracts of sediments surrounding municipal outfalls off the coast of California, USA and effluents of New York City, NY, USA indicated the UV-filtering agent, oxybenzone (CAS# 131-57-7; benzophenone-3) as a potential estrogen. The effects of oxybenzone on estrogenic activity and reproduction were evaluated using a 14-day juvenile rainbow trout assay for plasma vitellogenin and a subsequent 21-day Japanese medaka reproduction assay. Significant induction of vitellogenin was observed in the rainbow trout at the 1000 microg/L nominal concentration (749 microg/L median measured value) of oxybenzone which was approximately 75 times greater than the concentrations observed in previous wastewater effluent. Vitellogenin induction was also observed in the 1000 microg/L nominal concentration (620 microg/L median measured) of oxybenzone in male Japanese medaka (Oryzias latipes) after 21 days of exposure. The number of eggs produced per female per day exposed to the same concentration (620 microg/L) were significantly lower after 7 days, but returned to control values after 21 days. Fertilized eggs were then monitored for 20 days to assess hatching success. The overall percentage of fertilized eggs collected during the 21-day exposure that hatched was significantly lower in the 620 microg/L oxybenzone concentration. There was also a temporal effect at this concentration as egg viability (percentage of fertilized eggs that hatched) was diminished 13-15 days after eggs were collected. All three oxybenzone concentrations (16, 132, and 620 microg/L) and the 50 ng/L estradiol positive control showed reduced hatching of eggs at day 15, and the 132 and 620 microg/L oxybenzone concentrations diminished the percentage of eggs that hatched on days 13-15. These data indicate that the UV-filter oxybenzone alters endocrine or reproduction endpoints in two fish species, but at concentrations significantly higher than those measured in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah
The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-basedmore » compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.« less
Langford, Katherine H; Reid, Malcolm J; Fjeld, Eirik; Øxnevad, Sigurd; Thomas, Kevin V
2015-07-01
Eight organic UV filters and stabilizers were quantitatively determined in wastewater sludge and effluent, landfill leachate, sediments, and marine and freshwater biota. Crab, prawn and cod from Oslofjord, and perch, whitefish and burbot from Lake Mjøsa were selected in order to evaluate the potential for trophic accumulation. All of the cod livers analysed were contaminated with at least 1 UV filter, and a maximum concentration of almost 12 μg/g wet weight for octocrylene (OC) was measured in one individual. 80% of the cod livers contained OC, and approximately 50% of cod liver and prawn samples contained benzophenone (BP3). Lower concentrations and detection frequencies were observed in freshwater species and the data of most interest is the 4 individual whitefish that contained both BP3 and ethylhexylmethoxycinnamate (EHMC) with maximum concentrations of almost 200 ng/g wet weight. The data shows a difference in the loads of UV filters entering receiving water dependent on the extent of wastewater treatment. Primary screening alone is insufficient for the removal of selected UV filters (BP3, Padimate, EHMC, OC, UV-234, UV-327, UV-328, UV-329). Likely due in part to the hydrophobic nature of the majority of the UV filters studied, particulate loading and organic carbon content appear to be related to concentrations of UV filters in landfill leachate and an order of magnitude difference in these parameters correlates with an order of magnitude difference in the effluent concentrations of selected UV filters (Fig. 2). From the data, it is possible that under certain low flow conditions selected organic UV filters may pose a risk to surface waters but under the present conditions the risk is low, but some UV filters will potentially accumulate through the trophic food chain. Copyright © 2015. Published by Elsevier Ltd.
Martínez-Guitarte, José-Luis
2018-03-01
Ultraviolet (UV) filters are compounds used to prevent the damage produced by UV radiation in personal care products, plastics, etc. They have been associated with endocrine disruption, showing anti-estrogen activity in vertebrates and altering the ecdysone pathway in invertebrates. Although they have attracted the attention of multiple research teams there is a lack of data about how animals activate detoxification systems, especially in invertebrates. Here, analysis of the effects of two UV filters, benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC), on the transcriptional activity of nine genes covering the three steps of the detoxification process has been performed. Four cytochrome P450 genes belonging to different members of this family, five GST genes, and the multidrug resistance protein 1 (MRP1) gene were studied by RT-PCR to analyze their transcriptional activity in fourth instar larvae exposed to the UV filters for 8 and 24h. The obtained results show a differential response with downregulation of the different Cyp450s tested by 4MBC while BP3 seems not to modify their expression. On the other hand, some of the GST genes were affected by one or other of the filters, showing a less homogenous response. Finally, MRP1 was activated by both filters but at different times. These results demonstrate for first time that UV filters alter the expression of genes involved in the different steps of the detoxification process and that they can be processed by phase I enzymes other than Cyp450s. They also suggest that UV filters affect biotransformation processes, compromising the ability of the individual to respond to chemical stress, so further research is needed to know the extent of the damage that they can produce in the resistance of the cell to chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.
He, Ke; Timm, Anne; Blaney, Lee
2017-08-04
Ultraviolet-filters (UV-filters) and estrogens have attracted increased attention as contaminants of emerging concern (CECs) due to their widespread occurrence in the environment. Most of these CECs are hydrophobic and have the potential to accumulate in aquatic organisms. To date, co-analysis of UV-filters and estrogens has not been reported due, in part, to the complex environmental matrices. Here, a multi-residue method has been developed for simultaneous determination of five UV-filters and three estrogens in tissue from aquatic and marine organisms. The procedure involved a modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction with a novel reverse-solid-phase extraction (reverse-SPE) cleanup in place of dispersive-SPE, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The tissue mass, acetonitrile content, and salt conditions for QuEChERS extraction, along with the reverse-SPE cartridge material and elution conditions, were thoroughly investigated and optimized. Five UV-filters (i.e., 3-(4-methylbenzylidene) camphor, benzophenone-3, ethylhexylmethoxycinnamate, homosalate, and octocrylene) and three estrogens (i.e., estrone, 17β-estradiol, and 17α-ethinylestradiol) were simultaneously analyzed by taking advantage of wrong-way-round ionization in LC-MS/MS. The optimized analytical protocol exhibited good recoveries (>80%) for target compounds and enabled their detection at concentrations as low as 0.2ng/g in 50mg tissue samples. The method was applied to determine concentrations of target analytes in four invertebrates (i.e., Orconectes virilis, Procambarus clarkii, Crassostrea virginica, and Ischadium recurvum). All eight target analytes were detected at least once in the tissue samples, with the highest concentration being 399ng/g of homosalate in O. virilis. These results highlight the ubiquitous bioaccumulation of CECs in aquatic and marine invertebrates. Copyright © 2017 Elsevier B.V. All rights reserved.
Ding, Xuelu; Gerbig, Stefanie; Spengler, Bernhard; Schulz, Sabine
2018-02-01
Organic UV filters in personal care products (PCPs) have been persistently reported as a potential threat to human health. In order to guarantee consumers ' safety, the dose of these compounds in PCPs needs to be monitored. Here, a methodology based on reactive low temperature plasma ionization (LTP) mass spectrometry (MS) has been developed for the determination of common organic UV filters in PCPs including benzophenone-3, ethylhexyl dimethyl p-aminobenzoic acid, ethylhexyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, and ethylhexyl salicylate. The experiments were carried out in transmission geometry where the LTP ion source, samples loaded on a stainless steel mesh, and the MS inlet were aligned coaxially. Four chemicals, ammonia, ammonium formate, aniline, and methylamine were considered as reactive additives allowing reactions with the UV filters through different mechanisms. Methylamine-induced reactive LTP-MS showed the most prominent improvement on the detection of UV filter compounds. Compared to direct LTP-MS, the developed method improved the detection limits of UV filters more than 10 fold. Moreover, the method enabled fast semi-quantitative screening of UV filters in authentic PCPs. Concentrations of active ingredients in eight authentic PCPs as determined with reactive LTP-MS were found comparable to values offered by the cosmetic companies and corresponding HPLC data. The methodology provides high throughput analysis (70s per sample) and sensitive identification of organic UV filters. Lowest detectable concentrations ranged from 0.13µg/g for 4-methylbenzylidene camphor to 7.67µg/g for octocrylene in spiked cream. In addition, it shows the potential to be used as a screening tool for legal authentications of these chemicals in the future due to its semi-quantitative determination of UV filters in PCPs without tedious sample preparation and time-consuming chromatographic separation. Copyright © 2017 Elsevier B.V. All rights reserved.
Particle phase photosensitized radical production and aerosol aging.
Corral-Arroyo, Pablo; Bartels-Rausch, Thorsten; Alpert, Peter Aaron; Dumas, Stephane; Perrier, Sebastien; George, Christian; Ammann, Markus
2018-06-13
Atmospheric aerosol particles may contain light absorbing (brown carbon, BrC), triplet forming organic compounds that can sustain catalytic radical reactions and thus contribute to oxidative aerosol aging. We quantify UVA induced radical production initiated by imidazole-2-carboxaldehyde (IC), benzophenone (BPh) and 4-Benzoylbenzoic acid (BBA) in the presence of the non-absorbing organics citric acid (CA), shikimic acid (SA) and syringol (Syr) at varying mixing ratios. We observed a maximum HO 2 release of 10 13 molecules min -1 cm -2 at a mole ratio Χ BPh <0.02 for BPh in CA. Mixtures of either IC or BBA with CA resulted in 10 11 -10 12 molecules min -1 cm -2 of HO 2 at mole ratios (Χ IC and Χ BBA ) between 0.01 and 0.15. HO 2 release was affected by relative humidity (RH) and film thickness suggesting coupled photochemical reaction and diffusion processes. Quantum yields of HO 2 formed per absorbed photon for IC, BBA and BPh were between 10 -7 and 5∙10 -5 . The non-photoactive organics, Syr and SA, increased HO 2 production due to the reaction with the triplet excited species ensuing ketyl radical production. Rate coefficients of the triplet of IC with Syr and SA measured by laser flash photolysis experiments were k Syr =9.4±0.3∙10 8 M -1 s -1 and k SA =2.7±0.5∙10 7 M -1 s -1 . A simple kinetic model was used to assess total HO 2 and organic radical production in the condensed phase and to upscale to ambient aerosol, indicating that BrC induced radical production may amount to an upper limit of 20 and 200 M day -1 of HO 2 and organic radical respectively, which is greater or in the same order of magnitude as the internal radical production from other processes, previously estimated to be around 15 M per day.
Parker, Erica N.; Song, Jiangli; Kumar, G. D. Kishore; Odutola, Samuel O.; Chavarria, Gustavo E.; Charlton-Sevcik, Amanda K.; Strecker, Tracy E.; Barnes, Ashleigh L.; Sudhan, Dhivya R.; Wittenborn, Thomas R.; Siemann, Dietmar W.; Horsman, Michael R.; Chaplin, David J.; Trawick, Mary Lynn; Pinney, Kevin G.
2016-01-01
Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 μM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre-clinical drug candidates. PMID:26462052
Occurrence, fate and risk assessment of personal care products in river-groundwater interface.
Serra-Roig, Maria Pau; Jurado, Anna; Díaz-Cruz, M Silvia; Vázquez-Suñé, Enric; Pujades, Estanislao; Barceló, Damià
2016-10-15
This work presents the occurrence and fate of selected personal care products (PCPs) in the urban river-groundwater interface. To this end, urban river and groundwater samples were collected in Sant Adrià del Besòs (NE of Spain) and a total of 16 PCPs were analyzed including benzophenone derivatives, camphor derivatives, p-aminobenzoic acid derivatives, triazoles and parabens in three different campaigns (from May 2010 to July 2014). These compounds reach the aquifer through the recharge of Besòs River that receives large amounts of effluents from waste water treatment plants. Results have shown that most of the compounds were not or barely detected (maximum concentrations around 200ng/L) in groundwater samples during the different sampling campaigns. Only two triazoles, namely benzotriazole (BZT) and methyl benzotriazol (MeBZT) were found at high concentrations in groundwater samples (maximum concentration around 2000ng/L). The fate of PCPs in the aquifer was assessed using mixing analysis considering the seasonal variability of the Besòs River. Overall, measured groundwater concentrations were significantly much lower than those estimated by the mixing of the river water. This observation suggested that most of the PCPs are naturally removed when river water infiltrates the aquifer. However, some compounds were more persistent in the aquifer. These compounds were in descending order: the triazoles BZT and MeBZT followed by the camphor derivative 4MBC and the paraben MePB. The measured concentrations allowed us to assess the environmental risk posed by the selected UV-filters and parabens in the river and groundwater samples. Hazard Quotients (HQs) for different aquatic species were calculated in order to characterize the ecotoxicity potential of the studied compounds in the river-groundwater interface. HQ values were always below 1 indicating that at the concentrations observed in the surface or aquifer water of Besòs River these compounds pose no risk to the selected aquatic organisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo
2017-07-01
Magnetic solid-phase extraction is one of the most promising new extraction methods for liquid samples before ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Several types of materials, including carbonaceous ones, have been prepared for this purpose. In this paper, for the first time, the preparation, characterization, and sorption capability of Fe 3 O 4 -graphitized carbon black (mGCB) composite toward some compounds of environmental interest were investigated. The synthesized mGCB consisted of micrometric GCB particles with 55 m 2 g -1 surface area bearing some carbonyl and hydroxyl functionalities and the surface partially decorated by Fe 3 O 4 microparticles. The prepared mGCB was firstly tested as an adsorbent for the extraction from surface water of 50 pollutants, including estrogens, perfluoroalkyl compounds, UV filters, and quinolones. The material showed good affinity to many of the tested compounds, except carboxylates and glucoronates; however, some compounds were difficult to desorb. Ten UV filters belonging to the chemical classes of benzophenones and p-aminobenzoates were selected, and parameters were optimized for the extraction of these compounds from surface water before UHPLC-MS/MS determination. Then, the method was validated in terms of linearity, trueness, intra-laboratory precision, and detection and quantification limits. In summary, the method performance (trueness, expressed as analytical recovery, 85-114%; RSD 5-15%) appears suitable for the determination of the selected compounds at the level of 10-100 ng L -1 , with detection limits in the range of 1-5 ng L -1 . Finally, the new method was compared with a published one, based on conventional solid-phase extraction with GCB, showing similar performance in real sample analysis. Graphical Abstract Workflow of the analytical method based on magnetic solid-phase extraction followed by LC-MS/MS determination.
Gao, Li; Yuan, Tao; Zhou, Chuanqi; Cheng, Peng; Bai, Qifeng; Ao, Junjie; Wang, Wenhua; Zhang, Haimou
2013-11-01
UV filters are increasingly used in sunscreens and other personal care products. Although their residues have been widely identified in aquatic environment, little is known about the influences of UV filters to protozoan. The growth inhibition effects, cell viability and oxidative stress responses of four commonly used UV filters, 2-ethylhexyl 4-methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and octocrylene (OC), to protozoan Tetrahymena thermophila were investigated in this study. The 24-h EC50 values with 95% confidence intervals for BP-3 and 4-MBC were 7.544 (6.561-8.675) mg L(-1) and 5.125 (4.874-5.388) mg L(-1), respectively. EHMC and OC did not inhibit the growth of T. thermophila after 24h exposure at the tested concentrations. The results of cell viability assays with propidium iodide (PI) staining were consistent with that of the growth inhibition tests. As for BP-3 and 4-MBC, the relatively higher concentrations, i.e. of 10.0 and 15.0 mg L(-1), could lead to the cell membranes impairment after 4h exposure. With the increase of the exposure time to 6h, their adverse effects on cell viability of T. thermophila were observed at the relatively lower concentration groups (1.0 mg L(-1) and 5.0 mg L(-1)). In addition, it is noticeable that at environmentally relevant concentration (1.0 μg L(-1)), BP-3 and 4-MBC could lead to the significant increase of catalase (CAT) activities of the T. thermophila cells. Especially for the BP-3, the oxidative injuries were further confirmed by the reduction of glutathione (GSH) content. It is imperative to further investigate the additive action of UV filters and seek other sensitive endpoint, especially at environmentally relevant concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Removal of micro pollutants using activated biochars and powdered activated carbon in water
NASA Astrophysics Data System (ADS)
Kim, E.; Jung, C.; Han, J.; Son, A.; Yoon, Y.
2015-12-01
Recent studies have suggested that emerging micropollutants containing endocrine disrupting compounds (EDCs); bisphenol A, 17 α-ethinylestradiol, 17 β-estradiol and pharmaceuticals and personal care products (PPCPs); sulfamethoxazole, carbamazepine, ibuprofen, atenolol, benzophenone, benzotriazole, caffeine, gemfibrozil, primidone, triclocarban in water have been linked to ecological impacts, even at trace concentrations (sub ug/L). Adsorption with adsorbent such as activated carbon having a high-binding affinity has been widely used to eliminate various contaminants in the aqueous phase. Recently, an efficient treatment strategy for EDCs and PPCPs has been considered by using cost effective adsorption particularly with biochar in aqueous environmentIn this study, the objective of this study is to determine the removal of 13 target EDCs/PPCPs having different physicochemical properties by a biochar at various water quality conditions (pH (3.5, 7, and 10.5), background ions (NaCl, CaCl2, Na₂SO₄), ionic strength, natural organic matter (NOM)). The activated biochar produced in a laboratory was also characterized by using conventional analytical methods as well as advanced solid-state nuclear magnetic resonance (NMR) techniques, which answer how these properties determine the competitive adsorption characteristics and mechanisms of EDCs and PPCPs.The primary findings suggest that micropollutants can be removed more effectively by the biochar than the commercially available powdered activated carbon. At pH values below the pKa of each compound, the adsorption affinity toward adsorbents increased significantly with the pH, whereas the adsorption affinity decreased significantly at the pH above the pKa values. Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+lead to increase in the adsorption of these micropollutants. NOM adsorption with humic acids on these adsorbents disturbed adsorption capacity of the target compounds as occupying active adsorption sites and interacting with EDCs/PPCPs. Conclusion that can be drawn thus far is that the biochar shows great physicochemical properties for adsorption to reduce the micropollutants.
Philippat, Claire; Bennett, Deborah; Calafat, Antonia M; Picciotto, Irva Hertz
2015-07-01
Certain phenols and phthalates are used in many consumer products including personal care products (PCPs). We aimed to study the associations between the use of PCPs and urinary concentrations of biomarkers of select phenols and phthalates among Californian adults and their children. As an additional aim we compared phenols and phthalate metabolites concentrations measured in adults and children urine samples collected the same day. Our study relied on a subsample of 90 adult-child pairs participating in the Study of Use of Products and Exposure Related Behavior (SUPERB). Each adult and child provided one to two urine samples in which we measured concentrations of selected phenols and phthalate metabolites. We computed Spearman correlation coefficients to compare concentrations measured in adults and children urine samples collected the same day. We used adjusted linear and Tobit regression models to study the associations between the use of PCPs in the past 24h and biomarker concentrations. Benzophenone-3 and parabens concentrations were higher in adults compared to their children. Conversely children had higher mono-n-butyl phthalate and mono-isobutyl phthalate concentrations. No significant difference was observed for the other compounds. The total number of different PCPs used was positively associated with urinary concentrations of methyl, propyl and butyl parabens and the main metabolite of diethyl phthalate in adults. Among children, the use of a few specific products including liquid soap, hair care products and sunscreen was positively associated with urinary concentrations of some phenols or phthalate metabolites. These results strengthen the body of evidence suggesting that use of PCPs is an important source of exposure to parabens and diethyl phthalate in adults and provide data on exposure to selected phenols and phthalates through use of PCPs in children. Copyright © 2015 Elsevier Inc. All rights reserved.
Harley, Kim G; Kogut, Katherine; Madrigal, Daniel S; Cardenas, Maritza; Vera, Irene A; Meza-Alfaro, Gonzalo; She, Jianwen; Gavin, Qi; Zahedi, Rana; Bradman, Asa; Eskenazi, Brenda; Parra, Kimberly L
2016-10-01
Personal care products are a source of exposure to potentially endocrine-disrupting chemicals such as phthalates, parabens, triclosan, and benzophenone-3 (BP-3) for adolescent girls. We enrolled 100 Latina girls in a youth-led, community-based participatory research intervention study to determine whether using personal care products whose labels stated they did not contain these chemicals for 3 days could lower urinary concentrations. Pre- and postintervention urine samples were analyzed for phthalate metabolites, parabens, triclosan, and BP-3 using high-performance liquid chromatography/tandem mass spectrometry. Urinary concentrations of mono-ethyl phthalate (MEP) decreased by 27.4% (95% CI: -39.3, -13.2) on average over the 3-day intervention; no significant changes were seen in urinary concentrations of mono-n-butyl phthalate (MnBP) and mono-isobutyl phthalate (MiBP). Methyl and propyl paraben concentrations decreased by 43.9% (95% CI: -61.3, -18.8) and 45.4% (95% CI: -63.7, -17.9), respectively. Unexpectedly, concentrations of ethyl and butyl paraben concentrations increased, although concentrations were low overall and not detected in almost half the samples. Triclosan concentrations decreased by 35.7% (95% CI: -53.3, -11.6), and BP-3 concentrations decreased by 36.0% (95% CI: -51.0, -16.4). This study demonstrates that techniques available to consumers, such as choosing personal care products that are labeled to be free of phthalates, parabens, triclosan, and BP-3, can reduce personal exposure to possible endocrine-disrupting chemicals. Involving youth in the design and implementation of the study was key to recruitment, retention, compliance, and acceptability of the intervention. Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, She J, Gavin Q, Zahedi R, Bradman A, Eskenazi B, Parra KL. 2016. Reducing phthalate, paraben, and phenol exposure from personal care products in adolescent girls: findings from the HERMOSA Intervention Study. Environ Health Perspect 124:1600-1607; http://dx.doi.org/10.1289/ehp.1510514.
Philippat, Claire; Bennett, Deborah; Calafat, Antonia M.; Picciotto, Irva Hertz
2016-01-01
Introduction Certain phenols and phthalates are used in many consumer products including personal care products (PCPs). Aims We aimed to study the associations between the use of PCPs and urinary concentrations of bio-markers of select phenols and phthalates among Californian adults and their children. As an additional aim we compared phenols and phthalate metabolites concentrations measured in adults and children urine samples collected the same day. Methods Our study relied on a subsample of 90 adult–child pairs participating in the Study of Use of Products and Exposure Related Behavior (SUPERB). Each adult and child provided one to two urine samples in which we measured concentrations of selected phenols and phthalate metabolites. We computed Spearman correlation coefficients to compare concentrations measured in adults and children urine samples collected the same day. We used adjusted linear and Tobit regression models to study the associations between the use of PCPs in the past 24 h and biomarker concentrations. Results Benzophenone-3 and parabens concentrations were higher in adults compared to their children. Conversely children had higher mono-n-butyl phthalate and mono-isobutyl phthalate concentrations. No significant difference was observed for the other compounds. The total number of different PCPs used was positively associated with urinary concentrations of methyl, propyl and butyl parabens and the main metabolite of diethyl phthalate in adults. Among children, the use of a few specific products including liquid soap, hair care products and sunscreen was positively associated with urinary concentrations of some phenols or phthalate metabolites. Discussion These results strengthen the body of evidence suggesting that use of PCPs is an important source of exposure to parabens and diethyl phthalate in adults and provide data on exposure to selected phenols and phthalates through use of PCPs in children. PMID:25929801
Herman, Christine T.; Potts, Gregory K.; Michael, Madeline C.; Tolan, Nicole V.
2014-01-01
Model substrates presenting biochemical cues immobilized in a controlled and well-defined manner are of great interest for their applications in biointerface studies that elucidate the molecular basis of cell receptor-ligand interactions. Herein, we describe a direct, photochemical method to generate one-component surface-immobilized biomolecular gradients that are applied to the study of selectin-mediated leukocyte rolling. The technique employs benzophenone-modified glass substrates, which upon controlled exposure to UV light (350 – 365 nm) in the presence of protein-containing solutions facilitate the generation of covalently immobilized protein gradients. Conditions were optimized to generate gradient substrates presenting P-selectin and PSGL-1 (P-selectin Glycoprotein Ligand-1) immobilized at site densities over a 5- to 10-fold range (from as low as ~200 molecules/μm2 to as high as 6000 molecules/μm2). The resulting substrates were quantitatively characterized via fluorescence analysis and radioimmunoassays before their use in the leukocyte rolling assays. HL-60 promyelocytes and Jurkat T lymphocytes were assessed for their ability to tether to and roll on substrates presenting immobilized P-selectin and PSGL-1 under conditions of physiologically relevant shear stress. The results of these flow assays reveal the combined effect of immobilized protein site density and applied wall shear stress on cell rolling behavior. Two-component substrates presenting P-selectin and ICAM-1 (intercellular adhesion molecule-1) were also generated to assess the interplay between these two proteins and their effect on cell rolling and adhesion. These proof-of-principle studies verify that the described gradient generation approach yields well-defined gradient substrates that present immobilized proteins over a large range of site densities that are applicable for investigation of cell-materials interactions, including multi-parameter leukocyte flow studies. Future applications of this enabling methodology may lead to new insights into the biophysical phenomena and molecular mechanism underlying complex biological processes such as leukocyte recruitment and the inflammatory response. PMID:21614364
Imamović, B; Sober, M; Becić, E
2009-10-01
The protection of sun radiation is a problem on global level for all living organisms on Earth. The need of people for the overexposure to the UV radiation led human population towards finding novel ways of protection of this kind of radiation, in form of cosmetic preparations applied on the skin. So far, the high values of protection factors of preparations and total block preparations with sun protection factor of 50+ were achieved. Physical and chemical filters which absorb radiation are constituents of these preparations. European Union has set regulations as which substances and in what amounts could be used as UV absorbers. American FDA (Food and Drug Administration) also gave its list of the most frequently used UV absorbers in the sunscreen products, as well as their declared concentrations. The most frequently used concentrations of UV filters in cosmetics is between 0.1% and 10%. Concentrations of UV filters in sunscreen products have to be monitored in order to ensure that they are not less from the declared levels, on which depends the efficacy and safety of the product. Butyl methoxydibenzoylmethane (BMDM) is used as a UV-A filter in suncare products. Optimized high performance liquid chromatography method for BMDM determination in the presence of other UV filters in suncare preparations is presented in this paper. Determination was performed on C(8) reversed phase using UV detection at 357 nm and isocratic mobile phase of acetonitrile and 0.5% phosphoric acid (70 : 30 v/v). Proposed method has limit of detection of 0.058 microg mL(-1), limit of quantification 0.193 microg mL(-1) and linearity correlation coefficient of 0.9989. Commercially available products were analysed using the proposed method. All analysed samples complied with EU directives limit of BMDM content to no more than 5%.
El-Sheikh, Manal A
2016-11-05
The photosensitized grafting of vinyl monomers onto a range of polymeric substrates has been the subject of particular interest in the recent past. Carboxymethyl starch (CMS)-poly acrylamide (PAAm) graft copolymer (CMS-g-PAAm) with high graft yield was successfully prepared by grafting of acrylamide onto CMS using UV irradiation in the presence of the water soluble 4-(trimethyl ammoniummethyl) benzophenone chloride photoinitiator. CMS-g-PAAm with nitrogen content of 8.3% and grafting efficiency up to 98.9% was obtained using 100% AAm, a material: liquor ratio of 1:14 and 1% photinitiator at 30°C for 1h of UV irradiation. The synthesis of CMS-g-PAAm was confirmed by FTIR and Nitrogen content (%). Surface morphology of CMS and surface morphological changes of CMS after grafting with AAm were studied using SEM. Thermal properties of both CMS and CMS-g-PAAm were studied using TGA and DSC. To impart easy care finishing to cotton fabrics, aqueous formulations of: CMS-g-PAAm, dimethylol dihydroxy ethylene urea (DMDHEU), CMS-g-PAAm-DMDHEU mixture or methylolated CMS-g-PAAm were used. Cotton fabrics were padded in these formulations, squeezed to a wet pick up 100%, dried at 100°C for 5min, cured at 150°C for 5min, washed at 50°C for 10min and air-dried. CRA (crease recovery angle) of untreated fabrics and fabrics finished with a mixture of 2% CMS-g-PAAm and 10% DMDHEU or methylolated CMS-g-PAAm (10% formaldehyde) were: 136°, 190°, 288° respectively. Increasing the number of washing cycles up to five cycles results in an insignificant decrease in the CRA and a significant decrease in RF (releasable formaldehyde) of finished fabric samples. The morphologies of the finished and unfinished cotton fabrics were performed by SEM. Copyright © 2016 Elsevier Ltd. All rights reserved.
North American Contact Dermatitis Group patch test results for 2007-2008.
Fransway, Anthony F; Zug, Kathryn A; Belsito, Donald V; Deleo, Vincent A; Fowler, Joseph F; Maibach, Howard I; Marks, James G; Mathias, C G Toby; Pratt, Melanie D; Rietschel, Robert L; Sasseville, Denis; Storrs, Frances J; Taylor, James S; Warshaw, Erin M; Dekoven, Joel; Zirwas, Matthew
2013-01-01
The North American Contact Dermatitis Group (NACDG) tests patients with suspected allergic contact dermatitis to a broad series of screening allergens and publishes periodic reports. The aims of this study were to report the NACDG patch-testing results from January 1, 2007, to December 31, 2008, and to compare results to pooled test data from the previous 2 and 10 years to analyze trends in allergen sensitivity. Standardized patch testing with 65 allergens was used at 13 centers in North America. χ analysis was used for comparisons. A total of 5085 patients were tested; 11.8% (598) had an occupationally related skin condition, and 65.3% (3319) had at least 1 allergic patch test reaction, which is identical to the NACDG data from 2005 to 2006. The top 15 most frequently positive allergens were nickel sulfate (19.5%), Myroxylon pereirae (11.0%), neomycin (10.1%), fragrance mix I (9.4%), quaternium-15 (8.6%), cobalt chloride (8.4%), bacitracin (7.9%), formaldehyde (7.7%), methyldibromoglutaronitrile/phenoxyethanol (5.5%), p-phenylenediamine (5.3%), propolis (4.9%), carba mix (4.5%), potassium dichromate (4.1%), fragrance mix II (3.6%), and methylchloroisothiazolinone/methylisothiazolinone (3.6%). There were significant increases in positivity rates to nickel, methylchloroisothiazolinone/methylisothiazolinone, and benzophenone-3. During the same period of study, there were significant decreases in positivity rates to neomycin, fragrance mix I, formaldehyde, thiuram mix, cinnamic aldehyde, propylene glycol, epoxy resin, diazolidinyl urea, amidoamine, ethylenediamine, benzocaine, p-tert-butylphenol formaldehyde resin, dimethylol dimethyl hydantoin, cocamidopropyl betaine, glutaraldehyde, mercaptobenzothiazole, tosylamide formaldehyde resin, budesonide, disperse blue 106, mercapto mix, and chloroxylenol. Twenty-four percent (1221) had a relevant positive reaction to a non-NACDG supplementary allergen; and 180 of these reactions were occupationally relevant. Periodic analysis, surveillance, and publication of multicenter study data sets document trends in allergen reactivity incidence assessed in the patch test clinic setting and provide information on new allergens of relevance.
Sakhi, Amrit Kaur; Sabaredzovic, Azemira; Papadopoulou, Eleni; Cequier, Enrique; Thomsen, Cathrine
2018-05-01
Exposure to environmental phenols including parabens, bisphenols (BPs), oxybenzone/benzophenone-3 (BP-3) and triclosan (TCS) is ubiquitous. Due to evidence of their estrogenic activity, they have been considered as chemicals of concern. The exposure of the Norwegian population to these compounds is presently unknown. To measure urinary levels of twelve different environmental phenols including four emerging bisphenols: S, F, B and AF (abbreviated as BPS, BPF, BPB and BPAF, respectively) in a healthy Norwegian population. We have calculated short-term variability, estimated daily intakes and investigated important determinants of exposure. Urine samples were collected from mothers (n = 48) and their children (n = 56) during spring/summer 2012 in two counties in Norway. Six environmental phenols namely methyl, ethyl and propyl paraben, BPA, BP-3 and TCS were detected in almost 100% of the urine samples. Among the emerging bisphenols, BPS was detected most frequently in the urine samples (42-48%) followed by BPF (4-15%). Parabens were positively and significantly correlated to each other in both mothers and children. Levels of parabens and BP-3 were higher in mothers compared to children. All mothers and children had lower estimated daily intakes (back calculated from the urinary concentrations) of parabens and BPA than the respective acceptable and tolerable daily intakes (ADIs and TDIs) established by the European Food Safety Authority (EFSA). Observed intraclass correlation coefficients (ICCs) indicated moderate to high reliability of spot urine measurements for all the environmental phenols (ICCs: 0.70-0.97). Use of hair products, deodorants, face and hand creams were significantly associated with higher urinary levels of parabens. Occurrence of environmental phenols in healthy Norwegian women and children is abundant. Among emerging bisphenols, there is widespread exposure to BPS. A single spot urine sample can be used for estimating short-term exposures of environmental phenols. Urinary levels of parabens were associated with use of PCPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
FerriCast: a macrocyclic photocage for Fe3+.
Kennedy, Daniel P; Incarvito, Christopher D; Burdette, Shawn C
2010-02-01
The non-siderophoric Fe(3+) photocage FerriCast (4,5-dimethoxy-2-nitrophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl] methanol (2) has been prepared in high yield using an optimized two-step reaction sequence that utilizes a trimethylsilyl trifluoromethanesulfonate (TMSOTf) assisted electrophilic aromatic substitution as the key synthetic step. Spectrophotometric assessment of Fe(3+) binding to FerriCast revealed a binding stoichiometry and metal ion affinity dependent on the nature of the counterion. Exposure of FerriCast to 350 nm light initiates a photoreaction that converts FerriCast into FerriUnc (4,5-dimethoxy-2-nitrosophenyl)-[4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl]-methanone), which binds Fe(3+) less strongly owing to resonance delocalization of the anilino lone pair into the benzophenone pi-system. The release of Fe(3+) upon photolysis of FerriCast also was evaluated using a previously reported turn-on fluorescent sensor that utilizes the same macrocyclic ligand (4-(1-oxa-4,10-dithia-7-aza-cyclododec-7-yl)phenyl, AT(2)12C4). In contrast to the original reports on AT(2)12C4-based Fe(3+) sensors, FerriCast does not interact with ferric iron in aqueous solution. Introduction of oxygen containing solvents (MeOH, H(2)O, DMSO, MES, and phosphate buffers) to CH(3)CN solutions of metalated FerriCast lead to rapid decomplexation as measured by UV-visible spectroscopy. Further investigations contradicted the published conclusions on the aqueous coordination chemistry of AT(2)12C4, but also confirmed the unique and unexpected selectivity of the macrocycle for Fe(3+) in nonaqueous solvents. The crystallographic analysis of [Cu(AT(2)12C4)Cl](+) provides a rare example of a bifurcated hydrogen bond, and evidence for redox chemistry with the ligand. Spectrophotometric analysis of the model ligand with redox active metal ions provide evidence for AT(2)12C4(*+), a quasi-stable species the presence of which suggests caution should be taken when evaluating the interaction of aniline-containing systems with redox active metal ions.
Harley, Kim G.; Kogut, Katherine; Madrigal, Daniel S.; Cardenas, Maritza; Vera, Irene A.; Meza-Alfaro, Gonzalo; She, Jianwen; Gavin, Qi; Zahedi, Rana; Bradman, Asa; Eskenazi, Brenda; Parra, Kimberly L.
2016-01-01
Background: Personal care products are a source of exposure to potentially endocrine-disrupting chemicals such as phthalates, parabens, triclosan, and benzophenone-3 (BP-3) for adolescent girls. Methods: We enrolled 100 Latina girls in a youth-led, community-based participatory research intervention study to determine whether using personal care products whose labels stated they did not contain these chemicals for 3 days could lower urinary concentrations. Pre- and postintervention urine samples were analyzed for phthalate metabolites, parabens, triclosan, and BP-3 using high-performance liquid chromatography/tandem mass spectrometry. Results: Urinary concentrations of mono-ethyl phthalate (MEP) decreased by 27.4% (95% CI: –39.3, –13.2) on average over the 3-day intervention; no significant changes were seen in urinary concentrations of mono-n-butyl phthalate (MnBP) and mono-isobutyl phthalate (MiBP). Methyl and propyl paraben concentrations decreased by 43.9% (95% CI: –61.3, –18.8) and 45.4% (95% CI: –63.7, –17.9), respectively. Unexpectedly, concentrations of ethyl and butyl paraben concentrations increased, although concentrations were low overall and not detected in almost half the samples. Triclosan concentrations decreased by 35.7% (95% CI: –53.3, –11.6), and BP-3 concentrations decreased by 36.0% (95% CI: –51.0, –16.4). Discussion: This study demonstrates that techniques available to consumers, such as choosing personal care products that are labeled to be free of phthalates, parabens, triclosan, and BP-3, can reduce personal exposure to possible endocrine-disrupting chemicals. Involving youth in the design and implementation of the study was key to recruitment, retention, compliance, and acceptability of the intervention. Citation: Harley KG, Kogut K, Madrigal DS, Cardenas M, Vera IA, Meza-Alfaro G, She J, Gavin Q, Zahedi R, Bradman A, Eskenazi B, Parra KL. 2016. Reducing phthalate, paraben, and phenol exposure from personal care products in adolescent girls: findings from the HERMOSA Intervention Study. Environ Health Perspect 124:1600–1607; http://dx.doi.org/10.1289/ehp.1510514 PMID:26947464
Haned, Zohra; Moulay, Saad; Lacorte, Silvia
2018-04-12
Flexible poly(vinyl chloride) (PVC) is widely used in the pharmaceutical industry for the manufacture of medical devices (tubes, probes, bags, primary packaging, etc.). The objective of the present study was to develop a procedure to evaluate the migration potential of nine plastic additives in aqueous infusion bags (NaCl 0.9% and glucose 5%): five phthalates, one adipate, two alkylphenols, and benzophenone. Two types of materials were analyzed: (i) new and outdated plasticized PVC (containing 40% of diethylhexyl phthalate DEHP); and (ii) tri-laminate polyethylene-polyamide-polypropylene, a multilayer material presumably exempt from DEHP. In addition, we evaluated the migration of plasticizers from PVC raw materials (film and grain) under controlled conditions to compare the migration levels according to Regulation 2011/10. Solid phase extraction and liquid-liquid extraction with gas-chromatography coupled to mass spectrometry were used in all tests. The migration of DEHP in PVC grain exceeded the maximum regulated level of 5000 μg/kg, whereas the levels were much lower in films. In new PVC bags, DEHP was the only compound detected at 4.31 ± 0.5 μg/L in NaCl 0.9% and 4.29 ± 0.25 μg/L in glucose 5% serums, whereas the levels increased 10 times in three-year shelf-life bags. In multilayer bags, DEHP was not found but instead, two plasticizers were detected namely dibuthylphthalate (DBP) and diethylphthalate (DEP) at 0.7 ± 0.1 μg/L and 4.14 ± 0.6 μg/L, respectively. These plasticizers are not mentioned as additives allowed in materials intended for parenteral use (European Pharmacopoeia 8.0, 3.1.5. and 3.1.6.). Caprolactam was tentatively identified and could have stemmed from the polyamide of the multilayer composite. The levels of phthalates remained low but not negligible and might constitute a risk to public health in the case of reiterative infusions. Copyright © 2018. Published by Elsevier B.V.
Jubeaux, Guillaume; Simon, Romain; Salvador, Arnaud; Quéau, Hervé; Chaumot, Arnaud; Geffard, Olivier
2012-05-15
This work focused on the validation of biological specificity of the quantitative LC-MS/MS assay by checking the natural variability of Vg levels during the reproductive cycle in Gammarus fossarum (i.e., including oogenesis and embryogenesis). Laboratory tests were performed for 21 days under controlled conditions to assess Vg changes in male and female gammarids after exposure to chemical stress. Females were exposed to two crustacean hormones, 20-hydroxyecdysone (0.01, 1 and 100 μg L⁻¹) and methyl-farnesoate (0.01, 1 and 100 μg L⁻¹). No effect was recorded for 20-hydroxyecdysone, whereas in females exposed to methyl-farnesoate a deleterious impact on Vg production was observed. Males were exposed to crustacean hormones 20-hydroxyecdysone (0.01, 1 and 100 μg L⁻¹) and methyl-farnesoate (0.01, 1 and 100 μg L⁻¹), the insecticide methoxyfenozide (0.001, 0.1 and 10 μg L⁻¹), the fungicide propiconazole (0.001, 0.1, 10 and 1000 μg L⁻¹), and the pharmaceutical products benzophenone, carbamazepine, cyproterone, and R-propranolol (0.001, 0.1, 10 and 1000 μg L⁻¹). Induction of Vg synthesis was recorded in males exposed to cyproterone, methoxyfenozide, methyl-farnesoate, and propiconazole. Finally, we validated the function of the ILIPGVGK peptide used to track vitellogenin in G. fossarum across reproductive processes (vitellogenesis and embryogenesis), and results confirmed the energy reserve role of Vg during embryo development. We show that oocyte surface measurement is directly related to Vg levels in the oocyte, constituting a reliable indicator of egg quality in G. fossarum. Consequently, it could be used as a reliable tool for biomonitoring programs. We recorded induction of Vg in male G. fossarum; however, the possible use of this tool as a specific biomarker of exposure to endocrine disruption should be confirmed in further studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Stiefel, C; Schwack, W
2013-12-01
Most UV filters used in sunscreens and other cosmetic products contain carbonyl groups, which generally are able to react with peptides or free amino acids of the human skin. To estimate their reactivity, we studied different prominent UV filter substances, octocrylene, ethylhexyl salicylate, 4-t-butyl-4'-methoxydibenzoylmethane, ethylhexyl methoxycinnamate, benzophenone-3, hydroxymethylbenzoyl sulphonic acid, octyldimethyl p-aminobenzoic acid, 3-benzylidene camphor, 4-methylbenzylidene camphor, diethylhexyl butamido triazone and ethylhexyl triazone. A simple screening method using an amino HPTLC plate as protein model was established. The influence of different reaction conditions like heating and irradiation was determined. The ketones BP-3, HMBS and BM-DBM revealed the highest binding rates after both irradiation and heating. After 1 h of irradiation, 82%, 28% and 96%, respectively, were bonded to the amino phase, while heating resulted in values of 52%, 36% and 16%. For BP-3 and HMBS, even storage in the dark at room temperature resulted in a low binding. Contrarily, for the two camphor derivatives 3-BC and 4-MBC, only irradiation led to a slightly turnover. UV filters with ester groups also showed a different behaviour depending on their main skeleton. While OCR especially reacted under heating with the amino phase, resulting in 36% of bound species after one hour, UV irradiation particularly encouraged a reaction of the other esters. After 1 h irradiation, 15% of EHMC, 38% of EHS and 48% of OD-PABA were bonded to the amino groups of the HPTLC plate, whereas the reactivity of the two triazones, EHT and DEBT, was comparatively low. Especially the UV filters BP-3, BM-DBM, HMBS, EHMC or OCR, which are commonly known to cause contact dermatitis, showed a high tendency to form adducts with the amino layer. Thus, the amino plate seems to be a proper tool to screen for skin sensitizers. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Phenols and Parabens in relation to Reproductive and Thyroid Hormones in Pregnant Women
Aker, Amira M; Watkins, Deborah J; Johns, Lauren E; Ferguson, Kelly K; Soldin, Offie P; Del Toro, Liza V Anzalota; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D
2016-01-01
Introduction Phenols and parabens are ubiquitous environmental contaminants. Evidence from animal studies and limited human data suggest they may be endocrine disruptors. In the current study, we examined associations of phenols and parabens with reproductive and thyroid hormones in 106 pregnant women recruited for the prospective cohort, “Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)”. Methods Urinary exposure biomarkers (bisphenol A, triclosan, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, butyl, methyl and propyl paraben) and serum hormone levels (estradiol, progesterone, sex hormone-binding globulin (SHBG), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone) were measured at up to two time points during pregnancy (16–20 weeks and 24–28 weeks). We used linear mixed models to assess relationships between exposure biomarkers and hormone levels across pregnancy, controlling for urinary specific gravity, maternal age, BMI and education. In sensitivity analyses, we evaluated cross-sectional relationships between exposure and hormone levels stratified by study visit using linear regression. Results An IQR increase in methyl paraben was associated with a 7.70% increase (95% CI 1.50, 13.90) in SHBG. Furthermore, an IQR increase in butyl paraben as associated with an 8.46% decrease (95% CI 16.92, 0.00) in estradiol, as well as a 9.34% decrease (95% CI −18.31, −0.38) in estradiol/progesterone. Conversely, an IQR increase in butyl paraben was associated with a 5.64% increase (95% CI 1.26, 10.02) in FT4. Progesterone was consistently negatively associated with phenols, but none reached statistical significance. After stratification, methyl and propyl paraben were suggestively negatively associated with estradiol at the first time point (16–20 weeks), and suggestively positively associated with estradiol at the second time point (24–28 weeks). Conclusions Within this ongoing birth cohort, certain phenols and parabens were associated with altered reproductive and thyroid hormone levels during pregnancy. These changes may contribute to adverse health effects in mothers or their offspring, but additional research is required. PMID:27448730
Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women.
Aker, Amira M; Watkins, Deborah J; Johns, Lauren E; Ferguson, Kelly K; Soldin, Offie P; Anzalota Del Toro, Liza V; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D
2016-11-01
Phenols and parabens are ubiquitous environmental contaminants. Evidence from animal studies and limited human data suggest they may be endocrine disruptors. In the current study, we examined associations of phenols and parabens with reproductive and thyroid hormones in 106 pregnant women recruited for the prospective cohort, "Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)". Urinary exposure biomarkers (bisphenol A, triclosan, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, butyl, methyl and propyl paraben) and serum hormone levels (estradiol, progesterone, sex hormone-binding globulin (SHBG), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone) were measured at up to two time points during pregnancy (16-20 weeks and 24-28 weeks). We used linear mixed models to assess relationships between exposure biomarkers and hormone levels across pregnancy, controlling for urinary specific gravity, maternal age, BMI and education. In sensitivity analyses, we evaluated cross-sectional relationships between exposure and hormone levels stratified by study visit using linear regression. An IQR increase in methyl paraben was associated with a 7.70% increase (95% CI 1.50, 13.90) in SHBG. Furthermore, an IQR increase in butyl paraben as associated with an 8.46% decrease (95% CI 16.92, 0.00) in estradiol, as well as a 9.34% decrease (95% CI -18.31,-0.38) in estradiol/progesterone. Conversely, an IQR increase in butyl paraben was associated with a 5.64% increase (95% CI 1.26, 10.02) in FT4. Progesterone was consistently negatively associated with phenols, but none reached statistical significance. After stratification, methyl and propyl paraben were suggestively negatively associated with estradiol at the first time point (16-20 weeks), and suggestively positively associated with estradiol at the second time point (24-28 weeks). Within this ongoing birth cohort, certain phenols and parabens were associated with altered reproductive and thyroid hormone levels during pregnancy. These changes may contribute to adverse health effects in mothers or their offspring, but additional research is required. Copyright © 2016 Elsevier Inc. All rights reserved.
Urinary phthalate metabolites and environmental phenols in university students in South China.
Zhang, Xue-Mei; Lou, Xiang-Ying; Wu, Liu-Hong; Huang, Cong; Chen, Da; Guo, Ying
2018-04-14
In China, university students have unique lifestyles compared with the rest of the youth population, as they are almost entirely isolated in campuses. The number of university students is large, and since students represent the future of human reproduction, exposure to environmental endocrine disruptors (EEDs) may have a large impact on society. In this study, levels of several EEDs, including phthalate metabolites, parabens, bisphenol A (BPA) and its analogues, triclosan (TCS), and benzophenone-3, were determined in 169 urine samples collected from university students in Guangzhou, South China. In addition, to further understand the potential sources of EEDs in their daily lives, a survey of students' lifestyles was conducted. Based on the urinary concentrations of EEDs and the survey results, daily exposure doses of target EEDs and their potential sources were investigated. Our results indicated that nine phthalate metabolites, three parabens, and BPA were ubiquitous (detection frequency > 60%) in the urine of university students. The concentrations of total phthalates (median: 99.4 µg L -1 ) were orders of magnitude higher than those of total parabens (7.30 µg L -1 ) and of other environmental phenols (0.40 µg L -1 ). Significantly higher concentrations of phthalates, parabens, and TCS were found in female versus male students, partly due to the higher usage of personal care products (PCPs) by female students (p < 0.05). The estimated daily intakes (EDIs) of phthalates, parabens, BPA, and TCS were 0.46-1.35, 3.29-10.3, 0.007, and 0.67 µg/kg-bw/day, respectively. The EDIs of phthalates and BPA were much lower than those suggested by the European Food Safety guidelines (10, 50, and 50 µg/kg-bw/day for dibutyl phthalate, diethylhexyl phthalate, and BPA, respectively). Our results indicated that university students were widely exposed to EEDs, but at relatively low doses. PCP usage was the main reason for differences in levels of phthalates (especially diethyl phthalate) and parabens between male and female students in South Chinese universities. Copyright © 2018. Published by Elsevier Inc.
Jakubowska, Natalia; Beldì, Giorgia; Peychès Bach, Aurélie; Simoneau, Catherine
2014-01-01
This paper presents the outcome of the development, optimisation and validation at European Union level of an analytical method for using poly(2,6-diphenyl phenylene oxide--PPPO), which is stipulated in Regulation (EU) No. 10/2011, as food simulant E for testing specific migration from plastics into dry foodstuffs. Two methods for fortifying respectively PPPO and a low-density polyethylene (LDPE) film with surrogate substances that are relevant to food contact were developed. A protocol for cleaning the PPPO and an efficient analytical method were developed for the quantification of butylhydroxytoluene (BHT), benzophenone (BP), diisobutylphthalate (DiBP), bis(2-ethylhexyl) adipate (DEHA) and 1,2-cyclohexanedicarboxylic acid, diisononyl ester (DINCH) from PPPO. A protocol for a migration test from plastics using small migration cells was also developed. The method was validated by an inter-laboratory comparison (ILC) with 16 national reference laboratories for food contact materials in the European Union. This allowed for the first time data to be obtained on the precision and laboratory performance of both migration and quantification. The results showed that the validation ILC was successful even when taking into account the complexity of the exercise. The results showed that the method performance was 7-9% repeatability standard deviation (rSD) for most substances (regardless of concentration), with 12% rSD for the high level of BHT and for DiBP at very low levels. The reproducibility standard deviation results for the 16 European Union laboratories were in the range of 20-30% for the quantification from PPPO (for the three levels of concentrations of the five substances) and 15-40% from migration experiments from the fortified plastic at 60°C for 10 days and subsequent quantification. Considering the lack of data previously available in the literature, this work has demonstrated that the validation of a method is possible both for migration from a film and for quantification into a corresponding simulant for specific migration.
Carpinteiro, Inmaculada; Rodil, Rosario; Quintana, José Benito; Cela, Rafael
2017-09-01
In this work, the reaction of four benzodiazepines (diazepam, oxazepam, nordazepam and temazepam) during water chlorination was studied by means of liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF-MS). For those compounds that showed a significant degradation, i.e. diazepam, oxazepam and nordazepam, parameters affecting to the reaction kinetics (pH, chlorine and bromide level) were studied in detail and transformation products were tentatively identified. The oxidation reactions followed pseudofirst-order kinetics with rate constants in the range of 1.8-42.5 M -1 s -1 , 0.13-1.16 M -1 s -1 and 0.04-20.4 M -1 s -1 corresponding to half-life values in the range of 1.9-146 min, 1.8-87 h and 2.5-637 h for oxazepam, nordazepam and diazepam, respectively, depending of the levels of studied parameters. Chlorine and pH affected significantly the reaction kinetics, where an increase of the pH resulted into a decrease of the reaction rate, whereas higher chlorine dosages led to faster kinetics, as expected in this case. The transformation of the studied benzodiazepines occurs mainly at the 1,4-diazepine 7-membered-ring, resulting in ring opening to form benzophenone derivatives or the formation of a 6-membered pyrimidine ring, leading to quinazoline derivatives. The formation of these by-products was also tested in real surface water samples observing kinetics of oxazepam degradation slower in river than in creek water, while the degradation of the two other benzodiazepines occurred only in the simpler sample (creek water). Finally, the acute and chronical toxicity and mutagenicity of precursors and transformation products were estimated using quantitative structure-activity relationship (QSAR) software tools: Ecological Structure Activity Relationships (ECOSAR) and Toxicity Estimation Software Tool (TEST), finding that some transformation products could be more toxic/mutagenic than the precursor drug, but additional test would be needed to confirm this fact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Shuangliu; Wu, Zhangshuan; Rong, Jiewei; Wang, Shaowu; Yang, Gaosheng; Zhu, Xiancui; Zhang, Lijun
2012-02-27
A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mbaveng, Armelle T; Kuete, Victor; Efferth, Thomas
2017-01-01
Cancer remains a major health hurdle worldwide and has moved from the third leading cause of death in the year 1990 to second place after cardiovascular disease since 2013. Chemotherapy is one of the most widely used treatment modes; however, its efficiency is limited due to the resistance of cancer cells to cytotoxic agents. The present overview deals with the potential of the flora of Central, Eastern and Western African (CEWA) regions as resource for anticancer drug discovery. It also reviews the molecular targets of phytochemicals of these plants such as ABC transporters, namely P-glycoprotein (P-gp), multi drug-resistance-related proteins (MRPs), breast cancer resistance protein (BCRP, ABCG2) as well as the epidermal growth factor receptor (EGFR/ErbB-1/HER1), human tumor suppressor protein p53, caspases, mitochondria, angiogenesis, and components of MAP kinase signaling pathways. Plants with the ability to preferentially kills resistant cancer cells were also reported. Data compiled in the present document were retrieved from scientific websites such as PubMed, Scopus, Sciencedirect, Web-of-Science, and Scholar Google. In summary, plant extracts from CEWA and isolated compounds thereof exert cytotoxic effects by several modes of action including caspases activation, alteration of mitochondrial membrane potential (MMP), induction of reactive oxygen species (ROS) in cancer cells and inhibition of angiogenesis. Ten strongest cytotoxic plants from CEWA recorded following in vitro screening assays are: Beilschmiedia acuta Kosterm, Echinops giganteus var. lelyi (C. D. Adams) A. Rich., Erythrina sigmoidea Hua (Fabaceae), Imperata cylindrical Beauv. var. koenigii Durand et Schinz, Nauclea pobeguinii (Pobég. ex Pellegr.) Merr. ex E.M.A., Piper capense L.f., Polyscias fulva (Hiern) Harms., Uapaca togoensis Pax., Vepris soyauxii Engl. and Xylopia aethiopica (Dunal) A. Rich. Prominent antiproliferative compounds include: isoquinoline alkaloid isotetrandrine ( 51 ), two benzophenones: guttiferone E ( 26 ) and isoxanthochymol ( 30 ), the isoflavonoid 6α-hydroxyphaseollidin ( 9 ), the naphthyl butenone guieranone A ( 25 ), two naphthoquinones: 2-acetylfuro-1,4-naphthoquinone ( 4 ) and plumbagin ( 37 ) and xanthone V 1 ( 46 ). However, only few research activities in the African continent focus on cytotoxic drug discovery from botanicals. The present review is expected to stimulate further scientific efforts to better valorize the African flora.
Nakayama, Y; Matsuda, T
1999-01-01
This article presents a novel photochemically driven surgical tissue adhesive technology using photoreactive gelatins and a water-soluble difunctional macromer (poly(ethylene glycol) diacrylate: PEGDA).The gelatins were partially derivatized with photoreactive groups, such as ultraviolet light (UV)-reactive benzophenone and visible light-reactive xanthene dye (e.g., fluorescein sodium salt, eosin Y, and rose bengal). A series of the prepared photocurable tissue adhesive glues, consisting of the photoreactive gelatin, PEGDA, and a saline solution with or without ascorbic acid as a reducing agent, were viscous solutions under warming, and their effectiveness was evaluated as hemostasis- and anastomosis-aid in cardiovascular surgery. Regardless of the type of photoreactive groups, the irradiation of the photocurable tissue adhesive glues by UV or visible light within 1 min produced water-swollen gels, which had a high adhesive strength to wet collagen film. These were due to the synergistic action of photoreactive group-initiated photo-cross-linking and photograft polymerization. An increase in the irradiation time resulted in increased gel yield and reduced water swellability. A decrease in the molecular weight of PEGDA and an increase in concentration of both gelatin and PEGDA resulted in reduced water swellability and increased tensile and burst strengths of the resultant gels. In rats whose livers were injured with a trephine in laparotomy, the bleeding spots were coated with the photocurable adhesive glue and irradiated through an optical fiber. The coated solution was immediately converted to a swollen gel. The gel was tightly adhered to the liver tissue presumably by interpenetration, and concomitantly hemostasis was completed. The anastomosis treatment with the photocurable glue in the canine abdominal or thoracic aortas incised with a knife resulted in little bleeding under pulsatile flow after declamping. Histological examination showed that the glues photocured on rat liver surfaces were gradually degraded with time in vivo with infiltration of inflammatory cells and connective tissues without necrotic sign in surrounding tissue. In addition, in the laparoscopic surgery, percutaneous delivery of the glue and its in situ photogelation on rat liver surfaces were demonstrated using a specially designed fiberscope. These results indicate that the photocurable glues developed here may serve as a biodegradable tissue adhesive glue usable in cardiovascular surgery and endoscopic surgery. Copyright 1999 John Wiley & Sons, Inc.
Watkins, Deborah J; Ferguson, Kelly K; Anzalota Del Toro, Liza V; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D
2015-03-01
Phenols and parabens are used in a multitude of consumer products resulting in ubiquitous human exposure. Animal and in vitro studies suggest that exposure to these compounds may be related to a number of adverse health outcomes, as well as potential mediators such as oxidative stress and inflammation. We examined urinary phenol (bisphenol A (BPA), triclosan (TCS), benzophenone-3 (BP-3), 2,4-dichlorophenol (24-DCP), 2,5-dichlorophenol (25-DCP)) and paraben (butyl paraben (B-PB), methyl paraben (M-PB), propyl paraben (P-PB)) concentrations measured three times during pregnancy in relation to markers of oxidative stress and inflammation among participants in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) project. Serum markers of inflammation (c-reactive protein (CRP), IL-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α)) were measured twice during pregnancy (n=105 subjects, 187 measurements) and urinary markers of oxidative stress (8-hydroxydeoxyguanosine (OHdG) and isoprostane) were measured three times during pregnancy (n=54 subjects, 146 measurements). We used linear mixed models to assess relationships between natural log-transformed exposure and outcome biomarkers while accounting for within individual correlation across study visits. After adjustment for urinary specific gravity, study visit, maternal pre-pregnancy BMI, and maternal education, an interquartile range (IQR) increase in urinary BPA was associated with 21% higher OHdG (p=0.001) and 29% higher isoprostane (p=0.0002), indicating increased oxidative stress. The adjusted increase in isoprostane per IQR increase in marker of exposure was 17% for BP-3, 27% for B-PB, and 20% for P-PB (all p<0.05). An IQR increase in triclosan (TCS) was associated with 31% higher serum concentrations of IL-6 (p=0.007), a pro-inflammatory cytokine. In contrast, IQR increases in BP-3 and B-PB were significantly associated with 16% and 18% lower CRP, a measure of systemic inflammation. Our findings suggest that exposure to BPA, select parabens, and TCS during pregnancy may be related to oxidative stress and inflammation, potential mechanisms by which exposure to these compounds may influence birth outcomes and other adverse health effects, but additional research is needed. Copyright © 2014 Elsevier GmbH. All rights reserved.
Watkins, Deborah J.; Ferguson, Kelly K.; Toro, Liza V. Anzalota Del; Alshawabkeh, Akram N.; Cordero, José F.; Meeker, John D.
2014-01-01
Phenols and parabens are used in a multitude of consumer products resulting in ubiquitous human exposure. Animal and in vitro studies suggest that exposure to these compounds may be related to a number of adverse health outcomes, as well as potential mediators such as oxidative stress and inflammation. We examined urinary phenol (bisphenol A (BPA), triclosan (TCS), benzophenone-3 (BP-3), 2,4-dichlorophenol (24-DCP), 2,5-dichlorophenol (25-DCP)) and paraben (butyl paraben (B-PB), methyl paraben (M-PB), propyl paraben (P-PB)) concentrations measured three times during pregnancy in relation to markers of oxidative stress and inflammation among participants in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) project. Serum markers of inflammation (c-reactive protein (CRP), IL-1β, IL-6, IL-10, and tumor necrosis factor-α (TNF-α)) were measured twice during pregnancy (n=105 subjects, 187 measurements) and urinary markers of oxidative stress (8-hydroxydeoxyguanosine (OHdG) and isoprostane) were measured three times during pregnancy (n=54 subjects, 146 measurements). We used linear mixed models to assess relationships between natural log-transformed exposure and outcome biomarkers while accounting for within individual correlation across study visits. After adjustment for urinary specific gravity, study visit, maternal pre-pregnancy BMI, and maternal education, an interquartile range (IQR) increase in urinary BPA was associated with 21% higher OHdG (p=0.001) and 29% higher isoprostane (p=0.0002), indicating increased oxidative stress. The adjusted increase in isoprostane per IQR increase in marker of exposure was 17% for BP-3, 27% for B-PB, and 20% for P-PB (all p<0.05). An IQR increase in triclosan (TCS) was associated with 31% higher serum concentrations of IL-6 (p=0.007), a pro-inflammatory cytokine. In contrast, IQR increases in BP-3 and B-PB were significantly associated with 16% and 18% lower CRP, a measure of systemic inflammation. Our findings suggest that exposure to BPA, select parabens, and TCS during pregnancy may be related to oxidative stress and inflammation, potential mechanisms by which exposure to these compounds may influence birth outcomes and other adverse health effects, but additional research is needed. PMID:25435060
NASA Astrophysics Data System (ADS)
Zhang, Tao
Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene-ethylene/butylene-styrene triblock copolymer (sSEBS) was investigated as an alternate membrane candidate. sSEBS was modified through introduction of polymer crosslinks using benzephenone as a photoinitiator and addition of a titania co-phase. A photocrosslinked membrane initially containing 15% benzophenone and 3% titania laminated with a 10 mum Nafion layer was found to produce the best PEMFC performance (120°C, 50%RH).
Cordy, Gail E.; Duran, Norma L.; Bouwer, Herman; Rice, Robert C.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.; Kolpin, Dana W.
2004-01-01
A proof-of-concept experiment was devised to determine if pharmaceuticals and other organic waste water compounds (OWCs), as well as pathogens, found in treated effluent could be transported through a 2.4 m soil column and, thus, potentially reach ground water under recharge conditions similar to those in arid or semiarid climates. Treated effluent was applied at the top of the 2.4 m long, 32.5 cm diameter soil column over 23 days, Samples of the column inflow were collected from the effluent storage tank at the beginning (Tbegin) and end (Tend) of the experiment, and a sample of the soil column drainage at the base of the column (Bend) was collected at the end of the experiment. Samples were analyzed for 131 OWCs including veterinary and human antibiotics, other prescription and nonprescription drugs, widely used household and industrial chemicals, and steroids and reproductive hormones, as well as the pathogens Salmonella and Legionella. Analytical results for the two effluent samples taken at the beginning (Tbegin) and end (Tend) of the experiment indicate that the number of OWCs detected in the column inflow decreased by 25% (eight compounds) and the total concentration of OWCs decreased by 46% while the effluent was in the storage tank during the 23-day experiment. After percolating through the soil column, an additional 18 compounds detected in Tend (67% of OWCs) were no longer detected in the effluent (Bend) and the total concentration of OWCs decreased by more than 70%. These compounds may have been subject to transformation (biotic and abiotic), adsorption, and (or) volatilization in the storage tank and during travel through the soil column. Eight compounds—carbamazapine; sulfamethoxazole; benzophenone; 5-methyl-1H-benzotriazole; N,N-diethyltoluamide; tributylphosphate; tri(2-chloroethyl) phosphate; and cholesterol—were detected in all three samples indicating they have the potential to reach ground water under recharge conditions similar to those in arid and semiarid climates. Results from real-time polymerase chain reactions demonstrated the presence of Legionella in all three samples. Salmonella was detected only in Tbegin, suggesting that the bacteria died off in the effluent storage tank over the period of the experiment. This proof-of-concept experiment demonstrates that, under recharge conditions similar to those in arid or semiarid climates, some pharmaceuticals, pathogens, and other OWCs can persist in treated effluent after soil-aquifer treatment.
Mechanistic investigations of imine hydrogenation catalyzed by cationic iridium complexes.
Martín, Marta; Sola, Eduardo; Tejero, Santiago; Andrés, José L; Oro, Luis A
2006-05-15
Complexes [IrH2(eta6-C6H6)(PiPr3)]BF4 (1) and [IrH2(NCMe)3(PiPr3)]BF4 (2) are catalyst precursors for homogeneous hydrogenation of N-benzylideneaniline under mild conditions. Precursor 1 generates the resting state [IrH2{eta5-(C6H5)NHCH2Ph}(PiPr3)]BF4 (3), while 2 gives rise to a mixture of [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)2(PiPr3)]BF4 (4) and [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)(NH2Ph)(PiPr3)]BF4 (5), in which the aniline ligand is derived from hydrolysis of the imine. The less hindered benzophenone imine forms the catalytically inactive, doubly cyclometalated compound [Ir{HN=CPh(C6H4)-kappaN,C}2(NH2CHPh2)(PiPr3)]BF4 (6). Hydrogenations with precursor 1 are fast and their reaction profiles are strongly dependent on solvent, concentrations, and temperature. Significant induction periods, minimized by addition of the amine hydrogenation product, are commonly observed. The catalytic rate law (THF) is rate = k[1][PhN=CHPh]p(H2). The results of selected stoichiometric reactions of potential catalytic intermediates exclude participation of the cyclometalated compounds [IrH{PhN=CH(C6H4)-kappaN,C}(S)2(PiPr3)]BF4 [S = acetonitrile (4), [D6]acetone (7), [D4]methanol (8)] in catalysis. Reactions between resting state 3 and D2 reveal a selective sequence of deuterium incorporation into the complex which is accelerated by the amine product. Hydrogen bonding among the components of the catalytic reaction was examined by MP2 calculations on model compounds. The calculations allow formulation of an ionic, outer-sphere, bifunctional hydrogenation mechanism comprising 1) amine-assisted oxidative addition of H2 to 3, the result of which is equivalent to heterolytic splitting of dihydrogen, 2) replacement of a hydrogen-bonded amine by imine, and 3) simultaneous H delta+/H delta- transfer to the imine substrate from the NH moiety of an arene-coordinated amine ligand and the metal, respectively.
Mbaveng, Armelle T.; Kuete, Victor; Efferth, Thomas
2017-01-01
Cancer remains a major health hurdle worldwide and has moved from the third leading cause of death in the year 1990 to second place after cardiovascular disease since 2013. Chemotherapy is one of the most widely used treatment modes; however, its efficiency is limited due to the resistance of cancer cells to cytotoxic agents. The present overview deals with the potential of the flora of Central, Eastern and Western African (CEWA) regions as resource for anticancer drug discovery. It also reviews the molecular targets of phytochemicals of these plants such as ABC transporters, namely P-glycoprotein (P-gp), multi drug-resistance-related proteins (MRPs), breast cancer resistance protein (BCRP, ABCG2) as well as the epidermal growth factor receptor (EGFR/ErbB-1/HER1), human tumor suppressor protein p53, caspases, mitochondria, angiogenesis, and components of MAP kinase signaling pathways. Plants with the ability to preferentially kills resistant cancer cells were also reported. Data compiled in the present document were retrieved from scientific websites such as PubMed, Scopus, Sciencedirect, Web-of-Science, and Scholar Google. In summary, plant extracts from CEWA and isolated compounds thereof exert cytotoxic effects by several modes of action including caspases activation, alteration of mitochondrial membrane potential (MMP), induction of reactive oxygen species (ROS) in cancer cells and inhibition of angiogenesis. Ten strongest cytotoxic plants from CEWA recorded following in vitro screening assays are: Beilschmiedia acuta Kosterm, Echinops giganteus var. lelyi (C. D. Adams) A. Rich., Erythrina sigmoidea Hua (Fabaceae), Imperata cylindrical Beauv. var. koenigii Durand et Schinz, Nauclea pobeguinii (Pobég. ex Pellegr.) Merr. ex E.M.A., Piper capense L.f., Polyscias fulva (Hiern) Harms., Uapaca togoensis Pax., Vepris soyauxii Engl. and Xylopia aethiopica (Dunal) A. Rich. Prominent antiproliferative compounds include: isoquinoline alkaloid isotetrandrine (51), two benzophenones: guttiferone E (26) and isoxanthochymol (30), the isoflavonoid 6α-hydroxyphaseollidin (9), the naphthyl butenone guieranone A (25), two naphthoquinones: 2-acetylfuro-1,4-naphthoquinone (4) and plumbagin (37) and xanthone V1 (46). However, only few research activities in the African continent focus on cytotoxic drug discovery from botanicals. The present review is expected to stimulate further scientific efforts to better valorize the African flora. PMID:28626426
Aqueous reactions of triplet excited states with allylic compounds
NASA Astrophysics Data System (ADS)
Kaur, R.; Anastasio, C.; Hudson, B. M.; Tantillo, D. J.
2016-12-01
Triplet excited states of dissolved organic matter react with several classes of aromatic organics such as phenols, anilines, sulfonamide antibiotics and phenylurea herbicides. Aqueous triplets appear to be among the most important oxidants for atmospheric phenols in regions with biomass burning, with phenol lifetimes on the order of a few hours to a day. However, little is known of the reactions of triplets with other classes of organic compounds. Recent work from our group shows that triplets react rapidly with several biogenic volatile organic compounds (BVOCs), such as methyl jasmonate, cis-3-hexenyl acetate, and cis-3-hexen-1-ol. However, there are only a few rate constants for aqueous reactions between alkenes such as these and triplet excited states. For our work, we refer to these and similar alkenes which have hydrogen(s) attached to a carbon adjacent to the double bond, as allylic compounds. To better assess the importance of triplets as aqueous oxidants, we measured second-order rate constants (kAC+3BP*) for a number of allylic compounds (ACs) with the triplet state of benzophenone; then established a quantitative structure-activity relationship (QSAR) between kAC+3BP* and computed oxidation potential of the ACs (R2 =0.65). Using the QSAR, we estimated the rate constants for triplets with some allylic isoprene and limonene oxidation products that have high Henry's law constants (KH>103 M atm-1). Hydroxylated limonene products and the delta-isomers of isoprene hydroxyhydroperoxides (δ4ISOPOOH) and hydroxynitrates (δ4ISONO2) were faster with predicted kAC+3BP* values ranging between (0.5-3.5) x 109 M-1-s-1 whereas the beta-isomers of ISOPOOH and ISONO2 were slower (kAC+3BP* < 0.5 x 109 M-1s-1). We scaled the predicted kAC+3BP* to represent less reactive atmospheric triplets that have been measured in fog drops, and compared to gas and aqueous hydroxyl radical and ozone, triplets in fog could account for up to 20 % of the measured loss of these compounds in the atmosphere. We are currently evaluating the importance of triplets in particulate matter (PM) which can have much higher concentrations of triplet precursors than fog. Our results show that as oxidants of unsaturated organic compounds, triplet excited states are of modest significance in fog/cloud drops but could be very significant in PM.
Exploration of charge states of balanol analogues acting as ATP-competitive inhibitors in kinases.
Hardianto, Ari; Yusuf, Muhammad; Liu, Fei; Ranganathan, Shoba
2017-12-28
(-)-Balanol is an ATP mimic that inhibits protein kinase C (PKC) isozymes and cAMP-dependent protein kinase (PKA) with limited selectivity. While PKA is a tumour promoter, PKC isozymes act as tumour promoters or suppressors, depending on the cancer type. In particular, PKCε is frequently implicated in cancer promotion, making it a potential target for anticancer drugs. To improve isozyme selectivity of balanol, exhaustive structural and activity relationship (SAR) studies have been performed in the last two decades, but with limited success. More recently, fluorination on balanol has shown improved selectivity for PKCε, although the fluorine effect is not yet clearly understood. Understanding the origin to this fluorine-based selectivity will be valuable for designing better balanol-based ATP mimicking inhibitors. Computational approaches such as molecular dynamics (MD) simulations can decipher the fluorine effect, provided that correct charges have been assigned to a ligand. Balanol analogues have multiple ionisable functional groups and the effect of fluorine substitutions on the exact charge state of each analogue bound to PKA and to PKCε needs to be thoroughly investigated in order to design highly selective inhibitors for therapeutic applications. We explored the charge states of novel fluorinated balanol analogues using MD simulations. For different potential charge states of these analogues, Molecular Mechanics Generalized Born Surface Area (MMGBSA) binding energy values were computed. This study suggests that balanol and the most potent fluorinated analogue (5S fluorine substitution on the azepane ring), have charges on the azepane ring (N1), and the phenolic (C6''OH) and the carboxylate (C15''O 2 H) groups on the benzophenone moiety, when bound to PKCε as well as PKA. To the best our knowledge, this is the first study showing that the phenolate group is charged in balanol and its analogues binding to the ATP site of PKCε. Correct charge assignments of ligands are important to obtain predicted binding energy values from MD simulations that reflect experimental values. Both fluorination and the local enzymatic environment of the ATP site can influence the exact charge states of balanol analogues. Overall, this study is highly valuable for further rational design of potent balanol analogues selective to PKCε.
Leishmanicidal activity of lipophilic extracts of some Hypericum species.
Dagnino, Ana Paula; Barros, Francisco Maikon Corrêa de; Ccana-Ccapatinta, Gari Vidal; Prophiro, Josiane Somariva; Poser, Gilsane Lino von; Romão, Pedro R T
2015-01-15
Leishmaniasis has emerged as the third most prevalent parasite-borne disease worldwide after malaria and filariasis, with about 350 million people at risk of infection. Antileishmanial drugs currently available have various limitations, mainly because of the parasite resistance and side effects. The search of new antileishmanial drugs is ventured throughout the world. The purpose of this study was to assess the leishmanicidal activity of lipophilic extracts of eight Hypericum species against promastigote forms of Leishmania (Leishmania) amazonensis. The dried and powered materials of aerial parts of H. andinum Gleason, H. brevistylum Choisy, H. caprifoliatum Cham. & Schltdl., H. carinatum Griseb., H. linoides A. St.-Hil., H. myrianthum Cham. & Schltdl., H. polyanthemum Klotzsch ex Reichardt and H. silenoides Juss. were extracted by static maceration with n-hexane. Extracts were evaporated to dryness under reduced pressure and stored at -20°C until biological evaluation and HPLC analysis. The metabolites investigated were dimeric phloroglucinol derivatives, benzophenones and benzopyrans. The yields were expressed as mean of three injections in mg of compound per g of extract (mg/g extract). The effect of Hypericum species on the viability of infective forms of L. (L.) amazonensis was determined using a hemocytometer. Amphotericin B was used as a standard drug. The 50% inhibitory concentration (IC50) values for each extract were determined by linear regression analysis. The cytotoxic effects of extracts were assessed on peritoneal macrophages of BALB/c mice by MTT assay. The concentration that causes 50% of macrophage cytotoxicity (CC50) was determined by linear regression analysis. The selectivity index (SI) of the extracts was determined considering the following equation: CC50 against mammalian cells/IC50 against L. amazonensis. We demonstrated that H. carinatum, H. linoides and H. polyanthemum were able to kill the parasites in a dose dependent manner. These extracts presented low cytotoxicity against murine macrophages. At 48h of incubation H. polyanthemum presented significant leishmanicidal activity with a 50% inhibitory concentration (IC50) of 36.1µg/ml. The leishmanicidal activity of H. myrianthum was significantly lower than that presented by H. polyanthemum, H. carinatum and H. linoides extracts. H. brevistylum and H. caprifoliatum showed significant leishmanicidal activity only at high concentrations (500 and 1000µg/ml), while H. andinum and H. silenoides were ineffective. The promising results demonstrate the importance of the species of the genus Hypericum as source of compounds potentially useful for the treatment of leishmaniasis. Copyright © 2014 Elsevier GmbH. All rights reserved.
Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T
2010-02-01
The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests.
Olivella, Santiago; Solé, Albert; Lledó, Agustí; Ji, Yining; Verdaguer, Xavier; Suau, Rafael; Riera, Antoni
2008-12-17
The intermolecular Pauson-Khand reaction (PKR), a carbonylative cycloaddition between an alkyne and an alkene, is a convenient method to prepare cyclopentenones. Using norbornadiene as alkene, a myriad of tricyclo[5.2.1.0(2,6)]deca-4,8-dien-3-ones 1 can be easily prepared. The mechanism of the photochemical rearrangement of these adducts 1 into tricyclo[5.2.1.0(2,6)]deca-3,8-dien-10-ones 2 has been studied. The ground state (S(0)) and the three lowest excited states ((3)(pi pi*), (1)(n pi*), and (3)(n pi*)) potential energy surfaces (PESs) concerning the prototypical rearrangement of 1a (the cycloadduct of the PK carbonylative cycloaddition of norbornadiene and ethyne) to 2a have been thoroughly explored by means of CASSCF and CASPT2 calculations. From this study, two possible nonadiabatic pathways for the photochemical rearrangement arise: one starting on the (3)(pi pi*) PES and the other on the (1)(n pi*) PES. Both involve initial C-C gamma-bond cleavage of the enone, which leads to the formation of a bis-allyl or an allyl-butadienyloxyl diradical, respectively, that then decays to the S(0) PES through a (3)(pi pi*)/S(0) surface crossing or a (1)(n pi*)/S(0) conical intersection, each one lying in the vicinity of the corresponding diradical minimum. Once on the S(0) PES, the ring-closure to 2a occurs with virtually no energy barrier. The viability of both pathways was experimentally studied by means of triplet sensitization and quenching studies on the photorearrangement of the substituted Pauson-Khand cycloadduct 1b (R = TMS, R' = H) to 2b. Using high concentrations of either piperylene as a triplet quencher, or benzophenone as a triplet sensitizer, the reaction rate significantly slowed down. A Stern-Volmer type plot of product 2b concentration vs triplet quencher concentration showed an excellent linear correlation, thus indicating that only one excited state is involved in the photorearrangement. We conclude that, though there is a nonadiabatic pathway starting on the (1)(n pi*) PES, the reaction product is formed through the (3)(pi pi*) state because the energy barrier involved in the initial C-C gamma-bond cleavage of the enone is much lower in the (3)(pi pi*) PES than in the (1)(n pi*) PES.
Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.
2010-01-01
The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. ??Springer Science+Business Media, LLC 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu
Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion andmore » migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all surfaces. Interestingly, cells throughout the interior region of the sheets on uncrosslinked PEMUs retained their actin and vinculin organization at adherens junctions after treatment with Blebbistatin. Like Blebbistatin, a Rho-kinase (ROCK) inhibitor, Y27632, promoted loss of cell-cell connections between edge cells, whereas a Rac1 inhibitor, NSC23766, primarily altered the lamellipodial protrusion in edge cells. Compliance gradient PAH-PEMUs promoted durotaxis of the cell sheets but not of individual keratocytes, demonstrating durotaxis, like plithotaxis, is an emergent property of cell sheet organization. - Highlights: • Fish scale cell sheets migrate on PAH-PAABp polyelectrolyte multilayers. • Sheets migrating on softer PEMUs periodically retract. • Sheets durotax on modulus gradients. • Myosin II inhibitors inhibit sheet integrity and migration.« less
Blended polymer materials extractable with supercritical carbon dioxide
NASA Astrophysics Data System (ADS)
Cai, Mei
Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical, physical, thermal, and phase behavior of the blended polymers studied in this dissertation includes solubility in SCF CO2, the melt viscosity, the melting temperature depression, and phase equilibrium under SCF conditions. Several hypotheses are investigated to determine which mechanism plays the major role in the extraction. Finally a novel metal casting process is discussed with the materials developed in this study. This new method utilizes an adhesive or binder film composition for the purpose of building up a casting pattern of resin-bonded aggregate particles. The pattern is then encased in a conventional rigid shell mold that is not susceptible to degradation by SCF CO2. The pattern is then disintegrated within an unaffected mold by exposure to SCF CO 2. This is an efficient and low cost method of making patterns and molds, especially for the casting of a relatively low number of parts such as in prototype evaluations.
Rocha, Bruno A; Asimakopoulos, Alexandros G; Honda, Masato; da Costa, Nattane L; Barbosa, Rommel M; Barbosa, Fernando; Kannan, Kurunthachalam
2018-07-01
Human exposure to endocrine disrupting chemicals (EDCs) has received considerable attention over the last three decades. However, little is known about the influence of co-exposure to multiple EDCs on effect-biomarkers such as oxidative stress in Brazilian children. In this study, concentrations of 40 EDCs were determined in urine samples collected from 300 Brazilian children of ages 6-14 years and data were analyzed by advanced data mining techniques. Oxidative DNA damage was evaluated from the urinary concentrations of 8-hydroxy-2'-deoxyguanosine (8OHDG). Fourteen EDCs, including bisphenol A (BPA), methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), 3,4-dihydroxy benzoic acid (3,4-DHB), methyl-protocatechuic acid (OH-MeP), ethyl-protocatechuic acid (OH-EtP), triclosan (TCS), triclocarban (TCC), 2-hydroxy-4-methoxybenzophenone (BP3), 2,4-dihydroxybenzophenone (BP1), bisphenol A bis(2,3-dihydroxypropyl) glycidyl ether (BADGE·2H 2 O), 2,4-dichlorophenol (2,4-DCP), and 2,5-dichlorophenol (2,5-DCP) were found in >50% of the urine samples analyzed. The highest geometric mean concentrations were found for MeP (43.1 ng/mL), PrP (3.12 ng/mL), 3,4-DHB (42.2 ng/mL), TCS (8.26 ng/mL), BP3 (3.71 ng/mL), and BP1 (4.85 ng/mL), and exposures to most of which were associated with personal care product (PCP) use. Statistically significant associations were found between urinary concentrations of 8OHDG and BPA, MeP, 3,4-DHB, OH-MeP, OH-EtP, TCS, BP3, 2,4-DCP, and 2,5-DCP. After clustering the data on the basis of i) 14 EDCs (exposure levels), ii) demography (age, gender and geographic location), and iii) 8OHDG (effect), two distinct clusters of samples were identified. 8OHDG concentration was the most critical parameter that differentiated the two clusters, followed by OH-EtP. When 8OHDG was removed from the dataset, predictability of exposure variables increased in the order of: OH-EtP > OH-MeP > 3,4-DHB > BPA > 2,4-DCP > MeP > TCS > EtP > BP1 > 2,5-DCP. Our results showed that co-exposure to OH-EtP, OH-MeP, 3,4-DHB, BPA, 2,4-DCP, MeP, TCS, EtP, BP1, and 2,5-DCP was associated with DNA damage in children. This is the first study to report exposure of Brazilian children to a wide range of EDCs and the data mining approach further strengthened our findings of chemical co-exposures and biomarkers of effect. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chakraborty, Biswarup; Jana, Rahul Dev; Singh, Reena; Paria, Sayantan; Paine, Tapan Kanti
2017-01-03
A series of iron(II) benzilate complexes (1-7) with general formula [(L)Fe II (benzilate)] + have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N 4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me 3 -TPA in 2), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic iron(II) hydroperoxides are proposed to generate in situ in the reaction pathways. The difference in reactivity of the complexes toward external substrates could be attributed to the geometry of the O 2 -derived iron-oxygen oxidant. DFT calculations suggest that, among all possible geometries and spin states, high-spin side-on iron(II) hydroperoxides are energetically favorable for the complexes of 6-Me 3 -TPA, 6-Me 2 -iso-BPMEN, BPMEN, and 6-Me 2 -BPMEN ligands, while high spin end-on iron(II) hydroperoxides are favorable for the complexes of TPA, iso-BPMEN, and TBimA ligands.
Boughton, Gregory K.
2014-01-01
Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.
Water quality and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma, 2003
Masoner, Jason R.; Mashburn, Shana L.
2004-01-01
Water from the Cimarron terrace aquifer in northwest Oklahoma commonly has nitrate concentrations that exceed the maximum contaminant level of 10 milligrams per liter of nitrite plus nitrate as nitrogen (referred to as nitrate) set by the U.S. Environmental Protection Agency for public drinking water supplies. Starting in July 2003, the U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study in the Cimarron terrace aquifer to assess the water quality and possible sources of nitrate. A qualitative and quantitative approach based on multiple lines of evidence from chemical analysis of nitrate, nitrogen isotopes in nitrate, pesticides (indicative of cropland fertilizer application), and wastewater compounds (indicative of animal or human wastewater) were used to indicate possible sources of nitrate in the Cimarron terrace aquifer. Nitrate was detected in 44 of 45 ground-water samples and had the greatest median concentration (8.03 milligrams per liter) of any nutrient analyzed. Nitrate concentrations ranged from <0.06 to 31.8 milligrams per liter. Seventeen samples had nitrate concentrations exceeding the maximum contaminant level of 10 milligrams per liter. Nitrate concentrations in agricultural areas were significantly greater than nitrate concentrations in grassland areas. Pesticides were detected in 15 of 45 ground-water samples. Atrazine and deethylatrazine, a metabolite of atrazine, were detected most frequently. Deethylatrazine was detected in water samples from 9 wells and atrazine was detected in samples from 8 wells. Tebuthiuron was detected in water samples from 5 wells; metolachlor was detected in samples from 4 wells; prometon was detected in samples from 4 wells; and alachlor was detected in 1 well. None of the detected pesticide concentrations exceeded the maximum contaminant level or health advisory level set by the U.S. Environmental Protection Agency. Wastewater compounds were detected in 28 of 45 groundwater samples. Of the 20 wastewater compounds detected, 11 compounds were from household chemicals, 3 compounds were hydrocarbons, 2 compounds were industrial chemicals, 2 compounds were pesticides, 1 compound was of animal source, and 1 compound was a detergent compound. The most frequently detected wastewater compound was phenol, which was detected in 23 wells. N,N-diethyl-meta-toluamide (DEET) was detected in water samples from 5 wells. Benzophenone, ethanol- 2-butoxy-phosphate, and tributylphosphate were detected in water samples from 3 wells. Fertilizer was determined to be the possible source of nitrate in samples from 13 of 45 wells sampled, with a15N values ranging from 0.43 to 3.46 permil. The possible source of nitrate for samples from the greatest number of wells (22 wells) was from mixed sources of nitrate from fertilizer, septic or manure, or natural sources. Mixed nitrate sources had a 15N values ranging from 0.25 to 9.83 permil. Septic or manure was determined as the possible source of nitrate in samples from 2 wells. Natural sources were determined to be the possible source of nitrate in samples from 7 wells, with a 15N values ranging from 0.83 to 9.44 permil.
Simoneau, C; Van den Eede, L; Valzacchi, S
2012-01-01
The results of a study on the analytical identification and quantification of migration of chemicals from plastics baby bottles found in the European Union market made of materials that are now present as substitutes for polycarbonate (PC) are reported. A total of 449 baby bottles with a focus on first age or sets of bottles were purchased from 26 European Union countries, Canada, Switzerland and the USA. From this collection, which contained several duplicates, a total of 277 baby bottles were analysed. The materials included different types of plastic such as PC, polyamide (PA), polyethersulphone (PES), polypropylene (PP), but also silicone, and from the United States a co-polyester marketed under the trade name Tritan™. The bottles were subjected to the conventional migration test for hot fill conditions, i.e. 2 h at 70°C. The simulant used was that specified in European Union legislation (2007/19/EC) for milk, i.e. 50% ethanol. In a first phase 1, migration was conducted since the scope of this investigation was a screening rather than a true compliance testing check. Second and third migrations were performed on selected articles when migrated substances exceeded limits specified in the legislation. In order to verify some materials, a portion of the bottle was cut to run an FT-IR fingerprint to confirm the nature of the polymer. The migration solutions in general showed a low release of substances. Results showed that bottles made of PP and silicones showed a greater number of substances in the migration solutions and in greater quantity. Chemicals from PP included alkanes, which could be found in >65% of the bottles at levels up to 3500 µg kg⁻¹; and benzene derivatives in 17% of the baby bottles and found at levels up to 113 µg kg⁻¹. Some substances were found on a regular basis such as plasticisers, esters and antioxidants (e.g. tris(2,4-di-tert-butylphenyl)phosphate, known as Irgafos 168. Some substances found were not included in the Community positive list, which means that those should not be found even in the first migration. Such substances included 2,6-di-isopropylnaphthalene (DIPN), found in 4% of the bottles at levels up to 25 µg kg⁻¹, 2,4-di-tert-butyl phenol (in 90% of the bottles at levels up 400 µg kg⁻¹). Moreover, bisphenol A (BPA) was detected and quantified in baby bottles made of PA, but limited to one brand and model specific (but labelled BPA free). Results for baby bottles made of silicone also indicated the presence of components, e.g. potentially coming from inks (benzophenone, diisopropyl naphtahalene - DIPN, which could come for example from the presence of instruction leaflets in the bottles). In the case of silicone, phthalates were also found in relevant concentrations, with levels for DiBP and DBP from the first migration test of 50-150 µg kg⁻¹ and DEHP at levels 25-50 µg kg⁻¹.