Sample records for berberine suppresses neuroinflammatory

  1. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  2. Berberine attenuates depressive-like behaviors by suppressing neuro-inflammation in stressed mice.

    PubMed

    Liu, Ya-Min; Niu, Le; Wang, Lin-Lin; Bai, Li; Fang, Xiao-Yan; Li, Yu-Cheng; Yi, Li-Tao

    2017-09-01

    Berberine, the major constituent alkaloid originally from the famous Chinese herb Huanglian (Coptis chinensis), has been shown to exert antidepressant-like effects in rodents. However, it is still not clear the involvement of neuro-inflammation suppression in the effects of berberine. The purpose of this study was to determine whether berberine affects the neuro-inflammation system in mice induced by chronic unpredictable mild stress (CUMS). Berberine was orally administrated in normal or CUMS mice for successive four weeks. Behavioral evaluation showed that berberine prevented the depressive deficits both in sucrose preference test and novelty-suppressed feeding test. The elevation of hippocampal pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), as well as the activation of microglia were decreased by berberine. In addition, chronic berberine treatment inhibited nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway as the phosphorylated proteins of NF-κB, IκB kinase (IKK)α and IKKβ in the hippocampus were suppressed after berberine administration. Furthermore, inducible nitric oxide synthase (iNOS), one downstream target of NF-κB signaling pathway was also inhibited by berberine. In conclusion, these findings suggest that administration of berberine could prevent depressive-like behaviors in CUMS mice by suppressing neuro-inflammation in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    PubMed Central

    Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475

  4. Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells.

    PubMed

    Ruan, H; Zhan, Y Y; Hou, J; Xu, B; Chen, B; Tian, Y; Wu, D; Zhao, Y; Zhang, Y; Chen, X; Mi, P; Zhang, L; Zhang, S; Wang, X; Cao, H; Zhang, W; Wang, H; Li, H; Su, Y; Zhang, X K; Hu, T

    2017-12-14

    Berberine, an isoquinoline alkaloid, is a traditional oriental medicine used to treat diarrhea and gastroenteritis. Recently, we reported that it could inhibit the growth of intestinal polyp in animals and in patients with the familial adenomatous polyposis by downregulating β-catenin signaling. However, the intracellular target mediating the effects of berberine remains elusive. Here, we provide evidence that berberine inhibits β-catenin function via directly binding to a unique region comprising residues Gln275, Arg316 and Arg371 in nuclear receptor retinoid X receptor alpha (RXRα), where berberine concomitantly binding to and synergistically activating RXRα with 9-cis-retinoic acid (9-cis-RA), a natural ligand binding to the classical ligand-binding pocket of RXRα. Berberine binding promotes RXRα interaction with nuclear β-catenin, leading to c-Cbl mediated degradation of β-catenin, and consequently inhibits the proliferation of colon cancer cells. Furthermore, berberine suppresses the growth of human colon carcinoma xenograft in nude mice in an RXRα-dependent manner. Together, our study not only identifies RXRα as a direct protein target for berberine but also dissects their binding mode and validates that berberine indeed suppresses β-catenin signaling and cell growth in colon cancer via binding RXRα, which provide new strategies for the design of new RXRα-based antitumor agents and drug combinations.

  5. Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells

    PubMed Central

    Ruan, H; Zhan, Y Y; Hou, J; Xu, B; Chen, B; Tian, Y; Wu, D; Zhao, Y; Zhang, Y; Chen, X; Mi, P; Zhang, L; Zhang, S; Wang, X; Cao, H; Zhang, W; Wang, H; Li, H; Su, Y; Zhang, X K; Hu, T

    2017-01-01

    Berberine, an isoquinoline alkaloid, is a traditional oriental medicine used to treat diarrhea and gastroenteritis. Recently, we reported that it could inhibit the growth of intestinal polyp in animals and in patients with the familial adenomatous polyposis by downregulating β-catenin signaling. However, the intracellular target mediating the effects of berberine remains elusive. Here, we provide evidence that berberine inhibits β-catenin function via directly binding to a unique region comprising residues Gln275, Arg316 and Arg371 in nuclear receptor retinoid X receptor alpha (RXRα), where berberine concomitantly binding to and synergistically activating RXRα with 9-cis-retinoic acid (9-cis-RA), a natural ligand binding to the classical ligand-binding pocket of RXRα. Berberine binding promotes RXRα interaction with nuclear β-catenin, leading to c-Cbl mediated degradation of β-catenin, and consequently inhibits the proliferation of colon cancer cells. Furthermore, berberine suppresses the growth of human colon carcinoma xenograft in nude mice in an RXRα-dependent manner. Together, our study not only identifies RXRα as a direct protein target for berberine but also dissects their binding mode and validates that berberine indeed suppresses β-catenin signaling and cell growth in colon cancer via binding RXRα, which provide new strategies for the design of new RXRα-based antitumor agents and drug combinations. PMID:28846104

  6. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells.

    PubMed

    Wang, Ning; Wang, Xuanbin; Tan, Hor-Yue; Li, Sha; Tsang, Chi Man; Tsao, Sai-Wah; Feng, Yibin

    2016-11-15

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCF β-TrCP ) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine's potential as an anti-tumor agent for clinical cancer therapy.

  7. Berberine Suppresses Cyclin D1 Expression through Proteasomal Degradation in Human Hepatoma Cells

    PubMed Central

    Wang, Ning; Wang, Xuanbin; Tan, Hor-Yue; Li, Sha; Tsang, Chi Man; Tsao, Sai-Wah; Feng, Yibin

    2016-01-01

    The aim of this study is to explore the underlying mechanism on berberine-induced Cyclin D1 degradation in human hepatic carcinoma. We observed that berberine could suppress both in vitro and in vivo expression of Cyclin D1 in hepatoma cells. Berberine exhibits dose- and time-dependent inhibition on Cyclin D1 expression in human hepatoma cell HepG2. Berberine increases the phosphorylation of Cyclin D1 at Thr286 site and potentiates Cyclin D1 nuclear export to cytoplasm for proteasomal degradation. In addition, berberine recruits the Skp, Cullin, F-box containing complex-β-Transducin Repeat Containing Protein (SCFβ-TrCP) complex to facilitate Cyclin D1 ubiquitin-proteasome dependent proteolysis. Knockdown of β-TrCP blocks Cyclin D1 turnover induced by berberine; blocking the protein degradation induced by berberine in HepG2 cells increases tumor cell resistance to berberine. Our results shed light on berberine′s potential as an anti-tumor agent for clinical cancer therapy. PMID:27854312

  8. Berberine alleviates postoperative cognitive dysfunction by suppressing neuroinflammation in aged mice.

    PubMed

    Zhang, Zhijie; Li, Xiuhua; Li, Fayin; An, Lijun

    2016-09-01

    Postoperative cognitive dysfunction (POCD) is a significant cause of morbidity after surgery, especially for the elderly. Accumulating evidence has demonstrated that neuroinflammation plays a key role in the pathogenesis of POCD. Thus, we hypothesized that berberine, an isoquinoline alkaloid with anti-inflammatory effects, could improve surgery-induced cognitive impairment. Twenty-month-old male C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. For the interventional studies, mice received berberine (10mg/kg) or vehicle intraperitoneally. For the in vitro study, we examined the effects of berberine on lipopolysaccharide (LPS)-induced inflammatory mediators by cultured BV2 cells. Behavioral tests, expressions of IBA1, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 were performed at the indicated time points. In the present study, we showed that surgery impaired the contextual fear memory, as evidenced by the significantly decreased freezing time to the context. This behavioral change coincided with marked increases in IBA1, TNF-α, IL-1β, and IL-6 in the prefrontal cortex and hippocampus only at 24h but not 7 d after surgery. In BV2 cells, LPS induced significantly increased TNF-α and IL-1β expressions. Notably, berberine treatment rescued surgery-induced cognitive impairment and inhibited the release of IBA1, IL-1β, and IL-6 in the hippocampus. In line with the in vivo study, berberine treatment suppressed LPS-stimulated production of TNF-α and IL-1β in BV2 cells. In conclusion, our study suggests that berberine could alleviate POCD by suppressing neuroinflammation in aged mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Berberine Attenuates Inflammation Associated with Delayed-Type Hypersensitivity via Suppressing Th1 Response and Inhibiting Apoptosis.

    PubMed

    Wang, Zhigang; Chen, Zhe; Chen, Tao; Yi, Tao; Zheng, Zhou; Fan, Hong; Chen, Zebin

    2017-02-01

    Berberine, one of the active alkaloids from Rhizoma Coptidis, has been indicated to have anti-inflammatory and immunosuppressive properties. The aim of this study was to determine the role of berberine on ovalbumin (OVA)-induced delayed-type hypersensitivity (DTH) and its potential mechanisms. Berberine treatment significantly reduced footpad swelling, inflammatory cells infiltration, anti-OVA IgG levels, IgE concentration in serum, and the tetramer + CD8 + cells. In homogenized footpad tissue, the production of Th1-mediated cytokines including IFN-γ, TNF-α, and IL-2 were suppressed following the administration of berberine. Detailed studies revealed that berberine prevented differentiation into Th1 cells in the OVA-primed lymphocytes, resulting from suppressing the expression of T-bet and secretion of IFN-γ but not IL-4. Concanavalin A stimulation assay and MTT assay also indicated inhibiting effect of berberine treatment on IFN-γ production and decreased cytotoxicity in lymphocytes proliferation, respectively. Additionally, berberine obviously decreased the cell apoptosis and enzymatic activity of caspase-3, which was further confirmed by the facts that berberine clearly lowered Bax/Bcl-2 ratio and expression of cleaved caspase-3 protein. On correlation analysis, the percentage of apoptotic cells showed a significant positive relationship with IFN-γ/IL-4 ratio of supernatant from footpad tissue in berberine-treated DTH mice. These results demonstrated that berberine attenuated Th1-mediated inflammation in OVA-induced DTH by curbing Th1 response and inhibiting cell apoptosis, suggesting a therapeutic potential for berberine for the treatment of type IV hypersensitivity.

  10. Berberine via suppression of transient receptor potential vanilloid 4 channel improves vascular stiffness in mice

    PubMed Central

    Wang, Jie; Guo, Tao; Peng, Qi-Sheng; Yue, Shou-Wei; Wang, Shuang-Xi

    2015-01-01

    Berberine, as an alkaloid found in many Chinese herbs, improves vascular functions in patients with cardiovascular diseases. We determined the effects of berberine in hypertension and vascular ageing, and elucidated the underlying mechanisms. In isolated aortas, berberine dose-dependently elicited aortic relaxation. In cultured cells, berberine induced the relaxation of vascular smooth muscle cells (VSMCs). Overexpression of transient receptor potential vanilloid 4 (TRPV4) channel by genetic approaches abolished the berberine-induced reduction in intracellular Ca2+ concentration in VSMCs and attenuated berberine-elicited vessel dilation in mice aortas. In deoxycorticosterone acetate (DOCA)-induced hypertensive model, treatment of mice with berberine or RN-1734, a pharmacological inhibitor of TRPV4, significantly decreased systemic blood pressure (BP) in control mice or mice infected with an adenovirus vector. However, berberine-induced effects of lowering BP were reversed by overexpressing TRPV4 in mice by infecting with adenovirus. Furthermore, long-term administration of berberine decreased mean BP and pulse BP, increased artery response to vasodilator and reduced vascular collagen content in aged mice deficient in apolipoprotein E (Apoe-KO), but not in Apoe-KO old mice with lentivirus-mediated overexpression of TRPV4 channel. In conclusion, berberine induces direct vasorelaxation to lower BP and reduces vascular stiffness in aged mice through suppression of TRPV4. PMID:26177349

  11. Progranulin Protects Hippocampal Neurogenesis via Suppression of Neuroinflammatory Responses Under Acute Immune Stress.

    PubMed

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-07-01

    Immune stress is well known to suppress adult neurogenesis in the hippocampus. We have demonstrated that progranulin (PGRN) has a mitogenic effect on neurogenesis under several experimental conditions. We have also shown that PGRN suppresses excessive neuroinflammatory responses after traumatic brain injury. However, the role of PGRN in modulating neurogenesis under acute immune stress is yet to be elucidated. In the present study, we evaluated the involvement of PGRN in neurogenesis and inflammatory responses in the hippocampus using a lipopolysaccharide (LPS)-induced immune stress model. Treatment of mice with LPS significantly increased the expression of PGRN in activated microglia and decreased neurogenesis in the dentate gyrus of the hippocampus. PGRN deficiency increased CD68-immunoreactive area and exacerbated suppression of neurogenesis following LPS treatment. The expression levels of lysosomal genes including lysozyme M, macrophage expressed gene 1, and cathepsin Z were higher in PGRN-deficient than in wild-type mice, while PGRN deficiency decreased mammalian target of rapamycin (mTOR) mRNA levels, suggesting that PGRN suppresses excessive lysosomal biogenesis by promoting mTOR signaling. LPS treatment also increased the expression of proinflammatory genes such as interleukin (IL)-1β, tumor necrosis factor-α, and microsomal prostaglandin E synthase-1 (mPGES-1) in the hippocampus, and PGRN deficiency further enhanced gene expression of IL-6 and mPGES-1. These results suggest that PGRN plays a protecting role in hippocampal neurogenesis at least partially by attenuating neuroinflammatory responses during LPS-induced acute immune stress.

  12. Preparation, pharmacokinetics and tumour-suppressive activity of berberine liposomes.

    PubMed

    Wang, Xinghui; Wang, Qiong; Liu, Zhihui; Zheng, Xiao

    2017-06-01

    Berberine (BBR) has shown promising antitumour effects in vitro. However, intravenous administration of BBR solution is complicated by lethal adverse cardiovascular effects. The aim of this study was to prepare common and polyethylene glycol (PEG)-modified long-circulating BBR liposomes and evaluate their efficacy and safety as potential antitumour agents. Physiochemical properties of common and long-circulating BBR liposomes were characterized including particle size, Zeta potential and thermal stability. Pharmacokinetic and tissue distribution study of liposomal BBR was performed in rats and tumour-bearing nude mice, respectively. Antitumour efficacy and safety were observed in SGC-7901 tumour-xenografted mice. Berberine liposomes showed homogenous morphology, storage stability and sustained-releasing behaviour in vitro. BBR liposomes led to significantly increased circulation retention of BBR in comparison with BBR solution. In tumour-bearing mice, BBR liposomes selectively increased BBR concentrations in the liver, spleen, lung and tumour, while conferred lower distribution to the heart and kidney. Importantly, chronic administration of BBR liposomes proved effective and safe in suppressing the tumour growth in nude mice, especially the PEG-modified long-circulating liposomes. Our study suggested that BBR liposomes may provide a safe form of intravenous drug therapy for strengthening the antitumour effects of BBR. © 2017 Royal Pharmaceutical Society.

  13. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses.

    PubMed

    Li, Yan-Hong; Xiao, Hai-Tao; Hu, Dong-Dong; Fatima, Sarwat; Lin, Cheng-Yuan; Mu, Huai-Xue; Lee, Nikki P; Bian, Zhao-Xiang

    2016-08-01

    reversed by berberine treatment. Furthermore, Th17 cell differentiation from naive CD4(+) cells isolated from above DSS colitis mice were suppressed by berberine in a concentration-dependent manner. In summary, we demonstrated for the first time that berberine reduced the severity of chronic relapsing DSS-induced colitis by suppressing Th17 responses. The demonstration of activity in this mouse model supports the possibility of clinical efficacy of berberine in treating chronic UC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells.

    PubMed

    Mahata, Sutapa; Bharti, Alok C; Shukla, Shirish; Tyagi, Abhishek; Husain, Syed A; Das, Bhudev C

    2011-04-15

    Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and blocking viral oncoproteins E6

  15. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells

    PubMed Central

    2011-01-01

    Background- Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. Results- We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. Conclusion- These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and

  16. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer.

    PubMed

    Zhao, Yawei; Cui, Lianzhi; Pan, Yue; Shao, Dan; Zheng, Xiao; Zhang, Fan; Zhang, Hansi; He, Kan; Chen, Li

    2017-12-01

    Cytotoxic chemotherapy is an effective and traditional treatment of ovarian cancer. However, chemotherapy-induced apoptosis may also trigger and ultimately accelerate the repopulation of the small number of adjacent surviving cells. This study mainly focused on the tumour cell repopulation caused by chemotherapy in ovarian cancer and the adjunctive/synergistic effect of Berberine on the prevention of tumour repopulation. The transwell system was used to mimic the co-culture of surviving ovarian cancer cells in the microenvironment of cytotoxic chemotherapy-treated dying cells. Tumour cell proliferation was observed by crystal violet staining. AA and PGE 2 levels were measured by ELISA, and changes of protein expression were analysed by Western blot. Chemotherapy drug VP16 treatment triggered AA pathway, leading to the elevated PGE 2 level, and ultimately enhanced the repopulation of ovarian cancer cells. Berberine can block the caspase 3-iPLA 2 -AA-COX-2-PGE 2 pathway by inhibiting the expression of iPLA 2 and COX-2. Berberine can also reverse the increased phosphorylation of FAK caused by abnormal PGE 2 level and thus reverse the repopulation of ovarian cancer cells after VP16 treatment. Our observation suggested that Berberine could inhibit the chemotherapy-induced repopulation of ovarian cancer cells by suppressing the AA pathway and phosphorylation of FAK. And these findings implicated a novel combined use of Berberine and chemotherapeutics, which might prevent ovarian cancer recurrence by abrogating early tumour repopulation. © 2017 John Wiley & Sons Ltd.

  17. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT.

    PubMed

    Wang, Jun; Kang, Min; Wen, Qin; Qin, Yu-Tao; Wei, Zhu-Xin; Xiao, Jing-Jian; Wang, Ren-Sheng

    2017-04-01

    Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with radiotherapy as its standard treatment. However, radioresistance remains a critical issue in the treatment of NPC. This study aimed to investigate the effect of berberine on the proliferation, cell cycle regulation, apoptosis, radioresistance of NPC cells and whether specificity protein 1 (Sp1) is a functional target of berberine. Our results showed that treatment with berberine reduced the proliferation and viability of CNE-2 cells in a dose- and time‑dependent manner. Berberine induced cell cycle arrest in the G0/G1 phase and apoptosis. In CNE-2 cells exposed to gamma‑ray irradiation, berberine reduced cell viability at various concentrations (25, 50, 75 and 100 µmol/l). Berberine significantly decreased mRNA and protein expression of Sp1 in the CNE-2 cells. Mithramycin A, a selective Sp1 inhibitor, enhanced the radiosensitivity and the rate of apoptosis in the CNE-2 cells. Berberine inhibited transforming growth factor-β (TGF-β)-induced tumor invasion and suppressed epithelial-to-mesenchymal transition (EMT) process, as evidenced by increased E-cadherin and decreased vimentin proteins. Sp1 may be required for the TGF-β1-induced invasion and EMT by berberine. In conclusion, berberine demonstrated the ability to suppress proliferation, induce cell cycle arrest and apoptosis, and enhance radiosensitivity of the CNE-2 NPC cells. Sp1 may be a target of berberine which is decreased during the radiosensitization of berberine.

  18. A multidrug and toxic compound extrusion transporter mediates berberine accumulation into vacuoles in Coptis japonica.

    PubMed

    Takanashi, Kojiro; Yamada, Yasuyuki; Sasaki, Takayuki; Yamamoto, Yoko; Sato, Fumihiko; Yazaki, Kazufumi

    2017-06-01

    Plants produce a large variety of alkaloids, which have diverse chemical structures and biological activities. Many of these alkaloids accumulate in vacuoles. Although some membrane proteins on tonoplasts have been identified as alkaloid uptake transporters, few have been characterized to date, and relatively little is known about the mechanisms underlying alkaloid transport and accumulation in plant cells. Berberine is a model alkaloid. Although all genes involved in berberine biosynthesis, as well as the master regulator, have been identified, the gene responsible for the final accumulation of berberine at tonoplasts has not been determined. This study showed that a multidrug and toxic compound extrusion protein 1 (CjMATE1) may act as a berberine transporter in cultured Coptis japonica cells. CjMATE1 was found to localize at tonoplasts in C. japonica cells and, in intact plants, to be expressed preferentially in rhizomes, the site of abundant berberine accumulation. Cellular transport analysis using a yeast expression system showed that CjMATE1 could transport berberine. Expression analysis showed that RNAi suppression of CjbHLH1, a master transcription factor of the berberine biosynthetic pathway, markedly reduced the expression of CjMATE1 in a manner similar to the suppression of berberine biosynthetic genes. These results strongly suggest that CjMATE1 is the transporter that mediates berberine accumulation in vacuoles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor

    PubMed Central

    Wang, Lihong; Liu, Liping; Shi, Yan; Cao, Hanwei; Chaturvedi, Rupesh; Calcutt, M. Wade; Hu, Tianhui; Ren, Xiubao; Wilson, Keith T.; Polk, D. Brent; Yan, Fang

    2012-01-01

    Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth. PMID:22574158

  20. Berberine Ameliorates Diabetic Neuropathy: TRPV1 Modulation by PKC Pathway.

    PubMed

    Zan, Yan; Kuai, Cui-Xing; Qiu, Zhi-Xia; Huang, Fang

    2017-01-01

    In recent years, berberine has increasingly become a topic of research as a treatment for diabetes due to its repair function, which recovers damaged pancreatic β cells. However, it is the complications of diabetes that seriously affect patients' life quality and longevity, among which diabetic neuropathy and the consequent acute pain are the most common. In this study, we established STZ-induced diabetic models to observe whether berberine, a main constitute of Coptis chinensis Franch which has shown good hypoglycemic effects, could relieve diabetes-induced pain and explored its possible mechanism in rats and mice. Behavior assays showed increasing mechanical allodynia and thermal hyperalgesia thresholds by the Von Frey test and tail flick test during the treatment of berberine. It was found that the administration of berberine (20, 60 mg/kg; 30, 90 mg/kg) suppressed the expression of PKCε and TRPV1 which could be activated by hyperglycemia-induced inflammatory reaction. Our results also presented its capability to reduce the over expression of TNF-[Formula: see text] in diabetic rats and mice. TNF-[Formula: see text] is an inflammatory cytokine, which is closely related to diabetic peripheral neuropathy (DPN). Consequently, we supposed that berberine exerts its therapeutic effects in part by suppressing the inflammatory process and blocking the PKC pathway to inhibit TRPV1 activation, which damages neurons and causes diabetic pain.

  1. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells.

    PubMed

    La, Xiaoqin; Zhang, Lichao; Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-03-28

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34.

  2. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson's disease.

    PubMed

    Kim, Mia; Cho, Ki-Ho; Shin, Mal-Soon; Lee, Jae-Min; Cho, Han-Sam; Kim, Chang-Ju; Shin, Dong-Hoon; Yang, Hyeon Jeong

    2014-04-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of nigral dopaminergic neurons and a reduction in striatal dopaminergic fibers, which result in tremors, rigidity, bradykinesia and gait disturbance. In addition to motor dysfunction, dementia is a widely recognized symptom of patients with PD. Berberine, an isoquinoline alkaloid isolated from Berberis vulgaris L., is known to exert anxiolytic, analgesic, anti-inflammatory, antipsychotic, antidepressant and anti-amnesic effects. In the present study, we investigated the effects of berberine on short-term memory in relation to dopamine depletion and hippocampal neurogenesis using a mouse model of PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/P) treatment. Mice in the berberine-treated groups were orally administered berberine once a day for a total of 5 weeks. Our results revealed that the injection of MPTP/P induced dopaminergic neuronal death in the substantia nigra and fiber loss in the striatum. This resulted in impaired motor balance and coordination, as assessed by the beam walking test. We further demonstrated that MPTP/P-induced apoptosis in the hippocampus deteriorated short-term memory, as shown by the step-down avoidance task. By contrast, neurogenesis in the hippocampal dentate gyrus, which is a compensatory adaptive response to excessive apoptosis, was increased upon PD induction. However, treatment with berberine enhanced motor balance and coordination by preventing dopaminergic neuronal damage. Treatment with berberine also improved short-term memory by inhibiting apoptosis in the hippocampus. Berberine demonstrated maximal potency at 50 mg/kg. Based on these data, treatment with berberine may serve as a potential therapeutic strategy for the alleviation of memory impairment and motor dysfunction in patients with PD.

  3. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells

    PubMed Central

    Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-01-01

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34. PMID:28157699

  4. Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation

    PubMed Central

    Xiao, Yuanyuan; Hou, Wolin; Yu, Xueying; Shen, Li; Liu, Fang; Wei, Li; Jia, Weiping

    2014-01-01

    Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine’s action. This study aimed to examine whether AMPK activation was necessary for berberine’s glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1) inhibition of AMPK activity by Compound C, (2) suppression of AMPKα expression by siRNA, and (3) blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation. PMID:25072399

  5. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    PubMed Central

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  6. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling.

    PubMed

    Li, Chen-Guang; Yan, Liang; Jing, Yan-Yun; Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-03

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling.

  7. Berberine inhibits colitis-associated tumorigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumor cell growth.

    PubMed

    Li, Dandan; Zhang, Youyu; Liu, Kun; Zhao, Yujie; Xu, Beibei; Xu, Liang; Tan, Li; Tian, Yuan; Li, Cunxi; Zhang, Wenqing; Cao, Hanwei; Zhan, Yan-Yan; Hu, Tianhui

    2017-11-01

    The anti-inflammatory and anti-tumor effects of berberine, a traditional Chinese medicine, were separately discovered in pathological intestinal tissues. However, whether the anti-inflammatory effect of berberine contributes to its anti-tumor effect on colitis-associated colorectal cancer (CACRC) remains unknown. In the present study, we found that berberine effectively inhibited colitis-associated tumorigenesis and colonic epithelium hyperproliferation in dextran sulfate sodium (DSS)-treated Apc Min/+ mice. A mechanistic study identified that these inhibitory effects of berberine occurred through blocking interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) expression in colonic macrophages. An in vitro study on cell lines identified that berberine treatment of Raw 264.7 macrophages resulted in conditioned media with fewer proliferative effects on a cell line with a heterozygous Apc mutation (Immorto-Min colonic epithelium, IMCE). EGFR-ERK signaling act downstream of berberine/pro-inflammatory cytokines axis to regulate CACRC cell proliferation. Furthermore, in vivo administration of IL-6 to DSS-treated Apc Min/+ mice effectively weakened the inhibitory effects of berberine on tumorigenesis and EGFR-ERK signaling in colon tissues. Altogether, the results of our studies have revealed that berberine inhibits the development of CACRC by interfering with inflammatory response-driven EGFR signaling in tumor cell growth. The findings of this study support the possibility that berberine and other anti-inflammatory drugs may be beneficial in the treatment of CACRC.

  8. Berberine

    MedlinePlus

    ... several plants including European barberry, goldenseal, goldthread, Oregon grape, phellodendron, and tree tumeric. People take berberine for heart failure. Some people apply berberine directly to the skin to treat burns and to the eye to treat trachoma, a bacterial infection that frequently ...

  9. Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer.

    PubMed

    Su, Ke; Hu, Pengchao; Wang, Xiaolan; Kuang, Changchun; Xiang, Qingmin; Yang, Fang; Xiang, Jin; Zhu, Shan; Wei, Lei; Zhang, Jingwei

    2016-07-19

    Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent.

  10. Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer

    PubMed Central

    Wang, Xiaolan; Kuang, Changchun; Xiang, Qingmin; Yang, Fang; Xiang, Jin; Zhu, Shan; Wei, Lei; Zhang, Jingwei

    2016-01-01

    Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent. PMID:27322681

  11. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts.

    PubMed

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-12-31

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC.

  12. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  13. Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells

    PubMed Central

    KIM, JAE-SUNG; OH, DAHYE; YIM, MIN-JI; PARK, JIN-JU; KANG, KYEONG-ROK; CHO, IN-A; MOON, SUNG-MIN; OH, JI-SU; YOU, JAE-SEEK; KIM, CHUN SUNG; KIM, DO KYUNG; LEE, SOOK-YOUNG; LEE, GYEONG-JE; IM, HEE-JEONG; KIM, SU-GWAN

    2015-01-01

    In the present study, we examined the anticancer properties of berberine in KB oral cancer cells with a specific focus on its cellular mechanism. Berberine did not affect the cell viability of the primary human normal oral keratinocytes that were used as a control. However, the viability of KB cells was found to decrease significantly in the presence of berberine in a dose-dependent manner. Furthermore, in KB cells, berberine induced the fragmentation of genomic DNA, changes in cell morphology, and nuclear condensation. In addition, caspase-3 and -7 activation, and an increase in apoptosis were observed. Berberine was also found to upregulate significantly the expression of the death receptor ligand, FasL. In turn, this upregulation triggered the activation of pro-apoptotic factors such as caspase-8, -9 and -3 and poly(ADP-ribose) polymerase (PARP). Furthermore, pro-apoptotic factors such as Bax, Bad and Apaf-1 were also significantly upregulated by berberine. Anti-apoptotic factors such as Bcl-2 and Bcl-xL were downregulated. Z-VAD-FMK, a cell-permeable pan-caspase inhibitor, suppressed the activation of caspase-3 and PARP. These results clearly indicate that berberine-induced cell death of KB oral cancer cells was mediated by both extrinsic death receptor-dependent and intrinsic mitochondrial-dependent apoptotic signaling pathways. In addition, berberine-induced upregulation of FasL was shown to be mediated by the p38 MAPK signaling pathway. We also found that berberine-induced migration suppression was mediated by downregulation of MMP-2 and MMP-9 through phosphorylation of p38 MAPK. In summary, berberine has the potential to be used as a chemotherapeutic agent, with limited side-effects, for the management of oral cancer. PMID:25634589

  14. Mitochondria play an important role in the cell proliferation suppressing activity of berberine

    PubMed Central

    Yan, Xiao-Jin; Yu, Xuan; Wang, Xin-Pei; Jiang, Jing-Fei; Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Xing, Dong-Ming

    2017-01-01

    After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism. PMID:28181523

  15. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and -9.

    PubMed

    Ho, Yung-Tsuan; Yang, Jai-Sing; Li, Tsai-Chung; Lin, Jen-Jyh; Lin, Jaung-Geng; Lai, Kuang-Chi; Ma, Chia-Yu; Wood, W Gibson; Chung, Jing-Gung

    2009-07-08

    There is increasing evidence that urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMPs) play an important role in cancer metastasis and angiogenesis. Inhibition of u-PA and MMPs could suppress migration and invasion of cancer cells. Berberine, one of the main constituents of the plant Rhizoma coptidis, is a type of isoquinoline alkaloid, reported to have anti-cancer effects in different human cancer cell lines. There is however, no available information on effects of berberine on migration and invasion of human tongue cancer cells. Here, we report that berberine inhibited migration and invasion of human SCC-4 tongue squamous carcinoma cells. This action was mediated by the p-JNK, p-ERK, p-p38, IkappaK and NF-kappaB signaling pathways resulting in inhibition of MMP-2 and -9 in human SCC-4 tongue squamous carcinoma cells. Our Western blowing analysis also showed that berberine inhibited the levels of urokinase-plasminogen activator (u-PA). These results suggest that berberine down-regulates u-PA, MMP-2 and -9 expressions in SCC-4 cells through the FAK, IKK and NF-kappaB mediated pathways and a novel function of berberine is to inhibit the invasive capacity of malignant cells.

  16. Berberine Inhibits Proliferation and Down-Regulates Epidermal Growth Factor Receptor through Activation of Cbl in Colon Tumor Cells

    PubMed Central

    Wang, Lihong; Cao, Hailong; Lu, Ning; Liu, Liping; Wang, Bangmao; Hu, Tianhui; Israel, Dawn A.; Peek, Richard M.; Polk, D. Brent; Yan, Fang

    2013-01-01

    Berberine, an isoquinoline alkaloid, is an active component of Ranunculaceae and Papaveraceae plant families. Berberine has been found to suppress growth of several tumor cell lines in vitro through the cell-type-dependent mechanism. Expression and activation of epidermal growth factor receptor (EGFR) is increased in colonic precancerous lesions and tumours, thus EGFR is considered a tumour promoter. The aim of this study was to investigate the effects and mechanisms of berberine on regulation of EGFR activity and proliferation in colonic tumor cell lines and in vivo. We reported that berberine significantly inhibited basal level and EGF-stimulated EGFR activation and proliferation in the immorto Min mouse colonic epithelial (IMCE) cells carrying the APC min mutation and human colonic carcinoma cell line, HT-29 cells. Berberine acted to inhibit proliferation through inducing G1/S and G2/M cell cycle arrest, which correlated with regulation of the checkpoint protein expression. In this study, we also showed that berberine stimulated ubiquitin ligase Cbl activation and Cbl's interaction with EGFR, and EGFR ubiquitinylation and down-regulation in these two cell lines in the presence or absence of EGF treatment. Knock-down Cbl expression blocked the effects of berberine on down-regulation of EGFR and inhibition of proliferation. Furthermore, berberine suppressed tumor growth in the HT-29 cell xenograft model. Cell proliferation and EGFR expression level was decreased by berberine treatment in this xenograft model and in colon epithelial cells of APC min/+ mice. Taken together, these data indicate that berberine enhances Cbl activity, resulting in down-regulation of EGFR expression and inhibition of proliferation in colon tumor cells. PMID:23457600

  17. Berberine as a natural source inhibitor for mild steel in 1 M H 2SO 4

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Peng; Liang, Qiang; Hou, Baorong

    2005-12-01

    Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H 2SO 4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H 2SO 4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10 -4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H 2SO 4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.

  18. Atrogin-1 affects muscle protein synthesis and degradation when energy metabolism is impaired by the antidiabetes drug berberine.

    PubMed

    Wang, Huiling; Liu, Dajun; Cao, Peirang; Lecker, Stewart; Hu, Zhaoyong

    2010-08-01

    Defects in insulin/IGF-1 signaling stimulate muscle protein loss by suppressing protein synthesis and increasing protein degradation. Since an herbal compound, berberine, lowers blood levels of glucose and lipids, we proposed that it would improve insulin/IGF-1 signaling, blocking muscle protein losses. We evaluated whether berberine ameliorates muscle atrophy in db/db mice, a model of type 2 diabetes, by measuring protein synthesis and degradation in muscles of normal and db/db mice treated with or without berberine. We also examined mechanisms for berberine-induced changes in muscle protein metabolism. Berberine administration decreased protein synthesis and increased degradation in muscles of normal and db/db mice. The protein catabolic mechanism depended on berberine-stimulated expression of the E3 ubiquitin ligase, atrogin-1. Atrogin-1 not only increased proteolysis but also reduced protein synthesis by mechanisms that were independent of decreased phosphorylation of Akt or forkhead transcription factors. Impaired protein synthesis was dependent on a reduction in eIF3-f, an essential regulator of protein synthesis. Berberine impaired energy metabolism, activating AMP-activated protein kinase and providing an alternative mechanism for the stimulation of atrogin-1 expression. When we increased mitochondrial biogenesis by expressing peroxisome proliferator-activated receptor gamma coactivator-1alpha, berberine-induced changes in muscle protein metabolism were prevented. Berberine impairs muscle metabolism by two novel mechanisms. It impairs mitochonidrial function stimulating the expression of atrogin-1 without affecting phosphorylation of forkhead transcription factors. The increase in atrogin-1 not only stimulated protein degradation but also suppressed protein synthesis, causing muscle atrophy.

  19. Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats.

    PubMed

    Dinesh, Palani; Rasool, MahaboobKhan

    2017-03-01

    The current study was designed to investigate the therapeutic potential of berberine on monosodium urate (MSU) crystal stimulated RAW 264.7 macrophages and in MSU crystal induced rats. Our results indicate that berberine (25, 50 and 75μM) suppressed the levels of pro-inflammatory cytokines (interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNFα)) and intracellular reactive oxygen species in MSU crystal stimulated RAW 264.7 macrophages. The mRNA expression levels of IL-1β, caspase 1, nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3), thioredoxin interacting protein (TXNIP) and kelch-like ECH-associated protein 1 (Keap1) were found downregulated with the upregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) transcription factor and its associated anti-oxidant enzymes: Heme oxygenase I (HO-1), superoxide dismutase (SOD1), glutathione peroxidase (GPx), NADPH quinone oxidoreductase-1 (NQO1) and catalase (CAT) in MSU crystal stimulated RAW 264.7 macrophages upon berberine treatment. Subsequently, western blot analysis revealed that berberine decreased the protein expression of IL-1β and caspase 1 and increased Nrf2 expression in RAW 264.7 macrophages. Immunofluorescence analysis also explored increased expression of Nrf2 in MSU crystal stimulated RAW 264.7 macrophages by berberine treatment. In addition, the paw edema, pain score, pro-inflammatory cytokines (IL-1β and TNFα) and articular elastase activity were found significantly reduced in berberine (50mg/kgb·wt) administered MSU crystal-induced rats. Conclusively, our current findings suggest that berberine may represent as a potential candidate for the treatment of gouty arthritis by suppressing inflammatory mediators and activating Nrf2 anti-oxidant pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex

    PubMed Central

    Lu, Cheng-Wei; Huang, Shu-Kuei; Wang, Su-Jane

    2013-01-01

    Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling

  1. Berberine impairs embryonic development in vitro and in vivo through oxidative stress-mediated apoptotic processes.

    PubMed

    Huang, Chien-Hsun; Huang, Zi-Wei; Ho, Feng-Ming; Chan, Wen-Hsiung

    2018-03-01

    Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, has been shown to suppress growth and induce apoptosis in some tumor cell lines. However, berberine has also been reported to attenuate H 2 O 2 -induced oxidative injury and apoptosis. The basis for these ambiguous effects of berberine-triggering or preventing apoptosis-has not been well characterized to date. In the current investigation, we examined whether berberine exerts cytotoxic effects on mouse embryos at the blastocyst stage and affects subsequent embryonic development in vitro and in vivo. Treatment of blastocysts with berberine (2.5-10 μM) induced a significant increase in apoptosis and a corresponding decrease in trophectoderm cell number. Moreover, the implantation success rate of blastocysts pretreated with berberine was lower than that of their control counterparts. Pretreatment with berberine was also associated with increased resorption of postimplantation embryos and decreased fetal weight. In an animal model, intravenous injection of berberine (2, 4, or 6 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst cells and early embryonic developmental injury. Berberine-induced injury of mouse blastocysts appeared to be attributable to oxidative stress-triggered intrinsic apoptotic signaling processes that impaired preimplantation and postimplantation embryonic development. Taken together, our results clearly demonstrate that berberine induces apoptosis and retards early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  2. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer.

    PubMed

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-11-15

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors.

  3. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer

    PubMed Central

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-01-01

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors. PMID:27738318

  4. Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats.

    PubMed

    Wang, Xue; He, Xin; Zhang, Chun-Feng; Guo, Chang-Run; Wang, Chong-Zhi; Yuan, Chun-Su

    2017-05-01

    Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease, which affects approximately 1% adult population in the worldwide. The present study was to investigate the anti-arthritic effect of berberine and its involved mechanism in Freund's complete adjuvant (FCA) induced arthritis rats. Rats were divided randomly into control, FCA, tripterysium glycosides, berberine (75 and 150mg/kg). The apparent indicators, including changes of body weights, paw swelling degrees and arthritis indexes, were analyzed to evaluate anti-arthritic effect of berberine. The levels of IL-6, IL-10, IL-17 and TGF-β in serum were measured by ELISA. Histopathological changes and immunohistochemical expression of anti-IL-10 and anti-IL-17 antibodies in ankle joint tissues were examined. Berberine obviously suppressed the severity of RA rats by attenuating the apparent indicators as mentioned above. Meanwhile, berberine significantly decreased the levels of IL-6 and IL-17, and increased the levels of IL-10 and TGF-β. Histopathological examinations indicated that berberine attenuated the synovial hyperplasia and inflammatory cell infiltration in joint tissues. In addition, immunohistochemical results showed that the amount of anti-IL-10 antibody increased, while the amount of anti-IL-17 antibody decreased in ankle tissues of arthritis rats. Our results showed that berberine exerted a superior anti-arthritic effect and the mechanism maybe involve the balance between Treg and Th17 cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice

    PubMed Central

    Li, Weidong; Hua, Baojin; Saud, Shakir M.; Lin, Hongsheng; Hou, Wei; Matter, Matthias S.; Jia, Libin; Colburn, Nancy H.; Young, Matthew R.

    2015-01-01

    Colorectal cancer, a leading cause of cancer death, has been linked to inflammation and obesity. Berberine, an isoquinoline alkaloid, possesses anti-inflammatory, anti-diabetes and anti-tumor properties. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, berberine treated mice showed a 60% reduction in tumor number (P=0.009), a 48% reduction in tumors <2 mm, (P=0.05); 94% reduction in tumors 2-4 mm, (P=0.001) and 100% reduction in tumors >4 mm (P=0.02) compared to vehicle treated mice. Berberine also decreased AOM/DSS induced Ki-67 and COX-2 expression. In vitro analysis showed that in addition to its anti-proliferation activity, berberine also induced apoptosis in colorectal cancer cell lines. Berberine activated AMP-activated protein kinase (AMPK), a major regulator of metabolic pathways, and inhibited mammalian target of rapamycin (mTOR), a downstream target of AMPK. Furthermore, 4E-binding protein-1 and p70 ribosomal S6 kinases, downstream targets of mTOR, were down regulated by berberine treatment. Berberine did not affect Liver kinase B1 (LKB1) activity or the mitogen-activated protein kinase pathway. Berberine inhibited Nuclear Factor kappa-B (NF-κB) activity, reduced the expression of cyclin D1 and survivin, induced phosphorylation of p53 and increased caspase-3 cleavage in vitro. Berberine inhibition of mTOR activity and p53 phosphorylation was found to be AMPK dependent, while inhibition NF-κB was AMPK independent. In vivo, berberine also activated AMPK, inhibited mTOR and p65 phosphorylation and activated caspase-3 cleavage. Our data suggests that berberine suppresses colon epithelial proliferation and tumorigenesis via AMPK dependent inhibition of mTOR activity and AMPK independent inhibition of NF-κB. PMID:24838344

  6. Berberine ameliorates collagen-induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut.

    PubMed

    Yue, Mengfan; Xia, Yufeng; Shi, Can; Guan, Chunge; Li, Yunfan; Liu, Rui; Wei, Zhifeng; Dai, Yue

    2017-09-01

    Berberine, an isoquinoline alkaloid, has been reported to ameliorate various autoimmune diseases including rheumatoid arthritis by oral administration. However, its mechanism remains mysterious due to an extremely low bioavailability. The fact that berberine readily accumulates in the gut, the largest endocrine organ in the body, attracted us to explore its anti-arthritic mechanism in view of the induction of intestinal immunosuppressive neuropeptides. In this study, berberine (200 mg·kg -1 , i.g.) was shown to ameliorate collagen-induced arthritis in rats, which was manifested by the reduction of clinical signs and joint destruction, as well as marked down-regulation of Th17 cell frequency and interleukin-17 level in blood. In contrast, an intravenous injection of berberine failed to affect arthritis in rats, implying that its anti-arthritic effect was gut-dependent. Further studies revealed that oral berberine selectively elevated the levels of cortistatin, of five gut-derived neuropeptides tested, in the intestines and sera of arthrititic rats. Antagonists of ghrelin/growth hormone secretagogue receptor 1 (a subtype of cortistatin receptor) almost completely abolished the ameliorative effect of berberine on arthritis and Th17 cell responses in rats. In vitro, berberine showed a moderate ability to promote the expression of cortistatin in nerve cells, which was strengthened when the nerve cells were cocultured with enteroendocrine cells to induce an autocrine/paracrine environment. In summary, oral berberine exerted anti-arthritic effect through inhibiting the Th17 cell response, which was closely associated with the induction of cortistatin generation from gut through augmenting autocrine/paracrine action between enteric nerve cells and endocrine cells. © 2017 Federation of European Biochemical Societies.

  7. Berberine inhibits the proliferation of human nasopharyngeal carcinoma cells via an Epstein-Barr virus nuclear antigen 1-dependent mechanism.

    PubMed

    Wang, Chao; Wang, Huan; Zhang, Yaqian; Guo, Wei; Long, Cong; Wang, Jingchao; Liu, Limei; Sun, Xiaoping

    2017-04-01

    Nasopharyngeal carcinoma (NPC) is a malignancy derived from the epithelial cells of the nasopharynx cavity, and is closely associated with Epstein-Barr virus (EBV) infection. In addition to NPC, EBV causes various human malignancies, such as gastric cancer, hematological tumors and lymphoepithelioma-like carcinomas. Epstein-Barr nuclear antigen 1 (EBNA1) encoded by EBV is indispensable for replication, partition, transcription and maintenance of viral genomes. Berberine, a naturally occurring isoquinoline alkaloid, shows anti-inflammatory, anticholinergic, antioxidative, and anticancer activities. In the present study, the antitumor effect of berberine was studied. Cell Counting Kit-8 (CCK-8) assays were performed to demonstrate whether the proliferation of EBV-positive NPC cells was inhibited by berberine. Flow cytometric results revealed that berberine induced cell cycle arrest and apoptosis. Quantitative-PCR and western blotting results indicated that berberine decreased the expression of EBNA1 at both the mRNA and protein levels in the EBV-positive NPC cells. The function of EBNA1 promoter Qp which is to drive EBNA1 transcription in type Ⅱ latent infection was strongly suppressed by berberine. Overexpression of EBNA1 attenuated this inhibitory effect. Berberine also suppressed the activity of signal transducer and activator of transcription 3 which is a new therapeutic target in a series of malignancies, including NPC. Viral titer experiments demonstrated that berberine decreased the production of virions in HONE1 and HK1-EBV cells. In a mouse xenograft model of NPC induced by HONE1 cells, berberine significantly inhibited tumor formation. Altogether, these results indicate that berberine decreases the expression of EBNA1 and exhibits an antitumor effect against NPC both in vitro and in vivo.

  8. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells.

    PubMed

    Ren, Kewei; Zhang, Wenzhe; Wu, Gang; Ren, Jianzhuang; Lu, Huibin; Li, Zongming; Han, Xinwei

    2016-12-01

    Galangin is an active pharmacological ingredient from propolis and Alpinia officinarum Hance, and has been reported to have anti-cancer and antioxidative properties. Berberine, a major component of Berberis vulgaris extract, exhibits potent anti-cancer activities through distinct molecular mechanisms. However, the anticancer effect of galangin in combination with berberine is still unknown. In the present study, we demonstrated that the combination of galangin with berberine synergistically resulted in cell growth inhibition, apoptosis and cell cycle arrest at G2/M phase with the increased intracellular reactive oxygen species (ROS) levels in oesophageal carcinoma cells. Pretreatment with ROS scavenger promoted the apoptosis dramatically induced by co-treatment with galangin and berberine. Treatment with galangin and berberine alone caused the decreased expressions of Wnt3a and β-catenin. Interestingly, combination of galangin with berberine could further suppress Wnt3a and β-catenin expression and induce apoptosis in cancer cells. Additionally, in nude mice with xenograft tumors, the combinational treatment of galangin and berberine significantly inhibited the tumor growth without obvious toxicity. Overall, galangin in combination with berberine presented outstanding synergistic anticancer role in vitro and in vivo, indicating that the beneficial combination of galangin and berberine might provide a promising treatment for patients with oesophageal carcinoma. Copyright © 2016. Published by Elsevier Masson SAS.

  9. Anti-Inflammatory Effects of Berberine Hydrochloride in an LPS-Induced Murine Model of Mastitis

    PubMed Central

    Feng, Shibin; Ding, Nana; He, Yanting; Li, Cheng; Li, Manman; Ding, Xuedong; Ding, Hongyan; Li, Jinchun

    2018-01-01

    Berberine hydrochloride is an isoquinoline type alkaloid extracted from Berberidaceae, Rutaceae, and other plants. Previous reports have shown that berberine hydrochloride has anti-inflammatory properties. However, the underlying molecular mechanisms remain unclear. In this study, a lipopolysaccharide- (LPS-) induced murine model of mastitis was established to explore the anti-inflammatory action of berberine hydrochloride. Sixty mice that had been lactating for 5–7 days were randomly divided into six groups, including control, LPS, three berberine hydrochloride treatment groups (5, 10, and 20 mg/kg), and a dexamethasone (DEX) (5 mg/kg) group. Berberine hydrochloride was administered intraperitoneally 1 h before and 12 h after LPS-induced mastitis, and all mice were sacrificed 24 h after LPS induction. The pathological and histopathological changes of the mammary glands were observed. The concentrations and mRNA expressions of TNF-α, IL-1β, and IL-6 were measured by ELISA and qRT-PCR. The activation of TLR4 and NF-κB signaling pathways was analyzed by Western blot. Results indicated that berberine hydrochloride significantly attenuated neutrophil infiltration and dose-dependently decreased the secretion and mRNA expressions of TNF-α, IL-1β, and IL-6 within a certain range. Furthermore, berberine hydrochloride suppressed LPS-induced TLR4 and NF-κB p65 activation and the phosphorylation of I-κB. Berberine hydrochloride can provide mice robust protection from LPS-induced mastitis, potentially via the TLR4 and NF-κB pathway.

  10. Berberine Induces Cell Cycle Arrest in Cholangiocarcinoma Cell Lines via Inhibition of NF-κB and STAT3 Pathways.

    PubMed

    Puthdee, Nattapong; Seubwai, Wunchana; Vaeteewoottacharn, Kulthida; Boonmars, Thidarut; Cha'on, Ubon; Phoomak, Chatchai; Wongkham, Sopit

    2017-01-01

    Berberine is a natural compound found in several herbs. Anticancer activity of berberine was reported in several cancers, however, little is known regarding the effects of berberine against cholangiocarcinoma (CCA). In this study, the growth inhibitory effects of berberine on CCA cell lines and its molecular mechanisms were explored. Cell growth and cell cycle distribution were examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. The expression levels of cell cycle regulatory proteins were determined by Western blot analysis. Berberine significantly inhibited growth of CCA cell lines in a dose and time dependent fashion. The inhibition was largely attributed to cell cycle arrest at the G1 phase through the reduction of cyclin D1, and cyclin E. Moreover, berberine could reduce the expression and activation of signal transducers and activator of transcription 3 (STAT3) and probably nuclear factor-kappaB (NF-κB) via suppression of extracellular signal-regulated kinase (ERK) 1/2 action. These results highlight the potential of berberine to be a multi-target agent for CCA treatment.

  11. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy.

    PubMed

    Wang, Huiqiang; Li, Ke; Ma, Linlin; Wu, Shuo; Hu, Jin; Yan, Haiyan; Jiang, Jiandong; Li, Yuhuan

    2017-01-11

    The MEK-ERK signaling pathway and autophagy play an important role for enterovirus71(EV71) replication. Inhibition of MEK-ERK signaling pathway and autophagy is shown to impair EV71 replication. Berberine (BBR), an isoquinoline alkaloid isolated from Berberis vulgaris L., has been reported to have ability to regulate this signaling pathway and autophagy. Herein, we want to determine whether berberine can inhibit EV71 infection by downregulating the MEK/ERK signaling pathway and autophagy. The antiviral effect of berberine was determined by cytopathic effect (CPE) assay, western blotting assay and qRT-PCR assay. The mechanism of BBR anti-virus was determined by western blotting assay and immunofluorescence assay. We showed that berberine does-dependently reduced EV71 RNA and protein synthesis, which was, at least in part, the result of inhibition of activation of MEK/ERK signaling pathway. Furthermore, we found that berberine suppressed the EV71-induced autophagy by activating AKT protein and inhibiting the phosphorylation of JNK and PI3KIII. BBR inhibited EV71 replication by downregulating autophagy and MEK/ERK signaling pathway. These findings suggest that BBR may be a potential agent or supplement against EV71 infection.

  12. Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor

    PubMed Central

    2014-01-01

    Background Berberine is an isoquinoline alkaloid mainly extracted from Rhizoma Coptidis and has been shown to possess a potent inhibitory activity against bacterial. However, the role of berberine in anti-bacterial action has not been extensively studied. Methods The animal model was established to investigate the effects of berberine on bacterial and LPS infection. Docking analysis, Molecular dynamics simulations and Real-time RT-PCR analysis was adopted to investigate the molecular mechanism. Results Treatment with 40 mg/kg berberine significantly increased the survival rate of mice challenged with Salmonella typhimurium (LT2), but berberine show no effects in bacteriostasis. Further study indicated that treatment with 0.20 g/kg berberine markedly increased the survival rate of mice challenged with 2 EU/ml bacterial endotoxin (LPS) and postpone the death time of the dead mice. Moreover, pretreatment with 0.05 g/kg berberine significantly lower the increasing temperature of rabbits challenged with LPS. The studies of molecular mechanism demonstrated that Berberine was able to bind to the TLR4/MD-2 receptor, and presented higher affinity in comparison with LPS. Furthermore, berberine could significantly suppressed the increasing expression of NF-κB, IL-6, TNFα, and IFNβ in the RAW264.7 challenged with LPS. Conclusion Berberine can act as a LPS antagonist and block the LPS/TLR4 signaling from the sourse, resulting in the anti-bacterial action. PMID:24602493

  13. Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells.

    PubMed

    Kou, Yu; Li, Lei; Li, Hong; Tan, Yuhui; Li, Bin; Wang, Kun; Du, Biaoyan

    2016-10-14

    Berberine is a natural compound extracted from Coptidis rhizoma, and accumulating proof has shown its potent anti-tumor properties with diverse action on melanoma cells, including inhibiting cancer viability, blocking cell cycle and migration. However, the mechanisms of berberine have not been fully clarified. In this study, we identified that berberine reduced the migration and invasion capacities of B16 cells, and notably altered pluripotency of epithelial to mesenchymal transition associated factors. We found that berberine also downregulation the expression level of p-PI3K, p-AKT and retinoic acid receptor α (RARα) and upregulation the expression level of retinoic acid receptor β and γ (RARβ and RARγ). These effects of PI3 kinase inhibitor LY294002 treatment mimicked Berberine treatment except the expression level of RARγ. Moreover, Western blot analysis showed that the decreased PI3K and AKT phosphorylation, increased the epithelial maker E-cadherin, and upregulation level of RARβ while decreased the mesenchymal markers N-cadherin and downregulation level of RARα by incubation with LY294002 in mouse melanoma B16 cells. In conclusion, Our study reveal that berberine can reverse the epithelial to mesenchymal transition of mouse melanoma B16 cells and may be a useful adjuvant therapeutic agent in the treatment of melanoma through the PI3K/Akt pathway and inactivation PI3K/AKT could regulate RARα/RARβ expression. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis.

    PubMed

    Liu, Yunxin; Liu, Xiang; Hua, Weiwei; Wei, Qingyan; Fang, Xianjun; Zhao, Zheng; Ge, Chun; Liu, Chao; Chen, Chen; Tao, Yifu; Zhu, Yubing

    2018-04-01

    Berberine has been reported to have protective effects in colitis treatment. However, the detailed mechanisms remain unclear. Herein, we demonstrated that berberine could protect against dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization. In the colitis mouse model, berberine ameliorated DSS-induced colon shortening and colon tissue injury. Moreover, berberine-treated mice showed significant reduction in the disease activity index (DAI), pro-inflammatory cytokines expression and macrophages infiltration compared with the DSS-treated mice. Notably, berberine significantly reduced the percentage of M1 macrophages. In vitro analysis also confirmed the inhibitory effects of berberine on macrophages M1 polarization in RAW267.4 cells. Further investigation showed that berberine promoted AKT1 expression in mRNA and protein level. Silence of AKT1 abolished the inhibitory effect of berberine on macrophages M1 polarization. The berberine-induced AKT1 expression promoted suppressers of cytokine signaling (SOCS1) activation, which inhibited nuclear factor-kappa B (NF-κB) phosphorylation. In addition, we also found that berberine activated AKT1/SOCS1 signaling pathway but inhibited p65 phosphorylation in macrophages in vivo. Therefore, we concluded that berberine played a regulatory role in macrophages M1 polarization in DSS-induced colitis via AKT1/SOCS1/NF-κB signaling pathway. This unexpected property of berberine may provide a potential explanation for its protective effects in colitis treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Activation of IGF-1/IGFBP-3 signaling by berberine improves intestinal mucosal barrier of rats with acute endotoxemia.

    PubMed

    He, Yan; Yuan, Xiaoming; Zhou, Guangrong; Feng, Aiwen

    2018-01-01

    Insulin-like growth factor I (IGF-I) and binding protein 3 (IGFBP-3) play a role in the maintenance of gut mucosal barrier function. Nevertheless, IGF-I/IGFBP-3 and tight junction protein (TJP) expression in small intestinal mucosa are often impaired during endotoxemia. In this model of acute endotoxemia, the regulatory effect of berberine on IGF-I/IGFBP-3 and TJP expression in ileal mucosa was evaluated. The findings revealed systemic injection of lipopolysaccharide (LPS) suppressed mRNA and protein expression of IGF-I and IGFBP-3, but berberine ameliorated their production. LPS injection inhibited occludin and claudin-1 protein generation, and this inhibitory effect of LPS was abolished by berberine. Inhibition of IGF-I/IGFBP-3 signaling by AG1024 or siRNAs reduced berberine-induced occludin and claudin-1 production. Additionally, GW9662 was found to repress berberine-induced IGF-I/IGFBP-3 expression, indicating of a cross-link between PPARγ and IGF-I/IGFBP-3 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7.

    PubMed

    Tan, Wen; Zhong, Zhangfeng; Wang, Shengpeng; Suo, Zhanwei; Yang, Xian; Hu, Xiaodong; Wang, Yitao

    2015-01-01

    Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  17. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    PubMed Central

    Tan, Wen; Zhong, Zhangfeng; Suo, Zhanwei; Yang, Xian; Hu, Xiaodong; Wang, Yitao

    2015-01-01

    Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL. PMID:26351511

  18. Berberis Vulgaris and Berberine: An Update Review.

    PubMed

    Imenshahidi, Mohsen; Hosseinzadeh, Hossein

    2016-11-01

    Berberine is an isoquinoline alkaloid present in several plants, including Coptis sp. and Berberis sp. Berberine is a customary component in Chinese medicine, and is characterized by a diversity of pharmacological effects. An extensive search in electronic databases (PubMed, Scopus, Ovid, Wiley, ProQuest, ISI, and Science Direct) were used to identify the pharmacological and clinical studies on Berberis vulgaris and berberine, during 2008 to 2015, using 'berberine' and 'Berberis vulgaris' as search words. We found more than 1200 new article studying the properties and clinical uses of berberine and B. vulgaris, for treating tumor, diabetes, cardiovascular disease, hyperlipidemia, inflammation, bacterial and viral infections, cerebral ischemia trauma, mental disease, Alzheimer disease, osteoporosis, and so on. In this article, we have updated the pharmacological effects of B. vulgaris and its active constituent, berberine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Effect of berberine on Staphylococcus epidermidis biofilm formation.

    PubMed

    Wang, Xiaoqing; Yao, Xiao; Zhu, Zhen'an; Tang, Tingting; Dai, Kerong; Sadovskaya, Irina; Flahaut, Sigrid; Jabbouri, Said

    2009-07-01

    Staphylococcus epidermidis is one of the main causes of medical device-related infections owing to its adhesion and biofilm-forming abilities on biomaterial surfaces. Berberine is an isoquinoline-type alkaloid isolated from Coptidis rhizoma (huang lian in Chinese) and other herbs with many activities against various disorders. Although the inhibitory effects of berberine on planktonic bacteria have been investigated in a few studies, the capacity of berberine to inhibit biofilm formation has not been reported to date. In this study, we observed that berberine is bacteriostatic for S. epidermidis and that sub-minimal inhibitory concentrations of berberine blocked the formation of S.epidermidis biofilm. Using viability assays and berberine uptake testing, berberine at a concentration of 15-30mug/mL was shown to inhibit bacterial metabolism. Data from this study also indicated that modest concentrations of berberine (30-45mug/mL) were sufficient to exhibit an antibacterial effect and to inhibit biofilm formation significantly, as shown by the tissue culture plate (TCP) method, confocal laser scanning microscopy and scanning electron microscopy for both S. epidermidis ATCC 35984 and a clinical isolate strain SE243. Although the mechanisms of bacterial killing and inhibition of biofilm formation are not fully understood, data from this investigation indicated a potential application for berberine as an adjuvant therapeutic agent for the prevention of biofilm-related infections.

  20. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways

    PubMed Central

    Krasnova, Irina N.; Justinova, Zuzana; Cadet, Jean Lud

    2017-01-01

    Rationale and objectives Addiction to psychostimulant methamphetamine (METH) remains a major public health problem in the world. Animal models that use METH self-administration incorporate many features of human drug-taking behavior and are very helpful in elucidating mechanisms underlying METH addiction. These models are also helping to decipher the neurobiological substrates of associated neuropsychiatric complications. This review summarizes our work on the influence of METH self-administration on dopamine systems, transcriptional and immune responses in the brain. Methods We used the rat model of METH self-administration with extended access (15 hours/day for 8 consecutive days) to investigate the effects of voluntary METH intake on the markers of dopamine system integrity and changes in gene expression observed in the brain at 2 hours – 1 month after cessation of drug exposure. Results Extended access to METH self-administration caused changes in the rat brain that are consistent with clinical findings reported in neuroimaging and post-mortem studies of human METH addicts. In addition, gene expression studies using striatal tissues from METH self-administering rats revealed increased expression of genes involved in CREB signaling pathway and in the activation of neuroinflammatory response in the brain. Conclusion These data show an association of METH exposure with activation of neuroplastic and neuroinflammatory cascades in the brain. The neuroplastic changes may be involved in promoting METH addiction. Neuroinflammatory processes in the striatum may underlie cognitive deficits, depression, and parkinsonism reported in METH addicts. Therapeutic approaches that include suppression of neuroinflammation may be beneficial to addicted patients. PMID:26873080

  1. Uncovering potential anti-neuroinflammatory components of Modified Wuziyanzong Prescription through a target-directed molecular docking fingerprint strategy.

    PubMed

    Chen, Jinfeng; Wang, Jinlong; Lu, Yingyuan; Zhao, Shaoyang; Yu, Qian; Wang, Xuemei; Tu, Pengfei; Zeng, Kewu; Jiang, Yong

    2018-05-01

    Neuroinflammation is a main factor in the pathogenesis of neurodegenerative diseases, such as Alzheimer disease. Our previous studies indicated that the modified Wuziyanzong Prescription (MWP) can suppress neuroinflammatory responses via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. However, the anti-neuroinflammatory components of MWP remain unclear. Herein, a target-directed molecular docking fingerprint (TMDF) strategy, via integrating the chemical profiling and molecular docking approaches, was developed to identify the potential anti-neuroinflammatory components of MWP. First, as many as 120 possible structures, including 49 flavonoids, 28 phenylpropionic acids, 18 amides, 10 carotenoids, eight phenylethanoid glycosides, four lignans, two iridoids, and one triterpenoid were deduced by the source attribution and structural classification-assisted strategy. Then, their geometries were docked against five major targets of the NF-κB and MAPKs signaling cascades, including p38-α, IKKβ, ERK1, ERK2, and TRAF6. The docking results revealed diverse contributions of different components towards the protein targets. Collectively, prenylated flavonoids showed intensive or moderate anti-neuroinflammatory activities, while phenylpropanoids, amides, phenylethanoid glycosides, lignans, and triterpenoids exhibited moderate or weak anti-neuroinflammatory effects. The anti-neuroinflammatory activities of four retrieved prenylated flavonoids were tested by Western blotting assay, and the results mostly agreed with those predicted by the docking method. These gained information demonstrates that the established TMDF strategy could be a rapid and feasible methodology to investigate the potential active components in herbal compound prescriptions. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Membrane of Candida albicans as a target of berberine.

    PubMed

    Zorić, Nataša; Kosalec, Ivan; Tomić, Siniša; Bobnjarić, Ivan; Jug, Mario; Vlainić, Toni; Vlainić, Josipa

    2017-05-17

    We investigated the mechanisms of anti-Candida action of isoquinoline alkaloid berberine, active constituent of medically important plants of Barberry species. The effects on membrane, morphological transition, synthesis of ergosterol and the consequent changes in membrane permeability have been studied. Polarization and lipid peroxidation level of the membrane following berberine treatment have been addressed. Minimal inhibitory concentration (MIC) of berberine against C. albicans was 17.75 μg/mL. Cytotoxic effect of berberine was concentration dependent, and in sub-MIC concentrations inhibit morphological transition of C. albicans cells to its filamentous form. Results showed that berberine affects synthesis of membrane ergosterol dose-dependently and induces increased membrane permeability causing loss of intracellular material to the outer space (DNA/protein leakage). Berberine also caused membrane depolarization and lipid peroxidation of membrane constituents indicating its direct effect on the membrane. Moreover, ROS levels were also increased following berberine treatment indicating further the possibility of membrane damage. Based on the obtained results it seems that berberine achieves its anti-Candida activity by affecting the cell membrane.

  3. Possible therapeutic potential of berberine in diabetic osteopathy.

    PubMed

    Rahigude, A B; Kaulaskar, S V; Bhutada, P S

    2012-10-01

    Diabetic osteopathy is a complication that leads to decreased bone mineral density, bone formation and having high risk of fractures that heals slowly. Diabetic osteopathy is a result of increase in osteoclastogenesis and decrease in osteoblastogenesis. Various factors viz., oxidative stress, increased inflammatory markers, PPAR-γ activation in osteoblast, activation of apoptotic pathway, increased glucose levels and inhibitory effect on parathyroid hormone etc. are mainly responsible for decreased bone mineral density. Berberine is an isoquinoline alkaloid widely used in Asian countries as a traditional medicine. Berberine is extensively reported to be an antioxidant, anti-inflammatory, antidiabetic, and having potential to treat diabetic complications and glucocorticoid induced osteoporosis. The osteoclastogenesis decreasing property of berberine can be hypothesized for inhibiting diabetic osteopathy. In addition, chronic treatment of berberine will be helpful for increasing the osteoblastic activity and expression of the modulators that affect osteoblastic differentiation. The apoptotic pathways stimulated due to increased inflammatory markers and nucleic acid damages could be reduced due to berberine. Another important consideration that berberine is having stimulatory effect on glucagon like peptide release and insulin sensitization that will be helpful for decreasing glucose levels and therefore, may exerts osteogenesis. Thiazolidinediones show bone loss due to activation of PPAR-γ in osteoblasts, whereas berberine stimulates PPAR-γ only in adipocytes and not in osteoblasts, and therefore the decreased bone loss due to use of thiazolidinediones may not be observed in berberine treatment conditions. Berberine decreases the advanced glycation end-products (AGE) formation in diabetic condition which will be ultimately helpful to decrease the stiffness of collagen fibers due to AGE-induced cross linking. Lastly, it is also reported that berberine has

  4. Berberine exposure triggers developmental effects on planarian regeneration

    PubMed Central

    Balestrini, Linda; Isolani, Maria Emilia; Pietra, Daniele; Borghini, Alice; Bianucci, Anna Maria; Deri, Paolo; Batistoni, Renata

    2014-01-01

    The mechanisms of action underlying the pharmacological properties of the natural alkaloid berberine still need investigation. Planarian regeneration is instrumental in deciphering developmental responses following drug exposure. Here we report the effects of berberine on regeneration in the planarian Dugesia japonica. Our findings demonstrate that this compound perturbs the regenerative pattern. By real-time PCR screening for the effects of berberine exposure on gene expression, we identified alterations in the transcriptional profile of genes representative of different tissues, as well as of genes involved in extracellular matrix (ECM) remodeling. Although berberine does not influence cell proliferation/apoptosis, our experiments prove that this compound causes abnormal regeneration of the planarian visual system. Potential berberine-induced cytotoxic effects were noticed in the intestine. Although we were unable to detect abnormalities in other structures, our findings, sustained by RNAi-based investigations, support the possibility that berberine effects are critically linked to anomalous ECM remodeling in treated planarians. PMID:24810466

  5. Berberine alleviates the cerebrovascular contractility in streptozotocin-induced diabetic rats through modulation of intracellular Ca²⁺ handling in smooth muscle cells.

    PubMed

    Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao

    2016-04-12

    Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents

  6. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae

    PubMed Central

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually. PMID:26191220

  7. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae.

    PubMed

    Peng, Lianci; Kang, Shuai; Yin, Zhongqiong; Jia, Renyong; Song, Xu; Li, Li; Li, Zhengwen; Zou, Yuanfeng; Liang, Xiaoxia; Li, Lixia; He, Changliang; Ye, Gang; Yin, Lizi; Shi, Fei; Lv, Cheng; Jing, Bo

    2015-01-01

    The antibacterial activity and mechanism of berberine against Streptococcus agalactiae were investigated in this study by analyzing the growth, morphology and protein of the S. agalactiae cells treated with berberine. The antibacterial susceptibility test result indicated minimum inhibition concentration (MIC) of berberine against Streptococcus agalactiae was 78 μg/mL and the time-kill curves showed the correlation of concentration-time. After the bacteria was exposed to 78 μg/mL berberine, the fragmentary cell membrane and cells unequal division were observed by the transmission electron microscopy (TEM), indicating the bacterial cells were severely damaged. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) study demonstrated that berberine could damage bacterial cells through destroying cellular proteins. Meanwhile, Fluorescence microscope revealed that berberine could affect the synthesis of DNA. In conclusion, these results strongly suggested that berberine may damage the structure of bacterial cell membrane and inhibit synthesis of protein and DNA, which cause Streptococcus agalactiae bacteria to die eventually.

  8. A new triple system DNA-Nanosilver-Berberine for cancer therapy

    NASA Astrophysics Data System (ADS)

    Grebinyk, Anna; Yashchuk, Valeriy; Bashmakova, Nataliya; Gryn, Dmytro; Hagemann, Tobias; Naumenko, Antonina; Kutsevol, Nataliya; Dandekar, Thomas; Frohme, Marcus

    2018-03-01

    The isoquinoline quaternary alkaloid Berberine possesses a variety of pharmacological properties that suggests its promising application for an anticancer delivery system design utilizing its ability to intercalate DNA. In the current work, we have investigated the effects of Berberine on the human T cell leukemia cell line in vitro. Fluorescent microscopy of leukemic cells revealed Berberine nuclear localization. The results showed that Berberine inhibited leukemic cell growth in a time- and dose-dependent manner, that was associated with reactive oxygen species production intensification and caspase 3/7 activity increase with followed apoptosis induction. Berberine was used as a toxic and phototoxic agent for triple system synthesis along with DNA as a carrier and nanosilver as a plasmonic accelerator of Berberine electronic transitions and high energy emission absorbent centers. The proposed method allows to obtain the complex of DNA with Berberine molecules and silver nanoparticles. The optical properties of free components as well as their various combinations, including the final triple system DNA-Nanosilver-Berberine, were investigated. Obtained results support the possibility to use the triple system DNA-Nanosilver-Berberine as an alternative therapeutic agent for cancer treatment.

  9. Inhibition of autophagy by berberine enhances the survival of H9C2 myocytes following hypoxia.

    PubMed

    Jia, Zhuyin; Lin, Lu; Huang, Shanjun; Zhu, Zhouyang; Huang, Weijian; Huang, Zhouqing

    2017-08-01

    Hypoxia may induce apoptosis and autophagy to promote cardiomyocyte injury. The present study investigated the effect of berberine, a natural extract of Rhizoma Coptidis, on hypoxia‑induced autophagy and apoptosis in the H9c2 rat myocardial cell line. Expression levels of apoptosis and autophagy markers were upregulated in H9c2 myocytes during hypoxia and cell viability was reduced. However, berberine significantly reduced hypoxia‑induced autophagy in H9c2 myocytes, as demonstrated by the ratio of microtubule‑associated proteins 1A/1B light chain 3 I/II and the expression levels of B‑cell lymphoma 2 (Bcl‑2)/adenovirus E1B 19 kDa protein‑interacting protein 3, and promoted cell viability. In addition, expression levels of the Bcl‑2 anti‑apoptotic protein were significantly downregulated, and expression levels of pro‑apoptotic proteins Bcl‑2‑associated X protein and cleaved caspase‑3 were upregulated during hypoxia injury in cardiac myocytes. This was reversed by treatment with berberine or the autophagy inhibitor 3‑methyladenine, whereas the autophagy agonist rapamycin had the opposite effects, suggesting that berberine reduces myocyte cell death via inhibition of autophagy and apoptosis during hypoxia. In addition, Compound C, a 5' adenosine monophosphate‑activated protein kinase (AMPK) inhibitor, reduced apoptosis and autophagy in hypoxic myocytes, suggesting that the activation of the AMPK signaling pathway may be involved in this process. These findings suggested that berberine protects cells from hypoxia‑induced apoptosis via inhibition of autophagy and suppression of AMPK activation. Therefore, berberine may be a potential therapeutic agent for the treatment of patients with cardiac myocyte injury and ischemia.

  10. Berberine protects HK-2 cells from hypoxia/reoxygenation induced apoptosis via inhibiting SPHK1 expression.

    PubMed

    Lu, Jianrao; Yi, Yang; Pan, Ronghua; Zhang, Chuanfu; Han, Haiyan; Chen, Jie; Liu, Wenrui

    2018-03-01

    Renal ischemia reperfusion injury (RIRI) refers to the irreversible damage for renal function when blood perfusion is recovered after ischemia for an extended period, which is common in clinical surgeries and has been regarded as a major risk for acute renal failures (ARF) that is accompanied with unimaginably high morbidity and mortality. Hypoxia during ischemia followed by reoxygenation via reperfusion serves as a major event contributing to cell apoptosis, which has been widely accepted as the vital pathogenesis in RIRI. Preventing apoptosis in renal tubular epithelial cell has been considered as effective method for blocking RIRI. In this paper, we established a hypoxia/reoxygenation (H/R) injury model in human proximal tubular epithelial HK-2 cells. Here, we found increased SPHK1 levels in H/R injured HK-2 cells, which could be significantly down regulated after berberine treatment. Berberine has been reported to exert a protective effect on H/R-induced apoptosis of HK-2 cells. So, in our present study, we planned to investigate whether SPHK1 participated in the anti-apoptosis process of berberine in H/R injured HK-2 cells. Our study confirmed the protective effect of berberine against H/R-induced apoptosis in HK-2 cells through promoting cells viability, inhibiting cells apoptosis, and down-regulating p-P38, caspase-3, caspase-9 as well as SPHK1, while up regulating the ratio of Bcl-2/Bax. However, SPHK1 overexpression in HK-2 cells induced severe apoptosis, which can be significantly ameliorated with additional berberine treatment. We concluded that berberine could remarkably prevent H/R-induced apoptosis in HK-2 cells through down-regulating SPHK1 expression levels, and the mechanisms included the suppression of p38 MAPK activation and mitochondrial stress pathways.

  11. The metabolism of berberine and its contribution to the pharmacological effects.

    PubMed

    Wang, Kun; Feng, Xinchi; Chai, Liwei; Cao, Shijie; Qiu, Feng

    2017-05-01

    Berberine, a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including antimicrobial, antidiabetic, anticancer activities. Meanwhile, berberine undergoes extensive metabolism after oral administration which results in its extremely low plasma exposure. Therefore, it is believed that the metabolites of berberine also contribute a lot to its pharmacological effects. Along these lines, this review covers the metabolism studies of berberine in terms of its metabolic pathways and metabolic organs based on the identified metabolites, and it also covers the pharmacological activities of its active metabolites. In brief, the predominant metabolic pathways of berberine are demethylation, demethylenation, reduction, hydroxylation and subsequent conjugation in vivo. Active metabolites such as columbamine, berberrubine and demethyleneberberine also exhibit similar pharmacological effects by comparison with berberine, such as antioxidant, anti-inflammatory, antitumor, antimicrobial, hepatoprotective, neuroprotective, hypolipidemic and hypoglycemic effects. Overall, berberine together with its metabolites formed the material basis of berberine in vivo.

  12. Pharmacological Effect of Berberine Chloride in Propyl Thiouracil Induced Thyroidal Dysfunction - A Time Bound Study in Female Rats.

    PubMed

    Maurya, Harikesh; Dhiman, Sheena; Dua, Kamal; Gupta, Gaurav

    2016-01-01

    stimulating and suppressing activities depending on its dose, especially berberine chloride 50 mg/kg supports thyroid stimulating property.

  13. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction.

    PubMed

    Allijn, Iris E; Czarny, Bertrand M S; Wang, Xiaoyuan; Chong, Suet Yen; Weiler, Marek; da Silva, Acarilia Eduardo; Metselaar, Josbert M; Lam, Carolyn Su Ping; Pastorin, Giorgia; de Kleijn, Dominique P V; Storm, Gert; Wang, Jiong-Wei; Schiffelers, Raymond M

    2017-02-10

    Inflammation is a known mediator of adverse ventricular remodeling after myocardial infarction (MI) that may lead to reduction of ejection fraction and subsequent heart failure. Berberine is a isoquinoline quarternary alkaloid from plants that has been associated with anti-inflammatory, anti-oxidative, and cardioprotective properties. Its poor solubility in aqueous buffers and its short half-life in the circulation upon injection, however, have been hampering the extensive usage of this natural product. We hypothesized that encapsulation of berberine into long circulating liposomes could improve its therapeutic availability and efficacy by protecting cardiac function against MI in vivo. Berberine-loaded liposomes were prepared by ethanol injection and characterized. They contained 0.3mg/mL of the drug and were 0.11μm in diameter. Subsequently they were tested for IL-6 secretion inhibition in RAW 264.7 macrophages and for cardiac function protection against adverse remodeling after MI in C57BL/6J mice. In vitro, free berberine significantly inhibited IL-6 secretion (IC 50 =10.4μM), whereas encapsulated berberine did not as it was not released from the formulation in the time frame of the in vitro study. In vivo, berberine-loaded liposomes significantly preserved the cardiac ejection fraction at day 28 after MI by 64% as compared to control liposomes and free berberine. In conclusion, liposomal encapsulation enhanced the solubility of berberine in buffer and preserves ejection fraction after MI. This shows that delivery of berberine-loaded liposomes significantly improves its therapeutic availability and identifies berberine-loaded liposomes as potential treatment of adverse remodeling after MI. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. [Isolation and identification of berberine from endophytic fungi HL-Y-3].

    PubMed

    Zhang, Feng-Hua; Xiang, Jian-Hui; Cui, Wen-Xia; Yu, Jiang; Wang, Yan; Li, Qin-Fan

    2016-08-01

    The endophytic fungi HL-Y-3, which was isolated from the healthy leaves of Coptis chinensis, produced berberine when grown in the PDA culture medium. The presence of berberine was confirmed by the chromatographic and spectroscopic analyses. The yield of berberine was recorded as 9.313 μg•g⁻¹ by HPLC. The strain HL-Y-3 was identified as Alternaria sp.by morphological observation and 5.8S rDNA-ITS sequence analysis.The separation and purification of constituents were performed by PTLC. The mass spectrometry (MS) of the analyte was shown to be identical with authentic berberine.Further analysis with nuclear magnetic resonance (NMR) spectroscopy to showed that the chemical structure of the fungal berberine was identical with authentic berberine. The research provided new resources for the utilization of berberine. Copyright© by the Chinese Pharmaceutical Association.

  15. Synthesis of berberine loaded polymeric nanoparticles by central composite design

    NASA Astrophysics Data System (ADS)

    Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh

    2016-04-01

    Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.

  16. Berberine Suppresses Cell Motility Through Downregulation of TGF-β1 in Triple Negative Breast Cancer Cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; You, Daeun; Jeong, Yisun; Jeon, Myeongjin; Yu, Jonghan; Kim, Seok Won; Nam, Seok Jin; Lee, Jeong Eon

    2018-01-01

    Transforming growth factor-beta proteins (TGF-βs) are multifunctional growth factors and powerful modulators of the epithelial-mesenchymal transition (EMT) in a variety of cancer types including breast and lung cancer cells. Here, we demonstrated the inhibitory effect of berberine (BBR) on tumor growth and metastasis of triple negative breast cancer (TNBC) cells via suppression of TGF-β1 expression. The levels of mRNA expression were analyzed by real-time PCR. The levels of MMP-2, MMP-9 and TGF-β1 protein expression were analyzed by zymography and confocal microscopy, respectively. Cell migration was analyzed by wound healing assay. Tumorigenicity of TNBC cells such as tumor growth and metastasis was analyzed using xenograft models. In a clinical data set, aberrant TGF-β1 expression was associated with poor prognosis of breast cancer patients. Our in vitro results using TNBC cells showed that the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 and the capacity for cell migration were increased by TGF-β1 treatment. In contrast, basal levels of MMP-2 and MMP-9 were suppressed by a specific TGF-β receptor I inhibitor, SB431542. In addition, TGF-β1-induced MMP-2 and MMP-9 expression and cell migration were decreased by SB431542. Interestingly, we showed for the first time that BBR decreased the level of TGF-β1, but not TGF-β2, in TNBC cells. Furthermore, BBR significantly decreased the level of MMP-2 expression as well as the capacity for cell migration in TNBC cells. Finally, we examined the effect of BBR on in vivo tumor growth and lung metastasis in MDA-MB231 and 4T1 breast cancer xenograft models and showed that both were significantly decreased following BBR treatment. BBR suppresses tumorigenicity of TNBC cells through inhibition of TGF-β1 expression. Therefore, we demonstrate that BBR could be a promising drug for treatment of TNBC. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine.

    PubMed

    Wang, Xuanbin; Wang, Ning; Li, Hongliang; Liu, Ming; Cao, Fengjun; Yu, Xianjun; Zhang, Jingxuan; Tan, Yan; Xiang, Longchao; Feng, Yibin

    2016-04-16

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death and its prognosis remains poor due to the high risk of tumor recurrence and metastasis. Berberine (BBR) is a natural compound derived from some medicinal plants, and accumulating evidence has shown its potent anti-tumor activity with diverse action on tumor cells, including inducing cancer cell death and blocking cell cycle and migration. Molecular targets of berberine involved in its inhibitory effect on the invasiveness remains not yet clear. In this study, we identified that berberine exhibits a potent inhibition on the invasion and migration of HCC cells. This was accompanied by a dose-dependent down-regulation of expression of Cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 in berberine-treated HCC cells. Furthermore, berberine inactivated p38 and Erk1/2 signaling pathway in HCC cells. Primarily, this may be attributed to the up-regulation of plasminogen activator inhibitor-1 (PAI-1), a tumor suppressor that can antagonize uPA receptor and down-regulation of uPA. Blockade of uPA receptor-associated pathways leads to reduced invasiveness and motility of berberine-treated HCC cells. In conclusion, our findings identified for the first time that inactivation of uPA receptor by up-regulation of PAI-1 and down-regulation of uPA is involved in the inhibitory effect of berberine on HCC cell invasion and migration.

  18. Genomic screening for targets regulated by berberine in breast cancer cells.

    PubMed

    Wen, Chun-Jie; Wu, Lan-Xiang; Fu, Li-Juan; Yu, Jing; Zhang, Yi-Wen; Zhang, Xue; Zhou, Hong-Hao

    2013-01-01

    Berberine, a common isoquinoline alkaloid, has been shown to possess anti-cancer activities. However, the underlying molecular mechanisms are still not completely understood. In the current study, we investigated the effects of berberine on cell growth, colony formation, cell cycle distribution, and whether it improved the anticancer efficiency of cisplatin and doxorubicin in human breast cancer estrogen receptor positive (ER+) MCF-7 cells and estrogen receptor negative (ER-) MDA-MB-231 cells. Notably, berberine treatment significantly inhibited cell growth and colony formation in the two cell lines, berberine in combination with cisplatin exerting synergistic growth inhibitory effects. Accompanied by decreased growth, berberine induced G1 phase arrest in MCF-7 but not MDA-MB-231 cells. To provide a more detailed understanding of the mechanisms of action of berberine, we performed genome-wide expression profiling of berberine-treated cells using cDNA microarrays. This revealed that there were 3,397 and 2,706 genes regulated by berberine in MCF-7 and MDA-MB-231 cells, respectively. Fene oncology (GO) analysis identified that many of the target genes were involved in regulation of the cell cycle, cell migration, apoptosis, and drug responses. To confirm the microarray data, qPCR analysis was conducted for 10 selected genes based on previously reported associations with breast cancer and GO analysis. In conclusion, berberine exhibits inhibitory effects on breast cancer cells proliferation, which is likely mediated by alteration of gene expression profiles.

  19. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correlations with p53/cyclin D1 and PI3K/Akt.

    PubMed

    Chai, Yu-Shuang; Hu, Jun; Lei, Fan; Wang, Yu-Gang; Yuan, Zhi-Yi; Lu, Xi; Wang, Xin-Pei; Du, Feng; Zhang, Dong; Xing, Dong-Ming; Du, Li-Jun

    2013-05-15

    Berberine acted as a natural medicine with multiple pharmacological activities. In the present study, we examined the effect of berberine against cerebral ischemia damage from cell cycle arrest and cell survival. Oxygen-glucose deprivation of PC12 cells and primary neurons, and carotid artery ligation in mice were used as in vitro and in vivo cerebral ischemia models. We found that the effect of berberine on cell cycle arrest during ischemia was mediated by decreased p53 and cyclin D1, increased phosphorylation of Bad (higher expression of p-Bad and higher ratio of p-Bad to Bad) and decreased cleavage of caspase 3. Meanwhile, berberine activated the PI3K/Akt pathway during the reperfusion, especially the phosphor-activation of Akt, to promote the cell survival. The neural protective effect of berberine was remained in the presence of inhibitor of mitogen-activated protein/extracellular signal-regulated kinase (MEK), but was suppressed by the inhibitors of PI3K and Akt. We demonstrated that berberine induced cell cycle arrest and cell survival to resist cerebral ischemia injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effects of berberine on the growth and immune performance in response to ammonia stress and high-fat dietary in blunt snout bream Megalobrama amblycephala.

    PubMed

    Chen, Qing-Qing; Liu, Wen-Bin; Zhou, Man; Dai, Yong-Jun; Xu, Chao; Tian, Hong-Yan; Xu, Wei-Na

    2016-08-01

    This study aimed to figure out the effects of berberine on growth performance, immunity, oxidative stress and hepatocyte apoptosis of blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. 320 fish (80.00 ± 0.90 g) were divided randomly into four trial groups (each with four replicates) and fed with 4 diets (normal diet, normal diet with 50 mg/kg berberine, high-fat diet, high-fat diet with 50 mg/kg berberine), respectively. At the end of the feeding trial, ammonia stress test was carried out for 5 days. The result showed the growth performance, immune parameters including plasm acid phosphatase (ACP) activities, lysozyme (LYZ) activities and alternative complement C3 and C4 contents were suppressed in fish fed with high-fat diets but improved in berberine diets compared with control (normal diet). Hepatopancreas oxidative status, the malondialdehyde (MDA), protein carbonyl (PC) and lipid peroxide (LPO) were increased significantly (P < 0.05) when fish were fed with high-fat diets. Berberine could slow the progression of the oxidative stress induced by high-fat through increasing superoxide dismutase (SOD) activities and total sulfydryl (T-SH) levels of fish. And the hepatocyte apoptosis in the high-fat group could also be alleviated by berberine. After the ammonia stress test, the accumulative mortality was extremely (P < 0.05) low in fish fed high-fat diet with berberine compared to other groups. It was concluded berberine as a functional feed additive significantly inhibited the progression of oxidative stress, reduced the apoptosis and enhanced the immunity of fish fed with high-fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Berberine inhibits acute radiation intestinal syndrome in human with abdomen radiotherapy.

    PubMed

    Li, Guang-hui; Wang, Dong-lin; Hu, Yi-de; Pu, Ping; Li, De-zhi; Wang, Wei-dong; Zhu, Bo; Hao, Ping; Wang, Jun; Xu, Xian-qiong; Wan, Jiu-qing; Zhou, Yi-bing; Chen, Zheng-tang

    2010-09-01

    Radiation-induced acute intestinal symptoms (RIAISs) are the most relevant complication of abdominal or pelvic radiation. Considering the negative impact of RIAIS on patients' daily activities, the preventive effects of berberine on RIAIS in patients were investigated. Thirty-six patients with seminoma or lymphomas were randomized to receive berberine oral (n = 18) or not (n = 18). Forty-two patients with cervical cancer were randomized to a trial group (n = 21) and control group (n = 21). Radiotherapy used a parallel opposed anterior and posterior. 300-mg berberine was administered orally three times daily in trial groups. Eight patients with RIAIS were treated with 300-mg berberine three times daily from the third to the fifth week. Toxicities, such as fatigue, anorexia/nausea, etc., were graded weekly according to CTC version 2.0. Patients with abdominal/pelvic radiation in the control group showed grade 1 fatigue, anorexia/nausea, colitis, vomiting, proctitis, weight loss, diarrhea and grade 2 anorexia/nausea, fatigue. Only grade 1 colitis, anorexia/nausea, and fatigue were seen in patients of abdominal radiation treated with berberine. Grade 1 fatigue, colitis, anorexia/nausea, and proctitis occurred in patients of pelvic radiotherapy treated with berberine. Pretreatment with berberine significantly decreased the incidence and severity of RIAIS in patients with abdominal/pelvic radiotherapy when compared with the patients of the control group (P < 0.05). RIAIS were reduced in patients with abdominal radiotherapy/pelvic radiation after receiving berberine treatment. Berberine significantly reduced the incidence and severity of RIAIS and postponed the occurrence of RIAIS in patients with abdominal or whole pelvic radiation.

  2. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections

    NASA Astrophysics Data System (ADS)

    Chu, Ming; Zhang, Ming-Bo; Liu, Yan-Chen; Kang, Jia-Rui; Chu, Zheng-Yun; Yin, Kai-Lin; Ding, Ling-Yu; Ding, Ran; Xiao, Rong-Xin; Yin, Yi-Nan; Liu, Xiao-Yan; Wang, Yue-Dan

    2016-04-01

    Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA biofilm development in a dose dependent manner within the concentration ranging from 1 to 64 μg/mL. Further study indicated that berberine inhibited MRSA amyloid fibrils formation, which consist of phenol-soluble modulins (PSMs). Molecular dynamics simulation revealed that berberine could bind with the phenyl ring of Phe19 in PSMα2 through hydrophobic interaction. Collectively, berberine can inhibit MRSA biofilm formation via affecting PSMs’ aggregation into amyloid fibrils, and thereby enhance bactericidal activity of antibiotics. These findings will provide new insights into the multiple pharmacological properties of berberine in the treatment of microbial-generated amyloid involved diseases.

  3. Berberine and its derivatives: a patent review (2009 - 2012).

    PubMed

    Singh, Inder Pal; Mahajan, Shivani

    2013-02-01

    Berberine, a protoberberine alkaloid, and its derivatives exhibit a wide spectrum of pharmacological activities. It has been used in traditional Chinese medicine and Ayurvedic medicine and current research evidences support its use for various therapeutic areas. This review covers the patents on therapeutic activities of berberine and its derivatives in the years between 2009 and 2012. An extensive search was done to collect the patent information using European Patent Office database and SciFinder. The therapeutic areas covered include cancer, inflammation, infectious diseases, cardiovascular, metabolic disorders, and miscellaneous areas such as polycystic ovary syndrome, allergic diseases, and so on. Berberine along with its derivatives or in combination with other pharmaceutically active compounds or in the form of formulations has applications in various therapeutic areas such as cancer, inflammation, diabetes, depression, hypertension, and various infectious areas. Berberine has demonstrated wide physiological functions and has great potential to give a multipotent drug if some inherent problems on poor bioavailability and solubility are taken care of. Additionally, polyherbal formulations with berberine-containing plants as major ingredients can be successfully developed.

  4. Berberine displays antitumor activity in esophageal cancer cells in vitro.

    PubMed

    Jiang, Shu-Xian; Qi, Bo; Yao, Wen-Jian; Gu, Cheng-Wei; Wei, Xiu-Feng; Zhao, Yi; Liu, Yu-Zhen; Zhao, Bao-Sheng

    2017-04-14

    To investigate the effects of berberine on esophageal cancer (EC) cells and its molecular mechanisms. Human esophageal squamous cell carcinoma cell line KYSE-70 and esophageal adenocarcinoma cell line SKGT4 were used. The effects of berberine on cell proliferation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For cell cycle progression, KYSE-70 cells were stained with propidium iodide (PI) staining buffer (10 mg/mL PI and 100 mg/mL RNase A) for 30 min and cell cycle was analyzed using a BD FACSCalibur flow cytometer. For apoptosis assay, cells were stained with an Annexin V-FITC/PI apoptosis detection kit. The rate of apoptotic cells was analyzed using a dual laser flow cytometer and estimated using BD ModFit software. Levels of proteins related to cell cycle and apoptosis were examined by western blotting. Berberine treatment resulted in growth inhibition of KYSE-70 and SKGT4 cells in a dose-dependent and time-dependent manner. KYSE-70 cells were more susceptible to the inhibitory activities of berberine than SKGT4 cells were. In KYSE-70 cells treated with 50 μmol/L berberine for 48 h, the number of cells in G 2 /M phase (25.94% ± 5.01%) was significantly higher than that in the control group (9.77% ± 1.28%, P < 0.01), and berberine treatment resulted in p21 up-regulation in KYSE-70 cells. Flow cytometric analyses showed that berberine significantly augmented the KYSE-70 apoptotic population at 12 and 24 h post-treatment, when compared with control cells (0.83% vs 43.78% at 12 h, P < 0.05; 0.15% vs 81.86% at 24 h, P < 0.01), and berberine-induced apoptotic effect was stronger at 24 h compared with 12 h. Western blotting showed that berberine inhibited the phosphorylation of Akt, mammalian target of rapamycin and p70S6K, and enhanced AMP-activated protein kinase phosphorylation in a sustained manner. Berberine is an inhibitor of human EC cell growth and could be considered as a potential drug for the treatment

  5. Berberine displays antitumor activity in esophageal cancer cells in vitro

    PubMed Central

    Jiang, Shu-Xian; Qi, Bo; Yao, Wen-Jian; Gu, Cheng-Wei; Wei, Xiu-Feng; Zhao, Yi; Liu, Yu-Zhen; Zhao, Bao-Sheng

    2017-01-01

    AIM To investigate the effects of berberine on esophageal cancer (EC) cells and its molecular mechanisms. METHODS Human esophageal squamous cell carcinoma cell line KYSE-70 and esophageal adenocarcinoma cell line SKGT4 were used. The effects of berberine on cell proliferation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For cell cycle progression, KYSE-70 cells were stained with propidium iodide (PI) staining buffer (10 mg/mL PI and 100 mg/mL RNase A) for 30 min and cell cycle was analyzed using a BD FACSCalibur flow cytometer. For apoptosis assay, cells were stained with an Annexin V-FITC/PI apoptosis detection kit. The rate of apoptotic cells was analyzed using a dual laser flow cytometer and estimated using BD ModFit software. Levels of proteins related to cell cycle and apoptosis were examined by western blotting. RESULTS Berberine treatment resulted in growth inhibition of KYSE-70 and SKGT4 cells in a dose-dependent and time-dependent manner. KYSE-70 cells were more susceptible to the inhibitory activities of berberine than SKGT4 cells were. In KYSE-70 cells treated with 50 μmol/L berberine for 48 h, the number of cells in G2/M phase (25.94% ± 5.01%) was significantly higher than that in the control group (9.77% ± 1.28%, P < 0.01), and berberine treatment resulted in p21 up-regulation in KYSE-70 cells. Flow cytometric analyses showed that berberine significantly augmented the KYSE-70 apoptotic population at 12 and 24 h post-treatment, when compared with control cells (0.83% vs 43.78% at 12 h, P < 0.05; 0.15% vs 81.86% at 24 h, P < 0.01), and berberine-induced apoptotic effect was stronger at 24 h compared with 12 h. Western blotting showed that berberine inhibited the phosphorylation of Akt, mammalian target of rapamycin and p70S6K, and enhanced AMP-activated protein kinase phosphorylation in a sustained manner. CONCLUSION Berberine is an inhibitor of human EC cell growth and could be considered as a

  6. Berberine reduced blood pressure and improved vasodilation in diabetic rats.

    PubMed

    Ma, Yu-Guang; Liang, Liang; Zhang, Yin-Bin; Wang, Bao-Feng; Bai, Yun-Gang; Dai, Zhi-Jun; Xie, Man-Jiang; Wang, Zhong-Wei

    2017-10-01

    Hyperglycemia and hypertension are considered to be the two leading risk factors for vascular disease in diabetic patients. However, few pharmacologic agents could provide a combinational therapy for controlling hyperglycemia and hypertension at the same time in diabetes. The objectives of this study are to investigate whether berberine treatment could directly reduce blood pressure and identify the molecular mechanism underlying the vascular protection of berberine in diabetic rats. Berberine was intragastrically administered with different dosages of 50, 100 and 200 mg/kg/day to diabetic rats for 8 weeks since the injection of streptozotocin. The endothelium-dependent/-independent relaxation in middle cerebral arteries was investigated. The activity of large-conductance Ca 2+ -activated K + channel (BK Ca ) was investigated by recording whole-cell currents, analyzing single-channel activities and assessing the expressions of α- and β1-subunit at protein or mRNA levels. Results of the study suggest that chronic administration of 100 mg/kg/day berberine not only lowered blood glucose but also reduced blood pressure and improved vasodilation in diabetic rats. Furthermore, berberine markedly increased the function and expression of BK Ca β1-subunit in cerebral vascular smooth muscle cells (VSMCs) isolated from diabetic rats or when exposed to hyperglycemia condition. The present study provided initial evidences that berberine reduced blood pressure and improved vasodilation in diabetic rats by activation of BK Ca channel in VSMCs, which suggested that berberine might provide a combinational therapy for controlling hyperglycemia and blood pressure in diabetes. Furthermore, our work indicated that activation of BK Ca channel might be the underlying mechanism responsible for the vascular protection of berberine in diabetes. © 2017 Society for Endocrinology.

  7. Proteomics analysis reveals a potential new target protein for the lipid-lowering effect of Berberine8998.

    PubMed

    Yu, Cheng-Yin; Liu, Gang-Yi; Liu, Xiao-Hui; Gui, Yu-Zhou; Liu, Hai-Ming; Zheng, Hong-Chao; Gorecki, Darek C; Patel, Asmita V; Yu, Chen; Wang, Yi-Ping

    2018-04-12

    Berberine8998 is a newly synthesized berberine derivative with better lipid-lowering activity and improved absorption. The objective of this study was to investigate the effects of berberine8998 on serum cholesterol and lipid levels in vivo and to examine the mechanisms involved. Hamsters on high-fat diet (HFD) were administered berberine or berberine8998 (50 mg·kg -1 ·d -1 , ig) for 3 weeks. Berberine8998 administration significantly lowered the total cholesterol, triglycerides and LDL-C levels in HFD hamsters. Bioinformatics revealed that berberine and berberine8998 shared similar metabolic pathways and fatty acid metabolism was the predominant pathway. Western blot validation results showed that peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) and long-chain fatty acid-CoA ligase 1 (ACSL1), two proteins involved in fatty acid metabolism, were expressed differently in the berberine8998 group than in the untreated group and the berberine treatment group. Biochemistry results showed that berberine8998 significantly lowered the non-esterified fatty acid (NEFA) levels, which may lead to a reduction in TG levels in the berberine8998 treatment group and the differences observed in proteomics analyses. Pharmacokinetic analysis conducted in rats. After administration of berberine or berberine8998 (50 mg/kg, ig), berberine8998 exhibited a remarkably improved absorption with increasing bioavailability by 6.7 times compared with berberine. These findings suggest that berberine8998 lowers cholesterol and lipid levels via different mechanisms than berberine, and its improved absorption makes it a promising therapeutic candidate for the treatment of hypercholesterolemia and obesity.

  8. Nano strategies for berberine delivery, a natural alkaloid of Berberis.

    PubMed

    Mirhadi, Elaheh; Rezaee, Mehdi; Malaekeh-Nikouei, Bizhan

    2018-08-01

    Berberine, as a phytochemical component of some medicinal Chinese herbs (most frequently Berberis vulgaris), is an isoquinoline alkaloid with many therapeutic effects including anti-viral, anti-microbial, anti-diarrhea, anti-inflammatory and anti-tumor effects. Berberine has some significant effects on type 2 diabetes through adenosine monophosphate-activated protein kinase activation, glycolysis stimulation, and mitochondrial function inhibition which subsequently improves both lipid and glucose metabolism. Some other effects of berberine on congestive heart failure, cardiac arrhythmia and hypertension have been reported. Beside the beneficial effects of berberine, some limitations including poor aqueous solubility, slight absorption, and low bioavailability have hindered its applications. To overcome these limitations, nanotechnology has been considered as main strategy. This review describes different types of nanocarriers (polymeric based, magnetic mesoporous silica based, lipid based, dendrimer based, graphene based, silver and gold nanoparticles) have been used for encapsulation of berberine. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Interaction of berberine with human platelet. alpha. sub 2 adrenoceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Ka Kit; Yu, Jun Liang; Chan, Wai Fong A.

    1991-01-01

    Berberine was found to inhibit competitively the specific binding of ({sup 3}H)-yohimbine. The displacement curve was parallel to those of clonidine, epinephrine, norepinephrine, with the rank order of potency (IC{sub 50}) being clonidine {gt} epinephrine {gt} norepinephrine (14.5 {mu}M) = berberine. Increasing concentrations of berberine from 0.1 {mu}M to 10 {mu}M inhibited ({sup 3}H)-yohimbine binding, shifting the saturation binding curve to the right without decreasing the maximum binding capacity. In platelet cyclic AMP accumulation experiments, berberine at concentrations of 0.1 {mu}M to 0.1 mM inhibited the cAMP accumulation induced by 10 {mu}M prostaglandin E{sub 1} in a dose dependent manner,more » acting as an {alpha}{sub 2} adrenoceptor agonist. In the presence of L-epinephrine, berberine blocked the inhibitory effect of L-epinephrine behaving as an {alpha}{sub 2} adrenoceptor antagonist.« less

  10. Response of Escherichia coli to Prolonged Berberine Exposure.

    PubMed

    Budeyri Gokgoz, Nilay; Avci, Fatma Gizem; Yoneten, Kubra Karaosmanoglu; Alaybeyoglu, Begum; Ozkirimli, Elif; Sayar, Nihat Alpagu; Kazan, Dilek; Sariyar Akbulut, Berna

    2017-07-01

    Berberine is a plant-derived alkaloid possessing antimicrobial activity; unfortunately, its efflux through multidrug resistance pumps reduces its efficacy. Cellular life span of Escherichia coli is generally shorter with prolonged berberine exposure; nevertheless, about 30% of the cells still remain robust following this treatment. To elucidate its mechanism of action and to identify proteins that could be involved in development of antimicrobial resistance, protein profiles of E. coli cells treated with berberine for 4.5 and 8 hours were compared with control cells. A total of 42 proteins were differentially expressed in cells treated with berberine for 8 hours when compared to control cells. In both 4.5 and 8 hours of berberine-treated cells, carbohydrate and peptide uptake regimens remained unchanged, although amino acid maintenance regimen switched from transport to synthesis. Defect in cell division persisted and this condition was confirmed by images obtained from scanning electron microscopy. Universal stress proteins were not involved in stress response. The significant increase in the abundance of elongation factors could suggest the involvement of these proteins in protection by exhibiting chaperone activities. Furthermore, the involvement of the outer membrane protein OmpW could receive special attention as a protein involved in response to antimicrobial agents, since the expression of only this porin protein was upregulated after 8 hours of exposure.

  11. Berberine acts as a putative epigenetic modulator by affecting the histone code.

    PubMed

    Wang, Zhixiang; Liu, Yuan; Xue, Yong; Hu, Haiyan; Ye, Jieyu; Li, Xiaodong; Lu, Zhigang; Meng, Fanyi; Liang, Shuang

    2016-10-01

    Berberine, an isoquinoline plant alkaloid, exhibits a wide range of biochemical and pharmacological effects. However, the precise mechanism of these bioactivities remains poorly understood. In this study, we found significant similarity between berberine and two epigenetic modulators (CG-1521 and TSA). Reverse-docking using berberine as a ligand identified lysine-N-methyltransferase as a putative target of berberine. These findings suggested the potential role of berberine in epigenetic modulation. The results of PCR array analysis of epigenetic chromatin modification enzymes supported our hypothesis. Furthermore, the analysis showed that enzymes involved in histone acetylation and methylation were predominantly affected by treatment with berberine. Up-regulation of histone acetyltransferase CREBBP and EP300, histone deacetylase SIRT3, histone demethylase KDM6A as well as histone methyltransferase SETD7, and down-regulation of histone acetyltransferase HDAC8, histone methyltransferase WHSC1I, WHSC1II and SMYD3, in addition to 38 genes from histone clusters 1-3 were observed in berberine-treated cells using real-time PCR. In parallel, western blotting analyses revealed that the expression of H3K4me3, H3K27me3 and H3K36me3 proteins decreased with berberine treatment. These results were further confirmed in acute myelocytic leukemia (AML) cell lines HL-60/ADR and KG1-α. Taken together, this study suggests that berberine might modulate the expression of epigenetic regulators important for many downstream pathways, resulting in the variation of its bioactivities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine

    PubMed Central

    Chen, Xiao-Wu; Di, Yuan Ming; Zhang, Jian; Zhou, Zhi-Wei; Li, Chun Guang; Zhou, Shu-Feng

    2012-01-01

    Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis), which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer's disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach. PMID:23213296

  13. Effect of berberine on the yield of pyrimidine dimers in uv-irradiated DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimek, M.; Sevcikova, P.; Pidra, M.

    1973-01-01

    From international conference on the bases of the biological effects of ultraviolet radiation; Brno, Czechoslovakia (2 Oct The effect of berberine on the yield of thymine dimers produced by uv light in DNA isolated from mouse leukemic cells and in DNA within irradiated cells was investigated. In solutions of isolated DNA the complete inhibition of thynnine dimerization was found at the concentration of berberine equal to 2 x 10/sup -3M/. However, in the cells inhibition of dimerization by berberine was never complete. In L cells a pronounced decrease in the intensity of DNA synthesis was found in cells treated withmore » berberine, dependent on berberine concentration used. But despite the presence of berberine in cell nuclei, no inhibition of pyrimidine dimerization in uv irradiated cells could be established. (auth)« less

  14. Determination of berberine and the study of fluorescence quenching mechanism between berberine and enzyme-catalyzed product

    NASA Astrophysics Data System (ADS)

    Wang, Huaiyou; Zhang, Miao; Lv, Qingluan; Yue, Ningning; Gong, Bin

    2009-08-01

    A new method for determining berberine has been established based on the principle of fluorescence quenching. The calibration curve was found to be linear between F0/ F and the concentration of berberine with the range of 3.00-20.0 μg mL -1. The detection limit was 0.51 μg mL -1 and the relative standard derivative was 0.18%. Effects of pH, foreign ions and the optimization of variables on the determination of berberine have been examined. The mechanism of the fluorescence quenching has been discussed. The binding constant and the number of binding sites were 1.70 × 10 6 L mol -1 and 1.14, respectively. The data, Δ H = 42.71 kJ mol -1, Δ S = 264.3 J K -1 mol -1 and the mean value Δ G = -39.65 kJ mol -1 were estimated which showed that the reaction was spontaneous and endothermic. The main binding force was hydrophobic force because both Δ H and Δ S were positive.

  15. Corticosterone primes the neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness.

    PubMed

    O'Callaghan, James P; Kelly, Kimberly A; Locker, Alicia R; Miller, Diane B; Lasley, Steve M

    2015-06-01

    Gulf War Illness (GWI) is a multi-symptom disorder with features characteristic of persistent sickness behavior. Among conditions encountered in the Gulf War (GW) theater were physiological stressors (e.g., heat/cold/physical activity/sleep deprivation), prophylactic treatment with the reversible AChE inhibitor, pyridostigmine bromide (PB), the insect repellent, N,N-diethyl-meta-toluamide (DEET), and potentially the nerve agent, sarin. Prior exposure to the anti-inflammatory glucocorticoid, corticosterone (CORT), at levels associated with high physiological stress, can paradoxically prime the CNS to produce a robust proinflammatory response to neurotoxicants and systemic inflammation; such neuroinflammatory effects can be associated with sickness behavior. Here, we examined whether CORT primed the CNS to mount neuroinflammatory responses to GW exposures as a potential model of GWI. Male C57BL/6 mice were treated with chronic (14 days) PB/ DEET, subchronic (7-14 days) CORT, and acute exposure (day 15) to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. DFP alone caused marked brain-wide neuroinflammation assessed by qPCR of tumor necrosis factor-α, IL6, chemokine (C-C motif) ligand 2, IL-1β, leukemia inhibitory factor, and oncostatin M. Pre-treatment with high physiological levels of CORT greatly augmented (up to 300-fold) the neuroinflammatory responses to DFP. Anti-inflammatory pre-treatment with minocycline suppressed many proinflammatory responses to CORT+DFP. Our findings are suggestive of a possible critical, yet unrecognized interaction between the stressor/environment of the GW theater and agent exposure(s) unique to this war. Such exposures may in fact prime the CNS to amplify future neuroinflammatory responses to pathogens, injury, or toxicity. Such occurrences could potentially result in the prolonged episodes of sickness behavior observed in GWI. Gulf War (GW) veterans were exposed to stressors, prophylactic

  16. Evidence for Neuroinflammatory and Microglial Changes in the Cerebral Response to Sleep Loss

    PubMed Central

    Wisor, Jonathan P.; Schmidt, Michelle A.; Clegern, William C.

    2011-01-01

    Study Objectives: Sleep loss has pro-inflammatory effects, but the roles of specific cell populations in mediating these effects have not been delineated. We assessed the modulation of the electroencephalographic and molecular responses to sleep deprivation (S-DEP) by minocycline, a compound that attenuates microglial activation occurring in association with neuroinflammatory events. Design: Laboratory rodents were subjected to assessment of sleep and wake in baseline and sleep deprived conditions. Participants: Adult male CD-1 mice (30-35 g) subjected to telemetric electroencephalography. Interventions: Minocycline was administered daily. Mice were subjected to baseline data collection on the first day of minocycline administration and, on subsequent days, 2 S-DEP sessions, 1 and 3 h in duration, followed by recovery sleep. Following EEG studies, mice were euthanized either at the end of a 3 h S-DEP or as time-of day controls for sampling of brain messenger RNAs. Gene expression was measured by real-time polymerase chain reaction. Measurements and Results: Minocycline-treated mice exhibited a reduction in time spent asleep, relative to saline-treated mice, in the 3-h interval immediately after administration. S-DEP resulted in an increase in EEG slow wave activity relative to baseline in saline-treated mice. This response to S-DEP was abolished in animals subjected to chronic minocycline administration. S-DEP suppressed the expression of the microglial-specific transcript cd11b and the neuroinflammation marker peripheral benzodiazepine receptor, in the brain at the mRNA level. Minocycline attenuated the elevation of c-fos expression by S-DEP. Brain levels of pro-inflammatory cytokine mRNAs interleukin-1β (il-1β), interleukin-6 (il-6), and tumor necrosis factor-α (tnfα) were unaffected by S-DEP, but were elevated in minocycline-treated mice relative to saline-treated mice. Conclusions: The anti-neuroinflammatory agent minocycline prevents either the buildup or

  17. Berberine-induced activation of AMPK increases hepatic FGF21 expression via NUR77.

    PubMed

    Zhou, Feiye; Bai, Mengyao; Zhang, Yuqing; Zhu, Qin; Zhang, Linlin; Zhang, Qi; Wang, Shushu; Zhu, Kecheng; Liu, Yun; Wang, Xiao; Zhou, Libin

    2018-01-08

    Fibroblast growth factor 21 (FGF21), a hormone-like protein mainly derived from liver, exhibits multiple beneficial effect on energy metabolism. Similar to FGF21, berberine exerts anti-hyperglycemic and anti-dyslipidemic properties. Previous studies revealed that the beneficial metabolic effect of berberine was attributed to the activation of AMP-activated protein kinase (AMPK). Here we investigated the effect of berberine on FGF21 expression in primary mouse hepatocytes. As expected, berberine induced hepatic FGF21 expression in a dose-dependent and time-dependent manner, along with the increased expression of NUR77, a proved transcription factor of FGF21. Berberine stimulated the phosphorylations of AMPK and acetyl-CoA carboxylase in primary mouse hepatocytes. Adenovirus-mediated overexpression of constitutively active AMPK triggered hepatic FGF21 and NUR77 expressions. The inhibition of AMPK by compound C abolished berberine-stimulated FGF21 and NUR77 expressions. These results suggest that berberine-induced activation of AMPK may contribute to hepatic FGF21 expression via NUR77. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Berberine and Evodiamine Act Synergistically Against Human Breast Cancer MCF-7 Cells by Inducing Cell Cycle Arrest and Apoptosis.

    PubMed

    Du, Jia; Sun, Yang; Lu, Yi-Yu; Lau, Eric; Zhao, Ming; Zhou, Qian-Mei; Su, Shi-Bing

    2017-11-01

    The synergistic combinations of natural products have long been the basis of Traditional Chinese herbal Medicine formulas. In this study, we investigated the synergistic effects of a combination of berberine and evodiamine against human breast cancer MCF-7 cells in vitro and in vivo, and explored its mechanism. Cell survival was measured using the MTT assay. Apoptosis-related proteins were observed using western blot analysis. Apoptosis was detected with flow cytometric analysis and by Hoechst 33258 staining. Tumor xenografts were used in vivo. Compared to berberine or evodiamine treatments alone, the combination treatment of berberine (25 μM) and evodiamine (15 μM) synergistically inhibited the proliferation of MCF-7 cells in a time-dependent manner and resulted in the G 0 /G 1 phase accumulation of cells that exhibited increased expression levels of the CDK inhibitors p21 and p27 with a concomitant reduction in the expression levels of cell-cycle checkpoint proteins cyclin D1, cyclin E, CDK4, and CDK6. Furthermore, the combination treatment induced apoptosis that was accompanied by increased expression levels of p53 and Bax, reduced expression levels of Bcl-2, activation of caspase-7, and caspase-9, and the cleavage of PARP. The combination of berberine and evodiamine synergistically inhibited tumor growth in vivo in MCF-7 human breast cancer xenografts. Combination of berberine and evodiamine acts synergistically to suppress the proliferation of MCF-7 cells by inducing cell cycle arrest and apoptosis, illustrating the potential synergistic and combinatorial application of bioactive natural products. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS.

    PubMed

    Chang, Cheng-Fu; Lee, Yi-Chao; Lee, Kuen-Haur; Lin, Hui-Ching; Chen, Chia-Ling; Shen, Che-Kun James; Huang, Chi-Chen

    2016-10-21

    In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS. Berberine, a traditional herbal medicine, is an inhibitor of mTOR signal and an activator for autophagy. Berberine has been implicated in several kinds of diseases, including the neuronal-related pathogenesis, such as Parkinson's, Huntington's and Alzheimer's diseases. However, the therapeutic effect of berberine on FTLD or ALS pathology has never been investigated. Here we studied the molecular mechanism of berberine in cell culture model with TDP-43 proteinopathies, and found that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. And inhibition of autophagy by specific autophagosome inhibitor, 3-MA, reverses the effect of berberine on reducing the accumulation of insoluble TDP-43 and aggregates formation. These results gave us the notion that inhibition of autophagy by 3-MA reverses the effect of berberine on TDP-43 pathogenesis, and activation of mTOR-regulated autophagy plays an important role in berberine-mediated therapeutic effect on TDP-43 proteinopathies. We supported an important notion that the traditional herb berberine is a potential alternative therapy for TDP-43-related neuropathology. Here we demonstrated that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal

  20. Determination of berberine in pharmaceutical preparations using acidic hydrogen peroxide-nitrite chemiluminescence system.

    PubMed

    Liang, Yao-Dong; Yu, Chun-Xia

    2013-03-01

    A stronger chemiluminescence (CL) was observed when hydrogen peroxide was mixed with nitrite and berberine in sulfuric acid solution. The stronger CL originated from peroxidation of berberine by peroxynitrous acid that was synthesized online by the mixing of acidic hydrogen peroxide solution with nitrite solution in a flow system. The emitting species was excited state oxyberberine, a peroxidized product of berberine. Based on the stronger CL, a flow injection CL method for the determination of berberine was proposed. Under optimum experimental conditions, the stronger CL intensity was linearly related to the concentration of berberine over the range of 2.0 × 10(-7) -2.0 × 10(-5) mol L(-1) . The limit of detection (s/n = 3) was 6.2 × 10(-8) mol L(-1) . The proposed method has been evaluated by analyzing berberine in pharmaceutical preparations. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Effects of type 2 diabetes mellitus on the pharmacokinetics of berberine in rats.

    PubMed

    Jia, Yuzhen; Xu, Binger; Xu, Jisen

    2017-12-01

    Berberine is an active alkaloid isolated from Rhizoma coptidis [Coptis chinensis Franch. (Ranunculaceae)] that is widely used for the treatment of diabetes, hyperlipidemia and hypertension. However, the pharmacokinetics of berberine in normal rats and type 2 diabetes mellitus (T2DM) model rats are not clear. This study compares the pharmacokinetics of berberine between normal and T2DM model rats. The T2DM model rats were fed with high fat diet for 4 weeks, induced by low-dose (30 mg/kg) streptozotocin for 72 h and validated by determining the peripheral blood glucose level. Rats were orally treated with berberine at a dose of 20 mg/kg and then berberine concentration in rat plasma was determined by employing a sensitive and rapid LC-MS/MS method. The significantly different pharmacokinetic behaviour of berberine was observed between normal and T2DM model rats. When compared with the normal group, C max , t 1/2 and AUC (0- t ) of berberine were significantly increased in the model group (17.35 ± 3.24 vs 34.41 ± 4.25 μg/L; 3.95 ± 1.27 vs 9.29 ± 2.75 h; 151.21 ± 23.96 vs 283.81 ± 53.92 μg/h/L, respectively). In addition, oral clearance of berberine was significantly decreased in the model group (134.73 ± 32.15 vs 62.55 ± 16.34 L/h/kg). In T2DM model rats, the pharmacokinetic behaviour of berberine was significantly altered, which indicated that berberine dosage should be modified in T2DM patients.

  2. Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Guanghui; Zhang Yaping; Tang Jinliang

    2010-08-01

    Purpose: Radiation-induced intestinal injury is a significant clinical problem in patients undergoing abdominal radiotherapy (RT). Berberine has been used as an antimicrobial, anti-inflammatory, and antimotility agent. The present study investigated the protective effect of berberine against radiation-induced intestinal injury. Methods and Materials: The mice were administrated berberine or distilled water. A total of 144 mice underwent 0, 3, 6, 12, or 16 Gy single session whole-abdominal RT and 16 mice underwent 3 Gy/fraction/d for four fractions of fractionated abdominal RT. Tumor necrosis factor-{alpha}, interleukin-10, diamine oxidase, intestinal fatty acid-binding protein, malonaldehyde, and apoptosis were assayed in the mice after RT.more » The body weight and food intake of the mice receiving fractionated RT were recorded. Another 72 mice who had undergone 12, 16, or 20 Gy abdominal RT were monitored for mortality every 12 h. Results: The body weight and food intake of the mice administered with distilled water decreased significantly compared with before RT. After the same dose of abdominal RT, tumor necrosis factor-{alpha}, diamine oxidase, intestinal fatty acid-binding protein in plasma and malonalhehyde and apoptosis of the intestine were significantly greater in the control group than in the mice administered berberine (p < .05-.01). In contrast, interleukin-10 in the mice with berberine treatment was significantly greater than in the control group (p < .01). A similar result was found in the fractionated RT experiment and at different points after 16 Gy abdominal RT (p < .05-.01). Berberine treatment significantly delayed the point of death after 20 Gy, but not 16 Gy, abdominal RT (p < .01). Conclusion: Treatment with berberine can delay mortality and attenuated intestinal injury in mice undergoing whole abdominal RT. These findings could provide a useful therapeutic strategy for radiation-induced intestinal injury.« less

  3. Metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of oral-administrated berberine

    PubMed Central

    Gu, Shenghua; Cao, Bei; Sun, Runbin; Tang, Yueqing; Paletta, Janice L.; Wu, Xiao-Lei; Liu, Linsheng; Zha, Weibin; Zhao, Chunyan; Li, Yan; Radlon, Jason M.; Hylemon, Phillip B.; Zhou, Huiping; Aa, Jiye; Wang, Guangji

    2014-01-01

    Clinic and animal studies demonstrated that oral-administrated berberine had distinct lipid-lowering effect. However, pharmacokinetic studies showed berberine was poorly absorbed into the body so that the levels of berberine in the blood and target tissues were far below the effective concentrations revealed. To probe the underlying mechanism, the effect of berberine on biological system was studied on a high-fat-diet-induced hamster hyperlipidemia model. Our results showed that intragastric-administered berberine was poorly absorbed into circulation and most berberine accumulated in gut content. Although the bioavailability for intragastric-administered berberine was much lower than that of intraperitoneal-administered berberine, it had stronger lipid-lowing effect, indicating gastrointestinal is a potential target for hypolipidemic effect of berberine. Metabolomic study on both serum and gut content showed that oral-administrated berberine significantly regulated molecules involved in lipid metabolism, and increased the generation of bile acids in the hyperlipidemic model. DNA analysis revealed that the oral-administered berberine modulated the gut microbiota, and BBR showed a significant inhibition on the 7α-dehydroxylation conversion of cholic acid to deoxycholic acid, indicating a decreased elimination of bile acids in the gut. However, in model hamsters, elevated bile acids failed to down-regulate the expression and function of CYP7A1 in a negative feed-back way. It was suggested that the hypocholesterolemic effect for oral-administrated berberine is involved in its effect on modulating the turnover of bile acids and farnesoid X receptor signal pathway. PMID:25411028

  4. Non-coding RNAs and Berberine: A new mechanism of its anti-diabetic activities.

    PubMed

    Chang, Wenguang

    2017-01-15

    Type 2 Diabetes (T2D) is a metabolic disease with high mortality and morbidity. Non-coding RNAs, including small and long non-coding RNAs, are a novel class of functional RNA molecules that regulate multiple biological functions through diverse mechanisms. Studies in the last decade have demonstrated that non-coding RNAs may represent compelling therapeutic targets and play important roles in regulating the course of insulin resistance and T2D. Berberine, a plant-based alkaloid, has shown promise as an anti-hyperglycaemic, anti-hyperlipidaemic agent against T2D. Previous studies have primarily focused on a diverse array of efficacy end points of berberine in the pathogenesis of metabolic syndromes and inflammation or oxidative stress. Currently, an increasing number of studies have revealed the importance of non-coding RNAs as regulators of the anti-diabetic effects of berberine. The regulation of non-coding RNAs has been associated with several therapeutic actions of berberine in T2D progression. Thus, this review summarizes the anti-diabetic mechanisms of berberine by focusing on its role in regulating non-coding RNA, thus demonstrating that berberine exerts global anti-diabetic effects by targeting non-coding RNAs and that these effects involve several miRNAs, lncRNAs and multiple signal pathways, which may enhance the current understanding of the anti-diabetic mechanism actions of berberine and provide new pathological targets for the development of berberine-related drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Antioxidant Effect of Berberine and its Phenolic Derivatives Against Human Fibrosarcoma Cells.

    PubMed

    Pongkittiphan, Veerachai; Chavasiri, Warinthorn; Supabphol, Roongtawan

    2015-01-01

    Berberine (B1), isolated from stems of Coscinium fenestratum (Goetgh.) Colebr, was used as a principle structure to synthesize three phenolic derivatives: berberrubine (B2) with a single phenolic group, berberrubine chloride (B3) as a chloride counter ion derivative, and 2,3,9,10-tetra-hydroxyberberine chloride (B4) with four phenolic groups, to investigate their direct and indirect antioxidant activities. For DPPH assay, compounds B4, B3, and B2 showed good direct antioxidant activity (IC50 values=10.7±1.76, 55.2±2.24, and 87.4±6.65 μM, respectively) whereas the IC50 value of berberine was higher than 500 μM. Moreover, compound B4 exhibited a better DPPH scavenging activity than BHT as a standard antioxidant (IC50=72.7±7.22 μM) due to the ortho position of hydroxyl groups and its capacity to undergo intramolecular hydrogen bonding. For cytotoxicity assay against human fibrosarcoma cells (HT1080) using MTT reagent, the sequence of IC50 value at 7-day treatment stated that B1Berberine derivatives, B2 and B4, showed approximately the same level of CAT expression and significant up-regulation of SOD expression in a dose-dependent manner compared to berberine treatment for 7-day exposure using reverse transcription- polymerase chain reaction (RT-PCR) assays. Our findings show a better direct-antioxidant activity of the derivatives containing phenolic groups than berberine in a cell-free system. For cell-based system, berberine was able to exert better cytotoxic activity than its derivatives. Berberine derivatives containing a single and four phenolic groups showed improved up-regulation of SOD gene expression. Cytotoxic action might not be the main effect of berberine derivatives. Other pharmacological targets of these derivatives should be further investigated to confirm the medical benefit of phenolic groups introduced into the berberine molecule.

  6. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonon, Anna; Mangolini, Alessandra; Pinton, Paolo

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding formore » polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open

  7. Berberine-loaded Janus nanocarriers for magnetic field-enhanced therapy against hepatocellular carcinoma.

    PubMed

    Wang, Zheng; Wang, Ying-Shuai; Chang, Zhi-Min; Li, Li; Zhang, Yi; Lu, Meng-Meng; Zheng, Xiao; Li, Mingqiang; Shao, Dan; Li, Jing; Chen, Li; Dong, Wen-Fei

    2017-03-01

    Berberine, an bioactive isoquinolin alkaloid from traditional Chinese herbs, is considered to be a promising agent based on its remarkable activity against hepatocellular carcinoma. However, the clinical application of this nature compound had been hampered owing to its properties such as poor aqueous solubility, low gastrointestinal absorption, and reduced bioavailability. Therefore, we developed Janus magnetic mesoporous silica nanoparticles (Fe 3 O 4 -mSiO 2 NPs) consisting of a Fe 3 O 4 head for magnetic targeting and a mesoporous SiO 2 body for berberine delivery. A pH-sensitive group was introduced on the surface of mesoporous silica for berberine loading to develop a tumor microenvironment-responsive nanocarrier, which exhibited uniform morphology, good superparamagnetic properties, high drug-loading amounts, superior endocytic ability, and low cytotoxicity. Berberine-loaded Fe 3 O 4 -mSiO 2 NPs exerted extraordinarily high specificity for hepatocellular carcinoma cells, which was due to the pH-responsive berberine release, as well as higher endocytosis capacity in hepatocellular carcinoma cells rather than normal liver cells. More importantly, an external magnetic field could significantly improve antitumor activity of Ber-loaded Fe 3 O 4 -mSiO 2 NPs through enhancing berberine internalization. Taken together, our results suggest that Janus nanocarriers driven by the magnetic field may provide an effective and safe way to facilitate clinical use of berberine against hepatocellular carcinoma. © 2016 John Wiley & Sons A/S.

  8. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygenmore » species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.« less

  9. The use of berberine for women with polycystic ovary syndrome undergoing IVF treatment.

    PubMed

    An, Yuan; Sun, Zhuangzhuang; Zhang, Yajuan; Liu, Bin; Guan, Yuanyuan; Lu, Meisong

    2014-03-01

    Previous studies have indicated that berberine is an effective insulin sensitizer with comparable activity to metformin (Diabetes 2006, 55, 2256). Reduced insulin sensitivity is reportedly a factor adversely affecting the outcome of IVF in patients with polycystic ovary syndrome (PCOS) (Human Reproduction 2006, 21, 1416). Our objective was to evaluate the clinical, metabolic and endocrine effects of berberine vs metformin in PCOS women scheduled for IVF treatment and to explore the potential benefits to the IVF process. We performed a prospective study in 150 infertile women with PCOS undergoing IVF treatment. Patients were randomized to receive berberine, metformin or placebo tablets for 3 months before ovarian stimulation. The clinical, endocrine, metabolic parameters and the outcome of IVF. Compared with placebo, greater reductions in total testosterone, free androgen index, fasting glucose, fasting insulin and HOMA-IR, and increases in SHBG, were observed in the berberine and metformin groups. Three months of treatment with berberine or metformin before the IVF cycle increased the pregnancy rate and reduced the incidence of severe ovarian hyperstimulation syndrome. Furthermore, treatment with berberine, in comparison with metformin, was associated with decreases in BMI, lipid parameters and total FSH requirement, and an increase in live birth rate with fewer gastrointestinal adverse events. Berberine and metformin treatments prior to IVF improved the pregnancy outcome by normalizing the clinical, endocrine and metabolic parameters in PCOS women. Berberine has a more pronounced therapeutic effect and achieved more live births with fewer side effects than metformin. © 2013 John Wiley & Sons Ltd.

  10. Potent antiprotozoal activity of a novel semi-synthetic berberine derivative.

    PubMed

    Bahar, Mark; Deng, Ye; Zhu, Xiaohua; He, Shanshan; Pandharkar, Trupti; Drew, Mark E; Navarro-Vázquez, Armando; Anklin, Clemens; Gil, Roberto R; Doskotch, Raymond W; Werbovetz, Karl A; Kinghorn, A Douglas

    2011-05-01

    Treatment of diseases such as African sleeping sickness and leishmaniasis often depends on relatively expensive or toxic drugs, and resistance to current chemotherapeutics is an issue in treating these diseases and malaria. In this study, a new semi-synthetic berberine analogue, 5,6-didehydro-8,8-diethyl-13-oxodihydroberberine chloride (1), showed nanomolar level potency against in vitro models of leishmaniasis, malaria, and trypanosomiasis as well as activity in an in vivo visceral leishmaniasis model. Since the synthetic starting material, berberine hemisulfate, is inexpensive, 8,8-dialkyl-substituted analogues of berberine may lead to a new class of affordable antiprotozoal compounds. Copyright © 2011. Published by Elsevier Ltd.

  11. The Antiviral Alkaloid Berberine Reduces Chikungunya Virus-Induced Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Thaa, Bastian; Amrun, Siti Naqiah; Simarmata, Diane; Rausalu, Kai; Nyman, Tuula A.; Merits, Andres; McInerney, Gerald M.; Ng, Lisa F. P.

    2016-01-01

    ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen

  12. Berberine as a chemical and pharmacokinetic marker of the butanol-extracted Food Allergy Herbal Formula-2.

    PubMed

    Yang, Nan; Srivastava, Kamal; Song, Ying; Liu, Changda; Cho, Sool; Chen, Yujuan; Li, Xiu-Min

    2017-04-01

    Food Allergy Herbal Formula-2 (FAHF-2) provided protection against peanut anaphylaxis in a murine model and induced beneficial immune-modulation in humans. Butanol-refined FAHF-2, B-FAHF-2, retained safety and efficacy in the peanut allergic murine model at only 1/5 of FAHF-2 dosage. One compound, berberine, was isolated and identified in vitro as a bioactive component present in FAHF-2 and B-FAHF-2. The aim of this study was to investigate berberine as a chemical and pharmacokinetic marker of B-FAHF-2. The consistency of constituents between B-FAHF-2 and FAHF-2 was tested. Peanut allergic C3H/HeJ mice were orally administered with 1mg of berberine or B-FAHF-2 containing an equivalent amount of berberine, and the ability to protect against peanut anaphylaxis and pharmacokinetic parameters were determined. Human intestinal epithelial cells (Caco-2) were cultured with berberine with or without the nine individual herbal constituents in B-FAHF-2, and the absorbed berberine levels were determined. Berberine is one of the major components in B-FAHF-2 and FAHF-2 formula. In a peanut allergic mouse model, B-FAHF-2, but not berberine, protected mice from anaphylaxis reactions. Pharmacokinetic profiles showed that the C max of B-FAHF-2 fed mice was 289.30±185.40ng/mL; whereas berberine alone showed very low bioavailability with C max value of 35.13±47.90ng/mL. Caco-2 cells influx assay showed that 7 of 9 herbal constituents in B-FAHF-2 increased berberine absorption at rates ranging from 18 to 205%. B-FAHF-2 remarkably increased the bioavailability of berberine. Berberine can be used as chemical and pharmacokinetic marker of B-FAHF-2. Other herbal components in B-FAHF-2 may facilitate the absorption of berberine. Copyright © 2017. Published by Elsevier B.V.

  13. Investigation of the interaction between berberine and nucleosomes in solution: Spectroscopic and equilibrium dialysis approach

    NASA Astrophysics Data System (ADS)

    Rabbani-Chadegani, Azra; Mollaei, Hossein; Sargolzaei, Javad

    2017-02-01

    Berberine is a natural plant alkaloid with high pharmacological potential. Although its interaction with free DNA has been the subject of several reports, to date there is no work concerning the effect of berberine on nucleoprotein structure of DNA, the nucleosomes. The present study focuses on the binding affinity of berberine to nucleosomes and histone H1 employing various spectroscopic techniques, fluorescence, circular dichroism, thermal denaturation as well as equilibrium dialysis. The results showed that the binding of berberine to nucleosomes is positive cooperative with Ka = 5.57 × 103 M- 1. Berberine quenched with the chromophores of protein moiety of nucleosomes and reduced fluorescence emission intensity at 335 nm with Ksv value of 0.135. Binding of berberine to nucleosomes decreased the absorbance at 210 and 260 nm, produced hypochromicity in thermal denaturation profiles and its affinity to nucleoprotein structure of nucleosomes was much higher than to free DNA. Berberine also exhibited high affinity to histone H1 in solution and the binding was positive cooperative with. Ka = 3.61 × 103 M- 1. Moreover berberine decreased fluorescence emission intensity of H1 by quenching with tyrosine residue in its globular core domain. The circular dichroism profiles demonstrated that the binding of drug induced secondary structural changes in both DNA stacking and histone H1. It is concluded that berberine is genotoxic drug, interacts with nucleosomes and in this process histone H1 is involved to exert its anticancer activity.

  14. Lipid profiling of the therapeutic effects of berberine in patients with nonalcoholic fatty liver disease.

    PubMed

    Chang, Xinxia; Wang, Zhe; Zhang, Jinlan; Yan, Hongmei; Bian, Hua; Xia, Mingfeng; Lin, Huandong; Jiang, Jiandong; Gao, Xin

    2016-09-15

    We recently demonstrated a positive effect of berberine on nonalcoholic fatty liver disease patients after 16 weeks of treatment by comparing mere lifestyle intervention in type 2 diabetes patients with berberine treatment, which decreased the content of hepatic fat. However, the potential mechanisms of the clinical effects are unclear. We used a lipidomic approach to characterize the state of lipid metabolism as reflected in the circulation of subjects with nonalcoholic fatty liver disease (NAFLD) before and after berberine treatment. Liquid chromatography-mass spectrometry evaluated the various lipid metabolites in serum samples obtained from the participants (41 patients in the berberine group and 39 patients in the mere lifestyle intervention group) before and after treatment. A total of 256 serum lipid molecular species were identified and quantified. Both treatments regulated various types of lipids in metabolic pathways, such as free fatty acids, phosphoglycerides and glycerides, in metabolic pathways, but berberine induced a substantially greater change in serum lipid species compared with mere lifestyle intervention after treatment. Berberine also caused obvious differences on ceramides. Berberine treatment markedly decreased serum levels of ceramide and ceramide-1-phosphate. Berberine altered circulating ceramides, which may underlie the improvement in fatty liver disease. ClinicalTrials.gov NCT00633282, Registered March 3, 2008.

  15. Mitochondria and NMDA Receptor-Dependent Toxicity of Berberine Sensitizes Neurons to Glutamate and Rotenone Injury

    PubMed Central

    Kysenius, Kai; Brunello, Cecilia A.; Huttunen, Henri J.

    2014-01-01

    The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine. PMID:25192195

  16. Berberine enhances the AMPK activation and autophagy and mitigates high glucose-induced apoptosis of mouse podocytes.

    PubMed

    Jin, Yingli; Liu, Shuping; Ma, Qingshan; Xiao, Dong; Chen, Li

    2017-01-05

    High glucose concentration can induce injury of podocytes and berberine has a potent activity against diabetic nephropathy. However, whether and how berberine can inhibit high glucose-mediated injury of podocytes have not been clarified. This study tested the effect of berberine on high glucose-mediated apoptosis and the AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) activation and autophagy in podocytes. The results indicated that berberine significantly mitigated high glucose-decreased cell viability, and nephrin and podocin expression as well as apoptosis in mouse podocytes. Berberine significantly increased the AMPK activation and mitigated high glucose and/or the AMPK inhibitor, compound C-mediated mTOR activation and apoptosis in podocytes. Berberine significantly enhanced the AMPK activation and protected from high glucose-induced apoptosis in the AMPK-silencing podocytes. Furthermore, berberine significantly increased the high glucose-elevated Unc-51-like autophagy-activating kinase 1 (ULK1) S317/S555 phosphorylation, Beclin-1 expression, the ratios of LC3II to LC3I expression and the numbers of autophagosomes, but reduced ULK1 S757 phosphorylation in podocytes. In addition, berberine significantly attenuated compound C-mediated inhibition of autophagy in podocytes. The protective effect of berberine on high glucose-induced podocyte apoptosis was significantly mitigated by pre-treatment with 3-methyladenine or bafilomycin A1. Collectively, berberine enhanced autophagy and protected from high glucose-induced injury in podocytes by promoting the AMPK activation. Our findings may provide new insights into the molecular mechanisms underlying the anti-diabetic nephropathy effect of berberine and may aid in design of new therapies for intervention of diabetic nephropathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The effect of Berberine on the secondary structure of human serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Ying; He, WenYing; Tian, Jianniao; Tang, Jianghong; Hu, Zhide; Chen, Xingguo

    2005-05-01

    The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many drugs. This study is designed to examine the effect of Berberine (an ancient Chinese drug used for antimicrobial, antiplasmodial, antidiarrheal and cardiovascular) on the solution structure of HSA using fluorescence, Fourier transform infrared (FT-IR), circular dichroism (CD) spectroscopic methods. The fluorescence spectroscopic results show that the fluorescence intensity of HSA was significantly decreased in the presence of Berberine. The Scatchard's plots indicated that the binding of Berberine to HSA at 296, 303, 318 K is characterized by one binding site with the binding constant is 4.071(±0.128)×10 4, 3.741(±0.089)×10 4, 3.454(±0.110)×10 4 M -1, respectively. The protein conformation is altered (FT-IR and CD data) with reductions of α-helices from 54 to 47% for free HSA to 45-32% and with increases of turn structure5% for free HSA to 18% in the presence of Berberine. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, Berberine bound to HSA was mainly based on hydrophobic interaction and electrostatic interaction cannot be excluded from the binding. Furthermore, the displace experiments indicate that Berberine can bind to the subdomain IIA, that is, high affinity site (site II).

  18. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways.

    PubMed

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-02-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K

  19. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways

    PubMed Central

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-01-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K

  20. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells

    PubMed Central

    Piyanuch, Rojsanga; Sukhthankar, Mugdha; Baek, Seung Joon

    2007-01-01

    Berberine is known to possess a wide variety of pharmacological activities, including pro-apoptotic activity. However, its molecular targets are not elucidated at present. NAG-1 and ATF3 are induced by several dietary compounds associated with pro-apoptotic activity. Berberine induces cell growth arrest, apoptosis, NAG-1, and ATF3 in human colorectal cancer cells. ATF3 induction by berberine is mediated in a p53-dependent manner, whereas NAG-1 induction by berberine is mediated by multiple signaling pathways. Our results suggest that berberine facilitates apoptosis and that NAG-1 and ATF3 expression plays an important role in berberine-induced apoptosis. PMID:17964072

  1. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance.

    PubMed

    Ye, Lifang; Liang, Shu; Guo, Chao; Yu, Xizhong; Zhao, Juan; Zhang, Hao; Shang, Wenbin

    2016-12-01

    Insulin resistance is associated with a chronic inflammation in adipose tissue which is propagated by a phenotypic switch in adipose tissue macrophage (ATM) polarization. This study aimed to investigate whether berberine, the major alkaloid of rhizoma coptidis, can improve insulin resistance through inhibiting ATM activation and inflammatory response in adipose tissue. High-fat-diet induced obese mice were administered oral with berberine (50mg/kg/day) for 14days. ATMs were analysed using FACS and insulin resistance was evaluated. Expressions of pro-inflammatory cytokines and activation of inflammatory pathways were detected. The chemotaxis of macrophages was measured. Glucose consumption and insulin signalling of adipocytes were examined. Berberine significantly decreased F4/80 + /CD11c + /CD206 - cells in the stromal vascular fraction from adipose tissue and improved glucose tolerance in obsess mice. In addition, berberine reduced the elevated levels of serum TNF-α, IL-6 and MCP-1 and the expressions of TNF-α, IL-6 and MCP-1 and attenuated the phosphorylation of JNK and IKKβ and the expression of NF-κB p65 in the obese adipose tissue, Raw264.7 macrophages and 3T3-L1 adipocytes, respectively. The phosphorylation of IRS-1 (Ser307) was inhibited by berberine in adipose tissue and cultured adipocytes. The phosphorylation of AKT (Ser473) was increased in berberine-treated adipose tissue. Conditioned medium from adipocytes treated with berberine reduced the number of infiltrated macrophages. Berberine partly restored the impaired glucose consumption and the activation of IRS-1 (Ser307) in adipocytes induced by the activation of macrophages. Our findings imply that berberine improves insulin resistance by inhibiting M1 macrophage activation in adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus.

    PubMed

    Yu, Hyeon-Hee; Kim, Kang-Ju; Cha, Jeong-Dan; Kim, Hae-Kyoung; Lee, Young-Eun; Choi, Na-Young; You, Yong-Ouk

    2005-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) bacteria have been responsible for substantial morbidity and mortality in hospitals because they usually have multidrug resistance. Some natural products are candidates as new antibiotic substances. In the present study, we investigated the antimicrobial activity of berberine, the main antibacterial substance of Coptidis rhizoma (Coptis chinensis Franch) and Phellodendri cortex (Phellodendron amurense Ruprecht), against clinical isolates of MRSA, and the effects of berberine on the adhesion to MRSA and intracellular invasion into human gingival fibroblasts (HGFs). Berberine showed antimicrobial activity against all tested strains of MRSA. Minimum inhibition concentrations (MICs) of berberine against MRSA ranged from 32 to 128 microg/mL. Ninety percent inhibition of MRSA was obtained with 64 microg/mL or less of berberine. In the checkerboard dilution test, berberine markedly lowered the MICs of ampicillin and oxacillin against MRSA. An additive effect was found between berberine and ampicillin, and a synergistic effect was found between berberine and oxacillin against MRSA. In the presence of 1-50 microg/mL berberine, MRSA adhesion and intracellular invasion were notably decreased compared with the vehicle-treated control group. These results suggest that berberine may have antimicrobial activity and the potential to restore the effectiveness of beta-lactam antibiotics against MRSA, and inhibit the MRSA adhesion and intracellular invasion in HGFs.

  3. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity

    PubMed Central

    Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria

    2018-01-01

    Background Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Methods Semi-crystalline nanoparticles (NPs) of 90–110 nm diameter for APSP and 65–75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. Results The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Conclusion Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug. PMID:29491706

  4. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity.

    PubMed

    Sahibzada, Muhammad Umar Khayam; Sadiq, Abdul; Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria

    2018-01-01

    Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Semi-crystalline nanoparticles (NPs) of 90-110 nm diameter for APSP and 65-75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug.

  5. Berberine Reverses Hypoxia-induced Chemoresistance in Breast Cancer through the Inhibition of AMPK- HIF-1α

    PubMed Central

    Pan, Yue; Shao, Dan; Zhao, Yawei; Zhang, Fan; Zheng, Xiao; Tan, Yongfei; He, Kan; Li, Jing; Chen, Li

    2017-01-01

    Breast cancer is the most common type of cancer and the second leading cause of cancer death in American women. Chemoresistance is common and inevitable after a variable period of time. Therefore, chemosensitization is a necessary strategy on drug-resistant breast cancer. In this study, MCF-7 breast cancer cell was cultured under hypoxia for a week to induce the resistance to doxorubincin (DOX). The effect of different doses of berberine, a traditional Chinese medicine, on DOX sensitivity to MFC-7/hypoxia cells was observed. We found that hypoxia increased DOX resistance on breast cancer cells with the AMPK activation. Low-dose berberine could resensitize DOX chemosensitivity in MCF-7/hypoxia cell, however, high-dose berberine directly induced apoptosis. The intriguing fact was that the protein expressions of AMPK and HIF-1α were down-regulated by berberine, either low dose or high dose. But the downstream of HIF-1α occurred the bifurcation dependent on the dosage of berberine: AMPK-HIF-1α-P-gp inactivation played a crucial role on the DOX chemosensitivity of low-dose berberine, while AMPK-HIF-1α downregulaton inducing p53 activation led to apoptosis in high-dose berberine. These results were consistent to the transplanted mice model bearing MCF-7 drug-resistance tumor treated by berberine combined with DOX or high-dose berberine alone. This work shed light on a potentially therapeutic attempt to overcome drug-resistant breast cancer. PMID:28656004

  6. Berberine Reverses Hypoxia-induced Chemoresistance in Breast Cancer through the Inhibition of AMPK- HIF-1α.

    PubMed

    Pan, Yue; Shao, Dan; Zhao, Yawei; Zhang, Fan; Zheng, Xiao; Tan, Yongfei; He, Kan; Li, Jing; Chen, Li

    2017-01-01

    Breast cancer is the most common type of cancer and the second leading cause of cancer death in American women. Chemoresistance is common and inevitable after a variable period of time. Therefore, chemosensitization is a necessary strategy on drug-resistant breast cancer. In this study, MCF-7 breast cancer cell was cultured under hypoxia for a week to induce the resistance to doxorubincin (DOX). The effect of different doses of berberine, a traditional Chinese medicine, on DOX sensitivity to MFC-7/hypoxia cells was observed. We found that hypoxia increased DOX resistance on breast cancer cells with the AMPK activation. Low-dose berberine could resensitize DOX chemosensitivity in MCF-7/hypoxia cell, however, high-dose berberine directly induced apoptosis. The intriguing fact was that the protein expressions of AMPK and HIF-1α were down-regulated by berberine, either low dose or high dose. But the downstream of HIF-1α occurred the bifurcation dependent on the dosage of berberine: AMPK-HIF-1α-P-gp inactivation played a crucial role on the DOX chemosensitivity of low-dose berberine, while AMPK-HIF-1α downregulaton inducing p53 activation led to apoptosis in high-dose berberine. These results were consistent to the transplanted mice model bearing MCF-7 drug-resistance tumor treated by berberine combined with DOX or high-dose berberine alone. This work shed light on a potentially therapeutic attempt to overcome drug-resistant breast cancer.

  7. Herbicidal Spectrum, Absorption and Transportation, and Physiological Effect on Bidens pilosa of the Natural Alkaloid Berberine.

    PubMed

    Wu, Jiao; Ma, Jing-Jing; Liu, Bo; Huang, Lun; Sang, Xiao-Qing; Zhou, Li-Juan

    2017-08-02

    Berberine is a natural herbicidal alkaloid from Coptis chinensis Franch. Here we characterized its herbicidal spectrum and absorption and transportation in the plant, along with the possible mechanism. Berberine showed no effect on the germination of the 10 tested plants. The IC 50 values of berberine on the primary root length and fresh weight of the 10 tested plants ranged from 2.91 to 9.79 mg L -1 and 5.76 to 35.07 mg L -1 , respectively. Berberine showed a similar herbicidal effect on Bidens pilosa as the commercial naturally derived herbicide cinmethylin. HPLC and fluorescence analysis revealed that berberine was mainly absorbed by B. pilosa root and transported through vascular bundle acropetally. Enzyme activity studies, GC-MS analysis, and SEM and TEM observations indicated that berberine might first function on the cell membrane indicated by variation of the IUFA percent and then cause POD, PPO, and SOD activity changes and cellular structure deformity, which was eventually expressed as the decrease of cell adaptation ability and abnormal cell function and may even result in cell death. Environmental safety evaluation tests revealed that berberine was low in toxicity to Brachydanio rerio. These indicate that berberine has the potential to be a bioherbicide and/or a lead molecule for new herbicides.

  8. Inhibition of CYP1 by berberine, palmatine, and jatrorrhizine: Selectivity, kinetic characterization, and molecular modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Sheng-Nan; Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC; Chang, Yu-Ping

    Cytochrome P450 (P450, CYP) 1 family plays a primary role in the detoxification and bioactivation of polycyclic aromatic hydrocarbons. Human CYP1A1, CYP1A2, and CYP1B1 exhibit differential substrate specificity and tissue distribution. Berberine, palmatine, and jatrorrhizine are protoberberine alkaloids present in several medicinal herbs, such as Coptis chinensis (Huang-Lian) and goldenseal. These protoberberines inhibited CYP1A1.1- and CYP1B1.1-catalyzed 7-ethoxyresorufin O-deethylation (EROD) activities, whereas CYP1A2.1 activity was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD activities of CYP1A1.1 and CYP1B1.1, whereas palmatine and jatrorrhizine caused either competitive or mixed type of inhibition. Among protoberberines, berberine caused the most potent and selectivemore » inhibitory effect on CYP1B1.1 with the least K{sub i} value of 44 ± 16 nM. Berberine also potently inhibited CYP1B1.1 activities toward 7-ethoxycoumarin and 7-methoxyresorufin, whereas the inhibition of benzo(a)pyrene hydroxylation activity was less pronounced. Berberine inhibited the polymorphic variants, CYP1B1.3 (V432L) and CYP1B1.4 (N453S), with IC{sub 50} values comparable to that for CYP1B1.1 inhibition. Berberine-mediated inhibition was abolished by a mutation of Asn228 to Thr in CYP1B1.1, whereas the inhibition was enhanced by a reversal mutation of Thr223 to Asn in CYP1A2.1. This result in conjugation with the molecular modeling revealed the crucial role of hydrogen-bonding interaction of Asn228 on CYP1B1.1 with the methoxy moiety of berberine. These findings demonstrate that berberine causes a selective CYP1B1-inhibition, in which Asn228 appears to be crucial. The inhibitory effects of berberine on CYP1B1 activities toward structurally diverse substrates can be different. - Highlights: • Berberine preferentially inhibited CYP1B1 activity. • Berberine caused similar inhibitory effects on CYP1B1.1, CYP1B1.3 and CYP1B1.4. • Asn

  9. Synthesis and hypoglycemic activity of 9-O-(lipophilic group substituted) berberine derivatives.

    PubMed

    Zhang, Shanshan; Wang, Xiaohong; Yin, Weicheng; Liu, Zhenbao; Zhou, Mi; Xiao, Daipeng; Liu, Yanfei; Peng, Dongming

    2016-10-01

    A series of 9-O-(lipophilic group substituted) berberine derivatives were synthesized and evaluated for their cytotoxicity and hypoglycemic activity against HepG2 cells. All the results indicated that most of the synthesized compounds exhibited lower cytotoxicity and a certain degree of hypoglycemic activity. Especially the compounds 5g and 5h displayed dramatically increased hypoglycemic activity compared with berberine, and the cytotoxicity maintained or even lower than berberine, indicating that they are potential candidates for new anti-type 2 diabetes mellitus drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dual-Targeting of AR and Akt Pathways by Berberine in Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2013-08-01

    Berberine in Castration-Resistant Prostate Cancer PRINCIPAL INVESTIGATOR: Haitao Zhang CONTRACTING ORGANIZATION: Tulane University...COVERED 19 2012-18 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-12-1-0275 Dual-Targeting of AR and Akt Pathways by Berberine in Castration...NOTES 14. ABSTRACT We have previously shown berberine , a natural compound, downregulates full-length androgen receptor (AR) and AR splice

  11. Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b.

    PubMed

    Zhu, Mo-Li; Yin, Ya-Ling; Ping, Song; Yu, Hai-Ya; Wan, Guang-Rui; Jian, Xu; Li, Peng

    2017-01-01

    Berberine has several preventive effects on cardiovascular diseases. Increased expression of miR-29b has been reported to attenuate cardiac remodeling after myocardial infarction (MI). We hypothesized that berberine via an miR-29b-dependent mechanism promotes angiogenesis and improves heart functions in mice after MI. The MI model was established in mice by ligation of left anterior descending coronary artery. The expression of miR-29b was examined by RT-qPCR. Angiogenesis was assessed by immunohistochemistry. Berberine increased miR-29b expression and promoted cell proliferations and migrations in cultured endothelial cells, which were abolished by miR-29b antagomir or AMP-activated protein kinase inhibitor compound C. In mice following MI, administration of berberine significantly increased miR-29b expressional level, promoted angiogenesis, reduced infarct size, and improved heart functions after 14 postoperative days. Importantly, these in vivo effects of berberine were ablated by antagonism of miR-29b. Berberine via upregulation of miR-29b promotes ischemia-induced angiogenesis and improves heart functions.

  12. MicroRNA-21-Mediated Inhibition of Mast Cell Degranulation Involved in the Protective Effect of Berberine on 2,4-Dinitrofluorobenzene-Induced Allergic Contact Dermatitis in Rats via p38 Pathway.

    PubMed

    Li, Weihua; Liu, Fanxiu; Wang, Jun; Long, Man; Wang, Zhigang

    2018-03-01

    The study aimed to investigate the effect of berberine on allergic contact dermatitis (ACD) in rats and explore its underlying mechanisms. Firstly, ACD model was established by sensitizing and challenging with 2,4-dinitrofluorobenzene (DNFB) topically, and the rats were treated with berberine. Ear swelling was assessed, and cytokine, IgE, and histamine productions were measured. The ear biopsies were obtained for histology analysis. Additionally, rat peritoneal mast cells (RPMCs) were isolated for detection of microRNA-21 (miR-21) expression, mitogen-activated protein kinase (MAPK) signaling, and MC degranulation. Lastly, RPMCs were transfected with miR-21 mimic or miR-21 inhibitor to investigate the relationship between miR-21 and p38 pathway in MC. Our results showed that berberine significantly attenuated ear swelling in DNFB-induced ACD (ACD vs high dose of berberine 0.48 ± 0.03 vs. 0.33 ± 0.03 mm, P < 0.01), inhibited inflammatory cell infiltration (86 ± 5.16 vs. 58 ± 4.32 cells/mm 2 , P < 0.01), reduced MC recruitment (61 ± 4.07 vs. 39 ± 3.42 mast cells/mm 2 , P < 0.01), as well as decreased inflammatory cytokine, IgE, and histamine productions (all P < 0.05). Berberine treatment inhibited miR-21 expression, suppressed β-hexosaminidase and histamine release, and prevented p38 phosphorylation (all P < 0.05), which was abrogated by pretreatment with miR-21 overexpression. These findings indicate that miR-21-mediated inhibition of MC degranulation is involved in the anti-ACD effect of berberine via inhibiting p38 pathway, which provide a new insight into the immunopharmacological role of berberine and suggest its potential application for the treatment of allergic inflammation, such as ACD.

  13. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions.

    PubMed

    Liu, Bing; Wang, Qin; Yuan, Dong-dong; Hong, Xiao-ting; Tao, Liang

    2011-04-01

    Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC). The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine. In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions. These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  14. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines.

    PubMed

    Park, S H; Sung, J H; Kim, E J; Chung, N

    2015-02-01

    Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC50), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy.

  15. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect.

    PubMed

    Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong

    2017-01-01

    Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action.

  16. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect

    PubMed Central

    Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong

    2017-01-01

    Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action. PMID:29263662

  17. Berberine enhances antidiabetic effects and attenuates untoward effects of canagliflozin in streptozotocin-induced diabetic mice.

    PubMed

    Tian, Cai-Ming; Jiang, Xin; Ouyang, Xiao-Xi; Zhang, Ya-Ou; Xie, Wei-Dong

    2016-07-01

    The present study aimed at determining whether berberine can enhance the antidiabetic effects and alleviate the adverse effects of canagliflozin in diabetes mellitus. Streptozotocin-induced diabetic mice were introduced, and the combined effects of berberine and canagliflozin on glucose metabolism and kidney functions were investigated. Our results showed that berberine combined with canagliflozin (BC) increased reduction of fasting and postprandial blood glucose, diet, and water intake compared with berberine or canagliflozin alone. Interestingly, BC showed greater decrease in blood urea nitrogen and creatinine levels and lower total urine glucose excretion than canagliflozin alone. In addition, BC showed increased phosphorylated 5' AMP-activated protein kinase (pAMPK) expression and decreased tumor necrosis factor alpha (TNFα) levels in kidneys, compared with berberine or canagliflozin alone. These results indicated that BC was a stronger antidiabetic than berberine or canagliflozin alone with less negative side effects on the kidneys in the diabetic mice. The antidiabetic effect was likely to be mediated by synergically promoting the expression of pAMPK and reducing the expression of TNFα in kidneys. The present study represented the first report that canagliflozin combined with berberine was a promising treatment for diabetes mellitus. The exact underlying mechanisms of action should be investigated in future studies. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. Berberine as a photosensitizing agent for antitumoral photodynamic therapy: Insights into its association to low density lipoproteins.

    PubMed

    Luiza Andreazza, Nathalia; Vevert-Bizet, Christine; Bourg-Heckly, Geneviève; Sureau, Franck; José Salvador, Marcos; Bonneau, Stephanie

    2016-08-20

    Recent years have seen a growing interest in Berberine, a phytochemical with multispectrum therapeutic activities, as anti-tumoral agent for photodynamic therapy (PDT). In this context, low density lipoproteins (LDL) play a key role in the delivery of the photosensitizer in tumor cells. We correlate the physicochemical parameters of the berberine association to LDL with the influence of LDL-delivery on its accumulation in a glioma cell line and on its photo-induced activity in view of antitumor PDT. Our results evidence an important binding of 400 berberine molecules per LDL. Changes in berberine and apoprotein fluorescence suggest different fixation types, involving various LDL compartments including the vicinity of the apoprotein. The berberine association to LDL does not affect their recognition by the specific B/E receptors, of which over-expression increases the cellular uptake of LDL-preloaded berberine. Fluorescence microscopy evidences the mitochondrial labeling of the glioma model cells, with no significant modification upon LDL-delivery. Moreover, the cellular delivery of berberine by LDL increases its photocytotoxic effects on such cells. So, this research illustrates the potential of berberine as a photosensitizing agent for PDT, in particular due to their behavior towards LDL as plasma vehicles, and gives insights into its mechanisms of cell uptake. Copyright © 2016. Published by Elsevier B.V.

  19. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2.

    PubMed

    Ma, Weina; Zhu, Man; Zhang, Dongdong; Yang, Liu; Yang, Tianfeng; Li, Xin; Zhang, Yanmin

    2017-02-15

    Berberine, a plant-derived compound isolated from Coptis chinensis used in traditional Chinese medicine, has been shown to possess anti-cancer properties. However, no study has shown that berberine could target ephrin-B2, which plays a critical role in cell proliferation and migration. The aim of this study is to investigate the effect of berberine on cancer cell growth and migration, through the regulation of ephrin-B2 and downstream signaling molecules. In this study, a high ephrin-B2-expressing cell membrane chromatography method was developed to investigate 48 crude extracts from traditional Chinese medicine that could act on ephrin-B2. Cell proliferative and wound-healing assays were used to study the effect of berberine on cancer cell growth and migration. The mechanism of berberine was investigated using western blot. Berberine was isolated from C. chinensis extracts and showed activity on the HEK293/ephrin-B2 cell membrane chromatography column. Berberine showed a greater inhibitory effect in high-expressing ephrin-B2 cells (HEK293/ephrin-B2 cells) than in normal HEK293 cells, and decreased the expression of ephrin-B2 and its PDZ binding proteins, which indicates that ephrin-B2 is a target of berberine. Furthermore, berberine downregulates the phosphorylation of VEGFR2 and downstream signaling members (AKT and Erk1/2), which in turn downregulates the expression of MMP2 and MMP9. The above data confirm the inhibitory effects of berberine on ZR-75-30 cell proliferation and cell migration. Overall, our studies demonstrate that berberine inhibits cell growth and migration by targeting ephrin-B2. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy.

    PubMed

    Qiu, Yuan-Ye; Tang, Li-Qin; Wei, Wei

    2017-03-05

    In this study, we explored the effect of berberine treatment on the AGEs-RAGE pathway in a rat model of diabetic nephropathy, and we investigated the mechanism by which key factors caused kidney injury and the effects of berberine. In vivo, berberine improved fasting blood glucose, body weight, the majority of biochemical and renal function parameters and histopathological changes in the diabetic kidney. Western blotting and immunohistochemistry revealed significant increases in the levels of AGEs, RAGE, P-PKC-β and TGF-β1 in injured kidneys, and these levels were markedly decreased by treatment with berberine. In vitro, berberine inhibited mesangial cell proliferation. Cells treated with berberine showed reduced levels of AGEs, accompanied by decreased RAGE, p-PKC and TGF-β1 levels soon afterwards. Berberine exhibited renoprotective effects in diabetic nephropathy rats, and the molecular mechanism was associated with changes in the levels and regulation of the AGEs-RAGE-PKC-β-TGF-β1 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension.

    PubMed

    Lan, Jiarong; Zhao, Yanyun; Dong, Feixia; Yan, Ziyou; Zheng, Wenjie; Fan, Jinping; Sun, Guoli

    2015-02-23

    Berberine, extracted from Coptis Root and Phellodendron Chinese, has been frequently used for the adjuvant treatment of type 2 diabetes mellitus, hyperlipidemia, and hypertension in China. Safety and efficacy studies in terms of evidence-based medical practice have become more prevalent in application to Chinese Herbal Medicine. It is necessary to assess the efficacy and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipidemia and hypertension by conducting a systematic review and meta-analysis of available clinical data. We searched the English databases PubMed, ScienceDirect, Cochrane library, EMbase, etc., and Chinese databases including China biomedical literature database (CBM), Chinese Technology Journal Full-text Database, Chinese journal full text database (CNKI), and Wanfang digital periodical full text database. Relevant studies were selected based on the inclusion and exclusion criteria. Meta-analysis was performed with RevMan5.0 software after data extraction and the quality of studies assessment. Twenty-seven randomized controlled clinical trials were included with 2569 patients. There are seven subgroups in our meta-analysis: berberine versus placebo or berberine with intensive lifestyle intervention versus intensive lifestyle intervention alone; berberine combined with oral hypoglycemic versus hypoglycemic alone; berberine versus oral hypoglycemic; berberine combined with oral lipid lowering drugs versus lipid lowering drugs alone; berberine versus oral lipid lowering drugs; berberine combined with oral hypotensor versus hypotensive medications; berberine versus oral hypotensive medications. In the treatment of type 2 diabetes mellitus, we found that berberine with lifestyle intervention tended to lower the level of FPG, PPG and HbA1c than lifestyle intervention alone or placebo; the same as berberine combined with oral hypoglycaemics to the same hypoglycaemics; but there was no statistical significance between berberine and

  2. Randomized controlled trial of letrozole, berberine, or a combination for infertility in the polycystic ovary syndrome.

    PubMed

    Wu, Xiao-Ke; Wang, Yong-Yan; Liu, Jian-Ping; Liang, Rui-Ning; Xue, Hui-Ying; Ma, Hong-Xia; Shao, Xiao-Guang; Ng, Ernest H Y

    2016-09-01

    To study whether a combination of berberine and letrozole results in higher live births than letrozole alone in infertile women with polycystic ovary syndrome (PCOS). A multicenter randomized double-blinded placebo-controlled trial. Reproductive and developmental network sites. Eligible women had PCOS as defined by the Rotterdam criteria. We enrolled 644 participants randomized 1:1:1 among letrozole, berberine, and combination groups. Berberine or berberine placebo were administrated orally at a daily dose of 1.5 g for up to 6 months. Patients received an initial dose of 2.5 mg letrozole or placebo on days 3-7 of the first three treatment cycles. This dose was increased to 5 mg on the last three cycles if not pregnant. Cumulative live births. The cumulative live births were similar between the letrozole and combination groups after treatment (36% and 34%), and were superior to those in the berberine group (22%). Likely, conception, pregnancy, and ovulation rates were similar between the letrozole and combination groups, and these were significantly higher than in the berberine group. There was one twin birth in the letrozole group, three twin births in the combination group, and none in the berberine group. Berberine did not add fecundity in PCOS when used in combination with the new ovulation agent letrozole. ChiCTR-TRC-09000376 (http://apps.who.int/trialsearch/). Copyright © 2016. Published by Elsevier Inc.

  3. Induction of Apoptosis by Berberine in Hepatocellular Carcinoma HepG2 Cells via Downregulation of NF-κB.

    PubMed

    Li, Min; Zhang, Mao; Zhang, Zhi-Lang; Liu, Ning; Han, Xiao-Yu; Liu, Qin-Cheng; Deng, Wei-Jun; Liao, Cai-Xian

    2017-01-26

    Hepatocellular carcinoma (HCC) is highly resistant to traditional chemotherapeutic approaches, which causes difficulty in the development of effective drugs for the treatment of HCC. Berberine, a major ingredient of Rhizoma coptidis, is a natural alkaloid used in traditional Chinese medicine. Berberine exhibits potent antitumor activity against HCC due to its high efficiency and low toxicity. In the present study, we found that berberine sensitized HepG cells to NF-κB-mediated apoptosis. Berberine exhibited a significant antiproliferation effect on the HepG2 cells and promoted apoptosis. Both qRT-PCR and immunofluorescence staining revealed that berberine reduced the NF-κB p65 levels in HepG2 cells. Moreover, p65 overexpression rescued berberine-induced cell proliferation and prevented HepG2 cells from undergoing apoptosis. These results suggest that berberine inhibits the growth of HepG2 cells by promoting apoptosis through the NF-κB p65 pathway.

  4. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro.

    PubMed

    Wojtyczka, Robert D; Dziedzic, Arkadiusz; Kępa, Małgorzata; Kubina, Robert; Kabała-Dzik, Agata; Mularz, Tomasz; Idzik, Danuta

    2014-05-22

    Synergistic interactions between commonly used antibiotics and natural bioactive compounds may exhibit therapeutic benefits in a clinical setting. Berberine, an isoquinoline-type alkaloid isolated from many kinds of medicinal plants, has proven efficacy against a broad spectrum of microorganisms. The aim of the presented work was to assess the antibacterial activity of berberine chloride in light of the effect exerted by common antibiotics on fourteen reference strains of Staphylococccus spp., and to evaluate the magnitude of interactions of berberine with these antistaphylococcal antibiotics. In our study minimum inhibitory concentrations (MIC) of berberine chloride against CoNS ranged from 16 to 512 µg/mL. The most noticeable effects were observed for S. haemolyticus ATCC 29970, S. epidermidis ATCC 12228, S. capitis subsp. capitis ATCC 35661, S. galinarium ATCC 700401, S. hominis subsp. hominis ATCC 27844, S. intermedius ATCC 29663 and S. lugdunensis ATCC 49576. The most significant synergistic effect was noticed for berberine in combination with linezolid, cefoxitin and erythromycin. The synergy between berberine and antibiotics demonstrates the potential application of compound combinations as an efficient, novel therapeutic tool for antibiotic-resistant bacterial infections.

  5. Nuclear magnetic resonance spectral analysis and molecular properties of berberine

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.

    An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.

  6. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice

    PubMed Central

    Wang, Lihong; Shi, Yan; Cao, Hanwei; Liu, Liping; Washington, M. Kay; Chaturvedi, Rupesh; Israel, Dawn A.; Cao, Hailong; Wang, Bangmao; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent

    2012-01-01

    Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders. PMID:22173918

  7. Investigation on intermolecular interaction between berberine and β-cyclodextrin by 2D UV-Vis asynchronous spectra

    NASA Astrophysics Data System (ADS)

    He, Anqi; Kang, Xiaoyan; Xu, Yizhuang; Noda, Isao; Ozaki, Yukihiro; Wu, Jinguang

    2017-10-01

    The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420 nm, 420 nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420 nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420 nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD.

  8. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels

    PubMed Central

    Xu, Jian Hui; Liu, Xing Zhen; Pan, Wei; Zou, Da Jin

    2017-01-01

    Systemic inflammation, which can be induced by metabolic endotoxemia, and corresponding high-fat diet-mediated metabolic disorders are associated with gut microbiota. In the present study reverse transcription-polymerase chain reaction, immunofluorescence, pyrosequencing, ELISA and Oil Red O staining were performed to assess whether berberine can protect against diet-induced obesity, through modulating the gut microbiota and consequently improving metabolic endotoxemia and gastrointestinal hormone levels. Alterations in the gut microbiota induced by berberine resulted in a significant reduction in bacterial lipopolysaccharide levels in portal plasma. Levels of inflammatory and oxidative stress markers, as well as the mRNA expression levels of macrophage infiltration markers in visceral adipose tissue, were also reduced by berberine. Inhibition of the inflammatory response was associated with a reduction in intestinal permeability and an increase in the expression of tight junction proteins. In addition, berberine was reported to restore aberrant levels of gut hormones in the portal plasma, such as glucagon-like peptide-1 and −2, peptide YY, glucose-dependent insulinotropic polypeptide and pancreatic polypeptide. The present findings indicated that berberine, through modulating gut microbiota, restored the gut barrier, reduced metabolic endotoxemia and systemic inflammation, and improved gut peptide levels in high-fat diet-fed rats. The present study suggests that berberine may be an effective therapeutic strategy for the treatment of obesity and insulin resistance. PMID:28447763

  9. Berberine protects against diet-induced obesity through regulating metabolic endotoxemia and gut hormone levels.

    PubMed

    Xu, Jian Hui; Liu, Xing Zhen; Pan, Wei; Zou, Da Jin

    2017-05-01

    Systemic inflammation, which can be induced by metabolic endotoxemia, and corresponding high‑fat diet‑mediated metabolic disorders are associated with gut microbiota. In the present study reverse transcription-polymerase chain reaction, immunofluorescence, pyrosequencing, ELISA and Oil Red O staining were performed to assess whether berberine can protect against diet-induced obesity, through modulating the gut microbiota and consequently improving metabolic endotoxemia and gastrointestinal hormone levels. Alterations in the gut microbiota induced by berberine resulted in a significant reduction in bacterial lipopolysaccharide levels in portal plasma. Levels of inflammatory and oxidative stress markers, as well as the mRNA expression levels of macrophage infiltration markers in visceral adipose tissue, were also reduced by berberine. Inhibition of the inflammatory response was associated with a reduction in intestinal permeability and an increase in the expression of tight junction proteins. In addition, berberine was reported to restore aberrant levels of gut hormones in the portal plasma, such as glucagon‑like peptide‑1 and ‑2, peptide YY, glucose‑dependent insulinotropic polypeptide and pancreatic polypeptide. The present findings indicated that berberine, through modulating gut microbiota, restored the gut barrier, reduced metabolic endotoxemia and systemic inflammation, and improved gut peptide levels in high‑fat diet‑fed rats. The present study suggests that berberine may be an effective therapeutic strategy for the treatment of obesity and insulin resistance.

  10. Synergistic inhibitory effect of berberine and d-limonene on human gastric carcinoma cell line MGC803.

    PubMed

    Zhang, Xiu-Zhen; Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-09-01

    This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24-48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou-Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway.

  11. Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803

    PubMed Central

    Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-01-01

    Abstract This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24–48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou–Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway. PMID:25045784

  12. Radiolysis of berberine or palmatine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Marszalek, Milena; Wolszczak, Marian

    2011-01-01

    The reactions of hydrated electron (eaq-), hydrogen atom (H rad ) (reducing species) and Cl2•-, Br2•-, N,O•H radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of eaq- and rad OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with eaq- and radicals generated during radiolysis are unstable and undergo further reactions.

  13. Anti-neuroinflammatory Effect of Emodin in LPS-Stimulated Microglia: Involvement of AMPK/Nrf2 Activation.

    PubMed

    Park, Sun Young; Jin, Mei Ling; Ko, Min Jung; Park, Geuntae; Choi, Young-Whan

    2016-11-01

    AMPK/Nrf2 signaling regulates multiple antioxidative factors and exerts neuroprotective effects. Emodin is one of the main bioactive components extracted from Polygonum multiflorum, a plant possessing important activities for human health and for treating a variety of diseases. This study examined whether emodin can activate AMPK/Nrf2 signaling and induce the expression of genes targeted by this pathway. In addition, the anti-neuroinflammatory properties of emodin in lipopolysaccharide (LPS)-stimulated microglia were examined. In microglia, the emodin treatment increased the levels of LKB1, CaMKII, and AMPK phosphorylation. Emodin increased the translocation and transactivity of Nrf2 and enhanced the levels of HO-1 and NQO1. In addition, the emodin-mediated expression of HO-1 and NQO1 was attenuated completely by an AMPK inhibitor (compound C). Moreover, emodin decreased dramatically the LPS-induced production of NO and PGE 2 as well as the protein expression and promoter activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, emodin effectively inhibited the production of pro-inflammatory cytokines, TNF-α and IL-6, and reduced the level of IκBα phosphorylation, leading to the suppression of the nuclear translocation, phosphorylation, and transactivity of NF-κB. Emodin also suppressed the LPS-stimulated activation of STATs, JNK, and p38 MAPK. The anti-inflammatory effects of emodin were reversed by transfection with Nrf-2 and HO-1 siRNA and by a co-treatment with an AMPK inhibitor. These results suggest that emodin isolated from P. multiflorum can be used as a natural anti-neuroinflammatory agent that exerts its effects by inducing HO-1 and NQO1 via AMPK/Nrf2 signaling in microglia.

  14. Deoxyelephantopin ameliorates lipopolysaccharides (LPS)-induced memory impairments in rats: Evidence for its anti-neuroinflammatory properties.

    PubMed

    Andy, Shathiswaran N; Pandy, Vijayapandi; Alias, Zazali; Kadir, Habsah Abdul

    2018-08-01

    Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model. In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group. DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3. Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Sensitization of Candida albicans to terbinafine by berberine and berberrubine

    PubMed Central

    LAM, PIKLING; KOK, STANTON HON LUNG; LEE, KENNETH KA HO; LAM, KIM HUNG; HAU, DESMOND KWOK PO; WONG, WAI YEUNG; BIAN, ZHAOXIANG; GAMBARI, ROBERTO; CHUI, CHUNG HIN

    2016-01-01

    Candida albicans (C. albicans) is an opportunistic fungal pathogen, particularly observed in immunocompromised patients. C. albicans accounts for 50–70% of cases of invasive candidiasis in the majority of clinical settings. Terbinafine, an allylamine antifungal drug, has been used to treat fungal infections previously. It has fungistatic activity against C. albicans. Traditional Chinese medicines can be used as complementary medicines to conventional drugs to treat a variety of ailments and diseases. Berberine is a quaternary alkaloid isolated from the traditional Chinese herb, Coptidis Rhizoma, while berberrubine is isolated from the medicinal plant Berberis vulgaris, but is also readily derived from berberine by pyrolysis. The present study demonstrates the possible complementary use of berberine and berberrubine with terbinafine against C. albicans. The experimental findings assume that the potential application of these alkaloids together with reduced dosage of the standard drug would enhance the resulting antifungal potency. PMID:27073630

  16. Investigation on intermolecular interaction between berberine and β-cyclodextrin by 2D UV-Vis asynchronous spectra.

    PubMed

    He, Anqi; Kang, Xiaoyan; Xu, Yizhuang; Noda, Isao; Ozaki, Yukihiro; Wu, Jinguang

    2017-10-05

    The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420nm, 420nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD. Copyright © 2017. Published by Elsevier B.V.

  17. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling

    PubMed Central

    Zhang, Junfang; Cao, Hailong; Zhang, Bing; Cao, Hanwei; Xu, Xiuqin; Ruan, Hang; Yi, Tingting; Tan, Li; Qu, Rui; Song, Gang; Wang, Bangmao; Hu, Tianhui

    2013-01-01

    As a traditional anti-inflammatory Chinese herbal medicine, Alkaloid berberine has been recently reported to exhibit anti-tumour effects against a wide spectrum of cancer. However, the mechanism was largely unknown. Gene chip array reveals that with berberine treatment, c-Myc, the target gene of Wnt pathway, was down-regulated 5.3-folds, indicating that berberine might inhibit Wnt signalling. TOPflash analysis revealed that Wnt activity was significantly reduced after berberine treatment, and the mechanism of which might be that berberine disrupted β-catenin transfer to nucleus through up-regulating the expression of adenomatous polyposis coli (APC) gene and stabilized APC-β-catenin complex. Berberine administration in ApcMin/+ mice exhibited fewer and smaller polyps in intestine, along with reduction in cyclin D1 and c-Myc expression. In clinical practice, oral administration of berberine also significantly reduced the familial adenomatous polyposis patients' polyp size along with the inhibition of cyclin D1 expression in polyp samples. These observations indicate that berberine inhibits colon tumour formation through inhibition of Wnt/β-catenin signalling and berberine might be a promising drug for the prevention of colon cancer. PMID:24015932

  18. Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry.

    PubMed

    Kong, Wei-Jun; Xing, Xiao-Yan; Xiao, Xiao-He; Zhao, Yan-Ling; Wei, Jian-He; Wang, Jia-Bo; Yang, Rui-Chuang; Yang, Mei-Hua

    2012-10-01

    The strong toxicity of pathogenic bacteria has resulted in high levels of morbidity and mortality in the general population. Developing effective antibacterial agents with high efficacy and long activity is in great demand. In this study, the microcalorimetric technique based on heat output of bacterial metabolism was applied to evaluate the effect of berberine on Escherichia coli, Bacillus subtilis, individually and in a mixture of both using a multi-channel microcalorimeter. The differences in shape of the power-time fingerprints and thermokinetic parameters of microorganism growth were compared. The results revealed that low concentration (20 μg/mL) of berberine began to inhibit the growth of E. coli and mixed microorganisms, while promoting the growth of B. subtilis; high concentration of berberine (over 100 μg/mL) inhibited B. subtilis. The endurance of E. coli to berberine was obviously lower than B. subtilis, and E. coli could decrease the endurance of B. subtilis to berberine. The sequence of half-inhibitory concentration (IC(50)) of berberine was: B. subtilis (952.37 μg/mL) > mixed microorganisms (682.47 μg/mL) > E. coli (581.69 μg/mL). Berberine might be a good selection of antibacterial agent used in the future. The microcalorimetric method should be strongly suggested in screening novel antibacterial agents for fighting against pathogenic bacteria.

  19. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats.

    PubMed

    Hussien, Hend M; Abd-Elmegied, Aml; Ghareeb, Doaa A; Hafez, Hani S; Ahmed, Hany E A; El-Moneam, Nehad Abd

    2018-01-01

    Heavy metals are reported as neurodegenerative disorders progenitor. They play a role in the precipitation of abnormal β-amyloid protein and hyper-phosphorylated tau, the main hallmarks of Alzheimer's disease (AD). The present study aimed to validate the heavy metals-induced Alzheimer's-like disease in rats as an experimental model of AD and explore the therapeutic effect of berberine via tracking its effect on the oxidative stress-inflammatory pathway. Alzheimer's-like disease was induced in rats orally by a mixture of aluminium, cadmium and fluoride for three months, followed by berberine treatment for another one month. Berberine significantly improved the cognitive behaviors in Morris water maze test and offered a protective effect against heavy metals-induced memory impairment. Docking results showed that berberine inhibited AChE, COX-2 and TACE. Matching with in silico study, berberine downregulated the AChE expression and inhibited its activity in the brain tissues. Also, it normalized the production of TNF- α, IL-12, IL-6 and IL-1β. Moreover, it evoked the production of antioxidant Aβ40 and inhibited the formation of Aβ42, responsible for the aggregations of amyloid-β plaques. Histopathological examination confirmed the neuroprotective effect of berberine. The present data advocate the possible beneficial effect of berberine as therapeutic modality for Alzheimer's disease via its antiinflammatory/antioxidant mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells.

    PubMed

    Naveen, C R; Gaikwad, Sagar; Agrawal-Rajput, Reena

    2016-06-15

    Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-β mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, β-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF

  1. Microbiota transplantation reveals beneficial impact of berberine on hepatotoxicity by improving gut homeostasis.

    PubMed

    Qin, Chenjie; Zhang, Huilu; Zhao, Linghao; Zeng, Min; Huang, Weijian; Fu, Gongbo; Zhou, Weiping; Wang, Hongyang; Yan, Hexin

    2017-11-29

    Berberine has been shown to reduce acute liver injury although the underlying mechanism is not fully understood. Because of the anatomic connection, the liver is constantly exposed to gut-derived bacterial products and metabolites. In this study, we showed that berberine has beneficial effects on both hepatotoxicity and intestinal damage in a rat model of chronic or acute liver injury. Microbiota transplantation from the rats with chronic hepatotoxicity could aggravate acute hepatotoxicity in mice treated with diethylnitrosamine (DEN). In rat models with gut homeostasis disruption induced by penicillin or dextran sulfate sodium (DSS), their fecal microbiota could also cause an enhanced hepatotoxicity of recipient mice. When treated with berberine, the DSS-induced enteric dysbacteriosis could be mitigated and their fecal bacteria were able to reduce acute hepatotoxicity in recipient mice. This study indicates that berberine could improve intestinal dysbacteriosis, which reduces the hepatotoxicity caused by pathological or pharmacological intervention. Fecal microbiota transplantation might be a useful method to directly explore homeostatic alteration in gut microbiota.

  2. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats.

    PubMed

    Jiang, Shu-Jun; Dong, Hui; Li, Jing-Bin; Xu, Li-Jun; Zou, Xin; Wang, Kai-Fu; Lu, Fu-Er; Yi, Ping

    2015-07-07

    To investigate the molecular mechanisms of berberine inhibition of hepatic gluconeogenesis in a diabetic rat model. The 40 rats were randomly divided into five groups. One group was selected as the normal group. In the remaining groups (n = 8 each), the rats were fed on a high-fat diet for 1 mo and received intravenous injection of streptozotocin for induction of the diabetic models. Berberine (156 mg/kg per day) (berberine group) or metformin (184 mg/kg per day) (metformin group) was intragastrically administered to the diabetic rats and 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside (AICAR) (0.5 mg/kg per day) (AICAR group) was subcutaneously injected to the diabetic rats for 12 wk. The remaining eight diabetic rats served as the model group. Fasting plasma glucose and insulin levels as well as lipid profile were tested. The expressions of proteins were examined by western blotting. The nuclear translocation of CREB-regulated transcription co-activator (TORC)2 was observed by immunohistochemical staining. Berberine improved impaired glucose tolerance and decreased plasma hyperlipidemia. Moreover, berberine decreased fasting plasma insulin and homeostasis model assessment of insulin resistance (HOMA-IR). Berberine upregulated protein expression of liver kinase (LK)B1, AMP-activated protein kinase (AMPK) and phosphorylated AMPK (p-AMPK). The level of phophorylated TORC2 (p-TORC2) protein in the cytoplasm was higher in the berberine group than in the model group, and no significant difference in total TORC2 protein level was observed. Immunohistochemical staining revealed that more TORC2 was localized in the cytoplasm of the berberine group than in the model group. Moreover, berberine treatment downregulated protein expression of the key gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) in the liver tissues. Our findings revealed that berberine inhibited hepatic gluconeogenesis via the regulation of the LKB1-AMPK-TORC2

  3. Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats.

    PubMed

    Karnam, Kalyani Chowdary; Ellutla, Maheswara; Bodduluru, Lakshmi Narendra; Kasala, Eshvendar Reddy; Uppulapu, Shravan Kumar; Kalyankumarraju, Malayamarutham; Lahkar, Mangala

    2017-08-01

    Breast cancer is the prime cause for cancer mortality in women worldwide. The importance of diverse natural and dietary agents to reduce the risk of developing breast cancer is well established. Berberine, a natural isoquinoline alkaloid found in many medicinal plants is widely used in traditional Indian and Chinese medicine. Because of its capability to seize the cell cycle and induce apoptosis of numerous malignant cells, berberine has received considerable attention as a potential anticancer agent. In the present study, breast cancer was induced in Sprague Dawley (SD) rats by intragastric administration of 7, 12-dimethylbenz[a]anthracene (DMBA) at a dose of 80mg/kg of body weight. Treatment of berberine (50mg/kg BW) to breast tumor bearing rats was found to be effective against DMBA induced mammary carcinoma. The increased levels of lipid peroxide (malonaldehyde), pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α), enzymatic antioxidants (SOD and CAT), non-enzymatic antioxidants (GSH and vitamin C) and transcription factor NF-κB were decreased significantly by administration of berberine. Furthermore, RT-PCR and western blot analysis showed the down-regulation of NF-κB and PCNA in breast tumors. Histopathological studies validated that berberine is effective against DMBA induced ductal carcinoma & invasive carcinoma. Altogether, these findings demonstrate the preventive role of berberine against DMBA induced mammary carcinoma in SD rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Spectrofluorometric determination of DNA and RNA with berberine

    NASA Astrophysics Data System (ADS)

    Gong, Guo-Quan; Zong, Zhi-Xin; Song, Yu-Min

    1999-08-01

    On binding to nucleic acids, the dye berberine increases its fluorescence quantum efficiency by a factor of 25-30. Based on this, an easy, rapid and accurate method for the determination of nucleic acids was developed. Berberine is very like ethidium bromide (EB), but it is non-poisonous. Determination can be made at any pH between 4 and 10, where the native structure of DNA and RNA is not disrupted. The maximum emission is near 520 nm for excitation at 355 or 450 nm. This method has good sensitivity (0.01 μg ml -1 of ctDNA), high selectivity and a wide linear range (0.05-14.0 μg ml -1 of ctDNA).

  5. Considerable fluorescence enhancement upon supramolecular complex formation between berberine and p-sulfonated calixarenes

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2006-06-01

    Remarkably strong binding of berberine to 4-sulfonatocalix[8]arene was found in aqueous solution, which led to fluorescence quantum yield increase of a factor about 40 at pH 2. The hypsochromic shift of the fluorescence maximum implied that berberine sensed less polar microenvironment when confined to SCX8. The stability of the supramolecular complex significantly diminished when sulfocalixarenes of smaller ring size served as host compounds but the pH affected the association strength to a much lesser extent. All berberine complexes proved to be barely fluorescent at pH 12.2 because of excited state quenching by the hosts via electron transfer.

  6. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells

    PubMed Central

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455

  7. Hypercrosslinked poly(styrene-co-divinylbenzene) resin as a specific polymeric adsorbent for purification of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Cao, Ruofan; Wu, Xiaofei; Huang, Jianhan; Deng, Shuguang; Lu, Xiuyang

    2013-06-15

    A hypercrosslinked poly(styrene-co-divinylbenzene) resin (TEPA) was synthesized and characterized as a specific polymeric adsorbent for concentrating berberine hydrochloride from aqueous solutions. Three organic molecules of different sizes (2-naphthol, berberine hydrochloride, and Congo red) were used as target molecules to elucidate the molecular sieving effect of the TEPA adsorbent. Because the TEPA adsorbent has a pore structure consisting mainly of micropores and mesopores, the adsorption of 2-naphthol from aqueous solutions is very efficient due to the micropore filling effect. The adsorption of berberine hydrochloride mostly takes place in the mesopores as well as macropores, while the adsorption of Congo red mainly occurs in the macropores. The smaller adsorbate molecule (2-naphthol) reaches the adsorption equilibrium much faster than the larger ones (berberine hydrochloride and Congo red). An adsorption breakthrough experiment with an aqueous solution containing 2-naphthol and berberine hydrochloride demonstrated that the TEPA adsorbent could effectively remove 2-naphthol from berberine hydrochloride at 0-107 BV (bed volume, 1 BV=10 ml), and the berberine hydrochloride concentration was increased from 66.7% to 99.4%, suggesting that this polymeric adsorbent is promising for purifying berberine hydrochloride and similar alkaloids from herbal plant extracts. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The influence of clay surface modification with berberine on the sorption of anthocyanins

    NASA Astrophysics Data System (ADS)

    Chulkov, A. N.; Deineka, V. I.; Tikhova, A. A.; Vesentzev, A. I.; Deineka, L. A.

    2012-03-01

    The influence of preliminary sorption of berberine on the sorption of anthocyanins by bentonite clay was studied. The cation exchange sorption mechanism was found to be replaced by hydrophobic sorption of these compounds after clay modification with berberine. The enthalpy of sorption along the initial isotherm part changed from endothermic to exothermic.

  9. [Research progress of relationship between diabetes and intestinal epithelial tight junction barrier and intervetion of berberine].

    PubMed

    Qin, Xin; Dong, Hui; Lu, Fu-Er

    2016-06-01

    Intestinal tight junction is an important part of the small intestinal mucosa barrier. It plays a very significant role in maintaining the intestinal mucosal permeability and integrity, preventing the bacterial endotoxin and toxic macromolecular substances into the body so as to keep a stable internal environment. Numerous studies have shown that intestinal mucosal barrier dysfunction is closely related to the development of diabetes. Therefore, protecting intestinal tight junction and maintaining the mucosal barrier have great significance in the prevention and treatment of diabetes. The effect of berberine in diabetes treatment is obvious. However, the pharmacological study found that the bioavailability of berberine is extremely low. Some scholars put forward that the major site of pharmaceutical action of berberine might be in the gut. Studies have shown that berberine could regulate the intestinal flora and intestinal hormone secretion, protect the intestinal barrier, inhibit the absorption of glucose, eliminate the intestinal inflammation and so on. Recently studies have found that the hypoglycemic effect of berberine is likely to relate with the influence on intestinal tight junction and the protection of mucosal barrier. Here is the review about the association between intestinal tight junction barrier dysfunction and diabetes, and the related hypoglycemic mechanism of berberine. Copyright© by the Chinese Pharmaceutical Association.

  10. [Adsorption characteristics of proteins on membrane surface and effect of protein solution environment on permeation behavior of berberine].

    PubMed

    Li, Yi-Qun; Xu, Li; Zhu, Hua-Xu; Tang, Zhi-Shu; Li, Bo; Pan, Yong-Lan; Yao, Wei-Wei; Fu, Ting-Ming; Guo, Li-Wei

    2017-10-01

    In order to explore the adsorption characteristics of proteins on the membrane surface and the effect of protein solution environment on the permeation behavior of berberine, berberine and proteins were used as the research object to prepare simulated solution. Low field NMR, static adsorption experiment and membrane separation experiment were used to study the interaction between the proteins and ceramic membrane or between the proteins and berberine. The static adsorption capacity of proteins, membrane relative flux, rejection rate of proteins, transmittance rate of berberine and the adsorption rate of proteins and berberine were used as the evaluation index. Meanwhile, the membrane resistance distribution, the particle size distribution and the scanning electron microscope (SEM) were determined to investigate the adsorption characteristics of proteins on ceramic membrane and the effect on membrane separation process of berberine. The results showed that the ceramic membrane could adsorb the proteins and the adsorption model was consistent with Langmuir adsorption model. In simulating the membrane separation process, proteins were the main factor to cause membrane fouling. However, when the concentration of proteins was 1 g•L⁻¹, the proteins had no significant effect on membrane separation process of berberine. Copyright© by the Chinese Pharmaceutical Association.

  11. Mechanism of Electro-Coagulation with Al/Fe Periodically Reversing Treating Berberine Pharmaceutical Wastewater

    NASA Astrophysics Data System (ADS)

    Sun, Zhaonan; Liu, Zheng; Hu, Xiaomin

    2017-05-01

    The method of treating pharmaceutical wastewater by electro-coagulation with Al/Fe periodically reversing (ECPR) was proposed based on traditional electrochemical method. The principle of ECPR was generalized. Mechanism of ECPR to treat berberine pharmaceutical wastewater was investigated. Treatability and mechanism studies were conducted under laboratory conditions. For berberine wastewater (800 mg/L), decolourization efficiency and COD removal efficiency were highest to 98% and 95% respectively when voltage was 8V, reaction time was 60 min, alternating period was 10 S electrolyte concentration was 0.015 mol/L, stirring speed was 750 rpm, pH value was 3-10 and distance between two plates was 0.6 cm. For removal berberine, flocculation, floatation and oxidation provided 73%, 8% and 18% removal efficiency, which can be inferred by analysing UV-visible absorption spectrum, acidification experiment, EDTA shielding experiment, structure-activity relationship, oxidation and floatation. Meanwhile decolourization and COD removal conformed to apparent pseudo-first order and zero-order kinetics for 200mg/L and 400-1000 mg/L berberine wastewater respectively.

  12. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS

    PubMed Central

    Zhang, Ruohan; Qiao, Hongyu; Chen, Suning; Chen, Xu; Dou, Kefeng; Wei, Li; Zhang, Jian

    2016-01-01

    ABSTRACT Lapatinib, a novel tyrosine kinase inhibitor of HER2/EGFR, is used to treat HER2-positive breast cancer. However, acquired drug resistance has limited the clinical therapeutic efficacy of lapatinib. Our previous study found that inhibition of autophagy can reduce the proliferation, DNA synthesis, and colony-forming capacity of lapatinib-resistant cells. Berberine has attracted extensive attention due to its wide range of biochemical and pharmacological effects in breast cancer treatment. It has been reported that berberine can induce oxidative stress and the mitochondrial-related apoptotic pathway in human breast cancer cells. In our current study, we found that a new combination therapy of berberine with lapatinib overcame lapatinib resistance. Furthermore, we found that berberine induced apoptosis of lapatinib-resistant cells through upregulating the level of ROS. Specially, lapatinib activated both the c-Myc/pro-Nrf2 pathway and GSK-3β signaling to stabilize Nrf2 and maintain a low level of ROS in resistant cells. However, berberine can upset the ROS balance by downregulating c-Myc to reverse the lapatinib resistance. Our finding provides a novel strategy of using berberine to overcome lapatinib resistance. PMID:27416292

  13. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS.

    PubMed

    Zhang, Ruohan; Qiao, Hongyu; Chen, Suning; Chen, Xu; Dou, Kefeng; Wei, Li; Zhang, Jian

    2016-09-01

    Lapatinib, a novel tyrosine kinase inhibitor of HER2/EGFR, is used to treat HER2-positive breast cancer. However, acquired drug resistance has limited the clinical therapeutic efficacy of lapatinib. Our previous study found that inhibition of autophagy can reduce the proliferation, DNA synthesis, and colony-forming capacity of lapatinib-resistant cells. Berberine has attracted extensive attention due to its wide range of biochemical and pharmacological effects in breast cancer treatment. It has been reported that berberine can induce oxidative stress and the mitochondrial-related apoptotic pathway in human breast cancer cells. In our current study, we found that a new combination therapy of berberine with lapatinib overcame lapatinib resistance. Furthermore, we found that berberine induced apoptosis of lapatinib-resistant cells through upregulating the level of ROS. Specially, lapatinib activated both the c-Myc/pro-Nrf2 pathway and GSK-3β signaling to stabilize Nrf2 and maintain a low level of ROS in resistant cells. However, berberine can upset the ROS balance by downregulating c-Myc to reverse the lapatinib resistance. Our finding provides a novel strategy of using berberine to overcome lapatinib resistance.

  14. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells.

    PubMed

    Wang, Hai-Yan; Yu, Hai-Zhong; Huang, Sheng-Mou; Zheng, Yu-Lan

    2016-10-01

    The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels.

  15. A simple fluorescence quenching method for berberine determination using water-soluble CdTe quantum dots as probes

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Liu, Meigui; Cao, Chun; Xia, Yunsheng; Bao, Linjun; Jin, Yingqiong; Yang, Song; Zhu, Changqing

    2010-03-01

    A novel method for the determination of berberine has been developed based on quenching of the fluorescence of thioglycolic acid-capped CdTe quantum dots (TGA-CdTe QDs) by berberine in aqueous solutions. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of berberine between 2.5 × 10 -8 and 8.0 × 10 -6 mol L -1 with a detection limit of 6.0 × 10 -9 mol L -1. The method has been applied to the determination of berberine in real samples, and satisfactory results were obtained. The mechanism of the proposed reaction was also discussed.

  16. Berberine blocks the relapse of Clostridium difficile infection in C57BL/6 mice after standard vancomycin treatment.

    PubMed

    Lv, Zhi; Peng, Guoli; Liu, Weihua; Xu, Hufeng; Su, JianRong

    2015-07-01

    Vancomycin is a preferred antibiotic for treating Clostridium difficile infection (CDI) and has been associated with a rate of recurrence of CDI of as high as 20% in treated patients. Recent studies have suggested that berberine, an alternative medical therapy for gastroenteritis and diarrhea, exhibits several beneficial effects, including induction of anti-inflammatory responses and restoration of the intestinal barrier function. This study investigated the therapeutic effects of berberine on preventing CDI relapse and restoring the gut microbiota in a mouse model. Berberine was administered through gavage to C57BL/6 mice with established CDI-induced intestinal injury and colitis. The disease activity index (DAI), mean relative weight, histopathology scores, and levels of toxins A and B in fecal samples were measured. An Illumina sequencing-based analysis of 16S rRNA genes was used to determine the overall structural change in the microbiota in the mouse ileocecum. Berberine administration significantly promoted the restoration of the intestinal microbiota by inhibiting the expansion of members of the family Enterobacteriaceae and counteracting the side effects of vancomycin treatment. Therapy consisting of vancomycin and berberine combined prevented weight loss, improved the DAI and the histopathology scores, and effectively decreased the mortality rate. Berberine prevented CDIs from relapsing and significantly improved survival in the mouse model of CDI. Our data indicate that a combination of berberine and vancomycin is more effective than vancomycin alone for treating CDI. One of the possible mechanisms by which berberine prevents a CDI relapse is through modulation of the gut microbiota. Although this conclusion was generated in the case of the mouse model, use of the combination of vancomycin and berberine and represent a novel therapeutic approach targeting CDI. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions.

    PubMed

    Cardoso, Ana L; Guedes, Joana R; de Lima, Maria C Pedroso

    2016-02-01

    MiRNAs are short, evolutionary conserved noncoding RNA molecules with the ability to control the magnitude of inflammation. The immunosuppressive nature of the brain is sustained by miRNA-dependent regulation of microglial cells, which become activated under neuroinflammatory conditions, such as brain injury and neurodegeneration. The pro-inflammatory and suppressive role of the most studied neuroimmune miRNAs, miR-155 and miR-146a, has been recently challenged. Although the molecular targets of these miRNAs remain unchanged across brain diseases, different kinetics of miRNA expression and degradation can produce different immune outcomes and change microglia phenotypes. Here, we discuss current knowledge regarding the implications of disruption of miRNA networks in neuroinflammation and in the pathophysiology of acute and chronic CNS diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Berberine Induces Toxicity in HeLa Cells through Perturbation of Microtubule Polymerization by Binding to Tubulin at a Unique Site.

    PubMed

    Raghav, Darpan; Ashraf, Shabeeba M; Mohan, Lakshmi; Rathinasamy, Krishnan

    2017-05-23

    Berberine has been used traditionally for its diverse pharmacological actions. It exhibits remarkable anticancer activities and is currently under clinical trials. In this study, we report that the anticancer activity of berberine could be partly due to its inhibitory actions on tubulin and microtubule assembly. Berberine inhibited the proliferation of HeLa cells with an IC 50 of 18 μM and induced significant depolymerization of interphase and mitotic microtubules. At its IC 50 , berberine exerted a moderate G2/M arrest and mitotic block as detected by fluorescence-activated cell sorting analysis and fluorescence microscopy, respectively. In a wound closure assay, berberine inhibited the migration of HeLa cells at concentrations lower than its IC 50 , indicating its excellent potential as an anticancer agent. In vitro studies with tubulin isolated from goat brain indicated that berberine binds to tubulin at a single site with a K d of 11 μM. Berberine inhibited the assembly of tubulin into microtubules and also disrupted the preformed microtubules polymerized in the presence of glutamate and paclitaxel. Competition experiments indicated that berberine could partially displace colchicine from its binding site. Results from fluorescence resonance energy transfer, computational docking, and molecular dynamics simulations suggest that berberine forms a stable complex with tubulin and binds at a novel site 24 Å from the colchicine site on the β-tubulin. Data obtained from synchronous fluorescence analysis of the tryptophan residues of tubulin and from the Fourier transform infrared spectroscopy studies revealed that binding of berberine alters the conformation of the tubulin heterodimer, which could be the molecular mechanism behind the depolymerizing effects on tubulin assembly.

  19. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group.

    PubMed

    Samosorn, Siritron; Tanwirat, Bongkot; Muhamad, Nussara; Casadei, Gabriele; Tomkiewicz, Danuta; Lewis, Kim; Suksamrarn, Apichart; Prammananan, Therdsak; Gornall, Karina C; Beck, Jennifer L; Bremner, John B

    2009-06-01

    Conjugation of the NorA substrate berberine and the NorA inhibitor 5-nitro-2-phenyl-1H-indole via a methylene ether linking group gave the 13-substituted berberine-NorA inhibitor hybrid, 3. A series of simpler arylmethyl ether hybrid structures were also synthesized. The hybrid 3 showed excellent antibacterial activity (MIC Staphylococcus aureus, 1.7 microM), which was over 382-fold more active than the parent antibacterial berberine, against this bacterium. This compound was also shown to block the NorA efflux pump in S. aureus.

  20. Effects of isoquinoline alkaloid berberine on lipid peroxidation, antioxidant defense system, and liver damage induced by lead acetate in rats.

    PubMed

    Hasanein, Parisa; Ghafari-Vahed, Masumeh; Khodadadi, Iraj

    2017-01-01

    Liver is considered a target organ affected by lead toxicity. Oxidative stress is among the mechanisms involved in liver damage. Here we investigated the effects of the natural alkaloid berberine on oxidative stress and hepatotoxicity induced by lead in rats. Animals received an aqueous solution of lead acetate (500 mg Pb/l in the drinking water) and/or daily oral gavage of berberine (50 mg/kg) for 8 weeks. Rats were then weighed and used for the biochemical, molecular, and histological evaluations. Lead-induced oxidative stress, shown by increasing lipid peroxidation along with a concomitant decrease in hepatic levels of thiol groups, total antioxidant capacity, the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase, and reduced versus oxidized glutathione ratio. Berberine corrected all the disturbances in oxidative stress markers induced by lead administration. Berberine also prevented the elevated levels of enzymes (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) and the decrease in body weight and albumin. The protective effects of berberine were comparable with silymarin. Furthermore, berberine attenuated liver damage, shown by decreased necrosis and inflammatory cell infiltration. Berberine represents a potential therapeutic option against lead-induced hepatotoxicity through inhibiting lipid peroxidation and enhancing antioxidant defenses. Berberine exerted protective effects on lead-induced oxidative stress and hepatotoxicity in rats.

  1. In Vitro Inhibitory Effect of Berberis vulgaris (Berberidaceae) and Its Main Component, Berberine against Different Leishmania Species.

    PubMed

    Mahmoudvand, Hossein; Sharififar, Fariba; Sharifi, Iraj; Ezatpour, Behrouz; Fasihi Harandi, Majid; Makki, Mahsa Sadat; Zia-Ali, Naser; Jahanbakhsh, Sareh

    2014-03-01

    Leishmaniasis has been identified as a major public health problem in tropical and sub-tropical countries. The present study was aimed to investigate antileishmanial effects of various extracts of Berberis vulgaris also its active compoenent, berberine against Leishmania tropica and L. infantum species on in vitro experiments. In this study in vitro antileishmanial activity of various extracts of B. vulgaris also its active compoenent, berberine against promastigote and amastigote stages of L. tropica and L. infantum was evaluated, using MTT assay and in a macrophage model, respectively. Furthermore, infectivity rate and cytotoxicity effects of B. vulgaris and berberine in murine macrophage cells were investigated. The findings of optical density (OD) and IC50 indicated that B. vulgaris particulary berberine significantly (P<0.05) inhibited the growth rate of promastigote stage of L.tropica and L.infantum in comparison to meglumine antimoniate (MA). In addition, B. vulgaris and berberine significantly (P<0.05) decreased the mean number of amastigotes in each macrophage as compared with positive control. In the evaluation of cytotoxicity effects, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages. Results also showed that when parasites were pre-incubated with B. vulgaris their ability to infect murine macrophages was significantly decreased. B.vulgaris particularly berberine exhibited potent in vitro leishmanicidal effects against L. tropica and L.infantum. Further works are required to evaluate the antileishmanial effects of B.vulgaris on Leishmania species using clinical settings.

  2. Altered blood-brain barrier transport in neuro-inflammatory disorders.

    PubMed

    Schenk, Geert J; de Vries, Helga E

    2016-06-01

    During neurodegenerative and neuroinflammatory disorders of the central nervous system (CNS), such as Alzheimer's disease (AD) and multiple sclerosis (MS), the protective function of the blood-brain barrier (BBB) may be severely impaired. The general neuro-inflammatory response, ranging from activation of glial cells to immune cell infiltration that is frequently associated with such brain diseases may underlie the loss of the integrity and function of the BBB. Consequentially, the delivery and disposition of drugs to the brain will be altered and may influence the treatment efficiency of such diseases. Altered BBB transport of drugs into the CNS during diseases may be the result of changes in both specific transport and non-specific transport pathways. Potential alterations in transport routes like adsorptive mediated endocytosis and receptor-mediated endocytosis may affect drug delivery to the brain. As such, drugs that normally are unable to traverse the BBB may reach their target in the diseased brain due to increased permeability. In contrast, the delivery of (targeted) drugs could be hampered during inflammatory conditions due to disturbed transport mechanisms. Therefore, the inventory of the neuro-inflammatory status of the neurovasculature (or recovery thereof) is of utmost importance in choosing and designing an adequate drug targeting strategy under disease conditions. Within this review we will briefly discuss how the function of the BBB can be affected during disease and how this may influence the delivery of drugs into the diseased CNS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy

    PubMed Central

    Wang, Shiwei; Yu, Jing; Suvira, Milomir; Setlow, Peter; Li, Yong-qing

    2015-01-01

    Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 μg/mL berberine plus 20 μg/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 μg/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ≥ 25 μg/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis). PMID:26636757

  4. [In situ thin layer chromatography-fourier transform-surface-enhanced Raman spectrum study on ingredients of berberine].

    PubMed

    Wang, Yuan; Guo, Zhan-sheng; Wang, Ying-feng; Wang, Song-ying; Ren, Gui-fen; Zhang, Xiang-lan; Han, Xiu-lan

    2002-10-01

    Surface Enhanced Raman Scattering (SERS) combined with Thin Layer Chromatography (TLC) has been used for studying characteristic spectrum of molecules in situ in micrograms samples. There are very few report for applying the SERS-TCL method in the study of the effective ingredients of Chinese traditional herbs. Coptis Chinensis France is an often-used clinic Chinese traditional medicine. Its main effective components include berberine and so on, which have antibiotic very wide and also have curative effect on improving the functions of heart vascular cycles. Therefore the concentrations of berberine are very important for the quality control of the medicine. In this work, the ethanol extract of Coptis Chinensis France was first separated by TLC, the SERS was then measure directly after dropping silver gel on the separated spots. The method can be used for the finger print analysis of the berberine. 3 microL of alcohol extract of Coptis Chinensis France with total alkaloids concentration of 1.0 mg.mL was placed on silicon GF254 TLC plate. The sample was separated by developing solvent of n bulanol-Acitic acid-H2O (7:2:1 V/V). The positions of berberine in the sample were confirmed by the standard alkaloid solutions. The Rf values for berberine are 0.29. The silver gel was used as surface enhanced substrate and placed on the separated berberine spots. FT-SERS was measured directly by a Nicolet FT-Raman 910 spectrometer. Berberine belong to isoquinoline alkaloids. His structure can be found in reference. The date of spectrum of berberine can be seen that the band at 1,396 cm-1 due to Ar-OCH3 deformation vibrations was greatly enhanced, indicating that the molecule was absorbed on silver gel strongly through lone-pair electron in Ar-OCH3. The ring stretching mode occurring around 1,548 cm-1 represents isoquinoline ring in the molecule. The band at 727 cm-1 due to CH (ring) deformation vibrations was also enhanced.

  5. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels

    PubMed Central

    Alzamora, Rodrigo; O’Mahony, Fiona; Ko, Wing-Hung; Yip, Tiffany Wai-Nga; Carter, Derek; Irnaten, Mustapha; Harvey, Brian Joseph

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl− secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl− secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC50 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K+ current by 88%, suggesting inhibition of KCNQ1 K+ channels. Berberine did not affect either apical Cl− conductance or basolateral Na+–K+-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl− secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl− secretion through inhibition of basolateral KCNQ1 channels responsible for K+ recycling via a PKCα-dependent pathway. PMID:21747769

  6. Effect of berberine on the viability of adipose tissue-derived mesenchymal stem cells in nutrients deficient condition.

    PubMed

    Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar

    2018-03-01

    This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.

  7. Assessment of berberine as a multi-target antimicrobial: a multi-omics study for drug discovery and repositioning.

    PubMed

    Karaosmanoglu, Kubra; Sayar, Nihat Alpagu; Kurnaz, Isil Aksan; Akbulut, Berna Sariyar

    2014-01-01

    Postgenomics drug development is undergoing major transformation in the age of multi-omics studies and drug repositioning. Rather than applications solely in personalized medicine, omics science thus additionally offers a better understanding of a broader range of drug targets and drug repositioning. Berberine is an isoquinoline alkaloid found in many medicinal plants. We report here a whole genome microarray study in tandem with proteomics techniques for mining the plethora of targets that are putatively involved in the antimicrobial activity of berberine against Escherichia coli. We found DNA replication/repair and transcription to be triggered by berberine, indicating that nucleic acids, in general, are among its targets. Our combined transcriptomics and proteomics multi-omics findings underscore that, in the presence of berberine, cell wall or cell membrane transport and motility-related functions are also specifically regulated. We further report a general decline in metabolism, as seen by repression of genes in carbohydrate and amino acid metabolism, energy production, and conversion. An involvement of multidrug efflux pumps, as well as reduced membrane permeability for developing resistance against berberine in E. coli was noted. Collectively, these findings offer original and significant leads for omics-guided drug discovery and future repositioning approaches in the postgenomics era, using berberine as a multi-omics case study.

  8. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol.

    PubMed

    Ho, Su-Chen; Chang, Ku-Shang; Lin, Chih-Cheng

    2013-12-01

    Despite the anti-neuroinflammatory capacity of ginger, the corresponding active constituents are unclear. This study analyzed the composition of fresh ginger ethanolic extract by using LC-MS. Inhibitory activities of fresh ginger extract and seven gingerol-related compounds on the neuro-inflammation were also evaluated by using a lipopolysaccharide (LPS)-activated BV2 microglia culture model. Except for zingerone and 6-gingerol, other gingerols and shogaols at a concentration of 20 μM inhibited the production of nitric oxide, IL-1β, IL-6 and TNF-α as well as their mRNA levels in LPS-activated BV2 microglia. Blocking NF-κB activation was the underlying mechanism responsible for inhibiting the proinflammatory gene expression. Increasing the alkyl chain length enhanced the anti-neuroinflammatory capacity of gingerols yet, conversely, attenuated those of shogaols. 6-Gingerol was the most abundant compound in the fresh ginger extract, followed by 10-gingerol. Furthermore, fresh ginger extract exhibited a significant anti-neuroinflammatory capacity, which was largely owing to 10-gingerol, but not 6-gingerol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. [Effects of berberine on serum inflammatory factors and carotid atherosclerotic plaques in patients with acute cerebral ischemic stroke].

    PubMed

    Li, Ying; Wang, Pei; Chai, Mei-Jing; Yang, Fan; Li, Hong-Shan; Zhao, Jing; Wang, Huan; Lu, Dan-Dan

    2016-11-01

    This study aims to analyze the effect of berberine on serum inflammatory factors and carotid atherosclerotic plaques in ppatients with acute cerebral ischemic stroke(AIS). In the study, 120 patients with AIS were randomly divided into berberine group(n=60) and general group (n=60). The 60 cases in the general group were provided with general therapy according to the latest guidelines of diagnosis and treatment of AIS. The berberine group received berberine 300 mg(tid) in addition to the therapy of the general group. The levels of serum inflammatory factors, the nerve function defect grades and the indexes of carotid atherosclerosis plaques [including the total plaque area(TPA), intima-media thickness(IMT) and the number of unstable carotid atherosclerotic plaques] were measured and compared. The results indicated that the levels of serum inflammatory factors, the NIHSS(national institute of health stroke scales) cores and the indexes of carotid atherosclerosis plaques were not significantly different between the berberine groups of general group, with positive correlation between serum inflammatory factors and NIHSS scores(P<0.05). The levels of serum inflammatory factors and NIHSS scores of the berberine groups on 14 d were significantly lower than those on 1 d(P<0.05). The levels of serum inflammatory factors and NIHSS scores of the berberine group on 14 d were significantly lower than those of the general group(P<0.05). The TPA and the number of unstable carotid atherosclerotic plaques of the berberine groups on 90 d were significantly lower than those of general group, with significant differences(P<0.05). The IMT showed a downward trend, but with significant difference.The mRS(modified rankin scale) scores of the berberine group on 90 d were significantly lower, with a higher rate of short-term favorable prognosis (P<0.05). There was no significant difference in the incidence of adverse reactions between the two groups. This study showed that berberine in

  10. Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse.

    PubMed

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2011-06-01

    Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat

    PubMed Central

    McKim, Daniel B.; Niraula, Anzela; Tarr, Andrew J.; Wohleb, Eric S.

    2016-01-01

    Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance. SIGNIFICANCE STATEMENT Repeated exposure to stress alters the homeostatic environment of the brain, giving rise to

  12. Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat.

    PubMed

    McKim, Daniel B; Niraula, Anzela; Tarr, Andrew J; Wohleb, Eric S; Sheridan, John F; Godbout, Jonathan P

    2016-03-02

    Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance. Repeated exposure to stress alters the homeostatic environment of the brain, giving rise to various cognitive and mood

  13. Berberine-induced pigment dispersion in Bufo melanostictus melanophores by stimulation of beta-2 adrenergic receptors.

    PubMed

    Ali, Sharique A; Naaz, Ishrat; Choudhary, Ram Kumar

    2014-02-01

    Reduced production of melanin by decreased or the absence of melanocytes leads to various hypopigmentation disorders, and the development of melanogenetic agents for photoprotection and hypopigmentation disorders is one of the top priority areas of research. Hence, the present study was carried out to elucidate the ability of berberine, a principal active ingredient present in the roots of the herb Berberis vulgaris to stimulate pigment dispersion in the isolated skin melanophores of the toad Bufo melanostictus. In the present study, mean melanophore size index of the isolated skin melanophores of B. melanostictus was assayed after treating with various concentrations of berberine. A marked melanin dispersion response leading to skin darkening was observed in the isolated melanophores of toad in response to berberine, which was found to be mediated through beta-2 adrenergic receptors. The physiologically significant dose-related melanin dispersion effects of berberine per se were found to be completely abolished by propranolol, which is a specific beta-2 adrenergic receptor blocker. These per se melanin dispersal effects were also found to be markedly potentiated by isoprenaline, which is a specific beta-adrenoceptor agonist. The results indicate that berberine causes a tremendous, dose-dependent, physiologically significant pigment dispersing in the isolated skin melanophores of B. melanostictus.

  14. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 andmore » mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.« less

  15. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression.

    PubMed

    Kim, Hak-Su; Kim, Myung-Jin; Kim, Eun Ju; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok

    2012-02-01

    Berberine is clinically important natural isoquinoline alkaloid that affects various biological functions, such as cell proliferation, migration and survival. The activation of AMP-activated protein kinase (AMPK) regulates tumor cell migration. However, the specific role of AMPK on the metastatic potential of cancer cells remains largely unknown. The present study investigated whether berberine induces AMPK activation and whether this induction directly affects mouse melanoma cell migration, adhesion and invasion. Berberine strongly increased AMPK phosphorylation via reactive oxygen species (ROS) production. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), a well-known AMPK activator, also inhibited tumor cell adhesion and invasion and reduced the expression of epithelial to mesenchymal transition (EMT)-related genes. Knockdown of AMPKα subunits using siRNAs significantly abated the berberine-induced inhibition of tumor cell invasion. Furthermore, berberine inhibited the metastatic potential of melanoma cells through a decrease in ERK activity and protein levels of cyclooxygenase-2 (COX-2) by a berberine-induced AMPK activation. These data were confirmed using specific MEK inhibitor, PD98059, and a COX-2 inhibitor, celecoxib. Berberine- and AICAR-treated groups demonstrated significantly decreased lung metastases in the pulmonary metastasis model in vivo. Treatment with berberine also decreased the metastatic potential of A375 human melanoma cells. Collectively, our results suggest that berberine-induced AMPK activation inhibits the metastatic potential of tumor cells through a reduction in the activity of the ERK signaling pathway and COX-2 protein levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Optimization of mesoporous carbons for efficient adsorption of berberine hydrochloride from aqueous solutions.

    PubMed

    Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang

    2014-06-15

    Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. [Effects of berberine on mRNA expression levels of PPARγ and adipocytokines in insulin-resistant adipocytes].

    PubMed

    Tu, Jun; Luo, Xin-Xin; Li, Bing-Tao; Li, Yu; Xu, Guo-Liang

    2016-06-01

    Adipocytokines are closely associated with insulin resistance (IR) in adipose tissues, and they are more and more seriously taken in the study of the development of diabetes. This experiment was mainly to study the effect of berberine on mRNA expression levels of PPARγ and adipocytokines in insulin resistant adipocytes, and investigate the molecular mechanism of berberine in enhancing insulin sensitization and application advantages of droplet digital PCR (ddPCR). ddPCR absolute quantification analysis was taken in this experiment to simply and intuitively determine the appropriate reference genes. ddPCR and quantitative Real-time PCR (qPCR) were used to compare the effect of different doses of berberine (10, 20, 50, 100 μmol•L⁻¹) on mRNA expression levels of PPARγ, adiponectin, resistin and leptin in IR 3T3-L1adipocytes. Antagonist GW9662 was added to study the inherent correlation between PPARγ and adiponectin mRNA expression levels. ddPCR results showed that the expression level of β-actin in adipocytes was stable, and suitable as reference gene for normalization of quantitative PCR data. Both of ddPCR and qPCR results showed that, as compared with IR models, the mRNA expression levels of adiponectin were decreased in the treatment with berberine (10, 20, 50, 100 μmol•L⁻¹) in a dose-dependent manner (P<0.01); the expression of PPARγ was decreased by 20, 50, 100 μmol•L⁻¹ berberine in a dose-dependent manner in qPCR assay (P<0.01) and decreased only by 50 and 100 μmol•L⁻¹ berberine in ddPCR assay (P<0.05). PPARγ specific antagonist GW9662 intervention experiment showed that adiponectin gene expression was directly relevant with PPARγ (P<0.05). ddPCR probe assay showed that various doses of berberine could significantly reduce mRNA expression levels of resistin and leptin (P<0.01) in a dose-dependent manner. In conclusion, berberine enhanced insulin sensitization effect not by up-regulating adiponect in expression of transcriptional

  18. Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells

    NASA Astrophysics Data System (ADS)

    Scordino, Agata; Campisi, Agata; Grasso, Rosaria; Bonfanti, Roberta; Gulino, Marisa; Iauk, Liliana; Parenti, Rosalba; Musumeci, Francesco

    2014-11-01

    Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.

  19. Anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin, a metabolite from a marine-derived fungal strain Aspergillus sp., via upregulation of heme oxygenase-1 in lipopolysaccharide-activated microglia.

    PubMed

    Kim, Kwan-Woo; Kim, Hye Jin; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2018-02-01

    In the course of searching for anti-neuroinflammatory metabolites from marine-derived fungi, three fungal metabolites, 6,8,1'-tri-O-methylaverantin, 6,8-di-O-methylaverufin, and 5-methoxysterigmatocystin were isolated from a marine-derived fungal strain Aspergillus sp. SF-6796. Among these, 6,8,1'-tri-O-methylaverantin induced the expression of heme oxygenase (HO)-1 protein in BV2 microglial cells. The induction of HO-1 protein was mediated by the activation of nuclear transcription factor erythroid-2 related factor 2 (Nrf2), and was regulated by the p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. Furthermore, 6,8,1'-tri-O-methylaverantin suppressed the overproduction of pro-inflammatory mediators, such as nitric oxide, prostaglandin E 2 , inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. These anti-neuroinflammatory effects were mediated through the negative regulation of the nuclear factor kappa B pathway, repressing the phosphorylation and degradation of inhibitor kappa B-α, translocation into the nucleus of p65/p50 heterodimer, and DNA-binding activity of p65 subunit. The anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin was partially blocked by a selective HO-1 inhibitor, suggesting that its anti-neuroinflammatory effect is at least partly mediated by HO-1 induction. In this study, 6,8,1'-tri-O-methylaverantin also induced HO-1 protein expression in primary microglial cells, and this correlated with anti-neuroinflammatory effects observed in LPS-stimulated primary microglial cells. In conclusion, 6,8,1'-tri-O-methylaverantin represents a potential candidate for use in the development of therapeutic agents for the regulation of neuroinflammation in neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Berberine and coptisine free bases

    NASA Astrophysics Data System (ADS)

    Dostál, Jiří; Man, Stanislav; Sečkářová, Pavlína; Hulová, Dagmar; Nečas, Marek; Potáček, Milan; Toušek, Jaromír.; Dommisse, Roger; Van Dongen, Walter; Marek, Radek

    2004-01-01

    The free bases of protoberberine alkaloids berberine and coptisine and related compounds have been examined. The 1H and 13C NMR data of 8-hydroxy-7,8-dihydroberberine (2a), 8-hydroxy-7,8-dihydrocoptisine (2b), bis(7,8-dihydroberberin-8-yl) ether (3a), 8-oxoberberine (5a), and 8-oxocoptisine (5b) as well as X-ray data of compounds 2a, 5a, and 5b are reported and discussed.

  1. Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets.

    PubMed

    Lu, Kang-Le; Wang, Li-Na; Zhang, Ding-Dong; Liu, Wen-Bin; Xu, Wei-Na

    2017-02-01

    High-fat diets may have favorable effects on growth and cost, but high-fat diets often induce excessive fat deposition, resulting in liver damage. This study aimed to identify the hepatoprotective of a Chinese herb (berberine) for blunt snout bream (Megalobrama amblycephala). Fish were fed with a normal diet (LFD, 5 % fat), high-fat diet (HFD, 15 % fat) or berberine-supplemented diets (BSD, 15 % fat with berberine 50 or 100 mg/kg level) for 8 weeks. After the feeding, histology, oxidative status and mitochondrial function of liver were assessed. The results showed that HFD caused fat accumulation, oxidative stress and apoptosis in hepatocytes of fish. Hepatocytes in HFD group appeared to be hypertrophied, with larger liver cells diameter than these of LFD group. Berberine-supplemented diets could attenuate oxidative stress and hepatocytes apoptosis. HFD induced the decreasing mitochondrial complexes activities and bulk density and surface area density. Berberine improved function of mitochondrial respiratory chain via increasing the complex activities. Moreover, the histological results showed that berberine has the potential to repair mitochondrial ultrastructural damage and elevate the density in cells. In conclusion, our study demonstrated that berberine has attenuated liver damage induced by the high fat mainly via the protection for mitochondria.

  2. Synergistic Tumor-Killing Effect of Radiation and Berberine Combined Treatment in Lung Cancer: The Contribution of Autophagic Cell Death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Peiling; Division of Gastroenterology, Armed Forces Taichung Hospital, Taichung, Taiwan; Kuo, W.-H.

    2008-02-01

    Purpose: Radiotherapy is the most efficacious strategies for lung cancer. The radiation-enhancing effects and the underlying mechanisms of berberine were investigated both in vitro and in vivo. Methods and Materials: Clonogenic survival assays were used to evaluate the radio-sensitivity of berberine on non-small-cell lung cancer. Electron microscopic observation of the features of cell death, flow cytometry of acidic vascular organelles formation, mitochondria membrane potential and cell-cycle progression, and Western blotting of caspase 3, PARP, and LC3 were performed to identify the mechanisms underlying the enhancing effects. Lewis lung carcinoma model in mice was conducted to evaluate the possible application ofmore » berberine in synergistic treatment with irradiation. Results: Compared with radiation alone (SF2 = 0.423; D{sub 0} = 5.29 Gy), berberine at 5 and 10 {mu}M concentrations in combination with radiation showed significant enhancement on radiation-induced clonogenic inhibition (SF2 = 0.215: D{sub 0} = 2.70 Gy and SF2 = 0.099: D{sub 0} = 1.24 Gy) on A549 cells. The cellular ultrastructure showed the presence of autophagosome and an increased proportion of acridine orange stain-positive cells, demonstrating that berberine enhanced radiosensitivity via autophagy. The process involved LC3 modification and mitochondrial disruption. The animal model verified the synergistic cytotoxic effect of berberine and irradiation resulting in a substantial shrinkage of tumor volume. Conclusion: Supplement of berberine enhanced the cytotoxicity of radiation in both in vivo and in vitro models of lung cancer. The mechanisms underlying this synergistic effect involved the induction of autophagy. It suggests that berberine could be used as adjuvant therapy to treat lung cancer.« less

  3. Pre-clinical toxicity of a combination of berberine and 5-aminosalicylic acid in mice.

    PubMed

    Li, Yan-Hong; Zhang, Man; Fu, Hai-Bo; Xiao, Hai-Tao; Bian, Zhao-Xiang

    2016-11-01

    Our previous study demonstrated that a combination of alternative medicine berberine and conventional 5-aminosalicylic acid (5-ASA) showed promise to be a novel therapeutic strategy for ulcerative colitis (UC). This present study aims to sketch the pre-clinical toxicity profile of this combination (1:10 dose ratio) on mice. In acute toxicity test, the determined median lethal dose (LD 50 ) was 278.7 mg/kg berberine plus 2787 mg/kg 5-ASA. The results from subacute toxicity test demonstrated that no toxic signs of clinical symptoms, no significant changes in hematological or biochemical parameters were detected in mice treated with 14 + 140, 28 + 280 or 56 + 560 mg/kg of berberine plus 5-ASA treatment. Histological examinations revealed that accompanied with an increase in spleen weight, frequently recorded enlargement and white pulp hyperplasia of spleen were detected in mice when exposed to three doses of combination treatments. Further in vitro assessment suggested that the spleen toxicity was originated from berberine by its inhibition in cell viability and cell proliferation of lymphocytes. The results of this study indicate that the combination of berberine and 5-ASA shows a slight toxic effect on spleen, suggesting that this combination should be used with caution for patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  5. Multicomponent Therapeutics of Berberine Alkaloids

    PubMed Central

    Luo, Jiaoyang; Yan, Dan; Yang, Meihua; Dong, Xiaoping; Xiao, Xiaohe

    2013-01-01

    Although berberine alkaloids (BAs) are reported to be with broad-spectrum antibacterial and antiviral activities, the interactions among BAs have not been elucidated. In the present study, methicillin-resistant Staphylococcus aureus (MRSA) was chosen as a model organism, and modified broth microdilution was applied for the determination of the fluorescence absorption values to calculate the anti-MRSA activity of BAs. We have initiated four steps to seek the optimal combination of BAs that are (1) determining the anti-MRSA activity of single BA, (2) investigating the two-component combination to clarify the interactions among BAs by checkerboard assay, (3) investigating the multicomponent combination to determine the optimal ratio by quadratic rotation-orthogonal combination design, and (4) in vivo and in vitro validation of the optimal combination. The results showed that the interactions among BAs are related to their concentrations. The synergetic combinations included “berberine and epiberberine,” “jatrorrhizine and palmatine” and “jatrorrhizine and coptisine”; the antagonistic combinations included “coptisine and epiberberine”. The optimal combination was berberine : coptisine : jatrorrhizine : palmatine : epiberberine = 0.702 : 0.863 : 1 : 0.491 : 0.526, and the potency of the optimal combination on cyclophosphamide-immunocompromised mouse model was better than the natural combinations of herbs containing BAs. PMID:23634170

  6. Renoprotective effect of berberine via regulating the PGE2 -EP1-Gαq-Ca(2+) signalling pathway in glomerular mesangial cells of diabetic rats.

    PubMed

    Ni, Wei-Jian; Tang, Li-Qin; Zhou, Hong; Ding, Hai-Hua; Qiu, Yuan-Ye

    2016-08-01

    G-protein coupled receptor-mediated pathogenesis is of great importance in the development of diabetic complications, but the detailed mechanisms have not yet been clarified. Therefore, we aimed to explore the roles of the prostaglandin E2 receptor 1 (EP1)-mediated signalling pathway and develop a corresponding treatment for diabetic nephropathy (DN). To create the DN model, rats fed a high-fat and high-glucose diet were injected with a single dose of streptozotocin (35 mg/kg, i.p.). Then, rats were either treated or not with berberine (100 mg/kg per day, i.g., 8 weeks). Cells were isolated from the renal cortex and cultured in high-sugar medium with 20% foetal bovine serum. Prostaglandin E2 (PGE2 ) levels were determined by ELISA, and cells were identified by fluorescence immunoassay. We measured the biochemical characteristics and observed morphological changes by periodic-acid-Schiff staining. The expression of the EP1 receptor and the roles of GRK2 and β-arrestin2 were identified using western blotting and flow cytometry. Downstream proteins were detected by western blot, while molecular changes were assessed by ELISA and laser confocal scanning microscopy. Berberine not only improved the majority of biochemical and renal functional parameters but also improved the histopathological alterations. A significant increase in PGE2 level, EP1 membrane expression and Gαq expression, and concentration of Ca(2+) were observed, accompanied by increased GRK2 and β-arrestin2 levels soon afterwards. Berberine decreased the abnormal concentration of Ca(2+) , the increased levels of PGE2 , the high expression of EP1 and Gαq and suppressed the proliferation of mesangial cells. The EP1 receptor, a critical therapeutic target of the signalling pathway, contributed to mesangial cell abnormalities, which are linked to renal injury in DN. The observed renoprotective effects of berberine via regulating the PGE2 -EP1-Gαq-Ca(2+) signalling pathway indicating that berberine

  7. Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved.

    PubMed

    Simões Pires, Elisa Nicoloso; Frozza, Rudimar Luiz; Hoppe, Juliana Bender; Menezes, Bruna de Melo; Salbego, Christianne Gazzana

    2014-04-04

    Berberine is an alkaloid derived from herb the Berberis sp. and has long-term use in Oriental medicine. Studies along the years have demonstrated its beneficial effect in various neurodegenerative and neuropsychiatric disorders. The subject of this study was to evaluate whether berberine protects against delayed neuronal cell death in organotypic hippocampal culture (OHC) exposed to oxygen and glucose deprivation (OGD) and the cell signaling mechanism related to its effect. Hippocampal slices were obtained from 6 to 8-days-old male Wistar rat and cultured for 14 days. Following, the cultures were exposed for 1h to OGD and then treated with Berberine (10 and 20μM). After 24h recovery, propidium iodide (PI) uptake was analyzed and a decrease was observed in PI uptake on OGD Ber-treated culture, which means a decrease in cellular death. Western blot analysis showed that proteins Akt, GSK3β, ERK and JNK appear to play a role in berberine-mediated neuroprotection. Furthermore, capase-3 activity of OGD Ber-treated culture was diminished by control level in a fluorimetry assay. These findings suggest that berberine-mediated neuroprotection after ischemia involves Akt/GSK3β/ERK 1/2 survival/apoptotic signaling pathway as well as JNK and caspase-3 activity inhibition. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. [The effect of berberine on ameliorating chronic inflammatory pain and depression].

    PubMed

    Xu, F; Yang, J; Meng, B; Zheng, J W; Liao, Q; Chen, J P; Chen, X W

    2018-04-10

    Objective: To explore the effect of berberine on chronic inflammatory pain and the comorbid depression and the associated mechanisms. Methods: Forty healthy male ICR mice (2 months, 25-30 g) were used in the present study. The chronic inflammatory pain was induced by intraplantar injection of complete freund's adjuvant (CFA) to the hind paws. All animals were divided into 4 groups ( n =10 for each group) according to random number table: the saline group (group A), the chronic pain group (group B), the saline+ berberine group (group C) and the chronic pain+ berberine group (group D). The baseline data of pain and depressive performance were measured on the day before any drug treatment.On d1, mice of B and D groups received intraplantar injections of 50 μl CFA emulsion (1∶1 diluted with saline); mice of A and C groups received intraplantar injections of the same volume of saline. During d15-d21, mice of C and D groups received intraperitoneal injections of berberine (50 mg/kg, daily for 7 days); mice of A and B groups received the equal volume of saline. The Hargreaves tests and the Von Frey tests were conducted before the injection of CFA and on d7, d14, d17 and d21 to measure the thermal and mechanical pain thresholds. The forced swimming tests and novelty-suppressed feeding tests were performed before the injection of CFA and on d21 to measure the depressive performance. After the behavioral tests, the levels of inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) at the lumbar (L4-L5) spinal cord were examined by enzyme-linked immunosorbent assay(ELISA). The mRNA level of chemokine C-C motif ligand 2 (CCL2) in the lumbar spinal cord was examined by quantitative real-time polymerase chain reaction(qRT-PCR). Results: Compared with group A, the thermal withdrawal latency of group B mice on d7, d14, d17, d21 was declined[(3.40±0.67)s vs (10.55±1.58)s, (7.49±1.04)s vs (11.47±1.92)s, (6.46±0.56)s vs (11.60

  9. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter*

    PubMed Central

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-01-01

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180

  10. Anti-neuroinflammatory efficacy of the aldose reductase inhibitor FMHM via phospholipase C/protein kinase C-dependent NF-κB and MAPK pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Ke-Wu; Li, Jun; Dong, Xin

    2013-11-15

    Aldose reductase (AR) has a key role in several inflammatory diseases: diabetes, cancer and cardiovascular diseases. Therefore, AR inhibition seems to be a useful strategy for anti-inflammation therapy. In the central nervous system (CNS), microglial over-activation is considered to be a central event in neuroinflammation. However, the effects of AR inhibition in CNS inflammation and its underlying mechanism of action remain unknown. In the present study, we found that FMHM (a naturally derived AR inhibitor from the roots of Polygala tricornis Gagnep.) showed potent anti-neuroinflammatory effects in vivo and in vitro by inhibiting microglial activation and expression of inflammatory mediators.more » Mechanistic studies showed that FMHM suppressed the activity of AR-dependent phospholipase C/protein kinase C signaling, which further resulted in downstream inactivation of the IκB kinase/IκB/nuclear factor-kappa B (NF-κB) inflammatory pathway. Therefore, AR inhibition-dependent NF-κB inactivation negatively regulated the transcription and expression of various inflammatory genes. AR inhibition by FMHM exerted neuroprotective effects in lipopolysaccharide-induced neuron–microglia co-cultures. These findings suggested that AR is a potential target for neuroinflammation inhibition and that FMHM could be an effective agent for treating or preventing neuroinflammatory diseases. - Highlights: • FMHM is a natural-derived aldose reductase (AR) inhibitor. • FMHM inhibits various neuroinflammatory mediator productions in vitro and in vivo. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent NF-κB pathway. • FMHM inhibits neuroinflammation via aldose reductase/PLC/PKC-dependent MAPK pathway. • FMHM protects neurons against inflammatory injury in microglia-neuron co-cultures.« less

  11. Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) Symptoms in an Opioid-Receptor Dependent Manner

    PubMed Central

    Pan, Qiuhui; Fichna, Jakub; Zheng, Lijun; Wang, Kesheng; Yu, Zhen; Li, Yongyu; Li, Kun; Song, Aihong; Liu, Zhongchen; Song, Zhenshun; Kreis, Martin

    2015-01-01

    Background and Aims Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI) tract and cortical neurons using animal models and in vitro tests. Methods The effect of berberine was characterized in murine models mimicking diarrhea-predominant irritable bowel syndrome (IBS-D) symptoms. Then the opioidantagonists were used to identify the receptors involved. Furthermore, the effect of berberineon opioid receptors expression was established in the mouse intestine and rat fetal cortical neurons. Results In mouse models, berberine prolonged GI transit and time to diarrhea in a dose-dependent manner, and significantly reduced visceral pain. In physiological conditions the effects of berberine were mediated by mu- (MOR) and delta- (DOR) opioidreceptors; hypermotility, excessive secretion and nociception were reversed by berberine through MOR and DOR-dependent action. We also found that berberine increased the expression of MOR and DOR in the mouse bowel and rat fetal cortical neurons. Conclusion Berberine significantly improved IBS-D symptoms in animal models, possibly through mu- and delta- opioid receptors. Berberine may become a new drug candidate for the successful treatment of IBS-D in clinical conditions. PMID:26700862

  12. TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling.

    PubMed

    Amasheh, Maren; Fromm, Anja; Krug, Susanne M; Amasheh, Salah; Andres, Susanne; Zeitz, Martin; Fromm, Michael; Schulzke, Jörg-Dieter

    2010-12-01

    TNFα-mediated tight junction defects contribute to diarrhea in inflammatory bowel diseases (IBDs). In our study, the signaling pathways of the TNFα effect on barrier- or pore-forming claudins were analyzed in HT-29/B6 human colon monolayers. Berberine, a herbal therapeutic agent that has been recently established as a therapy for diabetes and hypercholesterinemia, was able to completely antagonize the TNFα-mediated barrier defects in the cell model and in rat colon. Ussing chamber experiments and two-path impedance spectroscopy revealed a decrease of paracellular resistance after TNFα to 11±4%, whereas transcellular resistance was unchanged. The permeability of the paracellular marker fluorescein was increased fourfold. Berberine alone had no effect while it fully prevented the TNFα-induced barrier defects. This effect on resistance was confirmed in rat colon. TNFα removed claudin-1 from the tight junction and increased claudin-2 expression. Berberine prevented TNFα-induced claudin-1 disassembly and upregulation of claudin-2. The effects of berberine were mimicked by genistein plus BAY11-7082, indicating that they are mediated via tyrosine kinase, pAkt and NFκB pathways. In conclusion, the anti-diarrheal effect of berberine is explained by a novel mechanism, suggesting a therapeutic approach against barrier breakdown in intestinal inflammation.

  13. Naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption

    PubMed Central

    Ma, Bing-Liang; Yin, Chun; Zhang, Bo-Kai; Dai, Yan; Jia, Yi-Qun; Yang, Yan; Li, Qiao; Shi, Rong; Wang, Tian-Ming; Wu, Jia-Sheng; Li, Yuan-Yuan; Lin, Ge; Ma, Yue-Ming

    2016-01-01

    Pharmacological activities of some natural products diminish and even disappear after purification. In this study, we explored the mechanisms underlying the decrease of acute oral toxicity of Coptidis Rhizoma extract after purification. The water solubility, in vitro absorption, and plasma exposure of berberine (the major active compound) in the Coptidis Rhizoma extract were much better than those of pure berberine. Scanning electron microscopy, laser scanning confocal microscopy (LSCM), and dynamic light scattering experiments confirmed that nanoparticles attached to very fine precipitates existed in the aqueous extract solution. The LSCM experiment showed that the precipitates were absorbed with the particles by the mouse intestine. High-speed centrifugation of the extract could not remove the nanoparticles and did not influence plasma exposure or acute oral toxicity. However, after extract dilution, the attached precipitates vanished, although the nanoparticles were preserved, and there were no differences in the acute oral toxicity and plasma exposure between the extract and pure berberine. The nanoparticles were then purified and identified as proteinaceous. Furthermore, they could absorb co-dissolved berberine. Our results indicate that naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. These findings should inspire related studies in other natural products. PMID:26822920

  14. The neuroprotective effects of Berberine against amyloid β-protein-induced apoptosis in primary cultured hippocampal neurons via mitochondria-related caspase pathway.

    PubMed

    Liang, Yubin; Huang, Min; Jiang, Xin; Liu, Qiong; Chang, Xin; Guo, Yi

    2017-08-10

    Neuronal cell apoptosis is an important pathological change in Alzheimer's disease (AD). Berberine, an isoquinoline alkaloid isolated and extracted from Coptidis and rhizome and Cortex phellodendri, has a wide range of pharmacological effects. In this study, we investigated the neuroprotective effects of Berberine against neuronal insults induced by Aβ25-35 in primary cultured hippocampal neurons. Primary neuron cells have been isolated from hippocampus of C57BL/6 newborn mice. We investigated effect of Berberine against neuronal insults induced by Aβ25-35 in primary cultured hippocampal neurons. TdT-mediated dUTP nick-end labeling, MTT, Propidium iodide, MMP, Caspase activity measurement, Western blot. These neurons explosure to the β25-35 protein resulted in a loss in cell viability and a surge in apoptosis. However, the presence of Berberine significantly reversed the effects induced by Aβ25-35. Through decreasing viability and caspase activity in neurons, the pretreatment with Berberine attenuated the cytotoxic effect of the Aβ25-35. Furthermore, it's found that expression of cytochrome C, as well as the restoration of Bcl-2/Bax and Bcl-xl/Bax ratio in the presence of Berberine, led to a decline in the apoptotic rate. The neuroprotective effects of Berberine against Aβ25-35-induced neuronal apoptosis, suggesting that this may be a promising therapeutics against AD. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Anti-Eimeria activity of berberine and identification of associated gene expression changes in the mouse jejunum infected with Eimeria papillata.

    PubMed

    Dkhil, Mohamed A; Metwaly, Mahmoud S; Al-Quraishy, Saleh; Sherif, Nour E; Delic, Denis; Al Omar, Suliman Y; Wunderlich, Frank

    2015-04-01

    Plant-based natural products are promising sources for identifying novel agents with potential anti-Eimeria activity. This study explores possible effects of berberine on Eimeria papillata infections in the jejunum of male Swiss albino mice. Berberine chloride, when daily administered to mice during infection, impairs intracellular development and multiplication of E. papillata, evidenced as 60% reduction of maximal fecal output of oocysts on day 5 p.i. Concomitantly, berberine attenuates the inflammatory response, evidenced as decreased messenger RNA (mRNA) expression of IL-1β, IL-6, TNFα, IFNγ, and iNOS, as well as the oxidative stress response, evidenced as impaired increase in malondialdehyde, nitrate, and H2O2 and as prevented decrease in glutathione and catalase activity. Berberine also alters gene expression in the infected jejunum. On day 5 p.i., mRNA expression of 29 genes with annotated functions is more than 10-fold upregulated and that of 14 genes downregulated. Berberine downregulates the genes Xaf1, Itgb3bp, and Faim3 involved in apoptotic processes and upregulates genes involved in innate immune responses, as e.g., Colec11, Saa2, Klra8, Clec1b, and Crtam, especially the genes Cpa3, Fcer1a, and Mcpt1, Mcpt2, and Mcpt4 involved in mast cell activity. Additionally, 18 noncoding lincRNA species are differentially expressed more than 10-fold under berberine. Our data suggest that berberine induces hosts to exert anti-Eimeria activity by attenuating the inflammatory and oxidative stress response, by impairing apoptotic processes, and by activating local innate immune responses and epigenetic mechanisms in the host jejunum. Berberine has the potential as an anti-Eimeria food additive in animal farming.

  16. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    PubMed

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism.

  17. Dual-Targeting of AR and Akt Pathways by Berberine in Castration-Resistant Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    Award Number: W81XWH-12-1-0275 TITLE: Dual-Targeting of AR and Akt Pathways by Berberine in Castration-Resistant Prostate Cancer PRINCIPAL...Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not be...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Dual-Targeting of AR and Akt Pathways by Berberine in Castration- Resistant Prostate Cancer 5b. GRANT NUMBER

  18. Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization

    PubMed Central

    Fonken, Laura K.; Kitt, Meagan M.; Gaudet, Andrew D.; Barrientos, Ruth M.; Watkins, Linda R.; Maier, Steven F.

    2016-01-01

    Aged animals exhibit diminished circadian rhythms, and both aging and circadian disruption sensitize neuroinflammatory responses. Microglia –the innate immune cell of the CNS – possess endogenous timekeeping mechanisms that regulate immune responses. Here, we explored whether aging is associated with disrupted diurnal rhythms in microglia and neuroinflammatory processes. First, hippocampal microglia isolated from young rats (4 mos. F344XBN) rhythmically expressed circadian clock genes, whereas microglia isolated from the hippocampus of aged rats (25 mos.) had aberrant Per1 and Per2 rhythms. Unstimulated microglia from young rats exhibited robust rhythms of TNFα and IL-1β mRNA expression, whereas those from aged rats had flattened and tonically-elevated cytokine expression. Similarly, microglial activation markers were diurnally regulated in the hippocampus of young but not aged rats and diurnal differences in responsiveness to both ex vivo and in vivo inflammatory challenges were abolished in aged rats. Corticosterone is an entraining signal for extra-SCN circadian rhythms. Here, corticosterone stimulation elicited similar Per1 induction in aged and young microglia. Overall, these results indicate that aging dysregulates circadian regulation of neuroinflammatory functions. PMID:27568094

  19. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter.

    PubMed

    Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo

    2017-03-17

    Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Differential modes of photosensitisation in cancer cells by berberine and coralyne.

    PubMed

    Bhattacharyya, Rahul; Saha, Bhaskar; Tyagi, Mrityunjaya; Bandyopadhyay, Sandip K; Patro, Birija Sankar; Chattopadhyay, Subrata

    2017-01-01

    In this study, we demonstrated that the cytotoxicity of the protoberberine alkaloids such as coralyne, berberine and jatrorrhizine to several human cancer cell lines can be improved significantly in combination with UVA exposure. However, the phototoxic property of coralyne was much higher than that of the other two alkaloids. The combination of coralyne and UVA (designated as CUVA) induced oxygen-independent cytotoxicity in the human lung cancer A549 cells by producing more lethal DNA double-strand breaks, and the effect was mediated via the replication machinery. In comparison, the berberine-induced phototoxicity to the A549 cells was mediated by reactive oxygen species generation, mitochondrial membrane permeabilisation and caspase-9/caspase-3 activation.

  1. Anti-Inflammatory Activities of Pentaherbs Formula, Berberine, Gallic Acid and Chlorogenic Acid in Atopic Dermatitis-Like Skin Inflammation.

    PubMed

    Tsang, Miranda S M; Jiao, Delong; Chan, Ben C L; Hon, Kam-Lun; Leung, Ping C; Lau, Clara B S; Wong, Eric C W; Cheng, Ling; Chan, Carmen K M; Lam, Christopher W K; Wong, Chun K

    2016-04-20

    Atopic dermatitis (AD) is a common allergic skin disease, characterized by dryness, itchiness, thickening and inflammation of the skin. Infiltration of eosinophils into the dermal layer and presence of edema are typical characteristics in the skin biopsy of AD patients. Previous in vitro and clinical studies showed that the Pentaherbs formula (PHF) consisting of five traditional Chinese herbal medicines, Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis at w/w ratio of 2:1:2:2:2 exhibited therapeutic potential in treating AD. In this study, an in vivo murine model with oxazolone (OXA)-mediated dermatitis was used to elucidate the efficacy of PHF. Active ingredients of PHF water extract were also identified and quantified, and their in vitro anti-inflammatory activities on pruritogenic cytokine IL-31- and alarmin IL-33-activated human eosinophils and dermal fibroblasts were evaluated. Ear swelling, epidermis thickening and eosinophils infiltration in epidermal and dermal layers, and the release of serum IL-12 of the murine OXA-mediated dermatitis were significantly reduced upon oral or topical treatment with PHF (all p < 0.05). Gallic acid, chlorogenic acid and berberine contents (w/w) in PHF were found to be 0.479%, 1.201% and 0.022%, respectively. Gallic acid and chlorogenic acid could suppress the release of pro-inflammatory cytokine IL-6 and chemokine CCL7 and CXCL8, respectively, in IL-31- and IL-33-treated eosinophils-dermal fibroblasts co-culture; while berberine could suppress the release of IL-6, CXCL8, CCL2 and CCL7 in the eosinophil culture and eosinophils-dermal fibroblasts co-culture (all p < 0.05). These findings suggest that PHF can ameliorate allergic inflammation and attenuate the activation of eosinophils.

  2. Berberine attenuates CCN2-induced IL-1β expression and prevents cartilage degradation in a rat model of osteoarthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shan-Chi; Lee, Hsiang-Ping; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan

    Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator that is abundantly expressed in osteoarthritis (OA). Interleukin-1β (IL-1β) plays a pivotal role in OA pathogenesis. Berberine exhibits an anti-inflammatory effect, but the mechanisms by which it modulates CCN2-induced IL-1β expression in OA synovial fibroblasts (OASFs) remain unknown. We showed that CCN2-induced IL-1β expression is mediated by the activation of α{sub v}β{sub 3}/α{sub v}β{sub 5} integrin-dependent reactive oxygen species (ROS) generation, and subsequent activation of apoptosis signal-regulating kinase 1 (ASK1), p38/JNK, and nuclear factor-κB (NF-κB) signaling pathways. This IL-1β expression in OASFs is attenuated by N-acetylcysteine (NAC),more » inhibitors of ASK1, p38, or JNK, or treatment with berberine. Furthermore, berberine also reverses cartilage damage in an experimental model of collagenase-induced OA (CIOA). We observed that CCN2 increased IL-1β expression via α{sub v}β{sub 3}/α{sub v}β{sub 5} integrins, ROS, and ASK1, p38/JNK, and NF-κB signaling pathways. Berberine was found to inhibit these signaling components in OASFs in vitro and prevent cartilage degradation in vivo. We suggest a novel therapeutic strategy of using berberine for managing OA. - Highlights: • CCN2 induce IL-1β production via αvβ3/αvβ5 integrin, ROS, ASK1, p38/JNK, and NF-κB. • Berberine attenuates CCN2-induced IL-1β expression in vitro and in OA rat model. • Berberine as natural drug of choice for anti-inflammatory effect to ameliorates OA.« less

  3. NO inhibitory constituents as potential anti-neuroinflammatory agents for AD from Blumea balsamifera.

    PubMed

    Ma, Jun; Ren, Quanhui; Dong, Bangjian; Shi, Zhaoyu; Zhang, Jie; Jin, Da-Qing; Xu, Jing; Ohizumi, Yasushi; Lee, Dongho; Guo, Yuanqiang

    2018-02-01

    Our continuous search for new nitric oxide (NO) inhibitory substances as anti-neuroinflammatory agents for AD resulted in the isolation of one new labdane diterpenoid and three new guaiane sesquiterpenoids, as well as ten known compounds from Blumea balsamifera. Their structures were elucidated by NMR spectroscopic data analysis and the time-dependent density functional theory (TDDFT) electronic circular dichroism (ECD) calculations. The anti-neuroinflammatory effects were examined by inhibiting NO release in LPS-induced murine microglial BV-2 cells. The possible mechanism of NO inhibition of some bioactive compounds was also investigated using molecular docking, which revealed the interactions of bioactive compounds with the iNOS protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Berberine as a promising safe anti-cancer agent - is there a role for mitochondria?

    PubMed

    Diogo, Catia V; Machado, Nuno G; Barbosa, Inês A; Serafim, Teresa L; Burgeiro, Ana; Oliveira, Paulo J

    2011-06-01

    Metabolic regulation is largely dependent on mitochondria, which play an important role in energy homeostasis. Imbalance between energy intake and expenditure leads to mitochondrial dysfunction, characterized by a reduced ratio of energy production (ATP production) to respiration. Due to the role of mitochondrial factors/events in several apoptotic pathways, the possibility of targeting that organelle in the tumor cell, leading to its elimination is very attractive, although the safety issue is problematic. Berberine, a benzyl-tetra isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been extensively used for many centuries, especially in the traditional Chinese and Native American medicine. Several evidences suggest that berberine possesses several therapeutic uses, including anti-tumoral activity. The present review supplies evidence that berberine is a safe anti-cancer agent, exerting several effects on mitochondria, including inhibition of mitochondrial Complex I and interaction with the adenine nucleotide translocator which can explain several of the described effects on tumor cells.

  5. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke.

    PubMed

    Singh, Vikramjeet; Roth, Stefan; Llovera, Gemma; Sadler, Rebecca; Garzetti, Debora; Stecher, Bärbel; Dichgans, Martin; Liesz, Arthur

    2016-07-13

    Acute brain ischemia induces a local neuroinflammatory reaction and alters peripheral immune homeostasis at the same time. Recent evidence has suggested a key role of the gut microbiota in autoimmune diseases by modulating immune homeostasis. Therefore, we investigated the mechanistic link among acute brain ischemia, microbiota alterations, and the immune response after brain injury. Using two distinct models of acute middle cerebral artery occlusion, we show by next-generation sequencing that large stroke lesions cause gut microbiota dysbiosis, which in turn affects stroke outcome via immune-mediated mechanisms. Reduced species diversity and bacterial overgrowth of bacteroidetes were identified as hallmarks of poststroke dysbiosis, which was associated with intestinal barrier dysfunction and reduced intestinal motility as determined by in vivo intestinal bolus tracking. Recolonizing germ-free mice with dysbiotic poststroke microbiota exacerbates lesion volume and functional deficits after experimental stroke compared with the recolonization with a normal control microbiota. In addition, recolonization of mice with a dysbiotic microbiome induces a proinflammatory T-cell polarization in the intestinal immune compartment and in the ischemic brain. Using in vivo cell-tracking studies, we demonstrate the migration of intestinal lymphocytes to the ischemic brain. Therapeutic transplantation of fecal microbiota normalizes brain lesion-induced dysbiosis and improves stroke outcome. These results support a novel mechanism in which the gut microbiome is a target of stroke-induced systemic alterations and an effector with substantial impact on stroke outcome. We have identified a bidirectional communication along the brain-gut microbiota-immune axis and show that the gut microbiota is a central regulator of immune homeostasis. Acute brain lesions induced dysbiosis of the microbiome and, in turn, changes in the gut microbiota affected neuroinflammatory and functional outcome

  6. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    PubMed Central

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can lessen the recurring activation when used early at infection but are unable to prevent or cure infections where treatment has selected for resistant mutants. In searching for new antiviral agents against herpesvirus infection, we found that berberine reduced viral RNA transcription, protein synthesis, and virus titers in a dose-dependent manner. To elucidate the mechanism of its antiviral activity, the effect of berberine on the individual steps of viral replication cycle of HSV was investigated via time-of-drug addition assay. We found that berberine acted at the early stage of HSV replication cycle, between viral attachment/entry and genomic DNA replication, probably at the immediate-early gene expression stage. We further demonstrated that berberine significantly reduced HSV-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. Moreover, we found that berberine also depressed HSV-induced c-Jun N-terminal kinase (JNK) phosphorylation but had little effect on p38 phosphorylation. Our results suggest that the berberine inhibition of HSV infection may be mediated through modulating cellular JNK and NF-κB pathways. PMID:24913175

  7. Fabrication of Novel Hydrogel with Berberine-Enriched Carboxymethylcellulose and Hyaluronic Acid as an Anti-Inflammatory Barrier Membrane

    PubMed Central

    Huang, Yu-Chih; Huang, Kuen-Yu; Yang, Bing-Yuan

    2016-01-01

    An antiadhesion barrier membrane is an important biomaterial for protecting tissue from postsurgical complications. However, there is room to improve these membranes. Recently, carboxymethylcellulose (CMC) incorporated with hyaluronic acid (HA) as an antiadhesion barrier membrane and drug delivery system has been reported to provide excellent tissue regeneration and biocompatibility. The aim of this study was to fabricate a novel hydrogel membrane composed of berberine-enriched CMC prepared from bark of the P. amurense tree and HA (PE-CMC/HA). In vitro anti-inflammatory properties were evaluated to determine possible clinical applications. The PE-CMC/HA membranes were fabricated by mixing PE-CMC and HA as a base with the addition of polyvinyl alcohol to form a film. Tensile strength and ultramorphology of the membrane were evaluated using a universal testing machine and scanning electron microscope, respectively. Berberine content of the membrane was confirmed using a UV-Vis spectrophotometer at a wavelength of 260 nm. Anti-inflammatory property of the membrane was measured using a Griess reaction assay. Our results showed that fabricated PE-CMC/HA releases berberine at a concentration of 660 μg/ml while optimal plasticity was obtained at a 30 : 70 PE-CMC/HA ratio. The berberine-enriched PE-CMC/HA had an inhibited 60% of inflammation stimulated by LPS. These results suggest that the PE-CMC/HA membrane fabricated in this study is a useful anti-inflammatory berberine release system. PMID:28119926

  8. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice.

    PubMed

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon

    2017-02-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Growth performance, innate immune responses and disease resistance of fingerling blunt snout bream, Megalobrama amblycephala adapted to different berberine-dietary feeding modes.

    PubMed

    Xu, Wei-Na; Chen, Dan-Hong; Chen, Qing-Qing; Liu, Wen-Bin

    2017-09-01

    A 8-week feeding trial was conducted to evaluate the effect of different berberine-dietary feeding modes on growth, non-specific immune responses and disease resistance of blunt snout bream, Megalobrama amblycephala. Fish (average initial weight 4.70 ± 0.02 g) were fed two fat levels (5% and 10%) diets in three berberine-feeding modes (supplementing 50 mg/kg berberine continuously, two-week or four-week intervals) with four replicates, respectively. Then, fish were challenged by Aeromonas hydrophila and mortality was recorded for the next 96 h after feeding trial. The results showed that different feeding modes of berberine significantly influenced growth, innate immunity and antioxidant capability of fish. Fish fed normal diet with 50 mg/kg berberine at two-week interval mode reflected remarkably (P < 0.05) high weight gain (WG). Plasma TC and TG contents were significantly (P < 0.05) decreased. The lysozyme (LYZ) activities, complement component 3 (C3) and complement component 4 (C4) concentrations were significantly (P < 0.05) increased. Fish not only exhibited relatively low hepatopancreas malondialdehyde (MDA) and lipid peroxide (LPO) contents, but also significantly (P < 0.05) improved superoxide dismutase (SOD) and catalase (CAT) activities. Fish mortality after challenged by Aeromonas hydrophila was decreased. Same results were also presented in fish fed high-fat diet with 50 mg/kg berberine at two-week, four-week intervals or continuous feeding modes. Based on fish healthy improvement and feeding cost saving, blunt snout bream fed normal diet with 50 mg/kg berberine at two-week interval or fed high-fat diet with berberine at two-week or four-week intervals were optimal feeding mode, respectively. Copyright © 2017. Published by Elsevier Ltd.

  10. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats.

    PubMed

    Zhang, Xu; Zhao, Yufeng; Zhang, Menghui; Pang, Xiaoyan; Xu, Jia; Kang, Chaoying; Li, Meng; Zhang, Chenhong; Zhang, Zhiguo; Zhang, Yifei; Li, Xiaoying; Ning, Guang; Zhao, Liping

    2012-01-01

    Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD)-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs), most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA)-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q(2)>0.6) for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.

  11. Comparison of Helicobacter pylori Urease Inhibition by Rhizoma Coptidis, Cortex Phellodendri and Berberine: Mechanisms of Interaction with the Sulfhydryl Group.

    PubMed

    Li, Cailan; Xie, Jianhui; Chen, Xiaoying; Mo, Zhizhun; Wu, Wen; Liang, Yeer; Su, Zuqing; Li, Qian; Li, Yucui; Su, Ziren; Yang, Xiaobo

    2016-03-01

    Rhizoma Coptidis, Cortex Phellodendri, and berberine were reported to inhibit Helicobacter pylori. However, the underlying mechanism remained elusive. Urease plays a vital role in H. pylori colonization and virulence. In this work, aqueous extracts of Rhizoma Coptidis, Cortex Phellodendri of different origins, and purified berberine were investigated against H. pylori urease and jack bean urease to elucidate the inhibitory capacity, kinetics, and mechanism. Results showed that berberine was the major chemical component in Rhizoma Coptidis and Cortex Phellodendri, and the content of berberine in Rhizoma Coptidis was higher than in Cortex Phellodendri. The IC50 values of Rhizoma Coptidis were significantly lower than those Cortex Phellodendri and purified berberine, of which Coptis chinensis was shown to be the most active concentration- and time-dependent urease inhibitor. The Lineweaver-Burk plot analysis indicated that the inhibition pattern of C. chinensis against urease was noncompetitive for both H. pylori urease and jack bean urease. Thiol protectors (L-cysteine, glutathione, and dithiothreithol) significantly protected urease from the loss of enzymatic activity, while fluoride and boric acid showed weaker protection, indicating the active-site sulfhydryl group was possibly responsible for its inhibition. Furthermore, the urease inhibition proved to be reversible since C. chinensis-blocked urease could be reactivated by glutathione. The results suggested that the anti-urease activity of Rhizoma Coptidis was superior to that of Cortex Phellodendri and berberine, which was believed to be more likely to correlate to the content of total alkaloids rather than berberine monomer. The concentration- and time-dependent, reversible, and noncompetitive inhibition against urease by C. chinensis might be attributed to its interaction with the sulfhydryl group of the active site of urease. Georg Thieme Verlag KG Stuttgart · New York.

  12. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats.

    PubMed

    Zhang, Xu; Zhao, Yufeng; Xu, Jia; Xue, Zhengsheng; Zhang, Menghui; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping

    2015-09-23

    Accumulating evidence suggests that the gut microbiota is an important factor in mediating the development of obesity-related metabolic disorders, including type 2 diabetes. Metformin and berberine, two clinically effective drugs for treating diabetes, have recently been shown to exert their actions through modulating the gut microbiota. In this study, we demonstrated that metformin and berberine similarly shifted the overall structure of the gut microbiota in rats. Both drugs showed reverting effects on the high-fat diet-induced structural changes of gut microbiota. The diversity of gut microbiota was significantly reduced by both berberine- and metformin-treatments. Nearest shrunken centroids analysis identified 134 operational taxonomic units (OTUs) responding to the treatments, which showed close associations with the changes of obese phenotypes. Sixty out of the 134 OTUs were decreased by both drugs, while those belonging to putative short-chain fatty acids (SCFA)-producing bacteria, including Allobaculum, Bacteriodes, Blautia, Butyricoccus, and Phascolarctobacterium, were markedly increased by both berberine and, to a lesser extent, metformin. Taken together, our findings suggest that berberine and metformin showed similarity in modulating the gut microbiota, including the enrichment of SCFA-producing bacteria and reduction of microbial diversity, which may contribute to their beneficial effects to the host.

  13. Aptamer-functionalized Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri.

    PubMed

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin

    2017-07-01

    The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Berberine improves endothelial function by inhibiting endoplasmic reticulum stress in the carotid arteries of spontaneously hypertensive rats.

    PubMed

    Liu, Limei; Liu, Jian; Huang, Zhengxiang; Yu, Xiaoxing; Zhang, Xinyu; Dou, Dou; Huang, Yu

    2015-03-20

    Activation of endoplasmic reticulum (ER) stress in endothelial cells leads to increased oxidative stress and often results in cell death, which has been implicated in hypertension. The present study investigated the effects of berberine, a botanical alkaloid purified from Coptidis rhizoma, on ER stress in spontaneously hypertensive rats (SHRs) and the underling mechanism. Isolated carotid arteries from normotensive WKYs and SHRs were suspended in myograph for isometric force measurement. Protein phosphorylations and expressions were determined by Western blotting. Reactive oxygen species (ROS) level was measured by DHE staining. SHR carotid arteries exhibited exaggerated acetylcholine-triggered endothelium-dependent contractions (EDCs) and elevated ROS accumulation compared with WKY arteries. Moreover, Western blot analysis revealed the reduced AMPK phosphorylation, increased eIF2α phosphorylation, and elevated levels of ATF3, ATF6, XBP1 and COX-2 in SHR carotid arteries while these pathological alterations were reversed by 12 h-incubation with berberine. Furthermore, AMPK inhibitor compound C or dominant negative AMPK adenovirus inhibited the effects of berberine on above-mentioned marker proteins and EDCs. More importantly, ROS scavengers, tempol and tiron plus DETCA, or ER stress inhibitors, 4-PBA and TUCDA normalized the elevated levels of ROS and COX-2 expression, and attenuated EDCs in SHR arteries. Taken together, the present results suggest that berberine reduces EDCs likely through activating AMPK, thus inhibiting ER stress and subsequently scavenging ROS leading to COX-2 down-regulation in SHR carotid arteries. The present study thus provides additional insights into the vascular beneficial effects of berberine in hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Anti-neuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells.

    PubMed

    Luo, Qian; Yan, Xiaoli; Bobrovskaya, Larisa; Ji, Mei; Yuan, Huiqing; Lou, Hongxiang; Fan, Peihong

    2017-04-01

    Grossamide, a representative lignanamide in hemp seed, has been reported to possess potential anti-inflammatory effects. However, the potential anti-neuroinflammatory effects and underlying mechanisms of action of grossamide are still unclear. Therefore, the present study investigated the possible effects and underlying mechanisms of grossamide against lipopolysaccharide (LPS)-induced inflammatory response in BV2 microglia cells. BV2 microglia cells were pre-treated with various concentrations of grossamide before being stimulated with LPS to induce inflammation. The levels of pro-inflammatory cytokines were determined using the enzyme-linked immunoassay (ELISA) and mRNA expression levels were measured by real-time PCR. The translocation of nuclear factor-kappa B (NF-κB) and contribution of TLR4-mediated NF-κB activation on inflammatory effects were evaluated by immunostaining and Western blot analysis. This study demonstrated that grossamide significantly inhibited the secretion of pro-inflammatory mediators such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), and decreased the level of LPS-mediated IL-6 and TNF-α mRNA. In addition, it significantly reduced the phosphorylation levels of NF-κB subunit p65 in a concentration-dependent manner and suppressed translocation of NF-κB p65 into the nucleus. Furthermore, grossamide markedly attenuated the LPS-induced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Taken together, these data suggest that grossamide could be a potential therapeutic candidate for inhibiting neuroinflammation in neurodegenerative diseases.

  16. Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2007-10-01

    Effect of association with chloride or perchlorate anions on the fluorescence properties of berberine, a cationic isoquinoline alkaloid, has been studied. Interaction with Cl - caused more efficient fluorescence quenching; it significantly accelerated the radiationless deactivation and slowed down the radiative transition. Combined analysis of spectrophotometric, steady-state and time-resolved fluorescence results provided 1.5 × 10 5 M -1 for the equilibrium constant of ion pairing with Cl - in CH 2Cl 2. Both ion pairing and enrichment of the microenvironment of berberine in ions led to excited state quenching in solvents of medium polarity, but only the latter effect was observed in the presence of perchlorates in butyronitrile.

  17. ¹H-NMR-Based Metabonomics of the Protective Effect of Coptis chinensis and Berberine on Cinnabar-Induced Hepatotoxicity and Nephrotoxicity in Rats.

    PubMed

    Su, Guangyue; Wang, Haifeng; Gao, Yuxian; Chen, Gang; Pei, Yuehu; Bai, Jiao

    2017-11-02

    Coptis chinensis Franch has been used in Traditional Chinese Medicine (TCM) for treating infectious and inflammatory diseases for over two thousand years. Berberine (BN), an isoquinoline alkaloid, is the main component of Coptis chinensis . The pharmacological basis for its therapeutic effects, which include hepatoprotective effects on liver injuries, has been studied intensively, yet the therapy of liver injuries and underlying mechanism remain unclear. We investigated the detoxification mechanism of Coptis chinensis and berberine using metabolomics of urine and serum in the present study. After the treatment with Coptis chinensis and berberine, compared with the cinnabar group, Coptis chinensis and berberine can regulate the concentration of the endogenous metabolites. PLS-DA score plots demonstrated that the urine and serum metabolic profiles in rats of the Coptis chinensis and berberine groups were similar those of the control group, yet remarkably apart from the cinnabar group. The mechanism may be related to the endogenous metabolites including energy metabolism, amino acid metabolism and metabolism of intestinal flora in rats. Meanwhile, liver and kidney histopathology examinations and serum clinical chemistry analysis verified the experimental results of metabonomics.

  18. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets.

    PubMed

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-07-01

    Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by ELISA. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. Incubation of INS-1E cells and rat islets with HG (30 mmol·L(-1); 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m(+) mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. © 2014 The British Pharmacological Society.

  19. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    PubMed

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  20. Berberine enhances the anti‑tumor activity of tamoxifen in drug‑sensitive MCF‑7 and drug‑resistant MCF‑7/TAM cells.

    PubMed

    Wen, Chunjie; Wu, Lanxiang; Fu, Lijuan; Zhang, Xue; Zhou, Honghao

    2016-09-01

    Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research.

  1. Potential of berberine to enhance antimicrobial activity of commonly used antibiotics for dairy cow mastitis caused by multiple drug-resistant Staphylococcus epidermidis infection.

    PubMed

    Zhou, X; Yang, C; Li, Y; Liu, X; Wang, Y

    2015-08-19

    Berberine is a plant alkaloid with antimicrobial activity against a variety of microorganisms. In this study, the antimicrobial properties of berberine against multi-drug resistant field isolates of Staphylococcus epidermidis were investigated using berberine alone or in combination with a commonly used antibiotics in veterinary clinics, including penicillin, lincomycin, and amoxicillin. The results indicated that the minimum inhibitory concentrations of berberine, penicillin, lincomycin, and amoxicillin against field S. epidermidis isolates were 2-512, 0.8-213, 0.4-1024, and 0.4-256 mg/mL, respectively. Furthermore, the synergistic effects of antimicrobial activity against these multi-drug resistant isolates were observed when the berberine was combined with penicillin, lincomycin, or amoxicillin; no antagonistic effect of the combination was detected in any of the clinical isolates. These observations were further confirmed using a time-killing assay, in which a combination of 2 agents yielded a greater than 2.03-2.44 log10 decrease in colony-forming unit/mL compared with each agent alone. These findings suggest that berberine is a promising compound for preventing and treating multi-drug resistant S. epidermidis infected mastitis in dairy cows either alone or in combination with other commonly used antibiotics, such as penicillin, lincomycin, and amoxicillin.

  2. Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe

    NASA Astrophysics Data System (ADS)

    Miskolczy, Zsombor; Biczók, László

    2009-07-01

    A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.

  3. Effect of berberine on insulin resistance in women with polycystic ovary syndrome: study protocol for a randomized multicenter controlled trial.

    PubMed

    Li, Yan; Ma, Hongli; Zhang, Yuehui; Kuang, Hongying; Ng, Ernest Hung Yu; Hou, Lihui; Wu, Xiaoke

    2013-07-18

    Insulin resistance and hyperinsulinemia play a key role in the pathogenesis of polycystic ovary syndrome (PCOS), which is characterized by hyperandrogenism, ovulatory dysfunction, and presence of polycystic ovaries on pelvic scanning. Insulin resistance is significantly associated with the long-term risks of metabolic syndrome and cardiovascular disease. Berberine has effects on insulin resistance but its use in women with PCOS has not been fully investigated. In this paper, we present a research design evaluating the effects of berberine on insulin resistance in women with PCOS. This is a multicenter, randomized, placebo-controlled and double-blind trial. A total of 120 patients will be enrolled in this study and will be randomized into two groups. Berberine or placebo will be taken orally for 12 weeks. The primary outcome is the whole body insulin action assessed with the hyperinsulinemic-euglycemic clamp. We postulate that women with PCOS will have improved insulin resistance following berberine administration. This study is registered at ClinicalTrials.gov, NCT01138930.

  4. Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk.

    PubMed

    Adil, Mohammad; Mansoori, Mohd Nizam; Singh, Divya; Kandhare, Amit Dattatraya; Sharma, Manju

    2017-10-01

    Diabetes mellitus and osteoporosis both are high prevalence disorders, especially in the elderly population. Pioglitazone, a PPAR-γ agonist associated with bone loss and risk of fracture in type 2 diabetes mellitus patients. In this study, ameliorative effect of berberine against pioglitazone-induced bone loss in diabetic rats and possible mechanisms has been explored. Diabetes was induced in male Wistar albino rats by streptozotocin (65 mg/kg, i.v.) after 15min of nicotinamide (230mg/kg, i.p.) administration. Diabetic rats were treated orally with pioglitazone (10mg/kg) and berberine (100mg/kg) alone and in combination of both for 12 weeks. Femur of each rat was isolated and evaluated for the bone micro-architecture, BMD, histology and mRNA expression of PPAR-γ, AMPK, and bone turnover markers (RANKL, OPG, Runx2, and osteocalcin). Urinary calcium and serum TRAP was also measured. Treatment of pioglitazone and berberine alone and in combination significantly ameliorate abnormal blood glucose, serum insulin, and HbA1c levels in streptozotocin-induced diabetic rats. Pioglitazone treatment significantly increased urinary calcium, serum TRAP, mRNA expression of RANKL, PPAR-γ as well as significantly decreased Runx2, OPG, osteocalcin and AMPK levels in diabetic rats. Pioglitazone administration also shows detrimental effect on femur epiphysis micro-architecture, BMD and histology. Whereas, berberine treatment alone and in combination with pioglitazone remarkably ameliorates the abnormal urinary calcium, mRNA expression of AMPK, bone turnover markers, femur epiphysis micro-architecture, histology and also increases BMD in diabetic rats. In conclusion, berberine shows protective effect against pioglitazone-induced bone loss in diabetic rats possibly through AMPK activation pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Uncoupling protein-2 mediates the protective action of berberine against oxidative stress in rat insulinoma INS-1E cells and in diabetic mouse islets

    PubMed Central

    Liu, Limei; Liu, Jian; Gao, Yuansheng; Yu, Xiaoxing; Xu, Gang; Huang, Yu

    2014-01-01

    BACKGROUND AND PURPOSE Uncoupling protein-2 (UCP2) may regulate glucose-stimulated insulin secretion. The current study investigated the effects of berberine, an alkaloid found in many medicinal plants, on oxidative stress and insulin secretion through restoration of UCP2 expression in high glucose (HG)-treated INS-1E cells and rat islets or in db/db mouse islets. EXPERIMENTAL APPROACH Mouse and rat pancreatic islets were isolated. Nitrotyrosine, superoxide dismutase (SOD)-1 and UCP2 expression and AMPK phosphorylation were examined by Western blotting. Insulin secretion was measured by elisa. Mitochondrial reactive oxygen species (ROS) production was detected by confocal microscopy. KEY RESULTS Incubation of INS-1E cells and rat islets with HG (30 mmol·L−1; 8 h) elevated nitrotyrosine level, reduced SOD-1 and UCP2 expression and AMPK phosphorylation, and inhibited glucose-stimulated insulin secretion. HG also increased mitochondrial ROS in INS-1E cells. Co-treatment with berberine inhibited such effects. The AMPK inhibitor compound C, the UCP2 inhibitor genipin and adenovirus ucp2 shRNA inhibited these protective effects of berberine. Furthermore, compound C normalized berberine-stimulated UCP2 expression but genipin did not affect AMPK phosphorylation. Islets from db/db mice exhibited elevated nitrotyrosine levels, reduced expression of SOD-1 and UCP2 and AMPK phosphorylation, and decreased insulin secretion compared with those from db/m+ mice. Berberine also improved these defects in diabetic islets and genipin blocked the effects of berberine. CONCLUSIONS AND IMPLICATIONS Berberine inhibited oxidative stress and restored insulin secretion in HG-treated INS-IE cells and diabetic mouse islets by activating AMPK and UCP2. UCP2 is an important signalling molecule in mediating anti-diabetic effects of berberine. PMID:24588674

  6. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells

    PubMed Central

    Ming, Ming; Sinnett-Smith, James; Wang, Jia; Soares, Heloisa P.; Young, Steven H.; Eibl, Guido; Rozengurt, Enrique

    2014-01-01

    Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1, MiaPaCa-2) with the isoquinoline alkaloid berberine (0.3–6 µM) inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70%) the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC) at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways. PMID:25493642

  7. Berberine cation: A fluorescent chemosensor for alkanes and other low-polarity compounds. An explanation of this phenomenon

    PubMed

    Cossio; Arrieta; Cebolla; Membrado; Vela; Garriga; Domingo

    2000-07-27

    Alkanes in the presence of berberine sulfate provide an enhancement of fluorescent signal, which depends on alkane concentration and structure, when the system is irradiated with monochromatic UV light. Computational analysis suggests that an ion-induced dipole between alkanes and berberine sulfate is responsible for this phenomenon. This interaction can properly model the experimentally obtained fluorescent response. The proposed explanation allows other interacting systems to be designed, which have been experimentally confirmed.

  8. Effect of berberine on PPARα-NO signalling pathway in vascular smooth muscle cell proliferation induced by angiotensin IV.

    PubMed

    Qiu, Hongmei; Wu, Yang; Wang, Quanhua; Liu, Changqing; Xue, Lai; Wang, Hong; Wu, Qin; Jiang, Qingsong

    2017-12-01

    The available treatments for the abnormal proliferation of vascular smooth muscle cells (VSMCs) are still dismal. Berberine has been demonstrated to possess extensive medicine activity, yet relatively little is known about its effect on VSMCs proliferation. Many studies showed that PPARα and NO participated in the process of VSMCs proliferation. To evaluate the effect of berberine and its possible influence on PPARα-NO pathway in angiotensin IV-stimulated VSMCs. The primary VSMCs were cultured with the tissue explants method, and the proliferation was characterized by MTT and protein content. Protein and mRNA expression were measured by Western blot and real-time RT-PCR, respectively. NO synthase (NOS) activity was measured using a spectrophotometric assay, and NO concentration was measured using the Griess assay. Angiotensin IV (0.1 nmol/L)-induced VSMCs proliferation was evidenced by increasing the optical density at A 490 and total protein content (p < 0.01), which was inhibited by berberine (10, 30 and 100 μmol/L) in a concentration-dependent manner (p < 0.05). Angiotensin IV decreased the expression of PPARα at mRNA and protein level (p < 0.05), which occurred in parallel with declining eNOS mRNA expression, NOS activity and NO concentration (p < 0.01). Berberine at 30 μmol/L reversed the effects of angiotensin IV in VSMCs (p < 0.05), which were abolished by MK 886 (0.3 μmol/L) (p < 0.05). The results support the therapeutic effects of berberine on angiotensin IV-induced proliferation in cultured VSMCs at least partially through targeting the PPARα-NO signalling pathway.

  9. Antifungal, Antileishmanial, and Cytotoxicity Activities of Various Extracts of Berberis vulgaris (Berberidaceae) and Its Active Principle Berberine

    PubMed Central

    Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh

    2014-01-01

    In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6 μg/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6 μg/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects. PMID:24977052

  10. Antifungal, Antileishmanial, and Cytotoxicity Activities of Various Extracts of Berberis vulgaris (Berberidaceae) and Its Active Principle Berberine.

    PubMed

    Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh

    2014-01-01

    In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6  μ g/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6  μ g/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects.

  11. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reductionmore » in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.« less

  12. Melatonin inhibits AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells

    PubMed Central

    Zhang, Changlin; Qin, Lijun; Wang, Jingshu; Yu, Zhenlong; Shi, Dingbo; Xiao, Xiangsheng; Xie, Fangyun; Huang, Wenlin; Deng, Wuguo

    2016-01-01

    Melatonin, a molecule produced throughout the animal and plant kingdoms, and berberine, a plant derived agent, both exhibit antitumor and multiple biological and pharmacological effects, but they have never been combined altogether for the inhibition of human lung cancers. In this study, we investigated the role and underlying mechanisms of melatonin in the regulation of antitumor activity of berberine in lung cancer cells. Treatment with melatonin effectively increased the berberine-mediated inhibitions of cell proliferation, colony formation and cell migration, thereby enhancing the sensitivities of lung cancer cells to berberine. Melatonin also markedly increased apoptosis induced by berberine. Further mechanism study showed that melatonin promoted the cleavage of caspse-9 and PARP, enhanced the inhibition of Bcl2, and triggered the releasing of cytochrome C (Cyto C), thereby increasing the berberine-induced apoptosis. Melatonin also enhanced the berberine-mediated inhibition of telomerase reverses transcriptase (hTERT) by down-regulating the expression of AP-2β and its binding on hTERT promoter. Moreover, melatonin enhanced the berberine-mediated inhibition of cyclooxygenase 2 (COX-2) by inhibiting the nuclear translocation of NF-κB and its binding on COX-2 promoter. Melatonin also increased the berberine-mediated inhibition of the phosphorylated Akt and ERK. Collectively, our results demonstrated that melatonin enhanced the antitumor activity of berberine by activating caspase/Cyto C and inhibiting AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK signaling pathways. Our findings provide new insights in exploring the potential therapeutic strategies and novel targets for lung cancer treatment. PMID:26672764

  13. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease

    PubMed Central

    Simon, Matthew J.; Iliff, Jeffrey J.

    2015-01-01

    Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer’s disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the ‘glymphatic’ system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. PMID:26499397

  14. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2.

    PubMed

    Park, S H; Sung, J H; Chung, N

    2014-09-01

    Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and <0.1%, respectively. After berberine and gemcitabine treatments, the SP cell proportion of PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8%, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.

  15. Nitric oxide inhibitory daphnane diterpenoids as potential anti-neuroinflammatory agents for AD from the twigs of Trigonostemon thyrsoideus.

    PubMed

    Liu, Feng; Yang, Xueyuan; Ma, Jun; Yang, Yuling; Xie, Chunfeng; Tuerhong, Muhetaer; Jin, Da-Qing; Xu, Jing; Lee, Dongho; Ohizumi, Yasushi; Guo, Yuanqiang

    2017-12-01

    The extensive pathology studies revealed that Alzheimer's disease (AD) is closely related to neuroinflammation and anti-neuroinflammatory agents may be potentially useful for the treatment of AD. A continuous search for new nitric oxide (NO) inhibitory compounds as anti-neuroinflammatory agents for AD resulted in the isolation of four new (1-4) and eight known (5-12) daphnane diterpenoids from the twigs of Trigonostemon thyrsoideus. Their structures were elucidated on the basis of extensive nuclear magnetic resonance (NMR) spectroscopic data analysis and the time-dependent density functional theory (TDDFT) electronic circular dichroism (ECD) calculations. Compounds 1-4 represent new examples of daphnane diterpenoid orthoesters and 4 features a rare and complex macroring diterpenoid structure. The anti-neuroinflammatory effects were examined by inhibiting NO release in lipopolysaccharide (LPS)-induced murine microglial BV-2 cells. The possible mechanism of NO inhibition of some bioactive compounds was also investigated using molecular docking, which revealed the interactions of bioactive compounds with the inducible nitric oxide synthase (iNOS) protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Achyranthis bidentatae radix enhanced articular distribution and anti-inflammatory effect of berberine in Sanmiao Wan using an acute gouty arthritis rat model.

    PubMed

    Wu, Juan; Li, Jingya; Li, Wei; Sun, Bei; Xie, Jin; Cheng, Wenming; Zhang, Qunlin

    2018-07-15

    Sanmiao Wan (SMW) has been a basic prescription employed for the treatment for gout in the clinic since Yuan dynasty. Achyranthis bidentatae radix (ABR) is designed as a lower-guiding drug in SMW to augment the articular accumulation of active ingredients and improve the anti-inflammatory effect. Present study was undertaken to investigate the dose-response relationship of berberine in SMW between the articular concentration and anti-inflammatory effect in the knee joint under the lower-guiding of ABR. Rats were divided into control group, model group and SMW without or with low, medium and high doses of ABR groups. Rat model of acute gouty arthritis (AGA) was established by intra-articular injection of 0.2 mL monosodium urate crystal (20 mg/mL) inside knee joint cavity on day 2 during drug treatment slots. Knee joint swelling, synovial hyperplasia and inflammatory cell infiltration were investigated for anti-inflammatory study. The concentrations of berberine in rat plasma and tissues were determined by UPLC-MS/MS method. The effect of ABR on the expression levels of P-glycoprotein (P-gp) and MDR1 mRNA in the synovial tissues of knee joints in AGA rats was examined by Western blot and RT-qPCR assay, respectively. The distribution of berberine increased by 6.53%, 44.31% and 212.96% in the knee joint and 474.93%, 631.01% and 1063.3% in the ankle for SMW with low, medium and high doses of ABR groups, compared with SMW without ABR group. Similarly, the plasma level of berberine increased by 19.81%, 143.4% and 681.13%. On the contrary, the distribution of berberine evidently decreased 3.23, 10.61 and 46.21-fold in heart and 3.68, 6.74 and 24.78-fold in lung. SMW with different doses of ABR groups exhibited better efficiency than SMW without ABR group on ameliorating knee joint swelling, inhibiting synovial hyperplasia and alleviating inflammatory cell infiltration of AGA rats. The treatment with ABR could down-regulate the MDR1 mRNA and P-gp expressions of synovial

  17. Neuro-inflammatory response in rats chronically exposed to (137)Cesium.

    PubMed

    Lestaevel, Philippe; Grandcolas, Line; Paquet, François; Voisin, Philippe; Aigueperse, Jocelyne; Gourmelon, Patrick

    2008-03-01

    After the Chernobyl nuclear accident, behavioural disorders and central nervous system diseases were frequently observed in populations living in the areas contaminated by (137)Cs. Until now, these neurological disturbances were not elucidated, but the presence of a neuro-inflammatory response could be one explanation. Rats were exposed for 3 months to drinking water contaminated with (137)Cs at a dose of 400Bqkg(-1), which is similar to that ingested by the population living in contaminated areas in the former USSR countries. Pro-inflammatory and anti-inflammatory cytokine genes were assessed by real-time PCR in the frontal cortex and the hippocampus. At this level of exposure, gene expression of TNF-alpha and IL-6 increased in the hippocampus and gene expression of IL-10 increased in the frontal cortex. Concentration of TNF-alpha, measured by ELISA assays, was also increased in the hippocampus. The central NO-ergic pathway was also studied: iNOS gene expression and cNOS activity were significantly increased in the hippocampus. In conclusion, this study showed for the first time that sub-chronic exposure with post-accidental doses of (137)Cs leads to molecular modifications of pro- and anti-inflammatory cytokines and NO-ergic pathway in the brain. This neuro-inflammatory response could contribute to the electrophysiological and biochemical alterations observed after chronic exposure to (137)Cs.

  18. Biophysical Characterization of the Strong Stabilization of the RNA Triplex poly(U)•poly(A)*poly(U) by 9-O-(ω-amino) Alkyl Ether Berberine Analogs

    PubMed Central

    Hossain, Maidul; Haq, Lucy; Suresh Kumar, Gopinatha

    2012-01-01

    Background Binding of two 9-O-(ω-amino) alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U)•poly(A)*poly(U) was studied by various biophysical techniques. Methodology/Principal Findings Berberine analogs bind to the RNA triplex non-cooperatively. The affinity of binding was remarkably high by about 5 and 15 times, respectively, for BC1 and BC2 compared to berberine. The site size for the binding was around 4.3 for all. Based on ferrocyanide quenching, fluorescence polarization, quantum yield values and viscosity results a strong intercalative binding of BC1 and BC2 to the RNA triplex has been demonstrated. BC1 and BC2 stabilized the Hoogsteen base paired third strand by about 18.1 and 20.5°C compared to a 17.5°C stabilization by berberine. The binding was entropy driven compared to the enthalpy driven binding of berbeine, most likely due to additional contacts within the grooves of the triplex and disruption of the water structure by the alkyl side chain. Conclusions/Significance Remarkably higher binding affinity and stabilization effect of the RNA triplex by the amino alkyl berberine analogs was achieved compared to berberine. The length of the alkyl side chain influence in the triplex stabilization phenomena. PMID:22666416

  19. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease.

    PubMed

    Huang, Min; Jiang, Xin; Liang, Yubin; Liu, Qiong; Chen, Siyan; Guo, Yi

    2017-05-01

    This study investigates the neuroprotective properties of berberine (a natural isoquinoline alkaloid isolated from the Rhizoma coptidis) and finds that berberine could promote β-amyloid (Aβ) clearance and inhibit Aβ production in the triple-transgenic mouse model of Alzheimer's disease (3×Tg-AD). During the study, berberine was first administrated to treat 3×Tg-AD mice and primary neurons. Morris water maze assay, western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining and histological analysis, transmission electron microscopic analysis were then used to evaluate the effects of the berberine administration. The result showed that berberine significantly improved 3×Tg-AD mice's spatial learning capacity and memory retention, promoted autophagy activity identified by the enhancement of brain LC3-II, beclin-1, hVps34, and Cathepsin-D levels as well as the reduction of brain P62 and Bcl-2 levels in AD mice, facilitated reduction of Aβ and APP levels, reduced Aβ plaque deposition in the hippocampus of AD mice, and inhibited b-site APP cleavage enzyme 1 (BACE1) expression. Similar results were also found in 3×Tg-AD primary hippocampal neurons: berbernine treatment decreased the levels of extracellular and intracellular Aβ1-42, increased the protein levels of LC3-II, beclin-1, hVps34, and Cathepsin-D, and decreased the levels of P62, Bcl-2, APP and BACE1 levels. In summary, berberine shows neuroprotective effects on 3×Tg-AD mice and may be a promising multitarget drug in the preventionand protection against AD. Copyright © 2017. Published by Elsevier Inc.

  20. Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure-Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations.

    PubMed

    Fang, Jiansong; Pang, Xiaocong; Wu, Ping; Yan, Rong; Gao, Li; Li, Chao; Lian, Wenwen; Wang, Qi; Liu, Ai-lin; Du, Guan-hua

    2016-05-01

    A dataset of 67 berberine derivatives for the inhibition of butyrylcholinesterase (BuChE) was studied based on the combination of quantitative structure-activity relationships models, molecular docking, and molecular dynamics methods. First, a series of berberine derivatives were reported, and their inhibitory activities toward butyrylcholinesterase (BuChE) were evaluated. By 2D- quantitative structure-activity relationships studies, the best model built by partial least-square had a conventional correlation coefficient of the training set (R(2)) of 0.883, a cross-validation correlation coefficient (Qcv2) of 0.777, and a conventional correlation coefficient of the test set (Rpred2) of 0.775. The model was also confirmed by Y-randomization examination. In addition, the molecular docking and molecular dynamics simulation were performed to better elucidate the inhibitory mechanism of three typical berberine derivatives (berberine, C2, and C55) toward BuChE. The predicted binding free energy results were consistent with the experimental data and showed that the van der Waals energy term (ΔEvdw) difference played the most important role in differentiating the activity among the three inhibitors (berberine, C2, and C55). The developed quantitative structure-activity relationships models provide details on the fine relationship linking structure and activity and offer clues for structural modifications, and the molecular simulation helps to understand the inhibitory mechanism of the three typical inhibitors. In conclusion, the results of this study provide useful clues for new drug design and discovery of BuChE inhibitors from berberine derivatives. © 2015 John Wiley & Sons A/S.

  1. Berberine containing quadruple therapy for initial Helicobacter pylori eradication: An open-label randomized phase IV trial.

    PubMed

    Zhang, Di; Ke, Li; Ni, Zhen; Chen, Yu; Zhang, Lin-Hui; Zhu, Shao-Hua; Li, Chan-Juan; Shang, Lei; Liang, Jie; Shi, Yong-Quan

    2017-08-01

    Due to increasing antimicrobial resistance, a bismuth-based quadruple regimen has been recommended as an alternative first-line therapy for Helicobacter pylori (H pylori) eradication. However, different results are varied greatly and the availability of bismuth was limited in some countries. We assessed the efficacy and safety of 14-day berberine-containing quadruple therapy as an alternative regimen for H pylori eradication. In a randomized, open-label, non-inferiority, phase IV trial between November 25, 2014, and October 15, 2015, 612 treatment-naive patients were randomly assigned to 14-day berberine-containing (n = 308) or 14-day bismuth-containing (n = 304) quadruple therapy. The primary outcomes were eradication rates determined by the C urea breath test (C-UBT) 28 days after the end of treatment. The secondary outcomes were adverse events and compliance. The baseline demographic data including age, gender, body mass index (BMI), general condition and severity score were not statistically different in both groups. The eradication rates in bismuth and berberine groups were 86.4% (266/308) and 90.1% (274/304) in intention-to-treat (ITT) analysis (P = .149), and 89.6% (266/297) and 91.3% (273/299) in per-protocol (PP) analysis (P = .470), respectively. No statistically significant difference was found in the overall incidence of adverse events between both groups (35.7% vs 28.6%, P = .060). Both regimens achieved the recommended efficacy for H pylori eradication. The berberine-containing quadruple regimen was not inferior to bismuth-containing quadruple regimen and can be recommended as an alternative regimen for H pylori eradication in the local region.

  2. Melanocortin-1 receptor activation is neuroprotective in mouse models of neuroinflammatory disease.

    PubMed

    Mykicki, Nadine; Herrmann, Alexander M; Schwab, Nicholas; Deenen, René; Sparwasser, Tim; Limmer, Andreas; Wachsmuth, Lydia; Klotz, Luisa; Köhrer, Karl; Faber, Cornelius; Wiendl, Heinz; Luger, Thomas A; Meuth, Sven G; Loser, Karin

    2016-10-26

    In inflammation-associated progressive neuroinflammatory disorders, such as multiple sclerosis (MS), inflammatory infiltrates containing T helper 1 (T H 1) and T H 17 cells cause demyelination and neuronal degeneration. Regulatory T cells (T reg ) control the activation and infiltration of autoreactive T cells into the central nervous system (CNS). In MS and experimental autoimmune encephalomyelitis (EAE) in mice, T reg function is impaired. We show that a recently approved drug, Nle 4 -d-Phe 7 -α-melanocyte-stimulating hormone (NDP-MSH), induced functional T reg , resulting in amelioration of EAE progression in mice. NDP-MSH also prevented immune cell infiltration into the CNS by restoring the integrity of the blood-brain barrier. NDP-MSH exerted long-lasting neuroprotective effects in mice with EAE and prevented excitotoxic death and reestablished action potential firing in mouse and human neurons in vitro. Neuroprotection by NDP-MSH was mediated via signaling through the melanocortin-1 and orphan nuclear 4 receptors in mouse and human neurons. NDP-MSH may be of benefit in treating neuroinflammatory diseases such as relapsing-remitting MS and related disorders. Copyright © 2016, American Association for the Advancement of Science.

  3. Wheel running reduces ethanol seeking by increasing neuronal activation and reducing oligodendroglial/neuroinflammatory factors in the medial prefrontal cortex

    PubMed Central

    Somkuwar, Sucharita S.; Fannon, McKenzie J.; Ghofranian, Atoosa; Quigley, Jacqueline A.; Dutta, Rahul R.; Galinato, Melissa H.; Mandyam, Chitra D.

    2016-01-01

    The therapeutic effects of wheel running (WR) during abstinence on reinstatement of ethanol seeking behaviors in rats that self-administered ethanol only (ethanol drinking, ED) or ED with concurrent chronic intermittent ethanol vapor experience (CIE-ED) were investigated. Neuronal activation as well as oligodendroglial and neuroinflammatory factors were measured in the medial prefrontal cortex (mPFC) tissue to determine cellular correlates associated with enhanced ethanol seeking. CIE-ED rats demonstrated escalated and unregulated intake of ethanol and maintained higher drinking than ED rats during abstinence. CIE-ED rats were more resistant to extinction from ethanol self-administration, however, demonstrated similar ethanol seeking triggered by ethanol contextual cues compared to ED rats. Enhanced seeking was associated with reduced neuronal activation, and increased number of myelinating oligodendrocyte progenitors and PECAM-1 expression in the mPFC, indicating enhanced oligodendroglial and neuroinflammatory response during abstinence. WR during abstinence enhanced self-administration in ED rats, indicating a deprivation effect. WR reduced reinstatement of ethanol seeking in CIE-ED and ED rats, indicating protection against relapse. The reduced ethanol seeking was associated with enhanced neuronal activation, reduced number of myelinating oligodendrocyte progenitors, and reduced PECAM-1 expression. The current findings demonstrate a protective role of WR during abstinence in reducing ethanol seeking triggered by ethanol contextual cues and establish a role for oligodendroglia-neuroinflammatory response in ethanol seeking. Taken together, enhanced oligodendroglia-neuroinflammatory response during abstinence may contribute to brain trauma in chronic alcohol drinking subjects and be a risk factor for enhanced propensity for alcohol relapse. PMID:27542327

  4. Prior exposure to corticosterone markedly enhances and prolongs the neuroinflammatory response to systemic challenge with LPS

    PubMed Central

    Michalovicz, Lindsay T.; Miller, Julie V.; Castranova, Vincent; Miller, Diane B.

    2018-01-01

    Systemic exposure to the inflammagen and bacterial endotoxin lipopolysaccharide (LPS) has been widely used to evaluate inflammation and sickness behavior. While many inflammatory conditions occur in the periphery, it is well established that peripheral inflammation can affect the brain. Neuroinflammation, the elaboration of proinflammatory mediators in the CNS, commonly is associated with behavioral symptoms (e.g., lethargy, anhedonia, anorexia, depression, etc.) termed sickness behavior. Stressors have been shown to interact with and alter neuroinflammatory responses and associated behaviors. Here, we examined the effects of the stress hormone, corticosterone (CORT), as a stressor mimic, on neuroinflammation induced with a single injection (2mg/kg, s.c.) or inhalation exposure (7.5 μg/m3) of LPS or polyinosinic:polycytidylic acid (PIC; 12mg/kg, i.p.) in adult male C57BL/6J mice. CORT was given in the drinking water (200 mg/L) for 1 week or every other week for 90 days followed by LPS. Proinflammatory cytokine expression (TNFα, IL-6, CCL2, IL-1β, LIF, and OSM) was measured by qPCR. The activation of the neuroinflammation downstream signaling activator, STAT3, was assessed by immunoblot of pSTAT3Tyr705. The presence of astrogliosis was assessed by immunoassay of GFAP. Acute exposure to LPS caused brain-wide neuroinflammation without producing astrogliosis; exposure to CORT for 1 week caused marked exacerbation of the LPS-induced neuroinflammation. This neuroinflammatory “priming” by CORT was so pronounced that sub-neuroinflammatory exposures by inhalation instigated neuroinflammation when paired with prior CORT exposure. This effect also was extended to another common inflammagen, PIC (a viral mimic). Furthermore, a single week of CORT exposure maintained the potential for priming for 30 days, while intermittent exposure to CORT for up to 90 days synergistically primed the LPS-induced neuroinflammatory response. These findings highlight the possibility for an

  5. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    PubMed

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Berberine, a natural product, combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells.

    PubMed

    Youn, Myung-Ja; So, Hong-Seob; Cho, Hea-Joong; Kim, Hyung-Jin; Kim, Yunha; Lee, Jeong-Han; Sohn, Jung Sook; Kim, Yong Kyu; Chung, Sang-Young; Park, Raekil

    2008-05-01

    Berberine, a main component of Coptidis Rhizoma, has been extensively studied and is known to exhibit multiple pharmacologic activities. In this study, we investigated whether the combination of berberine and cisplatin exhibited significant cytotoxicity in HeLa cells. Apoptosis was evaluated based on DNA fragmentation and cytofluorometrically with the annexin-V/propidium iodide labeling method. Combined treatment with berberine and cisplatin acted in concert to induce loss of mitochondrial membrane potential (Delta Psi m), release of cytochrome-c from mitochondria, and decreased expression of antiapoptotic Bcl-2, Bcl-x/L, resulting in activation of caspases and apoptosis. Further study showed that cell death induced by the combined treatment was associated with increased reactive oxygen species generation and lipid peroxidation. Moreover, we discovered that the combined treatment-induced apoptosis was mediated by the activation of the caspase cascade. These results indicated that the potential of cytotoxicity mediated through the mitochondria-caspase pathway is primarily involved in the combined treatment-induced apoptosis.

  7. Metabolomics Study of Type 2 Diabetes Mellitus and the AntiDiabetic Effect of Berberine in Zucker Diabetic Fatty Rats Using Uplc-ESI-Hdms.

    PubMed

    Dong, Yu; Chen, Yi-Tao; Yang, Yuan-Xiao; Zhou, Xiao-Jie; Dai, Shi-Jie; Tong, Jun-Feng; Shou, Dan; Li, Changyu

    2016-05-01

    The present study aimed to evaluate the pathogenesis of type 2 diabetes mellitus (T2DM) and the anti-diabetic effect of berberine in Zucker diabetic fatty (ZDF) rats. A urinary metabolomics analysis was performed with ultra-performance liquid chromatography/electrospray ionization synapt high-definition mass spectrometry. Pattern recognition approaches were integrated to discover differentiating metabolites. We identified 29 ions (13 in negative mode and 16 in positive mode) as 'differentiating metabolites' with this metabolomic approach. A functional pathway analysis revealed that the alterations were mainly associated with glyoxylate and dicarboxylate metabolism, pentose and glucuronate interconversions and sphingolipid metabolism. These results indicated that the dysfunctions of glycometabolism and lipometabolism are involved in the pathological process of T2DM. Berberine could decrease the serum levels of glycosylated hemoglobin, total cholesterol and triglyceride and increase the secretion of insulin. The urinary metabolomics analysis showed that berberine could reduce the concentrations of citric acid, tetrahydrocortisol, ribothymidine and sphinganine to a near-normal state. These results suggested that the anti-diabetic effect of berberine occurred mainly via its regulation of glycometabolism and lipometabolism and activation of adenosine 5'-monophosphate-activated protein kinase. Our work not only provides a better understanding of the anti-diabetic effect of berberine in ZDF rats but also supplies a useful database for further study in humans and for investigating the pharmacological actions of drugs. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Berberine Alleviates Oxidative Stress in Islets of Diabetic Mice by Inhibiting miR-106b Expression and Up-Regulating SIRT1.

    PubMed

    Chen, Dong-Liang; Yang, Ke-Ya

    2017-12-01

    Mounting studies have indicated the role of berberine, SIRT1, and oxidative stress in diabetes, respectively. However, few studies have demonstrated their correlation and regulation function in diabetes. Therefore, the protective effect of berberine in diabetic and the underlying core mechanism were investigated in the current study. Diabetic mice model in vivo were established. Mouse pancreatic beta-cell line NIT-1 cells were treated with 30 mM high glucose to induce diabetic condition in vitro. Serum biochemical parameters (glucose, total cholesterol, and triglycerides) were detected. Oxidative stress indicators (MDA, SOD1), along with miR-106b and SIRT1 expression in islets and cells were also assessed. Direct targeting relationship between miR-106b and SIRT1 was discussed by dual luciferase reporter gene assay. Diabetic model in vivo and in vitro were both established successfully. The expression of serum biochemical parameters was increased, and oxidative stress parameters, and miR-106b, SIRT1 were abnormally expressed in diabetic mice and NIT-1 cells. Meanwhile, berberine could alleviate oxidative stress injury in diabetic progression. Through dual luciferase reporter gene assay, we found that SIRT1 was a target gene of miR-106b. In addition, miR-106b over-expression could reverse the protection of berberine in NIT-1 cells against from oxidative stress induced by high glucose. Berberine could attenuate oxidative stress of diabetic mice at least partly through miR-106b/SIRT1 pathway and affecting the function of islets, which might be beneficial in reducing the cardiovascular risk factors in diabetes. J. Cell. Biochem. 118: 4349-4357, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure.

    PubMed

    Tyler, Christina R; Noor, Shahani; Young, Tamara L; Rivero, Valeria; Sanchez, Bethany; Lucas, Selita; Caldwell, Kevin K; Milligan, Erin D; Campen, Matthew J

    2018-05-01

    The role of environmental stressors, particularly exposure to air pollution, in the development of neurodegenerative disease remains underappreciated. We examined the neurological effects of acute ozone (O3) exposure in aged mice, where increased blood-brain barrier (BBB) permeability may confer vulnerability to neuroinflammatory outcomes. C57BL/6 male mice, aged 8-10 weeks or 12-18 months were exposed to either filtered air or 1.0 ppm O3 for 4 h; animals received a single IP injection of sodium fluorescein (FSCN) 20 h postexposure. One-hour post-FSCN injection, animals were transcardially perfused for immunohistochemical analysis of BBB permeability. β-amyloid protein expression was assessed via ELISA. Flow cytometric characterization of infiltrating immune cells, including neutrophils, macrophages, and microglia populations was performed 20 h post-O3 exposure. Flow cytometry analysis of brains revealed increased microglia "activation" and presentation of CD11b, F4/80, and MHCII in aged animals relative to younger ones; these age-induced differences were potentiated by acute O3 exposure. Cortical and limbic regions in aged brains had increased reactive microgliosis and β-amyloid protein expression after O3 insult. The aged cerebellum was particularly vulnerable to acute O3 exposure with increased populations of infiltrating neutrophils, peripheral macrophages/monocytes, and Ly6C+ inflammatory monocytes after insult, which were not significantly increased in the young cerebellum. O3 exposure increased the penetration of FSCN beyond the BBB, the infiltration of peripheral immune cells, and reactive gliosis of microglia. Thus, the aged BBB is vulnerable to insult and becomes highly penetrable in response to O3 exposure, leading to greater neuroinflammatory outcomes.

  10. Versatile methods for synthesizing organic acid salts of quaternary berberine-type alkaloids as anti-ulcerative colitis agents.

    PubMed

    Zhang, Zhi-Hui; Li, Jing; Zhang, Hai-Jing; Deng, An-Jun; Wu, Lian-Qiu; Li, Zhi-Hong; Song, Hong-Rui; Wang, Wen-Jie; Qin, Hai-Lin

    2016-06-01

    Two versatile methods to synthesize kinds of organic acid salts of quaternary berberine-type alkaloids were investigated in order to determine which is more efficient to improve the liposolubility of the target compounds and to explore the efficacy of the target compounds as anti-ulcerative colitis (UC) agents. Overall evaluation according to the reaction results and yields of the final products indicated that the synthetic method using tertiary (±)-8-acylmethyldihydroberberine-type alkaloids as key intermediates is superior to that of using tertiary dihydroberberine-type alkaloids as intermediates. Ten target compounds were synthesized using quaternary berberine chloride and quaternary coptisine chloride as starting materials, respectively, and the anti-UC activity of some target compounds was evaluated in an in vitro x-box-binding protein 1 (XBP1) transcriptional activity assay using dual luciferase reporter detection. At 10 μM, the tested compounds were found to activate the transcription of XBP1 target at almost the same level as that of quaternary coptisine chloride. The synthesized target compounds were also found to share higher liposolubility than the inorganic acid salts of quaternary berberine-type alkaloid.

  11. Comparative study of single/combination use of Huang-Lian-Jie-Du decoction and berberine on their protection on sepsis induced acute liver injury by NMR metabolic profiling.

    PubMed

    Lv, Yan; Wang, Junsong; Xu, Dingqiao; Liao, Shanting; Li, Pei; Zhang, Qian; Yang, Minghua; Kong, Lingyi

    2017-10-25

    Sepsis is a serious clinical disease with a high mortality rate all around the world. Liver organ dysfunction is an important sign for the severity and outcome of sepsis in patients. In this study, 1 H NMR-based metabolomics approach and biochemical assays were applied to investigate the metabolic profiling for cecal ligation and puncture (CLP) induced acute liver injury, the therapeutical effect of single/combination use of Huang-Lian-Jie-Du decoction (HLJDD) and berberine, and the interaction of them. Metabolomics analysis revealed significant perturbations in livers of septic rats, which could be ameliorated by HLJDD, berberine and their combination treatment. Berberine could better rectified glycolysis and nucleic acid metabolism in the liver. HLJDD had exceptional better anti-inflammatory, antibacterial and antioxidative effects than berberine. The interaction of berberine and HLJDD could further strengthen the anti-inflammation and anti-oxidation, but with poor effect on amino acids metabolism. These findings highlighted the feasibility of the integrated NMR based metabolomics approach to understand the pathogenesis of diseases, the action mechanisms of therapy and the herb-drug interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease.

    PubMed

    Simon, Matthew J; Iliff, Jeffrey J

    2016-03-01

    Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of berberine on a rat model of chronic stress and depression via gastrointestinal tract pathology and gastrointestinal flora profile assays.

    PubMed

    Zhu, Xiaohui; Sun, Yangdong; Zhang, Chenggang; Liu, Haifeng

    2017-05-01

    Chronic stress and depression are challenging conditions to treat, owing to their complexity and lack of clinically available and effective therapeutic agents. The aim of the present study was to investigate the mechanism by which berberine acts, by examining alterations to gastrointestinal tract histopathology and flora profile in a rat model, following the induction of stress. Research associating gastrointestinal flora and depression has increased, thus, the present study hypothesized that stress induces depression and changes in the gastrointestinal system. The chronic mild stress rat model was previously established based on a set of 10 chronic unpredictable stress methods. In the present study, the measurements of body weight, behavior, gastrointestinal tract histopathology and gastrointestinal flora profile were collected in order to elucidate understanding of chronic stress and depression in this region. In the present study, induced stress and the resulting depression was demonstrated to significantly decrease the body weight and sucrose preference of rats, as well as significantly increasing traverse time, vertical movement time, grooming time and motionless time in an open‑field test. Following modeling and subsequent treatment with low or high doses of berberine, the measurements were significantly different when compared with unstressed rats. Berberine appears to reverse the physical damage brought about by stress within the gastric mucosa and intestinal microvilli of the stomach, ileum, cecum and colon. Using enterobacterial repetitive intergenic consensus sequence‑based polymerase chain reaction analysis, several distinctive bands disappeared following modeling; however, novel distinctive bands appeared in response to the graded berberine treatment. In conclusion, the present study identified that high concentrations of berberine markedly protects rats from various symptoms of chronic stress and depression, with the potential of facilitating

  14. Acute ethanol administration results in a protective cytokine and neuroinflammatory profile in traumatic brain injury.

    PubMed

    Chandrasekar, Akila; Heuvel, Florian Olde; Palmer, Annette; Linkus, Birgit; Ludolph, Albert C; Boeckers, Tobias M; Relja, Borna; Huber-Lang, Markus; Roselli, Francesco

    2017-10-01

    Ethanol intoxication is a common comorbidity in traumatic brain injury. To date, the effect of ethanol on TBI pathogenic cascades and resulting outcomes remains debated. A closed blunt weight-drop murine TBI model has been implemented to investigate behavioral (by sensorimotor and neurological tests), and neuro-immunological (by tissue cytokine arrays and immuno-histology) effects of ethanol intoxication on TBI. The effect of the occurrence of traumatic intracerebral hemorrhage was also studied. The results indicate that ethanol pretreatment results in a faster and better recovery after TBI with reduced infiltration of leukocytes and reduced microglia activation. These outcomes correspond to reduced parenchymal levels of GM-CSF, IL-6 and IL-3 and to the transient upregulation of IL-13 and VEGF, indicating an early shift in the cytokine profile towards reduced inflammation. A significant difference in the cytokine profile was still observed 24h post injury in the ethanol pretreated mice, as shown by the delayed peak in IL-6 and by the suppression of GM-CSF, IFN-γ, and IL-3. Seven days post-injury, ethanol-pretreated mice displayed a significant decrease both in CD45+ cells infiltration and in microglial activation. On the other hand, in the case of traumatic intracerebral hemorrhage, the cytokine profile was dominated by KC, CCL5, M-CSF and several interleukins and ethanol pretreatment did not produce any modification. We can thus conclude that ethanol intoxication suppresses the acute neuro-inflammatory response to TBI, an effect which is correlated with a faster and complete neurological recovery, whereas, the presence of traumatic intracerebral hemorrhage overrides the effects of ethanol. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synergistic Effect of TPD7 and Berberine against Leukemia Jurkat Cell Growth through Regulating Ephrin-B2 Signaling.

    PubMed

    Ma, Weina; Zhu, Man; Yang, Liu; Yang, Tianfeng; Zhang, Yanmin

    2017-09-01

    TPD7, a novel biphenyl urea taspine derivative, and berberine have presented inhibition on VEGFR2 that can be regulated by ephrin-B2 reverse signaling through interactions with the PDZ domain. The purpose of this study is to investigate the inhibitory effect of the combination of TPD7 and berberine (TAB) on T-cell acute lymphoblastic leukemia cell growth. TPD7 and berberine together synergistically inhibited the proliferation of Jurkat cells. Also, the combination of TAB induced G 1 -phase cell-cycle arrest by downregulating the level of cyclin D1, cyclin E, and CDC2. Furthermore, the combination of TAB significantly enhanced apoptosis in Jurkat cells, and the apoptosis most likely resulted from the modulation of the level of Bcl-2 family members. Most importantly, the concomitant treatment simultaneously regulated the ephrin-B2 and VEGFR2 signaling, as well as modulated the MEK/ERK and PTEN/PI3K/AKT/mTOR signaling. Therefore, the combination treatment of TAB may be a promising therapeutic method in treating T-cell acute lymphoblastic leukemia. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure

    DOE PAGES

    Tyler, Christina R.; Noor, Shahani; Young, Tamara; ...

    2018-01-27

    The role of environmental stressors, particularly exposure to air pollution, in the development of neurodegenerative disease remains underappreciated. We examined the neurological effects of acute ozone (O 3) exposure in aged mice, where increased blood brain barrier (BBB) permeability may confer vulnerability to neuroinflammatory outcomes. C 57BL/6 male mice, aged 8-10 weeks or 12–18 months were exposed to either filtered air (FA) or 1.0 ppm O 3 for 4 hours; animals received a single IP injection of sodium fluorescein (FSCN) 20 hours post-exposure. One-hour post-FSCN injection, animals were transcardially perfused for immunohistochemical analysis of BBB permeability. β-amyloid protein expression wasmore » assessed via ELISA. Flow cytometric characterization of infiltrating immune cells, including neutrophils, macrophages, and microglia populations was performed 20 hours post-O 3 exposure. Flow cytometry analysis of brains revealed increased microglia “activation” and presentation of CD11b, F4/80 and MHCII in aged animals relative to younger ones; these age-induced differences were potentiated by acute O 3 exposure. Cortical and limbic regions in aged brains had increased reactive microgliosis and β-amyloid protein expression after O 3 insult. The aged cerebellum was particularly vulnerable to acute O 3 exposure with increased populations of infiltrating neutrophils, peripheral macrophages/monocytes, and Ly6C + inflammatory monocytes after insult, which were not significantly increased in the young cerebellum. O 3 exposure increased the penetration of FSCN beyond the BBB, the infiltration of peripheral immune cells, and reactive gliosis of microglia. Furthermore, the aged BBB is vulnerable to insult and becomes highly penetrable in response to O 3 exposure, leading to greater neuroinflammatory outcomes.« less

  17. Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, Christina R.; Noor, Shahani; Young, Tamara

    The role of environmental stressors, particularly exposure to air pollution, in the development of neurodegenerative disease remains underappreciated. We examined the neurological effects of acute ozone (O 3) exposure in aged mice, where increased blood brain barrier (BBB) permeability may confer vulnerability to neuroinflammatory outcomes. C 57BL/6 male mice, aged 8-10 weeks or 12–18 months were exposed to either filtered air (FA) or 1.0 ppm O 3 for 4 hours; animals received a single IP injection of sodium fluorescein (FSCN) 20 hours post-exposure. One-hour post-FSCN injection, animals were transcardially perfused for immunohistochemical analysis of BBB permeability. β-amyloid protein expression wasmore » assessed via ELISA. Flow cytometric characterization of infiltrating immune cells, including neutrophils, macrophages, and microglia populations was performed 20 hours post-O 3 exposure. Flow cytometry analysis of brains revealed increased microglia “activation” and presentation of CD11b, F4/80 and MHCII in aged animals relative to younger ones; these age-induced differences were potentiated by acute O 3 exposure. Cortical and limbic regions in aged brains had increased reactive microgliosis and β-amyloid protein expression after O 3 insult. The aged cerebellum was particularly vulnerable to acute O 3 exposure with increased populations of infiltrating neutrophils, peripheral macrophages/monocytes, and Ly6C + inflammatory monocytes after insult, which were not significantly increased in the young cerebellum. O 3 exposure increased the penetration of FSCN beyond the BBB, the infiltration of peripheral immune cells, and reactive gliosis of microglia. Furthermore, the aged BBB is vulnerable to insult and becomes highly penetrable in response to O 3 exposure, leading to greater neuroinflammatory outcomes.« less

  18. Renoprotective effects of berberine and its potential effect on the expression of β-arrestins and intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in streptozocin-diabetic nephropathy rats.

    PubMed

    Tang, Li-Qin; Ni, Wei-Jian; Cai, Ming; Ding, Hai-Hua; Liu, Sheng; Zhang, Shan-Tang

    2016-09-01

    Berberine has been shown to exert protective effects against diabetic nephropathy (DN), but the mechanisms involved have not been fully characterized. The aim of the present study was to explore the effects of berberine on the expression of β-arrestins, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in DN rat kidneys and investigate the underlying molecular mechanisms. To create the DN model, rats fed a high-fat and high-glucose diet were injected with a single dose of streptozotocin (35 mg/kg, i.p.). Then, DN rats were either treated or not with berberine (50, 100, 200 mg/kg per day, i.g., 8 weeks). Periodic acid-Schiff staining was used to evaluate renal histopathological changes. Renal tissue levels of β-arrestin 1 and β-arrestin 2 were determined by Western blot analysis, whereas immunohistochemistry was used to determine renal ICAM-1 and VCAM-1 levels. Berberine (100, 200 mg/kg) ameliorated the histopathological changes in the diabetic kidney. Western blot analysis revealed significant increases in ICAM-1 and VCAM-1 levels in the kidneys of DN rats, which were reversed by treatment with 100 and 200 mg/kg berberine. In addition, berberine treatment (50, 100, 200 mg/kg) increased diabetic-induced decreases in β-arrestin 1 and β-arrestin 2. Berberine exhibited renoprotective effects in DN rats. The underlying molecular mechanisms may be associated with changes in the levels and regulation of β-arrestin expression, as well as ICAM-1 and VCAM-1 levels in the rat kidney. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  19. The design and synthesis of a novel compound of berberine and baicalein that inhibits the efficacy of lipid accumulation in 3T3-L1 adipocytes.

    PubMed

    Hao, Mengjiao; Li, Yan; Liu, Lixian; Yuan, Xiao; Gao, Ying; Guan, Zhuoji; Li, Weimin

    2017-10-15

    The combination of berberine and baicalein may have a better therapeutic effect against disease. To explore the combined effect of baicalein and berberine in the treatment of obesity, we designed and synthesized a hybrid compound, and its biological activities were evaluated in 3T3-L1 adipocytes. The structures of the berberine-baicalein (BBS) compounds were confirmed by 1 H NMR, 13 C NMR, ultraviolet spectroscopy and high resolution mass spectrometry (HRMS). The present study showed that the IC 50 values of the inhibitory effects of baicalein, berberine and BBS against 3T3-L1 cells were 29.81±0.90, 21.84±1.67 and 9.42±0.60µM, respectively. The expression of mRNAs related to lipolysis and lipogenesis were examined by quantitative real-time PCR. The results showed that BBS could up-regulate the expression of the Atgl gene and down-regulate the mRNA expression of Srebp-1c, Fasn, Scd1, and Acc in 3T3-L1 adipocytes. These results indicate that BBS may have a stronger effect than baicalein and berberine on the viability of 3T3-L1 preadipocytes. In addition, BBS may have therapeutic effects and pharmacological activities against obesity. This "medicine couple" may be beneficial for studies of traditional Chinese medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes.

    PubMed

    Jiang, Jing-Fei; Lei, Fan; Yuan, Zhi-Yi; Wang, Yu-Gang; Wang, Xin-Pei; Yan, Xiao-Jin; Yu, Xuan; Xing, Dong-Ming; DU, Li-Jun

    2017-03-01

    Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  1. In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures.

    PubMed

    Wei, Guo-Xian; Xu, Xin; Wu, Christine D

    2011-06-01

    To investigate the antimycotic activity of the plant alkaloid berberine (BBR), alone and in combination with antifungal azoles, against planktonic and biofilm Candida cultures. The minimum inhibitory concentrations (MICs) of BBR, miconazole (MCZ), and fluconazole (FLC) towards Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida parapsilosis, and Candida tropicalis were determined by a microdilution method. For C. albicans, the synergistic effects of BBR combined with MCZ or FLC were examined in a paper disc agar diffusion assay and checkerboard microdilution assay. The effect of the BBR/MCZ combination was further investigated in a C. albicans biofilm formation model with a dual-chamber flow cell. The effect on metabolic activity of biofilm cells was established using 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)/menadione. Berberine inhibited the growth of various Candida species (MICs 0.98-31.25mg/L) in the following order of susceptibility: C. krusei > C. kefyr > C. glabrata > C. tropicalis > C. parapsilosis and C. albicans. Synergism between BBR and MCZ or FLC was observed in the disc diffusion assay as well as in suspension showing an FIC index <0.5 (∑FIC=0.19). Whilst neither BBR (16 mg/L) nor MCZ (0.8 mg/L) alone significantly inhibited biofilm formation of C. albicans, their combination reduced biofilm formation by >91% after 24 h, as established from the reduction in surface area coverage (P<0.01). The BBR/MCZ combination also exhibited synergy against the metabolic activity of pre-formed C. albicans biofilms in polystyrene microtiter plates (∑FIC=0.25). Berberine exhibits synergistic effects with commonly used antimycotic drugs against C. albicans, either in planktonic or in biofilm growth phases. Published by Elsevier Ltd.

  2. Label-free fluorescent aptasensor for potassium ion using structure-switching aptamers and berberine

    NASA Astrophysics Data System (ADS)

    Guo, Yanqing; Chen, Yanxia; Wei, Yanli; Li, Huanhuan; Dong, Chuan

    2015-02-01

    A simple, rapid and label-free fluorescent aptasensor was fabricated for the detection of potassium ion (K+ ion) in aqueous solution using K+ ion-stabilized single stranded DNA (ssDNA) with G-rich sequence as the recognition element and a fluorescent dye, berberine, as the fluorescence probe. In the presence of K+ ion, the G-rich ssDNA is promoted to form the aptamer-target complex with a G-quadruplex conformation, and berberine binding to the G-quadruplex structure results in the enhancement of its fluorescence. The fluorescence intensity of the sensing system displayed a calibration response for K+ ion in the range of 0-1600 μM with a detection limit of 31 nM (S/N = 3) and a relative standard deviation (RSD) of 0.45%. This label-free fluorescence aptasensor is conveniently and effectively applicable for analysis of K+ ion in blood serum samples with the recovery range of 81.7-105.3%. The assay for detection of potassium ion is easy, economical, robust, and stable in rough conditions.

  3. Regulation of Akt/FoxO3a/Skp2 Axis Is Critically Involved in Berberine-Induced Cell Cycle Arrest in Hepatocellular Carcinoma Cells

    PubMed Central

    Li, Fanni; Dong, Xiwen; Lin, Peng; Jiang, Jianli

    2018-01-01

    The maintenance of ordinal cell cycle phases is a critical biological process in cancer genesis, which is a crucial target for anti-cancer drugs. As an important natural isoquinoline alkaloid from Chinese herbal medicine, Berberine (BBR) has been reported to possess anti-cancer potentiality to induce cell cycle arrest in hepatocellular carcinoma cells (HCC). However, the underlying mechanism remains to be elucidated. In our present study, G0/G1 phase cell cycle arrest was observed in berberine-treated Huh-7 and HepG2 cells. Mechanically, we observed that BBR could deactivate the Akt pathway, which consequently suppressed the S-phase kinase-associated protein 2 (Skp2) expression and enhanced the expression and translocation of Forkhead box O3a (FoxO3a) into nucleus. The translocated FoxO3a on one hand could directly promote the transcription of cyclin-dependent kinase inhibitors (CDKIs) p21Cip1 and p27Kip1, on the other hand, it could repress Skp2 expression, both of which lead to up-regulation of p21Cip1 and p27Kip1, causing G0/G1 phase cell cycle arrest in HCC. In conclusion, BBR promotes the expression of CDKIs p21Cip1 and p27Kip1 via regulating the Akt/FoxO3a/Skp2 axis and further induces HCC G0/G1 phase cell cycle arrest. This research uncovered a new mechanism of an anti-cancer effect of BBR. PMID:29360760

  4. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    PubMed

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  5. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway.

    PubMed

    Zhu, Liping; Han, Jiakai; Yuan, Rongrong; Xue, Lei; Pang, Wuyan

    2018-03-31

    Diabetic nephropathy (DN) is the leading cause of end-stage renal failure, contributing to severe morbidity and mortality in diabetic patients. Berberine (BBR) has been well characterized to exert renoprotective effects in DN progression. However, the action mechanism of BBR in DN remains to be fully understood. The DN rat model was generated by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) while 30 mM high glucose (HG)-treated podocytes were used as an in vitro DN model. The fasting blood glucose level and ratio of kidney weight to body weight were measured after BBR treatment (50, 100, or 200 mg/kg) in STZ-induced DN rats. The renal injury parameters including 24-h urinary protein, blood urea nitrogen and serum creatinine were assessed. qRT-PCR was performed to detect the transcript amounts of inflammatory factors. The concentrations of inflammatory factors were evaluated by ELISA kits. Western blot analysis was conducted to measure the amounts of TLR4/NF-κB-related proteins. The apoptotic rate of podocytes was analyzed by flow cytometry using Annexin V/propidium iodide. Berberine reduced renal injury in STZ-induced DN rat model, as evidenced by the decrease in fasting blood glucose, ratio of kidney weight to body weight, 24-h urinary protein, serum creatinine, and blood urine nitrogen. BBR attenuated the systemic and renal cortex inflammatory response and inhibited TLR4/NF-κB pathway in STZ-induced DN rats and HG-induced podocytes. Also, HG-induced apoptosis of podocytes was lowered by BBR administration. Furthermore, blockade of TLR4/NF-κB pathway by resatorvid (TAK-242) or pyrrolidine dithiocarbamate aggravated the inhibitory effect of BBR on HG-induced inflammatory response and apoptosis in podocytes. Berberine ameliorated DN through relieving STZ-induced renal injury, inflammatory response, and podocyte HG-induced apoptosis via inactivating TLR4/NF-κB pathway.

  6. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling.

    PubMed

    Zhou, Yan; Liu, Shi-Qing; Yu, Ling; He, Bin; Wu, Shi-Hao; Zhao, Qi; Xia, Shao-Qiang; Mei, Hong-Jun

    2015-09-01

    Chondrocyte apoptosis is an important mechanism involved in osteoarthritis (OA). Berberine (BBR), a plant alkaloid derived from Chinese medicine, is characterized by multiple pharmacological effects, such as anti-inflammatory and anti-apoptotic activities. This study aimed to evaluate the chondroprotective effect and underlying mechanisms of BBR on sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis and surgically-induced rat OA model. The in vitro results revealed that BBR suppressed SNP-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, down-regulated expressions of inducible nitric oxide synthase (iNOS) and caspase-3, and up-regulated Bcl-2/Bax ratio and Type II collagen (Col II) at protein levels, which were accompanied by increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK). Furthermore, the anti-apoptotic effect of BBR was blocked by AMPK inhibitor Compound C (CC) and adenosine-9-β-D-arabino-furanoside (Ara A), and enhanced by p38 MAPK inhibitor SB203580. In vivo experiment suggested that BBR ameliorated cartilage degeneration and exhibited an anti-apoptotic effect on articular cartilage in a rat OA model, as demonstrated by histological analyses, TUNEL assay and immunohistochemical analyses of caspase-3, Bcl-2 and Bax expressions. These findings suggest that BBR suppresses SNP-stimulated chondrocyte apoptosis and ameliorates cartilage degeneration via activating AMPK signaling and suppressing p38 MAPK activity.

  7. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium).

    PubMed

    Ho, Su-Chen; Kuo, Chun-Ting

    2014-09-01

    Inhibiting microglial activation-mediated neuroinflammation has become a convincing target for the development of functional foods to treat neurodegenerative diseases. Tangerine peel (Citri reticulatae pericarpium) has potent anti-inflammatory capacity; however, its anti-neuroinflammatory capacity and the corresponding active compounds remain unclear. To this end, the composition of a tangerine peel ethanolic extract was analysed by LC-MS, and the anti-neuroinflammatory ability was evaluated using a lipopolysaccharide (LPS)-activated BV2 microglia culture system. Hesperidin is the most predominant flavonoid in tangerine peel, followed by tangeretin and nobiletin. Among the eight tested flavanone glycosides and polymethoxy flavones, only nobiletin displayed a capacity of>50% to inhibit LPS-induced proinflammatory NO, TNF-α, IL-1β and IL-6 secretion at a concentration of 100 μM. At 2 mg/ml, tangerine peel extract attenuated LPS-induced NO, TNF-α, IL-1β and IL-6 secretion by 90.6%, 80.2%, 66.7%, and 86.8%, respectively. Hesperidin, nobiletin, and tangeretin individually (at concentrations of 135, 40, and 60 μM, respectively) in 2 mg/ml tangerine peel extract were only mildly inhibitory, whereas in combination, they significantly inhibited LPS-induced proinflammatory cytokine expression at levels equal to that of 2 mg/ml tangerine peel extract. Overall, tangerine peel possesses potent anti-neuroinflammatory capacity, which is attributed to the collective effect of hesperidin, nobiletin, and tangeretin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Testing of Experimental Compounds for Efficacy against Leishmania

    DTIC Science & Technology

    1990-02-28

    donovani WR06026’ RA 1 • 06 13 chemotherapy- berberine pyrimidine nucleotides, 06 20 golden hamster: Sinefungin, 19. ABSTRACT (Continue on reverse if...equivalent when administered either orally or via the intramuscular route. In other special studies the quaternary alkaloid, berberine , and three of its...hamsters and berberine and one derivative (8-cyanodihydroberberine) produced 56% and 46% suppression of cutaneous lesion areas respectively in hamsters

  9. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Shatrunajay; Department of Medical Elementology and Toxicology, Jamia Hamdard; Sharma, Ankita

    Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD{sup +} dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (P < 0.05) at transcriptional level as well as at translational level. Combination of nicotinamide (sirtuin inhibitor) with berberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increasedmore » the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, P<0.001), which are known as direct activator of pro-apoptotic Bcl-2 family protein Bax that culminated into mitochondria mediated activation of apoptotic cascade. Bim/PUMA knock-down showed no changes in sirtuins' expression while cytotoxicity induced by berberine and nicotinamide was curtailed up to 28.3% (P < 0.001) and it restored pro/anti apoptotic protein ratio in HepG2 cells. Sirtuins inhibition was accompanied by decline in NAD{sup +}/NADH ratio, ATP generation, enhanced ROS production and decreased mitochondrial membrane potential. TEM analysis confirmed mitochondrial deterioration and cell damage. SRT-1720 (1–10 μM), a SIRT-1 activator, when pre-treated with berberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (P < 0.05). Thus, our findings suggest that berberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria

  10. Berberine improves airway inflammation and inhibits NF-κB signaling pathway in an ovalbumin-induced rat model of asthma.

    PubMed

    Li, Zhenghao; Zheng, Jie; Zhang, Ning; Li, Chengde

    2016-12-01

    Berberine has been reported for its various activities including anti-inflammatory effects and has been used in treating many diseases. However, its effects on airway inflammation in asthma have not been investigated. This study mainly aimed to detect its effects on the airway inflammation and the nuclear factor-κB (NF-κB) signaling pathway activity in a rat model of asthma. Asthma was induced by ovalbumin (OVA) sensitization and challenge. The asthmatic rats were respectively treated with vehicle PBS or berberine (100 mg/kg or 200 mg/kg) for 28 days. The control rats were treated with PBS. Inflammatory cells in bronchoalveolar lavage fluid (BALF) were counted and the lung inflammation was scored. Levels of NF-κB p65 (mRNA and protein), phosphorylated NF-κB p65 (p-NF-κB p65), inhibitory κB alpha (IκBα) (mRNA and protein) and phosphorylated IκBα (p-IκBα), as well as NF-κB p65 DNA-binding activity, were measured to assess the activity of NF-κB signaling pathway. Levels of the downstream inflammatory mediators of NF-κB signaling, IL-1β, IL-4, IL-5, IL-6, IL-13 and IL-17 in BALF, were measured. Besides, the serum levels of OVA-specific immunoglobulin (Ig)E were measured. Results showed that OVA increased the number of inflammatory cells in BALF, elevated lung inflammation scores, enhanced the NF-κB signaling activity and promoted the production of IgE in rats. Berberine dose-dependently reversed the alterations induced by OVA in the asthmatic rats. The findings suggested a therapeutic potential of berberine on OVA- induced airway inflammation. The ameliorative effects on the OVA-induced airway inflammation might be associated with the inhibition of the NF-κB signaling pathway.

  11. Concurrent acetylation of FoxO1/3a and p53 due to sirtuins inhibition elicit Bim/PUMA mediated mitochondrial dysfunction and apoptosis in berberine-treated HepG2 cells.

    PubMed

    Shukla, Shatrunajay; Sharma, Ankita; Pandey, Vivek Kumar; Raisuddin, Sheikh; Kakkar, Poonam

    2016-01-15

    Post-translational modifications i.e. phosphorylation and acetylation are pivotal requirements for proper functioning of eukaryotic proteins. The current study aimed to decode the impact of acetylation/deacetylation of non-histone targets i.e. FoxO1/3a and p53 of sirtuins (NAD(+) dependent enzymes with lysine deacetylase activity) in berberine treated human hepatoma cells. Berberine (100 μM) inhibited sirtuins significantly (P<0.05) at transcriptional level as well as at translational level. Combination of nicotinamide (sirtuin inhibitor) with berberine potentiated sirtuins inhibition and increased the expression of FoxO1/3a and phosphorylation of p53 tumor suppressor protein. As sirtuins deacetylate non-histone targets including FoxO1/3a and p53, berberine increased the acetylation load of FoxO1/3a and p53 proteins. Acetylated FoxO and p53 proteins transcriptionally activate BH3-only proteins Bim and PUMA (3.89 and 3.87 fold respectively, P<0.001), which are known as direct activator of pro-apoptotic Bcl-2 family protein Bax that culminated into mitochondria mediated activation of apoptotic cascade. Bim/PUMA knock-down showed no changes in sirtuins' expression while cytotoxicity induced by berberine and nicotinamide was curtailed up to 28.3% (P<0.001) and it restored pro/anti apoptotic protein ratio in HepG2 cells. Sirtuins inhibition was accompanied by decline in NAD(+)/NADH ratio, ATP generation, enhanced ROS production and decreased mitochondrial membrane potential. TEM analysis confirmed mitochondrial deterioration and cell damage. SRT-1720 (1-10 μM), a SIRT-1 activator, when pre-treated with berberine (25 μM), reversed sirtuins expression comparable to control and significantly restored the cell viability (P<0.05). Thus, our findings suggest that berberine mediated sirtuins inhibition resulting into FoxO1/3a and p53 acetylation followed by BH3-only protein Bim/PUMA activation may in part be responsible for mitochondria-mediated apoptosis. Copyright © 2015

  12. Neuronal overexpression of cyclooxygenase-2 does not alter the neuroinflammatory response during brain innate immune activation.

    PubMed

    Aid, Saba; Parikh, Nishant; Palumbo, Sara; Bosetti, Francesca

    2010-07-12

    Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells. Published by Elsevier Ireland Ltd.

  13. Discovery of berberine based derivatives as anti-influenza agent through blocking of neuraminidase.

    PubMed

    Enkhtaivan, Gansukh; Muthuraman, Pandurangan; Kim, Doo Hwan; Mistry, Bhupendra

    2017-10-15

    In this study, we investigated the antiviral activity of newly synthesized berberine derivatives (BD) against influenza virus infection using several strains in in vitro and in silico. The CPE reduction, pre-incubation, NA activity inhibition and molecular docking assays were used for antiviral evaluation. The anti-influenza activities of BDs were stronger than plant-derived pure commercial berberine, and some of the BDs were more potent than control drug Oseltamivir. The cytotoxicity level was observed in the range 63.16-1639μg/mL for synthesized BDs. Additionally, BDs were detected as able to block influenza viral particles. We targeted neuraminidase one of the influenza surface protein for further probing. Moreover, BDs registered competitive NA inhibition activity comparing with Oseltamivir. The active site of viral NA subunit was fully blocked by BD as the same location as Oseltamivir. The binding energies between influenza NA subunit and BD-5 were higher than Oseltamivir. More H-bonds and NA residues were occupied by BD for stronger binding ability than Oseltamivir. These results indicated that BD inhibits various strains of influenza virus by blocking of viral NA subunit. Copyright © 2017. Published by Elsevier Ltd.

  14. Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine.

    PubMed

    Wofford, Kathryn L; Harris, James P; Browne, Kevin D; Brown, Daniel P; Grovola, Michael R; Mietus, Constance J; Wolf, John A; Duda, John E; Putt, Mary E; Spiller, Kara L; Cullen, D Kacy

    2017-04-01

    Despite increasing appreciation of the critical role that neuroinflammatory pathways play in brain injury and neurodegeneration, little is known about acute microglial reactivity following diffuse traumatic brain injury (TBI) - the most common clinical presentation that includes all concussions. Therefore, we investigated acute microglial reactivity using a porcine model of closed-head rotational velocity/acceleration-induced TBI that closely mimics the biomechanical etiology of inertial TBI in humans. We observed rapid microglial reactivity within 15min of both mild and severe TBI. Strikingly, microglial activation was restrained to regions proximal to individual injured neurons - as denoted by trauma-induced plasma membrane disruption - which served as epicenters of acute reactivity. Single-cell quantitative analysis showed that in areas free of traumatically permeabilized neurons, microglial density and morphology were similar between sham or following mild or severe TBI. However, microglia density increased and morphology shifted to become more reactive in proximity to injured neurons. Microglial reactivity around injured neurons was exacerbated following repetitive TBI, suggesting further amplification of acute neuroinflammatory responses. These results indicate that neuronal trauma rapidly activates microglia in a highly localized manner, and suggest that activated microglia may rapidly influence neuronal stability and/or pathophysiology after diffuse TBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms.

    PubMed

    Collins, Michael A; Neafsey, Edward J; Wang, Kewei; Achille, Nicholas J; Mitchell, Robert M; Sivaswamy, Sreevidya

    2010-06-01

    There is no question that chronic alcohol (ethanol) abuse, a leading worldwide problem, causes neuronal dysfunction and brain damage. However, various epidemiologic studies in recent years have indicated that in comparisons with abstainers or never-drinkers, light/moderate alcohol consumers have lower risks of age-dependent cognitive decline and/or dementia, including Alzheimer's disease (AD). Such reduced risks have been variously attributed to favorable circulatory and/or cerebrovascular effects of moderate ethanol intake, but they could also involve ethanol "preconditioning" phenomena in brain glia and neurons. Here we summarize our experimental studies showing that moderate ethanol preconditioning (MEP; 20-30 mM ethanol) of rat brain cultures prevents neurodegeneration due to beta-amyloid, an important protein implicated in AD, and to other neuroinflammatory proteins such as gp120, the human immunodeficiency virus 1 envelope protein linked to AIDS dementia. The MEP neuroprotection is associated with suppression of neurotoxic protein-evoked initial increases in [Ca(+2)](i) and proinflammatory mediators--e.g., superoxide anion, arachidonic acid, and glutamate. Applying a sensor --> transducer --> effector model to MEP, we find that onset of neuroprotection correlates temporally with elevations in "effector" heat shock proteins (HSP70, HSP27, and phospho-HSP27). The effector status of HSPs is supported by the fact that inhibiting HSP elevations due to MEP largely restores gp120-induced superoxide potentiation and subsequent neurotoxicity. As upstream mediators, synaptic N-methyl-d-aspartate receptors may be initial prosurvival sensors of ethanol, and protein kinase C epsilon and focal adhesion kinase are likely transducers during MEP that are essential for protective HSP elevations. Regarding human consumption, we speculate that moderate ethanol intake might counter incipient cognitive deterioration during advanced aging or AD by exerting preconditioning

  16. Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models

    PubMed Central

    2010-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a disease affecting the central nervous system that is either sporadic or familial origin and causing the death of motor neurons. One of the genetic factors contributing to the etiology of ALS is mutant SOD1 (mtSOD1), which induces vulnerability of motor neurons through protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities, defective axonal transport, glutamate excitotoxicity, inadequate growth factor signaling, and neuroinflammation. Bee venom has been used in the practice of Oriental medicine and evidence from the literature indicates that BV plays an anti-inflammatory or anti-nociceptive role against inflammatory reactions associated with arthritis and other inflammatory diseases. The purpose of the present study was to determine whether bee venom suppresses motor neuron loss and microglial cell activation in hSOD1G93A mutant mice. Methods Bee venom (BV) was bilaterally injected (subcutaneously) into a 14-week-old (98 day old) male hSOD1G93A animal model at the Zusanli (ST36) acupoint, which is known to mediate an anti-inflammatory effect. For measurement of motor activity, rotarod test was performed and survival statistics were analyzed by Kaplan-Meier survival curves. The effects of BV treatment on anti-neuroinflammation of hSOD1G93A mice were assessed via immunoreactions using Iba 1 as a microglia marker and TNF-α antibody. Activation of ERK, Akt, p38 MAP Kinase (MAPK), and caspase 3 proteins was evaluated by western blotting. Results BV-treated mutant hSOD1 transgenic mice showed a decrease in the expression levels of microglia marker and phospho-p38 MAPK in the spinal cord and brainstem. Interestingly, treatment of BV in symptomatic ALS animals improved motor activity and the median survival of the BV-treated group (139 ± 3.5 days) was 18% greater than control group (117 ± 3.1 days). Furthermore, we found that BV suppressed caspase-3 activity and blocked the defects

  17. Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: Spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Islam, Md. Maidul; Pandya, Prateek; Chowdhury, Sebanti Roy; Kumar, Surat; Kumar, Gopinatha Suresh

    2008-11-01

    The interaction of two natural protoberberine plant alkaloids berberine and palmatine with tRNA phe was studied using various biophysical techniques and molecular modeling and the data were compared with the binding of the classical DNA intercalator, ethidium. Circular dichroic studies revealed that the tRNA conformation was moderately perturbed on binding of the alkaloids. The cooperative binding of both the alkaloids and ethidium to tRNA was revealed from absorbance and fluorescence studies. Fluorescence quenching studies advanced a conclusion that while berberine and palmatine are partially intercalated, ethidium is fully intercalated on the tRNA molecule. The binding of the alkaloids as well as ethidium stabilized the tRNA melting, and the binding constant evaluated from the averaged optical melting temperature data was in agreement with fluorescence spectral-binding data. Differential scanning calorimetry revealed that the tRNA melting showed three close transitions that were affected on binding of these small molecules. Molecular docking calculations performed showed the preferred regions of binding of these small molecules on the tRNA. Taken together, the results suggest that the binding of the alkaloids berberine and palmatine on the tRNA structure appears to be mostly by partial intercalation while ethidium intercalates fully on the tRNA. These results further advance our knowledge on the molecular aspects on the interaction of these alkaloids to tRNA.

  18. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellularmore » energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.« less

  19. Behavioural and neuroinflammatory effects of the combination of binge ethanol and MDMA in mice.

    PubMed

    Ros-Simó, Clara; Ruiz-Medina, Jessica; Valverde, Olga

    2012-06-01

    Binge drinking is a common pattern of alcohol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular, 3,4-methylendioxymethamphetamine (MDMA). To evaluate the behavioural consequences of voluntary binge ethanol consumption, alone and in combination to MDMA. Also, to elucidate the effects of the combined consumption of these two drugs on neuroinflammation. Adolescent mice received MDMA (MDMA-treated mice), ethanol (ethanol-treated mice group) or both (ethanol plus MDMA-treated mice). Drinking in the dark (DID) procedure was used as a model of binge. Body temperature, locomotor activity, motor coordination, anxiety-like and despair behaviour in adolescent mice were evaluated 48 h, 72 h, and 7 days after the treatments. Also, neuroinflammatory response to these treatments was measured in the striatum. The hyperthermia observed in MDMA-treated mice was abolished by pre-exposition to ethanol. Ethanol plus MDMA-treated mice showed lower locomotor activity. Ethanol-treated mice showed motor coordination impairment and increased despair behaviour. Anxiety-like behaviour was only seen in animals that were treated with both drugs. Contrarily, neuroinflammation was mostly seen in animals treated only with MDMA. Ethanol and MDMA co-administration increases the neurobehavioural changes induced by the consumption of each one of these drugs. However, as ethanol consumption did not increase neuroinflammatory responses induced by MDMA, other mechanisms, mediated by ethanol, are likely to account for this effect and need to be evaluated.

  20. Sustained, neuron-specific IKK/NF-κB activation generates a selective neuroinflammatory response promoting local neurodegeneration with aging

    PubMed Central

    2013-01-01

    partially reversed when chronic IKK2/NF-κB signalling was turned off and Bdnf expression was restored. Conclusion Our results demonstrate that persistent IKK2/NF-κB signalling in forebrain neurons does not induce overall neuroinflammation, but elicits a selective inflammatory response in the dentate gyrus accompanied by decreased neuronal survival and impaired learning and memory. Our findings further suggest that chronic activation of neuronal IKK2/NF-κB signalling, possibly as a consequence of neuroinflammatory conditions, is able to induce apoptosis-independent neurodegeneration via paracrine suppression of Bdnf synthesis. PMID:24119288

  1. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system.

    PubMed

    Zou, Kun; Li, Zhao; Zhang, Yong; Zhang, Hao-Yue; Li, Bo; Zhu, Wei-Liang; Shi, Ji-Ye; Jia, Qi; Li, Yi-Ming

    2017-02-01

    It has been widely recognized that inflammation, particularly chronic inflammation, can increase the risk of cancer and that the simultaneous treatment of inflammation and cancer may produce excellent therapeutic effects. Berberine, an alkaloid isolated from Rhizoma coptidis, has broad applications, particularly as an antibacterial agent in the clinic with a long history. Over the past decade, many reports have demonstrated that this natural product and its derivatives have high activity against both cancer and inflammation. In this review, we summarize the advances in studing berberine and its derivatives as anti-inflammatory and anti-tumor agents in the digestive system; we also discuss their structure-activity relationship. These data should be useful for the development of this natural product as novel anticancer drugs with anti-inflammation activity.

  2. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer’s Disease

    PubMed Central

    Li, Jinze; Ma, Xiaowei; Wang, Yu; Chen, Chengjuan; Hu, Min; Wang, Linlin; Fu, Junmin; Shi, Gaona; Zhang, Dongming; Zhang, Tiantai

    2018-01-01

    Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer’s disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD. PMID:29636677

  3. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics.

    PubMed

    Gupta, Lokesh; Sharma, Ashok Kumar; Gothwal, Avinash; Khan, Mohammed Shahid; Khinchi, Mahaveer Prasad; Qayum, Arem; Singh, Shashank Kumar; Gupta, Umesh

    2017-08-07

    Berberine (BBR) is a nitrogenous cyclic natural alkaloid with potential anticancer activity. However it has been less explored due to its poor pharmacokinetic profile. Dendrimers (e.g. PAMAM) have promising potential to deliver anticancer drugs/bio-actives because of their well-defined architecture, monodispersity and tailor-made surface functionality. In the present study it was attempted to deliver berberine through G4 PAMAM dendrimers by conjugation (BPC) as well as encapsulation (BPE) approach. The developed encapsulated and conjugated berberine formulations were found to have size in the approximate range of 100-200nm while zeta potential was almost same as PAMAM G4 dendrimer. The entrapment efficiency in BPE was found to be 29.9%, whereas, the percentage conjugation in BPC was found to be 37.49% indicating high drug payload in conjugation. The developed nano-formulations were characterized through 1 H NMR, FT-IR as well as electron microscopy (SEM and TEM). The in vitro release study in different media (water and PBS 7.4) showed sustained release pattern of BBR. Almost 72% and 98% drug was released within 24h respectively; whereas in PBS almost 80% and 98% release was observed within 24h, respectively. The formulations followed Higuchi release and first order release as best fit release kinetic model. MTT assay results showed significantly higher anticancer activity for the PAMAM-BBR (BPC) (p<0.01) against MCF-7 and MDA-MB-468 breast cancer cells. The time dependent ex vivo hemolytic toxicity of the BPC and BPE was significantly less (<5%) even after 24h, which indicated that the formulations can be regarded as significantly safe and biocompatible. Similarly, the in vivo hematological parameters were analyzed through auto-analyzer and the formulations were found to be safer and biocompatible with very least but insignificant (p>0.05) effects. The in vivo pharmacokinetic parameters were found to be impressively improved in albino rat model. The pharmacokinetic

  4. The examination of berberine excited state by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  5. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system

    PubMed Central

    Zou, Kun; Li, Zhao; Zhang, Yong; Zhang, Hao-yue; Li, Bo; Zhu, Wei-liang; Shi, Ji-ye; Jia, Qi; Li, Yi-ming

    2017-01-01

    It has been widely recognized that inflammation, particularly chronic inflammation, can increase the risk of cancer and that the simultaneous treatment of inflammation and cancer may produce excellent therapeutic effects. Berberine, an alkaloid isolated from Rhizoma coptidis, has broad applications, particularly as an antibacterial agent in the clinic with a long history. Over the past decade, many reports have demonstrated that this natural product and its derivatives have high activity against both cancer and inflammation. In this review, we summarize the advances in studing berberine and its derivatives as anti-inflammatory and anti-tumor agents in the digestive system; we also discuss their structure-activity relationship. These data should be useful for the development of this natural product as novel anticancer drugs with anti-inflammation activity. PMID:27917872

  6. Berberine improves glucogenesis and lipid metabolism in nonalcoholic fatty liver disease.

    PubMed

    Zhao, Li; Cang, Zhen; Sun, Honglin; Nie, Xiaomin; Wang, Ningjian; Lu, Yingli

    2017-02-28

    Nonalcoholic fatty liver disease (NAFLD) is considered a critical hepatic manifestation of metabolic syndrome. Berberine (BBR) exerts anti-hyperglycemic and anti-dyslipidemic effects and can also ameliorate NAFLD. Thus, BBR might exert its therapeutic effect on NAFLD by improving glucolipid metabolism. Here, we investigated the aspects and extent to which glucolipid metabolism were affected by BBR in rats with NAFLD. Three groups of Sprague-Dawley rats were studied: a control group (n = 6) fed a normal chow diet and a NAFLD group (n = 6) and a NAFLD + BBR group (n = 6) fed a high-fat diet. Normal saline and BBR (150 mg/kg body weight/day for 16 weeks) were administered by gavage. All rats were infused with isotope tracers. The rates of glucose appearance (Ra glu ), gluconeogenesis (GNG) and glycerol appearance (Ra gly ) were assessed with 2 H and 13 C tracers, whereas the rates of hepatic lipogenesis and fatty acid β oxidation were measured using the 3 H tracer. When the NAFLD model was successfully induced by administering a high-fat diet, body weight, insulin resistance and dyslipidemia were significantly increased. After the BBR treatment, weight loss, decreased lipid profiles and HOMA-IR, and increased ISI were observed. Meanwhile, BBR reduced Ra glu , GNG and hepatic lipogenesis, whereas the rate of fatty acid β oxidation in skeletal muscle showed an increasing trend. Ra gly showed a decreasing trend. Based on the results of the histological analysis, BBR obviously attenuated the ectopic liver fat accumulation. BBR improved NAFLD by inhibiting glucogenesis and comprehensively regulating lipid metabolism, and its effect on inhibiting hepatic lipogenesis was much stronger. The improvement may be partly mediated by weight loss. Berberine might be a good choice for patients with NAFLD and glucose metabolic disorder. Future clinical trials need to be conducted to confirm these effects.

  7. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network.

    PubMed

    Liu, Ruixin; Zhang, Xiaodong; Zhang, Lu; Gao, Xiaojie; Li, Huiling; Shi, Junhan; Li, Xuelin

    2014-06-01

    The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue.

  8. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network

    PubMed Central

    LIU, RUIXIN; ZHANG, XIAODONG; ZHANG, LU; GAO, XIAOJIE; LI, HUILING; SHI, JUNHAN; LI, XUELIN

    2014-01-01

    The aim of this study was to predict the bitterness intensity of a drug using an electronic tongue (e-tongue). The model drug of berberine hydrochloride was used to establish a bitterness prediction model (BPM), based on the taste evaluation of bitterness intensity by a taste panel, the data provided by the e-tongue and a genetic algorithm-back-propagation neural network (GA-BP) modeling method. The modeling characteristics of the GA-BP were compared with those of multiple linear regression, partial least square regression and BP methods. The determination coefficient of the BPM was 0.99965±0.00004, the root mean square error of cross-validation was 0.1398±0.0488 and the correlation coefficient of the cross-validation between the true and predicted values was 0.9959±0.0027. The model is superior to the other three models based on these indicators. In conclusion, the model established in this study has a high fitting degree and may be used for the bitterness prediction modeling of berberine hydrochloride of different concentrations. The model also provides a reference for the generation of BPMs of other drugs. Additionally, the algorithm of the study is able to conduct a rapid and accurate quantitative analysis of the data provided by the e-tongue. PMID:24926369

  9. Shining a light on LAMP assays--a comparison of LAMP visualization methods including the novel use of berberine.

    PubMed

    Fischbach, Jens; Xander, Nina Carolin; Frohme, Marcus; Glökler, Jörn Felix

    2015-04-01

    The need for simple and effective assays for detecting nucleic acids by isothermal amplification reactions has led to a great variety of end point and real-time monitoring methods. Here we tested direct and indirect methods to visualize the amplification of potato spindle tuber viroid (PSTVd) by loop-mediated isothermal amplification (LAMP) and compared features important for one-pot in-field applications. We compared the performance of magnesium pyrophosphate, hydroxynaphthol blue (HNB), calcein, SYBR Green I, EvaGreen, and berberine. All assays could be used to distinguish between positive and negative samples in visible or UV light. Precipitation of magnesium-pyrophosphate resulted in a turbid reaction solution. The use of HNB resulted in a color change from violet to blue, whereas calcein induced a change from orange to yellow-green. We also investigated berberine as a nucleic acid-specific dye that emits a fluorescence signal under UV light after a positive LAMP reaction. It has a comparable sensitivity to SYBR Green I and EvaGreen. Based on our results, an optimal detection method can be chosen easily for isothermal real-time or end point screening applications.

  10. The Evaluation of Pro-Cognitive and Antiamnestic Properties of Berberine and Magnoflorine Isolated from Barberry Species by Centrifugal Partition Chromatography (CPC), in Relation to QSAR Modelling

    PubMed Central

    Kruk-Słomka, Marta; Stępnik, Katarzyna; Szalak, Radosław; Biała, Grażyna

    2017-01-01

    Civilization diseases associated with memory disorders are important health problems occurring due to a prolonged life span. The manuscript shows the results of an in vivo study targeting the emergence of two drug candidates with anti-amnestic properties. The preceding quantitative structure–activity relationship (QSAR) studies provided information on the ability of berberine and magnoflorine to cross the blood–brain barrier (BBB). In the light of these findings, both compounds were purified from crude plant extracts of barberries: berberine—from Berberis siberica using a method published earlier, and magnoflorine—from Berberis cretica by centrifugal partition chromatography (solvent system: ethyl acetate:butanol:water-0.6:1.5:3 v/v/v). Both the compounds were evaluated for their memory enhancing and scopolamine inhibitory properties in an in vivo passive avoidance (PA) test on mice towards short-term and long-term memory. Cognition enhancing properties were observed at the following doses: 5 mg/kg (i.p.) for berberine and 20 mg/kg (i.p.) for magnoflorine. In addition, both the tested isoquinolines with the co-administered scopolamine were found to block long-term but not short-term memory impairment. No influence on the locomotor activity was observed for the tested doses. The results confirmed a marked central activity of magnoflorine and showed the necessity to lower the dosage of berberine. Optimized purification conditions have been elaborated for magnoflorine. PMID:29186770

  11. Hyaluronic acid-grafted PLGA nanoparticles for the sustained delivery of berberine chloride for an efficient suppression of Ehrlich ascites tumors.

    PubMed

    Bhatnagar, Priyanka; Kumari, Manisha; Pahuja, Richa; Pant, A B; Shukla, Y; Kumar, Pradeep; Gupta, K C

    2018-06-01

    To promote the specific targeting and elimination of CD44-positive cancer cells, berberine chloride (BRB)-encapsulated hyaluronic acid-grafted poly(lactic-co-glycolic acid) copolymer (BRB-d(HA)-g-PLGA) nanoparticles (NPs) were prepared. The targeted action of these NPs was compared to non-targeted BRB-loaded PLGA NPs and bulk BRB. The in vitro studies demonstrated faster release of BRB and increased cytotoxicity of BRB-d(HA)-g-PLGA NPs in Hela and MCF-7 cells in comparison to BRB-PLGA NPs and bulk BRB. The uptake of BRB-d(HA)-g-PLGA NPs was increased in case of MCF-7 cells as compared to HeLa cells owing to the higher expression of CD44 receptors on MCF-7 cells. The CD44 receptor-mediated uptake of these NPs was confirmed through competitive inhibition experiments. The in vitro results were further validated in vivo in Ehrlich Ascites Carcinoma (EAC)-bearing mice. EAC-bearing mice were injected intravenously with these NPs and the results obtained were compared with that of BRB-PLGA NPs and bulk BRB. BRB-d(HA)-g-PLGA NPs were found to significantly enhance apoptosis, sub-G1 content, life span, mean survival time, and ROS levels in EAC cells with subsequent decrease in mitochondrial membrane potential and tumor burden ion tumor-bearing mice. Taking into account the findings of in vitro and in vivo studies, the enhanced and targeted anti-tumor activity of HA-grafted PLGA copolymer-encapsulated NPs of BRB cannot be negated. Therefore, HA-grafted nanoparticle-based delivery of BRB may offer a promising and improved alternative for anti-tumor therapy.

  12. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination.

    PubMed

    Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui

    2015-09-02

    Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.

  13. A sensitive and specific liquid chromatography mass spectrometry method for simultaneous determination of berberine, palmatine, coptisine, epiberberine and jatrorrhizine from Coptidis Rhizoma in rat plasma

    NASA Astrophysics Data System (ADS)

    Yu, Sen; Pang, Xiaoyan; Deng, Yuanxiong; Liu, Li; Liang, Yan; Liu, Xiaodong; Xie, Lin; Wang, Guangji; Wang, Xinting

    2007-11-01

    A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of five protoberberine alkaloids, which are berberine, palmatine, coptisine, epiberberine and jatrorrhizine, in rat plasma using tetrahydroberberine as an internal standard. Following solid-phase extraction, the analytes were separated by linear gradient elution on a Shim-pack ODS (4.6 [mu]m, 150 mm × 2.0 mm i.d.) column and analyzed in selected ion monitoring (SIM) mode with a positive electrospray ionization (ESI) interface using the respective [M]+ and [M + H]+ ions, [M]+ = 336 for berberine; 320 for coptisine; 336 for epiberberine; 338 for jatrorrhizine; 352 for palmatine and [M + H]+ = 340 for the internal standard. The method was validated over the concentration range of 0.31-20 ng mL-1 for all the five protoberberine alkaloids. Within-batch and between-batch precisions (R.S.D.%) were all within 15% and accuracy (%Er) ranged from -5 to 5%. The lower limits of quantification were 0.31 ng mL-1 for all analytes. The extraction recoveries were on average 80.8% for berberine, 67E0% for coptisine, 66.2% for epiberberine, 71.8% for jatrorrhizine and 73E2% for palmatine. The validated method was used to study the pharmacokinetic profile of the five protoberberine alkaloids in rat plasma after oral administration of Coptidis Rhizoma extract.

  14. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring.

    PubMed

    Bolton, Jessica L; Auten, Richard L; Bilbo, Staci D

    2014-03-01

    Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses

    NASA Astrophysics Data System (ADS)

    Potter, Kelsey A.; Buck, Amy C.; Self, Wade K.; Capadona, Jeffrey R.

    2012-08-01

    An estimated 25 million people in the US alone rely on implanted medical devices, ˜2.5 million implanted within the nervous system. Even though many devices perform adequately for years, the host response to medical devices often severely limits tissue integration and long-term performance. This host response is believed to be particularly limiting in the case of intracortical microelectrodes, where it has been shown that glial cell encapsulation and localized neuronal cell loss accompany intracortical microelectrode implantation. Since neuronal ensembles must be within ˜50 µm of the electrode to obtain neuronal spikes and local field potentials, developing a better understanding of the molecular and cellular environment at the device-tissue interface has been the subject of significant research. Unfortunately, immunohistochemical studies of scar maturation in correlation to device function have been inconclusive. Therefore, here we present a detailed quantitative study of the cellular events and the stability of the blood-brain barrier (BBB) following intracortical microelectrode implantation and cortical stab injury in a chronic survival model. We found two distinctly inverse multiphasic profiles for neuronal survival in device-implanted tissue compared to stab-injured animals. For chronically implanted animals, we observed a biphasic paradigm between blood-derived/trauma-induced and CNS-derived inflammatory markers driving neurodegeneration at the interface. In contrast, stab injured animals demonstrated a CNS-mediated neurodegenerative environment. Collectively these data provide valuable insight to the possibility of multiple roles of chronic neuroinflammatory events on BBB disruption and localized neurodegeneration, while also suggesting the importance to consider multiphasic neuroinflammatory kinetics in the design of therapeutic strategies for stabilizing neural interfaces.

  16. Interaction mechanism between berberine and the enzyme lysozyme

    NASA Astrophysics Data System (ADS)

    Cheng, Ling-Li; Wang, Mei; Wu, Ming-Hong; Yao, Si-De; Jiao, Zheng; Wang, Shi-Long

    2012-11-01

    In the present paper, the interaction between model protein lysozyme (Lys) and antitumorigenic berberine (BBR) was investigated by spectroscopic methods, for finding an efficient and safe photosensitizer with highly active transient products using in photodynamic therapy study. The fluorescence data shows that the binding of BBR could change the environment of the tryptophan (Trp) residues of Lys, and form a new complex. Static quenching is the main fluorescence quenching mechanism between Lys and BBR, and there is one binding site in Lys for BBR and the type of binding force between them was determined to be hydrophobic interaction. Furthermore, the possible interaction mechanism between BBR and Lys under the photoexcitation was studied by laser flash photolysis method, the results demonstrated that BBR neutral radicals (BBR(-H)•) react with Trp (K = 3.4 × 109 M-1 s-1) via electron transfer to give the radical cation (Trp/NH•+) and neutral radical of Trp (TrpN•). Additionally BBR selectively oxidize the Trp residues of Lys was also observed by comparing the transient absorption spectra of their reaction products. Through thermodynamic calculation, the reaction mechanisms between 3BBR∗ and Trp or Lys were determined to be electron transfer process.

  17. The synthesis and antistaphylococcal activity of 9, 13-disubstituted berberine derivatives.

    PubMed

    Wang, Jing; Yang, Teng; Chen, Huang; Xu, Yun-Nan; Yu, Li-Fang; Liu, Ting; Tang, Jie; Yi, Zhengfang; Yang, Cai-Guang; Xue, Wei; Yang, Fan

    2017-02-15

    A series of novel 9, 13-disubstituted berberine derivatives have been synthesized and evaluated for the antibacterial activities against Staphylococcus aureus, including Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108, and NRS-271). Compound 20 shows the most potent activity against the growth of Newman strain, with a MIC value of 0.78 μg/mL, which is comparable with the positive control vancomycin. In addition, compound 20, 21, and 33 are highly antistaphylococcal active against five strains of multidrug-resistant S. aureus, with MIC values of 0.78-1.56 μg/mL. Of note, theses antibacterial active compounds have no obvious toxicity to the viability of human fibroblast (HAF) cells at the MIC concentration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions

    PubMed Central

    Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.

    2015-01-01

    Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237

  19. Synthesizing a Berberine Derivative and Evaluating Antimicrobial Activity to Reinforce with Students the Potential Significance of Small Chemical Structure Changes for Biological Systems

    ERIC Educational Resources Information Center

    Rodrigues, Catarina A. B.; Neto, Iris; Rijo, Patricia; Afonso, Carlos A. M.

    2018-01-01

    The convenient synthesis of dihydroberberine by the reduction of berberine is described as an experiment for an upper-division undergraduate organic chemistry laboratory course. Students obtained up to 74% yield of the desired pure product without the use of chromatographic techniques. The antimicrobial activities of both compounds against…

  20. RNA targeting by small molecule alkaloids: Studies on the binding of berberine and palmatine to polyribonucleotides and comparison to ethidium

    NASA Astrophysics Data System (ADS)

    Islam, Md. Maidul; Suresh Kumar, Gopinatha

    2008-03-01

    The binding affinity, energetics and conformational aspects of the interaction of isoquinoline alkaloids berberine and palmatine to four single stranded polyribonucleotides polyguanylic acid [poly(G)], polyinosinic acid [poly(I)], polycytidylic acid [poly(C)] and polyuridylic acid [poly(U)] were studied by absorption, fluorescence, isothermal titration calorimetry and circular dichroism spectroscopy and compared with ethidium. Berberine, palmatine and ethidium binds strongly with poly(G) and poly(I) with affinity in the order 10 5 M -1 while their binding to poly(C) and poly(U) were very weak or practically nil. The same conclusions have also emerged from isothermal titration calorimetric studies. The binding of all the three compounds to poly(C) and poly(I) was exothermic and favored by both negative enthalpy change and positive entropy change. Conformational change in the polymer associated with the binding was observed in poly(I) with all the three molecules and poly(U) with ethidium but not in poly(G) and poly(C) revealing differences in the orientation of the bound molecules in the hitherto different helical organization of these polymers. These fundamental results may be useful and serve as database for the development of futuristic RNA based small molecule therapeutics.

  1. Inhibition of cholinesterase activity and amyloid aggregation by berberine-phenyl-benzoheterocyclic and tacrine-phenyl-benzoheterocyclic hybrids.

    PubMed

    Huang, Ling; Su, Tao; Shan, Wenjun; Luo, Zonghua; Sun, Yang; He, Feng; Li, Xingshu

    2012-05-01

    A series of berberine-phenyl-benzoheterocyclic (26-29) and tacrine-phenyl-benzoheterocyclic hybrids (44-46) were synthesised and evaluated as multifunctional anti-Alzheimer's disease agents. Compound 44b, tacrine linked with phenyl-benzothiazole by 3-carbon spacers, was the most potent AChE inhibitor with an IC(50) value of 0.017 μM. This compound demonstrated similar Aβ aggregation inhibitory activity with cucurmin (51.8% vs 52.1% at 20 μM, respectively), indicating that this hybrid is an excellent multifunctional drug candidate for AD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of EAE1

    PubMed Central

    Liu, Yudong; Holdbrooks, Andrew T.; De Sarno, Patrizia; Rowse, Amber L.; Yanagisawa, Lora L.; McFarland, Braden C.; Harrington, Laurie E.; Raman, Chander; Sabbaj, Steffanie; Benveniste, Etty N.; Qin, Hongwei

    2014-01-01

    Pathogenic T helper cells and myeloid cells are involved in the pathogenesis of Multiple Sclerosis (MS) and Experimental Autoimmune Encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is utilized by numerous cytokines for signaling, and is critical for development, regulation and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have utilized AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in MOG-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of pro-inflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T-cells, and attenuates antigen-presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple pre-clinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases. PMID:24323580

  3. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC-ESI-MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats.

    PubMed

    Yang, Lianrong; Meng, Xin; Yu, Xiaojin; Kuang, Haixue

    2017-02-05

    A sensitive and rapid ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was developed for the simultaneous analysis of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin, toosendanin (IS 1 of anemoside B4), tetrahydropalmatine (IS 2 of phellodendrine, berberine, palmatine and obakunone) and scopoletin (IS 3 of esculin and esculetin) and to compare the pharmacokinetics of these active ingredients in normal and ulcerative colitis rats. After methanol deproteinization, solvents were evaporated at 40°C under a gentle stream of nitrogen. Chromatography was performed using a C18 column with a gradient elution of 0.1% aqueous formic acid and acetonitrile at 0.4ml/min. Detection and measurement were performed on a 4000 QTRAP UPLC-MS/MS system from AB Sciex in the multiple reaction monitoring (MRM) mode. Phellodendrine, berberine, palmatine, obakunone, esculin, esculetin, tetrahydropalmatine (IS 2 ) and scopoletin (IS 3 ) were monitored under positive ionization conditions. Anemoside B4, and toosendanin (IS 1 ) were monitored under negative ionization conditions. The optimized mass transition ion-pairs (m/z) were 1221.1/750.7 for anemoside B4, 343.2/193.2 for phellodendrine, 337.1/321.0 for berberine, 353.0/336.9 for palmatine, 455.1/161.1 for obakunone, 341.2/179.2 for esculin, 179.1/123.0 for esculetin, 573.4/531.4 for toosendanin (IS 1 ), 356.2/192.2 for tetrahydropalmatine (IS 2 ) and 193.0/133.1 for scopoletin (IS 3 ). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii.

    PubMed

    Gao, Wei-Wei; Gopala, Lavanya; Bheemanaboina, Rammohan R Yadav; Zhang, Guo-Biao; Li, Shuo; Zhou, Cheng-He

    2018-02-25

    Aminothiazolyl berberine derivatives as potentially antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. The antimicrobial assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens, and the aminothiazole and Schiff base moieties were helpful structural fragments for aqueous solubility and antibacterial activity. Especially, aminothiazolyl 9-hexyl berberine 9c and 2,4-dichlorobenzyl derivative 18a exhibited good activities (MIC = 2 nmol/mL) against clinically drug-resistant Gram-negative Acinetobacter baumanii with low cytotoxicity to hepatocyte LO2 cells, rapidly bactericidal effects and quite slow development of bacterial resistance toward A. baumanii. Molecular modeling indicated that compounds 9c and 18a could bind with GLY-102, ARG-136 and/or ALA-100 residues of DNA gyrase through hydrogen bonds. It was found that compounds 9c and 18a were able to disturb the drug-resistant A. baumanii membrane effectively, and molecule 9c could not only intercalate but also cleave bacterial DNA isolated from resistant A. baumanii, which might be the preliminary antibacterial action mechanism of inhibiting the growth of A. baumanii strain. In particular, the combination use of compound 9c with norfloxacin could enhance the antibacterial activity, broaden antibacterial spectrum and overcome the drug resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. O-Hexadecyl-Dextran Entrapped Berberine Nanoparticles Abrogate High Glucose Stress Induced Apoptosis in Primary Rat Hepatocytes

    PubMed Central

    Tripathi, Madhulika; Bhatnagar, Priyanka; Kakkar, Poonam; Gupta, Kailash Chand

    2014-01-01

    Nanotized phytochemicals are being explored by researchers for promoting their uptake and effectiveness at lower concentrations. In this study, O-hexadecyl-dextran entrapped berberine chloride nanoparticles (BC-HDD NPs) were prepared, and evaluated for their cytoprotective efficacy in high glucose stressed primary hepatocytes and the results obtained compared with bulk berberine chloride (BBR) treatment. The nanotized formulation treated primary hepatocytes that were exposed to high glucose (40 mM), showed increased viability compared to the bulk BBR treated cells. BC-HDD NPs reduced the ROS generation by ∼3.5 fold during co-treatment, prevented GSH depletion by ∼1.6 fold, reduced NO formation by ∼5 fold and significantly prevented decline in SOD activity in stressed cells. Lipid peroxidation was also prevented by ∼1.9 fold in the presence of these NPs confirming the antioxidant capacity of the formulation. High glucose stress increased Bax/Bcl2 ratio followed by mitochondrial depolarization and activation of caspase-9/−3 confirming involvement of mitochondrial pathway of apoptosis in the exposed cells. Co- and post-treatment of BC-HDD NPs prevented depolarization of mitochondrial membrane, reduced Bax/Bcl2 ratio and prevented externalization of phosphatidyl-serine confirming their anti-apoptotic capacity in those cells. Sub-G1 phase apparent in high glucose stressed cells was not seen in BC-HDD NPs treated cells. The present study reveals that BC-HDD NPs at ∼20 fold lower concentration are as effective as BBR in preventing high glucose induced oxidative stress, mitochondrial depolarization and downstream events of apoptotic cell death. PMID:24586539

  6. Lignans from the shed trunk barks of the critically endangered plant Abies beshanzuensis and their anti-neuroinflammatory activities.

    PubMed

    Hu, Chang-Ling; Xiong, Juan; Xu, Peng; Cheng, Ke-Jun; Yang, Guo-Xun; Hu, Jin-Feng

    2017-06-01

    During a further and comprehensive phytochemical investigation on the shed trunk barks of the critically endangered plant Abies beshanzuensis, one new (1) and ten known (2-11) lignans with diverse structures were isolated. On the basis of spectroscopic methods, the new structure was established to be (7S,8R,8'R)-4'-methoxyl-α-conidendrin (1). Among the isolated lignans, (-)-matairesinol (5) and (-)-arctigenin (6) showed significant anti-neuroinflammatory activities by inhibiting the overproduction of nitric oxide in lipopolysaccharide-stimulated murine BV-2 microglial cells, with IC 50 values of 11.5 and 19.0 μM, respectively.

  7. Anti-neuroinflammatory Potential of Natural Products in Attenuation of Alzheimer's Disease

    PubMed Central

    Shal, Bushra; Ding, Wei; Ali, Hussain; Kim, Yeong S.; Khan, Salman

    2018-01-01

    Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder associated with dementia and cognitive impairment most common in elderly population. Various pathophysiological mechanisms have been proposed by numerous researcher, although, exact mechanism is not yet elucidated. Several studies have been indicated that neuroinflammation associated with deposition of amyloid- beta (Aβ) in brain is a major hallmark toward the pathology of neurodegenerative diseases. So, there is a need to unravel the link of inflammatory process in neurodegeneration. Increased microglial activation, expression of cytokines, reactive oxygen species (ROS), and nuclear factor kappa B (NF-κB) participate in inflammatory process of AD. This review mainly concentrates on involvement of neuroinflammation and the molecular mechanisms adapted by various natural compounds, phytochemicals and herbal formulations in various signaling pathways involved in neuroprotection. Currently, pharmacologically active natural products, having anti-neuroinflammatory potential are being focused which makes them potential candidate to cure AD. A number of preclinical and clinical trials have been done on nutritional and botanical agents. Analysis of anti-inflammatory and neuroprotective phytochemicals such as terpenoids, phenolic derivatives, alkaloids, glycosides, and steroidal saponins displays therapeutic potential toward amelioration and prevention of devastating neurodegeneration observed in AD. PMID:29896105

  8. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature.

    PubMed

    Evangelho, Karine; Mogilevskaya, Maria; Losada-Barragan, Monica; Vargas-Sanchez, Jeinny Karina

    2017-12-30

    Glaucoma is the leading cause of blindness in humans, affecting 2% of the population. This disorder can be classified into various types including primary, secondary, glaucoma with angle closure and with open angle. The prevalence of distinct types of glaucoma differs for each particular region of the world. One of the most common types of this disease is primary open-angle glaucoma (POAG), which is a complex inherited disorder characterized by progressive retinal ganglion cell death, optic nerve head excavation and visual field loss. Nowadays, POAG is considered an optic neuropathy, while intraocular pressure is proposed to play a fundamental role in its pathophysiology and especially in optic disk damage. However, the exact mechanism of optic nerve head damage remains a topic of debate. This literature review aims to bring together the information on the pathophysiology of primary open-angle glaucoma, particularly focusing on neuroinflammatory mechanisms leading to the death of the retinal ganglion cell. A literature search was done on PubMed using key words including primary open-angle glaucoma, retinal ganglion cells, Müller cells, glutamate, glial cells, ischemia, hypoxia, exitotoxicity, neuroinflammation, axotomy and neurotrophic factors. The literature was reviewed to collect the information published about the pathophysiologic mechanisms of RGC death in the POAG, from a neuroinflammatory and neurotoxicity perspective. Proposed mechanisms for glaucomatous damage are a result of pressure in RGC followed by ischemia, hypoxia of the ONH, and consequently death due to glutamate-induced excitotoxicity, deprivation of energy and oxygen, increase in levels of inflammatory mediators and alteration of trophic factors flow. These events lead to blockage of anterograde and retrograde axonal transport with ensuing axotomy and eventually blindness. The damage to ganglion cells and eventually glaucomatous injury can occur via various mechanisms including baric trauma

  9. Berberine alkaloid: Quantum chemical study of different forms by the DFT and MP2 methods

    NASA Astrophysics Data System (ADS)

    Danilov, V. I.; Dailidonis, V. V.; Hovorun, D. M.; Kurita, N.; Murayama, Y.; Natsume, T.; Potopalsky, A. I.; Zaika, L. A.

    2006-10-01

    The stable structures and electronic properties for the berberine cation as well as possible ammonium, carbinol and amino-aldehyde forms of protoberberine salts in the presence of hydroxyl ions were investigated by the B3LYP/6-31G(d,p) and MP2/6-31++G(d,p) methods. The geometry optimizations by both methods lead to the nonplanar propeller-twisted and buckled structure for the all forms. The obtained bond lengths and bond angles agree with the experimental values. The comparison of total energies elucidates that the amino-aldehyde form is the most preferable tautomer in gas phase, while the carbinol form is less stable. The least stable tautomer is the ammonium form.

  10. Study on the resonance light scattering spectrum of berberine-cetyltrimethylammonium bromide system and the determination of nucleic acids at nanogram levels

    NASA Astrophysics Data System (ADS)

    Liu, Rutao; Yang, Jinghe; Wu, Xia; Sun, Changxia

    2002-02-01

    The interaction of berberine with nucleic acid in the presence of cetyltrimethylammonium bromide (CTMAB) in aqueous solution has been studied by spectrophotometry and resonance light scattering (RLS) spectroscopy. At pH 7.30, the RLS signals of berberine were greatly enhanced by nucleic acid in the region of 300-600 nm characterized by four peaks at 324.0, 386.5, 416.5 and 465.0 nm. The binding properties were examined by using a Scatchard plot based on the measurement of enhanced RLS data at 416.5 nm. Under optimum conditions, the increase of RLS intensity of this system at 416.5 nm is proportional to the concentration of nucleic acid. The linear range is 7.5×10 -9-7.5×10 -5 g ml -1 for calf thymus DNA, 7.5×10 -9-2.5×10 -5 g ml -1 for herring sperm DNA, and 5.0×10 -9-2.5×10 -5 g ml -1 for yeast RNA. The detection limits (S/N=3) are 2.1 ng ml -1 for calf thymus DNA, 6.5 ng ml -1 for herring sperm DNA and 3.5 ng ml -1 for yeast RNA, respectively. Three synthetic samples were analyzed satisfactorily.

  11. Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease.

    PubMed

    Lepoutre, Veronique; Jain, Pooja; Quann, Kevin; Wigdahl, Brian; Khan, Zafar K

    2009-01-01

    Human T cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiologic agent for a number of disorders; the two most common pathologies include adult T cell leukemia (ATL) and a progressive demyelinating neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The neurologic dysfunction associated with HAM/TSP is a result of viral intrusion into the central nervous system (CNS) and the generation of a hyperstimulated host response within the peripheral and central nervous system that includes expanded populations of CD4+ and CD8+ T cells and proinflammatory cytokines/chemokines in the cerebrospinal fluid (CSF). This robust, yet detrimental immune response likely contributes to the death of myelin producing oligodendrocytes and degeneration of neuronal axons. The mechanisms of neurological degeneration in HAM/TSP have yet to be fully delineated in vivo and may involve the immunogenic properties of the HTLV-1 transactivator protein Tax. This comprehensive review characterizes the available knowledge to date concerning the effects of HTLV-1 on CNS resident cell populations with emphasis on both viral and host factors contributing to the genesis of HAM/TSP.

  12. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway

    PubMed Central

    Wang, Jiwei; Qi, Qichao; Feng, Zichao; Zhang, Xin; Huang, Bin; Chen, Anjing; Prestegarden, Lars; Li, Xingang; Wang, Jian

    2016-01-01

    There is an urgent need for new therapeutic strategies for patients with glioblastoma multiforme (GBM). Previous studies have shown that berberine (BBR), a natural plant alkaloid, has potent anti-tumor activity. However, the mechanisms leading to cancer cell death have not been clearly elucidated. In this study, we show that BBR has profound effects on the metabolic state of GBM cells, leading to high autophagy flux and impaired glycolytic capacity. Functionally, these alterations reduce the invasive properties, proliferative potential and induce apoptotic cell death. The molecular alterations preceding these changes are characterized by inhibition of the AMPK/mTOR/ULK1 pathway. Finally, we demonstrate that BBR significantly reduces tumor growth in vivo, demonstrating the potential clinical benefits for autophagy modulating plant alkaloids in cancer therapy. PMID:27557493

  13. Research progress on berberine with a special focus on its oral bioavailability.

    PubMed

    Liu, Chang-Shun; Zheng, Yu-Rong; Zhang, Ying-Feng; Long, Xiao-Ying

    2016-03-01

    The natural product berberine (BBR) has become a potential drug in the treatment of diabetes, hyperlipidemia, and cancer. However, the oral delivery of BBR is challenged by its poor bioavailability. It is necessary to improve the oral bioavailability of BBR before it can be used in many clinical applications. Understanding the pharmacokinetic characteristics of BBR will enable the development of suitable formulas that have improved oral bioavailability. The key considerations for BBR are how to enhance the drug absorption and to avoid the intestinal first-pass effect. This review summarizes the pharmacological activities of BBR and analyzes the factors that lead to its poor oral bioavailability. In particular, the therapeutic potential of BBR in new indications from the aspect of oral bioavailability is discussed. In conclusion, BBR is a promising drug candidate for metabolic disorders and cancer but faces considerable challenges due to its poor oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Anticachectic effects of the natural herb Coptidis rhizoma and berberine on mice bearing colon 26/clone 20 adenocarcinoma.

    PubMed

    Iizuka, Norio; Hazama, Shoichi; Yoshimura, Kiyoshi; Yoshino, Shigefumi; Tangoku, Akira; Miyamoto, Koji; Okita, Kiwamu; Oka, Masaaki

    2002-05-10

    We previously showed that the natural herb Coptidis rhizoma has an anticachectic effect in nude mice bearing human esophageal cancer cells. We further investigated this phenomenon by examining the anticachectic effect of C. rhizoma in syngeneic mice bearing colon 26/clone 20 carcinoma cells, which cause IL-6-related cachexia after cell injection. We evaluated nutritional parameters such as serum glucose level and wasting of adipose tissue and muscle in tumor-bearing and non-tumor-bearing mice treated with C. rhizoma (CR) supplement or a normal diet. IL-6 levels in those mice were quantified by ELISA and real-time RT-PCR. CR supplementation significantly attenuated weight loss in tumor-bearing mice without changing food intake or tumor growth. Furthermore, these mice maintained good nutritional status. IL-6 mRNA levels in tumors and spleens and IL-6 protein levels in tumors and sera were significantly lower in tumor-bearing mice treated with CR supplement than in those treated with a normal diet. CR supplementation did not affect food intake, body weight, nutritional parameters and IL-6 levels in non-tumor-bearing mice. An in vitro study showed that C. rhizoma and its major component, berberine, inhibited IL-1-induced IL-6 mRNA expression in a dose-dependent manner in colon 26/clone 20 cells. Our results showed that C. rhizoma exerts an anticachectic effect on colon 26/clone 20-transplanted mice and that its effect is associated with tumor IL-6 production. We also suggest that its effect might be due to berberine. Copyright 2002 Wiley-Liss, Inc.

  15. Characterization of the transient species generated by the photoionization of Berberine: A laser flash photolysis study

    NASA Astrophysics Data System (ADS)

    Cheng, Ling-Li; Wang, Mei; Zhu, Hui; Li, Kun; Zhu, Rong-Rong; Sun, Xiao-Yu; Yao, Si-De; Wu, Qing-Sheng; Wang, Shi-Long

    2009-09-01

    Using 266 nm laser flash photolysis it has been demonstrated that Berberine (BBR) in aqueous solution is ionized via a mono-photonic process giving a hydrated electron, anion radical that formed by hydrated electron react with steady state of BBR, and neutral radical that formed from rapid deprotonation of the radical cation of BBR. The quantum yield of photoionization is determined to be 0.03 at room temperature with KI solution used as a reference. Furthermore utilizing pH changing method and the SO 4rad - radical oxidation method, the assignment of radical cation of BBR was further confirmed, the p Ka value of it was calculated, and the related set up rate constant was also determined.

  16. Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance.

    PubMed

    Ramirez, Karol; Shea, Daniel T; McKim, Daniel B; Reader, Brenda F; Sheridan, John F

    2015-05-01

    Psychosocial stress is associated with altered immunity, anxiety and depression. Previously we showed that repeated social defeat (RSD) promoted microglia activation and social avoidance behavior that persisted for 24days after cessation of RSD. The aim of the present study was to determine if imipramine (a tricyclic antidepressant) would reverse RSD-inducedsocial avoidance and ameliorate neuroinflammatory responses. To test this, C57BL/6 mice were divided into treatment groups. One group from RSD and controls received daily injections of imipramine for 24days, following 6 cycles of RSD. Two other groups were treated with saline. RSD mice spent significantly less time in the interaction zone when an aggressor was present in the cage. Administration of imipramine reversed social avoidance behavior, significantly increasing the interaction time, so that it was similar to that of control mice. Moreover, 24days of imipramine treatment in RSD mice significantly decreased stress-induced mRNA levels for IL-6 in brain microglia. Following ex vivo LPS stimulation, microglia from mice exposed to RSD, had higher mRNA expression of IL-6, TNF-α, and IL-1β, and this was reversed by imipramine treatment. In a second experiment, imipramine was added to drinking water confirming the reversal of social avoidant behavior and decrease in mRNA expression of IL-6 in microglia. These data suggest that the antidepressant imipramine may exert its effect, in part, by down-regulating microglial activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance

    PubMed Central

    Ramirez, Karol; Shea, Daniel T.; McKim, Daniel B.; B.F., Reader; Sheridan, John F.

    2015-01-01

    Psychosocial stress is associated with altered immunity, anxiety and depression. Previously we showed that repeated social defeat (RSD) promoted microglia activation and social avoidance behavior that persisted for 24 days after cessation of RSD. The aim of the present study was to determine if imipramine (a tricyclic antidepressant) would reverse RSD-induced social avoidance and ameliorate neuroinflammatory responses. To test this, C57BL/6 mice were divided into treatment groups. One group from RSD and controls received daily injections of imipramine for 24 days, following 6 cycles of RSD. Two other groups were treated with saline. RSD mice spent significantly less time in the interaction zone when an aggressor was present in the cage. Administration of imipramine reversed social avoidance behavior, significantly increasing the interaction time, so that it was similar to that of control mice. Moreover, 24 days of imipramine treatment in RSD mice significantly decreased stress-induced mRNA levels for IL-6 in brain microglia. Following ex vivo LPS stimulation, microglia from mice exposed to RSD, had higher mRNA expression of IL-6, TNF-α, and IL-1β, and this was reversed by imipramine treatment. In a second experiment, imipramine was added to drinking water confirming the reversal of social avoidant behavior and decrease in mRNA expression of IL-6 in microglia. These data suggest that the antidepressant imipramine may exert its effect, in part, by down-regulating microglial activation. PMID:25701613

  18. The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: Clues for other neuroinflammatory diseases.

    PubMed

    Chiurchiù, Valerio; van der Stelt, Mario; Centonze, Diego; Maccarrone, Mauro

    2018-01-01

    Multiple sclerosis is the most common inflammatory demyelinating disease of the central nervous system, caused by an autoimmune response against myelin that eventually leads to progressive neurodegeneration and disability. Although the knowledge on its underlying neurobiological mechanisms has considerably improved, there is a still unmet need for new treatment options, especially for the progressive forms of the disease. Both preclinical and clinical data suggest that cannabinoids, derived from the Cannabis sativa plant, may be used to control symptoms such as spasticity and chronic pain, whereas only preclinical data indicate that these compounds and their endogenous counterparts, i.e. the endocannabinoids, may also exert neuroprotective effects and slow down disease progression. Here, we review the preclinical and clinical studies that could explain the therapeutic action of cannabinoid-based medicines, as well as the medical potential of modulating endocannabinoid signaling in multiple sclerosis, with a link to other neuroinflammatory disorders that share common hallmarks and pathogenetic features. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Hypobaric Hypoxia Exacerbates the Neuroinflammatory Response to Traumatic Brain Injury

    PubMed Central

    Goodman, Michael D.; Makley, Amy T.; Huber, Nathan L.; Clarke, Callisia N.; Friend, Lou Ann W.; Schuster, Rebecca M.; Bailey, Stephanie R.; Barnes, Stephen L.; Dorlac, Warren C.; Johannigman, Jay A.; Lentsch, Alex B.; Pritts, Timothy A.

    2015-01-01

    Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation. PMID:20850781

  20. Neurosteroid-mediated regulation of brain innate immunity in HIV/AIDS: DHEA-S suppresses neurovirulence.

    PubMed

    Maingat, Ferdinand G; Polyak, Maria J; Paul, Amber M; Vivithanaporn, Pornpun; Noorbakhsh, Farshid; Ahboucha, Samir; Baker, Glen B; Pearson, Keir; Power, Christopher

    2013-02-01

    Neurosteroids are cholesterol-derived molecules synthesized within the brain, which exert trophic and protective actions. Infection by human and feline immunodeficiency viruses (HIV and FIV, respectively) causes neuroinflammation and neurodegeneration, leading to neurological deficits. Secretion of neuroinflammatory host and viral factors by glia and infiltrating leukocytes mediates the principal neuropathogenic mechanisms during lentivirus infections, although the effect of neurosteroids on these processes is unknown. We investigated the interactions between neurosteroid-mediated effects and lentivirus infection outcomes. Analyses of HIV-infected (HIV(+)) and uninfected human brains disclosed a reduction in neurosteroid synthesis enzyme expression. Human neurons exposed to supernatants from HIV(+) macrophages exhibited suppressed enzyme expression without reduced cellular viability. HIV(+) human macrophages treated with sulfated dehydroepiandrosterone (DHEA-S) showed suppression of inflammatory gene (IL-1β, IL-6, TNF-α) expression. FIV-infected (FIV(+)) animals treated daily with 15 mg/kg body weight. DHEA-S treatment reduced inflammatory gene transcripts (IL-1β, TNF-α, CD3ε, GFAP) in brain compared to vehicle-(β-cyclodextrin)-treated FIV(+) animals similar to levels found in vehicle-treated FIV(-) animals. DHEA-S treatment also increased CD4(+) T-cell levels and prevented neurobehavioral deficits and neuronal loss among FIV(+) animals, compared to vehicle-treated FIV(+) animals. Reduced neuronal neurosteroid synthesis was evident in lentivirus infections, but treatment with DHEA-S limited neuroinflammation and prevented neurobehavioral deficits. Neurosteroid-derived therapies could be effective in the treatment of virus- or inflammation-mediated neurodegeneration.

  1. Thermodynamic study on the effects of β-cyclodextrin inclusion with berberine

    NASA Astrophysics Data System (ADS)

    Yu, Jun-Sheng; Wei, Fang-Di; Gao, Wei; Zhao, Chang-Chun

    2002-01-01

    The fluorescence enhancement of berberine (Berb) as a result of complex with β-cyclodextrin (β-CD) is investigated. The association constants of α-CD and β-CD with Berb are 60 and 137 M -1 at 20 °C in pH 7.20 aqueous solution. Effects of temperature on the forming inclusion complexes of β-CD with Berb have been examined through using fluorescence titration. Enthalpy and entropy values calculated from fluorescence data are -33.7·kJ mol -1 and 74.3 J·mol -1·K -1, respectively. It was found that the dielectric constant of β-CD cavity is about 24 in a rough analogy with absolute alcohol. These results suggest that the extrusion of 'high energy water' molecules from the cavity of β-CD and hydrophobic interaction upon the inclusion complex formation are the main forces of the inclusion reaction. Effect of pH on the association of β-CD with Berb was also studied. Mechanism of the inclusion of β-CD with Berb is further studied by absorption and NMR measurements. Results show that β-CD forms a 1:1 inclusion complex with Berb.

  2. Solid dispersion of berberine-phospholipid complex/TPGS 1000/SiO₂: preparation, characterization and in vivo studies.

    PubMed

    Zhang, Zhenhai; Chen, Yan; Deng, Jin; Jia, Xiaobin; Zhou, Jianping; Lv, Huixia

    2014-04-25

    Berberine (Ber), an isoquinoline alkaloid, arouses wide interests in many researchers in recent years because of its numerous new pharmacological actions. However Ber's low oral bioavailability restricts its wide application. In this study, a solid dispersion (BPTS-SD) composed of berberine-phospholipid complex (BPC), D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS 1000) and SiO₂ was prepared by simple solvent evaporation technique. BPC was employed to improve the liposolubility of Ber, and SiO₂ was used to improve the flowability of BPTS-SD, while TPGS 1000 played a dual role: firstly, as a solid dispersion carrier to improve the dissolution rate of BPC and secondly, as a P-glycoprotein (P-gp) inhibitor to enhance the intestinal absorption of Ber. FTIR, DSC and SEM analysis proved the formation of BPC and BPTS-SD. Po/w of BPC successfully increased from 0.25 to 8.75. In vitro dissolution study showed that the cumulative dissolution percentages of BPTS-SDs were nearly 2.67-4.78-folds of BPC. Single-pass intestinal perfusion studies showed that the absorption of Ber in BPC was increased nearly 1.4-2.0-folds compared to that of Ber which was mainly due to the improved liposolubility, and further increased by BPTS-SD around 0.1-1.3-folds compared to that of BPC through the P-gp inhibition of TPGS 1000. Significant improvements in Cmax and AUC₀→t of BPC and BPTS-SD were obtained in pharmacokinetic study (the highest improvement in oral relative bioavailability of BPTS-SD-1 was 322.66% of Ber). All these results indicated that BPTS-SD can be a promising drug delivery system to improve their oral bioavailability for the Ber's analogues. In particular this solid dispersion can be prepared just by a simple method and has a strong feasibility for industrialization. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats

    PubMed Central

    Kim, Byung-Hak; Kim, Myunghwan; Yin, Chang-Hong; Jee, Jun-Goo; Sandoval, Claudio; Lee, Hyejung; Bach, Erika A; Hahm, Dae-Hyun; Baeg, Gyeong-Hun

    2011-01-01

    BACKGROUND AND PURPOSE Many cytokines associated with autoimmune disorders and inflammation have been shown to activate the signalling kinase JAK3, implying that JAK3 plays key roles in the pathogenesis of these diseases. Therefore, investigating the alterations of JAK3 activity and the efficacy of selective JAK3 antagonists in animal models of such disorders is essential to a better understanding of the biology of JAK3 and to assess the potential clinical benefits of JAK3 inhibitors. EXPERIMENTAL APPROACH Through high-throughput cell-based screening using the NCI compound library, we identified NSC163088 (berberine chloride) as a novel inhibitor of JAK3. Specificity and efficacy of this compound were investigated in both cellular and animal models. KEY RESULTS We show that berberine chloride has selectivity for JAK3 over other JAK kinase members, as well as over other oncogenic kinases such as Src, in various cellular assays. Biochemical and modelling studies strongly suggested that berberine chloride bound directly to the kinase domain of JAK3. Also phospho-JAK3 levels were significantly increased in the synovial tissues of rat joints with acute inflammation, and the treatment of these rats with berberine chloride decreased JAK3 phosphorylation and suppressed the inflammatory responses. CONCLUSIONS AND IMPLICATIONS The up-regulation of JAK3/STATs was closely correlated with acute arthritic inflammation and that inhibition of JAK3 activity by JAK3 antagonists, such as berberine chloride, alleviated the inflammation in vivo. PMID:21434883

  4. Synergy of 2-deoxy-D-glucose combined with berberine in inducing the lysosome/autophagy and transglutaminase activation-facilitated apoptosis.

    PubMed

    Halicka, H Dorota; Garcia, Jorge; Li, Jiangwei; Zhao, Hong; Darzynkiewicz, Zbigniew

    2017-02-01

    Utilizing a variety of flow cytometric methods evidence was obtained indicating that a combination of the glucose analog 2-deoxy-D-glucose (2-dG) and the plant alkaloid berberine (BRB) produces synergistic effect in the induction of apoptosis in human lymphoblastoid TK6 cells. The synergistic effect is seen at concentrations of the drugs at which each of them alone shows no cytotoxicity at all. The data suggest that the combination of these drugs, which are known in terms of their overall toxicity, side effects and pharmacokinetics may be considered for further studies as chemopreventive and cancer treatment modalities. Of interest are results indicating that rapamycin, which similarly to BRB, suppresses mTOR signaling, when combined with 2-dG shows no synergistic properties. Metformin, on other hand, requires much higher concentration to show the synergy with 2-dG. Also of interest are the findings pertaining to the methodology of the present study. Specifically, dynamic assessment of cellular viability was performed by using the DRAQ7 cell exclusion fluorochrome present in cultures from 0 to 72 h. Concurrent measurement of lysosomal proton pump using acridine orange as the probe shows activation of lysosomes in the cells treated with 2-dG or BRB alone as well as with the drugs combined. Apoptosis was assessed by measuring DNA fragmentation, cell cycle, activation of caspase-3 and tissue transglutaminase (Tgase). A novel cytometric method was developed based on analysis of lysosomal (acidic vesicles) proton pump in live cells followed by cell lysis with detergent and fluorochrome labeling of proteins and DNA to analyze Tgase activation concurrently with cell cycle, in same population of cells. The data show that the cell subpopulation undergoing apoptosis has increased side (right-angle) light scatter likely due to the presence of the crosslinked (solid state) proteins, the consequence Tgase activation.

  5. Schisantherin A Attenuates Neuroinflammation in Activated Microglia: Role of Nrf2 Activation Through ERK Phosphorylation.

    PubMed

    Li, Chuwen; Chen, Tongkai; Zhou, Hefeng; Zhang, Chao; Feng, Yu; Tang, Fan; Hoi, Maggie Pui-Man; He, Chengwei; Zheng, Ying; Lee, Simon Ming-Yuen

    2018-06-28

    In the present study, we investigated whether schisantherin A (StA) had anti-inflammatory effects under neuroinflammatory conditions. The effects of StA and its underlying mechanisms were examined in lipopolysaccharide (LPS)-activated BV-2 microglial cells by ELISA, qPCR, EMSA, Western blot, and IHC. Firstly, we found that StA inhibited the inflammatory response in LPS-activated BV-2 microglia. Secondly, we found that StA suppressed LPS-induced activation of NF-κB via interfering with degradation of IκB and phosphorylation of IκB, IKK, PI3K/Akt, JNK, and p38 MAPK. Thirdly, StA conferred indirect antioxidative effects via quenching ROS and promoted expression of antioxidant enzymes, including HO-1 and NQO-1, via stimulating activation of Nrf2 pathways. Finally, we demonstrated that anti-neuroinflammatory actions of StA were dependent on ERK phosphorylation-mediated Nrf2 activation. StA induced ERK phosphorylation-mediated Nrf2 activation, which contributed to its anti-inflammation and anti-oxidation. The anti-neuroinflammatory and anti-oxidative effects of StA may show preventive therapeutic potential for various neuroinflammatory disorders. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Gypenoside IX Suppresses p38 MAPK/Akt/NFκB Signaling Pathway Activation and Inflammatory Responses in Astrocytes Stimulated by Proinflammatory Mediators.

    PubMed

    Wang, Xiaoshuang; Yang, Liu; Yang, Li; Xing, Faping; Yang, Hua; Qin, Liyue; Lan, Yunyi; Wu, Hui; Zhang, Beibei; Shi, Hailian; Lu, Cheng; Huang, Fei; Wu, Xiaojun; Wang, Zhengtao

    2017-12-01

    Gypenoside IX (GP IX) is a pure compound isolated from Panax notoginseng. Gypenosides have been implicated to benefit the recovery of enormous neurological disorders. By suppressing the activation of astrocytes, gypenosides can improve the cognitive impairment. However, so far, little is known about whether GP IX could restrain the inflammatory responses in astrocytes or reactive astrogliosis. In present study, the anti-inflammatory effects of GP IX were investigated in reactive astrocytes induced by proinflammatory mediators both in vitro and in vivo. GP IX significantly reduced the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) at either protein or mRNA level in glial cell line C6 cells stimulated by lipopolysaccharide (LPS)/TNF-α combination. It also alleviated the astrogliosis and decreased the production of inflammatory mediators in brain cortex of LPS-treated mice. Further study disclosed that GP IX inhibited nuclear translocation of nuclear factor kappa B (NFκB) and reduced its transcriptional activity. Meanwhile, GP IX significantly attenuated the phosphorylation of NFκB, inhibitor of kappa B (IκB), Akt, and p38 mitogen-activated protein kinase (MAPK) under inflammatory conditions both in vitro and in vivo. These findings indicated that GP IX might suppress reactive astrogliosis by suppressing Akt/p38 MAPK/NFκB signaling pathways. And GP IX might be a promising drug candidate or prodrug for the therapy of neuroinflammatory disorders characterized with reactive astrogliosis.

  7. α-Iso-cubebenol inhibits inflammation-mediated neurotoxicity and amyloid beta 1-42 fibril-induced microglial activation.

    PubMed

    Park, Sun Young; Park, Tae Gyeong; Lee, Sang-Joon; Bae, Yoe-Sik; Ko, Min J; Choi, Young-Whan

    2014-01-01

    To examine the antineuroinflammatory and neuroprotective activity of α-iso-cubebenol and its molecular mechanism of action in amyloid β (Aβ) 1-42 fibril-stimulated microglia. Aβ 1-42 fibrils were used to induce a neuroinflammatory response in murine primary microglia and BV-2 murine microglia cell lines. Cell viability was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, protein expression and phosphorylation were determined by Western blot analysis, and matrix metalloproteinase-9 (MMP-9) activity was determined by gelatin zymography assay. In addition, prostaglandin E2 (PGE2), pro-inflammatory cytokines and chemokines were measured by ELISA, and the transactivity of nuclear factor (NF)-κB was determined by a reporter assay. α-Iso-cubebenol significantly inhibited Aβ 1-42 fibril-induced MMP-9, inducible nitric oxide synthase and cyclooxygenase-2 expressions and activity, without affecting cell viability. α-Iso-cubebenol also suppressed the production of tumour necrosis factor-α, IL-1β, IL-6, monocyte chemoattractant protein-1 and reactive oxygen species in a dose-dependent manner, while decreasing the nuclear translocation and transactivity of NF-κB by inhibiting the phosphorylation and degradation of the inhibitor of κB (IκB)α. α-Iso-cubebenol suppressed the phosphorylation of mitogen-activated protein kinase (MAPK) in Aβ 1-42 fibril-stimulated microglia. Primary cortical neurons were protected by the inhibitory effect of α-iso-cubebenol on Aβ 1-42 fibril-induced neuroinflammatory response. α-Iso-cubebenol suppresses Aβ 1-42 fibril-induced neuroinflammatory molecules in primary microglia via the suppression of NF-κB/inhibitor of κBα and MAPK. Importantly, the antineuroinflammatory potential of α-iso-cubebenol is critical for neuroprotection. © 2013 Royal Pharmaceutical Society.

  8. Unveiling the Mode of Interaction of Berberine Alkaloid in Different Supramolecular Confined Environments: Interplay of Surface Charge between Nano-Confined Charged Layer and DNA.

    PubMed

    Kundu, Niloy; Roy, Arpita; Banik, Debasis; Sarkar, Nilmoni

    2016-02-18

    In this Article, we demonstrate a detailed characterization of binding interaction of berberine chloride (BBCl) with calf-thymus DNA (CT-DNA) in buffer solution as well as in two differently charged reverse micelles (RMs). The photophyscial properties of this alkaloid have been modulated within these microheterogeneous bioassemblies. The mode of binding of this alkaloid with DNA is of debate to date. However, fluorescence spectroscopic measurements, circular dichroism (CD) measurement, and temperature-dependent study unambiguously establish that BBCl partially intercalates into the DNA base pairs. The nonplanarity imposed by partial saturation in their structure causes the nonclassical types of intercalation into DNA. Besides the intercalation, electrostatic interactions also play a significant role in the binding between BBCl and DNA. DNA structure turns into a condensed form after encapsulation into RMs, which is followed by the CD spectra and microscopy study. The probe location and dynamics in the nanopool of the RMs depended on the electrostatic interaction between the charged surfactants and cationic berberine. The structural alteration of CT-DNA from B form to condensed form and the interplay of surface charge between RMs and DNA determine the interaction between the alkaloid and DNA in RMs. Time-resolved study and fluorescence anisotropy measurements successfully provide the binding interaction of BBCl in the nanopool of the RMs in the absence and in the presence of DNA. This study motivates us to judge further the potential applicability of this alkaloid in other biological systems or other biomimicking organized assemblies.

  9. Novel Effect of Berberine on Thermoregulation in Mice Model Induced by Hot and Cold Environmental Stimulation

    PubMed Central

    Lei, Fan; Kheir, Michael M.; Wang, Xin-Pei; Chai, Yu-Shuang; Yuan, Zhi-Yi; Lu, Xi; Xing, Dong-Ming; Du, Feng; Du, Li-Jun

    2013-01-01

    The purpose of this study was to assess the effects of berberine (BBR) on thermoregulation in mice exposed to hot (40°C) and cold (4°C) environmental conditions. Four groups of mice were assembled with three different dosages of BBR (0.2, 0.4, and 0.8 mg/kg) and normal saline (control). In room temperature, our largest dosage of BBR (0.8 mg/kg) can reduce rectal temperatures (Tc) of normal mice. In hot conditions, BBR can antagonize the increasing core body temperature and inhibit the expression of HSP70 and TNFα in mice; conversely, in cold conditions, BBR can antagonize the decreasing core body temperature and enhance the expression of TRPM8. This study demonstrates the dual ability of BBR in maintaining thermal balance, which is of great relevance to the regulation of HSP70, TNFα and TRPM8. PMID:23335996

  10. Genetic Variants of LDLR and PCSK9 Associated with Variations in Response to Antihypercholesterolemic Effects of Armolipid Plus with Berberine

    PubMed Central

    De Castro-Orós, Isabel; Solà, Rosa; Valls, Rosa María; Brea, Angel; Mozas, Pilar; Puzo, Jose; Pocoví, Miguel

    2016-01-01

    Background Armolipid Plus (AP) is a nutraceutical that contains policosanol, fermented rice with red yeast, berberine, coenzyme Q10, folic acid, and astaxanthin. It has been shown to be effective in reducing plasma LDL cholesterol (LDLc) levels. In the multicenter randomized trial NCT01562080, there was large interindividual variability in the plasma LDLc response to AP supplementation. We hypothesized that the variability in LDLc response to AP supplementation may be linked to LDLR and PCSK9 polymorphisms. Material and Methods We sequenced the LDLR 3′ and 5′ untranslated regions (UTR) and the PCSK9 5′ UTR of 102 participants with moderate hypercholesterolemia in trial NCT01562080. In this trial, 50 individuals were treated with AP supplementation and the rest with placebo. Results Multiple linear regression analysis, using the response of LDLc levels to AP as the dependent variable, revealed that polymorphisms rs2149041 (c.-3383C>G) in the PCSK9 5′ UTR and rs14158 (c.*52G>A) in the LDLR 3′ UTR explained 14.1% and 6.4%, respectively, of the variability after adjusting for gender, age, and BMI of individuals. Combining polymorphisms rs2149041 and rs14158 explained 20.5% of this variability (p < 0.004). Conclusions Three polymorphisms in the 3′ UTR region of LDLR, c.*52G>A, c.*504G>A, and c.*773A>G, and two at the 5′ UTR region of PCSK9, c.−3383C>G and c.−2063A>G, were associated with response to AP. These results could explain the variability observed in the response to berberine among people with moderate hypercholesterolemia, and they may be useful in identifying patients who could potentially benefit from supplementation with AP. PMID:27015087

  11. Mechanism and pharmacological rescue of berberine-induced hERG channel deficiency

    PubMed Central

    Yan, Meng; Zhang, Kaiping; Shi, Yanhui; Feng, Lifang; Lv, Lin; Li, Baoxin

    2015-01-01

    Berberine (BBR), an isoquinoline alkaloid mainly isolated from plants of Berberidaceae family, is extensively used to treat gastrointestinal infections in clinics. It has been reported that BBR can block human ether-a-go-go-related gene (hERG) potassium channel and inhibit its membrane expression. The hERG channel plays crucial role in cardiac repolarization and is the target of diverse proarrhythmic drugs. Dysfunction of hERG channel can cause long QT syndrome. However, the regulatory mechanisms of BBR effects on hERG at cell membrane level remain unknown. This study was designed to investigate in detail how BBR decreased hERG expression on cell surface and further explore its pharmacological rescue strategies. In this study, BBR decreases caveolin-1 expression in a concentration-dependent manner in human embryonic kidney 293 (HEK293) cells stably expressing hERG channel. Knocking down the basal expression of caveolin-1 alleviates BBR-induced hERG reduction. In addition, we found that aromatic tyrosine (Tyr652) and phenylalanine (Phe656) in S6 domain mediate the long-term effect of BBR on hERG by using mutation techniques. Considering both our previous and present work, we propose that BBR reduces hERG membrane stability with multiple mechanisms. Furthermore, we found that fexofenadine and resveratrol shorten action potential duration prolongated by BBR, thus having the potential effects of alleviating the cardiotoxicity of BBR. PMID:26543354

  12. Influence of chronic caffeine on MDMA-induced behavioral and neuroinflammatory response in mice.

    PubMed

    Ruiz-Medina, Jessica; Pinto-Xavier, Ana; Rodríguez-Arias, Marta; Miñarro, José; Valverde, Olga

    2013-03-01

    Previous research suggests that chronic daily caffeine administration protects against brain injury in different animal models of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, ischemic and traumatic brain injury, and allergic encephalitis. However, little is known about the effects of chronic caffeine administration on 3,4-methylenedioxymethamphetamine (MDMA)-induced neuroinflammation. The present study examines whether chronic caffeine (10, 20, or 30 mg/kg, i.p, for 21 consecutive days) protects against MDMA-induced astrocytic and microglial activation in mice striatum, impairing its neuroinflammatory effects. Additionally, locomotor activity, sensoriomotor reflexes, body temperature, and anxiety were evaluated after caffeine injection on days 0 (basal), 7, 14, and 21 of the chronic treatment in order to assess possible behavioral alterations due to caffeine administration. On day 22, mice pretreated with caffeine or saline received a neurotoxic regimen of MDMA (3 × 20 mg/kg, i.p., 2-h interval) or saline, and changes in body temperature were evaluated. Forty-eight hours after last MDMA or saline injection (day 24), the aforementioned behavioral parameters were investigated and microglia and astroglia activation to MDMA treatment was examined in the mouse striatum. Caffeine (10 mg/kg) chronically administered completely prevented MDMA-induced glial activation without inducing physiological or behavioral alterations in any of the assays performed. Chronic caffeine consumption at low doses exerts anti-inflammatory effects and prevents MDMA-induced neuroinflammation.

  13. Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor

    PubMed Central

    Petersen, Charisse; Novis, Camille L.; Kubinak, Jason L.; Bell, Rickesha; Stephens, W. Zac; Lane, Thomas E.; Fujinami, Robert S.; Bosque, Alberto; O’Connell, Ryan M.; Round, June L.

    2017-01-01

    Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease. PMID:28487480

  14. Cleome rutidosperma and Euphorbia thymifolia Suppress Inflammatory Response via Upregulation of Phase II Enzymes and Modulation of NF-κB and JNK Activation in LPS-Stimulated BV2 Microglia

    PubMed Central

    Ding, Hsiou-Yu; Wu, Pei-Shan; Wu, Ming-Jiuan

    2016-01-01

    Cleome rutidosperma DC. and Euphorbia thymifolia L. are herbal medicines used in traditional Indian and Chinese medicine to treat various illnesses. Reports document that they have antioxidant and anti-inflammatory activities; nonetheless, the molecular mechanisms involved in their anti-inflammatory actions have not yet been elucidated. The anti-neuroinflammatory activities and underlying mechanisms of ethanol extracts of Cleome rutidosperma (CR) and Euphorbia thymifolia (ET) were studied using lipopolysaccharide (LPS)-stimulated microglial cell line BV2. The morphology changes and production of pro-inflammatory mediators were assayed. Gene expression of inflammatory genes such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1β, and CC chemokine ligand (CCL)-2, as well as phase II enzymes such as heme oxygenase (HO)-1, the modifier subunit of glutamate cysteine ligase (GCLM) and NAD(P)H quinone dehydrogenase 1 (NQO1), were further investigated using reverse transcription quantitative-PCR (RT-Q-PCR) and Western blotting. The effects of CR and ET on mitogen activated protein kinases (MAPKs) and nuclear factor (NF)-κB signaling pathways were examined using Western blotting and specific inhibitors. CR and ET suppressed BV2 activation, down-regulated iNOS and COX-2 expression and inhibited nitric oxide (NO) overproduction without affecting cell viability. They reduced LPS-mediated tumor necrosis factor (TNF) and IL-6 production, attenuated IL-1β and CCL2 expression, but upregulated HO-1, GCLM and NQO1 expression. They also inhibited p65 NF-κB phosphorylation and modulated Jun-N terminal kinase (JNK) activation in BV2 cells. SP600125, the JNK inhibitor, significantly augmented the anti-IL-6 activity of ET. NF-κB inhibitor, Bay 11-7082, enhanced the anti-IL-6 effects of both CR and ET. Znpp, a competitive inhibitor of HO-1, attenuated the anti-NO effects of CR and ET. Our results show that CR and ET exhibit anti-neuroinflammatory

  15. Release behavior and kinetic evaluation of berberine hydrochloride from ethyl cellulose/chitosan microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-Yun; Cao, Pei-Pei; Zhao, Jie; Wang, Zhi-Ying; Li, Jun-Bo; Zhang, Fa-Liang

    2014-12-01

    Novel ethyl cellulose/chitosan microspheres (ECCMs) were prepared by the method of w/o/w emulsion and solvent evaporation. The microspheres were spherical, adhesive, and aggregated loosely with a size not bigger than 5 μm. The drug loading efficiency of berberine hydrochloride (BH) loaded in microspheres were affected by chitosan (CS) concentration, EC concentration and the volume ratio of V(CS)/ V(EC). ECCMs prepared had sustained release efficiency on BH which was changed with different preparation parameters. In addition, the pH value of release media had obvious effect on the release character of ECCMs. The release rate of BH from sample B was only a little more than 30% in diluted hydrochloric acid (dHCl) and that was almost 90% in PBS during 24 h. Furthermore, the drug release data were fitted to different kinetic models to analyze the release kinetics and the mechanism from the microspheres. The released results of BH indicated that ECCMs exhibited non-Fickian diffusion mechanism in dHCl and diffusion-controlled drug release based on Fickian diffusion in PBS. So the ECCMs might be an ideal sustained release system especially in dHCl and the drug release was governed by both diffusion of the drug and dissolution of the polymeric network.

  16. A room-temperature protocol to access isoquinolines through Ag(I) catalysed annulation of o-(1-alkynyl)arylaldehydes and ketones with NH4OAc: elaboration to berberine and palmatine.

    PubMed

    Reddy, Virsinha; Jadhav, Abhijeet S; Vijaya Anand, Ramasamy

    2015-03-28

    An efficient and mild protocol for the direct construction of aryl- and alkyl-substituted isoquinolines has been realized through silver nitrate catalyzed aromatic annulation of o-(1-alkynyl)arylaldehydes and ketones with ammonium acetate. The salient feature of this methodology is that this annulation could be effected at room temperature leading to a wide range of isoquinoline derivatives in good to excellent yields. Additionally, this approach has been employed to the synthesis of biologically important isoquinoline alkaloids such as berberine and palmatine.

  17. A Lifespan Approach to Neuroinflammatory and Cognitive Disorders: A Critical Role for Glia

    PubMed Central

    Bilbo, Staci D.; Smith, Susan H.; Schwarz, Jaclyn M.

    2011-01-01

    Cognitive decline is a common problem of aging. Whereas multiple neural and glial mechanisms may account for these declines, microglial sensitization and/or dystrophy has emerged as a leading culprit in brain aging and dysfunction. However, glial activation is consistently observed in normal brain aging as well, independent of frank neuroinflammation or functional impairment. Such variability suggests the existence of additional vulnerability factors that can impact neuronal-glial interactions and thus overall brain and cognitive health. The goal of this review is to elucidate our working hypothesis that an individual‘s risk or resilience to neuroinflammatory disorders and poor cognitive aging may critically depend on their early life experience, which can change immune reactivity within the brain for the remainder of the lifespan. For instance, early-life infection in rats can profoundly disrupt memory function in young adulthood, as well as accelerate age-related cognitive decline, both of which are linked to enduring changes in glial function that occur in response to the initial infection. We discuss these findings within the context of the growing literature on the role of immune molecules and neuroimmune crosstalk in normal brain development. We highlight the intrinsic factors (e.g., chemokines, hormones) that regulate microglial development and their colonization of the embryonic and postnatal brain, and the capacity for disruption or “re-programming” of this crucial process by external events (e.g, stress, infection). An impact on glia, which in turn alters neural development, has the capacity to profoundly impact cognitive and mental health function at all stages of life. PMID:21822589

  18. Cerebrospinal fluid monocyte chemoattractant protein-1 in alcoholics: support for a neuroinflammatory model of chronic alcoholism.

    PubMed

    Umhau, John C; Schwandt, Melanie; Solomon, Matthew G; Yuan, Peixiong; Nugent, Allison; Zarate, Carlos A; Drevets, Wayne C; Hall, Samuel D; George, David T; Heilig, Markus

    2014-05-01

    Liver inflammation in alcoholism has been hypothesized to influence the development of a neuroinflammatory process in the brain characterized by neurodegeneration and altered cognitive function. Monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) elevations have been noted in the alcoholic brain at autopsy and may have a role in this process. We studied cerebrospinal fluid (CSF) levels of MCP-1 as well as interleukin-1β and tumor necrosis factor-α in 13 healthy volunteers and 28 alcoholics during weeks 1 and 4 following detoxification. Serum liver enzymes were obtained as markers of alcohol-related liver inflammation. Compared to healthy volunteers, MCP-1 levels were significantly higher in alcoholics both on day 4 and day 25 (p < 0.0001). Using multiple regression analysis, we found that MCP-1 concentrations were positively associated with the liver enzymes gamma glutamyltransferase (GGT; p = 0.03) and aspartate aminotransferase/glutamic oxaloacetic transaminase (AST/GOT; p = 0.004). These preliminary findings are consistent with the hypothesis that neuroinflammation as indexed by CSF MCP-1 is associated with alcohol-induced liver inflammation, as defined by peripheral concentrations of GGT and AST/GOT. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. The neuroinflammatory phenotype in a mouse model of Gulf War Illness is unrelated to brain regional levels of acetylcholine as measured by quantitative HILIC-UPLC-MS/MS.

    PubMed

    Miller, Julie V; LeBouf, Ryan F; Kelly, Kimberly A; Michalovicz, Lindsay T; Ranpara, Anand; Locker, Alicia R; Miller, Diane B; O'Callaghan, James P

    2018-05-28

    Many veterans of the 1991 Persian Gulf War (GW) returned with a chronic multisymptom illness that has been termed Gulf War Illness (GWI). Previous GWI studies have suggested that exposure to acetylcholinesterase inhibitors (AChEIs) in theater, such as sarin and/or pesticides, may have contributed to the symptomatology of GWI. Additionally, concomitant high physiological stress experienced during the war may have contributed to the initiation of the GWI phenotype. While inhibition of AChE leading to accumulation of acetylcholine (ACh) will activate the cholinergic anti-inflammatory pathway, the signature symptomatology of GWI has been shown to be associated with neuroinflammation. To investigate the relationship between ACh and neuroinflammation in discrete brain regions, we used our previously established mouse model of GWI, which combines an exposure to a high physiological stress mimic, corticosterone (CORT), with GW-relevant AChEIs. The AChEIs used in this study were diisopropyl fluorophosphate (DFP), chlorpyrifos oxon (CPO), and physostigmine (PHY). After AChEI exposure, ACh concentrations for cortex (CTX), hippocampus (HIP), and striatum (STR) were determined using hydrophilic interaction liquid chromatography (HILIC) with ultra-performance liquid chromatography (UPLC)-tandem-mass spectrometry (MS/MS). CORT pretreatment ameliorated the DFP-induced ACh increase in HIP and STR, but not CTX. CORT pretreatment did not significantly alter ACh levels for CPO and PHY. Further analysis of STR neuroinflammatory biomarkers revealed an exacerbated CORT+AChEI response, which does not correspond to measured brain ACh. By utilizing this new analytical method for discrete brain region analysis of ACh, this work suggests the exacerbated neuroinflammatory effects in our mouse model of GWI are not driven by the accumulation of brain region-specific ACh.

  20. Berberine and zinc oxide-based nanoparticles for the chemo-photothermal therapy of lung adenocarcinoma.

    PubMed

    Kim, Sungyun; Lee, Song Yi; Cho, Hyun-Jong

    2018-05-16

    Organic/inorganic hydrid nanoparticles (NPs) composed of berberine (BER) and zinc oxide (ZnO) were developed for the therapy of lung cancers. Without the use of pharmaceutical excipients, NPs were fabricated with only dual anticancer agents (BER and ZnO) by facile blending method. The mean weight ratio between BER and ZnO in BER-ZnO NPs was 39:61 in this study. BER-ZnO NPs dispersed in water exhibited 200-300 nm hydrodynamic size under 5 mg/mL concentration. The exposure of both BER and ZnO in the outer layers of BER-ZnO NPs was identified by X-ray photoelectron spectroscopy analysis. The amorphization of BER and the maintenance of ZnO structure were observed in the results of X-ray powder diffractometer analysis. Improved antiproliferation efficacy, based on the chemo-photothermal therapeutic efficacy, of BER-ZnO NPs in A549 (human lung adenocarcinoma) cells was presented. According to the blood tests in rats after intravenous administration, BER-ZnO NPs did not induce severe hepatotoxicity, renal toxicity, and hemotoxicity. Developed BER-ZnO NPs can be used efficiently and safely for the chemo-photothermal therapy of lung cancers. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Berberine exerts antioxidant effects via protection of spiral ganglion cells against cytomegalovirus-induced apoptosis.

    PubMed

    Zhuang, Wei; Li, Ting; Wang, Caiji; Shi, Xi; Li, Yalan; Zhang, Shili; Zhao, Zeqi; Dong, Hongyan; Qiao, Yuehua

    2018-06-01

    Cytomegalovirus (CMV) is the leading cause of sensorineural hearing loss (SNHL) in children because of its damage to the cochlea and spiral ganglion cells. Therefore, it has become a top priority to devise new methods to effectively protect spiral ganglion cells from damage. Berberine (BBR) has gained attention for its vast beneficial biological effects through immunomodulation, and its anti-inflammatory and anti-apoptosis properties. However, the effect of BBR on spiral ganglion cells and molecular mechanisms are still unclear. This study aims to investigate whether BBR has an anti-apoptosis effect in CMV-induced apoptosis in cultured spiral ganglion cells and explore the possible mechanism. In this study, TUNEL and MTT assays significantly demonstrated that low doses of BBR did not promote cell apoptosis and they also inhibited the CMV-induced cultured spiral ganglion cell apoptosis. Immunofluorescence and Western blot assays indicated that the anti-apoptosis effect of BBR was related to Nox3. Mitochondrial calcium and Western blot assays revealed that NMDAR1 mediated this anti-apoptosis effect. Our results demonstrated that BBR exerted an anti-apoptosis effect against CMV in cultured spiral ganglion cells, and the mechanism is related to NMDAR1/Nox3-mediated mitochondrial reactive oxygen species (ROS) generation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity.

    PubMed

    Jiang, Jiahua; Eliaz, Isaac; Sliva, Daniel

    2011-06-01

    Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3.3'-diinodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer.

  3. Preparation and adsorption behavior of berberine hydrochloride imprinted polymers by using silica gel as sacrificed support material

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Yuzhuo; Li, Zhiping; Peng, Xiyang; Li, Yanan; Li, Gui; Tan, Xianzhou; Chen, Gongxi

    2012-03-01

    Preparation of berberine hydrochloride (B-Cl) imprinted polymers (MIPs) based on surface imprinting technique with silica gel as sacrificial support material was performed successfully by using B-Cl as template, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The prepared polymers were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption behavior of the MIPs for the template and its structural analogues was investigated. Sites distribution on the surface of MIPs was explored by using different isotherm adsorption models and thermodynamic parameters for the adsorption of B-Cl on the MIPs determined. Sample application and reusability for the MIPs was also evaluated. Results indicated the strong adsorption and high selectivity of the MIPs for B-Cl. Saturated adsorption capacity reached 27.2 μmol g-1 and the selectivity coefficient of the MIPs for B-Cl relative to jatrorrhizine hydrochloride (J-Cl) and palmatine palmatus hydrochloride (P-Cl) are 3.70 and 6.03, respectively. In addition, the MIPs were shown with good reusability and selectively retention ability in sample application.

  4. The natural compound berberine positively affects macrophage functions involved in atherogenesis.

    PubMed

    Zimetti, F; Adorni, M P; Ronda, N; Gatti, R; Bernini, F; Favari, E

    2015-02-01

    We investigated the effect of berberine (BBR), an alkaloid showing antiatherogenic properties beyond the cholesterol lowering capacity, on macrophage cholesterol handling upon exposure to human serum and on macrophage responses to excess free cholesterol (FC) loading. Mouse and human macrophages were utilized as cellular models. Cholesterol content was measured by a fluorimetric assay; cholesterol efflux, cytotoxicity and membrane FC distribution were evaluated by radioisotopic assays. Monocyte chemotactic protein-1 (MCP-1) secretion was measured by ELISA; membrane ruffling and macropinocytosis were visualized by confocal microscopy. Exposure of cholesterol-enriched MPM to serum in the presence of 1 μM BBR resulted in a reduction of intracellular cholesterol content twice greater than exposure to serum alone (-52%; p < 0.01 and -21%; p < 0.05), an effect not mediated by an increase of cholesterol efflux, but rather by the inhibition of cholesterol uptake from serum. Consistently, BBR inhibited in a dose-dependent manner cholesterol accumulation in human macrophages exposed to hypercholesterolemic serum. Confocal microscope analysis revealed that BBR inhibited macropinocytosis, an independent-receptor process involved in LDL internalization. Macrophage FC-enrichment increased MCP-1 release by 1.5 folds, increased cytotoxicity by 2 fold, and induced membrane ruffling; all these responses were markedly inhibited by BBR. FC-enrichment led to an increase in plasma membrane cholesterol by 4.5 folds, an effect counteracted by BBR. We showed novel potentially atheroprotective activities of BBR in macrophages, consisting in the inhibition of serum-induced cholesterol accumulation, occurring at least in part through an impairment of macropinocytosis, and of FC-induced deleterious effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Synthesis and biological evaluation of new berberine derivatives as cancer immunotherapy agents through targeting IDO1.

    PubMed

    Wang, Yan-Xiang; Pang, Wei-Qiang; Zeng, Qing-Xuan; Deng, Zhe-Song; Fan, Tian-Yun; Jiang, Jian-Dong; Deng, Hong-Bin; Song, Dan-Qing

    2018-01-01

    To discover small-molecule cancer immunotherapy candidates through targeting Indoleamine 2,3-dioxygenase 1 (IDO1), twenty-five new berberine (BBR) derivatives defined with substituents on position 3 or 9 were synthesized and examined for repression of IFN-γ-induced IDO1 promoter activities. Structure-activity relationship (SAR) indicated that large volume groups at the 9-position might be beneficial for potency. Among them, compounds 2f, 2i, 2n, 2o and 8b exhibited increased activities, with inhibition rate of 71-90% compared with BBR. Their effects on IDO1 expression were further confirmed by protein level as well. Furthermore, compounds 2i and 2n exhibited anticancer activity by enhancing the specific lysis of NK cells to A549 through IDO1, but not cytotoxicity. Preliminary mechanism revealed that both of them inhibited IFN-γ-induced IDO1 expression through activating AMPK and subsequent inhibition of STAT1 phosphorylation. Therefore, compounds 2i and 2n have been selected as IDO1 modulators for small-molecule cancer immunotherapy for next investigation. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  6. Sustained release effects of berberine-loaded chitosan microspheres on in vitro chondrocyte culture.

    PubMed

    Zhou, Yan; Liu, Shiqing; Ming, Jianghua; Li, Yaming; Deng, Ming; He, Bin

    2017-10-01

    The low bioavailability and short biological half-life of berberine chloride (BBR) negatively affect the protective role of this compound against osteoarthritis (OA). The present study was performed to evaluate the effectiveness of sustained BBR release system. Novel BBR-loaded chitosan microspheres (BBR-loaded CMs) were successfully synthesized using an ionic cross-linking method for sustained release. The basic characteristics of the prepared microspheres were subsequently evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) techniques, encapsulation efficiency (EE), and in vitro release experiments. BBR-loaded CMs displayed spherical forms to encapsulate a considerable quantity of BBR (100.8 ± 2.7 mg/g); these microspheres also exhibited an ideal releasing profile. The FT-IR spectra and XRD results revealed that BBR-loaded CMs were successfully synthesized via electrostatic interaction. In vitro experiments further showed that BBR-loaded CMs significantly inhibited sodium nitroprusside (SNP)-stimulated chondrocyte apoptosis as well as cytoskeletal remodeling, and led to increasing mitochondrial membrane potential and maintaining the nuclear morphology. BBR-loaded CMs exerted markedly higher anti-apoptotic activity in the treatment of OA, and markedly inhibited the protein expression levels of caspase-3, a disintegrin, and metalloproteinase with thrombospondin motifs (ADAMTS)-5 and matrix metalloproteinase (MMP)-13 induced by SNP in rat articular chondrocytes, compared with free BBR at equivalent concentration. Therefore, novel BBR-loaded CMs may offer potential for application in the treatment of OA.

  7. The Crosstalk Between Nrf2 and AMPK Signal Pathways Is Important for the Anti-Inflammatory Effect of Berberine in LPS-Stimulated Macrophages and Endotoxin-Shocked Mice

    PubMed Central

    Mo, Chunfen; Wang, Ling; Zhang, Jie; Numazawa, Satoshi; Tang, Hong; Tang, Xiaoqiang; Han, XiaoJuan; Li, Junhong; Yang, Ming; Wang, Zhe; Wei, Dandan

    2014-01-01

    Abstract Aims: The response of AMP-activated protein kinase (AMPK) to oxidative stress has been recently reported but the downstream signals of this response are largely unknown. Meanwhile, the upstream events for the activation of nuclear factor erythroid-2-related factor-2 (Nrf2), a critical transcriptional activator for antioxidative responses, remain unclear. In the present study, we investigated the relationship between AMPK and Nrf2 signal pathways in lipopolysaccharide (LPS)-triggered inflammatory system, in which berberine (BBR), a known AMPK activator, was used for inflammation suppression. Results and Innovation: In inflammatory macrophages, BBR attenuated LPS-induced expression of inflammatory genes (inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX2], interleukin [IL]-6), and the generation of nitric oxide and reactive oxygen species, but increased the transcription of Nrf2-targeted antioxidative genes (NADPH quinone oxidoreductase-1 [NQO-1], heme oxygenase-1 [HO-1]), as well as the nuclear localization and phosphorylation of Nrf2 protein. Importantly, we found BBR-induced activation of Nrf2 is AMPK-dependent, as either pharmacologically or genetically inactivating AMPK blocked the activation of Nrf2. Consistent with in vitro experiments, BBR down-regulated the expression of proinflammatory genes but upregulated those of Nrf2-targeted genes in lungs of LPS-injected mice, and these effects were attenuated in Nrf2-deficient mice. Moreover, the effect of BBR on survival time extension and plasma redox regulation in endotoxin-shocked mice was largely weakened when Nrf2-depleted. Conclusions: Our results demonstrate convergence between AMPK and Nrf2 pathways and this intersection is essential for anti-inflammatory effect of BBR in LPS-stimulated macrophages and endotoxin-shocked mice. Uncovering this intersection is significant for understanding the relationship between energy homeostasis and antioxidative responses and may be beneficial for

  8. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.

    PubMed

    Daniel, Bastian; Konrad, Barbara; Toplak, Marina; Lahham, Majd; Messenlehner, Julia; Winkler, Andreas; Macheroux, Peter

    2017-10-15

    Biological oxidations form the basis of life on earth by utilizing organic compounds as electron donors to drive the generation of metabolic energy carriers, such as ATP. Oxidative reactions are also important for the biosynthesis of complex compounds, i.e. natural products such as alkaloids that provide vital benefits for organisms in all kingdoms of life. The vitamin B 2 -derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) enable an astonishingly diverse array of oxidative reactions that is based on the versatility of the redox-active isoalloxazine ring. The family of FAD-linked oxidases can be divided into subgroups depending on specific sequence features in an otherwise very similar structural context. The sub-family of berberine bridge enzyme (BBE)-like enzymes has recently attracted a lot of attention due to the challenging chemistry catalyzed by its members and the unique and unusual bi-covalent attachment of the FAD cofactor. This family is the focus of the present review highlighting recent advancements into the structural and functional aspects of members from bacteria, fungi and plants. In view of the unprecedented reaction catalyzed by the family's namesake, BBE from the California poppy, recent studies have provided further insights into nature's treasure chest of oxidative reactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents.

    PubMed

    Jeyakkumar, Ponmani; Zhang, Ling; Avula, Srinivasa Rao; Zhou, Cheng-He

    2016-10-21

    A series of novel berberine-benzimidazole derivatives were conveniently and efficiently synthesized and characterized by NMR, IR, MS and HRMS spectra. Most of the prepared compounds showed effective antimicrobial activities in contrast with clinical norfloxacin, chloromycin and fluconazole. Especially, compound 5d exhibited good anti-MRSA, anti-Escherichia coli, and anti-Salmonella typhi activity with low MIC values of 2-8 μg/mL, which were comparable or even superior to reference drugs. The preliminarily interactive investigation revealed that the most active compound 5d could effectively intercalate into DNA to form 5d-DNA complex and cleavage DNA by agarose gel electrophoresis experiments. It was also found that compound 5d was able to efficiently permeabilize the membranes of both Gram-positive (MRSA) and Gram-negative (E. coli DH52) bacteria. Experiments and molecular docking both showed that human serum albumin (HSA) could effectively transport compound 5d and hydrophobic interactions and hydrogen bonds play important roles in the association of compound 5d with HSA. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Potential importance of B cells in aging and aging-associated neurodegenerative diseases.

    PubMed

    Biragyn, Arya; Aliseychik, Maria; Rogaev, Evgeny

    2017-04-01

    Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.

  11. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders.

    PubMed

    Bhandari, Ranjana; Kuhad, Anurag

    2017-02-01

    Neuronal dysfunction caused by neuroinflammation triggered by the stimulation of matrix metalloproteinases and the subsequent release of pro-inflammatory cytokines, as a result of oxidative stress and mitochondrial dysfunction, is one of the probable mechanisms involved in the pathogenesis of autism spectrum disorders (ASD). The aim of the present study was to explore the ameliorative potential of resveratrol on neuroinflammation in the experimental paradigm of neuroinflammatory model of ASD in rats. 1M Propanoic acid (PPA) (4 μl) was infused over 10 min into the anterior portion of the lateral ventricle to induce ASD like symptoms in rats. Resveratrol (5, 10 and 15 mg/kg) was administered starting from the 2nd day of the surgery and continued upto 28th day. Rats were tested for various behavioural paradigms such as social interaction, stereotypy, locomotor activity, anxiety, novelty, depression, spatial learning, memory, repetitive and pervasive behaviour between the 7th day and 28th day. In addition, biochemical tests for oxidative stress, mitochondrial complexes, TNF-α and MMP-9 were also assessed. Treatment with resveratrol for four weeks restored, significantly and dose dependently, all the neurological, sensory, behavioural, biochemical and molecular deficits in PPA induced autistic phenotype in rats. The major finding of the study is that resveratrol restored the core and associated symptoms of autistic phenotype by suppressing oxidative-nitrosative stress, mitochondrial dysfunction, TNF-α and MMP-9 expression in PPA induced ASD in rats. Therefore, resveratrol might serve as an adjunct potential therapeutic agent for amelioration of neurobehavioural and biochemical deficits associated with autism spectrum disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In vitro and in vivo antitumor efficacy of berberine-nanostructured lipid carriers against H22 tumor

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-ping; Wu, Jun-biao; Chen, Tong-sheng; Zhou, Qun; Wang, Yi-fei

    2015-03-01

    Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded nanostructured lipid carriers (Ber-NLC) was prepared by hot melting and then high pressure homogenization technique. Both in vitro and in vivo anti-hepatocarcinoma effects of Ber-NLC relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NLC were 189.3 nm and -19.3 mV, respectively. MTT assay showed that Ber-NLC effectively inhibited the proliferation of H22 cells, and the corresponding IC50 values were 6.3 μg/ml (22.1 μg/ml of bulk Ber). In vivo studies also showed higher antitumor efficacy, and inhibition rates was 68.3 % (41.4 % of bulk Ber) at 100 mg/kg intragastric administration in the H22 solid tumor bearing mice. These results suggest that the delivery of Ber-NLC is a promising approach for treating tumors.

  13. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle - Berberine complexes in a mouse model.

    PubMed

    Sreeja, S; Krishnan Nair, C K

    2018-02-15

    To evaluate the therapeutic efficacy of hypoxic cell-sensitizer Sanazole (SAN) -directed targeting of cytotoxic drug Berberine (BBN) and Iron-oxide nanoparticle (NP) complexes, to solid tumor in Swiss albino mice. NP-BBN-SAN complexes were characterized by FTIR, XRD, TEM and Nano-size analyzer. This complex was orally administered to mice-bearing solid tumor in hind limb. Tumor regression was analysed by measuring tumor volume. Cellular DNA damages were assessed by comet assay. Transcriptional expression of genes related to tumor hypoxia and apoptosis was evaluated by quantitative real-time PCR and morphological changes in tissues were analysed by histopathology. Also levels of antioxidants and tumor markers in tissues and serum biochemical parameters were analysed. Administration of NP-BBN-SAN complexes reduced tumor volume and studies were focussed on the underlying mechanisms. Extensive damage to cellular-DNA; down-regulated transcription of hif-1α, vegf, akt and bcl2; and up-regulated expression of bax and caspases, were observed in tumor. Results on tumor markers, antioxidant-status and serum parameters corroborated the molecular findings. Histopathology of tumor, liver and kidney revealed the therapeutic specificity of NP-BBN-SAN. Thus SAN and NP can be used for specific targeting of drugs, to hypoxic solid tumor, to improve therapeutic efficacy. Copyright © 2017. Published by Elsevier Inc.

  14. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases.

    PubMed

    McCubrey, James A; Lertpiriyapong, Kvin; Steelman, Linda S; Abrams, Steve L; Cocco, Lucio; Ratti, Stefano; Martelli, Alberto M; Candido, Saverio; Libra, Massimo; Montalto, Giuseppe; Cervello, Melchiorre; Gizak, Agnieszka; Rakus, Dariusz

    2017-08-01

    Natural products or nutraceuticals promote anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. This review will focus on the effects of curcumin (CUR), berberine (BBR) and resveratrol (RES), on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway, with a special focus on GSK-3. These natural products may regulate the pathway by multiple mechanisms including: reactive oxygen species (ROS), cytokine receptors, mirco-RNAs (miRs) and many others. CUR is present the root of turmeric (Curcuma longa). CUR is used in the treatment of many disorders, especially in those involving inflammatory processes which may contribute to abnormal proliferation and promote cancer growth. BBR is also isolated from various plants (Berberis coptis and others) and is used in traditional medicine to treat multiple diseases/conditions including: diabetes, hyperlipidemia, cancer and bacterial infections. RES is present in red grapes, other fruits and berries such as blueberries and raspberries. RES may have some anti-diabetic and anti-cancer effects. Understanding the effects of these natural products on the PI3K/PTEN/Akt/mTORC1/GSK-3 pathway may enhance their usage as anti-proliferative agent which may be beneficial for many health problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sub-chronic exposure to the insecticide dimethoate induces a proinflammatory status and enhances the neuroinflammatory response to bacterial lypopolysaccharide in the hippocampus and striatum of male mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astiz, Mariana, E-mail: marianaastiz@gmail.com; Diz-Chaves, Yolanda, E-mail: ydiz@cajal.csic.es; Garcia-Segura, Luis M., E-mail: lmgs@cajal.csic.es

    Dimethoate is an organophosphorus insecticide extensively used in horticulture. Previous studies have shown that the administration of dimethoate to male rats, at a very low dose and during a sub-chronic period, increases the oxidation of lipids and proteins, reduces the levels of antioxidants and impairs mitochondrial function in various brain regions. In this study, we have assessed in C57Bl/6 adult male mice, whether sub-chronic (5 weeks) intoxication with a low dose of dimethoate (1.4 mg/kg) affects the expression of inflammatory molecules and the reactivity of microglia in the hippocampus and striatum under basal conditions and after an immune challenge causedmore » by the systemic administration of lipopolysaccharide. Dimethoate increased mRNA levels of tumor necrosis factor α (TNFα) and interleukin (IL) 6 in the hippocampus, and increased the proportion of Iba1 immunoreactive cells with reactive phenotype in dentate gyrus and striatum. Lipopolysaccharide caused a significant increase in the mRNA levels of IL1β, TNFα, IL6 and interferon-γ-inducible protein 10, and a significant increase in the proportion of microglia with reactive phenotype in the hippocampus and the striatum. Some of the effects of lipopolysaccharide (proportion of Iba1 immunoreactive cells with reactive phenotype and IL6 mRNA levels) were amplified in the animals treated with dimethoate, but only in the striatum. These findings indicate that a sub-chronic period of administration of a low dose of dimethoate, comparable to the levels of the pesticide present as residues in food, causes a proinflammatory status in the brain and enhances the neuroinflammatory response to the lipopolysaccharide challenge with regional specificity. - Highlights: • The dose of pesticide used was comparable to the levels of residues found in food. • Dimethoate administration increased cytokine expression and microglia reactivity. • Hippocampus and striatum were differentially affected by the treatment

  16. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs.

    PubMed

    McCubrey, James A; Lertpiriyapong, Kvin; Steelman, Linda S; Abrams, Steve L; Yang, Li V; Murata, Ramiro M; Rosalen, Pedro L; Scalisi, Aurora; Neri, Luca M; Cocco, Lucio; Ratti, Stefano; Martelli, Alberto M; Laidler, Piotr; Dulińska-Litewka, Joanna; Rakus, Dariusz; Gizak, Agnieszka; Lombardi, Paolo; Nicoletti, Ferdinando; Candido, Saverio; Libra, Massimo; Montalto, Giuseppe; Cervello, Melchiorre

    2017-06-12

    Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric ( Curcuma longa ). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants ( e.g., Coptis chinensis ) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.

  17. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs

    PubMed Central

    McCubrey, James A.; Lertpiriyapong, Kvin; Steelman, Linda S.; Abrams, Steve L.; Yang, Li V.; Murata, Ramiro M.; Rosalen, Pedro L.; Scalisi, Aurora; Neri, Luca M.; Cocco, Lucio; Ratti, Stefano; Martelli, Alberto M.; Laidler, Piotr; Dulińska-Litewka, Joanna; Rakus, Dariusz; Gizak, Agnieszka; Lombardi, Paolo; Nicoletti, Ferdinando; Candido, Saverio; Libra, Massimo; Montalto, Giuseppe; Cervello, Melchiorre

    2017-01-01

    Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health. PMID:28611316

  18. Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice.

    PubMed

    Wang, Lijun; Ye, Xiao; Hua, Yanyin; Song, Yingxiang

    2018-05-28

    Adipose tissue fibrosis is a novel mechanism for the development of obesity related insulin resistance. Berberine (BBR) has been shown to relieve several metabolic disorders, including obesity and type 2 diabetes. However, the effects of BBR on obesity related adipose fibrosis remain poorly understood. The objective of this study was to assess the effects of BBR on adipose tissue fibrosis in high fat diet (HFD)-induced obese mice. The results showed that BBR reduced animal body weight and significantly improved glucose tolerance in HFD mice. In addition, BBR treatment markedly attenuated collagen deposition and reversed the up-regulation of fibrosis associated genes in the adipose tissue of HFD mice. Moreover, BBR treatment activated AMP-activated kinase signaling and reduced TGF-β1 and Smad3 phosphorylation. Of note, the inhibitory effects of BBR on adipose tissue fibrosis were significantly blocked by AMPK inhibition with compound C, an AMPK inhibitor. Macrophage infiltration and polarization induced by HFD were also reversed after BBR administration. These findings suggest that BBR displays beneficial effects in the treatment of obesity, in part via improvement of adipose tissue fibrosis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA).

    PubMed

    Zuo, Guo-Ying; Li, Yang; Han, Jun; Wang, Gen-Chun; Zhang, Yun-Ling; Bian, Zhong-Qi

    2012-08-29

    Antibacterial activity of berberine (Ber) and 8-acetonyl-dihydroberberine (A-Ber) alone and combined uses with antibacterial agents ampicillin (AMP), azithromycin (AZM), cefazolin (CFZ) and levofloxacin (LEV) was studied on 10 clinical isolates of SCCmec III type methicillin-resistant Staphylococcus aureus (MRSA). Susceptibility to each agent alone was tested using a broth microdilution method and the chequerboard and time-kill tests for the combined evaluations, respectively. The alone MICs/MBCs (μg/mL) ranges were 32-128/64-256 (Ber) and 32-128/128-512 (A-Ber). Significant synergies were observed for the Ber (A-Ber)/AZM and Ber (A-Ber)/LEV combinations against 90% of the tested MRSA strains, with fractional inhibitory concentration indices (FICIs) values ranged from 0.188 to 0.500. An additivity result was also observed for the Ber/AZM combination by time-kill curves. These results demonstrated for the first time that Ber and A-Ber enhanced the in vitro inhibitory efficacy of AZM and LEV to a same extent, which had potential for further investigation in combinatory therapeutic applications of patients infected with MRSA.

  20. Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage.

    PubMed

    Pascual, María; Baliño, Pablo; Alfonso-Loeches, Silvia; Aragón, Carlos M G; Guerri, Consuelo

    2011-06-01

    Toll-like receptors (TLRs) play an important role in the innate immune response, and emerging evidence indicates their role in brain injury and neurodegeneration. Our recent results have demonstrated that ethanol is capable of activating glial TLR4 receptors and that the elimination of these receptors in mice protects against ethanol-induced glial activation, induction of inflammatory mediators and apoptosis. This study was designed to assess whether ethanol-induced inflammatory damage causes behavioral and cognitive consequences, and if behavioral alterations are dependent of TLR4 functions. Here we show in mice drinking alcohol for 5months, followed by a 15-day withdrawal period, that activation of the astroglial and microglial cells in frontal cortex and striatum is maintained and that these events are associated with cognitive and anxiety-related behavioral impairments in wild-type (WT) mice, as demonstrated by testing the animals with object memory recognition, conditioned taste aversion and dark and light box anxiety tasks. Mice lacking TLR4 receptors are protected against ethanol-induced inflammatory damage, and behavioral associated effects. We further assess the possibility of the epigenetic modifications participating in short- or long-term behavioral effects associated with neuroinflammatory damage. We show that chronic alcohol treatment decreases H4 histone acetylation and histone acetyltransferases activity in frontal cortex, striatum and hippocampus of WT mice. Alterations in chromatin structure were not observed in TLR4(-/-) mice. These results provide the first evidence of the role that TLR4 functions play in the behavioral consequences of alcohol-induced inflammatory damage and suggest that the epigenetic modifications mediated by TLR4 could contribute to short- or long-term alcohol-induced behavioral or cognitive dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Cyclooxygenase-2 inhibitor blocks the production of West Nile virus-induced neuroinflammatory markers in astrocytes.

    PubMed

    Verma, Saguna; Kumar, Mukesh; Nerurkar, Vivek R

    2011-03-01

    Inflammatory immune responses triggered initially to clear West Nile virus (WNV) infection later become detrimental and contribute to the pathological processes such as blood-brain barrier (BBB) disruption and neuronal death, thus complicating WNV-associated encephalitis (WNVE). It has been demonstrated previously that WNV infection in astrocytes results in induction of multiple matrix metalloproteinases (MMPs), which mediate BBB disruption. Cyclooxygenase (COX) enzymes and their product, prostaglandin E2 (PGE2), modulate neuroinflammation and regulate the production of multiple inflammatory molecules including MMPs. Therefore, this study determined and characterized the pathophysiological consequences of the expression of COX enzymes in human brain cortical astrocytes (HBCAs) following WNV infection. Whilst COX-1 mRNA expression did not change, WNV infection significantly induced RNA and protein expression of COX-2 in HBCAs. Similarly, PGE2 production was also enhanced significantly in infected HBCAs and was blocked in the presence of the COX-2-specific inhibitor NS-398, thus suggesting that COX-2, and not COX-1, was the source of the increased PGE2. Treatment of infected HBCAs with NS-398 attenuated the expression of MMP-1, -3 and -9 in a dose-dependent manner. Similarly, expression of interleukin-1β, -6 and -8, which were markedly elevated in infected HBCAs, exhibited a significant reduction in their levels in the presence of NS-398. These results provide direct evidence that WNV-induced COX-2/PGE2 is involved in modulating the expression of multiple neuroinflammatory mediators, thereby directly linking COX-2 with WNV disease pathogenesis. The ability of COX-2 inhibitors to modulate WNV-induced COX-2 and PGE2 signalling warrants further investigation in an animal model as a potential approach for clinical management of neuroinflammation associated with WNVE.

  2. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense.

    PubMed

    Walters, Edgar T

    2014-08-01

    Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Nutritional supplementation of hop rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produces a favorable bone biomarker profile supporting healthy bone metabolism in postmenopausal women with metabolic syndrome.

    PubMed

    Lamb, Joseph J; Holick, Michael F; Lerman, Robert H; Konda, Veera R; Minich, Deanna M; Desai, Anuradha; Chen, Tai C; Austin, Melissa; Kornberg, Jacob; Chang, Jyh-Lurn; Hsi, Alex; Bland, Jeffrey S; Tripp, Matthew L

    2011-05-01

    Metabolic syndrome poses additional risk for postmenopausal women who are already at risk for osteoporosis. We hypothesized that a nutritional supplement containing anti-inflammatory phytochemicals and essential bone nutrients would produce a favorable bone biomarker profile in postmenopausal women with metabolic syndrome. In this 14-week, randomized trial, 51 women were instructed to consume a modified Mediterranean-style, low-glycemic-load diet and to engage in aerobic exercise. Those in the intervention arm (n = 25) additionally received 200 mg hop rho iso-alpha acids, 100 mg berberine sulfate trihydrate, 500 IU vitamin D₃, and 500 μg vitamin K₁ twice daily. Forty-five women completed the study. Baseline nutrient intake did not differ between arms. Compared with baseline, the intervention arm exhibited an approximate 25% mean decrease (P < .001) in serum osteocalcin (indicative of bone turnover), whereas the placebo arm exhibited a 21% increase (P = .003). Serum 25-hydroxyvitamin D increased 23% (P = .001) in the intervention arm and decreased 12% (P = .03) in the placebo arm. The between-arm differences for osteocalcin and 25-hydroxyvitamin D were statistically significant. Serum insulin-like growth factor I was statistically increased in both arms, but the between-arm differences were not statistically significant. Subanalysis showed that among those in the highest tertile of baseline insulin-like growth factor I, the intervention arm exhibited a significant increase in amino-terminal propeptide of type I collagen, whereas the placebo arm showed a significant decrease at 14 weeks. Treatment with rho iso-alpha acids, berberine, vitamin D₃, and vitamin K₁ produced a more favorable bone biomarker profile indicative of healthy bone metabolism in postmenopausal women with metabolic syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients

    PubMed Central

    Rao, Jagadeesh Sridhara; Kim, Hyung-Wook; Harry, Gaylia Jean; Rapoport, Stanley Isaac; Reese, Edmund Arthur

    2013-01-01

    Schizophrenia (SZ) is a progressive, neuropsychiatric disorder associated with cognitive impairment. A number of brain alterations have been linked to cognitive impairment, including neuroinflammation, excitotoxicity, increased arachidonic acid (AA) signaling and reduced synaptic protein. On this basis, we tested the hypothesis that SZ pathology is associated with these pathological brain changes. To do this, we examined postmortem frontal cortex from 10 SZ patients and 10 controls and measured protein and mRNA levels of cytokines, and astroglial, microglial, neuroinflammatory excitotoxic, AA cascade, apoptotic and synaptic markers. Mean protein and mRNA levels of interleukin-1β, tumor necrosis factor-α, glial acidic fibrillary protein (GFAP), a microglial marker CD11b, and nuclear factor kappa B subunits were significantly increased in SZ compared with control brain. Protein and mRNA levels of cytosolic and secretory phospholipase A2 and cyclooxygenase were significantly elevated in postmortem brains from SZ patients. N-methyl-D-aspartate receptor subunits 1 and 2B, inducible nitric oxide synthase and c-FOS were not significantly different. In addition, reduced protein and mRNA levels of brain-derived neurotrophic factor, synaptophysin and drebrin were found in SZ compared with control frontal cortex. Increased neuroinflammation and AA cascade enzyme markers with synaptic protein loss could promote disease progression and cognitive defects in SZ patients. Drugs that downregulate these changes might be considered for new therapies in SZ. PMID:23566496

  5. Lipopolysaccharide-Induced Behavioral Alterations Are Alleviated by Sodium Phenylbutyrate via Attenuation of Oxidative Stress and Neuroinflammatory Cascade.

    PubMed

    Jangra, Ashok; Sriram, Chandra Shaker; Lahkar, Mangala

    2016-08-01

    Oxido-nitrosative stress, neuroinflammation, and reduced level of neurotrophins are implicated in the pathophysiology of anxiety and depressive illness. A few recent studies have revealed the role of endoplasmic reticulum (ER) stress in the pathophysiology of stress and depression. The aim of the present study is to investigate the neuroprotective potential of sodium phenylbutyrate (SPB), an ER stress inhibitor against lipopolysaccharide (LPS)-induced anxiety and depressive-like behavior in Swiss albino mice. Anxiety and depressive-like behavior was induced by LPS (0.83 mg/kg; i.p.) administration. Various behavioral tests were conducted to evaluate the anxiety and depressive-like behavior in mice. Real-time PCR was employed for the detection and expression of ER stress markers (78-kDa glucose-regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Pretreatment with SPB significantly ameliorated the LPS-induced anxiety and depressive-like behavior as revealed by behavioral paradigm results. LPS-induced oxidative stress was ameliorated by SPB pretreatment in hippocampus (HC) and prefrontal cortex (PFC) region. Neuroinflammation was significantly reduced by SPB pretreatment in LPS-treated mice as evident from reduction in proinflammatory cytokines (IL-1β and TNF-α). Importantly, LPS administration significantly up-regulated the GRP78 mRNA expression level in the HC which suggests the involvement of unfolded protein response (UPR) in LPS-evoked behavioral anomalies. These results highlight the neuroprotective potential of SPB in LPS-induced anxiety and depressive illness model which may be partially due to inhibition of oxidative stress-neuroinflammatory cascade.

  6. Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat

    PubMed Central

    Williams, Anthony J; Wei, Hans H; Dave, Jitendra R; Tortella, Frank C

    2007-01-01

    Background Neuroinflammation following acute brain trauma is considered to play a prominent role in both the pathological and reconstructive response of the brain to injury. Here we characterize and contrast both an acute and delayed phase of inflammation following experimental penetrating ballistic brain injury (PBBI) in rats out to 7 days post-injury. Methods Quantitative real time PCR (QRT-PCR) was used to evaluate changes in inflammatory gene expression from the brain tissue of rats exposed to a unilateral frontal PBBI. Brain histopathology was assessed using hematoxylin and eosin (H&E), silver staining, and immunoreactivity for astrocytes (GFAP), microglia (OX-18) and the inflammatory proteins IL-1β and ICAM-1. Results Time course analysis of gene expression levels using QRT-PCR indicated a peak increase during the acute phase of the injury between 3–6 h for the cytokines TNF-α (8–11 fold), IL-1β (11–13 fold), and IL-6 (40–74 fold) as well as the cellular adhesion molecules VCAM (2–3 fold), ICAM-1 (7–15 fold), and E-selectin (11–13 fold). Consistent with the upregulation of pro-inflammatory genes, peripheral blood cell infiltration was a prominent post-injury event with peak levels of infiltrating neutrophils (24 h) and macrophages (72 h) observed throughout the core lesion. In regions of the forebrain immediately surrounding the lesion, strong immunoreactivity for activated astrocytes (GFAP) was observed as early as 6 h post-injury followed by prominent microglial reactivity (OX-18) at 72 h and resolution of both cell types in cortical brain regions by day 7. Delayed thalamic inflammation (remote from the primary lesion) was also observed as indicated by both microglial and astrocyte reactivity (72 h to 7 days) concomitant with the presence of fiber degeneration (silver staining). Conclusion In summary, PBBI induces both an acute and delayed neuroinflammatory response occurring in distinct brain regions, which may provide useful diagnostic

  7. Differential mRNA expression of neuroinflammatory modulators in the spinal cord and thalamus of type 2 diabetic monkeys.

    PubMed

    Ding, Huiping; Kiguchi, Norikazu; Kishioka, Shiroh; Ma, Tao; Peters, Christopher M; Ko, Mei-Chuan

    2018-05-11

    Given that diabetes-associated complications are closely associated with neuroinflammation, it is imperative to study potential changes in neuroinflammatory modulators in the central nervous system of diabetic primates. The mRNA levels of pro- and anti-inflammatory cytokines, toll-like receptors (TLRs), growth factors, and cannabinoid receptors were compared in the spinal dorsal horn (SDH) and thalamus of naturally occurring type 2 diabetic monkeys and an age-matched control group using reverse transcription and quantitative real-time polymerase chain reaction. In the SDH of diabetic monkeys, mRNA levels of proinflammatory cytokines (i.e. interleukin [IL]-1β and tumor necrosis factor [TNF] α), TLR1, and TLR2 were increased, whereas mRNA levels of IL-10, an anti-inflammatory cytokine, were decreased. No changes were observed in the mRNA levels of growth factors and cannabinoid receptors. In line with the mRNA data, TNFα immunoreactivity was significantly increased in diabetic monkeys. Moreover, mRNA expression levels of IL-1β, TNFα, TLR1, and TLR2 in the SDH were positively correlated with plasma glucose concentrations in all monkeys. Several ligands and receptors involved in neuroinflammation are simultaneously dysregulated in the spinal cord of diabetic monkeys. This primate disease model will facilitate the design of novel treatment approaches to ameliorate neuroinflammation-driven adverse effects in diabetic patients. © 2018 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  8. Sieving characteristics of cytokine- and peroxide-induced epithelial barrier leak: Inhibition by berberine

    PubMed Central

    DiGuilio, Katherine M; Mercogliano, Christina M; Born, Jillian; Ferraro, Brendan; To, Julie; Mixson, Brittany; Smith, Allison; Valenzano, Mary Carmen; Mullin, James M

    2016-01-01

    AIM: To study whether the inflammatory bowel disease (IBD) colon which exhibits varying severity and cytokine levels across its mucosa create varying types of transepithelial leak. METHODS: We examined the effects of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1-β (IL1β) and hydrogen peroxide (H2O2) - singly and in combinations - on barrier function of CACO-2 cell layers. Our focus was on the type (not simply the magnitude) of transepithelial leak generated by these agents as measured by transepithelial electrical resistance (TER) and transepithelial flux of 14C-D-mannitol, 3H-Lactulose and 14C-Polyethylene glycol as radiolabeled probe molecules. The isoquinoline alkaloid, berberine, was then examined for its ability to reduce specific types of transepithelial leak. RESULTS: Exposure to TNF-α alone (200 ng/mL; 48 h) induced a 50% decrease in TER, i.e., increased leak of Na+ and Cl- - with only a marginal but statistically significant increase in transepithelial leak of 14C-mannitol (Jm). Exposure to TNF-α + IFN-γ (200 ng/mL; 48 h) + IL1β (50 ng/mL; 48 h) did not increase the TER change (from TNF-α alone), but there was now a 100% increase in Jm. There however was no increase in transepithelial leak of two larger probe molecules, 3H-lactulose and 14C-polyethylene glycol (PEG). However, exposure to TNF-α + IFN-γ + IL1β followed by a 5 h exposure to 2 mmol/L H2O2 resulted in a 500% increase in 14C-PEG leak as well as leak to the luminal mitogen, epidermal growth factor. CONCLUSION: This model of graded transepithelial leak is useful in evaluating therapeutic agents reducing IBD morbidity by reducing barrier leak to various luminal substances. PMID:27190695

  9. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  10. Berberine Regulates Treg/Th17 Balance to Treat Ulcerative Colitis Through Modulating the Gut Microbiota in the Colon.

    PubMed

    Cui, Huantian; Cai, Yuzi; Wang, Li; Jia, Beitian; Li, Junchen; Zhao, Shuwu; Chu, Xiaoqian; Lin, Jin; Zhang, Xiaoyu; Bian, Yuhong; Zhuang, Pengwei

    2018-01-01

    Berberine (BBR), an alkaloid isolated from Rhizoma Coptidis, Cortex Phellode , and Berberis , has been widely used in the treatment of ulcerative colitis (UC). However, the mechanism of BBR on UC is unknown. In this study, we investigated the activities of T regulatory cell (Treg) and T helper 17 cell (Th17) in a dextran sulfate sodium (DSS)-induced UC mouse model after BBR administration. We also investigated the changes of gut microbiota composition using 16S rRNA analysis. We also examined whether BBR could regulate the Treg/Th17 balance by modifying gut microbiota. The mechanism was further confirmed by depleting gut microbiota through a combination of antibiotic treatment and fecal transplantations. Results showed that BBR treatment could improve the Treg/Th17 balance in the DSS-induced UC model. BBR also reduced diversity of the gut microbiota and interfered with the relative abundance of Desulfovibrio, Eubacterium , and Bacteroides. Moreover, BBR treatment did not influence the Treg/Th17 balance after the depletion of gut microbiota. Our results also revealed that fecal transplantation from BBR-treated mice could relieve UC and regulate the Treg/Th17 balance. In conclusion, our study provides evidence that BBR prevents UC by modifying gut microbiota and regulating the balance of Treg/Th17.

  11. Identification of berberine as a direct thrombin inhibitor from traditional Chinese medicine through structural, functional and binding studies

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Zhang, Yuxin; Yang, Ying; Wu, Xia; Fan, Hantian; Qiao, Yanjiang

    2017-03-01

    Thrombin acts as a key enzyme in the blood coagulation cascade and represents a potential drug target for the treatment of several cardiovascular diseases. The aim of this study was to identify small-molecule direct thrombin inhibitors from herbs used in traditional Chinese medicine (TCM). A pharmacophore model and molecular docking were utilized to virtually screen a library of chemicals contained in compositions of traditional Chinese herbs, and these analyses were followed by in vitro bioassay validation and binding studies. Berberine (BBR) was first confirmed as a thrombin inhibitor using an enzymatic assay. The BBR IC50 value for thrombin inhibition was 2.92 μM. Direct binding studies using surface plasmon resonance demonstrated that BBR directly interacted with thrombin with a KD value of 16.39 μM. Competitive binding assay indicated that BBR could bind to the same argartroban/thrombin interaction site. A platelet aggregation assay demonstrated that BBR had the ability to inhibit thrombin-induced platelet aggregation in washed platelets samples. This study proved that BBR is a direct thrombin inhibitor that has activity in inhibiting thrombin-induced platelet aggregation. BBR may be a potential candidate for the development of safe and effective thrombin-inhibiting drugs.

  12. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes.

    PubMed

    Tyler, Christina R; Zychowski, Katherine E; Sanchez, Bethany N; Rivero, Valeria; Lucas, Selita; Herbert, Guy; Liu, June; Irshad, Hammad; McDonald, Jacob D; Bleske, Barry E; Campen, Matthew J

    2016-12-01

    Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE -/- ) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE -/- animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE -/- mice including Il-1β, IL-6, Tgf-β and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1β, and Tnf-α. Interestingly, Il-6 and Tgf-β expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-β in the ApoE -/- hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. Inflammatory responses the lung and brain were most substantial in ApoE -/- animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and

  13. Jet noise suppression

    NASA Astrophysics Data System (ADS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-08-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  14. The effect of berberine on insulin resistance in women with polycystic ovary syndrome: detailed statistical analysis plan (SAP) for a multicenter randomized controlled trial.

    PubMed

    Zhang, Ying; Sun, Jin; Zhang, Yun-Jiao; Chai, Qian-Yun; Zhang, Kang; Ma, Hong-Li; Wu, Xiao-Ke; Liu, Jian-Ping

    2016-10-21

    Although Traditional Chinese Medicine (TCM) has been widely used in clinical settings, a major challenge that remains in TCM is to evaluate its efficacy scientifically. This randomized controlled trial aims to evaluate the efficacy and safety of berberine in the treatment of patients with polycystic ovary syndrome. In order to improve the transparency and research quality of this clinical trial, we prepared this statistical analysis plan (SAP). The trial design, primary and secondary outcomes, and safety outcomes were declared to reduce selection biases in data analysis and result reporting. We specified detailed methods for data management and statistical analyses. Statistics in corresponding tables, listings, and graphs were outlined. The SAP provided more detailed information than trial protocol on data management and statistical analysis methods. Any post hoc analyses could be identified via referring to this SAP, and the possible selection bias and performance bias will be reduced in the trial. This study is registered at ClinicalTrials.gov, NCT01138930 , registered on 7 June 2010.

  15. Deconstructing continuous flash suppression

    PubMed Central

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular “Mondrian” CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS. PMID:22408039

  16. Deconstructing continuous flash suppression.

    PubMed

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  17. Pharmacological properties of traditional medicine (XXXII): protective effects of hangeshashinto and the combinations of its major constituents on gastric lesions in rats.

    PubMed

    Kawashima, Keiko; Fujimura, Yu; Makino, Toshiaki; Kano, Yoshihiro

    2006-09-01

    The protective effect of Hangeshashinto (HST) and its major constituents, baicalin (BA), berberine (BE), saponin fraction of ginseng (GS) and glycyrrhizin (GL) on rat gastric lesion induced by ethanol was examined to clarify its active ingredients and action mechanism. Oral treatment with HST at the doses of 125 and 250 mg/kg suppressed ethanol-induced gastric lesions. The mixture of BA, BE, GL and GS (4M), each of BE, GL and GS at the dosage corresponded to HST (125 mg/kg) also suppressed the ethanol-induced gastric lesion in rats, but BA did not. Treatment of ethanol augmented the activity of myeloperoxidase (MPO) in the stomach, which was significantly suppressed by the administration of HST, BE, GL and GS. These results suggest that the protective effect of HST on ethanol-induced gastric lesion was depended on BE, GL and GS, by, in part, the reduction of MPO activity in stomach.

  18. Dexamethasone suppression test

    MedlinePlus

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  19. Fire Suppression and Response

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?

  20. Suppression on your own terms: internally generated displays of craving suppression predict rebound effects.

    PubMed

    Sayers, W Michael; Sayette, Michael A

    2013-09-01

    Research on emotion suppression has shown a rebound effect, in which expression of the targeted emotion increases following a suppression attempt. In prior investigations, participants have been explicitly instructed to suppress their responses, which has drawn the act of suppression into metaconsciousness. Yet emerging research emphasizes the importance of nonconscious approaches to emotion regulation. This study is the first in which a craving rebound effect was evaluated without simultaneously raising awareness about suppression. We aimed to link spontaneously occurring attempts to suppress cigarette craving to increased smoking motivation assessed immediately thereafter. Smokers (n = 66) received a robust cued smoking-craving manipulation while their facial responses were videotaped and coded using the Facial Action Coding System. Following smoking-cue exposure, participants completed a behavioral choice task previously found to index smoking motivation. Participants evincing suppression-related facial expressions during cue exposure subsequently valued smoking more than did those not displaying these expressions, which suggests that internally generated suppression can exert powerful rebound effects.

  1. Traditional Chinese Medicine in Treatment of Metabolic Syndrome

    PubMed Central

    Yin, Jun; Zhang, Hanjie; Ye, Jianping

    2008-01-01

    In management of metabolic syndrome, the traditional Chinese medicine (TCM) is an excellent representative in alternative and complementary medicines with a complete theory system and substantial herb remedies. In this article, basic principle of TCM is introduced and 22 traditional Chinese herbs are reviewed for their potential activities in the treatment of metabolic syndrome. Three herbs, ginseng, rhizoma coptidis (berberine, the major active compound) and bitter melon, were discussed in detail on their therapeutic potentials. Ginseng extracts made from root, rootlet, berry and leaf of Panax quinquefolium (American ginseng) and Panax ginseng (Asian ginseng), are proved for anti-hyperglycemia, insulin sensitization, islet protection, anti-obesity and anti-oxidation in many model systems. Energy expenditure is enhanced by ginseng through thermogenesis. Ginseng-specific saponins (ginsenosides) are considered as the major bioactive compounds for the metabolic activities of ginseng. Berberine from rhizoma coptidis is an oral hypoglycemic agent. It also has anti-obesity and anti-dyslipidemia activities. The action mechanism is related to inhibition of mitochondrial function, stimulation of glycolysis, activation of AMPK pathway, suppression of adipogenesis and induction of low-density lipoprotein (LDL) receptor expression. Bitter melon or bitter gourd (Momordica charantia) is able to reduce blood glucose and lipids in both normal and diabetic animals. It may also protect β cells, enhance insulin sensitivity and reduce oxidative stress. Although evidence from animals and humans consistently supports the therapeutic activities of ginseng, berberine and bitter melon, multi-center large-scale clinical trials have not been conducted to evaluate the efficacy and safety of these herbal medicines. PMID:18537696

  2. Antihyperglycemia and Antihyperlipidemia Effect of Protoberberine Alkaloids From Rhizoma Coptidis in HepG2 Cell and Diabetic KK-Ay Mice.

    PubMed

    Ma, Hang; Hu, Yinran; Zou, Zongyao; Feng, Min; Ye, Xiaoli; Li, Xuegang

    2016-06-01

    Preclinical Research Rhizoma Coptidis (RC), the root of Coptis chinensis Franch, a species in the genus Coptis (family Ranunculaceae), has been commonly prescribed for the treatment of diabetes in Chinese traditional herbal medicine applications. The present study is focused on the assessment of the antihyperglycemia and antidiabetic hyperlipidemia effect of five protoberberine alkaloids, berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI), and jatrorrhizine (JAT), separated from R. Coptidis in hepatocellular carcinoma HepG2 cells and diabetic KK-Ay mice. Protoberberine alkaloids are effective in modulating hyperglycemia and hyperlipidemia. After adding BBR and COP to culture medium, glucose consumption of HepG2 cells was increased. In KK-Ay mice assays, suppressed fasting blood glucose level and ameliorated glucose tolerance were observed after BBR/COP administration. After treated with berberine and coptisine, in the same dose of 5 µg/mL, the glucose consumption of HepG2 cells were promoted and, respectively, reached 96.1% and 17.6%. Body weight, food consumption, water intake, and urinary output of KK-Ay mice were reduced after treated with EPI. Serum total cholesterol and triglyceride of mice were decreased after treated with palmatine and jatrorrhizine. Serum high-density lipoprotein cholesterol of mice was increased after palmatine, jatrorrhizine, and berberine administrated. Moreover, hepatomegaly was attenuated in JTR-treated mice. Suggested that these protoberberine alkaloids from R. Coptidis have potential curative effect for diabetes. Drug Dev Res 77 : 163-170, 2016.   © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine.

    PubMed

    Qin, Xia; Guo, Bingshi T; Wan, Bing; Fang, Lei; Lu, Limin; Wu, Lili; Zang, Ying Qin; Zhang, Jingwu Z

    2010-08-01

    Berberine (BBR), an isoquinoline alkaloid derived from plants, is widely used as an anti-inflammatory remedy in traditional Chinese medicine. In this study, we showed that BBR was efficacious in the amelioration of experimental autoimmune encephalomyelitis (EAE) through novel regulatory mechanisms involving pathogenic Th1 and Th17 cells. BBR inhibited differentiation of Th17 cells and, to a lesser degree, Th1 cells through direct actions on the JAK/STAT pathway, whereas it had no effect on the relative number of CD4(+)Foxp3(+) regulatory T cells. In addition, BBR indirectly influenced Th17 and Th1 cell functions through its effect on the expression and function of costimulatory molecules and the production of IL-6, which was attributable to the inhibition of NF-kappaB activity in CD11b(+) APCs. BBR treatment completely abolished the encephalitogenicity of MOG(35-55)-reactive Th17 cells in an adoptive transfer EAE model, and the same treatment significantly inhibited the ability of MOG(35-55)-reactive Th1 cells to induce EAE. This study provides new evidence that natural compounds, such as BBR, are of great value in the search for novel anti-inflammatory agents and therapeutic targets for autoimmune diseases.

  4. Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation.

    PubMed

    Gupta, Muskan; Kaur, Gurcharan

    2018-05-30

    Reactive gliosis, microgliosis, and subsequent secretion of various inflammatory mediators like cytokines, proteases, reactive oxygen, and nitrogen species are the suggested key players associated with systemic inflammation-driven neuroinflammation and cognitive impairments in various neurological disorders. Conventionally, non-steroidal anti-inflammatory drugs are prescribed to suppress inflammation but due to their adverse effects, their usage is not well accepted. Natural products are emerging better therapeutic agents due to their affordability and inherent pleiotropic biological activities. In Ayurveda, Ashwagandha (Withania somnifera) is well known for its immunomodulatory properties. The current study is an extension of our previous report on in vitro model system and was aimed to investigate anti-neuroinflammatory potential of water extract from the Ashwagandha leaves (ASH-WEX) against systemic LPS-induced neuroinflammation and associated behavioral impairments using in vivo rat model system. Oral feeding of ASH-WEX for 8 weeks significantly ameliorated the anxiety-like behavior as evident from Elevated plus maze test. Suppression of reactive gliosis, inflammatory cytokines production like TNF-α, IL-1β, IL-6, and expression of nitro-oxidative stress enzymes like iNOS, COX2, NOX2 etc were observed in ASH-WEX-treated animals. NFκB, P38, and JNK MAPKs pathways analysis showed their involvement in inflammation suppression which was further confirmed by inhibitor studies. The current study provides first ever preclinical evidence and scientific validation that ASH-WEX exhibits the anti-neuroinflammatory potential against systemic LPS-induced neuroinflammation and ameliorates associated behavioral abnormalities. Aqueous extract from Ashwagandha leaves and its active phytochemicals may prove to be promising candidates to prevent neuroinflammation associated with various neuropathologies.

  5. Suppression sours sacrifice: emotional and relational costs of suppressing emotions in romantic relationships.

    PubMed

    Impett, Emily A; Kogan, Aleksandr; English, Tammy; John, Oliver; Oveis, Christopher; Gordon, Amie M; Keltner, Dacher

    2012-06-01

    What happens when people suppress their emotions when they sacrifice for a romantic partner? This multimethod study investigates how suppressing emotions during sacrifice shapes affective and relationship outcomes. In Part 1, dating couples came into the laboratory to discuss important romantic relationship sacrifices. Suppressing emotions was associated with emotional costs for the partner discussing his or her sacrifice. In Part 2, couples participated in a 14-day daily experience study. Within-person increases in emotional suppression during daily sacrifice were associated with decreases in emotional well-being and relationship quality as reported by both members of romantic dyads. In Part 3, suppression predicted decreases in relationship satisfaction and increases in thoughts about breaking up with a romantic partner 3 months later. In the first two parts of the study, authenticity mediated the costly effects of suppression. Implications for research on close relationships and emotion regulation are discussed.

  6. Costunolide inhibits proinflammatory cytokines and iNOS in activated murine BV2 microglia.

    PubMed

    Rayan, Nirmala Arul; Baby, Nimmi; Pitchai, Daisy; Indraswari, Fransisca; Ling, Eng-Ang; Lu, Jia; Dheen, Thameem

    2011-06-01

    Costunolide, a sesquiterpene lactone present in Costus speciosus root exerts a variety of pharmacological activity but its effects on neuroinflammation have not been studied. Microglia, the resident phagocytic cells in the central nervous system respond to neuroinflammation and their overwhelming response in turn aggravate brain damage during infection, ischemia and neurodegenerative diseases. In this study, we report the effect of Costunolide on the production of proinflammatory mediators and mechanisms involved in BV2 microglial cells stimulated with LPS. Costunolide attenuated the expression of tumour necrosis factor-alpha, interleukin-1,6, inducible nitric oxide synthase, monocyte chemotactic protein 1 and cyclooxygenase 2 in activated microglia. This Costunolide-mediated inhibition was correspondent with the inhibition of NFkappaB activation. It has been further shown that Costunolide suppressed MAPK pathway activation by inducing MKP-1 production. Collectively our results suggest that Costunolide shows an ability to inhibit expression of multiple neuroinflammatory mediators and this is attributable to the compounds inhibition of NFkappaB and MAPK activation. This novel role of Costunolide upon investigation may aid in developing better therapeutic strategies for treatment of neuroinflammatory diseases.

  7. [Primary study on fluro [ 19F] berberine derivative for human hepatocellular carcinoma targetting in vitro].

    PubMed

    Zhang, Tong; Wu, Xiaoai; Cai, Huawei; Liang, Meng; Fan, Chengzhong

    2017-04-01

    [ 18 F]HX-01, a Fluorine-18 labeled berberine derivative, is a potential positron emission tomography (PET) tumor imaging agent, while [ 19 F]HX-01 is a nonradioactive reference substance with different energy state and has the same physical and chemical properties. In order to collect data for further study of [ 18 F]HX-01 PET imaging of hepatocellular carcinoma in vivo , this study compared the uptake of [ 19 F]HX-01 by human hepatocellular carcinoma and normal hepatocytes in vitro . The target compound, [ 19 F]HX-01, was synthesized in one step using berberrubine and 3-fluoropropyl 4-methylbenzenesulfonate. Cellular uptake and localization of [ 19 F]HX-01 were performed by a fluorescence microscope in human hepatocellular carcinoma HepG2, SMMC-7721 and human normal hepatocyte HL-7702. Cellular proliferation inhibition and cell cytotoxicity assay of the [ 19 F]HX-01 were conducted using cell counting kit-8 (CCK-8) on HepG2, SMMC-7721 and HL-7702 cells. Fluorescent microscopy showed that the combining ability of [ 19 F]HX-01 to the carcinoma SMMC-7721 and HepG2 was higher than that to the normal HL-7702. Cellular proliferation inhibition assay demonstrated that [ 19 F]HX-01 leaded to a dose-dependent inhibition on SMMC-7721, HepG2, and HL-7702 proliferation. Cell cytotoxicity assay presented that the cytotoxicity of [ 19 F]HX-01 to SMMC-7721 and HepG2 was obviously higher than that to HL-7702. This in vitro study showed that [ 19 F]HX-01 had a higher selectivity on human hepatocellular carcinoma cells (SMMC-7721, HepG2) but has less toxicity to normal hepatocytes (HL-7702). This could set up the idea that the radioactive reference substance [ 18 F]HX-01 may be worthy of further development as a potential molecular probe targeting human hepatocellular carcinoma using PET.

  8. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency.

    PubMed

    Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong

    2017-11-01

    The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.

  9. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanakura, Y.; Thompson, H.; Nakano, T.

    1988-09-01

    Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S)more » proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.« less

  10. Effect of berberine on the ratio of high-molecular weight adiponectin to total adiponectin and adiponectin receptors expressions in high-fat diet fed rats.

    PubMed

    Wu, Yue-Yue; Zha, Ying; Liu, Jun; Wang, Fang; Xu, Jiong; Chen, Zao-Ping; Ding, He-Yuan; Sheng, Li; Han, Xiao-Jie

    2016-11-17

    To assess the effects of berberine (BBR) on high-molecular weight (HMW) adiponectin and adiponectin receptors (adipoR1/adipoR2) expressions in high-fat (HF) diet fed rats. Forty Wistar male rats were randomly assigned into a normal diet fed group and three HF diet (fat for 45% calories) fed groups (n=10 for each group). All rats underwent 12 weeks of feeding. After 4 weeks feeding, rats in the two of three HF diet fed groups were treated with 150 mg·kg -1 ·day -1 BBR (HF+LBBR group) and 380 mg·kg -1 ·day -1 BBR (HF+HBBR group) by gavage once a day respectively for the next 8 weeks while the rats in other groups treated with vehicle (NF+Veh and HF+Veh). Body weight and food intake were observed and recorded on daily basis. At the end of 12 weeks, the blood, liver, epididymal fat tissues and quadriceps femoris muscles were collected. Fasting insulin, plasma fasting glucose, serum free fatty acid (FFA), total adiponectin and HMW adiponectin levels were measured by enzyme linked immunosorbent assay method. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to determine the insulinsensitizing. Meanwhile the homeostasis model assessment (HOMA) method was used to determine insulin resistance (HOMA-IR). The expressions of adipoR1, adipoR2 and adenosine monophophate activated protein kinase (AMPK) phosphorylation level in skeletal muscle and liver tissue were detected by Western blot. Liver and kidney toxicity were evaluated during treatment. The body weight of rats in high- or low-dose BBR group reduced as well as HOMA-IR, FFA concentrations and fasting insulin levels decreased compared with HF+Veh group (P<0.05). BBR also increased the ratio of HMW to total adiponectin in high fat-fed rats compared with rats in the HF+Veh group. High- and low-dose BBR increased adipoR1 expression in skeletal muscle by over 6- and 2-fold (P<0.05), respectively, and high-dose BBR also increased adipoR2 expression in liver tissue by over 2-fold (P<0.05). BBR

  11. Protective effect of betulinic acid against intracerebroventricular streptozotocin induced cognitive impairment and neuronal damage in rats: Possible neurotransmitters and neuroinflammatory mechanism.

    PubMed

    Kaundal, Madhu; Deshmukh, Rahul; Akhtar, Mohd

    2018-06-01

    The purpose of the study was to explore the therapeutic potential of Betulinic acid (BA) in streptozotocin (STZ) induced memory damage in experimental rats. STZ (3mg/kg bilaterally) as intracerebroventrical (icv) route was administered on day 1 and 3 in rats. Donepezil (5mg/kg/day po), used as standard, and BA (5, 10 and 15mg/kg/day po) were administered after 1h of 1st STZ infusion up to 21days. Object recognition task (ORT) for non-spatial, Morris water maze (MWM) for spatial and locomotor activity were performed to evaluate behavioral changes in rats. On 22nd day, animals were decapitated and hippocampus was separated to perform biochemical (AChE, LPO, GSH, nitrite), neuroinflammatory (TNF-α, IL-1β, and IL-6), neurotransmitters (NTs) (dopamine, norepinephrine and serotonin) analysis. STZ infusion significantly impaired memory as observed in MWM and ORT, increased oxidative stress, pro-inflammatory cytokine's level and altered NTs level. Moreover, BA demonstrated a neuroprotective effect in a dose-dependent manner. BA dose dependently (5, 10 and 15mg/kg) significantly restore STZ induced memory changes and pathological abnormalities in rat brain. The findings of the current study suggests that BA protect rat brain from STZ induced neuronal damage via acting through multiple mechanisms and would be used to curb cognitive decline associated with neurodegenerative disorders especially AD. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. ACTIVE SUPPRESSION OF IMMUNOGLOBULIN ALLOTYPE SYNTHESIS

    PubMed Central

    Herzenberg, Leonore A.; Chan, Eva L.; Ravitch, Myrnice M.; Riblet, Roy J.; Herzenberg, Leonard A.

    1973-01-01

    Thymus-derived cells (T cells) that actively suppress production of IgG2a immunoglobulins carrying the Ig-1b allotype have been found in adult (SJL x BALB/c)F1 mice exposed to anti-Ig-1b early in life. The suppression is specific for Ig-1b. The allelic product, Ig-1a, is unaffected. Spleen, lymph node, bone marrow, or thymus cells from suppressed mice suppress production of Ig-1b by syngeneic spleen cells from normal F1 mice. When a mixture of suppressed and normal cells is transferred into lethally irradiated BALB/c mice, there is a short burst of Ig-1b production after which Ig-1b levels in the recipient fall rapidly below detectability. Pretreatment of the cells from the suppressed mice with antiserum specific for T cells (anti-Thy-1b) plus complement before mixture destroys the suppressing activity. Similar results with suppressor cells were obtained in vitro using Mishell-Dutton cultures. Mixture of spleen cells from suppressed animals with sheep erythrocyte (SRBC)-primed syngeneic normal spleen before culture suppresses Ig-1b plaque-forming cell (PFC) formation while leaving Ig-1a PFC unaffected. Treatment of the suppressed spleen with anti-Thy-1b before transfer removes the suppressing activity. PMID:4541122

  13. The association between ACE inhibitors and the complex regional pain syndrome: Suggestions for a neuro-inflammatory pathogenesis of CRPS.

    PubMed

    de Mos, M; Huygen, F J P M; Stricker, B H Ch; Dieleman, J P; Sturkenboom, M C J M

    2009-04-01

    Antihypertensive drugs interact with mediators that are also involved in complex regional pain syndrome (CRPS), such a neuropeptides, adrenergic receptors, and vascular tone modulators. Therefore, we aimed to study the association between the use of antihypertensive drugs and CRPS onset. We conducted a population-based case-control study in the Integrated Primary Care Information (IPCI) database in the Netherlands. Cases were identified from electronic records (1996-2005) and included if they were confirmed during an expert visit (using IASP criteria), or if they had been diagnosed by a medical specialist. Up to four controls per cases were selected, matched on gender, age, calendar time, and injury. Exposure to angiotensin converting enzyme (ACE) inhibitors, angiotensin II receptor antagonists, beta-blockers, calcium channel blockers, and diuretics was assessed from the automated prescription records. Data were analyzed using multivariate conditional logistic regression. A total of 186 cases were matched to 697 controls (102 confirmed during an expert visit plus 84 with a specialist diagnosis). Current use of ACE inhibitors was associated with an increased risk of CRPS (OR(adjusted): 2.7, 95% CI: 1.1-6.8). The association was stronger if ACE inhibitors were used for a longer time period (OR(adjusted): 3.0, 95% CI: 1.1-8.1) and in higher dosages (OR(adjusted): 4.3, 95% CI: 1.4-13.7). None of the other antihypertensive drug classes was significantly associated with CRPS. We conclude that ACE inhibitor use is associated with CRPS onset and hypothesize that ACE inhibitors influence the neuro-inflammatory mechanisms that underlie CRPS by their interaction with the catabolism of substance P and bradykinin.

  14. The role of suppression in amblyopia.

    PubMed

    Li, Jingrong; Thompson, Benjamin; Lam, Carly S Y; Deng, Daming; Chan, Lily Y L; Maehara, Goro; Woo, George C; Yu, Minbin; Hess, Robert F

    2011-06-13

    This study had three main goals: to assess the degree of suppression in patients with strabismic, anisometropic, and mixed amblyopia; to establish the relationship between suppression and the degree of amblyopia; and to compare the degree of suppression across the clinical subgroups within the sample. Using both standard measures of suppression (Bagolini lenses and neutral density [ND] filters, Worth 4-Dot test) and a new approach involving the measurement of dichoptic motion thresholds under conditions of variable interocular contrast, the degree of suppression in 43 amblyopic patients with strabismus, anisometropia, or a combination of both was quantified. There was good agreement between the quantitative measures of suppression made with the new dichoptic motion threshold technique and measurements made with standard clinical techniques (Bagolini lenses and ND filters, Worth 4-Dot test). The degree of suppression was found to correlate directly with the degree of amblyopia within our clinical sample, whereby stronger suppression was associated with a greater difference in interocular acuity and poorer stereoacuity. Suppression was not related to the type or angle of strabismus when this was present or the previous treatment history. These results suggest that suppression may have a primary role in the amblyopia syndrome and therefore have implications for the treatment of amblyopia.

  15. Distinguishing among potential mechanisms of singleton suppression.

    PubMed

    Gaspelin, Nicholas; Luck, Steven J

    2018-04-01

    Previous research has revealed that people can suppress salient stimuli that might otherwise capture visual attention. The present study tests between 3 possible mechanisms of visual suppression. According to first-order feature suppression models , items are suppressed on the basis of simple feature values. According to second-order feature suppression models , items are suppressed on the basis of local discontinuities within a given feature dimension. According to global-salience suppression models , items are suppressed on the basis of their dimension-independent salience levels. The current study distinguished among these models by varying the predictability of the singleton color value. If items are suppressed by virtue of salience alone, then it should not matter whether the singleton color is predictable. However, evidence from probe processing and eye movements indicated that suppression is possible only when the color values are predictable. Moreover, the ability to suppress salient items developed gradually as participants gained experience with the feature that defined the salient distractor. These results are consistent with first-order feature suppression models, and are inconsistent with the other models of suppression. In other words, people primarily suppress salient distractors on the basis of their simple features and not on the basis of salience per se. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response: Role of Silent Information Regulator 1.

    PubMed

    Yu, Liming; Li, Qing; Yu, Bo; Yang, Yang; Jin, Zhenxiao; Duan, Weixun; Zhao, Guolong; Zhai, Mengen; Liu, Lijun; Yi, Dinghua; Chen, Min; Yu, Shiqiang

    2016-01-01

    Berberine (BBR) exerts potential protective effect against myocardial ischemia/reperfusion (MI/R) injury. Activation of silent information regulator 1 (SIRT1) signaling attenuates MI/R injury by reducing oxidative damage and inflammation response. This study investigated the antioxidative and anti-inflammatory effects of BBR treatment in MI/R condition and elucidated its potential mechanisms. Sprague-Dawley rats were treated with BBR in the absence or presence of the SIRT1 inhibitor sirtinol (Stnl) and then subjected to MI/R injury. BBR conferred cardioprotective effects by improving postischemic cardiac function, decreasing infarct size, reducing apoptotic index, diminishing serum creatine kinase and lactate dehydrogenase levels, upregulating SIRT1, Bcl-2 expressions, and downregulating Bax and caspase-3 expressions. Stnl attenuated these effects by inhibiting SIRT1 signaling. BBR treatment also reduced myocardium superoxide generation, gp91(phox) expression, malondialdehyde (MDA) level, and cardiac inflammatory markers and increased myocardium superoxide dismutase (SOD) level. However, these effects were also inhibited by Stnl. Consistently, BBR conferred similar antioxidative and anti-inflammatory effects against simulated ischemia reperfusion injury in cultured H9C2 cardiomyocytes. SIRT1 siRNA administration also abolished these effects. In summary, our results demonstrate that BBR significantly improves post-MI/R cardiac function recovery and reduces infarct size against MI/R injury possibly due to its strong antioxidative and anti-inflammatory activity. Additionally, SIRT1 signaling plays a key role in this process.

  17. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury.

    PubMed

    Yang, Xiaodong; Xu, Shaoqing; Qian, Yiwei; Xiao, Qin

    2017-08-01

    Microglia are the primary cells that exert immune function in the central nervous system (CNS), and accumulating evidence suggests that microglia act as key players in the initiation of neurodegenerative diseases. It is now well recognized that microglia have functional plasticity and dual phenotypes, proinflammatory M1 and anti-inflammatory M2 phenotypes. Inhibiting the M1 phenotype while stimulating the M2 phenotype has been suggested as a potential therapeutic approach for the treatment of neuroinflammation-related diseases. Resveratrol has been demonstrated to exert anti-inflammatory effects by suppressing M1 microglia activation. However, the role of resveratrol in regulating microglia polarization and the molecular mechanisms involved have not been fully clarified. In this study, we tested whether resveratrol could suppress microglia activation by promoting microglia polarization toward the M2 phenotype via PGC-1α by measuring M1 and M2 markers in vitro and in vivo. Our study demonstrated that resveratrol reduced inflammatory damage and promoted microglia polarization to the M2 phenotype in LPS-induced neuroinflammation. In addition, resveratrol ameliorated LPS-induced sickness behavior in mice. The promoting effects of resveratrol on M2 polarization were attenuated by knocking down PGC-1α. PGC-1α not only suppressed LPS-evoked M1 marker expression by inhibition of NF-κB activity but also increased M2 marker expression by coactivation of the STAT6 and STAT3 pathways. We propose that overexpression PGC-1α by resveratrol could be a potential therapeutic approach to suppress neuroinflammation by regulating microglia polarization. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Preliminary study about the possible glycemic clinical advantage in using a fixed combination of Berberis aristata and Silybum marianum standardized extracts versus only Berberis aristata in patients with type 2 diabetes

    PubMed Central

    Di Pierro, Francesco; Putignano, Pietro; Villanova, Nicola; Montesi, Luca; Moscatiello, Simona; Marchesini, Giulio

    2013-01-01

    Background Berberine is an isoquinoline alkaloid widely used to improve the glucidic and lipidic profiles of patients with hypercholesterolemia, metabolic syndrome, and type 2 diabetes. The limitation of berberine seems to be its poor oral bioavailability, which is affected by the presence, in enterocytes, of P-glycoprotein – an active adenosine triphosphate (ATP)-consuming efflux protein that extrudes berberine into the intestinal lumen, thus limiting its absorption. According to some authors, silymarin, derived from Silybum marianum, could be considered a P-glycoprotein antagonist. Aim The study aimed to evaluate the role played by a possible P-glycoprotein antagonist (silymarin), when added to a product containing Berberis aristata extract, in terms of benefits to patients with type 2 diabetes. Methods The study enrolled 69 patients with type 2 diabetes in suboptimal glycemic control who were treated with diet, hypoglycemic drugs, and in cases of concomitant alterations of the lipid profile, hypolipidemic agents. The patients received an add-on therapy consisting of either a standardized extract of Berberis aristata (titrated in 85% berberine) corresponding to 1,000 mg/day of berberine, or Berberol®, a fixed combination containing the same standardized extract of Berberis aristata plus a standardized extract of Silybum marianum (titrated as >60% in silymarin), for a total intake of 1,000 mg/day of berberine and 210 mg/day of silymarin. Results Both treatments similarly improved fasting glucose, total cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, and liver enzyme levels, whereas glycosylated hemoglobin (HbA1c) values were reduced to a greater extent by the fixed combination. Conclusion The association of berberine and silymarin demonstrated to be more effective than berberine alone in reducing HbA1c, when administered at the same dose and in the form of standardized extracts in type 2 diabetic patients. PMID:24277991

  19. Trial of Huanglian, a Novel Botanical against Breast Cancer that Enhances Taxol Activity. Phase 1 and 2

    DTIC Science & Technology

    2005-10-01

    huanglian was greater than an equivalent concentration of its major component, berberine , suggesting that several components contribute to its...defined by the HPLC peaks, berberine content, and inhibition of tumor cell growth in an in vitro cell proliferation assay. Since the capsule dose...not meet our specifications and, in fact, it contained 2 (not 7) peaks with only 11% (not 20 to 25%) berberine : As shown above, the “new

  20. Phase I and II Trial of Huanglian, A Novel Botanical Against Breast Cancer that Enhances Taxol Activity

    DTIC Science & Technology

    2004-10-01

    than an equivalent concentration of its major component, berberine , suggesting that several components contribute to its anticancer effect. It was...specifications the huanglian extract must have 7 peaks, which are within 5 to 10% of the original composition, and the predominant berberine peak (peak...for huanglian, had the necessary 50% biological activity against the MKN-74 cells, and contained sufficient berberine (20.5% of total weight) that was

  1. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine

    PubMed Central

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.

    2015-01-01

    Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PMID:26536350

  2. [Impacts of multicomponent environment on solubility of puerarin in biopharmaceutics classification system of Chinese materia medica].

    PubMed

    Hou, Cheng-Bo; Wang, Guo-Peng; Zhang, Qiang; Yang, Wen-Ning; Lv, Bei-Ran; Wei, Li; Dong, Ling

    2014-12-01

    To illustrate the solubility involved in biopharmaceutics classification system of Chinese materia medica (CMMBCS) , the influences of artificial multicomponent environment on solubility were investigated in this study. Mathematical model was built to describe the variation trend of their influence on the solubility of puerarin. Carried out with progressive levels, single component environment: baicalin, berberine and glycyrrhizic acid; double-component environment: baicalin and glycyrrhizic acid, baicalin and berberine and glycyrrhizic acid and berberine; and treble-component environment: baicalin, berberin, glycyrrhizic acid were used to describe the variation tendency of their influences on the solubility of puerarin, respectively. And then, the mathematical regression equation model was established to characterize the solubility of puerarin under multicomponent environment.

  3. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway

    PubMed Central

    Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M.

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  4. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway.

    PubMed

    Wei, Shengnan; Zhang, Ming; Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  5. Interocular suppression

    NASA Astrophysics Data System (ADS)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  6. Anti-hepatocarcinoma effects of berberine-nanostructured lipid carriers against human HepG2, Huh7, and EC9706 cancer cell lines

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-Ping; Fan, Hua; Wang, Yi-fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Hepatocarcinoma and esophageal squamous cell carcinomas threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma and esophageal carcinoma to chemotherapy. Berberine (Ber), an isoquinoline derivative alkaloid, has a wide range of pharmacological properties and is considered to have anti-hepatocarcinoma and antiesophageal carcinoma effects. However its low oral bioavailability restricts its wide application. In this report, Ber loaded nanostructured lipid carriers (Ber-NLC) was prepared by hot melting and then high pressure homogenization technique. The in vitro anti-hepatocarcinoma and antiesophageal carcinoma effects of Ber-NLC relative to efficacy of bulk Ber were evaluated. The particle size and zeta potential of Ber-NLC were 189.3 +/- 3.7 nm and -19.3 +/- 1.4 mV, respectively. MTT assay showed that Ber-NLC effectively inhibited the proliferation of human HepG2 and Huh7 and EC9706 cells, and the corresponding IC50 value was 9.1 μg/ml, 4.4 μg/ml, and 6.3 μg/ml (18.3μg/ml, 6.5μg/ml, and 12.4μg/ml μg/ml of bulk Ber solution), respectively. These results suggest that the delivery of Ber-NLC is a promising approach for treating tumors.

  7. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet.

    PubMed

    Meireles, Manuela; Marques, Cláudia; Norberto, Sónia; Fernandes, Iva; Mateus, Nuno; Rendeiro, Catarina; Spencer, Jeremy P E; Faria, Ana; Calhau, Conceição

    2015-11-01

    Neuroinflammation has been suggested as a central mediator of central nervous system dysfunction, including in dementia and neurodegenerative disease. Flavonoids have emerged as promising candidates for the prevention of neurodegenerative diseases and are thought to be capable of antiinflammatory effects in the brain. In the present study, the impact of a chronic intake of an anthocyanin extract from blackberry (BE) on brain inflammatory status in the presence or absence of a high-fat diet was investigated. Following intake of the dietary regimes for 17 weeks neuroinflammatory status in Wistar rat cortex, hippocampus and plasma were assessed using cytokine antibody arrays. In the cortex, intake of the high-fat diet resulted in an increase of at least 4-fold, in expression of the cytokine-induced neutrophil chemoattractant CINC-3, the ciliary neurotrophic factor CNTF, the platelet-derived growth factor PDGF-AA, IL-10, the tissue inhibitor of metalloproteinase TIMP-1 and the receptor for advanced glycation end products RAGE. BE intake partially decreased the expression of these mediators in the high-fat challenged brain. In standard-fed animals, BE intake significantly increased cortical levels of fractalkine, PDGF-AA, activin, the vascular endothelial growth factor VEGF and agrin expression, suggesting effects as neuronal growth and synaptic connection modulators. In hippocampus, BE modulates fractalkine and the thymus chemokine TCK-1 expression independently of diet intake and, only in standard diet, increased PDGF-AA. Exploring effects of anthocyanins on fractalkine transcription using the neuronal cell line SH-SY5Y suggested that other cell types may be involved in this effect. This is the first evidence, in in vivo model, that blackberry extract intake may be capable of preventing the detrimental effects of neuroinflammation in a high-fat challenged brain. Also, fractalkine and TCK-1 expression may be specific targets of anthocyanins and their metabolites on

  8. Bone suppression technique for chest radiographs

    NASA Astrophysics Data System (ADS)

    Huo, Zhimin; Xu, Fan; Zhang, Jane; Zhao, Hui; Hobbs, Susan K.; Wandtke, John C.; Sykes, Anne-Marie; Paul, Narinder; Foos, David

    2014-03-01

    High-contrast bone structures are a major noise contributor in chest radiographic images. A signal of interest in a chest radiograph could be either partially or completely obscured or "overshadowed" by the highly contrasted bone structures in its surrounding. Thus, removing the bone structures, especially the posterior rib and clavicle structures, is highly desirable to increase the visibility of soft tissue density. We developed an innovative technology that offers a solution to suppress bone structures, including posterior ribs and clavicles, on conventional and portable chest X-ray images. The bone-suppression image processing technology includes five major steps: 1) lung segmentation, 2) rib and clavicle structure detection, 3) rib and clavicle edge detection, 4) rib and clavicle profile estimation, and 5) suppression based on the estimated profiles. The bone-suppression software outputs an image with both the rib and clavicle structures suppressed.