Sample records for berkeley accelerator space

  1. History of the Bevatron

    ScienceCinema

    LBNL

    2017-12-09

    This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and ... This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and 1960s, four Nobel Prizes were awarded for work conducted in whole or in part there. The accelerator made major contributions in four distinct areas of research: high-energy particle physics, nuclear heavy-ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space.

  2. History of the Bevatron

    ScienceCinema

    None

    2017-12-09

    This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and 1960s, four Nobel Prizes were awarded for work conducted in whole or in part there. The accelerator made major contributions in four distinct areas of research: high-energy particle physics, nuclear heavy-ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space.

  3. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less

  4. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954.

  5. BEARS: Radioactive Ion Beams at Berkeley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.; Joosten, R.; Donahue, C.A.

    2000-03-14

    A light-isotope radioactive ion beam capability has been added to the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory by coupling to the production cyclotron of the Berkeley Isotope Facility. The connection required the development and construction of a 350 m gas transport system between the two accelerators as well as automated cryogenic separation of the produced activity. The first beam developed, {sup 11}C, has been successfully accelerated with an on-target intensity of 1 x 10{sup 8} ions/sec at energies of around 10 MeV/u.

  6. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlmutter, Saul

    2012-01-13

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: Howmore » DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter]« less

  7. Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier

    NASA Technical Reports Server (NTRS)

    Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward

    2016-01-01

    The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).

  8. Irradiation of materials with short, intense ion pulses at NDCX-II

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.

    2017-06-01

    We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.

  9. Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize

    ScienceCinema

    Perlmutter, Saul; Chu, Steven

    2018-05-31

    The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter

  10. Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)

    ScienceCinema

    Permutter, Saul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000244364661); Schlegel, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leauthaud, Alexie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-06-12

    No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.

  11. Irradiation of materials with short, intense ion pulses at NDCX-II

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...

    2017-05-31

    Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less

  12. Irradiation of materials with short, intense ion pulses at NDCX-II

    DOE PAGES

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...

    2017-05-31

    Here, we present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6 eV)] He + ion beam is neutralizedmore » in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. In conclusion, quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance« less

  13. Irradiation of materials with short, intense ion pulses at NDCX-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidl, P. A.; Barnard, J. J.; Feinberg, E.

    Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less

  14. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE PAGES

    Vay, J. -L.; Almgren, A.; Bell, J.; ...

    2018-01-31

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  15. Warp-X: A new exascale computing platform for beam–plasma simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J. -L.; Almgren, A.; Bell, J.

    Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less

  16. Overview of Light-Ion Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, William T.

    2006-03-16

    In 1930, Ernest Orlando Lawrence at the University of California at Berkeley invented the cyclotron. One of his students, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80 keV using less than 1 kV on a semi-circular accelerating electrode, now called the ''dee''. Soon after, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. In 1939, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. Just before WWII, Lawrence designed a 184-inch cyclotron, but the war prevented the buildingmore » of this machine. Immediately after the war ended, the Veksler-McMillan principle of phase stability was put forward, which enabled the transformation of conventional cyclotrons to successful synchrocyclotrons. When completed, the 184-Inch Synchrocyclotron produced 340-MeV protons. Following it, more modern synchrocyclotrons were built around the globe, and the synchrocyclotrons in Berkeley and Uppsala, together with the Harvard cyclotron, would perform pioneering work in treatment of human cancer using accelerated hadrons (protons and light ions). When the 184-Inch Synchrocyclotron was built, Lawrence asked Robert Wilson, one of his former graduate students, to look into the shielding requirements for of the new accelerator. Wilson soon realized that the 184-Inch would produce a copious number of protons and other light ions that had enough energy to penetrate human body, and could be used for treatment of deep-seated diseases. Realizing the advantages of delivering a larger dose in the Bragg peak when placed inside deep-seated tumors, he published in a medical journal a seminal paper on the rationale to use accelerated protons and light ions for treatment of human cancer. The precise dose localization provided by protons and light ions means lower doses to normal tissues adjacent to the treatment volume compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at energies that permitted the initiation of several biological studies. It is worth noting that when the Bevatron was converted to accelerate light ions, the main push came from biomedical users who wanted to use high-LET radiation for treating human cancer.« less

  17. Space Radiation and Cataracts (LBNL Summer Lecture Series)

    ScienceCinema

    Blakely, Eleanor [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division

    2018-01-23

    Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab

  18. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema

    Sessler, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-12-09

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  19. Seventy Five Years of Particle Accelerators

    ScienceCinema

    Sessler, Andy

    2017-12-09

    Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

  20. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; University of Nevada Reno, Reno, NV 89557; Van Tilborg, J.

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  1. Luis Alvarez, the Hydrogen Bubble Chamber, Tritium, and Dinosaurs

    Science.gov Websites

    linear accelerator, patented three types of radar still used today, designed an instrument that for 15 is available in documents and on the Web. Documents: Berkeley Proton Linear Accelerator, DOE Technical Report Download Adobe PDF Reader , June 1985 History of Proton Linear Accelerators, DOE Technical

  2. Sneak Preview of April 25 Science at the Theater

    ScienceCinema

    Ho, Shirley

    2017-12-12

    Berkeley Lab astrophysicist Shirley Ho offers a sneak preview of the Science at the Theatre event at the Berkeley Repertory Theatre on April 25. Three Berkeley Lab cosmologists and Bay Area astronomer Andrew Fraiknoi will gather at the Berkeley Rep on Monday, April 25, from 7 to 9 p.m. to shed light on the mystery of the accelerating universe. Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe. If you have questions for the scientists, post them below, send them to friendsofberkeleylab@lbl.gov, or catch us on facebook: http://www.facebook.com/video/video.php?v=10150215592292354&oid=593833429...Your question might be answered at the April 25 talk if there's time.

  3. A Window into Longer Lasting Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-29

    There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.

  4. Sneak Preview of April 25 Science at the Theater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Shirley

    Berkeley Lab astrophysicist Shirley Ho offers a sneak preview of the Science at the Theatre event at the Berkeley Repertory Theatre on April 25. Three Berkeley Lab cosmologists and Bay Area astronomer Andrew Fraiknoi will gather at the Berkeley Rep on Monday, April 25, from 7 to 9 p.m. to shed light on the mystery of the accelerating universe. Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe. If you have questions for the scientists, post them below, send them to friendsofberkeleylab@lbl.gov, or catchmore » us on facebook: http://www.facebook.com/video/video.php?v=10150215592292354&oid=593833429...Your question might be answered at the April 25 talk if there's time.« less

  5. LECTURES ON PHYSICS, BIOPHYSICS, AND CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS GIVEN AT THE ERNEST O. LAWRENCE RADIATION LABORATORY, BERKELEY, CALIFORNIA, JUNE-AUGUST 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calhoon, E.C.; Starring, P.W. eds.

    1959-08-01

    Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less

  6. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirruccello, M.C.; Tobias, C.A.

    1980-11-01

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)

  7. Smoot Cosmology Group

    Science.gov Websites

    Links We bring the universe to you! University of California Berkeley Cosmology Group Lawrence Computational Cosmology Center Institute for Nuclear & Particle Astrophysics Supernova Acceleration Probe

  8. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2017-12-09

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  9. Seeing the Light (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunger, Axel; Segalman, Rachel; Westphal, Andrew

    2011-09-12

    Berkeley Lab's Science at the Theater event "Seeing the Light" took place on Sept 12, 2011, at Berkeley Repertory's Roda Theatre. Learn how the Advanced Light Source is improving medicine, paving the way for clean energy, changing the future of computers, and much more. Featured speakers are Berkeley Lab's Roger Falcone, Rachel Segalman, Andrew Westphal, and Stanford University's Axel Brunger. Rachel Segalman: The future of clean energy technology relies on a better understanding of materials at the nanoscale. Berkeley Lab's Rachel Segalman uses the ALS to conduct this research, which could lead to improved photovoltaics and fuel cells. Axel Brunger:more » Improved treatment for human diseases hinges on understanding molecular-scale processes. Stanford University's Axel Brunger will discuss a new melanoma drug that was developed by a local company, Plexxikon, using the ALS for X-ray data collection. Andrew Westphal: What's comet dust made of? Andrew Westphal of UC Berkeley's Space Sciences Laboratory uses the ALS to study comet dust and interplanetary space dust collected by a NASA spacecraft. Moderated by Roger Falcone, Division Director of the Advanced Light Source« less

  10. Expanding Off-Campus Enrollment Capacity at Berkeley: A Concept Paper. Research & Occasional Paper Series: CSHE.2.17

    ERIC Educational Resources Information Center

    Geiser, Saul

    2017-01-01

    Like Berkeley, the UC system as a whole is quickly running out of space to accommodate the next generation of Californians who will be reaching college age by mid-century. Even with the added capacity at UC Merced, the UC system will run out of space on existing campuses in the next decade. In the normal course of events, this would trigger…

  11. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tanaka, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi

    2011-09-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  12. The Focusing Optics X-Ray Solar Imager: FOXSI

    NASA Technical Reports Server (NTRS)

    Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; hide

    2011-01-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  13. hs-2007-16-e-full_jpg

    NASA Image and Video Library

    2010-03-01

    Carina Nebula Details: The Caterpillar Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  14. Gerson Goldhaber: A Life in Science

    NASA Astrophysics Data System (ADS)

    Pavlish, Ursula

    2011-06-01

    I draw on my interviews in 2005-2007 with Gerson Goldhaber (1924-2010), his wife Judith, and his colleagues at Lawrence Berkeley National Laboratory. I discuss his childhood, early education, marriage to his first wife Sulamith (1923-1965), and his further education at the Hebrew University in Jerusalem (1942-1947) and his doctoral research at University of Wisconsin at Madison (1947-1950). He then was appointed to an instructorship in physics at Columbia University (1950-1953) before accepting a position in the physics department at the University of California at Berkeley and the Radiation Laboratory (later the Lawrence Berkeley Laboratory, today the Lawrence Berkeley National Laboratory), where he remained for the rest of his life. He made fundamental contributions to physics, including to the discovery of the antiproton in 1955, the GGLP effect in 1960, the psi particle in 1974, and charmed mesons in 1977, and to cosmology, including the discovery of the accelerating universe and dark energy in 1998. Beginning in the late 1960s, he also took up art, and he and his second wife Judith, whom he married in 1969, later collaborated in illustrating and writing two popular books. Goldhaber died in Berkeley, California, on July 19, 2010, at the age of 86.

  15. TRIO (Triplet Ionospheric Observatory) Mission

    NASA Astrophysics Data System (ADS)

    Lee, D.; Seon, J.; Jin, H.; Kim, K.; Lee, J.; Jang, M.; Pak, S.; Kim, K.; Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Roelof, E. C.; Horbury, T. S.

    2009-12-01

    Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  16. Research Frontier

    ERIC Educational Resources Information Center

    Physics Teacher, 1971

    1971-01-01

    New research topics have been brought about by the acceleration of nitrogen nuclei to the energy of 36 billion electron volts. Describes experiments on tumor cells, cosmic rays, and nuclear fission performed with the Bevatron at the Lawrence Berkeley Laboratory. (TS)

  17. Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion

    NASA Astrophysics Data System (ADS)

    Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.

    2003-10-01

    The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.

  18. BEARS: Radioactive ion beams at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-07-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C andmore » 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.« less

  19. Overview of Heavy Ion Fusion Accelerator Research in the U. S.

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2002-12-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

  20. The HIBEAM Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, William M.

    2000-02-01

    HIBEAM is a 2 1/2D particle-in-cell (PIC) simulation code developed in the late 1990's in the Heavy-Ion Fusion research program at Lawrence Berkeley National Laboratory. The major purpose of HIBEAM is to simulate the transverse (i.e., X-Y) dynamics of a space-charge-dominated, non-relativistic heavy-ion beam being transported in a static accelerator focusing lattice. HIBEAM has been used to study beam combining systems, effective dynamic apertures in electrostatic quadrupole lattices, and emittance growth due to transverse misalignments. At present, HIBEAM runs on the CRAY vector machines (C90 and J90's) at NERSC, although it would be relatively simple to port the code tomore » UNIX workstations so long as IMSL math routines were available.« less

  1. The Red Atrapa Sismos (Quake Catcher Network in Mexico): assessing performance during large and damaging earthquakes.

    USGS Publications Warehouse

    Dominguez, Luis A.; Yildirim, Battalgazi; Husker, Allen L.; Cochran, Elizabeth S.; Christensen, Carl; Cruz-Atienza, Victor M.

    2015-01-01

    Each volunteer computer monitors ground motion and communicates using the Berkeley Open Infrastructure for Network Computing (BOINC, Anderson, 2004). Using a standard short‐term average, long‐term average (STLA) algorithm (Earle and Shearer, 1994; Cochran, Lawrence, Christensen, Chung, 2009; Cochran, Lawrence, Christensen, and Jakka, 2009), volunteer computer and sensor systems detect abrupt changes in the acceleration recordings. Each time a possible trigger signal is declared, a small package of information containing sensor and ground‐motion information is streamed to one of the QCN servers (Chung et al., 2011). Trigger signals, correlated in space and time, are then processed by the QCN server to look for potential earthquakes.

  2. 14. Photocopy of photograph (original print located in LBNL Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3467. ACCELERATION DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Irradiation of Materials using Short, Intense Ion Beams

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.

    2016-10-01

    We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).

  4. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Facilities & Space Planning

  5. Light-ion therapy in the U.S.: From the Bevalac to ??

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Jose R.; Castro, Joseph R.

    2002-09-24

    While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joinedmore » by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room.« less

  6. Carina Nebula Detail

    NASA Image and Video Library

    2017-12-08

    Carina Nebula Details: Great Clouds Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  7. Space Policy Debate - On Space Privatization and Property Rights

    NASA Technical Reports Server (NTRS)

    Tu, Eugene; Yan, Jerry Chi Yiu

    2017-01-01

    This presentation is intended to acquaint the audience of UC Berkeley and UC Los Angeles students with the mission of NASA, core competencies at Ames, and to provide a framework for further discussion by students of aeronautics and space sciences.

  8. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiationmore » biophysics.« less

  9. Radiation Damage in Si Diodes from Short, Intense Ion Pulses

    NASA Astrophysics Data System (ADS)

    de Leon, S. J.; Ludewigt, B. A.; Persaud, A.; Seidl, P. A.; Schenkel, T.

    2017-10-01

    The Neutralized Drift Compression Experiment (NDCX-II) at Berkeley Lab is an induction accelerator studying the effects that concentrated ion beams have on various materials. Charged particle radiation damage was the focus of this research - we have characterized a series of Si diodes using an electrometer and calibrated the diodes response using an 241Am alpha source, both before and after exposing the diodes to 1 MeV He ions in the accelerator. The key part here is that the high intensity pulses from NDCX-II (>1010 ions/cm2 per pulse in <20 ns) enabled a systematic study of dose-rate effects. An example of a dose-rate effect in Si diodes is increased accumulation of defects due to damage from ions that bombard them in a short pulse. This accumulated damage leads to a reduction in the charge collection efficiency and an increase in leakage current. Testing dose-rate effects in Si diodes and other semiconductors is a crucial step in designing sustainable instruments that can encounter high doses of radiation, such as high intensity accelerators, fusion energy experiments and space applications and results from short pulses can inform models of radiation damage evolution. This work was supported by the Office of Science of the US Department of Energy under contract DE-AC0205CH11231.

  10. BErkeley Atmospheric CO2 Network (BEACON) - Bringing Measurements of CO2 Emissions to a School Near You

    NASA Astrophysics Data System (ADS)

    Teige, V. E.; Havel, E.; Patt, C.; Heber, E.; Cohen, R. C.

    2011-12-01

    The University of California at Berkeley in collaboration with the Chabot Space and Science Center describe a set of educational programs, workshops, and exhibits based on a multi-node greenhouse gas and air quality monitoring network being deployed over Oakland, California. Examining raw numerical data using highly engaging and effective geo-data visualization tools like Google Earth can make the science come alive for students, and provide a hook for drawing them into deeper investigations. The Climate Science Investigations teacher workshop at the Chabot Space and Science Center will make use of Google Earth, Excel, and other geo-data visualization tools to step students through the process from data acquisition to discovery. Using multiple data sources, including output from the BErkeley Atmospheric CO2 Network (BEACON) project, participants will be encouraged to explore a variety of different modes of data display toward producing a unique, and ideally insightful, illumination of the data.

  11. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  12. Post-accelerator issues at the IsoSpin Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S.; Nitschke, J.M.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) themore » Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.« less

  13. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    DOE R&D Accomplishments Database

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  14. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Operations For information regarding Human Resources, procedures for acknowledging MSD support, division

  15. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Human Resources General

  16. The Berkeley extreme ultraviolet calibration facility

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Jelinsky, Patrick; Malina, Roger F.

    1988-01-01

    The vacuum calibration facilities of the Space Sciences Laboratory, University of California at Berkeley are designed for the calibration and testing of EUV and FUV spaceborne instrumentation (spectral range 44-2500 A). The facility includes one large cylindrical vacuum chamber (3 x 5 m) containing two EUV collimators, and it is equipped with a 4-axis manipulator of angular-control resolution 1 arcsec for payloads weighing up to 500 kg. In addition, two smaller cylindrical chambers, each 0.9 x 1.2 m, are available for vacuum and thermal testing of UV detectors, filters, and space electronics hardware. All three chambers open into class-10,000 clean rooms, and all calibrations are referred to NBS secondary standards.

  17. Experience with ActiveX control for simple channel access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timossi, C.; Nishimura, H.; McDonald, J.

    2003-05-15

    Accelerator control system applications at Berkeley Lab's Advanced Light Source (ALS) are typically deployed on operator consoles running Microsoft Windows 2000 and utilize EPICS[2]channel access for data access. In an effort to accommodate the wide variety of Windows based development tools and developers with little experience in network programming, ActiveX controls have been deployed on the operator stations. Use of ActiveX controls for use in the accelerator control environment has been presented previously[1]. Here we report on some of our experiences with the use and development of these controls.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, L.W.; Krisch, A.D.

    This report contains papers on the following topics: Kent M Terwilliger; Graduate School at Berkeley and Early Years at Michigan, 1949--1959; Terwilliger and the Group'': A Chronicle of MURA; Reflections on the MURA Years; The Evolution of High Energy Accelerators; Some Frontiers of Accelerator Physics; Reflections on the ZGS: Terwilliger's Contributions; Spark Chambers and Early Experiments; Strong Interaction Experiments at the ZGS; Polarized Beams at the ZGS and the AGS; Terwilliger and Spin Physics; Siberian Snakes and Future Polarized Beams; Washington and High Energy Physics; and Terwilliger in the Department and University. These papers have been cataloged separately. (LSP)

  19. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Robert K.

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less

  20. Physics 101: What Our Next President Needs to Know (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Rich

    2008-10-13

    Rich Muller, author of Physics for Future Presidents, argues that the next president can't afford to be ignorant about the science behind terrorism, nuclear dangers, energy, space, and global warming. Muller, a MacArthur Fellow, Berkeley Lab physicist, and one of the most popular lecturers at UC Berkeley, discusses what it takes to survive in today's increasingly dangerous world -- information essential to the next commander-in-chief. He presented his talk Oct. 13, 2008.

  1. Physics 101: What Our Next President Needs to Know (LBNL Science at the Theater)

    ScienceCinema

    Muller, Rich

    2018-06-12

    Rich Muller, author of Physics for Future Presidents, argues that the next president can't afford to be ignorant about the science behind terrorism, nuclear dangers, energy, space, and global warming. Muller, a MacArthur Fellow, Berkeley Lab physicist, and one of the most popular lecturers at UC Berkeley, discusses what it takes to survive in today's increasingly dangerous world -- information essential to the next commander-in-chief. He presented his talk Oct. 13, 2008.

  2. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 basemore » pairs per year, while still retaining its efficiency.« less

  3. Ionizing laser propagation and spectral phase determination

    NASA Astrophysics Data System (ADS)

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.

  4. Charged Particle Therapy Steps Into the Clinical Environment

    NASA Astrophysics Data System (ADS)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  5. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    NASA Astrophysics Data System (ADS)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  6. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Planning Procurement and Property Proposals & Finance Templates Travel Procurement and Property This

  7. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Travel This page has been moved

  8. Conference Committees: Conference Committees

    NASA Astrophysics Data System (ADS)

    2009-09-01

    International Programm Committee (IPC) Harald Ade NCSU Sadao Aoki University Tsukuba David Attwood Lawrence Berkeley National Laboratory/CXRO Christian David Paul Scherrer Institut Peter Fischer Lawrence Berkeley National Laboratory Adam Hitchcock McMaster University Chris Jacobsen SUNY, Stony Brook Denis Joyeux Lab Charles Fabry de l'Institut d'Optique Yasushi Kagoshima University of Hyogo Hiroshi Kihara Kansai Medical University Janos Kirz SUNY Stony Brook Maya Kiskinova ELETTRA Ian McNulty Argonne National Lab/APS Alan Michette Kings College London Graeme Morrison Kings College London Keith Nugent University of Melbourne Zhu Peiping BSRF Institute of High Energy Physics Francois Polack Soleil Christoph Quitmann Paul Scherrer Institut Günther Schmahl University Göttingen Gerd Schneider Bessy Hyun-Joon Shin Pohang Accelerator Lab Jean Susini ESRF Mau-Tsu Tang NSRRC Tony Warwick Lawrence Berkeley Lab/ALS Local Organizing Committee Christoph Quitmann Chair, Scientific Program Charlotte Heer Secretary Christian David Scientific Program Frithjof Nolting Scientific Program Franz Pfeiffer Scientific Program Marco Stampanoni Scientific Program Robert Rudolph Sponsoring, Financials Alfred Waser Industry Exhibition Robert Keller Public Relation Markus Knecht Computing and WWW Annick Cavedon Proceedings and Excursions and Accompanying Persons Program Margrit Eichler Excursions and Accompanying Persons Program Kathy Eikenberry Excursions and Accompanying Persons Program Marlies Locher Excursions and Accompanying Persons Program

  9. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE PAGES

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  10. Relaxation in x-space magnetic particle imaging.

    PubMed

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  11. The NDCX-II engineering design

    NASA Astrophysics Data System (ADS)

    Waldron, W. L.; Abraham, W. J.; Arbelaez, D.; Friedman, A.; Galvin, J. E.; Gilson, E. P.; Greenway, W. G.; Grote, D. P.; Jung, J.-Y.; Kwan, J. W.; Leitner, M.; Lidia, S. M.; Lipton, T. M.; Reginato, L. L.; Regis, M. J.; Roy, P. K.; Sharp, W. M.; Stettler, M. W.; Takakuwa, J. H.; Volmering, J.; Vytla, V. K.

    2014-01-01

    The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.

  12. Water and organics in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Bradley, John P.

    2015-08-01

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at ~90 km altitude and settle to the Earth’s surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earth’s surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend ~104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.Affiliations:a University of Hawaii at Manoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, HI 96822, USA.b National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.d Department of Materials Science & Engineering, University of California, Berkeley, CA 94720, USA.e Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

  13. Use of a personal computer for the real-time reception and analysis of data from a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Herrick, W. D.; Penegor, G. T.; Cotton, D. M.; Kaplan, G. C.; Chakrabarti, S.

    1990-01-01

    In September 1988 the Earth and Planetary Atmospheres Group of the Space Sciences Laboratory of the University of California at Berkeley flew an experiment on a high-altitude sounding rocket launched from the NASA Wallops Flight Facility in Virginia. The experiment, BEARS (Berkeley EUV Airglow Rocket Spectrometer), was designed to obtain spectroscopic data on the composition and structure of the earth's upper atmosphere. Consideration is given to the objectives of the BEARS experiment; the computer interface and software; the use of remote data transmission; and calibration, integration, and flight operations.

  14. Man and his contribution to radiological protection -- a tribute to Wade Patterson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, R., LLNL

    Henry Wade Patterson died in Lakeview, Oregon, on 7 October 1997. With his passing, we lost not only one of the most significant figures of the health physics profession but a most personable colleague and friend. His career at the University of California, both at Berkeley and Livermore, spanned five decades and he was generally regarded to be the first professional accelerator health physicist.

  15. Message From the Editor for Contributions to the 2012 Real Time Conference Issue of TNS

    NASA Astrophysics Data System (ADS)

    Schmeling, Sascha Marc

    2013-10-01

    The papers in this special issue were originally presented at the 18th IEEE-NPSS Real Time Conference (RT2012) on Computing Applications in Nuclear and Plasma Sciences, held in Berkeley, California, USA, in June 2012. These contributions come from a broad range of fields of application, including Astrophysics, Medical Imaging, Nuclear and Plasma Physics, Particle Accelerators, and Particle Physics Experiments.

  16. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    NASA Astrophysics Data System (ADS)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  17. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source.

    PubMed

    Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  18. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Berkeley National Laboratory

    2007-07-20

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developingmore » nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material at the dislocations. He was purportedly the first to show that they were 'decorated' with iron.« less

  19. Berkeley Lab Scientists to Play Role in New Space Telescope

    Science.gov Websites

    circling distant suns, among other science aims. The Wide Field Infrared Survey Telescope (WFIRST) will Hubble Space Telescope's Wide Field Camera 3 infrared imager. A Hubble large-scale mapping survey of the survey of the M31 galaxy (shown here) required 432 "pointings" of its imager, while only two

  20. An Intensive Hubble Space Telescope Survey for z>1 Type Ia Supernovae by

    Science.gov Websites

    Targ SAO/NASA ADS Astronomy Abstract Service Title: An Intensive Hubble Space Telescope Survey Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; E. O. Lawrence Berkeley National , Clinton, NY 13323, USA), AH(National Optical Astronomy Observatory, Tucson, AZ 85726-6732, USA), AI

  1. Nonlinear Mode Coupling Theory of the Lower-Hybrid-Drift Instability.

    DTIC Science & Technology

    1983-11-25

    University of lows Iowa City, Iowa 52242 Tenerin, Michael Space Science Lab. University of California Berkeley, California 94720 Vlahos, Loukas Dept. of fysics University of Maryland College Park, Maryland 20742 44 FILMED 1=84 DTIC

  2. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, James

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less

  3. EUV microexposures at the ALS using the 0.3-NA MET projectionoptics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik

    2005-09-01

    The recent development of high numerical aperture (NA) EUV optics such as the 0.3-NA Micro Exposure Tool (MET) optic has given rise to a new class of ultra-high resolution microexposure stations. Once such printing station has been developed and implemented at Lawrence Berkeley National Laboratory's Advanced Light Source. This flexible printing station utilizes a programmable coherence illuminator providing real-time pupil-fill control for advanced EUV resist and mask development. The Berkeley exposure system programmable illuminator enables several unique capabilities. Using dipole illumination out to {sigma}=1, the Berkeley tool supports equal-line-space printing down to 12 nm, well beyond the capabilities of similarmore » tools. Using small-sigma illumination combined with the central obscuration of the MET optic enables the system to print feature sizes that are twice as small as those coded on the mask. In this configuration, the effective 10x-demagnification for equal lines and spaces reduces the mask fabrication burden for ultra-high-resolution printing. The illuminator facilitates coherence studies such as the impact of coherence on line-edge roughness (LER) and flare. Finally the illuminator enables novel print-based aberration monitoring techniques as described elsewhere in these proceedings. Here we describe the capabilities of the new MET printing station and present system characterization results. Moreover, we present the latest printing results obtained in experimental resists. Limited by the availability of high-resolution photoresists, equal line-space printing down to 25 nm has been demonstrated as well as isolated line printing down to 29 nm with an LER of approaching 3 nm.« less

  4. High peak current acceleration of narrow divergence ions beams with the BELLA-PW laser

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Treffert, Franziska; Bulanov, Stepan; Bin, Jianhui; Nakamura, Kei; Gonsalves, Anthony; Toth, Csaba; Park, Jaehong; Roth, Markus; Esarey, Eric; Schenkel, Thomas; Leemans, Wim

    2017-10-01

    We present a parameter study of ion acceleration driven by the BELLA-PW laser. The laser repetition rate of 1Hz allowed for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 petawatt. Further, the long focal length geometry of the experiment (f\\65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory.

  5. The Physics of Beams: The Andrew Sessler Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, W.A.

    1996-03-01

    These proceedings represent papers presented at the Andrew Sessler Symposium held at the Lawrence Berkeley National Laboratory in honor of Andrew Sessler{close_quote}s over forty years of major scientific contributions to accelerator and beam physics as well as in celebration of his 65th birthday. The symposium was sponsored by the United States Department of Energy. The topics discussed include linear colliders, past history and future speculations, ELOISATRON at 100 TeV beam, manipulating charged particle beams by means of plasma and collective instabilities in accelerator and storage rings. There were 10 papers presented and 8 have been abstracted for the Energy Sciencemore » and Technology database.(AIP)« less

  6. NASA Space Astronomy Update 6: Unconventional Windows on the Universe

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Professor Stu Bowyer (University of California at Berkeley) explains the Extreme Ultraviolet Explorer and its telescope in this video. Both instrument and satellite are kept in perfect working condition. The satellite picks up extra galactic objects outside our galaxy.

  7. Laboratory directed research and development program FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  8. Accelerating Exploitation of Low-grade Intelligence through Semantic Text Processing of Social Media

    DTIC Science & Technology

    2013-06-01

    importance as an information source. The brevity of social media content (e.g., 140 characters per tweet) combined with the increasing usage of mobile...platform imports unstructured text from a variety of sources and then maps the text to an existing ontology of frames (FrameNet, https...framenet.icsi.berkeley.edu/fndrupal/) during a process of Semantic Role Labeling ( SRL ). FrameNet is a structured language model grounded in the theory of Frame

  9. WARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Ryan M.; Rowland, Kelly L.

    2017-04-12

    WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed at UC Berkeley to efficiently execute on NVIDIA graphics processing unit (GPU) platforms. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo method, namely, that very few physical and geometrical simplifications are applied. WARP is able to calculate multiplication factors, neutron flux distributions (in both space and energy), and fission source distributions for time-independent neutron transport problems. It can run in both criticality or fixed source modes, but fixed source mode is currentlymore » not robust, optimized, or maintained in the newest version. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. The goal of developing WARP is to investigate algorithms that can grow into a full-featured, continuous energy, Monte Carlo neutron transport code that is accelerated by running on GPUs. The crux of the effort is to make Monte Carlo calculations faster while producing accurate results. Modern supercomputers are commonly being built with GPU coprocessor cards in their nodes to increase their computational efficiency and performance. GPUs execute efficiently on data-parallel problems, but most CPU codes, including those for Monte Carlo neutral particle transport, are predominantly task-parallel. WARP uses a data-parallel neutron transport algorithm to take advantage of the computing power GPUs offer.« less

  10. Berkeley Proton Linear Accelerator

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  11. Laboratory Directed Research and Development Program FY 2008 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less

  12. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ...-AA00 Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA AGENCY: Coast... the 4th of July Festival Berkeley Marina Fireworks Display. Unauthorized persons or vessels are... display. Background and Purpose The City of Berkeley Marina will sponsor the 4th of July Festival Berkeley...

  13. Accelerator-based validation of shielding codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack

    2002-08-12

    The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required tomore » validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.« less

  14. Radio frequency multicusp ion source development (invited)

    NASA Astrophysics Data System (ADS)

    Leung, K. N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.

  15. Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Suprotim; Raje, Sanyukta; Kumar, Satish

    This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – Septembermore » 2015) and Phase 2 (October 2015 – September 2016).« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitner, M.; Bieniosek, F.; Kwan, J.

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30more » nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.« less

  17. Characterization of the spectral phase of an intense laser at focus via ionization blueshift

    DOE PAGES

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; ...

    2016-01-01

    An in situ diagnostic for verifying the spectral phase of an intense laser pulse at focus is shown. This diagnostic relies on measuring the effect of optical compression on ionization-induced blueshifting of the laser spectrum. Experimental results from the Berkeley Lab Laser Accelerator, a laser source rigorously characterized by conventional techniques, are presented and compared with simulations to illustrate the utility of this technique. These simulations show distinguishable effects from second-, third-, and fourth-order spectral phase.

  18. Effects of Radiation on Rat Retina after 18 days of Space Flight

    NASA Technical Reports Server (NTRS)

    Philpott, D.; Corbett, R.; Turnbill, C.; Black, S.; Dayhoff, D.; McGourty, J.; Lee, R.; Harrison, G.; Savick, L.

    1978-01-01

    Although cumulative effects an retina from low-dose radiation during prolonged spaceflight are not known, ary impairment of vision could set limits for spaceflight duration. Cosmic rays are now considered to be the cause of the "light flashes" seen during spaceflight by activating retina cells as they pass through the photoreceptors. Previous studies have also shown retinal cellular alterations and cell necrosis from high-energy, particle (HZE) radiation. Ten rats, 5 centrifuged during flight (FC) to simulate gravity and 5 in-flight stationary (FS) experiencing hypogravity, orbited Earth for 18.5 days on Cosmos 936. The animals were sacrificed 25 days post-recovery and the eyes flown to Ames Res. Ctr. The pattern of cell necrosis in the retinas from the FC group showed the same response to radiation as the FS. This would indicate that hypogravity was not a factor in the observed results. Also the cellular response in the retinas exposed in the Berkeley accelerator again matched both the FC and FS eyes. Thus all three conditions provide comparable changes and indicate HZE particles as the possible cause of the cellular alterations, channels, and breakdown.

  19. The Grand Challenges of Organ Banking: Proceedings from the first global summit on complex tissue cryopreservation.

    PubMed

    Lewis, Jedediah K; Bischof, John C; Braslavsky, Ido; Brockbank, Kelvin G M; Fahy, Gregory M; Fuller, Barry J; Rabin, Yoed; Tocchio, Alessandro; Woods, Erik J; Wowk, Brian G; Acker, Jason P; Giwa, Sebastian

    2016-04-01

    The first Organ Banking Summit was convened from Feb. 27 - March 1, 2015 in Palo Alto, CA, with events at Stanford University, NASA Research Park, and Lawrence Berkeley National Labs. Experts at the summit outlined the potential public health impact of organ banking, discussed the major remaining scientific challenges that need to be overcome in order to bank organs, and identified key opportunities to accelerate progress toward this goal. Many areas of public health could be revolutionized by the banking of organs and other complex tissues, including transplantation, oncofertility, tissue engineering, trauma medicine and emergency preparedness, basic biomedical research and drug discovery - and even space travel. Key remaining scientific sub-challenges were discussed including ice nucleation and growth, cryoprotectant and osmotic toxicities, chilling injury, thermo-mechanical stress, the need for rapid and uniform rewarming, and ischemia/reperfusion injury. A variety of opportunities to overcome these challenge areas were discussed, i.e. preconditioning for enhanced stress tolerance, nanoparticle rewarming, cyroprotectant screening strategies, and the use of cryoprotectant cocktails including ice binding agents. Copyright © 2015.

  20. Image Processing for Educators in Global Hands-On Universe

    NASA Astrophysics Data System (ADS)

    Miller, J. P.; Pennypacker, C. R.; White, G. L.

    2006-08-01

    A method of image processing to find time-varying objects is being developed for the National Virtual Observatory as part of Global Hands-On Universe(tm) (Lawrence Hall of Science; University of California, Berkeley). Objects that vary in space or time are of prime importance in modern astronomy and astrophysics. Such objects include active galactic nuclei, variable stars, supernovae, or moving objects across a field of view such as an asteroid, comet, or extrasolar planet transiting its parent star. The search for these objects is undertaken by acquiring an image of the region of the sky where they occur followed by a second image taken at a later time. Ideally, both images are taken with the same telescope using the same filter and charge-coupled device. The two images are aligned and subtracted with the subtracted image revealing any changes in light during the time period between the two images. We have used a method of Christophe Alard using the image processing software IDL Version 6.2 (Research Systems, Inc.) with the exception of the background correction, which is done on the two images prior to the subtraction. Testing has been extensive, using images provided by a number of National Virtual Observatory and collaborating projects. They include the Supernovae Trace Cosmic Expansion (Cerro Tololo Inter-American Observatory), Supernovae/ Acceleration Program (Lawrence Berkeley National Laboratory), Lowell Observatory Near-Earth Object Search (Lowell Observatory), and the Centre National de la Recherche Scientifique (Paris, France). Further testing has been done with students, including a May 2006 two week program at the Lawrence Berkeley National Laboratory. Students from Hardin-Simmons University (Abilene, TX) and Jackson State University (Jackson, MS) used the subtraction method to analyze images from the Cerro Tololo Inter-American Observatory (CTIO) searching for new asteroids and Kuiper Belt objects. In October 2006 students from five U.S. high schools will use the subtraction method in an asteroid search campaign using CTIO images with 7-day follow-up images to be provided by the Las Cumbres Observatory (Santa Barbara, CA). During the Spring 2006 semester, students from Cape Fear High School used the method to search for near-Earth objects and supernovae. Using images from the Astronomical Research Institute (Charleston, IL) the method contributed to the original discovery of two supernovae, SN 2006al and SN 2006bi.

  1. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ...: The Coast Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...

  2. Supernova Cosmology Project

    Science.gov Websites

    /UC Berkeley Kyle Dawson Professor University of Utah Rahman Amanullah Postdoc Stockholm Univ Marek Kowalski Professor University of Bonn Mamoru Doi Professor Univ. of Tokyo Yutaka Ihara Graduate University of Stockholm University of Oxford European Southern Observatory University of Tokyo Space

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & , Travel, Property Rosemary Williams, Purchasing & Time Keeper 510-495-2645 66-238 rmwilliams@lbl.gov Jasmine Harris, Travel & Property 510-486-6303 66-237 jaharris@lbl.gov Gil Torres, Building Manager

  4. Three-dimensional particle simulation of heavy-ion fusion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A.; Grote, D.P.; Haber, I.

    1992-07-01

    The beams in a heavy-ion-beam-driven inertial fusion (HIF) accelerator are collisionless, nonneutral plasmas, confined by applied magnetic and electric fields. These space-charge-dominated beams must be focused onto small (few mm) spots at the fusion target, and so preservation of a small emittance is crucial. The nonlinear beam self-fields can lead to emittance growth, and so a self-consistent field description is needed. To this end, a multidimensional particle simulation code, WARP (Friedman {ital et} {ital al}., Part. Accel. {bold 37}-{bold 38}, 131 (1992)), has been developed and is being used to study the transport of HIF beams. The code's three-dimensional (3-D)more » package combines features of an accelerator code and a particle-in-cell plasma simulation. Novel techniques allow it to follow beams through many accelerator elements over long distances and around bends. This paper first outlines the algorithms employed in WARP. A number of applications and corresponding results are then presented. These applications include studies of: beam drift-compression in a misaligned lattice of quadrupole focusing magnets; beam equilibria, and the approach to equilibrium; and the MBE-4 experiment ({ital AIP} {ital Conference} {ital Proceedings} 152 (AIP, New York, 1986), p. 145) recently concluded at Lawrence Berkeley Laboratory (LBL). Finally, 3-D simulations of bent-beam dynamics relevant to the planned Induction Linac Systems Experiments (ILSE) (Fessenden, Nucl. Instrum. Methods Plasma Res. A {bold 278}, 13 (1989)) at LBL are described. Axially cold beams are observed to exhibit little or no root-mean-square emittance growth at midpulse in transiting a (sharp) bend. Axially hot beams, in contrast, do exhibit some emittance growth.« less

  5. Telescience at the University of California, Berkeley

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Marchant, W. T.; Kaplan, G. C.; Dobson, C. A.; Jernigan, J. G.; Lampton, M. L.; Malina, R. F.

    1989-01-01

    The University of California at Berkeley (UCB) is a member of a university consortium involved in telescience testbed activities under the sponsorship of NASA. Our Telescience Testbed Project consists of three experiments using flight hardware being developed for the Extreme Ultraviolet Explorer project at UCB's Space Sciences Laboratory. The first one is a teleoperation experiment investigating remote instrument control using a computer network such as the Internet. The second experiment is an effort to develop a system for operation of a network of remote workstations allowing coordinated software development, evaluation, and use by widely dispersed groups. The final experiment concerns simulation as a method to facilitate the concurrent development of instrument hardware and support software. We describe our progress in these areas.

  6. Precision Measurement of The Most Distant Spectroscopically Confirmed

    Science.gov Websites

    Supernova SAO/NASA ADS Astronomy Abstract Service Title: Precision Measurement of The Most Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309, USA), AI(Hamilton College Astronomy, Vanderbilt University, Nashville, TN 37240, USA), AO(E. O. Lawrence Berkeley National Lab, 1

  7. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Barnard, J. J.; Guo, H.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  8. Effects of Relativity Lead to"Warp Speed" Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vay, J.-L.

    A scientist at Lawrence Berkeley National Laboratory has discovered that a previously unnoticed consequence of Einstein's special theory of relativity can lead to speedup of computer calculations by orders of magnitude when applied to the computer modeling of a certain class of physical systems. This new finding offers the possibility of tackling some problems in a much shorter time and with far more precision than was possible before, as well as studying some configurations in every detail for the first time. The basis of Einstein's theory is the principle of relativity, which states that the laws of physics are themore » same for all observers, whether the 'observer' is a turtle 'racing' with a rabbit, or a beam of particles moving at near light speed. From the invariance of the laws of physics, one may be tempted to infer that the complexity of a system is independent of the motion of the observer, and consequently, a computer simulation will require the same number of mathematical operations, independently of the reference frame that is used for the calculation. Length contraction and time dilation are well known consequences of the special theory of relativity which lead to very counterintuitive effects. An alien observing human activity through a telescope in a spaceship traveling in the Vicinity of the earth near the speed of light would see everything flattened in the direction of propagation of its spaceship (for him, the earth would have the shape of a pancake), while all motions on earth would appear extremely slow, slowed almost to a standstill. Conversely, a space scientist observing the alien through a telescope based on earth would see a flattened alien almost to a standstill in a flattened spaceship. Meanwhile, an astronaut sitting in a spaceship moving at some lower velocity than the alien spaceship with regard to earth might see both the alien spaceship and the earth flattened in the same proportion and the motion unfolding in each of them at the same speed. Let us now assume that each protagonist (the alien, the space scientist and the astronaut) is to run a computer simulation describing the motion of all of them in a single calculation. In order to model a physical system on a computer, scientists often divide space and time into small chunks. Since the computer must calculated some things for each chunk, having a large system containing numerous small chunks translates to long calculations requiring many computational steps on supercomputers. Let us assume that each protagonist of our intergalactic story uses the space and time slicing as described and chooses to perform the calculation in its own frame of reference. For the alien and the space scientist, the slicing of space and time results in an exceedingly large number of chunks, due to the wide disparity of spatial and time scales needed to describe both their own environment and motion together with the other extremely flattened environment and slowed motion. Since the disparity of scales is reduced for the astronaut, who is traveling at an intermediate velocity, the number of computer operations needed to complete the calculation in his frame of reference will be significantly lower, possibly by many orders of magnitude. Analogously, the new discovery at Lawrence Berkeley National Laboratory shows that there exists a frame of reference minimizing the number of computational operations needed for studying the interaction of beams of particles or light (lasers) interacting at, or near, light speed with other particles or with surrounding structures. Speedups ranging from ten to a million times or more are predicted for the modeling of beams interacting with electron clouds, such as those in the upcoming Large Hadron Collider 'atom smasher' accelerator at CERN (Switzerland), and in free electron lasers and tabletop laser wakefield accelerators. The discovery has surprised many physicists and was received initially with much skepticism. It sounded too much like a 'free lunch'. Yet, the demonstration of a speedup of a stunning one thousand times in a test simulation of a particle beam interacting with a background of electrons (see image), has proven that the effect is real and can be applied successfully, at least to some problems. Work is being actively pursued at Berkeley Lab and elsewhere to validate the feasibility of the method for a wider range of applications, as well as to apply the already successful method to more problems, where it might help getting better understanding of some processes and eventually lead to new findings.« less

  9. Berkeley Lab Training

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at

  10. DIANA - A deep underground accelerator for nuclear astrophysics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winklehner, Daniel; Leitner, Daniela; Lemut, Alberto

    DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulombmore » barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.« less

  11. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, amore » series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.« less

  12. Short intense ion pulses for materials and warm dense matter research

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  13. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  14. Precise charge measurement for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; van Tilborg, Jeroen; Smith, Alan; Rodgers, Dave; Donahue, Rick; Byrne, Warren; Leemans, Wim

    2011-10-01

    A comprehensive study of charge diagnostics was conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. Using an integrating current transformer as a calibration reference, the sensitivity of the Lanex Fast was found to decrease by 1% per 100 MeV increase of the energy. By using electron beams from LPA, cross calibrations of the charge were carried out with an integrating current transformer, scintillating screen (Lanex from Kodak), and activation based measurement. The diagnostics agreed within ~8%, showing that they all can provide accurate charge measurements for LPAs provided necessary cares. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  15. a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-05-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.

  16. "DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitner, M.; Leitner, D.; Lemut, A.

    2009-05-28

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV tomore » 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.« less

  17. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    NASA Technical Reports Server (NTRS)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  18. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    DOE PAGES

    Hargrove, Paul H.; Duell, Jason C.

    2006-09-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to fault precursors (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instancemore » reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters. © 2006 IOP Publishing Ltd.« less

  19. Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)

    ScienceCinema

    Gadgil, Ashok; Booker, Kayje; Rausch, Adam

    2018-06-08

    Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmental engineering. He helps to design and test stove designs in Ethiopia and elsewhere.

  20. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  1. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-02

    ISS013-E-63766 (2 Aug. 2006) --- Berkeley Pit and Butte, Montana are featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The city of Butte, Montana has long been a center of mining activity. Underground mining of copper began in Butte in the 1870s, and by 1901 underground workings had extended to the groundwater table. Thus began the creation of an intricate complex of underground drains and pumps to lower the groundwater level and continue the extraction of copper. Water extracted from the mines was so rich in dissolved copper sulfate that it was also "mined" (by chemical precipitation) for the copper it contained. In 1955, the Anaconda Copper Mining Company began open-pit mining for copper in what is now know as the Berkeley Pit (dark oblong area in center). The mine took advantage of the existing subterranean drainage and pump network to lower groundwater until 1982, when the new owner ARCO suspended operations at the mine. The groundwater level swiftly rose, and today water in the Pit is more than 900 feet deep. Many features of the mine workings are visible in this image such as the many terraced levels and access roadways of the open mine pits (gray and tan sculptured surfaces). A large gray tailings pile of waste rock and an adjacent tailings pond are visible to the north of the Berkeley Pit. Color changes in the tailings pond are due primarily to changing water depth. The Berkeley Pit is listed as a federal Superfund site due to its highly acidic water, which contains high concentrations of metals such as copper and zinc. The Berkeley Pit receives groundwater flowing through the surrounding bedrock and acts as a "terminal pit" or sink for these heavy metal-laden waters. Ongoing efforts include regulation of water flow into the pit to reduce filling of the Pit and potential release of contaminated water into local aquifers or surface streams.

  2. Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadgil, Ashok; Booker, Kayje; Rausch, Adam

    2010-09-20

    Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmentalmore » engineering. He helps to design and test stove designs in Ethiopia and elsewhere.« less

  3. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision.more » The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.« less

  4. Pico-coulomb charge measured at BELLA to percent-level precision using a Turbo-ICT

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Mittelberger, D. E.; Gonsalves, A. J.; Daniels, J.; Mao, H.-S.; Stulle, F.; Bergoz, J.; Leemans, W. P.

    2016-03-01

    Precise diagnostics of picocoulomb level particle bunches produced by laser plasma accelerators (LPAs) can be a significant challenge. Without proper care, the small signals associated with such bunches can be dominated by a background generated by laser, target, laser-plasma interaction and particle induced radiation. In this paper, we report on first charge measurements using the newly developed Turbo-ICT for LPAs. We outline the Turbo-ICT working principle, which allows precise sub-picocoulomb measurements even in the presence of significant background signals. A comparison of the Turbo-ICT, a conventional integrating current transformer (ICT) and a scintillating screen (Lanex) was carried out at the Berkeley Lab Laser Accelerator. Results show that the Turbo-ICT can measure sub-picocoulomb charge accurately and has significantly improved noise immunity compared to the ICT.

  5. Exploring Instructional Practices in a Spanish/English Bilingual Classroom through "Sitios y Lenguas" and "Testimonio"

    ERIC Educational Resources Information Center

    Romero, Gabriela; DeNicolo, Christina Passos; Fradkin, Claudia

    2016-01-01

    Drawing from Chicana feminist perspectives and Pérez ("Living Chicana theory." Third Woman Press, Berkeley, pp 87-101, 1998) theories of "sitios y lenguas" (space and discourses) the authors reposition understandings of teaching and learning through a qualitative case study of a first grade Spanish/English bilingual classroom.…

  6. Collaborative monitoring in Walnut Creek, California

    Treesearch

    Heidi Ballard; Ralph Kraetsch; Lynn Huntsinger

    2002-01-01

    In 1995 and 2000, a monitoring program was designed and implemented to track oak regeneration and native grass populations in target management areas in the four Open Space Preserves of the City of Walnut Creek, California. The program resulted from a collaboration of scientists at the University of California, Berkeley, a group of interested citizens known as the...

  7. Weak Interactions Group

    Science.gov Websites

    Weak Interactions Group UC Berkeley UC Berkeley Physics Lawrence Berkeley Lab Nuclear Science Division at LBL Physics Division at LBL Phonebook A-Z Index Navigation Home Members Research Projects CUORE Design Concept Berkeley Projects People Publications Contact Links KamLAND Physics Impact Neutrino

  8. Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011

    ScienceCinema

    Sanii, Babak

    2017-12-11

    Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.

  9. Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanii, Babak

    Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.

  10. A tandem-based compact dual-energy gamma generator.

    PubMed

    Persaud, A; Kwan, J W; Leitner, M; Leung, K-N; Ludewigt, B; Tanaka, N; Waldron, W; Wilde, S; Antolak, A J; Morse, D H; Raber, T

    2010-02-01

    A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown.

  11. Effects of radiation upon the light-sensing elements of the retina as characterized by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Malachowski, M. J.; Tobias, C. A.; Leith, J. T.

    1977-01-01

    A model system using Necturus maculosus, the common mudpuppy, was established for evaluating effects of radiation upon the light-sensing elements of the retina. Accelerated heavy ions of helium and neon from the Berkeley Bevalac were used. A number of criteria were chosen to characterize radiation damage by observing morphological changes with the scanning electron microscope. The studies indicated retina sensitivity to high-LET (neon) particles at radiation levels below 10 rads (7 particles per visual element) whereas no significant effects were seen from fast helium ions below 50 rads.

  12. Joint Center for Artificial Photosynthesis

    ScienceCinema

    Koval, Carl; Lee, Kenny; Houle, Frances; Lewis, Na

    2018-05-30

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  13. Joint Center for Artificial Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koval, Carl; Lee, Kenny; Houle, Frances

    2013-12-10

    The Joint Center for Artificial Photosynthesis (JCAP) is the nation's largest research program dedicated to the development of an artificial solar-fuel generation technology. Established in 2010 as a U.S. Department of Energy (DOE) Energy Innovation Hub, JCAP aims to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide as inputs. JCAP brings together more than 140 top scientists and researchers from the California Institute of Technology and its lead partner, Berkeley Lab, along with collaborators from the SLAC National Accelerator Laboratory, and the University of California campuses at Irvine and San Diego.

  14. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    ScienceCinema

    Rokhsar, Daniel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2018-05-24

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  15. Berkeley Lab Scientist Named MacArthur "Genius" Fellow for Audio

    Science.gov Websites

    Preservation Research | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News to digitally recover a 128-year-old recording of Alexander Graham Bell's voice, enabling people to

  16. Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  17. Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhsar, Daniel

    2008-02-11

    Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.

  18. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III

    2014-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.

  19. Adsorption of Dissolved Metals in the Berkeley Pit using Thiol-Functionalized Self-Assembled Monolayers on Mesoporous Supports (Thiol-SAMMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betancourt, Amaury P.; Mattigod, Shas V.; Wellman, Dawn M.

    2010-03-07

    The Berkeley Pit in Butte, Montana, is heavily contaminated with dissolved metals. Adsorption and extraction of these metals can be accomplished through the use of a selective adsorbent. For this research, the adsorbent used was thiol-functionalized Self-Assembled Monolayers on Mesoporous Supports (thiol-SAMMS), which was developed at Pacific Northwest National Laboratory (PNNL). Thiol-SAMMS selectively binds to numerous types of dissolved metals. The objective of this research was to evaluate the loading and kinetics of aluminum, beryllium, copper, and zinc on thiol-SAMMS. For the loading tests, a series of Berkeley Pit water to thiol-SAMMS ratios (mL:g) were tested. These ratios were 1000:1,more » 500:1, 100:1, and 50:1. Berkeley Pit water is acidic (pH {approx} 2.5). This can affect the performance of SAMMS materials. Therefore, the effect of pH was evaluated by conducting parallel series of loading tests wherein the Berkeley Pit water was neutralized before or after addition of thiol-SAMMS, and a series of kinetics tests wherein the Berkeley Pit water was neutralized before addition of thiol-SAMMS for the first test and was not neutralized for the second test. For the kinetics tests, one Berkeley Pit water to thiol-SAMMS ratio was tested, which was 2000:1. The results of the loading and kinetics tests suggest that a significant decrease in dissolved metal concentration at Berkeley Pit could be realized through neutralization of Berkeley Pit water. Thiol-SAMMS technology has a limited application under the highly acidic conditions posed by the Berkeley Pit. However, thiol-SAMMS could provide a secondary remedial technique which would complete the remedial system and remove dissolved metals from the Berkeley Pit to below drinking water standards.« less

  20. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  1. Following an electron bunch for free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-01

    A video artist's ultra-slow-motion impression of an APEX-style electron gun firing a continuous train of electron bunches into a superconducting linear accelerator (in reality this would happen a million times a second). As they approach the speed of light the bunches contract, maintaining beam quality. After acceleration, the electron bunches are diverted into one or more undulators, the key components of free electron lasers. Oscillating back and forth in the changing magnetic field, they create beams of structured x-ray pulses. Before entering the experimental areas the electron bunches are diverted to a beam dump. (Animation created by Illumina Visual, http://www.illuminavisual.com/,more » for Lawrence Berkeley National Laboratory. Music for this excerpt, "Feeling Dark (Behind The Mask)" is by 7OOP3D http://ccmixter.org/files/7OOP3D/29126 and is licensed under a Creative Commons license: http://creativecommons.org/licenses/by-nc/3.0/)« less

  2. Failla Memorial lecture. The future of heavy-ion science in biology and medicine.

    PubMed

    Tobias, C A

    1985-07-01

    Interplanetary space contains fluxes of fast moving atomic nuclei. The distribution of these reflects the atomic composition of the universe, and such particles may pose limitations for space flight and for life in space. Over the past 50 years, since the invention of Ernest Lawrence's cyclotron, advances in accelerator technology have permitted the acceleration of charged nuclei to very high velocities. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. Recently, new areas of particle physics research relating to the mechanisms of spallation and fission have opened up for investigation, and it is now realistic to search for nuclear super-dense states that might be produced in heavy nuclear collisions. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Individual heavy ions can also interrupt the continuity of membraneous regions in cells. Heavy ions, when compared to low-LET radiation, have increased effectiveness for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Cells attempt to repair these lesions, and many of the deleterious effects are due to misrepair or misrejoining of DNA. Heavy ions do not require the presence of oxygen for producing their effects, and hypoxic cells in necrotic regions have nearly the same sensitivity as cells in well-oxygenated tissues. Heavy ions are effective in delaying or blocking the cell division process. Heavy ions are also strong enhancers of viral-induced cell transformation, a process that requires integration of foreign DNA. Some cell lines, known to be radioresistant to X rays, have exhibited greater sensitivity to heavy ions. These radiobiological properties, combined with the ability to deliver highly localized internal doses, make accelerated heavy ions potentially important radiotherapeutic tools. Other novel approaches include the utilization of radioactive heavy beams as instant tracers. Heavy-ion radiography and microscopy respond to delicate changes in tissue electron density. Dose localization with helium ions has achieved excellent results for pituitary tumors, tumors adjacent to the spinal cord, and ocular melanomas. We are working on adapting silicon- and neon-ion beams for controlled therapy studies.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. The Undergraduate Origins of PhD Economists: The Berkeley Experience

    ERIC Educational Resources Information Center

    Olney, Martha L.

    2015-01-01

    The University of California, Berkeley sends more undergraduate students to economics PhD programs than any other public university. While this fact is surely a function of its size, there may be lessons from the Berkeley experience that others could adopt. To investigate why Berkeley generates so many economics PhD students, the author convened…

  4. Microsoft Licenses Berkeley Lab's Home Energy Saver Code for Its Energy

    Science.gov Websites

    -based tool for calculating energy use in residential buildings. About one million people visit the Home Management Software | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News

  5. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less

  6. Short intense ion pulses for materials and warm dense matter research

    DOE PAGES

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...

    2015-08-14

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less

  7. Video semaphore decoding for free-space optical communication

    NASA Astrophysics Data System (ADS)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  8. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, left, and Dr. John Mather are seen with a replica of Mather's Nobel Prize, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned the replica that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe. Photo Credit: (NASA/Paul E. Alers)

  9. A Science Information Infrastructure for Access to Earth and Space Science Data through the Nation's Science Museums

    NASA Technical Reports Server (NTRS)

    Murray, S.

    1999-01-01

    In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.

  10. Art in Science Promoting Interest in Research and Exploration (ASPIRE)

    NASA Astrophysics Data System (ADS)

    Fillingim, M.; Zevin, D.; Thrall, L.; Croft, S.; Raftery, C.; Shackelford, R.

    2015-11-01

    Led by U.C. Berkeley's Center for Science Education at the Space Sciences Laboratory in partnership with U.C. Berkeley Astronomy, the Lawrence Hall of Science, and the YMCA of the Central Bay Area, Art in Science Promoting Interest in Research and Exploration (ASPIRE) is a NASA EPOESS-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. ASPIRE's aim is to motivate more diverse young people (especially African Americans) to learn about Science, Technology, Engineering, and Mathematics (STEM) topics and careers, via 1) Intensive summer workshops; 2) Drop-in after school workshops; 3) Astronomy visualization-focused outreach programming at public venues including a series of free star parties where the students help run the events; and 5) A website and a number of social networking strategies that highlight our youth's artwork.

  11. What Made Berkeley Great? The Sources of Berkeley's Sustained Academic Excellence. Research & Occasional Paper Series CSHE.3.11

    ERIC Educational Resources Information Center

    Breslauer, George W.

    2011-01-01

    University of California (UC) Berkeley's chief academic officer explores the historical sources of Berkeley' academic excellence. He identifies five key factors: (1) wealth from many sources; (2) supportive and skilled governors; (3) leadership from key UC presidents; (4) the pioneering ethos within the State of California; and (5) a process of…

  12. Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics | Berkeley Lab

    Science.gov Websites

    astrophysics, dark energy, physics Connect twitter instagram LinkedIn facebook youtube This form needs Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics News Release Paul Preuss 510-486-6249 * October professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics

  13. Using synchrotron light to accelerate EUV resist and mask materials learning

    NASA Astrophysics Data System (ADS)

    Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Jones, Gideon; McClinton, Brittany; Miyakawa, Ryan; Mochi, Iacopo; Montgomery, Warren; Rekawa, Seno; Wallow, Tom

    2011-03-01

    As commercialization of extreme ultraviolet lithography (EUVL) progresses, direct industry activities are being focused on near term concerns. The question of long term extendibility of EUVL, however, remains crucial given the magnitude of the investments yet required to make EUVL a reality. Extendibility questions are best addressed using advanced research tools such as the SEMATECH Berkeley microfield exposure tool (MET) and actinic inspection tool (AIT). Utilizing Lawrence Berkeley National Laboratory's Advanced Light Source facility as the light source, these tools benefit from the unique properties of synchrotron light enabling research at nodes generations ahead of what is possible with commercial tools. The MET for example uses extremely bright undulator radiation to enable a lossless fully programmable coherence illuminator. Using such a system, resolution enhancing illuminations achieving k1 factors of 0.25 can readily be attained. Given the MET numerical aperture of 0.3, this translates to an ultimate resolution capability of 12 nm. Using such methods, the SEMATECH Berkeley MET has demonstrated resolution in resist to 16-nm half pitch and below in an imageable spin-on hard mask. At a half pitch of 16 nm, this material achieves a line-edge roughness of 2 nm with a correlation length of 6 nm. These new results demonstrate that the observed stall in ultimate resolution progress in chemically amplified resists is a materials issue rather than a tool limitation. With a resolution limit of 20-22 nm, the CAR champion from 2008 remains as the highest performing CAR tested to date. To enable continued advanced learning in EUV resists, SEMATECH has initiated a plan to implement a 0.5 NA microfield tool at the Advanced Light Source synchrotron facility. This tool will be capable of printing down to 8-nm half pitch.

  14. FY2014 LBNL LDRD Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less

  15. Cool Cities, Cool Planet (LBNL Science at the Theater)

    ScienceCinema

    Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

    2018-06-14

    Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

  16. Using Existing NASA Satellites as Orbiting Testbeds to Accelerate Technology Infusion into Future Missions

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Ly, Vuong; Frye, Stuart

    2006-01-01

    One of the shared problems for new space mission developers is that it is extremely difficult to infuse new technology into new missions unless that technology has been flight validated. Therefore, the issue is that new technology is required to fly on a successful mission for flight validation. We have been experimenting with new technology on existing satellites by retrofitting primarily the flight software while the missions are on-orbit to experiment with new operations concepts. Experiments have been using Earth Observing 1 (EO-1), which is part of the New Millennium Program at NASA. EO-1 finished its prime mission one year after its launch on November 21,2000. From November 21,2001 until the present, EO-1 has been used in parallel with additional science data gathering to test out various sensor web concepts. Similarly, the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) satellite was also a one year mission flown by the University of Berkeley, sponsored by NASA and whose prime mission ended August 30,2005. Presently, CHIPS is being used to experiment with a seamless space to ground interface by installing Core Flight System (cFS), a "plug-and-play" architecture developed by the Flight Software Branch at NASA/GSFC on top of the existing space-to-ground Internet Protocol (IP) interface that CHIPS implemented. For example, one targeted experiment is to connect CHIPS to a rover via this interface and the Internet, and trigger autonomous actions on CHIPS, the rover or both. Thus far, having satellites to experiment with new concepts has turned out to be an inexpensive way to infuse new technology for future missions. Relevant experiences thus far and future plans will be discussed in this presentation.

  17. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.

  18. Untitled Document

    Science.gov Websites

    , contact: Saul Perlmutter (saul(at)lbl(dot)gov) University of California Berkeley, CA 94720 A. Spadafora (alspadafora(at)lbl(dot)gov) Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley, CA 94720

  19. Wave Propagation Problems in Certain Elastic Anisotropic Half Spaces.

    DTIC Science & Technology

    1980-12-01

    874-882. 33. Paul , S.L., and Robinson, A.R., "Interaction of Plane Elastic Waves with a Cylindrical Cavity," Technical Documentary Report Mo. RTD...Professor Paul M. Naghdi University of California Department of Mechanical Engineering Berkeley, California 94720 Professor A. J. Durelli Oakland...Burt Paul University of Pennsylvania Towne School of Civil and Mechanical Engineering Philadelphia, Pennsylvania 19104 Professor H. W. Liu Syracuse

  20. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of

  1. ARC-2006-ACD06-0216-008

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel

  2. ARC-2006-ACD06-0216-003

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth working with sample encased in aerogel

  3. ARC-2006-ACD06-0216-024

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel

  4. ARC-2006-ACD06-0216-025

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel

  5. Tradeoffs Between Synchronization, Communication, and Work in Parallel Linear Algebra Computations

    DTIC Science & Technology

    2014-01-25

    Demmel Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014- 8 http...www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014- 8 .html January 25, 2014 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...University of California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8 . PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  6. Targeting Transcription Elongation Machinery for Breast Cancer Therapy

    DTIC Science & Technology

    2016-05-01

    Luo CONTRACTING ORGANIZATION: University of California, Berkeley Berkeley, CA 94704 REPORT DATE: May 2016 TYPE OF REPORT: Annual PREPARED FOR...ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER University of California, Berkeley BERKELEY, CA 94704 9. SPONSORING...molecules. We have employed the CRISPR /Cas9 genome-editing tool to knock out the gene encoding the SEC component AFF4 or knock in a mutant cyclin T1 (AAG

  7. Targeting Transcription Elongation Machinery for Breast Cancer Therapy

    DTIC Science & Technology

    2016-05-01

    Zhou CONTRACTING ORGANIZATION: University of California, Berkeley Berkeley, CA 94704 REPORT DATE: May 2016 TYPE OF REPORT: Annual Report...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AND ADDRESS(ES) University of California, Berkeley Berkeley, CA ...without affecting the Brd4 or PTEFb molecules. We have employed the CRISPR /Cas9 genome-editing tool to knock out the gene encoding the SEC component AFF4

  8. Evaluating the Impact of Open Access at Berkeley: Results from the 2015 Survey of Berkeley Research Impact Initiative (BRII) Funding Recipients

    ERIC Educational Resources Information Center

    Teplitzky, Samantha; Phillips, Margaret

    2016-01-01

    The Berkeley Research Impact Initiative (BRII) was one of the first campus-based open access (OA) funds to be established in North America and one of the most active, distributing more than $244,000 to support University of California (UC) Berkeley authors. In April 2015, we conducted a qualitative study of 138 individuals who had received BRII…

  9. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.

  10. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.

  11. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley National Laboratory 1 Cyclotron Road MS 66R0200 Berkeley CA 94720 510-486-4957 A U.S. Department

  12. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Amongmore » the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.« less

  13. Exploratory Research and Development Fund, FY 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicinemore » and radiation biophysics.« less

  14. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    ScienceCinema

    Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Nuclear Medicine & Functional Imaging

    2018-01-23

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  15. ARC-2006-ACD06-0216-006

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel

  16. ARC-2006-ACD06-0216-009

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, A; Kwan, J

    Earlier this year, the U.S. Department of Energy Office of Fusion Energy Sciences approved the NDCX-II project, a second-generation Neutralized Drift Compression eXperiment. NDCX-II is a collaborative effort of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and the Princeton Plasma Physics Laboratory (PPPL), in a formal collaboration known as the Virtual National Laboratory for Heavy Ion Fusion Science (HIFS-VNL). Supported by $11 M of funding from the American Recovery and Reinvestment Act, construction at LBNL commenced in July of 2009, with completion anticipated in March of 2012. Applications of this facility will includemore » studies of: the basic physics of the poorly understood 'warm dense matter' regime of temperatures around 1 eV and densities near solid, using uniform, volumetric ion heating of thin foil targets; ion energy coupling into an ablating plasma (such as that which occurs in an inertial fusion target) using beams with time-varying kinetic energy; space-charge-dominated ion beam dynamics; and beam focusing and pulse compression in neutralizing plasma. The machine will complement facilities at GSI in Darmstadt, Germany, but will employ lower ion kinetic energies and commensurately shorter stopping ranges in matter. Much of this research will contribute directly toward the collaboration's ultimate goal of electric power production via heavy-ion beam-driven inertial confinement fusion ('Heavy-Ion Fusion', or HIF). In inertial fusion, a target containing fusion fuel is heated by energetic 'driver' beams, and undergoes a miniature thermonuclear explosion. Currently the largest U.S. research program in inertial confinement is at Livermore's National Ignition Facility (NIF), a multibillion-dollar, stadium-sized laser facility optimized for studying physics issues relevant to nuclear stockpile stewardship. Nonetheless, NIF is expected to establish the fundamental feasibility of fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in Fig. 2. Studies on a dedicated test stand are quantifying the performance of the ATA hardware and of pulsed solenoids that will provide transverse beam confinement (ions require much stronger fields than the electrons accelerated by ATA). For more information, see the recent article in the Berkeley Lab News and references therein. Joe Kwan is the NDCX-II project manager and Alex Friedman is the leader for the physics design.« less

  18. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, at podium, acknowleges museum director Ret. Gen. John R. "Jack" Dailey, seated left, and NASA astrophycisist Dr. John Mather, center, during a presentation, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  19. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    NASA Astrophycist Dr. John Mather, at podium, speaks Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington as museum director Gen. John R. "Jack" Dailey, U.S. Marine Corps ret. and STS-132 astronaut Piers Sellers look on. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Sabin; Schlegel, David

    Lawrence Berkeley National Laboratory physicist and dark energy hunter David Schlegel chats with Sabin Russell, former San Francisco Chronicle reporter turned Berkeley Lab science writer, June 22, 2011. Their conversation is the first installment of "Sit Down With Sabin," a weekly conversation hosted by Russell. Over the course of five conversations with Berkeley Lab staff this summer, Russell will explore the ups and downs of innovative science — all without the aid of PowerPoint slides. Brought to you by Berkeley Lab Public Affairs.

  1. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.

  2. Skylab

    NASA Image and Video Library

    1973-01-01

    This chart describes the Skylab student experiment X-Rays from Jupiter, proposed by Jearne Leventhal of Berkeley, California. This experiment was an investigation to detect x-rays from the planet Jupiter and determine any correlation with solar flare activity. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  3. New Galaxy-hunting Sky Camera Sees Redder Better | Berkeley Lab

    Science.gov Websites

    ) is now one of the best cameras on the planet for studying outer space at red wavelengths that are too . Mosaic-3's primary mission is to carry out a survey of roughly one-eighth of the sky (5,500 square survey is just one layer in the galaxy survey that is locating targets for DESI. Data from this survey

  4. THz Solar Observations on Board of a Trans-Antarctic Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Abrantes, A.; Bortolucci, E. C.; Caspi, A.; Fernandes, L. O. T.; Kropotov, G.; Kudaka, A. S.; Laurent, G.; Machado, N.; Marcon, R.; hide

    2016-01-01

    A new system of two photometers was built to observe the Sun at 3 and 7 THz from space, named SOLART. It has been flown coupled to U.C. Berkeley GRIPS experiment on a NASA stratospheric balloon flight over Antarctica, 19-30 January 2016. The mission was successfully accomplished. We describe the system performance, solar brightness determination and the first THz impulsive burst detected.

  5. Cyclotron Road at Berkeley Lab – U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, Kendra; Weitekamp, Raymond; Lehmann, Marcus

    The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private‐sector investment, and too applied for academia. Participants receive the time, space and capital to pursue their research and the support to find viable pathways to the market.

  6. 40 CFR 81.341 - South Carolina.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... County X Anderson County X Bamberg County X Barnwell County X Beaufort County X Berkeley County X Calhoun... County X Berkeley County X Calhoun County X Charleston County X Cherokee County X Chester County X... Beaufort County Berkeley County Calhoun County Charleston County Cherokee County Chester County...

  7. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.

    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less

  8. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization

    DOE PAGES

    Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.; ...

    2017-09-05

    Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less

  9. NASA Design Projects at UC Berkeley for NASA's HEDS-UP Program

    NASA Astrophysics Data System (ADS)

    Kuznetz, Lawrence

    1998-01-01

    Missions to Mars have been a topic for study since the advent of the space age. But funding has been largely reserved for the unmanned probes such as Viking, Pathfinder and Global Surveyer. Financial and political constraints have relegated human missions, on the other hand, to backroom efforts such as the Space Exploration Initiative (SEI) of 1989-1990. With the new found enthusiasm from Pathfinder and the meteorite ALH84001, however, there is renewed interest in human exploration of Mars. This is manifest in the new Human Exploration and Development of Space (HEDS) program that NASA has recently initiated. This program, through its University Projects (HEDS-UP) office has taken the unusual step of soliciting creative solutions from universities. For its part in the HEDS-UP program, the University of California at Berkeley was asked to study the issues of Habitat design, Space Suits for Mars, Environmental Control and Life Support Systems, Countermeasures to Hypogravity and Crew Size/Mix. These topics were investigated as design projects in "Mars by 2012", an on-going class for undergraduates and graduate students. The methodology of study was deemed to be as important as the design projects themselves and for that we were asked to create an Interactive Design Environment. The Interactive Design Environment (IDE) is an electronic "office" that allows scientists and engineers, as well as other interested parties, to interact with and critique engineering designs as they progress. It usually takes the form of a website that creates a "virtual office" environment. That environment is a place where NASA and others can interact with and critique the university designs for potential inclusion in the Mars Design Reference Mission.

  10. Web Support

    Science.gov Websites

    Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center our response, please check the specific website or page in question for the name of the appropriate

  11. 78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... Marina Fourth of July Fireworks display in the Captain of the Port, San Francisco area of responsibility... Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in approximate position 37[deg]51... radius 1,000 [[Page 29023

  12. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  13. BEARS: a multi-mission anomaly response system

    NASA Astrophysics Data System (ADS)

    Roberts, Bryce A.

    2009-05-01

    The Mission Operations Group at UC Berkeley's Space Sciences Laboratory operates a highly automated ground station and presently a fleet of seven satellites, each with its own associated command and control console. However, the requirement for prompt anomaly detection and resolution is shared commonly between the ground segment and all spacecraft. The efficient, low-cost operation and "lights-out" staffing of the Mission Operations Group requires that controllers and engineers be notified of spacecraft and ground system problems around the clock. The Berkeley Emergency Anomaly and Response System (BEARS) is an in-house developed web- and paging-based software system that meets this need. BEARS was developed as a replacement for an existing emergency reporting software system that was too closedsource, platform-specific, expensive, and antiquated to expand or maintain. To avoid these limitations, the new system design leverages cross-platform, open-source software products such as MySQL, PHP, and Qt. Anomaly notifications and responses make use of the two-way paging capabilities of modern smart phones.

  14. Molecular Foundry Workshop draws overflow crowd to BerkeleyLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Art

    2002-11-27

    Nanoscale science and technology is now one of the top research priorities in the United States. With this background, it is no surprise that an overflow crowd or more than 350 registrants filled two auditoriums to hear about and contribute ideas for the new Molecular Foundry during a two-day workshop at the Lawrence Berkeley National Laboratory (Berkeley Lab). Scheduled to open for business at Berkeley Labin early 2006, the Molecular Foundry is one of three Nanoscale Science Research Centers (NSRCs) put forward for funding by the DOE's Office of Basic Energy Sciences (BES).

  15. Cyclotron Road at Berkeley Lab – U.S. Department of Energy

    ScienceCinema

    Kuhl, Kendra; Weitekamp, Raymond; Lehmann, Marcus; Cave, Etosha; Gur, Ilan; Lounis, Sebastien

    2018-01-16

    The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private‐sector investment, and too applied for academia. Participants receive the time, space and capital to pursue their research and the support to find viable pathways to the market.

  16. The garden as a laboratory: the role of domestic gardens as places of scientific exploration in the long 18th century

    PubMed Central

    HICKMAN, CLARE

    2014-01-01

    Eighteenth-century gardens have traditionally been viewed as spaces designed for leisure, and as representations of political status, power and taste. In contrast, this paper will explore the concept that gardens in this period could be seen as dynamic spaces where scientific experiment and medical practice could occur. Two examples have been explored in the pilot study which has led to this paper — the designed landscapes associated with John Hunter’s Earl’s Court residence, in London, and the garden at Edward Jenner’s house in Berkeley, Gloucestershire. Garden history methodologies have been implemented in order to consider the extent to which these domestic gardens can be viewed as experimental spaces. PMID:26052165

  17. The garden as a laboratory: the role of domestic gardens as places of scientific exploration in the long 18th century.

    PubMed

    Hickman, Clare

    2014-06-01

    Eighteenth-century gardens have traditionally been viewed as spaces designed for leisure, and as representations of political status, power and taste. In contrast, this paper will explore the concept that gardens in this period could be seen as dynamic spaces where scientific experiment and medical practice could occur. Two examples have been explored in the pilot study which has led to this paper - the designed landscapes associated with John Hunter's Earl's Court residence, in London, and the garden at Edward Jenner's house in Berkeley, Gloucestershire. Garden history methodologies have been implemented in order to consider the extent to which these domestic gardens can be viewed as experimental spaces.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less

  19. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III

    2015-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.

  20. Excellence in Research: Creative Organizational Responses at Berkeley, Harvard, MIT, and Stanford. ASHE 1985 Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Gardiner, John J.

    Research environments of four leading universities were studied: University of California at Berkeley (UC-Berkeley), Harvard University, Massachusetts Institute of Technology (MIT), and Stanford University. Attention was directed to organizational responses for encouraging collaboration in research at these leading universities, as well as to…

  1. Berkeley Lab - Lawrence Berkeley National Laboratory

    Science.gov Websites

    nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into of Methane's Increasing Greenhouse Effect A Berkeley Lab research team tracked a rise in the warming effect of methane - one of the most important greenhouse gases for the Earth's atmosphere - over a 10

  2. A-Z Link

    Science.gov Websites

    Index (this page) 2. Use search.lbl.gov powered by Google. 3. Use DS The Directory of both People and Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center

  3. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials

  4. ARC-2006-ACD06-0216-010

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel Note: Eric Land of NASA/AMES video crew in lower left corner providing sound support for event

  5. City of Berkeley, California Municipal Tree Resource Analysis

    Treesearch

    S.E. Maco; E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao

    2005-01-01

    Vibrant, renowned for its livability and cultural wealth, the city of Berkeley maintains trees as an integral component of the urban infrastructure. Research indicates that healthy trees can mitigate impacts associated with the built environment by reducing stormwater runoff, energy consumption, and air pollutants. Put simply, trees improve urban life, making Berkeley...

  6. Test results of a Nb 3Al/Nb 3Sn subscale magnet for accelerator application

    DOE PAGES

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb 3Al and Nb 3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb 3Al cable and the technology acquisition of magnet fabrication with Nb 3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb 3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in amore » minimum-gap common-coil configuration with two Nb 3Al coils sandwiched between two Nb 3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb 3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb 3Sn coil and 8.2 T in the Nb 3Al coil. The quench characteristics of the magnet were studied.« less

  7. Solar space heating system at the Seeley G. Mudd Education Building, Pacific School of Religion, 1798 Scenic Avenue, Berkeley California 94708. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Large areas of south facing glass allow winter sunlight to penetrate the building, while overhangs provide summer shading. High ceilings allow deep penetration of this light for space heating and natural lighting. Massive construction stores solar radiation for evening warmth and provides a buffer from extreme temperature fluctuations. Natural ventilation will provide cooling. The system consists of 720 square feet of roof-mounted, liquid, flat plate solar collectors and three 350 gallon fiberglass storage tanks. The acceptance and performance tests are discussed. Also discusseed are: collector selection, construction contract, costs, and economics.

  8. Planck Surveyor On Its Way to Orbit

    ScienceCinema

    None

    2017-12-09

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center

  9. Keeping Cool Close to the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    The germanium detector in the gamma-ray spectrometer (GRS) aboard the MESSENGER spacecraft is only the size and weight of a can of peaches but will play a critical role in investigating Mercury, the planet closest to the Sun. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft travels at about 38 kilometers per second and is named after the scientific goals of the mission. It is the first spacecraft to visit Mercury since 1975. MESSENGER must take an oblique route to approach Mercury so that it does not fly past the planet and fall directly into the Sun. Themore » spacecraft will travel 7.9 billion kilometers, flying by Earth once, Venus twice, and Mercury three times before settling into orbit around this mysterious planet. Of all the terrestrial planets, which include Venus, Earth, and Mars, Mercury is the smallest and the densest; its days are 176 Earth days long, two complete orbits of the planet around the Sun. Temperatures range from a high of 450 C on the Sun side during its long day to a low of -185 C on its night side. By studying this extreme planet, scientists hope to better understand how Earth formed and evolved. The GRS, one of the seven lightweight scientific instruments on MESSENGER, will be used to help scientists determine the abundance of elements in Mercury's crust, including the materials that might be ice at its poles. Livermore engineer Norman Madden led the West Coast team effort to design and build the GRS in a collaboration led by Johns Hopkins University Applied Physics Laboratory (JHUAPL). The team included Lawrence Berkeley and Lawrence Livermore national laboratories as well as University of California at Berkeley (UCB) Space Sciences Laboratory (SSL). The JHUAPL MESSENGER project is a National Aeronautics and Space Administration (NASA) Discovery Mission. Because the detector needs to operate at very low temperatures and MESSENGER is close to the Sun, the thermal design to protect the detector was critical. The detector is kept cool by an electromechanical cryocooler attached to the outside of the device. However, the cryocooler has a limited cooling capacity because of size and weight constraints. To ensure the cryocooler would sufficiently cool the detector, Livermore scientists used SINDA/FLUINT, a commercial program originally developed by NASA, to model the thermal environments that the spectrometer was expected to encounter--during liftoff, in space while en route to Mercury, and in orbit around the planet. Using the data from the model, scientists from Lawrence Livermore and Lawrence Berkeley developed a design that included three closely spaced and highly reflective thermal shields held in place with DuPont KEVLAR{reg_sign} fiber.« less

  10. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.

  11. Nuclear Data Needs and Capabilities for Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applicationsmore » (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).« less

  12. PUB-3000 | BERKELEY LAB HEALTH AND SAFETY MANUAL

    Science.gov Websites

    ES&H MANUAL (PUB-3000) Berkeley Lab Table of Contents Guide to Using the ES&H Manual Responsible Authors Log of ES&H Manual Changes Requesting a Change to the ES&H Manual Search the ES &H Manual Questions & Comments Lawrence Berkeley National Laboratory University of California

  13. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study.

    PubMed

    Silver, Lynn D; Ng, Shu Wen; Ryan-Ibarra, Suzanne; Taillie, Lindsey Smith; Induni, Marta; Miles, Donna R; Poti, Jennifer M; Popkin, Barry M

    2017-04-01

    Taxes on sugar-sweetened beverages (SSBs) meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake. Methods included comparison of pre-taxation (before 1 January 2015) and first-year post-taxation (1 March 2015-29 February 2016) measures of (1) beverage prices at 26 Berkeley stores; (2) point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3) a representative telephone survey (17.4% cooperation rate) of 957 adult Berkeley residents. Key hypotheses were that (1) the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2) sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3) consumer spending per transaction (checkout episode) would not increase in Berkeley stores; and (4) self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce), beverage sales (ounces), consumers' spending measured as store revenue (inflation-adjusted dollars per transaction) in two large chains, and usual beverage intake (grams/day and kilocalories/day). Tax pass-through (changes in the price after imposition of the tax) for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001) and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004), partial in pharmacies (+0.45¢/oz, p = 0.03), and negative in independent corner stores and independent gas stations (-0.64¢/oz, p = 0.004). Sales-unweighted mean price change from scanner data was +0.67¢/oz (p = 0.00) (sales-weighted, +0.65¢/oz, p = 0.003), with +1.09¢/oz (p < 0.001) for sodas and energy drinks, but a lower change in other categories. Post-tax year 1 scanner data SSB sales (ounces/transaction) in Berkeley stores declined 9.6% (p < 0.001) compared to estimates if the tax were not in place, but rose 6.9% (p < 0.001) for non-Berkeley stores. Sales of untaxed beverages in Berkeley stores rose by 3.5% versus 0.5% (both p < 0.001) for non-Berkeley stores. Overall beverage sales also rose across stores. In Berkeley, sales of water rose by 15.6% (p < 0.001) (exceeding the decline in SSB sales in ounces); untaxed fruit, vegetable, and tea drinks, by 4.37% (p < 0.001); and plain milk, by 0.63% (p = 0.01). Scanner data mean store revenue/consumer spending (dollars per transaction) fell 18¢ less in Berkeley (-$0.36, p < 0.001) than in comparison stores (-$0.54, p < 0.001). Baseline and post-tax Berkeley SSB sales and usual dietary intake were markedly low compared to national levels (at baseline, National Health and Nutrition Examination Survey SSB intake nationally was 131 kcal/d and in Berkeley was 45 kcal/d). Reductions in self-reported mean daily SSB intake in grams (-19.8%, p = 0.49) and in mean per capita SSB caloric intake (-13.3%, p = 0.56) from baseline to post-tax were not statistically significant. Limitations of the study include inability to establish causal links due to observational design, and the absence of health outcomes. Analysis of consumption was limited by the small effect size in relation to high standard error and Berkeley's low baseline consumption. One year following implementation of the nation's first large SSB tax, prices of SSBs increased in many, but not all, settings, SSB sales declined, and sales of untaxed beverages (especially water) and overall study beverages rose in Berkeley; overall consumer spending per transaction in the stores studied did not rise. Price increases for SSBs in two distinct data sources, their timing, and the patterns of change in taxed and untaxed beverage sales suggest that the observed changes may be attributable to the tax. Post-tax self-reported SSB intake did not change significantly compared to baseline. Significant declines in SSB sales, even in this relatively affluent community, accompanied by revenue used for prevention suggest promise for this policy. Evaluation of taxation in jurisdictions with more typical SSB consumption, with controls, is needed to assess broader dietary and potential health impacts.

  14. Mendelevium: The Way It Was

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel inmore » a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.« less

  15. Laboratory Directed Research and Development Program FY 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less

  16. Mendelevium: The Way It Was

    ScienceCinema

    None

    2018-05-30

    A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel in a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.

  17. Gymnastics in Phase Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this listmore » are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.« less

  18. Vibration environment - Acceleration mapping strategy and microgravity requirements for Spacelab and Space Station

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Baugher, Charles R.; Delombard, Richard

    1990-01-01

    In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.

  19. Characterizing Crowd Participation and Productivity of Foldit Through Web Scraping

    DTIC Science & Technology

    2016-03-01

    Berkeley Open Infrastructure for Network Computing CDF Cumulative Distribution Function CPU Central Processing Unit CSSG Crowdsourced Serious Game...computers at once can create a similar capacity. According to Anderson [6], principal investigator for the Berkeley Open Infrastructure for Network...extraterrestrial life. From this project, a software-based distributed computing platform called the Berkeley Open Infrastructure for Network Computing

  20. Participatory Classification in a System for Assessing Multimodal Transportation Patterns

    DTIC Science & Technology

    2015-02-17

    Culler Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-8 http...California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...confirmation screen This section sketches the characteristics of the data that was collected, computes the accuracy of the auto- mated inference algorithm

  1. Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.« less

  2. Proceedings of the First International Symposium on the Biological Interpretation of Dose from Accelerator-Produced Radiation, Held at the Lawrence Radiation Laboratory, Berkeley, California, March 13--16, 1967

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, R.

    1967-03-13

    The objective of the meeting was to provide a companion meeting to the ''First Symposium on Accelerator Radiation Dosimetry and Experience'' which was held November 3-5, 1965, at the Brookhaven National Laboratory. This first symposium was limited in scope to an intensified discussion of dosimetry techniques. The biology which is associated with high energy radiation was specifically excluded, since it was the original plan to hold a second symposium devoted entirely to biology. Thus the present Symposium was a sequel to the first and they were inseparable in their objectives. Since those attending the BNL Symposium were almost entirely healthmore » physicists with a background in physical science and actively engaged in the solution of radiation protection problems at high energy accelerators, it was felt that it would be necessary to begin the BID Symposium with a general review session on radiation biology, in order to provide a biological background for the proper understanding of the later sessions. This first session was arranged to give the health physicist a meaningful transition from fundamental radiobiological considerations to current new research activities in high energy biology. In our opinion, and also based on the comments of several of those attending these objectives were quite well attained. The talks by Bond, Robertson, Brustad, Wolff, and Patt were quite exhaustive as an introduction to the several areas of specialization in radiobiology. The overall purpose of the meeting was of course to inform the health physicists about the state of knowledge in advanced biological research as it might apply to their problems. It has often been said that it takes a long time for laboratory findings to be applied in practical situations, but this is certainly not true in radiobiology. Through this conference and others like it, the most recent understanding of high energy radiobiology is available to the practicing health physicist and is probably used fairly effectively. In addition, much of this material applies equally well to reactor and space radiation problems, and some of the participants were from these areas as well.« less

  3. Star Formation near Berkeley 59: Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Rosvick, J. M.; Majaess, D.

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (~2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, 12CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v LSR = -15 to -17 km s-1, which agrees with the velocity adopted for Berkeley 59 (-15.7 km s-1), while spectral energy distribution models yield an average interstellar extinction AV and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  4. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    DOE PAGES

    Jeon, Dong -O

    2016-01-12

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σ x(y) – 2σ z = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σ x(y) – 2σ z = 0 resonance that are predicted by the simulation.« less

  5. STS-107 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckhart, Timothy

    2005-01-01

    This summary report presents the results of the processed acceleration data measured aboard the Columbia orbiter during the STS-107 microgravity mission from January 16 to February 1, 2003. Two accelerometer systems were used to measure the acceleration levels due to vehicle and science operations activities that took place during the 16-day mission. Due to lack of precise timeline information regarding some payload's operations, not all of the activities were analyzed for this report. However, a general characterization of the microgravity environment of the Columbia Space Shuttle during the 16-day mission is presented followed by a more specific characterization of the environment for some designated payloads during their operations. Some specific quasi-steady and vibratory microgravity environment characterization analyses were performed for the following payloads: Structure of Flame Balls at Low Lewis-number-2, Laminar Soot Processes-2, Mechanics of Granular Materials-3 and Water Mist Fire-Suppression Experiment. The Physical Science Division of the National Aeronautics and Space Administration sponsors the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer to support microgravity science experiments, which require microgravity acceleration measurements. On January 16, 2003, both the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer accelerometer systems were launched on the Columbia Space Transportation System-107 from the Kennedy Space Center. The Orbital Acceleration Research Experiment supported science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System for Free Flyer unit supported experiments requiring vibratory acceleration measurement. The Columbia reduced gravity environment analysis presented in this report uses acceleration data collected by these two sets of accelerometer systems: The Orbital Acceleration Research Experiment is a low frequency sensor, which measures acceleration up to 1 Hz, but the 1 Hz acceleration data is trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to other locations for characterizing the quasi-steady environment for payloads and the vehicle. The Space Acceleration Measurement System for Free Flyer measures vibratory acceleration in the range of 0.01 to 200 Hz at multiple measurement locations. The vibratory acceleration data measured by this system is used to assess the local vibratory environment for payloads as well as to measure the disturbance causes by the vehicle systems, crew exercise devices and payloads operation disturbances. This summary report presents analysis of selected quasi-steady and vibratory activities measured by these two accelerometers during the Columbia 16-day microgravity mission from January 16 to February 1, 2003.

  6. Changes in prices, sales, consumer spending, and beverage consumption one year after a tax on sugar-sweetened beverages in Berkeley, California, US: A before-and-after study

    PubMed Central

    Ryan-Ibarra, Suzanne; Taillie, Lindsey Smith; Induni, Marta

    2017-01-01

    Background Taxes on sugar-sweetened beverages (SSBs) meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake. Methods and findings Methods included comparison of pre-taxation (before 1 January 2015) and first-year post-taxation (1 March 2015–29 February 2016) measures of (1) beverage prices at 26 Berkeley stores; (2) point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3) a representative telephone survey (17.4% cooperation rate) of 957 adult Berkeley residents. Key hypotheses were that (1) the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2) sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3) consumer spending per transaction (checkout episode) would not increase in Berkeley stores; and (4) self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce), beverage sales (ounces), consumers’ spending measured as store revenue (inflation-adjusted dollars per transaction) in two large chains, and usual beverage intake (grams/day and kilocalories/day). Tax pass-through (changes in the price after imposition of the tax) for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001) and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004), partial in pharmacies (+0.45¢/oz, p = 0.03), and negative in independent corner stores and independent gas stations (−0.64¢/oz, p = 0.004). Sales-unweighted mean price change from scanner data was +0.67¢/oz (p = 0.00) (sales-weighted, +0.65¢/oz, p = 0.003), with +1.09¢/oz (p < 0.001) for sodas and energy drinks, but a lower change in other categories. Post-tax year 1 scanner data SSB sales (ounces/transaction) in Berkeley stores declined 9.6% (p < 0.001) compared to estimates if the tax were not in place, but rose 6.9% (p < 0.001) for non-Berkeley stores. Sales of untaxed beverages in Berkeley stores rose by 3.5% versus 0.5% (both p < 0.001) for non-Berkeley stores. Overall beverage sales also rose across stores. In Berkeley, sales of water rose by 15.6% (p < 0.001) (exceeding the decline in SSB sales in ounces); untaxed fruit, vegetable, and tea drinks, by 4.37% (p < 0.001); and plain milk, by 0.63% (p = 0.01). Scanner data mean store revenue/consumer spending (dollars per transaction) fell 18¢ less in Berkeley (−$0.36, p < 0.001) than in comparison stores (−$0.54, p < 0.001). Baseline and post-tax Berkeley SSB sales and usual dietary intake were markedly low compared to national levels (at baseline, National Health and Nutrition Examination Survey SSB intake nationally was 131 kcal/d and in Berkeley was 45 kcal/d). Reductions in self-reported mean daily SSB intake in grams (−19.8%, p = 0.49) and in mean per capita SSB caloric intake (−13.3%, p = 0.56) from baseline to post-tax were not statistically significant. Limitations of the study include inability to establish causal links due to observational design, and the absence of health outcomes. Analysis of consumption was limited by the small effect size in relation to high standard error and Berkeley’s low baseline consumption. Conclusions One year following implementation of the nation’s first large SSB tax, prices of SSBs increased in many, but not all, settings, SSB sales declined, and sales of untaxed beverages (especially water) and overall study beverages rose in Berkeley; overall consumer spending per transaction in the stores studied did not rise. Price increases for SSBs in two distinct data sources, their timing, and the patterns of change in taxed and untaxed beverage sales suggest that the observed changes may be attributable to the tax. Post-tax self-reported SSB intake did not change significantly compared to baseline. Significant declines in SSB sales, even in this relatively affluent community, accompanied by revenue used for prevention suggest promise for this policy. Evaluation of taxation in jurisdictions with more typical SSB consumption, with controls, is needed to assess broader dietary and potential health impacts. PMID:28419108

  7. The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor

    DTIC Science & Technology

    2015-06-13

    The Berkeley Out-of-Order Machine (BOOM): An Industry- Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio David A...Synthesizable, Parameterized RISC-V Processor Christopher Celio, David Patterson, and Krste Asanović University of California, Berkeley, California 94720...Order Machine BOOM is a synthesizable, parameterized, superscalar out- of-order RISC-V core designed to serve as the prototypical baseline processor

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Ager, Joel W » Alivisatos, A Paul » Altman, Ehud » Analytis, James » Anderson, Christopher  , Naomi » Gullikson, Eric M » Harris, Stephen J » Hasan, M. Zahid » Hellman, Frances » Helms, Brett A

  9. A Profile of Minority Graduate Students at the University of California, Berkeley: Recruitment, Selection, Fields of Study and Financial Support.

    ERIC Educational Resources Information Center

    Collins, O. R.

    This paper presents a profile of minority graduate students at the University of California, Berkeley. Following a brief overview of Berkeley's Graduate Minority Program (GMP), data is presented concerning the number of GMP students supported; available funds and average grants for students from 1968-69 to 1973-74; distribution of GMP students…

  10. Short Intense Ion Pulses for Materials and Warm Dense Matter Research

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  11. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  12. Development of a 32-bit UNIX-based ELAS workstation

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A.; Pearson, Ronnie W.; Cheng, Thomas D.

    1987-01-01

    A mini/microcomputer UNIX-based image analysis workstation has been designed and is being implemented to use the Earth Resources Laboratory Applications Software (ELAS). The hardware system includes a MASSCOMP 5600 computer, which is a 32-bit UNIX-based system (compatible with AT&T System V and Berkeley 4.2 BSD operating system), a floating point accelerator, a 474-megabyte fixed disk, a tri-density magnetic tape drive, and an 1152 by 910 by 12-plane color graphics/image interface. The software conversion includes reconfiguring the ELAs driver Master Task, recompiling and then testing the converted application modules. This hardware and software configuration is a self-sufficient image analysis workstation which can be used as a stand-alone system, or networked with other compatible workstations.

  13. Development of a compact, rf-driven, pulsed ion source for neutron generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-02-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.

  14. CLOCS (Computer with Low Context-Switching Time) Operating System Reference Documents

    DTIC Science & Technology

    1988-05-06

    system are met. In sum, real-time constraints make programming harder in genera420], because they add a whole new dimension - the time dimension - to ...be preempted until it allows itself to be. More is Stored; Less is Computed Alan Jay Smith, of Berkeley, has said that any program can be made five...times as swift to run, at the expense of five times the storage space. While his numbers may be questioned, his premise may not: programs can be made

  15. CTIO Image of Carina Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release April 22, 2010 Object Names: Carina Nebula, NGC 3372 Image Type: Astronomical Credit: NASA/N. Smith (University of California, Berkeley) and NOAO/AURA/NSF To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  16. Carbon Nanotube Membranes for Water Purification

    NASA Astrophysics Data System (ADS)

    Bakajin, Olgica

    2009-03-01

    Carbon nanotubes are an excellent platform for the fundamental studies of transport through channels commensurate with molecular size. Water transport through carbon nanotubes is also believed to be similar to transport in biological channels such as aquaporins. I will discuss the transport of gas, water and ions through microfabricated membranes with sub-2 nanometer aligned carbon nanotubes as ideal atomically-smooth pores. The measured gas flow through carbon nanotubes exceeded predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeded values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations and measured for aquaporins. More recent reverse osmosis experiments reveal ion rejection by our membranes. Based on our experimental findings, the current understanding of the fundamentals of water and gas transport and of ion rejection will be discussed. The potential application space that exploits these unique nanofluidic phenomena will be explored. The extremely high permeabilities of these membranes, combined with their small pore size will enable energy efficient filtration and eventually decrease the cost of water purification.[4pt] In collaboration with Francesco Fornasiero, Biosciences and Biotechnology Division, PLS, LLNL, Livermore, CA 94550; Sangil Kim, NSF Center for Biophotonics Science & Technology, University of California at Davis, Sacramento CA 95817; Jung Bin In, Mechanical Engineering Department, UC Berkeley, Berkeley CA 94720; Hyung Gyu Park, Jason K Holt, and Michael Stadermann, Biosciences and Biotechnology Division, PLS, LLNL; Costas P. Grigoropoulos, Mechanical Engineering Department, UC Berkeley; Aleksandr Noy, Biosciences and Biotechnology Division, PLS, LLNL and School of Natural Sciences, University of California at Merced.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Iain; Regnier, Cindy

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineeringmore » design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.« less

  18. Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2007-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters thatmore » contain an overview of the Laboratory, a discussion of the Laboratory’s environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.« less

  19. Laboratory directed research and development program FY 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less

  20. Impact of the Berkeley Excise Tax on Sugar-Sweetened Beverage Consumption

    PubMed Central

    Falbe, Jennifer; Thompson, Hannah R.; Becker, Christina M.; Rojas, Nadia; McCulloch, Charles E.

    2016-01-01

    Objectives. To evaluate the impact of the excise tax on sugar-sweetened beverage (SSB) consumption in Berkeley, California, which became the first US jurisdiction to implement such a tax ($0.01/oz) in March 2015. Methods. We used a repeated cross-sectional design to examine changes in pre- to posttax beverage consumption in low-income neighborhoods in Berkeley versus in the comparison cities of Oakland and San Francisco, California. A beverage frequency questionnaire was interviewer administered to 990 participants before the tax and 1689 after the tax (approximately 8 months after the vote and 4 months after implementation) to examine relative changes in consumption. Results. Consumption of SSBs decreased 21% in Berkeley and increased 4% in comparison cities (P = .046). Water consumption increased more in Berkeley (+63%) than in comparison cities (+19%; P < .01). Conclusions. Berkeley’s excise tax reduced SSB consumption in low-income neighborhoods. Evaluating SSB taxes in other cities will improve understanding of their public health benefit and their generalizability. PMID:27552267

  1. Web site lets solar scientists inform and inspire students

    NASA Astrophysics Data System (ADS)

    Hauck, Karin

    2012-07-01

    Where on the Web can a middle school girl ask a female solar scientist about solar storms, the course and behavior of charged solar particles, and the origin of the Sun's dynamo—and also find out what the scientist was like as a child, whether the scientist has tattoos or enjoys snowboarding, what she likes and dislikes about her career, and how she balances her energy for work and family life? These kinds of exchanges happen at Solar Week (http://www.solarweek.org; see Figure 1). Established in 2000, Solar Week is an online resource for middle and lower high school students about the science of the Sun, sponsored by the Center for Science Education at the Space Sciences Laboratory (CSE@SSL) at the University of California, Berkeley (UC Berkeley). The Web site's goals are to educate students about the Sun and solar physics and to encourage future careers in science—especially for girls. One way is by giving solar scientists the chance to be relatable role models, to answer students' questions, and to share their experiences in an online forum.

  2. From Relational Interfaces to Assume-Guarantee Contracts

    DTIC Science & Technology

    2014-03-18

    Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-21 http://www.eecs.berkeley.edu/Pubs...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering...design,” in EMSOFT’01. Springer, LNCS 2211, 2001. [2] A. Sangiovanni-Vincentelli et al., “Taming Dr. Frankenstein : Contract-Based Design for Cyber

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Neaton

    Jan. 22, 2010: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's MIke Crommie.

  4. Reflection Grating Array Associated with the Reflection Grating Spectrometer Developed by the Space Research Organization of the Netherlands for the X-ray Multi-Mirror Mission (XMM)

    NASA Technical Reports Server (NTRS)

    Kahn, Steven M.

    2001-01-01

    The University of California, Berkeley (UCB) served as the Principal Investigator institution for the United States participation in the development of the Reflection Grating Spectrometer (RGS) which included the design, development, fabrication, and testing of the Reflection Grating Assembly (RGA). UCB was assisted in this role by the Lawrence Livermore National Laboratory and Columbia University who provided the primary facilities, materials, services and personnel necessary to complete the development. UC Berkeley's Dr. Steven Kahn provided the technical and scientific oversight for the design. development and testing of the RGA units by monitoring the performance of the units at various stages in their development. Dr. Kahn was also the primary contact with the Space Research Organization of the Netherlands (SRON) and represented the RGA development at all SRON and European Space Agency (ESA) reviews of the RGA status. In accordance with the contract, the team designed and developed novel optical technology to meet the unique requirements of the RGS. The ESA XMM-Newton Mission carries two identical Reflection Grating Spectrometers (RGS) behind two of its three nested sets of Wolter I type mirrors. The instrument allows high-resolution measurements in the soft X-ray range (6 to 38 angstroms or 2.1 to 0.3 keV) with a maximum effective area of about 140 sq cm at 15 angstroms. Its design is optimized for the detection of the K-shell transitions of carbon, nitrogen, oxygen, neon, magnesium, and silicon. as well as the L shell transitions of iron. The RGA itself consists of two units. A structure for each unit was designed to hold up to 220 gratings. In its final configuration, one unit holds 182 gratings and the second hold 181 gratings.

  5. How can the curation of hands-on STEM activities power successful mobile apps and websites?

    NASA Astrophysics Data System (ADS)

    Porcello, D.; Peticolas, L. M.; Schwerin, T. G.

    2015-12-01

    The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at Howtosmile.org (NSF DRL #0735007) and NASA Earth and Space science education resources at NASAwavelength.org; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?

  6. Failla Memorial Lecture: the future of heavy-ion science in biology and medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobias, C.A.

    1985-07-01

    An extensive review, with over 100 references, of the use of accelerator techniques in radiobiology is presented. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Heavy ions, when compared to low-LET radiation, have increased effectivenessmore » for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Heavy ions do not require the presence of oxygen for producing their effects. Heavy ions are effective in delaying or blocking the cell division process. These radiobiological properties, combined with the ability to deliver highly localized internal doses, make accelerated heavy ions potentially important radiotherapeutic tools. Other novel approaches include the utilization of radioactive heavy beams as instant tracers. Heavy-ion radiography and microscopy respond to delicate changes in tissue electron density. The authors laboratory is in the process of proposing a research biomedical heavy-ion accelerator; the availability of such machines would greatly accelerate cancer and brain research with particle beams.« less

  7. Gruber Prize in Cosmology Awarded for the Discovery of the Accelerated Expansion of the Universe

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Nearly a decade ago astronomers from two competing teams announced that they had found evidence for an accelerated cosmic expansion. The Gruber Prize in Cosmology 2007 honours this achievement and has been awarded to two groups: the Supernova Cosmology Project team, led by Saul Perlmutter (Lawrence Berkeley Laboratory), and the High-z Supernova Search Team, led by Brian Schmidt (Australian National University). Their results were based on the observations of distant Type Ia supernovae and were obtained with the major telescopes at the time (Riess et al. 1998, AJ 116, 1009; Perlmutter et al. 1999, ApJ 517, 565). Both teams used the 3.6-m telescope and the NTT to contribute photometry and spectroscopic classifications of the supernovae. Four people at ESO were directly involved in the two teams and are recognised as co-recipients of the Gruber Prize. Isobel Hook (now at Oxford University) and Chris Lidman (ESO Chile) were ESO Fellows when they contributed to the work of the Super- nova Cosmology Project, while Jason Spyromilio and Bruno Leibundgut (both ESO Garching) participated in the High-z Supernova Search Team.

  8. Bob Wilson and The Birth of Fermilab

    ScienceCinema

    Edwin L. Goldwasser

    2018-04-17

    In the 1960’s the Lawrence Berkeley Laboratory (then The Lawrence Radiation Laboratory) submitted two proposals to build the next high energy physics research laboratory. The first included a 200 GeV accelerator and associated experimental facilities. The cost was $350 million. The Bureau of the Budget rejected that proposal as a “budget buster”. It ruled that $250 million was the maximum that could be accepted. The second proposal was for a reduced scope laboratory that met the Bureau of the Budget’s cost limitation, but it was for a lower energy accelerator and somewhat smaller and fewer experimental facilities. The powerful Congressional Joint Committee on Atomic Energy rejected the reduced scope proposal as inadequate to provide physics results of sufficient interest to justify the cost. It was then that Bob Wilson came forth with a third proposal, coping with that “Catch 22” and leading to the creation of Fermilab. How he did it will be the subject of this colloquium.

  9. A Context Menu for the Real World: Controlling Physical Appliances Through Head-Worn Infrared Targeting

    DTIC Science & Technology

    2013-12-10

    Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-200...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...movement. PHYSICAL TARGET ACQUISITION STUDY To understand the accuracy and performance of head- orientation-based selection through our device, we car - ried

  10. A Context Menu for the Real World: Controlling Physical Appliances through Head-Worn Infrared Targeting

    DTIC Science & Technology

    2013-11-04

    Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-182...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...accuracy and performance of head- orientation-based selection through our device, we car - ried out a comparative target acquisition study, where

  11. Sit Down with Sabin: Margaret Torn: The Carbon Cycle Like You've Never Seen It (LBNL Summer Lecture Series)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Sabin; Torn, Margaret

    2011-07-06

    Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.

  12. An introduction to the nitrogen dynamics in controlled systems workshop. Life support and nitrogen: NASA's interest in nitrogen cycling

    NASA Technical Reports Server (NTRS)

    MacElroy, R. D.; Smernoff, D. T.

    1996-01-01

    A Workshop on "Nitrogen Dynamics in Controlled Systems" was held September 26-28, 1995 at the Lawrence Berkeley National Laboratory. The meetings were sponsored by the NASA Advanced Life Support program and the Lawrence Berkeley National Laboratory, and hosted by Prof. Lester Packer of the University of California at Berkeley, and of the Lawrence Berkeley National Laboratory. The Workshop participants were asked to: 1. summarize current knowledge on the cycling of nitrogen in closed systems; 2. identify the needs that closed systems may have for specific forms of nitrogen; 3. identify possible ways of generating and maintaining (or avoiding) specific forms and concentrations of nitrogen; 4. compare biological and physical/chemical methods of transforming nitrogen.

  13. Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin

    1999-01-01

    Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.

  14. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical Free Electron Laser operating in the XUV and soft x-ray regimes.

  15. UC Berkeley's Adaptations to the Crisis of Public Higher Education in the US: Privatization? Commercialization? or Hybridization? Research & Occasional Paper Series: CSHE.17.13

    ERIC Educational Resources Information Center

    Breslauer, George W.

    2013-01-01

    The University of California at Berkeley now delivers more to the public of California than it ever has, and it does this on the basis of proportionally less funding by the State government than it has ever received. This claim may come as a surprise, since it is often said that Berkeley is in the process of privatizing, becoming less of a public…

  16. In Conversation with Jeff Neaton

    ScienceCinema

    Jeff Neaton

    2017-12-09

    Jan. 22, 2010: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's MIke Crommie.

  17. Putting Carbon in its Place: What You Can Do (LBNL Science at the Theater)

    ScienceCinema

    Walker, Iain; Regnier, Cindy [LBNL, Environmental Energy Technologies Division; Miller, Jeff; Masanet, Eric

    2018-06-28

    Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineering design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.

  18. In Conversation with Mike Crommie

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Crommie

    2010-02-16

    Dec. 9 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest is Berkeley Lab's Mike Crommie.

  19. In Conversation with Mike Crommie

    ScienceCinema

    Mike Crommie

    2017-12-09

    Dec. 9 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest is Berkeley Lab's Mike Crommie.

  20. Townes Group Activities from 1983-2000: Personal Recollections of William Danchi

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2015-01-01

    I arrived in Berkeley in October 1983 as a post-doc, and my appointment was at the Space Sciences Laboratory (SSL). During that time the group was very large, with multiple activities led by Charlie himself and also by Senior Fellows such as John Lacy, Dan Jaffe, and Al Betz at the top of the hill at Space Sciences. Another significant contingent of the Townes group was housed in Birge Hall on campus, led by Reinhard Genzel when he was an Assistant Professor in the Physics Department. Although the group encompassed two separate locations, it functioned as one large group. Either we rode with Charlie up and down the hill, or (if we were concerned about our safety!) we took the bus.

  1. SL2-04-118

    NASA Image and Video Library

    1973-06-01

    SL2-04-118 (June 1973) --- A color photograph of the San Francisco Bay, California area, taken from the Skylab space station in Earth orbit. (The picture should be held with the clouds and Pacific Ocean on the left.) Note the thickly populated and highly developed area around the bay. Among the cities visible are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. This photograph was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type SO-356 film was used. The S190-A experiment is part of the Skylab Earth Resources Experiments Package (EREP). Photo credit: NASA

  2. Novel Adult Stem Cells for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2012-09-01

    were also positive for MSC surface marker CD29 and CD44 (Fig. 1F-G). However, CD29 and CD44 are also expressed in SMCs, so we will not use these non...tubulin. In addition, MVSCs were negative for perivascular MSC marker CD146 (Fig. 1H) and SMC progenitor marker Sca-1 (Fig. 1I). MVSCs were also...University of California, Berkeley, California 94720, USA. 2 UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California 94720, USA. 3

  3. UC Berkeley's Celebration of the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.

    2010-08-01

    We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd DeSantis

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.

  5. Stopping of relativistic heavy ions in various media

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Fixsen, D. J.; Crawford, H. J.; Lindstrom, P. J.; Heckman, H. H.

    1986-01-01

    The residual ranges of (900 + or - 3)-MeV/amu gold nuclei accelerated at the Lawrence Berkeley Laboratory Bevalac have been measured in several different media. The energy of the beam of nuclei was measured directly using a new time-of-flight system. The ranges were measured by absorption in linear wedges of polyethylene, carbon, aluminum, copper, tin, and lead and in circular wedges of polystyrene, aluminum, and gold, and by total absorption in nuclear emulsion. The measured ranges were significantly different from those calculated from the best available theoretical estimates of the energy loss of highly charged nuclei. It is concluded that at present energy losses and residual ranges of relativistic heavy ions in an arbitrary medium cannot be predicted with better than an approximately 2 percent accuracy.

  6. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  7. Berkeley Lab Search - Search engine for Berkeley Lab

    Science.gov Websites

    twitter instagram google plus facebook youtube A U.S. Department of Energy National Laboratory Managed by the University of California Questions & Comments Privacy & Security Notice twitter instagram

  8. ARC-2006-ACD06-0216-017

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASABerkeley researcher Zack Gainsforth working with sample encased in aerogel

  9. ARC-2006-ACD06-0216-022

    NASA Image and Video Library

    2006-11-29

    Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASABerkeley researcher Zack Gainsforth working with sample encased in aerogel

  10. The Center for Star Formation Studies

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Bell, K. R.; Laughlin, G.

    2002-01-01

    The Center for Star Formation Studies, a consortium of scientists from the Space Science Division at Ames and the Astronomy Departments of the University of California at Berkeley and Santa Cruz, conducts a coordinated program of theoretical research on star and planet formation. Under the directorship of D. Hollenbach (Ames), the Center supports postdoctoral fellows, senior visitors, and students; meets regularly at Ames to exchange ideas and to present informal seminars on current research; hosts visits of outside scientists; and conducts a week-long workshop on selected aspects of star and planet formation each summer.

  11. 201007270004HQ

    NASA Image and Video Library

    2010-07-26

    NASA Astrophycist Dr. John Mather speaks, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Mather was speaking as part of a ceremony with STS-132 astronaut Piers Sellers who returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  12. Saul Perlmutter

    Science.gov Websites

    joined the UC Berkeley Physics Department in 2004. He is also an astrophysicist at Lawrence Berkeley Perlmutter won the Department of Energy's E. O. Lawrence Award in Physics. In 2003 he was awarded the

  13. KSC-06pd2798

    NASA Image and Video Library

    2006-12-14

    KENNEDY SPACE CENTER, FLA. -- THEMIS logo: NASA's 2-year Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission consists of five identical probes that will track these violent, colorful eruptions near the North Pole. When the five identical probes align over the North American continent, scientists will collect coordinated measurements along the Sun-Earth line, allowing the first comprehensive look at the onset of substorms and how they trigger auroral eruptions. Over the mission’s lifetime, the probes should be able to observe some 30 substorms – sufficient to finally know their origin. THEMIS is a NASA-funded mission managed by the Explorers Program Office at Goddard Space Flight Center in Greenbelt, Md. The Space Science Laboratory at the University of California at Berkeley is responsible for the project management, science instruments, mission integration, post launch operations and data analysis. Swales Aerospace of Beltsville, Md., manufactured the THEMIS spacecraft bus.

  14. Toward a benchmark material in aerogel development

    NASA Astrophysics Data System (ADS)

    Sibille, Laurent; Cronise, Raymond J.; Noever, David A.; Hunt, Arlon J.

    1996-03-01

    Discovered in the thirties, aerogels constitute today the lightest solids known while exhibiting outstanding thermal and noise insulation properties in air and vacuum. In a far-reaching collaboration, the Space Science Laboratory at NASA Marshall Space Flight Center and the Microstructured Materials Group at Lawrence Berkeley National Laboratory are engaged in a two-fold research effort aiming at characterizing the microstructure of silica aerogels and the development of benchmark samples through the use of in-orbit microgravity environment. Absence of density-driven convection flows and sedimentation is sought to produce aerogel samples with narrow distribution of pore sizes, thus largely improving transparency of the material in the visible range. Furthermore, highly isotropic distribution of doping materials are attainable even in large gels grown in microgravity. Aerospace companies (cryogenic tanks insulation and high temperature insulation of space vehicles), insulation manufacturers (household and industrial applications) as well as pharmaceutical companies (biosensors) are potential end-users of this rapidly developing technology.

  15. Harold F. Weaver: California Astronomer

    NASA Astrophysics Data System (ADS)

    Shields, J. C.

    1993-05-01

    This talk will give an overview of an oral history recently completed with Harold F. Weaver, Professor Emeritus of Astronomy at the University of California at Berkeley. Weaver grew up in California and studied as an undergraduate at Berkeley, where he also pursued graduate work incorporating research at Lick and Mount Wilson Observatories. After pursuing postdoctoral research at Yerkes Observatory and war work in Cambridge (Massachusetts) and Berkeley, Weaver was appointed to the staff of Lick Observatory. In 1951 he joined the faculty at Berkeley, where he later played a major role in founding Hat Creek Radio Observatory. As Director of the Berkeley Radio Astronomy Laboratory, Weaver oversaw construction of the 85-foot telescope at Hat Creek, which is the subject of a special session at this meeting. Two aspects of Weaver's career will be highlighted. The first is the somewhat unusual and very successful transition in Weaver's observational research from emphasis on classical photographic techniques at optical wavelengths to use of emerging radio technology for the study of Galactic structure. The second is service provided by Weaver to the American Astronomical Society and Astronomical Society of the Pacific at several key junctures in the development of both organizations.

  16. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less

  17. Joint SSRTNet/ALS-MES Workshop report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuh, David; Van Hove, Michel

    2001-11-30

    This joint workshop brought together experimentalists and theorists interested in synchrotron radiation and highlighted subjects relevant to molecular environmental science (MES). The strong mutual interest between the participants resulted in joint sessions on the first day, followed by more specialized parallel sessions on the second day. Held in conjunction with the Advanced Light Source (ALS) Users' Association Annual Meeting at the Lawrence Berkeley National Laboratory (Berkeley Lab), the Synchrotron Radiation Research Theory Network (SRRTNet) workshop was co-organized by Michel Van Hove (Berkeley Lab and University of California, Davis) and Andrew Canning (Berkeley Lab), while David Shuh (Berkeley Lab) organized themore » ALS-MES workshop. SRRTNet is a global network that promotes the interaction of theory and experiment (http://www.cse.clrc.ac.uk/Activity/SRRTnet). The ALS-MES project is constructing Beamline 11.0.2.1-2, a new soft x-ray beamline for MES investigations at photon energies from 75 eV to 2 keV, to provide photons for wet spectroscopy end stations and an upgraded scanning transmission x-ray microscope (STXM). The ALS-MES beamline and end stations will be available for users in the late fall of 2002.« less

  18. PhyloChip Tackles Coral Disease

    ScienceCinema

    Todd DeSantis

    2017-12-09

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.

  19. Berkeley Lab Scientists Recipients of 2015 Breakthrough Prizes | Berkeley

    Science.gov Websites

    . Doudna and Charpentier have been at the forefront of research into a genetic element known as CRISPR , which stands for Clustered Regularly Interspaced Short Palindromic Repeats. The combination of CRISPR

  20. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    NASA Astrophysics Data System (ADS)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  1. Characteristic coupling time between axial and transverse energy modes for anti-hydrogen in magnetostatic traps

    NASA Astrophysics Data System (ADS)

    Zhong, Mike; Fajans, Joel

    2016-10-01

    For upcoming ALPHA collaboration laser spectroscopy and gravity experiments, the nature of the chaotic trajectories of individual antihydrogen atoms trapped in the octupole Ioffe magnetic trap is of importance. Of particular interest for experimental design is the coupling time between the axial and transverse modes of energy for the antihydrogen atoms. Using Monte Carlo simulations of semiclassical dynamics of antihydrogen trajectories, we quantify this characteristic coupling time between axial and transverse modes of energy. There appear to be two classes of trajectories: for orbits whose axial energy is higher than 10% of the total energy, the axial energy varies chaotically on the order of 1-10 seconds, whereas for orbits whose axial energy is around 10% of the total energy, the axial energy remains nearly constant on the order of 1000 seconds or longer. Furthermore, we search through parameter -space to find parameters of the magnetic trap that minimize and maximize this characteristic coupling time. This work was supported by the UC Berkeley Summer Undergraduate Research Fellowship, the Berkeley Research Computing program, the Department of Energy contract DE-FG02-06ER54904, and the National Science Foundation Grant 1500538-PHY.

  2. Hot Technology, Cool Science (LBNL Science at the Theater)

    ScienceCinema

    Fowler, John

    2018-06-08

    Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion moderated by KTVU's John Fowler on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeff

    Berkeley Lab materials scientist, Jeff Urban presents his research on using metal-organic frameworks to capture carbon at Berkeley Lab's Cleantech Pitchfest on June 1, 2016. Removing excess carbon from an overheating atmosphere is an urgent and complicated problem. The answer, according to Berkeley Lab’s Jeff Urban, could lie at the nanoscale, where specially designed cage-like structures called metal organic frameworks, or MOFs, can trap large amounts of carbon in microscopically tiny structures. A Harvard PhD with expertise in thermoelectrics, gas separation and hydrogen storage, Urban directs teams at the Molecular Foundry’s Inorganic Materials Facility.

  4. Exceedance statistics of accelerations resulting from thruster firings on the Apollo-Soyuz mission

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1981-01-01

    Spacecraft acceleration resulting from firings of vernier control system thrusters is an important consideration in the design, planning, execution and post-flight analysis of laboratory experiments in space. In particular, scientists and technologists involved with the development of experiments to be performed in space in many instances required statistical information on the magnitude and rate of occurrence of spacecraft accelerations. Typically, these accelerations are stochastic in nature, so that it is useful to characterize these accelerations in statistical terms. Statistics of spacecraft accelerations are summarized.

  5. Accelerating Cogent Confabulation: An Exploration in the Architecture Design Space

    DTIC Science & Technology

    2008-06-01

    DATES COVERED (From - To) 1-8 June 2008 4. TITLE AND SUBTITLE ACCELERATING COGENT CONFABULATION: AN EXPLORATION IN THE ARCHITECTURE DESIGN SPACE 5a...spiking neural networks is proposed in reference [8]. Reference [9] investigates the architecture design of a Brain-state-in-a-box model. The...Richard Linderman2, Thomas Renz2, Qing Wu1 Accelerating Cogent Confabulation: an Exploration in the Architecture Design Space POSTPRINT complexity

  6. Beyond SWEAT: Developing Infrastructure in Stability and COIN Operations

    DTIC Science & Technology

    2011-10-05

    respecting their desire for self-determination. See Pressman , Jeffrey L. and Wildavsky, Aaron. Implementation. (Berkeley: University of California Press... Pressman , Jeffrey L. and Wildavsky, Aaron. Implementation. (Berkeley: University of California Press 1971). Sablan, Gregory. Developing

  7. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema

    Yelick, Kathy, Miller, Jeff

    2018-05-11

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.

  8. Theory-based Bayesian Models of Inductive Inference

    DTIC Science & Technology

    2010-07-19

    Subjective randomness and natural scene statistics. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom/papers/randscenes.pdf Page 1...in press). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom

  9. Summer Series 2012 - Conversation with Kathy Yelick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelick, Kathy, Miller, Jeff

    2012-07-23

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.

  10. Berkeley bicycle plan : draft for inclusion in the general plan

    DOT National Transportation Integrated Search

    1998-12-31

    The City of Berkeley has long supported bicycling as an environmentally friendly, healthy, lowcost method of transportation and recreation. Frequently, roadway facility and funding decisions are made with little consideration for bicycling as a serio...

  11. Berkeley Lab 2nd Grader Outreach

    ScienceCinema

    Scoggins, Jackie; Louie, Virginia

    2017-12-11

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  12. Analysis, tuning and comparison of two general sparse solvers for distributed memory computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amestoy, P.R.; Duff, I.S.; L'Excellent, J.-Y.

    2000-06-30

    We describe the work performed in the context of a Franco-Berkeley funded project between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We discuss both the tuning and performance analysis of two distributed memory sparse solvers (superlu from Berkeley and mumps from Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National Laboratory). This project gave us the opportunity to improve the algorithms and add new features to the codes. We then quite extensively analyze and compare the two approaches on a set of large problems from real applications. We further explain the main differencesmore » in the behavior of the approaches on artificial regular grid problems. As a conclusion to this activity report, we mention a set of parallel sparse solvers on which this type of study should be extended.« less

  13. Site Environmental Report for 2011, Volumes 1& 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, David; Bauters, Tim; Borglin, Ned

    2012-09-12

    The Site Environmental Report for 2011 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2011. Throughout this report, “Berkeley Lab” or “LBNL” refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in the hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that includemore » an overview of LBNL, a discussion of its Environmental Management System (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities.« less

  14. Summary Report of Mission Acceleration Measurements for STS-89: Launched January 22, 1998

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed q I mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics and Space Administration's John H. Glenn Research Center.

  15. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    DOEpatents

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  16. Unsupervised classification of Space Acceleration Measurement System (SAMS) data using ART2-A

    NASA Technical Reports Server (NTRS)

    Smith, A. D.; Sinha, A.

    1999-01-01

    The Space Acceleration Measurement System (SAMS) has been developed by NASA to monitor the microgravity acceleration environment aboard the space shuttle. The amount of data collected by a SAMS unit during a shuttle mission is in the several gigabytes range. Adaptive Resonance Theory 2-A (ART2-A), an unsupervised neural network, has been used to cluster these data and to develop cause and effect relationships among disturbances and the acceleration environment. Using input patterns formed on the basis of power spectral densities (psd), data collected from two missions, STS-050 and STS-057, have been clustered.

  17. Mid-Infrared Interferometry on Spectral Lines. III. Ammonia and Silane around IRC +10216 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    Using the University of California Berkeley Infrared Spatial Interferometer with a radio frequency (RF) filter bank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH3) and silane (SiH4) with very high spectral resolution (λ/Δλ~105) were made. Under the assumptions of spherical symmetry and uniform outflow, these new data permitted the molecular stratification around carbon star IRC +10216 and red supergiant VY CMa to be investigated. For IRC +10216, both ammonia and silane were found to form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones. Specifically, ammonia was found to form before silane in a region of decaying gas turbulence (>~20R*), while the silane is produced in a region of relatively smooth gas flow much farther from the star (>~80R*). The depletion of gas-phase SiS onto grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~40R*).

  18. 2006 Long Range Development Plan Final Environmental ImpactReport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philliber, Jeff

    2007-01-22

    This environmental impact report (EIR) has been prepared pursuant to the applicable provisions of the California Environmental Quality Act (CEQA) and its implementing guidelines (CEQA Guidelines), and the Amended University of California Procedures for Implementation of the California Environmental Quality Act (UC CEQA Procedures). The University of California (UC or the University) is the lead agency for this EIR, which examines the overall effects of implementation of the proposed 2006 Long Range Development Plan (LRDP; also referred to herein as the 'project' for purposes of CEQA) for Lawrence Berkeley National Laboratory (LBNL; also referred to as 'Berkeley Lab,' 'the Laboratory,'more » or 'the Lab' in this document). An LRDP is a land use plan that guides overall development of a site. The Lab serves as a special research campus operated by the University employees, but it is owned and financed by the federal government and as such it is distinct from the UC-owned Berkeley Campus. As a campus operated by the University of California, the Laboratory is required to prepare an EIR for an LRDP when one is prepared or updated pursuant to Public Resources Code Section 21080.09. The adoption of an LRDP does not constitute a commitment to, or final decision to implement, any specific project, construction schedule, or funding priority. Rather, the proposed 2006 LRDP describes an entire development program of approximately 980,000 gross square feet of new research and support space construction and 320,000 gross square feet of demolition of existing facilities, for a total of approximately 660,000 gross square feet of net new occupiable space for the site through 2025. Specific projects will undergo CEQA review at the time proposed to determine what, if any, additional review is necessary prior to approval. As described in Section 1.4.2, below, and in Chapter 3 of this EIR (the Project Description), the size of the project has been reduced since the Notice of Preparation for this EIR was issued. This reduction was in response to consultation with the City of Berkeley as well as other factors. CEQA requires that, before a decision can be made by a state or local government agency to approve a project that may have significant environmental effects, an EIR must be prepared that fully describes the environmental effects of the project. The EIR is a public informational document for use by University decision-makers and the public. It is intended to identify and evaluate potential environmental consequences of the proposed project, to identify mitigation measures that would lessen or avoid significant adverse impacts, and to examine feasible alternatives to the project. The information contained in the EIR is reviewed and considered by the lead agency prior to its action to approve, disapprove, or modify the proposed project.« less

  19. In Conversation With Materials Scientist Ron Zuckermann

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron Zuckerman

    2009-11-18

    Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.

  20. Early Geologic Education in California--Berkeley and Stanford Show the Way.

    ERIC Educational Resources Information Center

    Norris, Robert M.

    1981-01-01

    Traces the early history of geological education in California universities, with emphasis upon programs at Berkeley and Stanford. Among the pioneers in the field were Joseph LeConte, Andrew C. Lawson, and John C. Branner. (WB)

  1. In Conversation With Materials Scientist Ron Zuckermann

    ScienceCinema

    Ron Zuckerman

    2017-12-09

    Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.

  2. San Francisco and Bay Area, CA, USA

    NASA Image and Video Library

    1973-06-22

    SL2-03-118 (June 1973) --- An infrared photograph of the San Francisco Bay, California area, taken from the Skylab 1/2 space station in Earth orbit. THE PICTURE SHOULD BE HELD WITH THE CLOUDS AND PACIFIC OCEAN ON THE LEFT. This photograph was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type 2443 film was used. Note the thickly populated and highly developed area around the bay. Among the cities visible in this photograph are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. The S190-A experiment is part of the Skylab Earth Resources Experiment Package (EREP). Photo credit: NASA

  3. Music of the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Scientists are quite familiar with what a supernova looks like — when these stars are destroyed in the most massive explosions in the universe, they leave their mark as one of the brightest objects in space, at least for several weeks. While the supernova can be seen, it cant be heard, as sound waves cannot travel through space. But what if the light waves emitted by the exploding star and other cosmological phenomena could be translated into sound? That's the idea behind a Rhythms of the Universe, a musical project to sonify the universe by Grateful Dead percussionist and Grammymore » award-winning artist Mickey Hart that caught the attention of Nobel Prize-winning astrophysicist George Smoot of Lawrence Berkeley National Laboratory. Sounds courtesy of Keith Jackson. Images courtesy of NASA.« less

  4. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations are under investigation.

  5. Laser-plasma-based Space Radiation Reproduction in the Laboratory

    PubMed Central

    Hidding, B.; Karger, O.; Königstein, T.; Pretzler, G.; Manahan, G. G.; McKenna, P.; Gray, R.; Wilson, R.; Wiggins, S. M.; Welsh, G. H.; Beaton, A.; Delinikolas, P.; Jaroszynski, D. A.; Rosenzweig, J. B.; Karmakar, A.; Ferlet-Cavrois, V.; Costantino, A.; Muschitiello, M.; Daly, E.

    2017-01-01

    Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions. PMID:28176862

  6. Exceedance statistics of accelerations resulting from thruster firings on the Apollo-Soyuz mission

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1983-01-01

    Spacecraft acceleration resulting from firings of vernier control system thrusters is an important consideration in the design, planning, execution and post-flight analysis of laboratory experiments in space. In particular, scientists and technologists involved with the development of experiments to be performed in space in many instances required statistical information on the magnitude and rate of occurrence of spacecraft accelerations. Typically, these accelerations are stochastic in nature, so that it is useful to characterize these accelerations in statistical terms. Statistics of spacecraft accelerations are summarized. Previously announced in STAR as N82-12127

  7. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  8. What is Supercomputing? A Conversation with Kathy Yelick

    ScienceCinema

    Yelick, Kathy

    2017-12-11

    In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  9. What is Supercomputing? A Conversation with Kathy Yelick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelick, Kathy

    2012-07-23

    In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  10. LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012

    ScienceCinema

    Yelick, Kathy

    2018-01-24

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  11. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelick, Kathy

    2012-02-02

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  12. LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012

    ScienceCinema

    Yelick, Kathy

    2017-12-09

    Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

  13. Blasting Rocks and Blasting Cars Applied Engineering

    ScienceCinema

    LBNL

    2017-12-09

    June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.

    The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resultedmore » from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.« less

  15. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less

  16. Physics Teacher Demonstrations for the Classroom

    NASA Astrophysics Data System (ADS)

    Murfee, Lee

    2005-04-01

    A sharing of physics and physics teaching demonstrations by Lee Murfee, a teacher of students learning physics and mathematics at Berkeley Preparatory School and the United States Military Academy for 21 years, and active member of the Florida Section of American Association of Physics Teachers (AAPT). Presentation is a fast paced array of physics and physics teaching demonstrations. Topics include who and what we teach, a successful science department philosophy, forces, acceleration, impulse, momentum, observations, pendulums, springs, friction, inclined plane, rotational motion, moment of inertia, teaching description of motion with data, equations and graphing, slope, uniform circular motion, derivatives, integrals, PASCO Data Studio sensor applications, students presenting to students, flashboards, sound, pressure, and sensitivity analysis in determining specific heat. Demonstrations apply to high school and college introductory physics teaching; handouts and some door prizes/gifts will be provided.

  17. Calculation reduction method for color digital holography and computer-generated hologram using color space conversion

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Nagahama, Yuki; Kakue, Takashi; Takada, Naoki; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Ito, Tomoyoshi

    2014-02-01

    A calculation reduction method for color digital holography (DH) and computer-generated holograms (CGHs) using color space conversion is reported. Color DH and color CGHs are generally calculated on RGB space. We calculate color DH and CGHs in other color spaces for accelerating the calculation (e.g., YCbCr color space). In YCbCr color space, a RGB image or RGB hologram is converted to the luminance component (Y), blue-difference chroma (Cb), and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color DH and CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space. The proposed method, which is possible to accelerate the calculations up to a factor of 3 in theory, accelerates the calculation over two times faster than the ones in RGB color space.

  18. Rayleigh-Taylor mixing with space-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSantis, Todd

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico. More info: http://newscenter.lbl.gov/feature-stories/2009/02/02/coral-reefs/

  20. Smart parking Value Pricing Pilot Project (VPPP) on the COASTER commuter rail line in San Diego, California.

    DOT National Transportation Integrated Search

    2012-03-01

    This study provides a report on the Smart Parking Pilot, which was a partnership among the California Department of Transportation (Caltrans); the Institute of Transportation Studies- Berkeley's (ITS-Berkeley) Transportation Sustainability Research C...

  1. 77 FR 75639 - National Cancer Institute Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute... Proposed Frederick National Laboratory for Cancer Research Strategic Plan. Place: The Lawrence Berkeley..., Berkeley, CA 94720. Contact Person: Thomas M. Vollberg, Sr., Ph.D., Executive Secretary, National Cancer...

  2. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    ScienceCinema

    Milliron, Delia; Selkowitz, Stephen

    2017-12-09

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  3. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  4. KSC-2009-5882

    NASA Image and Video Library

    2009-10-21

    VANDENBERG AIR FORCE BASE, Calif. - At Space Launch Complex 2 at Vandenberg Air Force Base in California, workers receive the first of three solid rocket boosters for the United Launch Alliance Delta II rocket for launch of NASA's Wide-field Infrared Survey Explorer, or WISE, at the pad. WISE will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects which will be catalogued and provide a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled for Dec. 7. For additional information, visit http://wise.ssl.berkeley.edu. Photo credit: NASA/VAFB

  5. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  6. Survey and Alighment for the ALS Project at LBL Berkeley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, R.; Lauritzen, T.; /LBL, Berkeley

    2005-08-12

    The Advanced Light Source (ALS), now under construction at Lawrence Berkeley Laboratory, is a synchrotron radiation source of the third generation designed to produce extremely bright photon beams in the UV and soft X-ray regions. Its main accelerator components are a 1-1.9 GeV electron storage ring with 196.8 m circumference and 12 super-periods, a 1.5 GeV booster synchrotron with 75.0 m circumference and 4 super-periods, and a 50 MeV linac, as shown in Fig. 1. The storage ring has particularly tight positioning tolerances for lattice magnets and other components to assure the required operational characteristics. The general survey and alignmentmore » concept for the ALS is based on a network of fixed monuments installed in the building floor, to which all component positions are referred. Measurements include electronic distance measurements and separate sightings for horizontal and vertical directions, partially with automated electronic data capture. Most of the data processing is accomplished by running a customized version of PC-GEONET. It provides raw data storage, data reduction, and the calculation of adjusted coordinates, as well as an option for error analysis. PC-GEONET has also been used to establish an observation plan for the monuments and calculate their expected position accuracies, based on approximate coordinates. Additionally, for local survey tasks, the commercial software package ECDS is used. In this paper, the ALS survey and alignment strategy and techniques are presented and critically discussed. First experiences with the alignment of the linac and booster components are described.« less

  7. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    NASA Astrophysics Data System (ADS)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  8. Earphone English.

    ERIC Educational Resources Information Center

    Goldsmith, Francisca

    2002-01-01

    Describes Earphone English, a student club sponsored through a partnership between Berkeley High School and the Berkeley Public Library that offers students whose primary language is not English to practice their spoken and aural English skills. Discusses the audiobooks used in the program and the importance of multicultural content and age…

  9. The Universe Adventure - Credits

    Science.gov Websites

    Basel), and George Smoot (LBNL) Content, Graphic/Web Design Artie Konrad (student, UC Berkeley) 2004 Berkeley) Laurie Kerrigan (teacher, Mercy High School) Graphic/Web Design Melissa McClure (student ) Graphic/Web Design Paul Higgins (student, Contra Costa College) Other Gordon Aubrecht (Ohio State

  10. Reimagining Educational Research: A Conversation

    ERIC Educational Resources Information Center

    Carter, Prudence L.; Nasir, Na'ilah Suad

    2017-01-01

    The following is a transcript of an interview between the Dean of the University of California (UC) Berkeley's Graduate School of Education, Prudence Carter, and UC Berkeley's outgoing Vice Chancellor for Equity and Inclusion, Na'ilah Suad Nasir, recorded at the 2017 Graduate School of Education Research Day.

  11. Alessandra Lanzara

    Science.gov Websites

    Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ; Finance Templates Travel One-Stop Investigators Division Staff Facilities and Centers Staff Jobs

  12. Obtaining Parts

    Science.gov Websites

    The Cosmic Connection Parts for the Berkeley Detector Suppliers: Scintillator Eljen Technology 1 obtain the components needed to build the Berkeley Detector. These companies have helped previous the last update. He estimates that the cost to build a detector varies from $1500 to $2700 depending

  13. NIEHS/EPA CEHCs: Berkeley/Stanford Children's Environment Health Center - UC Berkeley

    EPA Pesticide Factsheets

    The goal of this Center is to better understand the effects of exposure in the womb to air pollutants and airborne bacteria on newborn health, immune system health during childhood, and to understand the relationship of these early-life exposures to asthma

  14. Berkeley Lab's Saul Perlmutter Wins the Einstein Medal | Berkeley Lab

    Science.gov Websites

    TAGS: awards, cosmology and astrophysics, physics Connect twitter instagram LinkedIn facebook youtube Physics + Cosmology Chemistry + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S Privacy & Security Notice twitter instagram LinkedIn facebook youtube

  15. Taxi Regulatory Revision in Oakland and Berkeley, California : Two Case Studies

    DOT National Transportation Integrated Search

    1983-06-01

    A case study was performed of regulatory changes pertaining to taxicabs in Oakland and neighboring Berkeley, CA. In Oakland rates were approximately doubled and limits on the number of taxi permits removed. Companies were allowed to levy a per-trip s...

  16. 40 CFR 81.341 - South Carolina.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... County X Anderson County X Bamberg County X Barnwell County X Beaufort County X Berkeley County X Calhoun... County X Bamberg County X Barnwell County X Beaufort County X Berkeley County X Calhoun County X... Calhoun County Charleston County Cherokee County Chester County Chesterfield County Clarendon County...

  17. 40 CFR 81.341 - South Carolina.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... County X Anderson County X Bamberg County X Barnwell County X Beaufort County X Berkeley County X Calhoun... County X Bamberg County X Barnwell County X Beaufort County X Berkeley County X Calhoun County X... Calhoun County Charleston County Cherokee County Chester County Chesterfield County Clarendon County...

  18. Comprehensive facilities plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less

  19. A QUANTITATIVE ANALYSIS OF DISTANT OPEN CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janes, Kenneth A.; Hoq, Sadia

    2011-03-15

    The oldest open star clusters are important for tracing the history of the Galactic disk, but many of the more distant clusters are heavily reddened and projected against the rich stellar background of the Galaxy. We have undertaken an investigation of several distant clusters (Berkeley 19, Berkeley 44, King 25, NGC 6802, NGC 6827, Berkeley 52, Berkeley 56, NGC 7142, NGC 7245, and King 9) to develop procedures for separating probable cluster members from the background field. We next created a simple quantitative approach for finding approximate cluster distances, reddenings, and ages. We first conclude that with the possible exceptionmore » of King 25 they are probably all physical clusters. We also find that for these distant clusters our typical errors are about {+-}0.07 in E(B - V), {+-}0.15 in log(age), and {+-}0.25 in (m - M){sub o}. The clusters range in age from 470 Myr to 7 Gyr and range from 7.1 to 16.4 kpc from the Galactic center.« less

  20. Using Phase Space Density Profiles to Investigate the Radiation Belt Seed Population

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Spence, H.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.

    2013-12-01

    It is believed that particles with energies of 100s of keV play a critical role in the acceleration of electrons within the radiation belt. Through wave particle interactions, these so called 'seed electrons' can be accelerated up to energies greater than 1 MeV. Using data from the MagEIS (Magnetic Electron Ion Spectrometer) Instrument onboard the Van Allen Probes we calculate phase space density within the radiation belts over a wide range of mu and K values. These phase space density profiles are combined with those from THEMIS, in order to see how the phase space density evolves over a large range of L*. In this presentation we examine how the seed electron population evolves in both time and L* during acceleration events. Comparing this to the evolution of the higher mu electron population allows us to determine what role the seed electrons played in the acceleration process. Finally, we compare several of these storms to examine the importance of the seed population to the acceleration process.

  1. What's Right with Kansas? (LBNL Science at the Theater)

    ScienceCinema

    Fuller, Merrian; Jackson, Nancy

    2018-06-20

    On Monday, Oct. 3 at 7 p.m. in Berkeley's Repertory Theater, the Lab presented "What's Right with Kansas," an evening of conversation with the Kansas-based Climate and Energy Project's founder and board chair, Nancy Jackson, and Berkeley Lab scientist Merrian Fuller, an electricity-market, policy and consumer behavior expert. Berkeley Lab will also debut its video "Common Ground," which showcases how CEP has become a Kansas mainstay and an inspiration to environmental organizations across the country. In a state rife with climate-change skepticism, CEP has changed behavior, and some minds, by employing rural values of thrift, independence, conservation, and friendly competition to promote energy efficiency.

  2. SF Cleantech Pitchfest: Nano Sponges for Carbon Capture

    ScienceCinema

    Urban, Jeff

    2018-01-16

    Berkeley Lab materials scientist, Jeff Urban presents his research on using metal-organic frameworks to capture carbon at Berkeley Lab's Cleantech Pitchfest on June 1, 2016. Removing excess carbon from an overheating atmosphere is an urgent and complicated problem. The answer, according to Berkeley Lab’s Jeff Urban, could lie at the nanoscale, where specially designed cage-like structures called metal organic frameworks, or MOFs, can trap large amounts of carbon in microscopically tiny structures. A Harvard PhD with expertise in thermoelectrics, gas separation and hydrogen storage, Urban directs teams at the Molecular Foundry’s Inorganic Materials Facility.

  3. Blasting Rocks and Blasting Cars Applied Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LBNL

    2008-07-02

    June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed formore » auto assembly lines.« less

  4. Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)

    2001-01-01

    Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise, quiet (no crew activity), and nominal conditions from STS-89 were used as simulation inputs as were periods of nominal. overboard water-dump, and free-drift (no orbit maneuvering operations) from STS-94. Steady-state acceleration environments of 0.0 and 10(exp -6) to 10(exp -1) g were also simulated, to serve as a comparison to the transient data and to assess an acceptable magnitude for the steady-state vehicle drag

  5. Maria Lucia Ghirardi | NREL

    Science.gov Websites

    /pathways Education University of California, Berkeley: Ph.D. in Comparative Biochemistry, 1988. Graduate advisor: Dr. Anastasios Melis University of California, Berkeley: M.A. in Comparative Biochemistry, 1983 ); pp. 35192-35209. Wecker, M., Meuser, J., Posewitz, M. and Ghirardi, M. (2011). "Design of a new

  6. Interviews with Exemplary Teachers: Leon F. Litwack.

    ERIC Educational Resources Information Center

    Rosenzweig, Roy

    2001-01-01

    Presents an interview with Leon F. Litwack, a professor of U.S. history at the University of California, Berkeley. Covers topics such as what led him to teaching history, his lectures at Berkeley, themes covered in his U.S. history surveys, and his perception of good teaching. (CMK)

  7. New Tech Measures Artery Health: Engevity Cuff

    ScienceCinema

    Maltz, Jonathan

    2018-05-22

    Jonathan Maltz, a Berkeley Lab scientist in the Molecular Biophysics and Integrated Bioimaging division, explains a new technology developed at Berkeley Lab that could soon make detecting the process of plaque buildup in vessels a routine part of a visit to the doctor and, perhaps, home healthcare settings.

  8. Free Speech Advocates at Berkeley.

    ERIC Educational Resources Information Center

    Watts, William A.; Whittaker, David

    1966-01-01

    This study compares highly committed members of the Free Speech Movement (FSM) at Berkeley with the student population at large on 3 sociopsychological foci: general biographical data, religious orientation, and rigidity-flexibility. Questionnaires were administered to 172 FSM members selected by chance from the 10 to 1200 who entered and…

  9. Berkeley Bravado: Rochdale Village, University of California, Berkeley

    ERIC Educational Resources Information Center

    Woodbridge, Sally

    1975-01-01

    Rochdale Village is a successful example of active student participation in the design and construction of student housing. The apartment complex reflects students' desire for a village of lowrise, wood-shingled buildings, while meeting the University of California's density requirement of 250 units per acre. (JG)

  10. New Tech Measures Artery Health: Engevity Cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Jonathan

    2016-05-19

    Jonathan Maltz, a Berkeley Lab scientist in the Molecular Biophysics and Integrated Bioimaging division, explains a new technology developed at Berkeley Lab that could soon make detecting the process of plaque buildup in vessels a routine part of a visit to the doctor and, perhaps, home healthcare settings.

  11. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema

    Siminovittch, Micheal

    2018-04-27

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  12. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    USGS Publications Warehouse

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Plate 3 Susceptibility to Shallow Landsliding Modeled for the Cities of Oakland and Piedmont Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Plate 4 Seismic Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California by Scott B. Miles and David K. Keefer III The relative hazard for each of several landslide scenarios is presented as a geospatial database. This publication includes ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 8.1.2 grids and associated tables and four text files of FGDC-compliant metadata for each grid.

  13. Higher Retail Prices of Sugar-Sweetened Beverages 3 Months After Implementation of an Excise Tax in Berkeley, California

    PubMed Central

    Rojas, Nadia; Grummon, Anna H.; Madsen, Kristine A.

    2015-01-01

    Objectives. We assessed the short-term ability to increase retail prices of the first US 1-cent-per-ounce excise tax on the distribution of sugar-sweetened beverages (SSBs), which was implemented in March 2015 by Berkeley, California. Methods. In 2014 and 2015, we examined pre- to posttax price changes of SSBs and non-SSBs in a variety of retailers in Berkeley and in the comparison cities Oakland and San Francisco, California. We examined price changes by beverage, brand, size, and retailer type. Results. For smaller beverages (≤ 33.8 oz), price increases (cents/oz) in Berkeley relative to those in comparison cities were 0.69 (95% confidence interval [CI] = 0.36, 1.03) for soda, 0.47 (95% CI = 0.08, 0.87) for fruit-flavored beverages, and 0.47 (95% CI = 0.25, 0.69) for SSBs overall. For 2-liter bottles and multipacks of soda, relative price increases were 0.46 (95% CI = 0.03, 0.89) and 0.49 (95% CI = 0.21, 0.77). We observed no relative price increases for nontaxed beverages overall. Conclusions. Approximately 3 months after the tax was implemented, SSB retail prices increased more in Berkeley than in nearby cities, marking a step in the causal pathway between the tax and reduced SSB consumption. PMID:26444622

  14. Documentation for a web site to serve ULF-EM (Ultra-Low Frequency Electromagnetic) data to the public

    USGS Publications Warehouse

    Neumann, Danny A.; McPherson, Selwyn; Klemperer, Simon L.; Glen, Jonathan M.G.; McPhee, Darcy K.; Kappler, Karl

    2011-01-01

    The Stanford Ultra-Low Frequency Electromagnetic (ULF-EM) Monitoring Project is recording naturally varying electromagnetic signals adjacent to active earthquake faults, in an attempt to establish whether there is any variation in these signals associated with earthquakes. Our project is collaborative between Stanford University, the U.S. Geological Survey (USGS), and UC Berkeley. Lead scientists are Simon Klemperer (Stanford University), Jonathan Glen (USGS) and Darcy Karakelian McPhee (USGS). Our initial sites are in the San Francisco Bay Area, monitoring different strands of the San Andreas fault system, at Stanford University's Jasper Ridge Biological Preserve (JRSC), Marin Headlands of the Golden Gate National Recreation Area (MHDL), and the UC Berkeley's Russell Reservation Field Station adjacent to Briones Regional Park (BRIB). In addition, we maintain in conjunction with the Berkeley Seismological Laboratory (BSL) two remote reference stations at the Bear Valley Ranch in Parkfield, Calif., (PKD) and the San Andreas Geophysical Observatory at Hollister, Calif., (SAO). Metadata about our site can be found at http://ulfem-data.stanford.edu/info.html. Site descriptions can be found at the BSL at http://seismo.berkeley.edu/, and seismic data can be obtained from the Northern California Earthquake Data Center at http://www.ncedc.org/. The site http://ulfem-data.stanford.edu/ allows access to data from the Stanford-USGS sites JRSC, MHDL and BRIB, as well as UC Berkeley sites PKD and SAO.

  15. Higher Retail Prices of Sugar-Sweetened Beverages 3 Months After Implementation of an Excise Tax in Berkeley, California.

    PubMed

    Falbe, Jennifer; Rojas, Nadia; Grummon, Anna H; Madsen, Kristine A

    2015-11-01

    We assessed the short-term ability to increase retail prices of the first US 1-cent-per-ounce excise tax on the distribution of sugar-sweetened beverages (SSBs), which was implemented in March 2015 by Berkeley, California. In 2014 and 2015, we examined pre- to posttax price changes of SSBs and non-SSBs in a variety of retailers in Berkeley and in the comparison cities Oakland and San Francisco, California. We examined price changes by beverage, brand, size, and retailer type. For smaller beverages (≤ 33.8 oz), price increases (cents/oz) in Berkeley relative to those in comparison cities were 0.69 (95% confidence interval [CI] = 0.36, 1.03) for soda, 0.47 (95% CI = 0.08, 0.87) for fruit-flavored beverages, and 0.47 (95% CI = 0.25, 0.69) for SSBs overall. For 2-liter bottles and multipacks of soda, relative price increases were 0.46 (95% CI = 0.03, 0.89) and 0.49 (95% CI = 0.21, 0.77). We observed no relative price increases for nontaxed beverages overall. Approximately 3 months after the tax was implemented, SSB retail prices increased more in Berkeley than in nearby cities, marking a step in the causal pathway between the tax and reduced SSB consumption.

  16. Cosmic acceleration from M theory on twisted spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Ishwaree P.; Wiltshire, David L.

    2005-10-15

    In a recent paper [I. P. Neupane and D. L. Wiltshire, Phys. Lett. B 619, 201 (2005).] we have found a new class of accelerating cosmologies arising from a time-dependent compactification of classical supergravity on product spaces that include one or more geometric twists along with nontrivial curved internal spaces. With such effects, a scalar potential can have a local minimum with positive vacuum energy. The existence of such a minimum generically predicts a period of accelerated expansion in the four-dimensional Einstein conformal frame. Here we extend our knowledge of these cosmological solutions by presenting new examples and discuss themore » properties of the solutions in a more general setting. We also relate the known (asymptotic) solutions for multiscalar fields with exponential potentials to the accelerating solutions arising from simple (or twisted) product spaces for internal manifolds.« less

  17. [PVFS 2000: An operational parallel file system for Beowulf

    NASA Technical Reports Server (NTRS)

    Ligon, Walt

    2004-01-01

    The approach has been to develop Parallel Virtual File System version 2 (PVFS2) , retaining the basic philosophy of the original file system but completely rewriting the code. It shows the architecture of the server and client components. BMI - BMI is the network abstraction layer. It is designed with a common driver and modules for each protocol supported. The interface is non-blocking, and provides mechanisms for optimizations including pinning user buffers. Currently TCP/IP and GM(Myrinet) modules have been implemented. Trove -Trove is the storage abstraction layer. It provides for storing both data spaces and name/value pairs. Trove can also be implemented using different underlying storage mechanisms including native files, raw disk partitions, SQL and other databases. The current implementation uses native files for data spaces and Berkeley db for name/value pairs.

  18. Berkeley Lab Wins Seven 2015 R&D 100 Awards | Berkeley Lab

    Science.gov Websites

    products from industry, academia, and government-sponsored research, ranging from chemistry to materials to problems in metrology techniques: the quantitative characterization of the imaging instrumentation Computational Research Division led the development of the technology. Sensor Integrated with Recombinant and

  19. PhyloChip Tackles Coral Disease

    ScienceCinema

    DeSantis, Todd

    2017-12-13

    Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico. More info: http://newscenter.lbl.gov/feature-stories/2009/02/02/coral-reefs/

  20. Teaching at Berkeley: A Guide for Foreign Teaching Assistants.

    ERIC Educational Resources Information Center

    Cohen, Robby, Ed.; Robin, Ron, Ed.

    A handbook for foreign teaching assistants (TAs) is presented by foreign graduate students with teaching experience and other educators who have worked closely with them. Language skills, teaching strategies, cultural issues, resources, and the environment at the University of California, Berkeley, are addressed in 16 articles. Article titles and…

  1. Improved Cosmological Constraints from New, Old, and Combined Supernova

    Science.gov Websites

    Data Set SAO/NASA ADS Astronomy Abstract Service Title: Improved Cosmological Constraints from , Harvard University, 60 Garden Street, Cambridge, MA 02138), AK(Department of Astronomy and Astrophysics Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720), BI(Department of Physics and Astronomy

  2. Computerized Serial Processing System at the University of California, Berkeley

    ERIC Educational Resources Information Center

    Silberstein, Stephen M.

    1975-01-01

    The extreme flexibility of the MARC format coupled with the simplicity of a batch-oriented processing system centered around a sequential master file has enabled the University of California, Berkeley, library to gradually build an unusually large serials data base in support of both technical and public services. (Author)

  3. The Universe Adventure - Help

    Science.gov Websites

    teachers introduce the material to their students. Clicking the link will open another window with activity ideas or worksheets to download. The number of stars next to the activity name indicates how difficult . Bechtel, Jr. Foundation [ Site Map ] optimized for Firefox [ UC Berkeley ] [ UC Berkeley Physics

  4. The Berkeley Environmental Simulation Laboratory: Its Use In Environmental Impact Assessment.

    ERIC Educational Resources Information Center

    Appleyard, Donald; And Others

    An environmental simulation laboratory at the University of California, Berkeley, is testing the adequacy of different techniques for simulating environmental experiences. Various levels of realism, with various costs, are available in different presentation modes. The simulations can aid in communication about and the resolution of environmental…

  5. The Ph.D. Production Function: The Case at Berkeley.

    ERIC Educational Resources Information Center

    Breneman, David W.

    This report analyzes departmental variations in time to degree and attrition in Ph.D. programs at Berkeley. An alternative hypothesis, the Ph.D. production function, is examined by cross-section econometric analysis of 28 departments. The inputs included in the production function were student variables--quality and percent males; faculty…

  6. The structure of a cholesterol-trapping protein

    Science.gov Websites

    Date February 28, 2003 Date Berkeley Lab Science Beat Berkeley Lab Science Beat The structure of a Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares

  7. GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.

    GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.

  8. Radiation-Resistant Hybrid Lotus Effect for Achieving Photoelectrocatalytic Self-Cleaning Anticontamination Coatings

    NASA Technical Reports Server (NTRS)

    Taylor, Edward W.; Pirich, Ronald G.

    2011-01-01

    An experiment involving radiation-resistant hydrophobic coatings is planned for space exposure and experimental testing on the International Space Station (ISS) in 2011. The Lotus biocide coatings are designed for supporting space exploration missions. This innovation is an antibacterial, anti-contamination, and self-cleaning coating that uses nano-sized semiconductor semimetal oxides to neutralize biological pathogens and toxic chemicals, as well as to mitigate dust accumulation (see figure). The Lotus biocide coating is thin (approximately microns thick), lightweight, and the biocide properties will not degrade with time or exposure to biological or chemical agents. The biocide is stimulated chemically (stoichiometric reaction) through exposure to light (photocatalysis), or by an applied electric field (electrocatalysis). The hydrophobic coating samples underwent preliminary high-energy proton and alpha-ray (helium ion) irradiations at the Lawrence Berkeley National Laboratory 88" cyclotron and demonstrated excellent radiation resistance for a portion of the Galactic Cosmic Ray (GRC) and Solar Proton spectrum. The samples will undergo additional post-flight studies when returned to Earth to affirm further the radiation resistance properties of the space exposed coatings.

  9. The Ionospheric Connection Explorer Mission: Mission Goals and Design

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S. L.; Mende, S. B.; Heelis, R. A.; Englert, C. R.; Edelstein, J.; Frey, H. U.; Korpela, E. J.; Taylor, E. R.; Craig, W. W.; Harris, S. E.; Bester, M.; Bust, G. S.; Crowley, G.; Forbes, J. M.; Gérard, J.-C.; Harlander, J. M.; Huba, J. D.; Hubert, B.; Kamalabadi, F.; Makela, J. J.; Maute, A. I.; Meier, R. R.; Raftery, C.; Rochus, P.; Siegmund, O. H. W.; Stephan, A. W.; Swenson, G. R.; Frey, S.; Hysell, D. L.; Saito, A.; Rider, K. A.; Sirk, M. M.

    2018-02-01

    The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON's goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON's development began in 2013 and the mission is on track for launch in 2018. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.

  10. Improving The Near-Earth Meteoroid And Orbital Debris Environment Definition With LAD-C

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Giovane, F. J.; Corsaro, R. C.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Tabata, M.; Stansbery, E. G.; Westphal, A. J.; Yano, H.

    2006-01-01

    To improve the near-Earth meteoroid and orbital debris environment definition, a large area particle sensor/collector is being developed to be placed on the International Space Station (ISS). This instrument, the Large Area Debris Collector (LAD-C), will attempt to record meteoroid and orbital debris impact flux, and capture the same particles with aerogel. After at least one year of deployment, the whole system will be brought back for additional laboratory analysis of the captured meteoroids and orbital debris. This project is led by the U.S. Naval Research Laboratory (NRL) while the U.S. Department of Defense (DoD) Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. Additional contributing team members of the consortium include the NASA Orbital Debris Program Office, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of Kent (UK), and University of California at Berkeley. The deployment of LAD-C on the ISS is planned for 2008, with the system retrieval in late 2009.

  11. Teaching and Learning with a NASA-Sponsored GEMS Space Science Curriculum: Using Research and Evaluation Results to Inform and Guide EPO Professionals, an Interactive Panel Session

    NASA Astrophysics Data System (ADS)

    Schultz, G.; Granger, E.; Catz, K. N.; Wierman, T.

    2010-08-01

    The newly-developed Space Science Sequence (SSS) is the product of a collaboration between NASA forums/missions and the Lawrence Hall of Science (LHS) Great Explorations in Math and Science (GEMS) program, based at UC Berkeley. At the ASP 2007 conference, keynote speaker George (Pinky) Nelson made special mention of partners involved and the curriculum produced. From the proceedings: "I want to recognize Jacqueline Barber, Isabel Hawkins, Greg Schultz and their colleagues. . . for setting an example of effective partnershipldots We would do well to become familiar with [the SSS] and promote them to teachers and schoolsldots At the same time, we can learn from teachers and students using [the SSS]\\. . . " (2008; p. 3). It is specifically such professional learning, from practicing teachers and grade school students, which motivated this panel session focusing on research and evaluation studies on teacher and student gains using the Space Science Sequence for Grades 3-5.

  12. Air Force is Developing Risk-Mitigation Strategies to Manage Potential Loss of the RD-180 Engine (REDACTED)

    DTIC Science & Technology

    2015-03-05

    launched on its rocket- estimated completion date of May 2015. Air Force will require verification that SpaceX can meet payload integration...design and accelerate integration capability at Space Exploration Technologies Corporation ( SpaceX )1 launch sites. o The Air Force does not intend to...accelerate integration capabilities at SpaceX launch sites because of the studies it directed, but will require verification that SpaceX can meet

  13. Status of the Short-Pulse X-ray Project at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassiri, A; Berenc, T G; Borland, M

    2012-07-01

    The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linearmore » Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.« less

  14. Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandt, A.

    2011-01-01

    The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity, DOE provides technical assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay Area was selected for a 2009 DOE Solar America Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted frommore » this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar photovoltaics (PV) projects in school districts across the country.« less

  15. The Sanford Underground Research Facility at Homestake (SURF)

    DOE PAGES

    Lesko, K. T.

    2015-03-24

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark mattermore » experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.« less

  16. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  17. Accessing northern California earthquake data via Internet

    NASA Astrophysics Data System (ADS)

    Romanowicz, Barbara; Neuhauser, Douglas; Bogaert, Barbara; Oppenheimer, David

    The Northern California Earthquake Data Center (NCEDC) provides easy access to central and northern California digital earthquake data. It is located at the University of California, Berkeley, and is operated jointly with the U.S. Geological Survey (USGS) in Menlo Park, Calif., and funded by the University of California and the National Earthquake Hazard Reduction Program. It has been accessible to users in the scientific community through Internet since mid-1992.The data center provides an on-line archive for parametric and waveform data from two regional networks: the Northern California Seismic Network (NCSN) operated by the USGS and the Berkeley Digital Seismic Network (BDSN) operated by the Seismographic Station at the University of California, Berkeley.

  18. Fracture trace map and single-well aquifer test results in a carbonate aquifer in Berkeley County, West Virginia

    USGS Publications Warehouse

    McCoy, Kurt J.; Podwysocki, Melvin H.; Crider, E. Allen; Weary, David J.

    2005-01-01

    These data contain information on the results of single-well aquifer tests, lineament analysis, and a bedrock geologic map compilation for the low-lying carbonate and shale areas of eastern Berkeley County, West Virginia. Efforts have been initiated by management agencies of Berkeley County in cooperation with the U.S. Geological Survey to further the understanding of the spatial distribution of fractures in the carbonate regions and their correlation with aquifer properties. This report presents transmissivity values from about 200 single-well aquifer tests and a map of fracture-traces determined from aerial photos and field investigations. Transmissivity values were compared to geologic factors possibly affecting its magnitude.

  19. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    NASA Astrophysics Data System (ADS)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  20. The effect of inertia on the Dirac electron, the spin Hall current and the momentum space Berry curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com

    2013-02-15

    We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less

  1. Peake in Columbus with sensor

    NASA Image and Video Library

    2016-01-26

    ISS046e024411 (01/26/2016) --- European Space Agency (ESA) astronaut Timothy Peake prepares to install a space acceleration measurement system sensor inside the European Columbus module aboard the International Space Station. The device is used in an ongoing study of the small forces (vibrations and accelerations) on the International Space Station resulting from the operation of hardware, crew activities, dockings and maneuvering. Results generalize the types of vibrations affecting vibration-sensitive experiments.

  2. On the longitudinal distribution of electric field in the acceleration zones of plasma accelerators and thrusters with closed electron drift

    NASA Astrophysics Data System (ADS)

    Kim, V. P.

    2017-04-01

    The long-term experience in controlling the electric field distribution in the discharge gaps of plasma accelerators and thrusters with closed electron drift and the key ideas determining the concepts of these devices and tendencies of their development are analyzed. It is shown that an electrostatic mechanism of ion acceleration in plasma by an uncompensated space charge of the cloud of magnetized electrons "kept" to the magnetic field takes place in the acceleration zones and that the electric field distribution can be controlled by varying the magnetic field in the discharge gap. The role played by the space charge makes the mechanism of ion acceleration in this type of thrusters is fundamentally different from the acceleration mechanism operating in purely electrostatic thrusters.

  3. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  4. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Eric Cornell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornell, Eric

    2008-08-30

    Eric Cornell presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  5. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Kurt Gibble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibble, Kurt

    2008-08-30

    Kurt Gibble presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  6. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keasling, Jay

    2008-08-30

    Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  7. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman

    ScienceCinema

    Wieman, Carl

    2017-12-09

    Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  8. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    ; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010 Officer Mary Gross MCGross@lbl.gov Research Group Representatives Group Rep Ager Rachel Woods-Robinson Somorjai (see Salmeron Group) Yaghi Xiaokun Pei xiaokun_pei@berkeley.edu Zhang Sui Yang SuiYang@lbl.gov

  9. Carbon Flux Explorers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Jim

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  10. Care for Our Children: A Comprehensive Plan for Child Care Services in Berkeley.

    ERIC Educational Resources Information Center

    Pacific Training and Technical Assistance Corp., Berkeley, CA.

    This document reports research and recommendations made by the Pacific Training and Technical Assistance Corporation for a comprehensive child-care program in Berkeley. The report is divided into two sections. Section I, "Research and Planning," describes research methodology and findings and includes demographic information on the city…

  11. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Eric Cornell

    ScienceCinema

    Cornell, Eric

    2018-02-05

    Eric Cornell presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  12. Neighborhood organization activities: evacuation drills, clusters, and fire safety awareness

    Treesearch

    Dick White

    1995-01-01

    Emergency preparedness activities of one Berkeley-Oakland Hills neighborhood at the wildland/urban interface include establishing clusters that reduce fire hazards and fuel loads, setting aside emergency supplies, and identifying evacuation routes; taking emergency preparedness courses from the Offices of Emergency Services of Berkeley and Oakland (the CERT and CORE...

  13. Ting Xu

    Science.gov Websites

    California, Berkeley tingxu@berkeley.edu 510-642-1632 Research profile » A U.S. Department of Energy National Laboratory Operated by the University of California UC logo Questions & Comments * Privacy Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion

  14. Electron Microscope Center Opens at Berkeley.

    ERIC Educational Resources Information Center

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  15. Energy Efficient Buildings and Appliances: From Berkeley Lab to the Marketplace (LBNL Summer Lecture Series)

    ScienceCinema

    Rosenfeld, Art [California Energy Commission, Sacramento, CA (United States)

    2018-02-16

    Summer Lecture Series 2006: Art Rosenfeld, an appointee to the California Energy Commission and one of the architects of energy efficiency research at Berkeley Lab in the 1970s, discusses what it takes to shepherd innovative energy efficiency research from the lab to the real world.

  16. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling

    ScienceCinema

    Keasling, Jay

    2018-02-14

    Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  17. A CAT scan for cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-01-01

    Recently, a team of scientists from Berkeley Lab, Stanford University, and the University of California, San Francisco used Berkeley Lab's National Center for X-ray Tomography to capture the changes that occur when Candida albicans is exposed to a new and promising antifungal therapy. http://newscenter.lbl.gov/feature-stories/2009/12/10/cat-scan-cells/

  18. Carbon Smackdown: Cookstoves for the developing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashok Gadgil, Kayje Booker, and Adam Rausch

    2010-07-07

    In this June 30, 2010 Berkeley Lab summer lecture, learn how efficient cookstoves for the developing world — from Darfur to Ethiopia and beyond — are reducing carbon dioxide emissions, saving forests, and improving health. Berkeley Lab's Ashok Gadgil, Kayje Booker, and Adam Rausch discuss why they got started in this great challenge and what's next.

  19. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wieman, Carl

    Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  20. In Search of Good Governance

    ERIC Educational Resources Information Center

    Grush, Mary

    2007-01-01

    Since his retirement in 2005, UC-Berkeley's Associate Vice Chancellor and CIO Emeritus and current ECAR fellow John (Jack) McCredie has devoted much of his professional energy to studying and writing/speaking about IT governance and leadership in higher education. In his role at UC-Berkeley, he was responsible for leading central IT support for…

  1. Carbon Flux Explorers

    ScienceCinema

    Bishop, Jim

    2018-06-12

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  2. Undergraduate Research Participation at the University of California, Berkeley. Research & Occasional Paper Series: CSHE.17.08

    ERIC Educational Resources Information Center

    Berkes, Elizabeth

    2008-01-01

    Although the University of California, Berkeley has increased efforts to involve undergraduates in scientific research, little data exists regarding the number of undergraduate researchers. The University of California Undergraduate Experience Survey (UCUES) presents an opportunity to investigate the extent of undergraduate research involvement at…

  3. The Berkeley Puppet Interview: A Screening Instrument for Measuring Psychopathology in Young Children

    ERIC Educational Resources Information Center

    Stone, Lisanne L.; van Daal, Carlijn; van der Maten, Marloes; Engels, Rutger C. M. E.; Janssens, Jan M. A. M.; Otten, Roy

    2014-01-01

    Background: While child self-reports of psychopathology are increasingly accepted, little standardized instruments are utilized for these practices. The Berkeley Puppet Interview (BPI) is an age-appropriate instrument for self-reports of problem behavior by young children. Objective: Psychometric properties of the Dutch version of the BPI will be…

  4. "A Woman's World": The University of California, Berkeley, during the Second World War

    ERIC Educational Resources Information Center

    Dorn, Charles

    2008-01-01

    During World War II, female students at the University of California, Berkeley--then the most populous undergraduate campus in American higher education--made significant advances in collegiate life. In growing numbers, women enrolled in male-dominated academic programs, including mathematics, chemistry, and engineering, as they prepared for…

  5. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Kurt Gibble

    ScienceCinema

    Gibble, Kurt

    2018-02-05

    Kurt Gibble presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  6. Lawrence Berkeley National Laboratory 2015 Annual Financial Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kim, P

    FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less

  7. A Radiation Homeland Security Workshop Presented to the City of Berkeley Fire Department

    NASA Astrophysics Data System (ADS)

    Matis, Howard

    2005-04-01

    A radiation incident in a community, ranging from a transportation accident to a dirty bomb, is expected to be rare, but still can occur. First responders to such an incident must be prepared. City of Berkeley officials met with members of the Lawrence Berkeley National Laboratory staff and agreed that the laboratory participants would create material and teach it to all of their fire fighting staff. To design such a course, nuclear physicists, biologists and health physicists merged some of their existing teaching material together with previous homeland security efforts to produce a course that lasted one full day. The material was designed to help alleviate the myths and fear of radiation experienced by many first responders. It included basic nuclear physics information, biological effects, and methods that health physicists use to detect and handle radiation. The curriculum included several hands on activities which involved working directly with the meters the Berkeley Fire Department possessed. In addition, I will discuss some observations from teaching this course material plus some unusual problems that we encountered, such as suddenly the whole class responding to a fire.

  8. Longitudinal phase space tomography using a booster cavity at PITZ

    NASA Astrophysics Data System (ADS)

    Malyutin, D.; Gross, M.; Isaev, I.; Khojoyan, M.; Kourkafas, G.; Krasilnikov, M.; Marchetti, B.; Otevrel, M.; Stephan, F.; Vashchenko, G.

    2017-11-01

    The knowledge of the longitudinal phase space (LPS) of electron beams is of great importance for optimizing the performance of high brightness photo injectors. To get the longitudinal phase space of an electron bunch in a linear accelerator a tomographic technique can be used. The method is based on measurements of the bunch momentum spectra while varying the bunch energy chirp. The energy chirp can be varied by one of the RF accelerating structures in the accelerator and the resulting momentum distribution can be measured with a dipole spectrometer further downstream. As a result, the longitudinal phase space can be reconstructed. Application of the tomographic technique for reconstruction of the longitudinal phase space is introduced in detail in this paper. Measurement results from the PITZ facility are shown and analyzed.

  9. Improving particle beam acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    C. de Sousa, M.; L. Caldas, I.

    2018-04-01

    The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.

  10. Site Environmental Report for 2002, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less

  11. Site Environmental Report for 2002, Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauer, Ron

    2003-07-01

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less

  12. Site Environmental Report for 2005 Volume I and Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggieri, Michael

    2006-07-07

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the prefixes used with SI units of measurement, and the second provides conversions to non-SI units.« less

  13. Single-Event Effect Testing of the Vishay Si7414DN n-Type TrenchFET(Registered Trademark) Power MOSFET

    NASA Technical Reports Server (NTRS)

    Lauenstein, J.-M.; Casey, M. C.; Campola, M. A.; Phan, A. M.; Wilcox, E. P.; Topper, A. D.; Ladbury, R. L.

    2017-01-01

    This study was being undertaken to determine the single event effect susceptibility of the commercial Vishay 60-V TrenchFET power MOSFET. Heavy-ion testing was conducted at the Texas AM University Cyclotron Single Event Effects Test Facility (TAMU) and the Lawrence Berkeley National Laboratory BASE Cyclotron Facility (LBNL). In addition, initial 200-MeV proton testing was conducted at Massachusetts General Hospital (MGH) Francis H. Burr Proton Beam Therapy Center. Testing was performed to evaluate this device for single-event effects from lower-LET, lighter ions relevant to higher risk tolerant space missions.

  14. KSC-2009-5874

    NASA Image and Video Library

    2009-10-19

    VANDENBERG AIR FORCE BASE, Calif. - At Space Launch Complex 2 at Vandenberg Air Force Base in California, workers supervise the first stage of the United Launch Alliance Delta II rocket for launch of NASA's Wide-field Infrared Survey Explorer, or WISE, as it is lowered onto pedestal's in the pad's mobile service tower. WISE will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects which will be catalogued and provide a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled for Dec. 7. For additional information, visit http://wise.ssl.berkeley.edu. Photo credit: NASA/Roy Allison, VAFB

  15. Steady state micro-g environment on Space Station

    NASA Technical Reports Server (NTRS)

    Waters, L.; Heck, M.; Deryder, L.

    1988-01-01

    In circular earth orbit, the Space Station (SS) will sense acceleration from external environmental forces due to the gravitational gradient, rotational accelerations, and atmospheric drag. This paper discusses these forces and how they will affect the SS micro-g environment. The effect of SS attitude on the micro-g profile is addressed. Sources for nonsteady state acceleration levels for which disturbance models are currently being developed are briefly considered.

  16. An examination of anticipated g-jitter on Space Station and its effects on materials processes

    NASA Technical Reports Server (NTRS)

    Nelson, Emily

    1992-01-01

    Information on anticipated g-jitter on Space Station Freedom and the effect of the jitter on materials processes is given in viewgraph form. It was concluded that g-jitter will dominate the acceleration environment; that it is a 3D multifrequency phenomenon; and that it varies dramatically in orientation. Information is given on calculated or measured sources of residual acceleration, aerodynamic drag, Shuttle acceleration measurements, the Space Station environment, tolerable g-levels as a function of frequency, directional solidification, vapor crystal growth, protein crystal growth, float zones, and liquid bridges.

  17. Variable Depth Bragg Peak Method for Single Event Effects Testing

    NASA Technical Reports Server (NTRS)

    Buchner, S.; Kanyogoro, N.; Foster, C.; O'Neill, P.

    2011-01-01

    Traditionally, accelerator SEE testing is accomplished by removing the tops of packages so that the IC chips are accessible to heavy ions. However, ICs in some advanced packages cannot be de-lidded so a different approach is used that involves grinding and/or chemically etching away part of the package and the chip from the back side. The parts are then tested from the back side with ions having sufficient range to reach the sensitive volume. More recently, the entire silicon substrate in an SOI/SRAM was removed, making it possible to use low-energy ions with shorter ranges. Where removal of part of the package is not possible, facilities at Michigan State, NASA Space Radiation Laboratory, GANIL (France) and GSI (Germany) offer high-energy heavy ions with long ranges so that the ions can reach the devices' sensitive volumes without much change in the LET. Unfortunately, a run will typically involve only one ion species having a single energy and LET due to the long time it takes to tune a new energy. The Variable Depth Bragg Peak (VDBP) method is similar to the above method in that it involves the use of high-energy heavy ions that are able to pass through the packaging material and reach the device, obviating the need to remove the package. However, the method provides a broad range of LETs from a single ion by inserting degraders in the beam that modify the ion energy and, therefore, the LET. The crux of the method involves establishing a fiduciary point for degrader thickness, i.e., where the Bragg peak is located precisely at the sensitive volume in the device, for which the measured SEU cross-section and the ion LET are both also maxima and can be calculated using a Monte-Carlo program, TRIM. Once the fiduciary point has been established, calibrated high density polyethylene (HDPE) degraders are inserted into or removed from the beam to vary the ion LET at the device in a known manner. After each change of degrader thickness, the SEU cross-section is measured and the corresponding LET calculated from the change in degrader thickness. That information is used to generate a plot of cross-section as a function of ion LET. The advantages of this approach are that the part does not have to be de-lidded and a broad range of LETs is available from a single heavy ion without having to go to non-normal angles of incidence to change the "effective" LET. As we will show, it is possible to obtain an entire curve of cross-section versus LET using just two or three ions. Fig. 1 shows curves of cross-section vs LET for a Freescale 4 Mbit SOI/SRAM measured at the 88" Cyclotron at Berkeley and at NSRL. The open symbols are the data obtained from Berkeley for top-side and back-side irradiation. The solid data points are for the data obtained at NSRL using a device for which the package was intact. The data are for Iron and Gold and cover a range of LETs from 4 MeV.cm2/mg to 84 MeV.cm2/mg. The agreement between the data obtained from Berkeley and from NSRL is excellent, demonstrating that the VDBP method is capable of providing accurate values of cross-section versus LET, at least for the 4 Mbit SRAM. Details of the technique will be included in the final presentation.

  18. Revealing the Role of Microbes in Controlling Contaminants

    ScienceCinema

    Williams, Kenneth Hurst

    2018-05-11

    In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.

  19. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: Remarks from Steve Chu at the Scientific Symposium Held in his Honor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steve

    2008-08-30

    Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize, presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium in his honor. The symposium was held August 30, 2008 in Berkeley.

  20. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk from Leo Holberg and Allen Mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holberg, Leo; Mills, Allen

    2008-08-30

    Leo Holberg and Allen Mills present a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  1. Carbon Smackdown: Cookstoves for the developing world

    ScienceCinema

    Ashok Gadgil, Kayje Booker, and Adam Rausch

    2017-12-09

    In this June 30, 2010 Berkeley Lab summer lecture, learn how efficient cookstoves for the developing world — from Darfur to Ethiopia and beyond — are reducing carbon dioxide emissions, saving forests, and improving health. Berkeley Lab's Ashok Gadgil, Kayje Booker, and Adam Rausch discuss why they got started in this great challenge and what's next.

  2. Integration Defended: Berkeley Unified's Strategy to Maintain School Diversity

    ERIC Educational Resources Information Center

    Chavez, Lisa; Frankenberg, Erica

    2009-01-01

    In June 2007, the Supreme Court limited the tools that school districts could use to voluntarily integrate schools. In the aftermath of the decision, educators around the country have sought models of successful plans that would also be legal. One such model may be Berkeley Unified School District's (BUSD) plan. Earlier this year, the California…

  3. Revealing the Role of Microbes in Controlling Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kenneth Hurst

    2015-04-02

    In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.

  4. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk from Leo Holberg and Allen Mills

    ScienceCinema

    Holberg, Leo; Mills, Allen

    2018-05-07

    Leo Holberg and Allen Mills present a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  5. A Proposal to Eliminate the SAT in Berkeley Admissions. Research & Occasional Paper Series: CSHE.4.16

    ERIC Educational Resources Information Center

    Geiser, Saul

    2016-01-01

    The SAT is used for two purposes at the University of California. First is "eligibility": Determining whether applicants meet the minimum requirements for admission to the UC system. Second is "admissions selection": At high-demand campuses such as Berkeley, with many more eligible applicants than places available, test scores…

  6. For Berkeley's Sports Endowment, a Goal of $1-Billion

    ERIC Educational Resources Information Center

    Keller, Josh

    2009-01-01

    Most athletics programs, if forced to raise $300-million to renovate a football stadium, would not set an ambitious endowment goal at the same time. The University of California at Berkeley is trying to do both. The university's California Memorial Stadium sits directly over an earthquake fault: it needs a major seismic retrofit that will take…

  7. VIEW OF PIEDMONT AVENUE TRAFFIC CIRCLE AT INTERSECTION OF CHANNING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PIEDMONT AVENUE TRAFFIC CIRCLE AT INTERSECTION OF CHANNING WAY VIEW OF 2401 PIEDMONT, ALPHA EPSILON PHI HOUSE BY RATCLIFF & RATCLIFF, 1958. SEEN FROM NW CORNER LOOKING SE. Photograph by Brian Grogan, July 8, 2007 - Piedmont Way & the Berkeley Property Tract, East of College Avenue between Dwight Way & U.C. Memorial Stadium, Berkeley, Alameda County, CA

  8. Social Integration and School Violence in a Multiracial Northern High School.

    ERIC Educational Resources Information Center

    Marascuilo, Leonard A.; Dagenais, Fred

    This study, conducted in Berkeley, California, was designed to test the hypothesis that socially integrated high school students would not be involved in interracial violence and conflict, while students who were socially isolated would. Data were collected by means of a questionnaire, sent to the 1970 graduating class of Berkeley High School,…

  9. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    ERIC Educational Resources Information Center

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  10. VIEW OF PIEDMONT AVENUE TRAFFIC CIRCLE AT INTERSECTION OF CHANNING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PIEDMONT AVENUE TRAFFIC CIRCLE AT INTERSECTION OF CHANNING WAY. SEEN FROM SW CORNER TOWARDS 2395 PIEDMONT, SIGMA PI HOUSE BY FREDERICK H. REIMERS, 1928. LOOKING NORTH. Photograph by Brian Grogan, July 8, 2007 - Piedmont Way & the Berkeley Property Tract, East of College Avenue between Dwight Way & U.C. Memorial Stadium, Berkeley, Alameda County, CA

  11. Martinsburg-Berkeley County Public Library, Final Performance Report for Library Services and Construction Act (LSCA) Title VI, Library Literacy Program.

    ERIC Educational Resources Information Center

    Hess, Therese M.

    The Martinsburg-Berkeley County Public Library (West Virginia) conducted a project that involved recruitment, retention, coalition building, public awareness, training, basic literacy, collection development, tutoring, computer assisted, other technology, and English as a Second Language (ESL) programs. The project served a three-county community…

  12. Berkeley Pact with a Swiss Company Takes Technology Transfer to a New Level.

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    1998-01-01

    In search of increased support for graduate students in plant science and upgraded laboratories, the College of Plant and Microbial Biology, University of California Berkeley, offered the college's expertise in exchange for major financial backing from the single company making the best offer. The resulting five-year, $25-million alliance with one…

  13. Berkeley Lab Scientist Co-Leads Breast Cancer Dream Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Joe

    2009-05-19

    An $16.5 million, three-year grant to develop new and more effective therapies to fight breast cancer was awarded today to a multi-institutional Dream Team of scientists and clinicians that is co-led by Joe Gray, a renowned cancer researcher with the U.S. Department of Energys Lawrence Berkeley National Laboratory. http://newscenter.lbl.gov/

  14. 76 FR 28066 - Notice of Intent To Repatriate a Cultural Item: Phoebe A. Hearst Museum of Anthropology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... California, Berkeley, Berkeley, CA, that meets the definition of sacred object under 25 U.S.C. 3001. This... sacred object, and the museum agrees with all the evidence presented and will repatriate the object... object needed by traditional Native American religious leaders for the practice of traditional Native...

  15. The University of California at Berkeley: An Emerging Global Research University

    ERIC Educational Resources Information Center

    Ma, Wanhua

    2008-01-01

    Federal government science policy and R&D investment are two major factors for the success of research universities in the United States. This case analysis examines how the University of California at Berkeley shifted from a regional to a globally oriented research university by the influence of federal government science policy and R&D…

  16. Berkeley Lab Scientist Co-Leads Breast Cancer Dream Team

    ScienceCinema

    Gray, Joe

    2017-12-27

    An $16.5 million, three-year grant to develop new and more effective therapies to fight breast cancer was awarded today to a multi-institutional Dream Team of scientists and clinicians that is co-led by Joe Gray, a renowned cancer researcher with the U.S. Department of Energys Lawrence Berkeley National Laboratory. http://newscenter.lbl.gov/

  17. Doing Much More with Less: Implementing Operational Excellence at UC Berkeley. Research & Occasional Paper Series: CSHE.10.13

    ERIC Educational Resources Information Center

    Szeri, Andrew J.; Lyons, Richard; Huston, Peggy; Wilton, John

    2013-01-01

    Universities are undergoing historic change, from the sharp downward shift in government funding to widespread demands to document performance. At the University of California Berkeley, this led to an operational change effort unlike any the university had ever attempted, dubbed Operational Excellence. The authors describe their experiences…

  18. The University of California, Berkeley, and the Government. An Institutional Self Study.

    ERIC Educational Resources Information Center

    Bowker, Albert H.; Morgan, Patrick M.

    The relationship between the University of California at Berkeley and the government is examined. Interviews with over 150 people on campus, ranging from leading administrators to a sample of faculty researchers to section heads in departments such as Personnel and Purchasing, as well as written reports by numerous offices supplied the data of…

  19. ALTERNATE VIEW OF SIDEWALK AND WALL OF INDIGENOUS VOLCANIC RYOLITE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ALTERNATE VIEW OF SIDEWALK AND WALL OF INDIGENOUS VOLCANIC RYOLITE EASTSIDE OF PIEDMONT AVENUE ADJACENT TO OAK GROVE AND CALIFORNIA MEMORIAL STADIUM. LOOKING NORTH. Photograph by Fredrica Drotos and Michael Kelly, June 29, 2006 - Piedmont Way & the Berkeley Property Tract, East of College Avenue between Dwight Way & U.C. Memorial Stadium, Berkeley, Alameda County, CA

  20. Berkeley Lab's Cool Your School Program

    ScienceCinema

    Brady, Susan; Gilbert, Haley; McCarthy, Robert

    2018-02-02

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  1. Requirements Analysis and Course Improvements for EO3502 Telecommunications Systems Engineering

    DTIC Science & Technology

    2005-03-01

    California, Berkeley, School of Information Management and Systems The University of California, Berkeley (Cal) is a public, coeducational university...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS REQUIREMENTS ANALYSIS AND COURSE IMPROVEMENTS FOR E03502 TELECOMMUNICATIONS SYSTEMS ENGINEERING...Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING

  2. An Evaluation of the New Curriculum at the University of California, Berkeley, School of Optometry.

    ERIC Educational Resources Information Center

    Harris, Michael G.; Kashani, Sandy; Saroj, Namrata

    2001-01-01

    Evaluated the new curriculum at the University of California, Berkeley, School of Optometry by comparing the content of the new curriculum to the old curriculum and by surveying faculty and students regarding their opinion of the new curriculum. Findings indicated that the curriculum is successful in implementing desired changes, including reduced…

  3. Reducing Our Carbon Footprint: A Low-Energy House in Berkeley, Kabul, and Washington DC (LBNL Science at the Theater)

    ScienceCinema

    Diamond, Rick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-14

    How well can we assess and improve building energy performance in California homes? How much energy-and carbon-do homes use in other parts of the world? Rick Diamond, deputy group leader of the Berkeley Lab Energy Performance of Buildings Group, discusses change, global solutions, and the stories of three houses in Berkeley, Kabul (Afghanistan), and Washington, D.C. Diamond, who is also a senior advisor at the California Institute for Energy and Environment, investigates user interactions with the built environment for improved building energy performance. The group has studied a wide range of issues related to energy use in housing, including duct system efficiency, user behavior, and infiltration and ventilation measurements.

  4. A community of educators: professional development for graduate students within the Berkeley Compass Project

    NASA Astrophysics Data System (ADS)

    Schwab, Josiah; Roth, Nathaniel; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. Graduate students, together with upper-level undergraduates, design and run all Compass programs. We strive to create a community of educators that incorporates best practices from the science education literature. Along the way, we develop experience in curriculum development, fundraising, grant writing, interfacing with university administration, and other aspects of running an effective organization. Our experience in Compass leaves us better poised to be successful researchers, teachers, and mentors.

  5. Control system for the 2nd generation Berkeley AutoMounters (BAM2) at GM/CA CAT macromolecular crystallography beamlines

    PubMed Central

    Makarov, O.; Hilgart, M.; Ogata, C.; Pothineni, S.; Cork, C.

    2011-01-01

    GM/CA CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second generation Berkeley automounter is being integrated into the beamline control system at the 23-BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design. PMID:21822343

  6. PIMS Data Storage, Access, and Neural Network Processing

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Moskowitz, Milton E.

    1998-01-01

    The Principal Investigator Microgravity Services (PIMS) project at NASA's Lewis Research Center has supported microgravity science Principal Investigator's (PIs) by processing, analyzing, and storing the acceleration environment data recorded on the NASA Space Shuttles and the Russian Mir space station. The acceleration data recorded in support of the microgravity science investigated on these platforms has been generated in discrete blocks totaling approximately 48 gigabytes for the Orbiter missions and 50 gigabytes for the Mir increments. Based on the anticipated volume of acceleration data resulting from continuous or nearly continuous operations, the International Space Station (ISS) presents a unique set of challenges regarding the storage of and access to microgravity acceleration environment data. This paper presents potential microgravity environment data storage, access, and analysis concepts for the ISS era.

  7. OARE and SAMS on STS-94/MSL-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio

    1998-01-01

    Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.

  8. The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)

    ScienceCinema

    Smoot, George [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-23

    Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theory of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.

  9. Application of the Molecular Adsorber Coating Technology on the Ionospheric Connection Explorer Program

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.

    2016-01-01

    The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASAs Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeleys Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICONs Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instruments particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.

  10. Application of the Molecular Adsorber Coating technology on the Ionospheric Connection Explorer program

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.

    2016-09-01

    The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASA's Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeley's Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICON's Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instrument's particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.

  11. SL2-06-102

    NASA Image and Video Library

    1973-06-01

    SL2-06-102 (June 1973) --- A black and white photograph of the San Francisco Bay California area, taken from the Skylab 1-2 space station cluster in Earth orbit. THE PICTURE SHOULD BE HELD WITH THE CLOUDS AND PACIFIC OCEAN ON THE LEFT. This photograph was taken by one of six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Note the thickly populated and highly developed area around the Bay. Among the cities visible in this photograph are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. The S190-A experiment is part of the Skylab Earth Resources Experiments Package (EREP). Type SO-022 film was used. This station covered the spectral region from 0.5 to 0.6 micrometers. Photo credit: NASA

  12. SL2-05-102

    NASA Image and Video Library

    1973-06-01

    SL2-05-102 (June 1973) --- A black and white photograph of the San Francisco Bay California area, taken from the Skylab 1-2 space station cluster in Earth orbit. THE PICTURE SHOULD BE HELD WITH THE CLOUDS AND PACIFIC OCEAN ON THE LEFT. This photograph was taken by one of six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Note the thickly populated and highly developed area around the Bay. Among the cities visible in this photograph are San Francisco, Oakland, Berkeley and San Jose. This view extends eastward to show a portion of the San Joaquin Valley. The S190-A experiment is part of the Skylab Earth Resources Experiments Package (EREP). Type SO-022 film was used. This station covered the spectral region from 0.6 to .07 micrometers. Photo credit: NASA

  13. The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smoot, George

    Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theorymore » of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.« less

  14. Ernest Orlando Lawrence (1901-1958), Cyclotron and Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, William T.

    On August 8, 2001, Lawrence Berkeley National Laboratory celebrated the centennial of the birth of its founder (and namesake), Ernest Orlando Lawrence. For the occasion, many speeches were given and old speeches were remembered. We recall the words of the late Luis Alvarez, a Nobel Laureate and one of the Lawrence's closest colleagues: ''Lawrence will always be remembered as the inventor of the cyclotron, but more importantly, he should be remembered as the inventor of the modern way of doing science''. J. L. Heilbron and R. W. Seidel, in the introduction of their book, ''Lawrence and His Laboratory'' stated, ''Themore » motives and mechanisms that shaped the growth of the Laboratory helped to force deep changes in the scientific estate and in the wider society. In the entrepreneurship of its founder, Ernest Orlando Lawrence, these motives, mechanisms, and changes came together in a tight focus. He mobilized great and small philanthropists, state and local governments, corporations, and plutocrats, volunteers and virtuosos. The work they supported, from astrophysics and atomic bombs, from radiochemistry to nuclear medicine, shaped the way we observe, control, and manipulate our environment.'' Indeed, all over the civilized world, the ways we do science changed forever after Lawrence built his famed Radiation Laboratory. In this editorial, we epitomize his legacy of changing the way we do medicine, thereby affecting the health and well being of all humanity. This year marks the 75th anniversary of the invention of the cyclotron by Ernest Orlando Lawrence at the University of California at Berkeley. Lawrence conceived the idea of the cyclotron early in 1929 after reading an article by Rolf Wideroe on high-energy accelerators. In the spring of 1930 one of his students, Nels Edlefsen, constructed two crude models of a cyclotron. Later in the fall of the same year, another student, M. Stanley Livingston, constructed a 13-cm diameter model that had all the features of early cyclotrons, accelerating protons to 80,000 volts using less than 1,000 volts on a semi-circular accelerating electrode, now called the ''dee''. Following the discovery by J. D. Cockcroft and E. T. S. Walton of how to produce larger currents at higher voltages, Lawrence constructed the first two-dee 27-Inch (69-cm) Cyclotron, which produced protons and deuterons of 4.8 MeV. The 27-Inch Cyclotron was used extensively in early investigations of nuclear reactions involving neutrons and artificial radioactivity. In 1939, working with William Brobeck, Lawrence constructed the 60-Inch (150-cm) Cyclotron, which accelerated deuterons to 19 MeV. It was housed in the Crocker Laboratory, where scientists first made transmutations of some elements, discovered several transuranic elements, and created hundreds of radioisotopes of known elements. At the Crocker Laboratory the new medical modality called nuclear medicine was born, which used radioisotopes for diagnosis and treatment of human diseases. In 1939 Lawrence was awarded the Nobel Prize in Physics, and later element 103 was named ''Lawrencium'' in his honor.« less

  15. The Role of Substorms in Storm-time Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.; Kamide, Yohsuke

    The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances. Acceleration of charged particles is an essential ingredient of both magnetospheric substorms and space storms. In the case of space storms, the ultimate result is a bulk flow of electric charge through the inner magnetosphere, commonly known as the ring current. Syun-Ichi Akasofu and Sydney Chapman, two of the early pioneers in space physics, postulated that the bulk acceleration of particles during storms is rather the additive result of partial acceleration during consecutive substorms. This paradigm has been heavily disputed during recent years. The new case is that substorm acceleration may be sufficient to produce individual high-energy particles that create auroras and possibly harm spacecraft, but it cannot produce the massive acceleration that constitutes a storm. This paper is a critical review of the long-standing issue of the storm-substorm relationship, or—in other words—the capability or necessity of substorms in facilitating or driving the build-up of the storm-time ring current. We mainly address the physical effect itself, i.e. the bulk acceleration of particles, and not the diagnostic of the process, i.e. the Dst index, which is rather often the case. Within the framework of particle acceleration, substorms retain their storm-importance due to the potential of substorm-induced impulsive electric fields in obtaining the massive ion acceleration needed for the storm-time ring current buildup.

  16. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  17. International Collaboration for Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Slaba, Tony C.; Rusek, Adam; Durante, Marco; Reitz, Guenther

    2015-01-01

    An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration.

  18. C. Judson King of UC Berkeley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director ofmore » the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.« less

  19. The FAST (FRC Acceleration Space Thruster) Experiment

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  20. Ion extraction capabilities of closely spaced grids

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1982-01-01

    The ion extraction capabilities of accelerator systems with small screen hole diameters (less than 2.0 mm) are investigated at net-accelerating voltages of 100, 300, and 500 V. Results show that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 1.0 mm, but impingement-limited performance was found to be dependent on the grid separation distance, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained using small hole diameters and closely spaced grids indicate a new mode of grid operation where high current density operation can be achieved with a specified net acceleration voltage by operating the grids at a high rather than low net-to-total acceleration voltage. Beam current densities as high as 25 mA/sq cm were obtained using grids with 1.0 mm diameter holes operating at a net accelerating voltage of 500 V.

  1. A Report on the Status of Women Employed in the Library of the University of California, Berkeley, with Recommendations for Affirmative Action.

    ERIC Educational Resources Information Center

    Lipow, Anne; And Others

    This report deals with discrimination against women employed as librarians and library assistants at the University of California, Berkeley Library. The report demonstrates that (1) library professional, technical and clerical personnel--both women and men--work in "women's occupations," and, therefore, are underpaid when compared to…

  2. Reduced Chemical Kinetic Mechanisms for Hydrocarbon Fuels

    DTIC Science & Technology

    2006-01-01

    Technologies Reaction Engineering International 77 West 200 South, Suite # 210 Salt Lake City, UT 84101 3Professor Department of Mechanical ... Engineering University of California, Berkeley Berkeley, CA 94720 4Program Leader for Computational Chemistry Lawrence Livermore National Laboratory...species by the error introduced by assuming they are in quasi-steady state. The reduced mechanisms have been compared to detailed chemistry calculations

  3. THE "FREE SPEECH" CRISES AT BERKELEY, 1964-1965--SOME ISSUES FOR SOCIAL AND LEGAL RESEARCH.

    ERIC Educational Resources Information Center

    LUNSFORD, TERRY F.

    AN EXAMINATION WAS MADE OF THE ISSUES AND EVENTS OF THE "FREE SPEECH" CRISES ON THE BERKELEY CAMPUS OF THE UNIVERSITY OF CALIFORNIA IN AN ATTEMPT TO PROVIDE THE BASIS FOR MORE SYSTEMATIC AND DISPASSIONATE STUDY OF CERTAIN ISSUES BEHIND THE STUDENT PROTESTS, AND TO STIMULATE SOCIAL AND LEGAL RESEARCH ON THESE ISSUES. FOLLOWING AN…

  4. The East Bay Vegetation Management Consortium:\\ta subregional approach to resource management and planning

    Treesearch

    Tony Acosta

    1995-01-01

    Formed in response to the October 20, 1991, Oakland/Berkeley hills firestorm, the East Bay Vegetation Management Consortium (EBVMC) is a voluntary association of public agencies concerned with vegetation management and planning related to fire hazard reduction in the Oakland/ Berkeley hills. To date, a total of nine agencies are participating in the EBVMC, including...

  5. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    ERIC Educational Resources Information Center

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  6. DETAIL VIEW OF SIDEWALKS AND TREES ON CHANNING WAY AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF SIDEWALKS AND TREES ON CHANNING WAY AT INTERSECTION OF PIEDMONT AVENUE WITH 2395 PIEDMONT, SIGMA PI HOUSE BY FREDERICK H. REIMERS, 1928, LOOKING NW. Photograph by Fredrica Drotos and Michael Kelly, July 9, 2006 - Piedmont Way & the Berkeley Property Tract, East of College Avenue between Dwight Way & U.C. Memorial Stadium, Berkeley, Alameda County, CA

  7. DETAIL VIEW OF PIEDMONT AVENUE TRAFFIC CIRCLE AT INTERSECTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF PIEDMONT AVENUE TRAFFIC CIRCLE AT INTERSECTION OF CHANNING WAY. SEEN FROM EAST SIDE OF CIRCLE LOOKING NORTH AT 2395 PIEDMONT, SIGMA PI HOUSE BY FREDERICK H. REIMERS, 1928. Photograph by Brian Grogan, July 8, 2007 - Piedmont Way & the Berkeley Property Tract, East of College Avenue between Dwight Way & U.C. Memorial Stadium, Berkeley, Alameda County, CA

  8. A Tale of Three Campuses: Planning and Design in Response to the Cultural Heritages at Mills College, the University of California, Berkeley, and Stanford University

    ERIC Educational Resources Information Center

    Fiene, Karen; Sabbatini, Robert

    2011-01-01

    How do forward-looking institutions with rich landscape and architectural heritages integrate contemporary programming and design? This article explores the evolution of the Mills College campus and compares it with two larger western universities: the University of California, Berkeley (UCB) and Leland Stanford, Jr., University (Stanford…

  9. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    NASA Technical Reports Server (NTRS)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  10. Survey of Spring 1982 Graduating Seniors in the College of Engineering, University of California, Berkeley.

    ERIC Educational Resources Information Center

    Thomson, Gregg E.

    Opinions and experiences of college seniors majoring in engineering at the University of California, Berkeley, were studied in spring 1982. Specific attention was focused on the unequal distribution of interest in the various engineering programs. Data were analyzed by program, year of entry, and commitment to engineering in general and/or one's…

  11. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2018-04-16

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  12. Projects made with the Berkeley Lab Circuit Board

    Science.gov Websites

    dependence of cosmic rays. Greg Poe, a student at Travis High School in Richmond, Texas, received an the journal Physics Education. He used the Berkeley Lab circuit board together with spare parts from New York Schools Cosmic Particle Telescope workshop. Ken Cecire has created a web page which describes

  13. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  14. Solar Fridges and Personal Power Grids: How Berkeley Lab is Fighting Global Poverty (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buluswar, Shashi; Gadgil, Ashok

    At this November 26, 2012 Science at the Theater, scientists discussed the recently launched LBNL Institute for Globally Transformative Technologies (LIGTT) at Berkeley Lab. LIGTT is an ambitious mandate to discover and develop breakthrough technologies for combating global poverty. It was created with the belief that solutions will require more advanced R&D and a deep understanding of market needs in the developing world. Berkeley Lab's Ashok Gadgil, Shashi Buluswar and seven other LIGTT scientists discussed what it takes to develop technologies that will impact millions of people. These include: 1) Fuel efficient stoves for clean cooking: Our scientists are improvingmore » the Berkeley Darfur Stove, a high efficiency stove used by over 20,000 households in Darfur; 2) The ultra-low energy refrigerator: A lightweight, low-energy refrigerator that can be mounted on a bike so crops can survive the trip from the farm to the market; 3) The solar OB suitcase: A low-cost package of the five most critical biomedical devices for maternal and neonatal clinics; 4) UV Waterworks: A device for quickly, safely and inexpensively disinfecting water of harmful microorganisms.« less

  15. Barriers to communication and cooperation in addressing community impacts of radioactive releases from research facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrach, Robert J.; Peterson, S. Ring

    1999-05-05

    Two instances of research facilities responding to public scrutiny will be discussed. The first concerns emissions from a "tritium labeling facility" operated at Lawrence Berkeley National Laboratory (LBNL); the second deals with releases of plutonium from Lawrence Livermore National Laboratory (LLNL). There are many parallels between these two cases, both of which are still ongoing. In both, the national laboratory is the acknowledged source of low-level (by regulatory standards) radioactive contamination in the community. A major purpose of both investigations is to determine the degree of the contamination and the threat it poses to public health and the environment. Themore » examining panel or committee is similarly constituted in the two cases, including representatives from all four categories of stakeholders: decision makers; scientists and other professionals doing the analysis/assessment; environmental activist or public interest groups; and "ordinary" citizens (nearly everyone else not in one or more of the first three camps). Both involved community participation from the beginning. The levels of outrage over the events triggering the assessment are comparable; though "discovered" or "appreciated" only a few years ago, the release of radiation in both cases occurred or began occurring more than a decade ago. The meetings have been conducted in a similar manner, with comparable frequency, often utilizing the services of professional facilitators. In both cases, the sharply contrasting perceptions of risk commonly seen between scientists and activists were present from the beginning, though the contrast was sharper and more problematical in the Berkeley case. Yet, the Livermore case seems to be progressing towards a satisfactory resolution, while the Berkeley case remains mired in ill-will, with few tangible results after two years of effort. We perceive a wide gap in negotiation skills (at the very least), and a considerable difference in willingness to compromise, between the environmental activist groups participating in the two cases. A degree of contentiousness existed from the start among the participants in the Berkeley case particularly between the environmental activists and the scientists/regulators that was not approached in the Livermore case, and which was and still is severe enough to stifle meaningful progress. The Berkeley activists are considerably more aggressive, we believe, in arguing their points of view, making demands about what should be done, and verbally assailing the scientists and government regulators. We offer the following comments on the barriers to communication and cooperation that distinguish the Berkeley and Livermore cases. In no particular order, they are (a) the presence of a higher degree of polarization between the Berkeley activists and the "establishment," as represented by government scientists and regulators, (b) the absence, in the Berkeley case, of an activist leader with skills and effectiveness comparable to a well-known leader in Livermore, (c) frequent displays by several of the Berkeley activists of incivility, distrust, and disrespect for the regulators and scientists, (d) extraordinary difficulties in reaching consensus in the Tritium Issues Work Group meetings, perhaps because goals diverged among the factions, (e) a considerable degree of resentment by the Berkeley activists over the imbalance in conditions of participation, pitting well-paid, tax-supported professionals against "citizen volunteers," (f) the brick wall that divides the perspectives of "no safe dose" and "levels below regulatory concern" when trying to reach conclusions about radiation dangers to the community, and (g) unwillingness to consider both sides of the risk-reward coin: benefits to the community and society at large of the tritium labeling activity, vs. the health risk from small quantities of tritium released to the environment.« less

  16. Particle accelerator employing transient space charge potentials

    DOEpatents

    Post, Richard F.

    1990-01-01

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles.

  17. THE YOUNG OPEN CLUSTER BERKELEY 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster withmore » a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.« less

  18. A Community of Scientists and Educators: The Compass Project at UC Berkeley

    NASA Astrophysics Data System (ADS)

    Roth, Nathaniel; Schwab, Josiah

    2016-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.

  19. Honors

    NASA Astrophysics Data System (ADS)

    2011-10-01

    More than a dozen AGU members are among 94 researchers announced by U.S. president Barack Obama on 26 September as recipients of the Presidential Early Career Award for Scientists and Engineers. The award, which is coordinated by the Office of Science and Technology Policy within the Executive Office of the President, is considered the highest honor bestowed by the U.S. government on science and engineering professionals in the early stages of their independent research careers. This year's recipients include Jeffrey Book, Naval Research Laboratory; Jonathan Cirtain, NASA Marshall Space Flight Center; Fotini Katopodes Chow, University of California, Berkeley; Elizabeth Cochran, U.S. Geological Survey (USGS); Ian Howat, Ohio State University; Christiane Jablonowski, University of Michigan; Justin Kasper, Smithsonian Astrophysical Observatory; Elena Litchman, Michigan State University; James A. Morris Jr., National Oceanic and Atmospheric Administration (NOAA); Erin M. Oleson, NOAA; Victoria Orphan, California Institute of Technology; Sasha Reed, USGS; David Shelly, USGS; and Feng Wang, University of California, Berkeley. Five AGU members are among 10 U.S. representatives recently selected for International Arctic Science Committee working groups. The AGU members, chosen as representatives through the U.S. National Academies review process, are Atmosphere Working Group member James Overland, Pacific Marine Environmental Laboratory, NOAA; Cryosphere Working Group members Walter Meier, University of Colorado at Boulder, and Elizabeth Hunke, Los Alamos National Laboratory; Marine Working Group member Mary-Louise Timmermans, Yale University; and Terrestrial Working Group member Vanessa Lougheed, University of Texas at El Paso.

  20. The Happiest thought of Einstein's Life

    NASA Astrophysics Data System (ADS)

    Heller, Michael

    Finally, let us have a closer look at the place of the equivalence principle in the logical scheme of Einstein's general relativity theory. First, Einstein new well, from Minkowski's geometric formulation of his own special relativity, that accelerated motions should be represented as curved lines in a flat space-time. Second, the Galileo principle asserts that all bodies are accelerated in the same way in a given gravitational field, and consequently their motions are represented in the flat space-time by curved lines, all exactly in the same way. Third, since all lines representing free motions are curved exactly in the same way in the flat space-time, one can say that the lines remain straight (as far as possible) but the space-time itself becomes curved. Fourth, and last, since acceleration is (locally) equivalent to a gravitational field (here we have the equivalence principle), one is entitled to assert that it is the gravitational field (and not acceleration) that is represented as the curvature of space-time. This looks almost like an Aristotelian syllogism. However, to put all the pieces of evidence into the logical chain took Einstein a few years of hard thinking. The result has been incorporated into the field equations which quantitatively show how the curvature of space-time and gravity are linked together.

  1. Space experiments with particle accelerators (SEPAC): Description of instrumentation

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Roberts, W. T.; Reasoner, D. L.; Chappell, C. R.; Baker, B. B.; Burch, J. L.; Gibson, W. C.; Black, R. K.; Tomlinson, W. M.; Bounds, J. R.

    1987-01-01

    SEPAC (Space Experiments with Particle Accelerators) flew on Spacelab 1 (SL 1) in November and December 1983. SEPAC is a joint U.S.-Japan investigation of the interaction of electron, plasma, and neutral beams with the ionosphere, atmosphere and magnetosphere. It is scheduled to fly again on Atlas 1 in August 1990. On SL 1, SEPAC used an electron accelerator, a plasma accelerator, and neutral gas source as active elements and an array of diagnostics to investigate the interactions. For Atlas 1, the plasma accelerator will be replaced by a plasma contactor and charge collection devices to improve vehicle charging meutralization. This paper describes the SEPAC instrumentation in detail for the SL 1 and Atlas 1 flights and includes a bibliography of SEPAC papers.

  2. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  3. Essential energy space random walk via energy space metadynamics method to accelerate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Li, Hongzhi; Min, Donghong; Liu, Yusong; Yang, Wei

    2007-09-01

    To overcome the possible pseudoergodicity problem, molecular dynamic simulation can be accelerated via the realization of an energy space random walk. To achieve this, a biased free energy function (BFEF) needs to be priori obtained. Although the quality of BFEF is essential for sampling efficiency, its generation is usually tedious and nontrivial. In this work, we present an energy space metadynamics algorithm to efficiently and robustly obtain BFEFs. Moreover, in order to deal with the associated diffusion sampling problem caused by the random walk in the total energy space, the idea in the original umbrella sampling method is generalized to be the random walk in the essential energy space, which only includes the energy terms determining the conformation of a region of interest. This essential energy space generalization allows the realization of efficient localized enhanced sampling and also offers the possibility of further sampling efficiency improvement when high frequency energy terms irrelevant to the target events are free of activation. The energy space metadynamics method and its generalization in the essential energy space for the molecular dynamics acceleration are demonstrated in the simulation of a pentanelike system, the blocked alanine dipeptide model, and the leucine model.

  4. Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA

    NASA Astrophysics Data System (ADS)

    Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.

    2013-12-01

    TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.

  5. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-08-10

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.

  6. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle

    PubMed Central

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  7. Fast Surface Reconstruction and Segmentation with Terrestrial LiDAR Range Data

    DTIC Science & Technology

    2009-05-18

    UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California at Berkeley,Department of Electrical Engineering and Computer...Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13

  8. The Vicious Cycle of Gender and Status at the University of California at Berkeley, 1918-1954. ASHE 1988 Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Nerad, Maresi

    The way in which an all-women's department, the Department of Home Economics at the University of California (Berkeley), tried to raise its status and adhere to academic values of a research university after starting out as a low prestige undergraduate program is analyzed. Some of the related research questions are: whether academic departments…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Carl

    Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"

  10. Shut out of the System: As Competition Increases for Slots at UC-Berkeley, Admission Offers to Minority Students Continue to Decline

    ERIC Educational Resources Information Center

    Burdman, Pamela

    2004-01-01

    As University of California officials announced admissions results for the fall, it appeared that increasing competition for seats at the university, rising tuition costs, and continued controversy over the role of race in admissions were conspiring to reduce the slots offered to African American students at UC-Berkeley. At the same time, the…

  11. Pump for spawning channels includes a turbine and motor. Turbine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pump for spawning channels includes a turbine and motor. Turbine is Berkeley H-17500, model 8C2PH, Serial No. 2889, B.M. No. 4886 - Berkeley Pump Co. The Motor is G.E. Induction Motor, model 5K4256XA3YI, serial no. GAJ728337, Tri-Clad. View looking northeast. - Prairie Creek Fish Hatchery, Hwy. 101, Orick, Humboldt County, CA

  12. Map showing bottom topography of the Pacific Continental Margin, Cape Mendocino to Point Conception

    USGS Publications Warehouse

    Chase, T.E.; Wilde, Pat; Normark, W.R.; Evenden, G.I.; Miller, C.P.; Seekins, B.A.; Young, J. D.; Grim, M.S.; Lief, C.J.

    1992-01-01

    Wilde, Pat, Chase, T.E., Holmes, M.L., Normark, W.R., Thomas, J.A., McCulloch, D.S., and Kulm, L.D., 1978, Oceanographic data off northern California-southern Oregon 40° to 43° North including the Gorda Deep Sea Fan: Berkeley, University of California, Lawrence Berkeley Laboratory Publication 251, scale 1:815,482 at 42° latitude.

  13. Peacebook: A Resource Guide for Peace Studies at U.C. Berkeley, 1982-83 [and] 1983-84.

    ERIC Educational Resources Information Center

    Peace Studies Student Association.

    A series of essays and lists of resource materials as well as courses relevant to peace studies at the University of California Berkeley are presented in the two guides. Topics of the 1982-83 guide include the undergraduate major in Peace and Conflict Studies (PACS), a proposed curriculum, core courses, concentration area courses (social systems,…

  14. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE PAGES

    Qiang, Ji

    2017-01-23

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  15. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Ji

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  16. Low frequency vibration isolation technology for microgravity space experiments

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Brown, Gerald V.

    1989-01-01

    The dynamic acceleration environment observed on Space Shuttle flights to date and predicted for the Space Station has complicated the analysis of prior microgravity experiments and prompted concern for the viability of proposed space experiments requiring long-term, low-g environments. Isolation systems capable of providing significant improvements in this environment exist, but have not been demonstrated in flight configurations. This paper presents a summary of the theoretical evaluation for two one degree-of-freedom (DOF) active magnetic isolators and their predicted response to both direct and base excitations, that can be used to isolate acceleration sensitive microgravity space experiments.

  17. Techniques for correcting velocity and density fluctuations of ion beams in ion inducti on accelerators

    NASA Astrophysics Data System (ADS)

    Woo, K. M.; Yu, S. S.; Barnard, J. J.

    2013-06-01

    It is well known that the imperfection of pulse power sources that drive the linear induction accelerators can lead to time-varying fluctuation in the accelerating voltages, which in turn leads to longitudinal emittance growth. We show that this source of emittance growth is correctable, even in space-charge dominated beams with significant transients induced by space-charge waves. Two correction methods are proposed, and their efficacy in reducing longitudinal emittance is demonstrated with three-dimensional particle-in-cell simulations.

  18. A particle accelerator employing transient space charge potentials

    DOEpatents

    Post, R.F.

    1988-02-25

    The invention provides an accelerator for ions and charged particles. The plasma is generated and confined in a magnetic mirror field. The electrons of the plasma are heated to high temperatures. A series of local coils are placed along the axis of the magnetic mirror field. As an ion or particle beam is directed along the axis in sequence the coils are rapidly pulsed creating a space charge to accelerate and focus the beam of ions or charged particles. 3 figs.

  19. International Space Station Increment-2 Quick Look Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric

    2001-01-01

    The objective of this quick look report is to disseminate the International Space Station (ISS) Increment-2 reduced gravity environment preliminary analysis in a timely manner to the microgravity scientific community. This report is a quick look at the processed acceleration data collected by the Microgravity Acceleration Measurement System (MAMS) during the period of May 3 to June 8, 2001. The report is by no means an exhaustive examination of all the relevant activities, which occurred during the time span mentioned above for two reasons. First, the time span being considered in this report is rather short since the MAMS was not active throughout the time span being considered to allow a detailed characterization. Second, as the name of the report implied, it is a quick look at the acceleration data. Consequently, a more comprehensive report, the ISS Increment-2 report, will be published following the conclusion of the Increment-2 tour of duty. NASA sponsors the MAMS and the Space Acceleration Microgravity System (SAMS) to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the MAMS and the SAMS units were launched on STS-100 from the Kennedy Space Center for installation on the ISS. The MAMS unit was flown to the station in support of science experiments requiring quasisteady acceleration data measurements, while the SAMS unit was flown to support experiments requiring vibratory acceleration data measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The ISS reduced gravity environment analysis presented in this report uses mostly the MAMS acceleration data measurements (the Increment-2 report will cover both systems). The MAMS has two sensors. The MAMS Orbital Acceleration Research Experiment Sensor Subsystem, which is a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle. The MAMS High Resolution Acceleration Package is used to characterize the ISS vibratory environment up to 100 Hz. This quick look report presents some selected quasi-steady and vibratory activities recorded by the MAMS during the ongoing ISS Increment-2 tour of duty.

  20. Transport System for Delivery Tourists At Altitude 140 km

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    The author offers a new method and installation for flight in space. This method uses the centrifugal force of a rotating circular cable that provides a means for the launch of a payload into outer space, to keep the fixed space stations at high altitudes (up to 200 km). The method may also be useful for landing to space bodies, for launching of the space ships (crafts), and for moving and accelerating other artificial apparatuses. The offered installation may be used as a propulsion system for space ships and/or probes. This system uses the material of any space body (i.e. stones) for acceleration and change of the space vehicle trajectory. The suggested system may be also used as a high capacity energy accumulator.

Top