Tradeoffs Between Synchronization, Communication, and Work in Parallel Linear Algebra Computations
2014-01-25
Demmel Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014- 8 http...www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014- 8 .html January 25, 2014 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...University of California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8 . PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING
Participatory Classification in a System for Assessing Multimodal Transportation Patterns
2015-02-17
Culler Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2015-8 http...California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...confirmation screen This section sketches the characteristics of the data that was collected, computes the accuracy of the auto- mated inference algorithm
Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011
Sanii, Babak
2017-12-11
Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.
Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanii, Babak
Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011.
2013-12-10
Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-200...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...movement. PHYSICAL TARGET ACQUISITION STUDY To understand the accuracy and performance of head- orientation-based selection through our device, we car - ried
2013-11-04
Edward A. Lee Björn Hartmann Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2013-182...NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING...accuracy and performance of head- orientation-based selection through our device, we car - ried out a comparative target acquisition study, where
LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012
Yelick, Kathy
2018-01-24
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy
2012-02-02
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
Yelick, Kathy
2017-12-09
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
Laboratory Directed Research and Development Program FY 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen
2007-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less
Laboratory directed research and development program FY 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Todd; Levy, Karin
2000-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less
Summer Series 2012 - Conversation with Kathy Yelick
Yelick, Kathy, Miller, Jeff
2018-05-11
Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.
Summer Series 2012 - Conversation with Kathy Yelick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy, Miller, Jeff
2012-07-23
Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of powerpoint-free talks on July 18th 2012, at Berkeley Lab.
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion and Materials Physics Scattering and Instrumentation Science Centers Center for Computational Study of Sciences Centers Center for Computational Study of Excited-State Phenomena in Energy Materials Center for X
Multicore: Fallout from a Computing Evolution
Yelick, Kathy [Director, NERSC
2017-12-09
July 22, 2008 Berkeley Lab lecture: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.
What is Supercomputing? A Conversation with Kathy Yelick
Yelick, Kathy
2017-12-11
In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.
What is Supercomputing? A Conversation with Kathy Yelick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy
2012-07-23
In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.
From Relational Interfaces to Assume-Guarantee Contracts
2014-03-18
Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-21 http://www.eecs.berkeley.edu/Pubs...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California at Berkeley, Electrical Engineering...design,” in EMSOFT’01. Springer, LNCS 2211, 2001. [2] A. Sangiovanni-Vincentelli et al., “Taming Dr. Frankenstein : Contract-Based Design for Cyber
Multilinear Computing and Multilinear Algebraic Geometry
2016-08-10
landmark paper titled “Most tensor problems are NP-hard” (see [14] in Section 3) in the Journal of the ACM, the premier journal in Computer Science ...Higher-order cone programming,” Machine Learning Thematic Trimester, International Centre for Mathematics and Computer Science , Toulouse, France...geometry-and-data-analysis • 2014 SIMONS INSTITUTE WORKSHOP: Workshop on Tensors in Computer Science and Geometry, University of California, Berkeley, CA
Seeing the Light (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunger, Axel; Segalman, Rachel; Westphal, Andrew
2011-09-12
Berkeley Lab's Science at the Theater event "Seeing the Light" took place on Sept 12, 2011, at Berkeley Repertory's Roda Theatre. Learn how the Advanced Light Source is improving medicine, paving the way for clean energy, changing the future of computers, and much more. Featured speakers are Berkeley Lab's Roger Falcone, Rachel Segalman, Andrew Westphal, and Stanford University's Axel Brunger. Rachel Segalman: The future of clean energy technology relies on a better understanding of materials at the nanoscale. Berkeley Lab's Rachel Segalman uses the ALS to conduct this research, which could lead to improved photovoltaics and fuel cells. Axel Brunger:more » Improved treatment for human diseases hinges on understanding molecular-scale processes. Stanford University's Axel Brunger will discuss a new melanoma drug that was developed by a local company, Plexxikon, using the ALS for X-ray data collection. Andrew Westphal: What's comet dust made of? Andrew Westphal of UC Berkeley's Space Sciences Laboratory uses the ALS to study comet dust and interplanetary space dust collected by a NASA spacecraft. Moderated by Roger Falcone, Division Director of the Advanced Light Source« less
Circus: A Replicated Procedure Call Facility
1984-08-01
Computer Science Laboratory, Xerox PARC, July 1082 . [24) Bruce Ja.y Nelson. Remote Procedure Ctdl. Ph.D. dissertation, Computer Science Department...t. Ph.D. dissertation, Computer Science Division, University of California, Berkeley, Xerox PARC report number CSIF 82-7, December 1082 . [30...Tandem Computers Inc. GUARDIAN Opet’ating Sy•tem Programming Mt~nulll, Volumu 1 11nd 2. C upertino, California, 1082 . [31) R. H. Thoma.s. A majority
Scientific Visualization, Seeing the Unseeable
LBNL
2017-12-09
June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.
Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiationmore » biophysics.« less
ERIC Educational Resources Information Center
Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter
2011-01-01
The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…
Berkeley Lab - Science Video Glossary
source neutrino astronomy protein crystallography quantum dot supercomputing supernova synchrotron universe neutrino astronomy supernova Earth Science atmospheric aerosols bioremediation carbon cycle nanotechnology neutrino neutrino astronomy O, P petabytes petaflop computing photon plasma plasmon protein
Fast Surface Reconstruction and Segmentation with Terrestrial LiDAR Range Data
2009-05-18
UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California at Berkeley,Department of Electrical Engineering and Computer...Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13
Extreme Science (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew
On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could helpmore » transform sunlight into fuel.« less
Cloud Computing: Virtual Clusters, Data Security, and Disaster Recovery
NASA Astrophysics Data System (ADS)
Hwang, Kai
Dr. Kai Hwang is a Professor of Electrical Engineering and Computer Science and Director of Internet and Cloud Computing Lab at the Univ. of Southern California (USC). He received the Ph.D. in Electrical Engineering and Computer Science from the Univ. of California, Berkeley. Prior to joining USC, he has taught at Purdue Univ. for many years. He has also served as a visiting Chair Professor at Minnesota, Hong Kong Univ., Zhejiang Univ., and Tsinghua Univ. He has published 8 books and over 210 scientific papers in computer science/engineering.
ESnet: Large-Scale Science and Data Management ( (LBNL Summer Lecture Series)
Johnston, Bill
2017-12-09
Summer Lecture Series 2004: Bill Johnston of Berkeley Lab's Computing Sciences is a distinguished networking and computing researcher. He managed the Energy Sciences Network (ESnet), a leading-edge, high-bandwidth network funded by DOE's Office of Science. Used for everything from videoconferencing to climate modeling, and flexible enough to accommodate a wide variety of data-intensive applications and services, ESNet's traffic volume is doubling every year and currently surpasses 200 terabytes per month.
NASA Technical Reports Server (NTRS)
Herrick, W. D.; Penegor, G. T.; Cotton, D. M.; Kaplan, G. C.; Chakrabarti, S.
1990-01-01
In September 1988 the Earth and Planetary Atmospheres Group of the Space Sciences Laboratory of the University of California at Berkeley flew an experiment on a high-altitude sounding rocket launched from the NASA Wallops Flight Facility in Virginia. The experiment, BEARS (Berkeley EUV Airglow Rocket Spectrometer), was designed to obtain spectroscopic data on the composition and structure of the earth's upper atmosphere. Consideration is given to the objectives of the BEARS experiment; the computer interface and software; the use of remote data transmission; and calibration, integration, and flight operations.
Joint Services Electronics Program
1982-09-30
and angle both within the wafer and in the backscattered signal have been published by Y. C. Lin (Ph.D. thesis ). As an extension of that work, Albert...zositive photoresist," Ř.S. thesis , Department of Flectrical Engineering and Computer Sciences, University of California, Berkeley. Kim, W. 3. Oldham and A...Mehotra, "’Tnaracteriza :on of ?ositive Phcoresist," .!. S Thesis University of California, Berkeley, 1980. [31 d. 3. Oldham, "In Situ Characterization of
Hybrid Memory Management for Parallel Execution of Prolog on Shared Memory Multiprocessors
1990-06-01
organizing data to increase locality. The stack structure exhibits greater locality than the heap structure. Tradeoff decisions can also be made on...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...University of California at Berkeley,Department of Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT
Science at the Theatre - Extreme Science - Promo Video
Klein, Spencer
2017-12-12
On Feb. 27 at 7 pm at the Berkeley Repertory Theatre, join four Berkeley Lab scientists as they discuss extreme science -- and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel. Go here for more information and to view videos of previous Science at the Theater events: http://www.lbl.gov/LBL-PID/fobl/
Science at the Theatre - Extreme Science - Promo Video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Spencer
On Feb. 27 at 7 pm at the Berkeley Repertory Theatre, join four Berkeley Lab scientists as they discuss extreme science -- and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections thatmore » could help transform sunlight into fuel. Go here for more information and to view videos of previous Science at the Theater events: http://www.lbl.gov/LBL-PID/fobl/« less
Fast Surface Reconstruction and Segmentation with Ground-Based and Airborne LIDAR Range Data
2009-01-14
to perform a union find on the ground mesh vertices to calculate the sizes of ground mesh segments, 462 seconds to read the airborne data in to a...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of...California at Berkeley,Department of Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8. PERFORMING ORGANIZATION REPORT NUMBER 9
Access Point Selection for Multi-Rate IEEE 802.11 Wireless LANs
2014-05-16
Mobile Systems, Applications and Services, 2006. [2] S . Vasudevan, K. Papagiannaki, C . Diot, J. Kurose, and D. Towsley, “Facilitating Access Point...LANs 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) University of California at Berkeley,Electrical Engineering and Computer Sciences,Berkeley,CA,94720 8
Queries and Views of Programs Using a Relational Database System
1983-12-01
look different but you have changed. I’m looking through you, you’re not the same! - from the song I’m looking through you by the Beatles Seeing...Berkeley, CA 94720 December 1983 Submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science...in the Graduate Division of the University of California, Berkeley. Copyright© 1983 by Mark A. Linton Research supported by NSF grant MCS-8010686
Laboratory Directed Research and Development Program FY 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
editor, Todd C Hansen
2009-02-23
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less
Careers in Data Science: A Berkeley Perspective
NASA Astrophysics Data System (ADS)
Koy, K.
2015-12-01
Last year, I took on an amazing opportunity to serve as the Executive Director of the new Berkeley Institute for Data Science (BIDS). After a 15-year career working with geospatial data to advance our understanding of the environment, I have been presented with a unique opportunity through BIDS to work with talented researchers from a wide variety of backgrounds. Founded in 2013, BIDS is a central hub of research and education at UC Berkeley designed to facilitate and nurture data-intensive science. We are building a community centered on a cohort of talented data science fellows and senior fellows who are representative of the world-class researchers from across our campus and are leading the data science revolution within their disciplines. Our initiatives are designed to bring together broad constituents of the data science community, including domain experts from the life, social, and physical sciences and methodological experts from computer science, statistics, and applied mathematics. While many of these individuals rarely cross professional paths, BIDS actively seeks new and creative ways to engage and foster collaboration across these different research fields. In this presentation, I will share my own story, along with some insights into how BIDS is supporting the careers of data scientists, including graduate students, postdocs, faculty, and research staff. I will also describe how these individuals we are helping support are working to address a number of data science-related challenges in scientific research.
Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)
Gadgil, Ashok; Booker, Kayje; Rausch, Adam
2018-06-08
Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmental engineering. He helps to design and test stove designs in Ethiopia and elsewhere.
Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadgil, Ashok; Booker, Kayje; Rausch, Adam
2010-09-20
Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmentalmore » engineering. He helps to design and test stove designs in Ethiopia and elsewhere.« less
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley National Laboratory 1 Cyclotron Road MS 66R0200 Berkeley CA 94720 510-486-4957 A U.S. Department
Microbes to Biomes at Berkeley Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-10-28
Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Facilities and Centers Staff Center for X-ray Optics Patrick Naulleau Director 510-486-4529 2-432 PNaulleau
Cool Cities, Cool Planet (LBNL Science at the Theater)
Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen
2018-06-14
Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.
Molecular Foundry Workshop draws overflow crowd to BerkeleyLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Art
2002-11-27
Nanoscale science and technology is now one of the top research priorities in the United States. With this background, it is no surprise that an overflow crowd or more than 350 registrants filled two auditoriums to hear about and contribute ideas for the new Molecular Foundry during a two-day workshop at the Lawrence Berkeley National Laboratory (Berkeley Lab). Scheduled to open for business at Berkeley Labin early 2006, the Molecular Foundry is one of three Nanoscale Science Research Centers (NSRCs) put forward for funding by the DOE's Office of Basic Energy Sciences (BES).
Microbes to Biomes at Berkeley Lab
None
2018-06-21
Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planetâs biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earthâs future.
Design and Development of a Network-Based Electronic Library.
ERIC Educational Resources Information Center
Larson, Ray R.
1994-01-01
Describes collaboration between the University of California at Berkeley and four other universities to develop interoperable servers containing each participant's Computer Science Technical Reports and to make them available over the Internet using standard protocols. The proposed library architecture, approaches to indexing and retrieval, and…
Test Generation for Highly Sequential Circuits
1989-08-01
Sequential CircuitsI Abhijit Ghosh, Srinivas Devadas , and A. Richard Newton Abstract We address the problem of generating test sequences for stuck-at...Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720. Devadas : Department of Electrical Engineering and Computer...attn1 b ~een propagatedl to ltne nnext state lites aloine. then we obtain tine fnalty Is as bit. valunes is called A miniteri state. Iti genecral. a
Multicore: Fallout From a Computing Evolution (LBNL Summer Lecture Series)
Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
2018-05-07
Summer Lecture Series 2008: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.
Characterizing Crowd Participation and Productivity of Foldit Through Web Scraping
2016-03-01
Berkeley Open Infrastructure for Network Computing CDF Cumulative Distribution Function CPU Central Processing Unit CSSG Crowdsourced Serious Game...computers at once can create a similar capacity. According to Anderson [6], principal investigator for the Berkeley Open Infrastructure for Network...extraterrestrial life. From this project, a software-based distributed computing platform called the Berkeley Open Infrastructure for Network Computing
Berkeley Lab - Materials Sciences Division
Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Beam Analysis Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane. Journal of the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Sabin; Schlegel, David
Lawrence Berkeley National Laboratory physicist and dark energy hunter David Schlegel chats with Sabin Russell, former San Francisco Chronicle reporter turned Berkeley Lab science writer, June 22, 2011. Their conversation is the first installment of "Sit Down With Sabin," a weekly conversation hosted by Russell. Over the course of five conversations with Berkeley Lab staff this summer, Russell will explore the ups and downs of innovative science — all without the aid of PowerPoint slides. Brought to you by Berkeley Lab Public Affairs.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Robert K.
Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less
NASA Technical Reports Server (NTRS)
Murray, S.
1999-01-01
In this project, we worked with the University of California at Berkeley/Center for Extreme Ultraviolet Astrophysics and five science museums (the National Air and Space Museum, the Science Museum of Virginia, the Lawrence Hall of Science, the Exploratorium., and the New York Hall of Science) to formulate plans for computer-based laboratories located at these museums. These Science Learning Laboratories would be networked and provided with real Earth and space science observations, as well as appropriate lesson plans, that would allow the general public to directly access and manipulate the actual remote sensing data, much as a scientist would.
Weak Interactions Group UC Berkeley UC Berkeley Physics Lawrence Berkeley Lab Nuclear Science Division at LBL Physics Division at LBL Phonebook A-Z Index Navigation Home Members Research Projects CUORE Design Concept Berkeley Projects People Publications Contact Links KamLAND Physics Impact Neutrino
Berkeley Lab - Materials Sciences Division
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of
Exploratory Research and Development Fund, FY 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicinemore » and radiation biophysics.« less
Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)
Rokhsar, Daniel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)
2018-05-24
Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.
Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhsar, Daniel
2008-02-11
Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.
Hot Technology, Cool Science (LBNL Science at the Theater)
Fowler, John
2018-06-08
Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion moderated by KTVU's John Fowler on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Richard; Hack, James; Riley, Katherine
The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less
Telescience at the University of California, Berkeley
NASA Technical Reports Server (NTRS)
Chakrabarti, S.; Marchant, W. T.; Kaplan, G. C.; Dobson, C. A.; Jernigan, J. G.; Lampton, M. L.; Malina, R. F.
1989-01-01
The University of California at Berkeley (UCB) is a member of a university consortium involved in telescience testbed activities under the sponsorship of NASA. Our Telescience Testbed Project consists of three experiments using flight hardware being developed for the Extreme Ultraviolet Explorer project at UCB's Space Sciences Laboratory. The first one is a teleoperation experiment investigating remote instrument control using a computer network such as the Internet. The second experiment is an effort to develop a system for operation of a network of remote workstations allowing coordinated software development, evaluation, and use by widely dispersed groups. The final experiment concerns simulation as a method to facilitate the concurrent development of instrument hardware and support software. We describe our progress in these areas.
Putting Carbon in its Place: What You Can Do (LBNL Science at the Theater)
Walker, Iain; Regnier, Cindy [LBNL, Environmental Energy Technologies Division; Miller, Jeff; Masanet, Eric
2018-06-28
Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineering design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Neaton
Jan. 22, 2010: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's MIke Crommie.
The structure of a cholesterol-trapping protein
Date February 28, 2003 Date Berkeley Lab Science Beat Berkeley Lab Science Beat The structure of a Institute researchers determined the three-dimensional structure of a protein that controls cholesterol level in the bloodstream. Knowing the structure of the protein, a cellular receptor that ensnares
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Eric Cornell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornell, Eric
2008-08-30
Eric Cornell presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Kurt Gibble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibble, Kurt
2008-08-30
Kurt Gibble presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keasling, Jay
2008-08-30
Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman
Wieman, Carl
2017-12-09
Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Eric Cornell
Cornell, Eric
2018-02-05
Eric Cornell presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Jay Keasling
Keasling, Jay
2018-02-14
Jay Keasling presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieman, Carl
Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: A Talk from Kurt Gibble
Gibble, Kurt
2018-02-05
Kurt Gibble presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Life sciences and environmental sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less
2009-01-01
University of California, Berkeley. In this session, Dennis Gannon of Indiana University described the use of high performance computing for storm...Software Development (Session Introduction) Dennis Gannon Indiana University Software for Mesoscale Storm Prediction: Using Supercomputers for On...Ho, D. Ierardi, I. Kolossvary, J. Klepeis, T. Layman, C. McLeavey , M. Moraes, R. Mueller, E. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles
The Computer as a Tool for Learning through Reflection.
1986-03-01
different accents and backgrounds (e.g., Vanessa Redgrave, Martin Luther King, and Ricardo Montalban). Thus students can compare how they read the...Coordinated Science Laboratory Santa Barbara, CA 93106 University of Illinois Urbana, IL 61801 Edward E. Eddowes CNATRA N301 Goery Delacote Naval Air Station...DC 20052 Dr. James G. Greeno University of California Dr Jim Hollan Berkeley. CA 94720 Intelligent Systems Group Institute for Prof Edward Haertel
Message From the Editor for Contributions to the 2012 Real Time Conference Issue of TNS
NASA Astrophysics Data System (ADS)
Schmeling, Sascha Marc
2013-10-01
The papers in this special issue were originally presented at the 18th IEEE-NPSS Real Time Conference (RT2012) on Computing Applications in Nuclear and Plasma Sciences, held in Berkeley, California, USA, in June 2012. These contributions come from a broad range of fields of application, including Astrophysics, Medical Imaging, Nuclear and Plasma Physics, Particle Accelerators, and Particle Physics Experiments.
What’s Wrong With Automatic Speech Recognition (ASR) and How Can We Fix It?
2013-03-01
Jordan Cohen International Computer Science Institute 1947 Center Street, Suite 600 Berkeley, CA 94704 MARCH 2013 Final Report ...This report was cleared for public release by the 88th Air Base Wing Public Affairs Office and is available to the general public, including foreign...711th Human Performance Wing Air Force Research Laboratory This report is published in the interest of scientific and technical
Nanoscience at Work: Creating Energy from Sunlight (LBNL Science at the Theater)
Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-02-26
Paul Alivisatos, co-leader of Berkeley Lab's Helios Project, is the Associate Director for Physical Sciences and director of the Materials Sciences Division at Berkeley Lab. In the Helios Project, Alivisatos will use nanotechnology in the efficient capture of sunlight and its conversion to electricity to drive economical fuel production processes. He is an authority on artificial nanostructure synthesis and inventor of the quantum dot technology.
Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to sharemore » its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.« less
In Conversation with Jeff Neaton
Jeff Neaton
2017-12-09
Jan. 22, 2010: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's MIke Crommie.
In Conversation with Mike Crommie
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Crommie
2010-02-16
Dec. 9 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest is Berkeley Lab's Mike Crommie.
In Conversation with Mike Crommie
Mike Crommie
2017-12-09
Dec. 9 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest is Berkeley Lab's Mike Crommie.
Sneak Preview of April 25 Science at the Theater
Ho, Shirley
2017-12-12
Berkeley Lab astrophysicist Shirley Ho offers a sneak preview of the Science at the Theatre event at the Berkeley Repertory Theatre on April 25. Three Berkeley Lab cosmologists and Bay Area astronomer Andrew Fraiknoi will gather at the Berkeley Rep on Monday, April 25, from 7 to 9 p.m. to shed light on the mystery of the accelerating universe. Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe. If you have questions for the scientists, post them below, send them to friendsofberkeleylab@lbl.gov, or catch us on facebook: http://www.facebook.com/video/video.php?v=10150215592292354&oid=593833429...Your question might be answered at the April 25 talk if there's time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steve
2008-08-30
Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize, presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium in his honor. The symposium was held August 30, 2008 in Berkeley.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holberg, Leo; Mills, Allen
2008-08-30
Leo Holberg and Allen Mills present a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
Holberg, Leo; Mills, Allen
2018-05-07
Leo Holberg and Allen Mills present a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.
The University of California at Berkeley: An Emerging Global Research University
ERIC Educational Resources Information Center
Ma, Wanhua
2008-01-01
Federal government science policy and R&D investment are two major factors for the success of research universities in the United States. This case analysis examines how the University of California at Berkeley shifted from a regional to a globally oriented research university by the influence of federal government science policy and R&D…
Berkeley Lab's Cool Your School Program
Brady, Susan; Gilbert, Haley; McCarthy, Robert
2018-02-02
Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.
NASA Astrophysics Data System (ADS)
Schwab, Josiah; Roth, Nathaniel; Berkeley Compass Project
2015-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. Graduate students, together with upper-level undergraduates, design and run all Compass programs. We strive to create a community of educators that incorporates best practices from the science education literature. Along the way, we develop experience in curriculum development, fundraising, grant writing, interfacing with university administration, and other aspects of running an effective organization. Our experience in Compass leaves us better poised to be successful researchers, teachers, and mentors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain; Regnier, Cindy
Science at the Theater: Berkeley Lab scientists reveal the latest research on how to reduce your carbon footprint at home, work, and when you shop. Learn how even small choices can have a big impact. Iain Walker's research focuses on optimizing the energy use and comfort of buildings. He's a staff scientist in the Energy Performance of Buildings Group, which is part of Berkeley Lab's Environmen...tal Energy Technologies Division. He's also executive editor of Home Energy Magazine. Cindy Regnier is a Project Manager in the Environmental Energy Technologies Division at Berkeley Lab. She has over 13 years of mechanical engineeringmore » design experience, with a focus on low-energy buildings. Her projects have included several LEED Platinum buildings and the design of a 200,000 sf carbon neutral, net-zero energy science museum in San Francisco. Eric Masanet is Acting Deputy Leader of the International Energy Studies Group at Berkeley Lab. His research focuses on life-cycle assessments and energy efficiency analysis. He holds a joint research appointment in the Institute of Transportation Studies at UC Berkeley.« less
Genome Science and Personalized Cancer Treatment
Gray, Joe
2017-12-09
August 4, 2009 Berkeley Lab lecture: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks â particularly with regard to breast cancer.
Conference: Three Decades of Numerical Linear Algebra at Berkeley
1993-04-30
copies, to ONR as, requested. "j;r 8y......... ....-... AV 2 Ti;tles.txt JTTLAA E TCAL ISSUE DEDICATED TO PARLETT AND KAH.’N AUTHORS TITLE (1) De= el ...and Total Least Squares Ricardo D. Fierro and James R. Bunch Department of Mathematics University of California, San Diego La Jolla, CA 92093...Electrical En $ineering, Katholieke Universiteit Leuven, 3001 Heterlec, Belgium. HAESUN PARK Computer Science Department, University of Minesoa
Sneak Preview of April 25 Science at the Theater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Shirley
Berkeley Lab astrophysicist Shirley Ho offers a sneak preview of the Science at the Theatre event at the Berkeley Repertory Theatre on April 25. Three Berkeley Lab cosmologists and Bay Area astronomer Andrew Fraiknoi will gather at the Berkeley Rep on Monday, April 25, from 7 to 9 p.m. to shed light on the mystery of the accelerating universe. Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe. If you have questions for the scientists, post them below, send them to friendsofberkeleylab@lbl.gov, or catchmore » us on facebook: http://www.facebook.com/video/video.php?v=10150215592292354&oid=593833429...Your question might be answered at the April 25 talk if there's time.« less
Secrets of the Soil (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodie, Eoin; Northen, Trent; Jansson, Janet
2011-11-07
Four Berkeley Lab scientists unveil the "Secrets of the Soil"at this Nov. 7, 2011 Science at the Theater event. Eoin Brodie, Janet Jansson, Margaret Torn and Trent Northen talk about their research and how soil could hold the key to our climate and energy future.The discussion was moderated by John Harte, who holds a joint professorship in the Energy and Resources Group and the Ecosystem Sciences Division of UC Berkeley's College of Natural Resources
Public census data on CD-ROM at Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrill, D.W.
The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the formmore » of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s).« less
Public census data on CD-ROM at Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrill, D.W.
The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the formmore » of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s).« less
Genes and the Microenvironment: Two Faces of Breast Cancer (LBNL Science at the Theater)
Gray, Joe; Love, Susan M.; Bissell, Min; Barcellos-Hoff, Mary Helen
2018-05-24
In this April 21, 2008 Berkeley Lab event, a dynamic panel of Berkeley Lab scientists highlight breast cancer research advances related to susceptibility, early detection, prevention, and therapy - a biological systems approach to tackling the disease from the molecular and cellular levels, to tissues and organs, and ultimately the whole individual. Joe Gray, Berkeley Lab Life Sciences Division Director, explores how chromosomal abnormalities contribute to cancer and respond to gene-targeted therapies. Mina Bissell, former Life Sciences Division Director, approaches the challenge of breast cancer from the breast's three dimensional tissue microenvironment and how the intracellular ''conversation'' triggers malignancies. Mary Helen Barcellos-Hoff, Deputy Director, Life Sciences Division, identifies what exposure to ionizing radiation can tell us about how normal tissues suppress carcinogenesis. The panel is moderated by Susan M. Love, breast cancer research pioneer, author, President and Medical Director of the Dr. Susan Love Research Foundation.
Genes and the Microenvironment: Two Faces of Breast Cancer (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Joe; Love, Susan M.; Bissell, Min
In this April 21, 2008 Berkeley Lab event, a dynamic panel of Berkeley Lab scientists highlight breast cancer research advances related to susceptibility, early detection, prevention, and therapy - a biological systems approach to tackling the disease from the molecular and cellular levels, to tissues and organs, and ultimately the whole individual. Joe Gray, Berkeley Lab Life Sciences Division Director, explores how chromosomal abnormalities contribute to cancer and respond to gene-targeted therapies. Mina Bissell, former Life Sciences Division Director, approaches the challenge of breast cancer from the breast's three dimensional tissue microenvironment and how the intracellular ''conversation'' triggers malignancies. Marymore » Helen Barcellos-Hoff, Deputy Director, Life Sciences Division, identifies what exposure to ionizing radiation can tell us about how normal tissues suppress carcinogenesis. The panel is moderated by Susan M. Love, breast cancer research pioneer, author, President and Medical Director of the Dr. Susan Love Research Foundation.« less
A Community of Scientists and Educators: The Compass Project at UC Berkeley
NASA Astrophysics Data System (ADS)
Roth, Nathaniel; Schwab, Josiah
2016-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.
Berkeley Lab - Materials Sciences Division
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Investigators Ager, Joel W » Alivisatos, A Paul » Altman, Ehud » Analytis, James » Anderson, Christopher  , Naomi » Gullikson, Eric M » Harris, Stephen J » Hasan, M. Zahid » Hellman, Frances » Helms, Brett A
In Conversation With Materials Scientist Ron Zuckermann
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ron Zuckerman
2009-11-18
Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.
In Conversation With Materials Scientist Ron Zuckermann
Ron Zuckerman
2017-12-09
Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.
NASA Astrophysics Data System (ADS)
Aceves, Ana V.; Berkeley Compass Project
2015-01-01
The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Sabin; Torn, Margaret
2011-07-06
Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.
NASA Astrophysics Data System (ADS)
Teige, V. E.; Havel, E.; Patt, C.; Heber, E.; Cohen, R. C.
2011-12-01
The University of California at Berkeley in collaboration with the Chabot Space and Science Center describe a set of educational programs, workshops, and exhibits based on a multi-node greenhouse gas and air quality monitoring network being deployed over Oakland, California. Examining raw numerical data using highly engaging and effective geo-data visualization tools like Google Earth can make the science come alive for students, and provide a hook for drawing them into deeper investigations. The Climate Science Investigations teacher workshop at the Chabot Space and Science Center will make use of Google Earth, Excel, and other geo-data visualization tools to step students through the process from data acquisition to discovery. Using multiple data sources, including output from the BErkeley Atmospheric CO2 Network (BEACON) project, participants will be encouraged to explore a variety of different modes of data display toward producing a unique, and ideally insightful, illumination of the data.
NASA Opportunities in Visualization, Art, and Science (NOVAS)
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III
2014-12-01
Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.
FY2014 LBNL LDRD Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Darren
2015-06-01
Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less
Combustion and Carbon Cycle 2.0 and Computation in CC 2.0 (Carbon Cycle 2.0)
Cheng, Robert K.; Meza, Juan
2018-05-04
Robert Cheng and Juan Meza provide two presentations in one session at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
1984-04-01
Ousterhout, G.T. Hamachi, R.N. Mayo, W.S. Scott, and G.S. Taylor , "A Collection of Papers on Magic," Technical Report No. UCB/CSD 83/154, Computer Science...Division, University of California, Berkeley, December 1983. (3) J.K Ousterhout, G.T. Hamachi, R.N. Mayo, W.S. Scott, and G.S. Taylor , "Magic: A...VLSI Layout System." to appear, Slst Design Automation Confer- ence, June 1984. (4) G.S. Taylor and J.K Ousterhout, "Magic’s Incremental Design-Rule
Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)
Milliron, Delia; Selkowitz, Stephen
2017-12-09
August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.
NASA Technical Reports Server (NTRS)
Koh, Severino L. (Editor); Speziale, Charles G. (Editor)
1989-01-01
Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.
Materials and Chemical Sciences Division annual report, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-01
Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)
Berkeley Lab's Saul Perlmutter Wins the Einstein Medal | Berkeley Lab
TAGS: awards, cosmology and astrophysics, physics Connect twitter instagram LinkedIn facebook youtube Physics + Cosmology Chemistry + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S Privacy & Security Notice twitter instagram LinkedIn facebook youtube
Berkeley Lab 2nd Grader Outreach
Scoggins, Jackie; Louie, Virginia
2017-12-11
The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.
Space Radiation and Cataracts (LBNL Summer Lecture Series)
Blakely, Eleanor [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division
2018-01-23
Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab
Physics 101: What Our Next President Needs to Know (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Rich
2008-10-13
Rich Muller, author of Physics for Future Presidents, argues that the next president can't afford to be ignorant about the science behind terrorism, nuclear dangers, energy, space, and global warming. Muller, a MacArthur Fellow, Berkeley Lab physicist, and one of the most popular lecturers at UC Berkeley, discusses what it takes to survive in today's increasingly dangerous world -- information essential to the next commander-in-chief. He presented his talk Oct. 13, 2008.
Physics 101: What Our Next President Needs to Know (LBNL Science at the Theater)
Muller, Rich
2018-06-12
Rich Muller, author of Physics for Future Presidents, argues that the next president can't afford to be ignorant about the science behind terrorism, nuclear dangers, energy, space, and global warming. Muller, a MacArthur Fellow, Berkeley Lab physicist, and one of the most popular lecturers at UC Berkeley, discusses what it takes to survive in today's increasingly dangerous world -- information essential to the next commander-in-chief. He presented his talk Oct. 13, 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Papri; Prokopchuk, Demyan E.; Mock, Michael T.
2017-03-01
This review examines the synthesis and acid reactivity of transition metal dinitrogen complexes bearing diphosphine ligands containing pendant amine groups in the second coordination sphere. This manuscript is a review of the work performed in the Center for Molecular Electrocatalysis. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR studies on Fe were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located atmore » PNNL. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. DOE.« less
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010 Officer Mary Gross MCGross@lbl.gov Research Group Representatives Group Rep Ager Rachel Woods-Robinson Somorjai (see Salmeron Group) Yaghi Xiaokun Pei xiaokun_pei@berkeley.edu Zhang Sui Yang SuiYang@lbl.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Jim
Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.
Bishop, Jim
2018-06-12
Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.
Art in Science Promoting Interest in Research and Exploration (ASPIRE)
NASA Astrophysics Data System (ADS)
Fillingim, M.; Zevin, D.; Thrall, L.; Croft, S.; Raftery, C.; Shackelford, R.
2015-11-01
Led by U.C. Berkeley's Center for Science Education at the Space Sciences Laboratory in partnership with U.C. Berkeley Astronomy, the Lawrence Hall of Science, and the YMCA of the Central Bay Area, Art in Science Promoting Interest in Research and Exploration (ASPIRE) is a NASA EPOESS-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. ASPIRE's aim is to motivate more diverse young people (especially African Americans) to learn about Science, Technology, Engineering, and Mathematics (STEM) topics and careers, via 1) Intensive summer workshops; 2) Drop-in after school workshops; 3) Astronomy visualization-focused outreach programming at public venues including a series of free star parties where the students help run the events; and 5) A website and a number of social networking strategies that highlight our youth's artwork.
2010-03-01
Carina Nebula Details: The Caterpillar Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric
2015-01-16
This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellowsmore » have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.« less
NASA Opportunities in Visualization, Art, and Science (NOVAS)
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III
2015-12-01
Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
Secrets of the Soil: Promotion of the Nov. 7 Science at the Theater Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodie, Eoin
2011-01-01
There are billions of microbes in a handful of soil, some of which could hold the key to our climate and energy future. Find out how at Secrets of the Soil, our next Science at the Theater Nov. 7 at the Berkeley Repertory Theatre. At the event, four Berkeley Lab scientists will reveal how our scientists travel the globe -- to deserts, rainforests, and the Arctic tundra -- to explore the secret world of soil microbes -- and what they mean to you. More info: http://www.lbl.gov/LBL-PID/fobl/
Secrets of the Soil: Promotion of the Nov. 7 Science at the Theater Event
Brodie, Eoin
2017-12-11
There are billions of microbes in a handful of soil, some of which could hold the key to our climate and energy future. Find out how at Secrets of the Soil, our next Science at the Theater Nov. 7 at the Berkeley Repertory Theatre. At the event, four Berkeley Lab scientists will reveal how our scientists travel the globe -- to deserts, rainforests, and the Arctic tundra -- to explore the secret world of soil microbes -- and what they mean to you. More info: http://www.lbl.gov/LBL-PID/fobl/
Berkeley Pact with a Swiss Company Takes Technology Transfer to a New Level.
ERIC Educational Resources Information Center
Blumenstyk, Goldie
1998-01-01
In search of increased support for graduate students in plant science and upgraded laboratories, the College of Plant and Microbial Biology, University of California Berkeley, offered the college's expertise in exchange for major financial backing from the single company making the best offer. The resulting five-year, $25-million alliance with one…
What the World Needs Now: More Women in Mathematics and Science.
ERIC Educational Resources Information Center
Wallace, Joy
1989-01-01
"Expanding Your Horizons in Science and Mathematics" conferences in Berkeley, California, are designed to nurture girls' interest in science and math courses and encourage them to consider nontraditional career options. (TE)
Big Thinking: The Power of Nanoscience (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliron, Delia; Sanili, Babak; Weber-Bargioni, Alex
2011-06-06
Science at the Theater, June 6th, 2011: Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Alex Weber-Bargioni: How can we see things at the nanoscale? Alex is pioneering new methods that provide unprecedented insight into nanoscale materials and molecular interactions. The goal is to create rules for building nanoscale materials. Babak Sanii: Nature is an expert at making nanoscale devices such as proteins. Babak is developing ways to see these biological widgets, which could help scientists develop synthetic devices that mimic the best that nature has to offer. Ting Xu: How aremore » we going to make nanoscale devices? A future in which materials and devices are able to assemble themselves may not be that far down the road. Ting is finding ways to induce a wide range of nanoscopic building blocks to assemble into complex structures. Delia Milliron: The dividends of nanoscience could reshape the way we live, from smart windows and solar cells to artificial photosynthesis and improved medical diagnosis. Delia is at the forefront of converting fundamental research into nanotechnology. Moderated by Jim DeYoreo, interim director of the Molecular Foundry, a facility located at Berkeley Lab where scientists from around the world address the myriad challenges in nanoscience.« less
Berkeley Lab Wins Seven 2015 R&D 100 Awards | Berkeley Lab
products from industry, academia, and government-sponsored research, ranging from chemistry to materials to problems in metrology techniques: the quantitative characterization of the imaging instrumentation Computational Research Division led the development of the technology. Sensor Integrated with Recombinant and
Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)
Permutter, Saul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000244364661); Schlegel, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leauthaud, Alexie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-06-12
No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.
Computational Unification: a Vision for Connecting Researchers
NASA Astrophysics Data System (ADS)
Troy, R. M.; Kingrey, O. J.
2002-12-01
Computational Unification of science, once only a vision, is becoming a reality. This technology is based upon a scientifically defensible, general solution for Earth Science data management and processing. The computational unification of science offers a real opportunity to foster inter and intra-discipline cooperation, and the end of 're-inventing the wheel'. As we move forward using computers as tools, it is past time to move from computationally isolating, "one-off" or discipline-specific solutions into a unified framework where research can be more easily shared, especially with researchers in other disciplines. The author will discuss how distributed meta-data, distributed processing and distributed data objects are structured to constitute a working interdisciplinary system, including how these resources lead to scientific defensibility through known lineage of all data products. Illustration of how scientific processes are encapsulated and executed illuminates how previously written processes and functions are integrated into the system efficiently and with minimal effort. Meta-data basics will illustrate how intricate relationships may easily be represented and used to good advantage. Retrieval techniques will be discussed including trade-offs of using meta-data versus embedded data, how the two may be integrated, and how simplifying assumptions may or may not help. This system is based upon the experience of the Sequoia 2000 and BigSur research projects at the University of California, Berkeley, whose goals were to find an alternative to the Hughes EOS-DIS system and is presently offered by Science Tools corporation, of which the author is a principal.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Latest News Postdoc Forum Research Highlights Awards Publications
1984-12-01
3Com Corporation ....... A-18 Ethernet Controller Support . . . . . . A-19 Host Systems Support . . . . . . . . . A-20 Personal Computers Support...A-23 VAX EtherSeries Software 0 * A-23 Network Research Corporation . o o o . o A-24 File Transfer Service . . . . o A-25 Virtual Terminal Service 0...Control office is planning to acquire a Digital Equipment Corporation VAX 11/780 mainframe computer with the Unix Berkeley 4.2BSD operating system. They
Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)
Keasling, Jay; Bristow, Jim; Tringe, Susannah Green
2017-12-09
Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the field of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Officer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the field of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Core Programs Materials Discovery, Design and Synthesis Condensed Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluswar, Shashi; Gadgil, Ashok
At this November 26, 2012 Science at the Theater, scientists discussed the recently launched LBNL Institute for Globally Transformative Technologies (LIGTT) at Berkeley Lab. LIGTT is an ambitious mandate to discover and develop breakthrough technologies for combating global poverty. It was created with the belief that solutions will require more advanced R&D and a deep understanding of market needs in the developing world. Berkeley Lab's Ashok Gadgil, Shashi Buluswar and seven other LIGTT scientists discussed what it takes to develop technologies that will impact millions of people. These include: 1) Fuel efficient stoves for clean cooking: Our scientists are improvingmore » the Berkeley Darfur Stove, a high efficiency stove used by over 20,000 households in Darfur; 2) The ultra-low energy refrigerator: A lightweight, low-energy refrigerator that can be mounted on a bike so crops can survive the trip from the farm to the market; 3) The solar OB suitcase: A low-cost package of the five most critical biomedical devices for maternal and neonatal clinics; 4) UV Waterworks: A device for quickly, safely and inexpensively disinfecting water of harmful microorganisms.« less
California, Berkeley tingxu@berkeley.edu 510-642-1632 Research profile » A U.S. Department of Energy National Laboratory Operated by the University of California UC logo Questions & Comments * Privacy Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion
Water and organics in interplanetary dust particles
NASA Astrophysics Data System (ADS)
Bradley, John P.
2015-08-01
Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at ~90 km altitude and settle to the Earth’s surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earth’s surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend ~104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.Affiliations:a University of Hawaii at Manoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, HI 96822, USA.b National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.d Department of Materials Science & Engineering, University of California, Berkeley, CA 94720, USA.e Advanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Designing a connectionist network supercomputer.
Asanović, K; Beck, J; Feldman, J; Morgan, N; Wawrzynek, J
1993-12-01
This paper describes an effort at UC Berkeley and the International Computer Science Institute to develop a supercomputer for artificial neural network applications. Our perspective has been strongly influenced by earlier experiences with the construction and use of a simpler machine. In particular, we have observed Amdahl's Law in action in our designs and those of others. These observations inspire attention to many factors beyond fast multiply-accumulate arithmetic. We describe a number of these factors along with rough expressions for their influence and then give the applications targets, machine goals and the system architecture for the machine we are currently designing.
First-Principles Study of Superconductivity in Ultra- thin Pb Films
NASA Astrophysics Data System (ADS)
Noffsinger, Jesse; Cohen, Marvin L.
2010-03-01
Recently, superconductivity in ultrathin layered Pb has been confirmed in samples with as few as two atomic layers [S. Qin, J. Kim, Q. Niu, and C.-K. Shih, Science 2009]. Interestingly, the prototypical strong-coupling superconductor exhibits different Tc's for differing surface reconstructions in samples with only two monolayers. Additionally, Tc is seen to oscillate as the number of atomic layers is increased. Using first principles techniques based on Wannier functions, we analyze the electronic structure, lattice dynamics and electron-phonon coupling for varying thicknesses and surface reconstructions of layered Pb. We discuss results as they relate to superconductivity in the bulk, for which accurate calculations of superconducting properties can be compared to experiment [W. L. McMillan and J.M. Rowell, PRL 1965]. This work was supported by National Science Foundation Grant No. DMR07-05941, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory (Supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231)
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Issue 3, March Issue 2, February Issue 1, January A U.S. Department of Energy National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Carl
Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"
What's Right with Kansas? (LBNL Science at the Theater)
Fuller, Merrian; Jackson, Nancy
2018-06-20
On Monday, Oct. 3 at 7 p.m. in Berkeley's Repertory Theater, the Lab presented "What's Right with Kansas," an evening of conversation with the Kansas-based Climate and Energy Project's founder and board chair, Nancy Jackson, and Berkeley Lab scientist Merrian Fuller, an electricity-market, policy and consumer behavior expert. Berkeley Lab will also debut its video "Common Ground," which showcases how CEP has become a Kansas mainstay and an inspiration to environmental organizations across the country. In a state rife with climate-change skepticism, CEP has changed behavior, and some minds, by employing rural values of thrift, independence, conservation, and friendly competition to promote energy efficiency.
A Window into Longer Lasting Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-11-29
There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.
ERIC Educational Resources Information Center
Hess, Therese M.
The Martinsburg-Berkeley County Public Library (West Virginia) conducted a project that involved recruitment, retention, coalition building, public awareness, training, basic literacy, collection development, tutoring, computer assisted, other technology, and English as a Second Language (ESL) programs. The project served a three-county community…
Scalable real space pseudopotential density functional codes for materials in the exascale regime
NASA Astrophysics Data System (ADS)
Lena, Charles; Chelikowsky, James; Schofield, Grady; Biller, Ariel; Kronik, Leeor; Saad, Yousef; Deslippe, Jack
Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs, and clusters with and without spin polarization. Fully self-consistent solutions using this approach have been routinely obtained for systems with thousands of atoms. Yet, there are many systems of notable larger sizes where quantum mechanical accuracy is desired, but scalability proves to be a hindrance. Such systems include large biological molecules, complex nanostructures, or mismatched interfaces. We will present an overview of our new massively parallel algorithms, which offer improved scalability in preparation for exascale supercomputing. We will illustrate these algorithms by considering the electronic structure of a Si nanocrystal exceeding 104 atoms. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).
Final report: Prototyping a combustion corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.; Leach, Joshua
2001-12-15
The Combustion Corridor is a concept in which researchers in combustion and thermal sciences have unimpeded access to large volumes of remote computational results. This will enable remote, collaborative analysis and visualization of state-of-the-art combustion science results. The Engine Research Center (ERC) at the University of Wisconsin - Madison partnered with Lawrence Berkeley National Laboratory, Argonne National Laboratory, Sandia National Laboratory, and several other universities to build and test the first stages of a combustion corridor. The ERC served two important functions in this partnership. First, we work extensively with combustion simulations so we were able to provide real worldmore » research data sets for testing the Corridor concepts. Second, the ERC was part of an extension of the high bandwidth based DOE National Laboratory connections to universities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calhoon, E.C.; Starring, P.W. eds.
1959-08-01
Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less
Laboratory directed research and development program, FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less
Reduced Chemical Kinetic Mechanisms for Hydrocarbon Fuels
2006-01-01
Technologies Reaction Engineering International 77 West 200 South, Suite # 210 Salt Lake City, UT 84101 3Professor Department of Mechanical ... Engineering University of California, Berkeley Berkeley, CA 94720 4Program Leader for Computational Chemistry Lawrence Livermore National Laboratory...species by the error introduced by assuming they are in quasi-steady state. The reduced mechanisms have been compared to detailed chemistry calculations
1988-06-01
Cortex of the Cat John G. Robson Craik Physiological Laboratory Cambridge University Cambridge, England When tested with spatially-localized stimuli...University, New York, NY Stanley Klein - School of Optometry, University Berkeley, Berkeley, CA Jennifer Knight - Neurobiology & Behavior, Cornell University...Village, Poughkeepsie, NY Jeffrcy Lubin - Psychology Department, University of PA, Philadelphia, PA Jennifer S. Lund - University of Pittsburgh
Feyerabend on Science and Education
ERIC Educational Resources Information Center
Kidd, Ian James
2013-01-01
This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…
Issue-Oriented Science Using CEPUP.
ERIC Educational Resources Information Center
California Univ., Berkeley. Lawrence Hall of Science.
CEPUP in the Schools is a project of the Chemical Education for Public Understanding Program (CEPUP) at the Lawrence Hall of Science, University of California-Berkeley. CEPUP is a diverse educational program highlighting chemicals and their uses in the context of societal issues, so that learners experience the reality of science. This booklet…
omniClassifier: a Desktop Grid Computing System for Big Data Prediction Modeling
Phan, John H.; Kothari, Sonal; Wang, May D.
2016-01-01
Robust prediction models are important for numerous science, engineering, and biomedical applications. However, best-practice procedures for optimizing prediction models can be computationally complex, especially when choosing models from among hundreds or thousands of parameter choices. Computational complexity has further increased with the growth of data in these fields, concurrent with the era of “Big Data”. Grid computing is a potential solution to the computational challenges of Big Data. Desktop grid computing, which uses idle CPU cycles of commodity desktop machines, coupled with commercial cloud computing resources can enable research labs to gain easier and more cost effective access to vast computing resources. We have developed omniClassifier, a multi-purpose prediction modeling application that provides researchers with a tool for conducting machine learning research within the guidelines of recommended best-practices. omniClassifier is implemented as a desktop grid computing system using the Berkeley Open Infrastructure for Network Computing (BOINC) middleware. In addition to describing implementation details, we use various gene expression datasets to demonstrate the potential scalability of omniClassifier for efficient and robust Big Data prediction modeling. A prototype of omniClassifier can be accessed at http://omniclassifier.bme.gatech.edu/. PMID:27532062
Carbon Cycle 2.0: Paul Alivisatos: Introduction
Paul Alivisatos
2017-12-09
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Carbon Cycle 2.0: Paul Alivisatos: Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Alivisatos
2010-02-09
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Analysis, tuning and comparison of two general sparse solvers for distributed memory computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amestoy, P.R.; Duff, I.S.; L'Excellent, J.-Y.
2000-06-30
We describe the work performed in the context of a Franco-Berkeley funded project between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We discuss both the tuning and performance analysis of two distributed memory sparse solvers (superlu from Berkeley and mumps from Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National Laboratory). This project gave us the opportunity to improve the algorithms and add new features to the codes. We then quite extensively analyze and compare the two approaches on a set of large problems from real applications. We further explain the main differencesmore » in the behavior of the approaches on artificial regular grid problems. As a conclusion to this activity report, we mention a set of parallel sparse solvers on which this type of study should be extended.« less
Diamond, Rick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-14
How well can we assess and improve building energy performance in California homes? How much energy-and carbon-do homes use in other parts of the world? Rick Diamond, deputy group leader of the Berkeley Lab Energy Performance of Buildings Group, discusses change, global solutions, and the stories of three houses in Berkeley, Kabul (Afghanistan), and Washington, D.C. Diamond, who is also a senior advisor at the California Institute for Energy and Environment, investigates user interactions with the built environment for improved building energy performance. The group has studied a wide range of issues related to energy use in housing, including duct system efficiency, user behavior, and infiltration and ventilation measurements.
Berkeley Lab - Materials Sciences Division
Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Commitment to Safety at MSD In the Materials Sciences Division, our mission is to do world -class science in a safe environment. We proudly support a strong safety culture in which all staff and
From Data to Policy: An Undergraduate Program in Research and Communication
ERIC Educational Resources Information Center
Fuoco, Rebecca; Blum, Arlene; Peaslee, Graham F.
2012-01-01
To bridge the gap between science and policy, future scientists should receive training that incorporates policy implications into the design, analysis, and communication of research. We present a student Science and Policy course for undergraduate science majors piloted at the University of California, Berkeley in the summer of 2011. During this…
Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartock, Mike; Hansen, Todd
1999-08-01
The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategicmore » management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.« less
Joint SSRTNet/ALS-MES Workshop report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuh, David; Van Hove, Michel
2001-11-30
This joint workshop brought together experimentalists and theorists interested in synchrotron radiation and highlighted subjects relevant to molecular environmental science (MES). The strong mutual interest between the participants resulted in joint sessions on the first day, followed by more specialized parallel sessions on the second day. Held in conjunction with the Advanced Light Source (ALS) Users' Association Annual Meeting at the Lawrence Berkeley National Laboratory (Berkeley Lab), the Synchrotron Radiation Research Theory Network (SRRTNet) workshop was co-organized by Michel Van Hove (Berkeley Lab and University of California, Davis) and Andrew Canning (Berkeley Lab), while David Shuh (Berkeley Lab) organized themore » ALS-MES workshop. SRRTNet is a global network that promotes the interaction of theory and experiment (http://www.cse.clrc.ac.uk/Activity/SRRTnet). The ALS-MES project is constructing Beamline 11.0.2.1-2, a new soft x-ray beamline for MES investigations at photon energies from 75 eV to 2 keV, to provide photons for wet spectroscopy end stations and an upgraded scanning transmission x-ray microscope (STXM). The ALS-MES beamline and end stations will be available for users in the late fall of 2002.« less
Gerson Goldhaber: A Life in Science
NASA Astrophysics Data System (ADS)
Pavlish, Ursula
2011-06-01
I draw on my interviews in 2005-2007 with Gerson Goldhaber (1924-2010), his wife Judith, and his colleagues at Lawrence Berkeley National Laboratory. I discuss his childhood, early education, marriage to his first wife Sulamith (1923-1965), and his further education at the Hebrew University in Jerusalem (1942-1947) and his doctoral research at University of Wisconsin at Madison (1947-1950). He then was appointed to an instructorship in physics at Columbia University (1950-1953) before accepting a position in the physics department at the University of California at Berkeley and the Radiation Laboratory (later the Lawrence Berkeley Laboratory, today the Lawrence Berkeley National Laboratory), where he remained for the rest of his life. He made fundamental contributions to physics, including to the discovery of the antiproton in 1955, the GGLP effect in 1960, the psi particle in 1974, and charmed mesons in 1977, and to cosmology, including the discovery of the accelerating universe and dark energy in 1998. Beginning in the late 1960s, he also took up art, and he and his second wife Judith, whom he married in 1969, later collaborated in illustrating and writing two popular books. Goldhaber died in Berkeley, California, on July 19, 2010, at the age of 86.
CfAO Fall Science Retreat 2017
: Mark Chun, Astronomy Dept., U. Hawaii) Point Spread Function Reconstruction for AO Science (Organizer : Jessica Lu, Astronomy Dept., UC Berkeley) High Contrast Exoplanet Instrumentation Program for TMT (Organizer: Michael Fitzgerald, Astronomy Dept., UCLA) Special Plenary Session: TMT international training
Chancellor for Research Professor & Samsung Distinguished Chair in Nanoscience and Nanotechnology Research Department of Chemistry and Materials Science and Engineering University of California, Berkeley
NASA Astrophysics Data System (ADS)
Zhong, Mike; Fajans, Joel
2016-10-01
For upcoming ALPHA collaboration laser spectroscopy and gravity experiments, the nature of the chaotic trajectories of individual antihydrogen atoms trapped in the octupole Ioffe magnetic trap is of importance. Of particular interest for experimental design is the coupling time between the axial and transverse modes of energy for the antihydrogen atoms. Using Monte Carlo simulations of semiclassical dynamics of antihydrogen trajectories, we quantify this characteristic coupling time between axial and transverse modes of energy. There appear to be two classes of trajectories: for orbits whose axial energy is higher than 10% of the total energy, the axial energy varies chaotically on the order of 1-10 seconds, whereas for orbits whose axial energy is around 10% of the total energy, the axial energy remains nearly constant on the order of 1000 seconds or longer. Furthermore, we search through parameter -space to find parameters of the magnetic trap that minimize and maximize this characteristic coupling time. This work was supported by the UC Berkeley Summer Undergraduate Research Fellowship, the Berkeley Research Computing program, the Department of Energy contract DE-FG02-06ER54904, and the National Science Foundation Grant 1500538-PHY.
A Call to Action: Carbon Cycle 2.0 (Carbon Cycle 2.0)
Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-21
Berkeley Lab Director Paul Alivisatos speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences.Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Global Impacts (Carbon Cycle 2.0)
Gadgil, Ashok
2018-05-04
Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Haber, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-01-23
Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Facilities & Space Planning
Berkeley Lab - Materials Sciences Division
sponsors. Distinguish by scope/specific aspects of research; or by institution; or by individual. Example Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People
2017-12-08
Carina Nebula Details: Great Clouds Credit for Hubble Image: NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STScI/AURA) Credit for CTIO Image: N. Smith (University of California, Berkeley) and NOAO/AURA/NSF The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Do Babies Matter? The Effect of Family Formation on Men and Women in Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary Ann Mason
2007-10-30
Mary Ann Mason, Professor of Social Welfare and Law at the University of California, Berkeley, presents "Do Babies Matter? The Effect of Family Formation on Men and Women in Science." In her talk, she discusses the difficulties of women who have a career in science or in other male-dominated professions.
Do Babies Matter? The Effect of Family Formation on Men and Women in Science
Mary Ann Mason
2017-12-09
Mary Ann Mason, Professor of Social Welfare and Law at the University of California, Berkeley, presents "Do Babies Matter? The Effect of Family Formation on Men and Women in Science." In her talk, she discusses the difficulties of women who have a career in science or in other male-dominated professions.
A Network Primer: Full-Fledged Educational Networks.
ERIC Educational Resources Information Center
Lehrer, Ariella
1988-01-01
Discusses some of the factors included in choosing appropriate computer networks for the classroom. Describes such networks as those produced by Apple Computer, Corvus Systems, Velan, Berkeley Softworks, Tandy, LAN-TECH, Unisys, and International Business Machines (IBM). (TW)
NASA Astrophysics Data System (ADS)
Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.
2015-12-01
The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.
News from Online: More Spectroscopy
NASA Astrophysics Data System (ADS)
Sweeney Judd, Carolyn
1999-09-01
Absorption (one of three tools) (http://mc2.cchem.berkeley.edu/Chem1A/solar/applets/absorption/ index.html).
Evaporative cooling in a Bose-Einstein condensation ( http://www.colorado.edu/physics/2000/applets/bec.html). Let's start with the spectrum--the electromagnetic spectrum, of course. Go to the EMSpectrum Explorer at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/EMSpectrum /emspectrum.html. Not only do you get information about wavelength, frequency, and energy, but you also get a handy converter that will calculate frequency, wavelength, and energy when one value is entered. And there is more. For example, clicking on red light of 680 nanometers reveals that mitochondria, the power plants of cells, are about the same size as this wavelength, which is also used for photosynthesis. Interesting food for thought! From the EMSpectrum Explorer, go to the Light and Energy page at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/index.html for three Colors of Light Tools. The Color from Emission tool ( http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/emission/index.html) illustrates additive color by mixing differing amounts of Red, Blue, and Green light. Then look at the Color from Absorption tool at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/absorption/index.html. The image from the applet shows the white beam and three filters. Take out the blue, green, and red components by altering the scroll bars or text boxes. The third tool, Removing Color with a Single Filter from Colored Light at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/single/index.html, uses a single filter to take out various colors. Excellent for explaining the theory behind the operation of a basic spectrometer. The Light and Energy tools module, which received support from the National Science Foundation, has been developed under the direction of the ChemLinks Coalition--headed by Beloit College; and The ModularChem Consortium, MC2, headed by the University of California at Berkeley. The Project Director is Marco Molinaro from the University of California at Berkeley; the Project Manager is Susan Walden; Susan Ketchner and Leighanne McConnaughey are also members of the team for this excellent teaching site. For your information, all of the applets will soon be moving, along with the MC2 site, but the old addresses will still work. The next place to explore is Physics 2000 at http://www.colorado.edu/physics/2000/introduction.html. The introductory graphic is a harbinger of good things to come: move the negatively charged particle and see the water molecule spin in response to the position of the charged particle. One goal of the Physics 2000 Educational Initiative is to make physics more accessible to students and people of all ages. Sounds like a good goal for all sciences! One of the first sections is called Einstein's Legacy. Here you can find spectral lines explained in terms of team colors for rival football squads ( http://www.colorado.edu/physics/2000/quantumzone/index.html). Choose from 20 elements to see characteristic emission spectra. The cartoon teachers and students help explain emission spectra. Great applets compare the Bohr atom and the Schrödinger model as well as emission and absorption ( http://www.colorado.edu/physics/2000/quantumzone/schroedinger.html). Einstein's Legacy has many topics: X-rays and CAT Scans, Electromagnetic Waves and Particles, the Quantum Atom, Microwave Ovens, Lasers, and TV & Laptop Screens. Several topics also have sections for the advanced student. One of those advanced sections is part of the second major section of Physics 2000: The Atomic Lab. Two topics are Interference Experiments and Bose-Einstein Condensate. An applet illustrating Laser Cooling is at http://www.colorado.edu/physics/2000/bec/lascool1.html. Next go on to Evaporative Cooling at http://www.colorado.edu/physics/2000/bec/evap_cool.html. The cartoon professors begin the explanation with a picture of steam rising from a cup of hot coffee. Next is an applet with atoms in a parabolic magnetic trap at http://www.colorado.edu/physics/2000/applets/bec.html. The height of the magnetic trap can be changed in order to allow for escape of the most energetic atoms, resulting in cooling so that the Bose-Einstein Condensate is formed. Physics 2000 demands robust computing power. Check the system requirements on the introductory screen before venturing too far into this site. Martin V. Goldman, from the University of Colorado at Boulder, is the Director of Physics 2000, which received support from the Colorado Commission on Higher Education and the National Science Foundation. David Rea is the Technical Director, and many others help make this excellent site possible. Mark your calendars: October 31 through December 3, 1999! Bookmark this site-- http://www.ched-ccce.org/confchem/1999/d/index.html --and sign up. The Winter 1999 CONFCHEM Online Conference will focus on Developments in Spectroscopy and Innovative Strategies for Teaching Spectroscopy in the Undergraduate Curriculum. Scott Van Bramer of Widener University is the conference chair. Experts will present six papers, each to be followed by online discussions. CONFCHEM Online Conferences are sponsored by the American Chemical Society Division of Chemical Education's Committee on Computers in Chemical Education (CCCE). Several Online Conferences are held each year--all are well worth your time. World Wide Web Addresses EMSpectrum Explorer http://mc2.cchem.berkeley.edu/chemcnx/light_energy/EMSpectrum/emspectrum.html Light and Energy http://mc2.cchem.berkeley.edu/chemcnx/light_energy/index.html Emission Spectrum Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/emission/index.html Absorption Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/absorption/index.html Removing Color with a Single Filter from Colored Light http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/single/index.html Physics 2000 http://www.colorado.edu/physics/2000/introduction.html Einstein's Legacy: Spectral lines http://www.colorado.edu/physics/2000/quantumzone/index.html Einstein's: Schrödinger's Atom http://www.colorado.edu/physics/2000/quantumzone /schroedinger.html The Atomic Lab: Laser Cooling http://www.colorado.edu/physics/2000/bec/lascool1.html The Atomic Lab: Evaporative Cooling in a BoseEinstein Condensation http://www.colorado.edu/physics/2000/bec/evap_cool.html The Winter 1999 CONFCHEM Online Conference will focus on Developments in Spectroscopy and Innovative Strategies for Teaching Spectroscopy in the Undergraduate Curriculum http://www.ched-ccce.org/confchem/1999/d/index.html access date for all sites: July 1999
Berkeley Lab - Materials Sciences Division
Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People Database Events Calendar Newsletter Archive Send us your research highlights. Reserch Highlight Template
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Planning Procurement and Property Proposals & Finance Templates Travel Procurement and Property This
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Travel This page has been moved
A New Direction in Psychology and Politics
ERIC Educational Resources Information Center
Goldstein, Evan R.
2008-01-01
Jonathan Haidt remembers reading "Metaphors We Live By", the influential book that George P. Lakoff, a professor of linguistics and cognitive science at the University of California at Berkeley, wrote with Mark L. Johnson, a professor of philosophy at the University of Oregon. The book drew on cognitive science, psychology, linguistics, and…
Berkeley Lab - Materials Sciences Division
Ramamoorthy Ramesh The Metals Society Bardeen Prize in Electronic Materials Rob Ritchie Elected as a Foreign into the earth Rob Ritchie Elected Foreign Member of the Royal Swedish Academy of Engineering Sciences PECASE (Presidential Early Career Award for Scientists and Engineers) Eli Yablonovitch Elected as Foreign
Berkeley Lab - Materials Sciences Division
Emergency Diversity and Inclusion Committee Members Lab Contacts Resources & Operations Acknowledging ; Finance Templates Travel One-Stop Personnel Resources Committees In Case of Emergency Looking for MSD0010
Lawrence Berkeley National Laboratory 2015 Annual Financial Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kim, P
FY2015 financial results reflect a year of significant scientific, operational and financial achievement for Lawrence Berkeley National Laboratory. Complementing many scientific accomplishments, Berkeley Lab completed construction of four new research facilities: the General Purpose Laboratory, Chu Hall, Wang Hall and the Flexlab Building Efficiency Testbed. These state-of-the-art facilities allow for program growth and enhanced collaboration, in part by enabling programs to return to the Lab’s Hill Campus from offsite locations. Detailed planning began for the new Integrative Genomics Building (IGB) that will house another major program currently located offsite. Existing site infrastructure was another key focus area. The Lab prioritizedmore » and increased investments in deferred maintenance in alignment with the Berkeley Lab Infrastructure Plan, which was developed under the leadership of the DOE Office of Science. With the expiration of American Recovery and Reinvestment Act (ARRA) funds, we completed the close-out of all of our 134 ARRA projects, recording total costs of $331M over the FY2009-2015 period. Download the report to read more.« less
Subsurface Microbes Expanding the Tree of Life
Banfield, Jillian
2018-02-14
Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Instituteâs resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.
Core List of Astronomy and Physics Journals
NASA Astrophysics Data System (ADS)
Bryson, Liz; Fortner, Diane; Yorks, Pamela
This is a list of highly-used and highly-cited physics and astronomy journals. "Use" is measured largely on paper-journal counts from selective academic research-level libraries. Citation count titles are drawn from Institute for Scientific Information (ISI) data. Recognition is given to entrepreneurial electronic-only or new-style electronic journals. Selective news, magazine, and general science journals are omitted. The compilers welcome questions, suggestions for additions, or other advice. Comments may be sent c/o Diane Fortner, Physics Library, University of California, Berkeley. Dfortner@library.berkeley.edu
Review of Research on the Cognitive Effects of Computer-Assisted Learning.
ERIC Educational Resources Information Center
Mandinach, E.; And Others
This review of the research on the cognitive effects of computer-assisted instruction begins with an overview of the ACCCEL (Assessing Cognitive Consequences of Computer Environments for Learning) research program at the University of California at Berkeley, which consists of several interrelated studies examining the acquisition of such higher…
Designing Ionic Liquids for CO2 Capture: What’s the role for computation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecke, Joan F.
Presentation on the computational aspects of ionic liquid selection for carbon dioxide capture to the conference attendees at the New Vistas in Molecular Thermodynamics: Experimentation, Molecular Modeling, and Inverse Design, Berkeley, CA, January 7 through 9, 2018
Molecular Quantum Mechanics 2010: From Methylene to DNA and Beyond Conference Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This grant was $12500 for partial support of an international conference, Molecular Quantum Mechanics 2010, which was held on the campus of the University of California, Berkeley, from 24 to 29 May 2010. The conference involved more than 250 participants. The conference schedule ran from as early as 8:00 AM to as late as 10:30 PM at night, in order to accommodate six historical lectures, 16 plenary lectures, 42 invited talks and two very strong poster sessions containing 143 contributed posters. Since 1989, the Molecular Quantum Mechanics (MQM) series of international conferences has show- cased the frontiers of research inmore » quantum chemistry with a strong focus on basic theory and algorithms, as well as highlights of topical applications. Both were strongly in evidence at MQM 2010. At the same time as embracing the future, the MQM conferences also honour the lifetime contributions of some of the most prominent scientists in the field of theoretical and computational quantum chemistry. MQM 2010 recognised the work of Prof. Henry F. ‘Fritz’ Schaefer of the Center for Computational Chemistry at the University of Georgia, who was previously on the faculty at Berkeley The travel of invited speakers was partially covered by sponsorships from Dell Computer, Hewlett-Packard, Journal of Chemical Theory and Computation, Virginia Tech College of Science, Molecular Physics, Q-Chem Inc and the American Institute of Physics. By contrast, the conference grant from the Department of Energy was used to provide fellowships and scholarships to enable graduate students and postdoctoral fellows to attend the meeting, and thereby broaden the participation of young scientists at a meeting where in the past most of the attendees have been more senior faculty researchers. We believe that we were very successful in this regard: 118 students and postdocs attended out of the total of 256 participants. In detail, the DOE sponsorship money was partially used for dormitory scholarships that covered the cost of shared accommodation for students and postdocs at Berkeley dormitories. This covered the $200-$305 cost of a shared room for the 5-day duration of the conference. The only condition of these scholarships was that the awardee must present a poster at the meeting. Approximately $7565 was spent for these dormitory scholarships. The remaining expenditures of $4800 was used for 12 merit scholarships which were awarded to students whose poster presentations were judged the best at the conference. This amount covered a significant part of their travel and registration fees.« less
Exploring Your Sense of Smell. Science Study Aid No. 10.
ERIC Educational Resources Information Center
Boeschen, John; And Others
This Science Study Aid (SSA), structured for grade levels 7-9, is based on work of the U.S. Department of Agriculture's Agricultural Research Service (ARS) conducted at the Western Regional Research Center in Berkeley, California. It is concerned with food aroma, its intensity and character, and olfactory threshold determinations. The SSA provides…
Links We bring the universe to you! University of California Berkeley Cosmology Group Lawrence Computational Cosmology Center Institute for Nuclear & Particle Astrophysics Supernova Acceleration Probe
, Emeryville, CA Joint Center for Artificial Photosynthesis (JCAP) - Bldg. 976, 2929 7th St., Suite 105 Financial Officer (OCFO) - Bldg. 971, 6401 Hollis St., Emeryville CA Life Sciences Division @ Potter St
Improvement in HPC performance through HIPPI RAID storage
NASA Technical Reports Server (NTRS)
Homan, Blake
1993-01-01
In 1986, RAID (redundant array of inexpensive (or independent) disks) technology was introduced as a viable solution to the I/O bottleneck. A number of different RAID levels were defined in 1987 by the Computer Science Division (EECS) University of California, Berkeley, each with specific advantages and disadvantages. With multiple RAID options available, taking advantage of RAID technology required matching particular RAID levels with specific applications. It was not possible to use one RAID device to address all applications. Maximum Strategy's Gen 4 Storage Server addresses this issue with a new capability called programmable RAID level partitioning. This capability enables users to have multiple RAID levels coexist on the same disks, thereby providing the versatility necessary for multiple concurrent applications.
Spin-Off Successes of SETI Research at Berkeley
NASA Astrophysics Data System (ADS)
Douglas, K. A.; Anderson, D. P.; Bankay, R.; Chen, H.; Cobb, J.; Korpela, E. J.; Lebofsky, M.; Parsons, A.; von Korff, J.; Werthimer, D.
2009-12-01
Our group contributes to the Search for Extra-Terrestrial Intelligence (SETI) by developing and using world-class signal processing computers to analyze data collected on the Arecibo telescope. Although no patterned signal of extra-terrestrial origin has yet been detected, and the immediate prospects for making such a detection are highly uncertain, the SETI@home project has nonetheless proven the value of pursuing such research through its impact on the fields of distributed computing, real-time signal processing, and radio astronomy. The SETI@home project has spun off the Center for Astronomy Signal Processing and Electronics Research (CASPER) and the Berkeley Open Infrastructure for Networked Computing (BOINC), both of which are responsible for catalyzing a smorgasbord of new research in scientific disciplines in countries around the world. Futhermore, the data collected and archived for the SETI@home project is proving valuable in data-mining experiments for mapping neutral galatic hydrogen and for detecting black-hole evaporation.
NASA Astrophysics Data System (ADS)
2008-06-01
Report of event of 11 May 2008 held at the African Institute of Mathematical Sciences (Muizenberg, Cape), with speakers Michael Griffin (Administrator of NASA), Stephen Hawking (Cambridge), David Gross (Kavli Institute, Santa Barbara) and George Smoot (Berkeley).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlmutter, Saul
2012-01-13
The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: Howmore » DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter]« less
Professional Conduct: What can we learn from recent events?
NASA Astrophysics Data System (ADS)
2003-03-01
Recent evidence of professional misconduct in two different areas of physics has caused the community to think deeply about such issues. In November, the APS Council approved two new statements on professional ethics and a revised ``Guidelines for Professional Conduct." The panelists have all been involved in dealing with these issues; in particular, one served on the Berkeley review committee and another on the Lucent review committee. APS leadership is anxious to hear the views of the physics community and there will be considerable time for discussion. Moderator: Miriam Sarachik, CCNY-CUNY, APS President Panelists: Pierre Hohenberg, Yale University (2003 Lars Onsager Prize Recipient) ``What can we learn from other sciences?" Arthur Bienenstock, Stanford University ``APS response to recent events" George Trilling, Lawrence Berkeley National Laboratory ``What can we learn from the Berkeley experience?" Malcolm Beasley, Stanford University ``What can we learn from the Lucent experience?"
Hydrogen Technology and Energy Curriculum (HyTEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Barbara
The Lawrence Hall of Science of the University of California, Berkeley has collaborated with scientists and engineers, a local transit agency, school districts, and a commercial curriculum publisher to develop, field-test nationally, and publish a two-week curriculum module on hydrogen and fuel cells for high school science. Key partners in this project are the Schatz Energy Research Center (SERC) of Humboldt State University, the Alameda-Contra Costa Transit District (AC Transit), FilmSight Productions, Lab-Aids, Inc., and 32 teachers and 2,370 students in field-test classrooms in California, Connecticut, Ohio, New York, South Carolina, and Washington. Field-test teachers received two to three daysmore » of professional development before teaching the curriculum and providing feedback used for revision of the curriculum. The curriculum, titled Investigating Alternative Energy: Hydrogen and Fuel Cells and published by Lab-Aids, Inc., includes a teachers guide (with lesson plans, resources, and student handout pages), two interactive computer animations, a video, a website, and a laboratory materials kit. The project has been disseminated to over 950 teachers through awareness workshops at state, regional, and national science teacher conferences.« less
Returns on investments in management sciences: six case studies
Ernst S. Valfer; Malcolm W. Kirby; Gideon Schwarzbart
1981-01-01
In 1962, the Management Sciences Staff was organized in Berkeley, Calif., as the internal consultant to the Forest Service, U.S. Department of Agriculture. From then until 1979, the Staff conducted 41 major studies. Although the rate of implementing recommendations from these studies was high, a more formal self-assessment was considered advisable. The following six...
Biotechnology at the Cutting Edge - Keasling
Keasling, Jay
2018-05-11
Jay Keasling, Berkeley Lab ALD for Biosciences and CEO of the Joint BioEnergy Institute, appears in a video on biotechnology at the Smithsonian's National Museum of American History. The video is part of en exhibit titled "Science in American Life," which examines the relationship between science, technology, progress and culture through artifacts, historical photographs and multimedia technology.
Diversity, Equity, & Inclusion at Berkeley Lab
; Latest News May 23 UC Webinar on Improving Mental Health Awareness African American ERG Hosts Emotional Intelligence Workshop Joe Palca to Interview Geri Richmond for June 11 'Women in Science' Talk Building
Graduate Programs in Building Science at UC Berkeley
aims to influence practice and improve the performance of buildings by educating future members of the influence design practice. Coursework is largely decided on an individual basis through consultation between
National resource for computation in chemistry, phase I: evaluation and recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
The National Resource for Computation in Chemistry (NRCC) was inaugurated at the Lawrence Berkeley Laboratory (LBL) in October 1977, with joint funding by the Department of Energy (DOE) and the National Science Foundation (NSF). The chief activities of the NRCC include: assembling a staff of eight postdoctoral computational chemists, establishing an office complex at LBL, purchasing a midi-computer and graphics display system, administering grants of computer time, conducting nine workshops in selected areas of computational chemistry, compiling a library of computer programs with adaptations and improvements, initiating a software distribution system, providing user assistance and consultation on request. This reportmore » presents assessments and recommendations of an Ad Hoc Review Committee appointed by the DOE and NSF in January 1980. The recommendations are that NRCC should: (1) not fund grants for computing time or research but leave that to the relevant agencies, (2) continue the Workshop Program in a mode similar to Phase I, (3) abandon in-house program development and establish instead a competitive external postdoctoral program in chemistry software development administered by the Policy Board and Director, and (4) not attempt a software distribution system (leaving that function to the QCPE). Furthermore, (5) DOE should continue to make its computational facilities available to outside users (at normal cost rates) and should find some way to allow the chemical community to gain occasional access to a CRAY-level computer.« less
Integrating the Apache Big Data Stack with HPC for Big Data
NASA Astrophysics Data System (ADS)
Fox, G. C.; Qiu, J.; Jha, S.
2014-12-01
There is perhaps a broad consensus as to important issues in practical parallel computing as applied to large scale simulations; this is reflected in supercomputer architectures, algorithms, libraries, languages, compilers and best practice for application development. However, the same is not so true for data intensive computing, even though commercially clouds devote much more resources to data analytics than supercomputers devote to simulations. We look at a sample of over 50 big data applications to identify characteristics of data intensive applications and to deduce needed runtime and architectures. We suggest a big data version of the famous Berkeley dwarfs and NAS parallel benchmarks and use these to identify a few key classes of hardware/software architectures. Our analysis builds on combining HPC and ABDS the Apache big data software stack that is well used in modern cloud computing. Initial results on clouds and HPC systems are encouraging. We propose the development of SPIDAL - Scalable Parallel Interoperable Data Analytics Library -- built on system aand data abstractions suggested by the HPC-ABDS architecture. We discuss how it can be used in several application areas including Polar Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonowski, Christiane
The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less
Visualizing Coolant Flow in Sodium Reactor Subassemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Uniformity of temperature controls peak power output. Interchannel cross-flow is the principal cross-assembly energy transport mechanism. The areas of fastest flow all occur at the exterior of the assembly. Further, the fast moving region winds around the assembly in a continuous swath. This Nek5000 simulation uses an unstructured mesh with over one billion grid points, resulting in five billion degrees of freedom per time slice. High speed patches of turbulence due to vertex shedding downstream of the wires persist for about a quarter of the wire-wrap periodic length. Credits: Science: Paul Fisher and Aleks Obabko, Argonne National Laboratory. Visualization: Hankmore » Childs and Janet Jacobsen, Lawrence Berkeley National Laboratory. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357. This research was sponsored by the Department of Energy's Office of Nuclear Energy's NEAMS program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abergel, Rebecca
Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:
2013-04-08
shared goals involving Academia, Industry, and Government. The strongly multidisciplinary and interdisciplinary operational model of BSAC (a National Science Foundation Industry/University Cooperative Research Center) is described.
Nonlinear Mode Coupling Theory of the Lower-Hybrid-Drift Instability.
1983-11-25
University of lows Iowa City, Iowa 52242 Tenerin, Michael Space Science Lab. University of California Berkeley, California 94720 Vlahos, Loukas Dept. of fysics University of Maryland College Park, Maryland 20742 44 FILMED 1=84 DTIC
Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH 3 Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Papri; Heiden, Zachariah M.; Wiedner, Eric S.
We report ammonia oxidation by homolytic cleavage of all three H atoms from a Mo-15NH3 complex using the 2,4,6-tri-tert-butylphenoxyl radical to afford a Mo-alkylimido (Mo=15NR) complex (R = 2,4,6-tri-t-butylcyclohexa-2,5-dien-1-one). Reductive cleavage of Mo=15NR generates a terminal Mo≡N nitride, and a [Mo-15NH]+ complex is formed by protonation. Computational analysis describes the energetic profile for the stepwise removal of three H atoms from the Mo-15NH3 complex and the formation of Mo=15NR. Acknowledgment. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Re-search Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Officemore » of Basic Energy Sciences. EPR and mass spectrometry experiments were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. The authors thank Dr. Eric D. Walter and Dr. Rosalie Chu for assistance in performing EPR and mass spectroscopy analysis, respectively. Computational resources provided by the National Energy Re-search Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific North-west National Laboratory is operated by Battelle for the U.S. DOE.« less
Visitors How to get to Lawrence Berkeley Lab Site Access New and Current Members Page For Visiting Scholars Who Will Use Computers Or Networks Procedures for visiting scholars Opportunities Mail: Lawrence
Evaluation of Chemical and Atmospheric Sciences Research.
1987-09-14
of Chemistry Los Alamos National Laboratory The University of California Los Alamwn, New Mexico 87545 Berkeley, California 94720 Professor Dennis H ...The University of Texas, Dallas Professor Richard P. Van Dwyne Richardson, Texas 75080. Department of Chemistry Northwestern University Professor H ...Jamues Harwox Evanston, Illinois 60201 Chairman Institute of Polymer Science Dr. Field H . Winslow University of Akron Bell Laboratories Akron, Chio
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Operations For information regarding Human Resources, procedures for acknowledging MSD support, division
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Human Resources General
NASA Astrophysics Data System (ADS)
Koch, Andrew S.; Koch, Heinz F.; Lodder, Gerrit
1997-10-01
Heinz Koch and Gerrit Lodder met in 1971 while on leave at the University of California, Berkeley. Heinz was an NSF Science Faculty Fellow affiliated with Andrew Streitwieser, while Gerrit was a postdoctoral researcher with William Dauben. They commuted between Lafayette and Berkeley for two years, which allowed plenty of time to discuss education, philosophy, politics and even chemistry. In summer 1974, Heinz spent several days in Leiden with the Lodders before the 2nd IUPAC Conference on Physical Organic Chemistry in the Netherlands. The next summer, Gerrit and his family stayed with the Kochs at their summer cottage on an island in Georgian Bay, Canada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
This volume contains all abstracts (931) received by the conference organizers before June 20, 1980. The abstracts are grouped according to the following topics: nucleon-nucleon interactions, free and in nuclei; distribution of matter, charge, and magnetism; exotic nuclei and exotic probes; giant resonances and other high-lying excitations; applications of nuclear science; nuclei with large angular momentum and deformation; heavy-ion reactions and relaxation phenomena; new techniques and instruments; pion absorption and scattering by nuclei; and miscellaneous. Some of these one-page abstracts contain data. A complete author index is provided. (RWR)
Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Curtis, S. B.
1989-01-01
The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.
Web site lets solar scientists inform and inspire students
NASA Astrophysics Data System (ADS)
Hauck, Karin
2012-07-01
Where on the Web can a middle school girl ask a female solar scientist about solar storms, the course and behavior of charged solar particles, and the origin of the Sun's dynamo—and also find out what the scientist was like as a child, whether the scientist has tattoos or enjoys snowboarding, what she likes and dislikes about her career, and how she balances her energy for work and family life? These kinds of exchanges happen at Solar Week (http://www.solarweek.org; see Figure 1). Established in 2000, Solar Week is an online resource for middle and lower high school students about the science of the Sun, sponsored by the Center for Science Education at the Space Sciences Laboratory (CSE@SSL) at the University of California, Berkeley (UC Berkeley). The Web site's goals are to educate students about the Sun and solar physics and to encourage future careers in science—especially for girls. One way is by giving solar scientists the chance to be relatable role models, to answer students' questions, and to share their experiences in an online forum.
Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)
Gray, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division and Associate Lab. Director for Life and Environmental Sciences
2018-05-04
Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks â particularly with regard to breast cancer.
Perlmutter, Saul; Chu, Steven
2018-05-31
The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Departmentâs Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics âfor the discovery of the accelerating expansion of the Universe through observations of distant supernovae.â DOEâs Office of Science has supported Dr. Perlmutterâs research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: How DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter
CE Needs in Geriatrics and Gerontology for Selected Health Professionals.
ERIC Educational Resources Information Center
Robinson, Betsy C.
1981-01-01
Describes a needs assessment model that offers practical suggestions to program planners in a multidisciplinary area of inquiry that is relatively new to continuing education in health sciences. (Available from University of California Press, Berkeley, CA 94720.) (Author/CT)
Physical, chemical, biological, and biotechnological sciences are incomplete without each other
USDA-ARS?s Scientific Manuscript database
Chemical analysis and chromatographic techniques could not separate plasma lipoproteins which are now known as cholesterol- containing, heart-disease related macromolecules in human blood. Scientists at the Lawrence Berkeley Laboratory successfully separated plasma lipoproteins using equilibrium den...
Space Policy Debate - On Space Privatization and Property Rights
NASA Technical Reports Server (NTRS)
Tu, Eugene; Yan, Jerry Chi Yiu
2017-01-01
This presentation is intended to acquaint the audience of UC Berkeley and UC Los Angeles students with the mission of NASA, core competencies at Ames, and to provide a framework for further discussion by students of aeronautics and space sciences.
Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)
Linder, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-24
The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.
Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder, Eric
2008-11-28
The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.
experiment, based at UC Berkeley, that uses Internet-connected computers in the Search for Extraterrestrial several hours to be sure. If that didn't solve the problem, it probably means the index the server uses to
2009-04-08
Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.
2009-04-08
Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.
2009-04-08
Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.
2009-04-08
Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.
2009-04-08
Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars.
copolymers, liquid crystals. Experimental observation of Weyl points First public annoucement on 11 Feburary Vishwanath from University of California, Berkeley. "Experimental Observation of Weyl Semimetals" ; Published by Science on 16 July, 2015. "Experimental observation of Weyl points" Featured on the
Yang, Jack Y; Niemierko, Andrzej; Bajcsy, Ruzena; Xu, Dong; Athey, Brian D; Zhang, Aidong; Ersoy, Okan K; Li, Guo-Zheng; Borodovsky, Mark; Zhang, Joe C; Arabnia, Hamid R; Deng, Youping; Dunker, A Keith; Liu, Yunlong; Ghafoor, Arif
2010-12-01
Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Conferences on Bioinformatics, Systems Biology and Intelligent Computing (ISIBM IJCBS 2009) attracted more than 300 papers and 400 researchers and medical doctors world-wide. It was the only inter/multidisciplinary conference aimed to promote synergistic research and education in bioinformatics, systems biology and intelligent computing. The conference committee was very grateful for the valuable advice and suggestions from honorary chairs, steering committee members and scientific leaders including Dr. Michael S. Waterman (USC, Member of United States National Academy of Sciences), Dr. Chih-Ming Ho (UCLA, Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Wing H. Wong (Stanford, Member of United States National Academy of Sciences), Dr. Ruzena Bajcsy (UC Berkeley, Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Qu Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Andrzej Niemierko (Harvard), Dr. A. Keith Dunker (Indiana), Dr. Brian D. Athey (Michigan), Dr. Weida Tong (FDA, United States Department of Health and Human Services), Dr. Cathy H. Wu (Georgetown), Dr. Dong Xu (Missouri), Drs. Arif Ghafoor and Okan K Ersoy (Purdue), Dr. Mark Borodovsky (Georgia Tech, President of ISIBM), Dr. Hamid R. Arabnia (UGA, Vice-President of ISIBM), and other scientific leaders. The committee presented the 2009 ISIBM Outstanding Achievement Awards to Dr. Joydeep Ghosh (UT Austin), Dr. Aidong Zhang (Buffalo) and Dr. Zhi-Hua Zhou (Nanjing) for their significant contributions to the field of intelligent biological medicine.
2010-01-01
Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Conferences on Bioinformatics, Systems Biology and Intelligent Computing (ISIBM IJCBS 2009) attracted more than 300 papers and 400 researchers and medical doctors world-wide. It was the only inter/multidisciplinary conference aimed to promote synergistic research and education in bioinformatics, systems biology and intelligent computing. The conference committee was very grateful for the valuable advice and suggestions from honorary chairs, steering committee members and scientific leaders including Dr. Michael S. Waterman (USC, Member of United States National Academy of Sciences), Dr. Chih-Ming Ho (UCLA, Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Wing H. Wong (Stanford, Member of United States National Academy of Sciences), Dr. Ruzena Bajcsy (UC Berkeley, Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Qu Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Andrzej Niemierko (Harvard), Dr. A. Keith Dunker (Indiana), Dr. Brian D. Athey (Michigan), Dr. Weida Tong (FDA, United States Department of Health and Human Services), Dr. Cathy H. Wu (Georgetown), Dr. Dong Xu (Missouri), Drs. Arif Ghafoor and Okan K Ersoy (Purdue), Dr. Mark Borodovsky (Georgia Tech, President of ISIBM), Dr. Hamid R. Arabnia (UGA, Vice-President of ISIBM), and other scientific leaders. The committee presented the 2009 ISIBM Outstanding Achievement Awards to Dr. Joydeep Ghosh (UT Austin), Dr. Aidong Zhang (Buffalo) and Dr. Zhi-Hua Zhou (Nanjing) for their significant contributions to the field of intelligent biological medicine. PMID:21143775
Renewable Energy from Synthetic Biology (LBNL Science at the Theater)
Keasling, Jay [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-25
Jay Keasling, co-leader of Berkeley Lab's Helios Project, is a groundbreaking researcher in the new scientific field of synthetic biology. In Helios, he directs the biology program, incorporating a range of approaches to increasing the efficacy and economy of plants and cellulose-degrading microbes to make solar-based fuels. He is a UC Berkeley professor of Chemical and Bioengineering, and founder of Amyris Biotechnologies, a company that was honored as a Technology Pioneer for 2006 by the World Economic Forum. Keasling has succeeded in using synthetic biology to develop a yeast-based production scheme for precursors of the antimalarial drug artemisinin in work funded by the Bill & Melinda Gates Foundation.
Renewable Energy from Synthetic Biology (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keasling, Jay
2007-06-04
Jay Keasling, co-leader of Berkeley Lab's Helios Project, is a groundbreaking researcher in the new scientific field of synthetic biology. In Helios, he directs the biology program, incorporating a range of approaches to increasing the efficacy and economy of plants and cellulose-degrading microbes to make solar-based fuels. He is a UC Berkeley professor of Chemical and Bioengineering, and founder of Amyris Biotechnologies, a company that was honored as a Technology Pioneer for 2006 by the World Economic Forum. Keasling has succeeded in using synthetic biology to develop a yeast-based production scheme for precursors of the antimalarial drug artemisinin in workmore » funded by the Bill & Melinda Gates Foundation.« less
NASA Technical Reports Server (NTRS)
Cheng, Robert K.
2001-01-01
The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.
The Berkeley extreme ultraviolet calibration facility
NASA Technical Reports Server (NTRS)
Welsh, Barry Y.; Jelinsky, Patrick; Malina, Roger F.
1988-01-01
The vacuum calibration facilities of the Space Sciences Laboratory, University of California at Berkeley are designed for the calibration and testing of EUV and FUV spaceborne instrumentation (spectral range 44-2500 A). The facility includes one large cylindrical vacuum chamber (3 x 5 m) containing two EUV collimators, and it is equipped with a 4-axis manipulator of angular-control resolution 1 arcsec for payloads weighing up to 500 kg. In addition, two smaller cylindrical chambers, each 0.9 x 1.2 m, are available for vacuum and thermal testing of UV detectors, filters, and space electronics hardware. All three chambers open into class-10,000 clean rooms, and all calibrations are referred to NBS secondary standards.
1973-01-01
This chart describes the Skylab student experiment X-Rays from Jupiter, proposed by Jearne Leventhal of Berkeley, California. This experiment was an investigation to detect x-rays from the planet Jupiter and determine any correlation with solar flare activity. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Biofuels Science and Facilities (Carbon Cycle 2.0)
Keasling, Jay D.
2018-04-27
Jay D. Keasling speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Lawrence Berkeley National Laboratory 2016 Annual Financial Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kim, P.; Williams, Kim, P.
FY2016 was a year of significant change and progress at Berkeley Lab. In March, Laboratory Director Michael Witherell assumed his new role when former Lab Director Paul Alivisatos became Vice Chancellor for Research at UC Berkeley. Dr. Witherell has solidified the Lab’s strategy, with a focus on long term science and technology priorities. Large-scale science efforts continued to expand at the Lab, including the Dark Energy Spectroscopic Instrument now heading towards construction, and the LUX-ZEPLIN dark matter detector to be built underground in South Dakota. Another proposed project, the Advanced Light Source-Upgrade, was given preliminary approval and will be themore » Lab’s largest scientific investment in years. Construction of the Integrative Genomics Building began, and will bring together researchers from the Lab’s Joint Genome Institute, now based in Walnut Creek, and the Systems Biology Knowledgebase (K-Base) under one roof. Investment in the Lab’s infrastructure also continues, informed by the Lab’s Infrastructure Strategic Plan. Another important focus is on developing the next generation of scientists with the talent and diversity needed to sustain Berkeley Lab’s scientific leadership and mission contributions to DOE and the Nation. Berkeley Lab received $897.5M in new FY2016 funding, a 12.5% increase over FY2015, for both programmatic and infrastructure activities. While the Laboratory experienced a substantial increase in funding, it was accompanied by only a modest increase in spending, as areas of growth were partially offset by the completion of several major efforts in FY2015. FY2016 costs were $826.9M, an increase of 1.9% over FY2015. Similar to the prior year, the indirect-funded Operations units worked with generally flat budgets to yield more funding for strategic needs. A key challenge for Berkeley Lab continues to be achieving the best balance to fund essential investments, deliver highly effective operational mission support and remain cost-competitive. Through a comprehensive approach to prioritize competing needs, the Lab ended the year in a favorable financial position. The Office of the Chief Financial Officer (OCFO) played a key role in providing analysis and decision support to Executive Leadership, enabling the Lab to enhance its financial management strategies. In FY2016, the OCFO updated its analytic approaches and models to enhance long term financial projections under various funding and investment scenarios, and to assess total cost of ownership for major proposed investments. These improvements provided the new Lab Director and Senior Leadership with more comprehensive information and analytic support for planning and prioritization efforts. Within the OCFO, we focused on core operations and key initiatives defined in our OCFO Strategic Roadmap. The Lab’s Financial System transitioned from stabilization to optimization, with a focus on expanding the financial reporting capabilities considerably. We completed implementation of the eCommerce platform, achieving a notable outcome for the Lab in close partnership with DOE’s Office of Science. In other accomplishments, we launched a financial literacy program to enable Lab managers and staff to understand and execute their financial management and stewardship responsibilities more effectively; made substantial progress in enhancing our Field Finance model that provides financial support to client divisions and areas; developed a business process governance model to define OCFO business processes, clarify roles, and strengthen service delivery; and implemented a Partners in Leadership training program to build leadership capacity among our staff. We completed a ‘refresh’ of our Strategic Roadmap, which now defines our priorities for FY2017-FY2019. As a part of this effort, we made a subtle but important change to the OCFO mission statement to call out the Lab’s research and stewardship mission to sustain the Lab’s science and technology capabilities now and into the future. Berkeley Lab’s FY2016 progress on all fronts - scientific, operations, and financial management – position the Lab to continue bringing science solutions to the world as we charge into the 21st Century.« less
The Higgs and All That: How the Universe Works and Why We Should Care
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinchliffe, Ian
2013-10-31
Berkeley Lab's Ian Hinchliffe discusses "The Higgs and all that. How the universe works and why we should care" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.
Berkeley Lab - Materials Sciences Division
Chemical and Mechanical Properties of Surfaces, Interfaces and Nanostructures Inorganic-Organic (2016). top Inorganic-Organic Nanocomposites Program Leader: Ting Xu Co-PI's: A. Paul Alivisatos, Yi Liu , Miquel Salmeron, Lin-Wang Wang The organic/inorganic nanocomposite program aims to design and synthesize
Berkeley Lab - Materials Sciences Division
(powerpoint) Research Highlights 2018 Predictive Theory Of Multiexciton Decay In Organic Crystals Reveals New -CsPbX3 Perovskite Nanocrystal Composite The Inorganic-Organic Nanocomposites program at MSD has achieved Assemblies in Supramolecule Nanocomposites Via Cylindrical Confinement The Inorganic/Organic Nanocomposites
Innovations in Teaching on Aging: Integrative and Interactive Approaches.
ERIC Educational Resources Information Center
Timiras, Paola S.
1981-01-01
Presents summaries of current programs on aging and gerontology at these five institutions: University of Texas Health Science Center (San Antonio), Michigan State University (East Lansing), University of California (Berkeley), University of Colorado Medical Center (Denver), and University of Kentucky Medical Center (Lexington). (CS)
The Higgs and All That: How the Universe Works and Why We Should Care
Hinchliffe, Ian
2018-01-16
Berkeley Lab's Ian Hinchliffe discusses "The Higgs and all that. How the universe works and why we should care" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.
Berkeley Lab - Materials Sciences Division
Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People Database Events Calendar Newsletter Archive Send us your research highlights. Reserch Highlight Template (powerpoint) Publications Database The MSD publications database has been updated to include all FY2014
Nuclear Spectroscopic Telescope Array (NuSTAR) Mission
NASA Technical Reports Server (NTRS)
Kim, Yunjin; Willis, Jason; Dodd, Suzanne; Harrison, Fiona; Forster, Karl; Craig, William; Bester, Manfred; Oberg, David
2013-01-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is a National Aeronautics and Space Administration (NASA) Small Explorer mission that carried the first focusing hard X-ray (6-79 keV) telescope into orbit. It was launched on a Pegasus rocket into a low-inclination Earth orbit on June 13, 2012, from Reagan Test Site, Kwajalein Atoll. NuSTAR will carry out a two-year primary science mission. The NuSTAR observatory is composed of the X-ray instrument and the spacecraft. The NuSTAR spacecraft is three-axis stabilized with a single articulating solar array based on Orbital Sciences Corporation's LEOStar-2 design. The NuSTAR science instrument consists of two co-aligned grazing incidence optics focusing on to two shielded solid state CdZnTe pixel detectors. The instrument was launched in a compact, stowed configuration, and after launch, a 10-meter mast was deployed to achieve a focal length of 10.15 m. The NuSTAR instrument provides sub-arcminute imaging with excellent spectral resolution over a 12-arcminute field of view. The NuSTAR observatory will be operated out of the Mission Operations Center (MOC) at UC Berkeley. Most science targets will be viewed for a week or more. The science data will be transferred from the UC Berkeley MOC to a Science Operations Center (SOC) located at the California Institute of Technology (Caltech). In this paper, we will describe the mission architecture, the technical challenges during the development phase, and the post-launch activities.
Developing a Valid Data Base for Continuing Education in the Health Sciences.
ERIC Educational Resources Information Center
Griffith, William S.
1981-01-01
Successful programs of continuing professional education must involve both the improvement of the learner's competence and the restructuring of the work environment to stimulate, encourage, recognize, and reward improved performance. (Journal availability: Subscription Manager, MOBIUS, University of California Press, Berkeley CA 94720.) (SK)
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & , Travel, Property Rosemary Williams, Purchasing & Time Keeper 510-495-2645 66-238 rmwilliams@lbl.gov Jasmine Harris, Travel & Property 510-486-6303 66-237 jaharris@lbl.gov Gil Torres, Building Manager
Carbon Smackdown: Carbon Capture
Jeffrey Long
2017-12-09
In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air
Berkeley Lab - Materials Sciences Division
Postdoc Forum Research Highlights Awards Publications Database Events Calendar Newsletter Archive People ; Finance Templates Travel One-Stop Investigators Division Staff Facilities and Centers Staff Jobs People Division, please use the links here. An outline of the Division structure is available at the Organization
The Emergent Power of Teacher Leaders
ERIC Educational Resources Information Center
Safir, Shane
2018-01-01
"Coming from complexity science, the term emergence describes the dynamic and unpredictable ways through which change unfolds in organizations," writes Shane Safir in this article about how teacher leaders can transform a school's climate and culture. Using Berkeley High School in California as an example, Safir explains how successful…
A Pill to Treat People Exposed to Radioactive Materials
Abergel, Rebecca
2018-01-16
Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:
ERIC Educational Resources Information Center
Rossman, Allan; Nolan, Deborah
2015-01-01
Deborah Nolan is Professor of Statistics and holds the Zaffaroni Family Chair in Undergraduate Education at the University of California-Berkeley, where she has also served as Associate Dean of Mathematical and Physical Sciences. She is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. This interview…
76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
...-AA00 Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA AGENCY: Coast... the 4th of July Festival Berkeley Marina Fireworks Display. Unauthorized persons or vessels are... display. Background and Purpose The City of Berkeley Marina will sponsor the 4th of July Festival Berkeley...
Extreme Ultraviolet Explorer Science Operation Center
NASA Technical Reports Server (NTRS)
Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.
1993-01-01
The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.
Low Cost Solar Energy Conversion (Carbon Cycle 2.0)
Ramesh, Ramamoorthy
2018-04-27
Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Editorial: Special issue dedicated to Gabor Somorjai's 80th birthday
NASA Astrophysics Data System (ADS)
2016-06-01
This special issue of Surface Science has been prepared to honor Professor Gabor A. Somorjai on the occasion of his 80th birthday. Professor Somorjai was born on May 4, 1935 in Budapest, Hungary. In 1953 he enrolled as a chemical engineering student at the Technical University of Budapest. Gabor was an active participant in the Hungarian Revolution of 1956. When the Soviet military crushed the revolution, he had to leave the country by walking across the border with his sister and his future wife. After immigrating to the USA in 1957, he applied to begin graduate studies and was accepted at the University of California, Berkeley. Gabor received a PhD in Chemistry in 1960, only three years later. Following a short sojourn at IBM, he returned to Berkeley in 1964 to take up a faculty position in the Department of Chemistry and the Lawrence Berkeley National Laboratory, which he still holds today. For the interested reader, more can be learned about Gabor's fascinating life in his autobiography, ;An American Scientist: The Autobiography of Gabor A. Somorjai.
Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)
DOE R&D Accomplishments Database
Budinger, T. F. (ed.)
1987-01-01
This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.
Accelerating Science with the NERSC Burst Buffer Early User Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhimji, Wahid; Bard, Debbie; Romanus, Melissa
NVRAM-based Burst Buffers are an important part of the emerging HPC storage landscape. The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory recently installed one of the first Burst Buffer systems as part of its new Cori supercomputer, collaborating with Cray on the development of the DataWarp software. NERSC has a diverse user base comprised of over 6500 users in 700 different projects spanning a wide variety of scientific computing applications. The use-cases of the Burst Buffer at NERSC are therefore also considerable and diverse. We describe here performance measurements and lessons learned from the Burstmore » Buffer Early User Program at NERSC, which selected a number of research projects to gain early access to the Burst Buffer and exercise its capability to enable new scientific advancements. To the best of our knowledge this is the first time a Burst Buffer has been stressed at scale by diverse, real user workloads and therefore these lessons will be of considerable benefit to shaping the developing use of Burst Buffers at HPC centers.« less
University Technology Transfer: In Tough Economic Times
ERIC Educational Resources Information Center
Powers, Joshua B.; Campbell, Eric G.
2009-01-01
In 1907, Frederick Cottrell, professor of chemistry at the University of California-Berkeley and father of the modern academic patent, worried that if universities became too directly involved in patenting and licensing operations, their thirst for profits could lead to the erosion of the openness necessary for academic science to flourish. For…
Buildings That Think Green (LBNL Science at the Theater)
Majumdar, Arun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-23
Buildings are the SUVs of U.S. energy consumption, gobbling up 71 percent of the nation's electricity. In this Sept. 22, 2008 talk, Arun Majumdar, Director of Berkeley Lab's Environmental Energy Technologies Division, discusses how scientists are creating a new generation of net-zero energy, carbon-neutral buildings.
Berkeley Lab - Materials Sciences Division
? Click Here! Resources for MSD Safety MSD Safety MSD's Integrated Safety Management Plan [PDF] Safety culture and policies at MSD MSD0010: Integrated Safety Management: Principles and Case Studies Calendar for MSD classes on Integrated Safety Management MSD0015 Handout - Waste Briefing Document [PDF] Waste
Rare Isotope Beams for the 21st Century
James Symons
2017-12-09
In a scientific keynote address on Friday, June 12 at Michigan State University (MSU) in East Lansing, James Symons, Director of Berkeley Labs Nuclear Science Division (NSD), discussed the exciting research prospects of the new Facility for Rare Isotope Beams (FRIB) to be built at MSUs National Superconducting Cyclotron Laboratory.
Berkeley Lab - Materials Sciences Division
Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of Materials Safety Bulletins Archive September 2016 - Hazardous Waste [PDF] July 2016 - When Should You Report - Include Safety Training in On-The-Job Training [PDF] July 2009 - Eye Injury from Corrosive Organic Solvent
Q & A with Ed Tech Leaders: Interview with Marcia C. Linn
ERIC Educational Resources Information Center
Fulgham, Susan M.; Shaughnessy, Michael F.
2014-01-01
Susan M. Fulgham and Michael F. Shaughnessy, Contributing Editors for this journal, present their interview with Marcia C. Linn, Professor of Development and Cognition, specializing in education in mathematics, science, and technology, in the Graduate School of Education at the University of California, Berkeley. Linn is currently investigating…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.
2014-07-03
Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinitiesmore » and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.« less
Embracing Diversity: The Exploration of User Motivations in Citizen Science Astronomy Projects
NASA Astrophysics Data System (ADS)
Lee, Lo
2018-06-01
Online citizen science projects ask members of the public to donate spare time on their personal computers to process large datasets. A critical challenge for these projects is volunteer recruitment and retention. Many of these projects use Berkeley Open Infrastructure for Network Computing (BOINC), a piece of middleware, to support their operations. This poster analyzes volunteer motivations in two large, BOINC-based astronomy projects, Einstein@Home and Milkyway@Home. Volunteer opinions are addressed to assess whether and how competitive elements, such as credit and ranking systems, motivate volunteers. Findings from a study of project volunteers, comprising surveys (n=2,031) and follow-up interviews (n=21), show that altruism is the main incentive for participation because volunteers consider scientific research to be critical for humans. Multiple interviewees also revealed a passion for extrinsic motivations, i.e. those that involve recognition from other people, such as opportunities to become co-authors of publications or to earn financial benefits. Credit and ranking systems motivate nearly half of interviewees. By analyzing user motivations in astronomical BOINC projects, this research provides scientists with deeper understandings about volunteer communities and various types of volunteers. Building on these findings, scientists can develop different strategies, for example, awarding volunteers badges, to recruit and retain diverse volunteers, and thus enhance long-term user participation in astronomical BOINC projects.
The versatile GBT astronomical spectrometer (VEGAS): Current status and future plans
NASA Astrophysics Data System (ADS)
Prestage, Richard M.; Bloss, Marty; Brandt, Joe; Chen, Hong; Creager, Ray; Demorest, Paul; Ford, John; Jones, Glenn; Kepley, Amanda; Kobelski, Adam; Marganian, Paul; Mello, Melinda; McMahon, David; McCullough, Randy; Ray, Jason; Roshi, D. Anish; Werthimer, Dan; Whitehead, Mark
2015-07-01
The VEGAS multi-beam spectrometer (VEGAS) was built for the Green Bank Telescope (GBT) through a partnership between the National Radio Astronomy Observatory (NRAO) and the University of California at Berkeley. VEGAS is based on a Field Programmable Gate Array (FPGA) frontend and a heterogeneous computing backend comprised of Graphical Processing Units (GPUs) and CPUs. This system provides processing power to analyze up to 8 dual-polarization or 16 single-polarization inputs at bandwidths of up to 1.25 GHz per input. VEGAS was released for "shared-risk" observing in March 2014 and it became the default GBT spectral line backend in August 2014. Some of the early VEGAS observations include the Radio Ammonia Mid-Plane Survey, mapping of HCN/HCO+ in nearby galaxies, and a variety of radio-recombination line and pulsar projects. We will present some of the latest VEGAS science highlights.
In Conversation with Jim Schuck: Nano-optics
Jim Schuck and Alice Egan
2017-12-09
Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.
In Conversation with Jim Schuck: Nano-optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jim Schuck and Alice Egan
Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.
Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)
DePaolo, Don
2018-05-02
Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
...: The Coast Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in position 37[deg]51... Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone for the Berkeley...
Help | About | Privacy | Media Room | Feedback Start Describe Compare Upgrade Community Press For members of the media, we've gathered some press materials issued by Berkeley Lab, including the press Energy Management Software Home Energy Saver Website Computes Possible Savings for Homeowners Media
George Lakoff's New Happiness: Politics after Rationality
ERIC Educational Resources Information Center
Parrott, John B.
2009-01-01
Berkeley professor of linguistics and cognitive science George Lakoff is among the handful of current faculty members in the United States to have successfully recast himself as a significant figure in national politics. Though his views place rather far on the progressive left, he has, unlike some other scholar-activists, focused most of his…
Berkeley Lab - Materials Sciences Division
demonstrated a way to make it work. New Discovery Could Improve Organic Solar Cell Performance MSD's Center for lead to gains in efficiency for organic solar cells Rob Ritchie featured in Nature Communications Discover Material Ideal for Smart Photovoltaic Windows â² New Discovery Could Improve Organic Solar Cell
ERIC Educational Resources Information Center
Frandson, Phillip E.
1981-01-01
Provides a conceptual outline of marketing strategies that includes a Flexnerian approach to curriculum development. Concentrates on (1) the medical profession, especially the individual physician, and (2) the nation's large universities, with their science centers and medical schools. (Available from University of California Press, Berkeley, CA…
Center for Adaptive Optics | People
Astronomy Professor of Earth & Planetary Science imke at berkeley dot edu (510) 642.1947 Stanley Klein UC Irvine Aaron Barth Associate Professor Physics and Astronomy barth at uci dot edu (949) 824.3013 dot edu (310) 206.7853 Andrea Ghez Professor of Astronomy ghez at astro dot ucla dot edu (310
Berkeley Lab - Materials Sciences Division
. Orlita, L. Z. Tan, M. Potemski, M. Sprinkle, C. Berger, W. A. de Heer, S. G. Louie and G. Martinez . DePaolo and J. J. De Yoreo. Self-consistent ion-by-ion growth model for kinetic isotopic fractionation Biosynthesis Restricts Mycobacterium tuberculosis Growth in Human Macrophages. ACS Chemical Biology 7, 863
Hubbard, Susan
2018-05-07
Berkeley Lab Earth Sciences Division Director Susan Hubbard, the Project Lead for the Sustainable Systems Scientific Focus Area (SFA) 2.0, gives an overview of the project and its mission to develop a predictive understanding of terrestrial environments, from the genome to the watershed scales, to enable a new class of solutions for environmental and energy solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Susan
2015-12-19
Berkeley Lab Earth Sciences Division Director Susan Hubbard, the Project Lead for the Sustainable Systems Scientific Focus Area (SFA) 2.0, gives an overview of the project and its mission to develop a predictive understanding of terrestrial environments, from the genome to the watershed scales, to enable a new class of solutions for environmental and energy solutions.
Visiting Scholars Program in Building Science at UC Berkeley
part of the evaluation process, as it is essential that there is a relationship between your interests and the research being conducted at CBE. Visiting scholars must have some prior research experience with information on education, research experience, papers published and technical skills (e.g
Berkeley Lab - Materials Sciences Division
Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of ? Click Here! Personnel Safety Personnel MSD EH&S Manager Martin Neitzel 66-242 ext. 6169 MLNeitzel Schwartz 66-250E ext. 4957 nischwartz@lbl.gov Lab Safety Advisory Committee Rep Robert Kaindl 2-354 ext
Berkeley Lab - Materials Sciences Division
Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of complete EHS0470, General Employee Radiation Safety (on-line course). Escort is required for visitors who Safety (on-line course) ii. EHS0348 Chemical Hygiene and Safety (on-line course) iii. EHS0470 General
Edwin M. McMillan, Neptunium, Phase Stability, and the Synchrotron
Elements) * McMillan in LBNL History Edwin M. McMillan Courtesy of Lawrence Berkeley National Laboratory Elements: Early History (Nobel Lecture), DOE Technical Report Download Adobe PDF Reader , December 1951 1907 - 1991, National Academy of Sciences Oral History Transcript -- Dr. Edwin McMillan, American
Zulueta, Benjamin C
2009-01-01
This essay examines the origins of the relationship between Choh Hao Li and the University of California, Berkeley. Li came to the United States from China in 1935 for graduate study at the University of Michigan, but ended up enrolling at Berkeley. Over the course of the next two decades, Li went from being a foreign graduate student in chemistry on a temporary visa to an internationally recognized leader in the biochemistry of endocrinology at the head of his own laboratory and a naturalized citizen of the United States. At what was otherwise a dark time for Americans of Chinese descent, Li was garnering adulation in the popular press. He was called the "master of the master gland" for his successes both in isolating and in synthesizing pituitary hormones. Specifically, the essay explores the making of the "master of the master gland" from the perspectives of the history of science and the history of race and migration in the United States, tracing the interplay among Li's scientific work, his migrations, his career aspirations, and his legal status in the United States. A Chinese intellectual cast adrift by the shifting geopolitics of World War II and the early Cold War, Li danced delicately along the margins of membership in American society during the 1940s, only arriving at what turned out to be his final destination after careful and protracted negotiations with officials of the U.S. government, with influential members of the international scientific community, and with representatives of the University of California, Berkeley.
Carbon Nanotube Membranes for Water Purification
NASA Astrophysics Data System (ADS)
Bakajin, Olgica
2009-03-01
Carbon nanotubes are an excellent platform for the fundamental studies of transport through channels commensurate with molecular size. Water transport through carbon nanotubes is also believed to be similar to transport in biological channels such as aquaporins. I will discuss the transport of gas, water and ions through microfabricated membranes with sub-2 nanometer aligned carbon nanotubes as ideal atomically-smooth pores. The measured gas flow through carbon nanotubes exceeded predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeded values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations and measured for aquaporins. More recent reverse osmosis experiments reveal ion rejection by our membranes. Based on our experimental findings, the current understanding of the fundamentals of water and gas transport and of ion rejection will be discussed. The potential application space that exploits these unique nanofluidic phenomena will be explored. The extremely high permeabilities of these membranes, combined with their small pore size will enable energy efficient filtration and eventually decrease the cost of water purification.[4pt] In collaboration with Francesco Fornasiero, Biosciences and Biotechnology Division, PLS, LLNL, Livermore, CA 94550; Sangil Kim, NSF Center for Biophotonics Science & Technology, University of California at Davis, Sacramento CA 95817; Jung Bin In, Mechanical Engineering Department, UC Berkeley, Berkeley CA 94720; Hyung Gyu Park, Jason K Holt, and Michael Stadermann, Biosciences and Biotechnology Division, PLS, LLNL; Costas P. Grigoropoulos, Mechanical Engineering Department, UC Berkeley; Aleksandr Noy, Biosciences and Biotechnology Division, PLS, LLNL and School of Natural Sciences, University of California at Merced.
How can the curation of hands-on STEM activities power successful mobile apps and websites?
NASA Astrophysics Data System (ADS)
Porcello, D.; Peticolas, L. M.; Schwerin, T. G.
2015-12-01
The Lawrence Hall of Science (LHS) is University of California, Berkeley's public science center. Over the last decade, the Center for Technology Innovation at LHS has partnered with many institutions to establish a strong track record of developing successful technology solutions to support STEM teaching and learning within informal environments. Curation by subject-matter experts has been at the heart of many educational technology products from LHS and its partners that are directed at educators and families. This work includes: (1) popular digital libraries for inquiry-based activities at Howtosmile.org (NSF DRL #0735007) and NASA Earth and Space science education resources at NASAwavelength.org; and novel mobile apps like DIY Sun Science (NASA NNX10AE05G) and DIY Human Body (NIH 5R25OD010543) designed to scaffold exploration of STEM phenomena at home. Both NASA Wavelength and DIY Sun Science arose out of long-term collaborations with the Space Sciences Laboratory at UC Berkeley, Institute for Global Environmental Strategies (IGES), and other NASA-funded organizations, in partnership with NASA through cooperative agreements. This session will review the development, formative evaluation, and usage metrics for these two Earth and Space science-themed educational technology products directly relevant to the AGU community. Questions reviewed by presenters will include: What makes a good hands-on activity, and what essential information do educators depend on when searching for programming additions? What content and connections do families need to explore hands-on activities? How can technology help incorporate educational standards into the discovery process for learning experiences online? How do all these components drive the design and user experience of websites and apps that showcase STEM content?
Pinthong, Watthanai; Muangruen, Panya
2016-01-01
Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drugan, C.
2009-12-07
The word 'breakthrough' aptly describes the transformational science and milestones achieved at the Argonne Leadership Computing Facility (ALCF) throughout 2008. The number of research endeavors undertaken at the ALCF through the U.S. Department of Energy's (DOE) Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program grew from 9 in 2007 to 20 in 2008. The allocation of computer time awarded to researchers on the Blue Gene/P also spiked significantly - from nearly 10 million processor hours in 2007 to 111 million in 2008. To support this research, we expanded the capabilities of Intrepid, an IBM Blue Gene/P systemmore » at the ALCF, to 557 teraflops (TF) for production use. Furthermore, we enabled breakthrough levels of productivity and capability in visualization and data analysis with Eureka, a powerful installation of NVIDIA Quadro Plex S4 external graphics processing units. Eureka delivered a quantum leap in visual compute density, providing more than 111 TF and more than 3.2 terabytes of RAM. On April 21, 2008, the dedication of the ALCF realized DOE's vision to bring the power of the Department's high performance computing to open scientific research. In June, the IBM Blue Gene/P supercomputer at the ALCF debuted as the world's fastest for open science and third fastest overall. No question that the science benefited from this growth and system improvement. Four research projects spearheaded by Argonne National Laboratory computer scientists and ALCF users were named to the list of top ten scientific accomplishments supported by DOE's Advanced Scientific Computing Research (ASCR) program. Three of the top ten projects used extensive grants of computing time on the ALCF's Blue Gene/P to model the molecular basis of Parkinson's disease, design proteins at atomic scale, and create enzymes. As the year came to a close, the ALCF was recognized with several prestigious awards at SC08 in November. We provided resources for Linear Scaling Divide-and-Conquer Electronic Structure Calculations for Thousand Atom Nanostructures, a collaborative effort between Argonne, Lawrence Berkeley National Laboratory, and Oak Ridge National Laboratory that received the ACM Gordon Bell Prize Special Award for Algorithmic Innovation. The ALCF also was named a winner in two of the four categories in the HPC Challenge best performance benchmark competition.« less
A Future with (out) Carbon Cycle 2.0 (Carbon Cycle 2.0)
Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-21
Bill Collins, Head of LBNL's Climate Sciences Department, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
THE BERKELEY DATA ANALYSIS SYSTEM (BDAS): AN OPEN SOURCE PLATFORM FOR BIG DATA ANALYTICS
2017-09-01
Evan Sparks, Oliver Zahn, Michael J. Franklin, David A. Patterson, Saul Perlmutter. Scientific Computing Meets Big Data Technology: An Astronomy ...Processing Astronomy Imagery Using Big Data Technology. IEEE Transaction on Big Data, 2016. Approved for Public Release; Distribution Unlimited. 22 [93
File System Virtual Appliances: Portable File System Implementations
2009-05-01
Mobile Computing Systems and Applications, Santa Cruz, CA, 1994. IEEE. [10] Michael Eisler , Peter Corbett, Michael Kazar, Daniel S. Nydick, and...Gingell, Joseph P. Moran, and William A. Shannon. Virtual Memory Architec- ture in SunOS. In USENIX Summer Conference, pages 81–94, Berkeley, CA, 1987
Nuclear Data Needs and Capabilities for Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.
2015-05-27
In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applicationsmore » (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).« less
Earth Sciences Division Research Summaries 2006-2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePaolo, Donald; DePaolo, Donald
2008-07-21
Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energymore » and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from January 2006 to June 2007, along with a listing of our personnel, are also appended. Any comments on our research are appreciated and can be sent to me personally.« less
Artificial intelligence. Fears of an AI pioneer.
Russell, Stuart; Bohannon, John
2015-07-17
From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity.
MindModeling@Home . . . and Anywhere Else You Have Idle Processors
2009-12-01
was SETI @Home. It was established in 1999 for the purpose of demonstrating the utility of “distributed grid computing” by providing a mechanism for...the public imagination, and SETI @Home remains the longest running and one of the most popular volunteer computing projects in the world. This...pursuits. Most of them, including SETI @Home, run on a software architecture called the Berkeley Open Infrastructure for Network Computing (BOINC). Some of
"Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woosley, Stan; Kasen, Dan
2017-05-10
Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.
Automated Tutoring in Interactive Environments: A Task-Centered Approach.
ERIC Educational Resources Information Center
Wolz, Ursula; And Others
1989-01-01
Discusses tutoring and consulting functions in interactive computer environments. Tutoring strategies are considered, the expert model and the user model are described, and GENIE (Generated Informative Explanations)--an answer generating system for the Berkeley Unix Mail system--is explained as an example of an automated consulting system. (33…
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at
Berkeley Lab Scientists to Play Role in New Space Telescope
circling distant suns, among other science aims. The Wide Field Infrared Survey Telescope (WFIRST) will Hubble Space Telescope's Wide Field Camera 3 infrared imager. A Hubble large-scale mapping survey of the survey of the M31 galaxy (shown here) required 432 "pointings" of its imager, while only two
Berkeley Lab - Materials Sciences Division
-486-6999 Urgent Radiation Protection Group Assistance Non-Life Threatening Event 24/7 Lab Phone: x7277 : 911 (no extentions required now) Non-Emergency Reporting (Fire and Police) Non-Life Threatening Event Spill Non-Life Threatening Event 24/7 Lab Phone: x6999 Cell Phone: 510-486-6999 Off Site Locations: 510
Carbon Cycle 2.0: Jay Keasling: Biofuels
Jay Keasling
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Carbon Cycle 2.0: Nitash Balsara: Energy Storage
Nitash Balsara
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Carbon Cycle 2.0: Ramamoorthy Ramesh: Low-cost Solar
Ramamoorthy Ramesh:
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Carbon Cycle 2.0: Robert Cheng and Juan Meza
Robert Cheng and Juan Meza
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Carbon Cycle 2.0: Robert Cheng and Juan Meza
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Cheng and Juan Meza
2010-02-16
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Reducing Our Carbon Footprint: Frontiers in Climate Forecasting (LBNL Science at the Theater)
Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-06-07
Bill Collins directs Berkeley Lab's research dedicated to atmospheric and climate science. Previously, he headed the development of one of the leading climate models used in international studies of global warming. His work has confirmed that man-made greenhouse gases are probably the main culprits of recent warming and future warming poses very real challenges for the environment and society. A lead author of the most recent assessment of the science of climate change by the United Nations' Intergovernmental Panel on Climate Change, Collins wants to create a new kind of climate model, one that will integrate cutting-edge climate science with accurate predictions people can use to plan their lives
Mendoza-Denton, Rodolfo; Patt, Colette; Fisher, Aaron; Eppig, Andrew; Young, Ira; Smith, Andrew; Richards, Mark A
2017-01-01
Two independent surveys of PhD students in STEM fields at the University of California, Berkeley, indicate that underrepresented minorities (URMs) publish at significantly lower rates than non-URM males, placing the former at a significant disadvantage as they compete for postdoctoral and faculty positions. Differences as a function of gender reveal a similar, though less consistent, pattern. A conspicuous exception is Berkeley's College of Chemistry, where publication rates are tightly clustered as a function of ethnicity and gender, and where PhD students experience a highly structured program that includes early and systematic involvement in research, as well as clear expectations for publishing. Social science research supports the hypothesis that this more structured environment hastens the successful induction of diverse groups into the high-performance STEM academic track.
Second user workshop on high-power lasers at the Linac Coherent Light Source
Heimann, Phil; Glenzer, Siegfried
2015-05-28
The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.
2014-07-17
The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF)more » for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations and analysis used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. at at Lawrence Berkeley National Laboratory. MDB is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.« less
Conference Committees: Conference Committees
NASA Astrophysics Data System (ADS)
2009-09-01
International Programm Committee (IPC) Harald Ade NCSU Sadao Aoki University Tsukuba David Attwood Lawrence Berkeley National Laboratory/CXRO Christian David Paul Scherrer Institut Peter Fischer Lawrence Berkeley National Laboratory Adam Hitchcock McMaster University Chris Jacobsen SUNY, Stony Brook Denis Joyeux Lab Charles Fabry de l'Institut d'Optique Yasushi Kagoshima University of Hyogo Hiroshi Kihara Kansai Medical University Janos Kirz SUNY Stony Brook Maya Kiskinova ELETTRA Ian McNulty Argonne National Lab/APS Alan Michette Kings College London Graeme Morrison Kings College London Keith Nugent University of Melbourne Zhu Peiping BSRF Institute of High Energy Physics Francois Polack Soleil Christoph Quitmann Paul Scherrer Institut Günther Schmahl University Göttingen Gerd Schneider Bessy Hyun-Joon Shin Pohang Accelerator Lab Jean Susini ESRF Mau-Tsu Tang NSRRC Tony Warwick Lawrence Berkeley Lab/ALS Local Organizing Committee Christoph Quitmann Chair, Scientific Program Charlotte Heer Secretary Christian David Scientific Program Frithjof Nolting Scientific Program Franz Pfeiffer Scientific Program Marco Stampanoni Scientific Program Robert Rudolph Sponsoring, Financials Alfred Waser Industry Exhibition Robert Keller Public Relation Markus Knecht Computing and WWW Annick Cavedon Proceedings and Excursions and Accompanying Persons Program Margrit Eichler Excursions and Accompanying Persons Program Kathy Eikenberry Excursions and Accompanying Persons Program Marlies Locher Excursions and Accompanying Persons Program
Eclipse Megamovie 2017: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Johnson, C.; Koh, J.; Konerding, D.; Peticolas, L. M.; Hudson, H. S.; Martinez Oliveros, J. C.; Zevin, D.
2017-12-01
The 2017 total solar eclipse presents an amazing opportunity for education and science outreach due to the breadth and reach of this astronomical event. The Eclipse Megamovie project looks to create organize a citizen science effort to capture images of the eclipse as it crosses the US and stitch these photos together into a continuous look at the corona. A collaboration between Google, UC Berkeley, and many other universities and amateur astronomy networks, this project looks to leverage the different strenghts of these organizations and capitalize on this rare outreach opportunity. We're excited to present the results of the project and a review of how things went.
Exploiting Semi-Directional Transceivers for Localization in Communication Systems
2006-03-01
some of those late nights. To Patrick S. and Maura D., you guys made AFIT home away from home for me. Additionally to all of my classmates and...conference on Mobile com- puting and networking, 151–159. IEEE Computer Society, ACM Press, Berkeley, CA, November 1995. 6. Kelly , Ian and Alcherio Martinoli
NASA Astrophysics Data System (ADS)
2011-10-01
More than a dozen AGU members are among 94 researchers announced by U.S. president Barack Obama on 26 September as recipients of the Presidential Early Career Award for Scientists and Engineers. The award, which is coordinated by the Office of Science and Technology Policy within the Executive Office of the President, is considered the highest honor bestowed by the U.S. government on science and engineering professionals in the early stages of their independent research careers. This year's recipients include Jeffrey Book, Naval Research Laboratory; Jonathan Cirtain, NASA Marshall Space Flight Center; Fotini Katopodes Chow, University of California, Berkeley; Elizabeth Cochran, U.S. Geological Survey (USGS); Ian Howat, Ohio State University; Christiane Jablonowski, University of Michigan; Justin Kasper, Smithsonian Astrophysical Observatory; Elena Litchman, Michigan State University; James A. Morris Jr., National Oceanic and Atmospheric Administration (NOAA); Erin M. Oleson, NOAA; Victoria Orphan, California Institute of Technology; Sasha Reed, USGS; David Shelly, USGS; and Feng Wang, University of California, Berkeley. Five AGU members are among 10 U.S. representatives recently selected for International Arctic Science Committee working groups. The AGU members, chosen as representatives through the U.S. National Academies review process, are Atmosphere Working Group member James Overland, Pacific Marine Environmental Laboratory, NOAA; Cryosphere Working Group members Walter Meier, University of Colorado at Boulder, and Elizabeth Hunke, Los Alamos National Laboratory; Marine Working Group member Mary-Louise Timmermans, Yale University; and Terrestrial Working Group member Vanessa Lougheed, University of Texas at El Paso.
Women in Mathematics: Scaling the Heights. MAA Notes Number 46.
ERIC Educational Resources Information Center
Nolan, Deborah, Ed.
Women and mathematics have been thought of as two totally separate subjects for decades. In July, 1994 a group of mathematicians from around the country gathered in Berkeley, CA for three days to discuss ways to increase the representation of women in Ph.D. programs in the mathematical sciences. The primary goal of this conference was to broaden…
Carbon Cycle 2.0: Don DePaolo: Geo and Bio Sequestration
Don DePaolo:
2017-12-09
Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Lynn
Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Laboratory Directed Research and Development Program FY98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T.; Chartock, M.
1999-02-05
The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less
New Developments Regarding the KT Event and Other Catastrophes in Earth History
NASA Astrophysics Data System (ADS)
This volume contains papers that have been accepted for presentation at the conference on New Developments Regarding the KT Event and Other Catastrophes in Earth History, February 9-12, 1994, in Houston, Texas. The Program Committee consisted of W. Alvarez (University of California, Berkeley), D. Black (Lunar and Planetary Institute), J. Bourgeois (National Science Foundation), K. Burke (University of Houston), R. Ginsburg (University of Miami), G. Keller (Princeton University), C. Koeberl (University of Vienna), J. Longoria (Florida International University), G. Ryder (Lunar and Planetary Institute), V. Sharpton, convener (Lunar and Planetary Institute), H. Sigurdsson (University of Rhode Island), R. Turco (University of California, Los Angeles), and P. Ward (University of Washington). The Scientific Organizing Committee consisted of W. Alvarez (University of California, Berkeley), D. Black (Lunar and Planetary Institute), K. Burke (University of Houston), R. Ginsburg (University of Miami), L. Hunt (National Academy of Sciences), G. Keller (Princeton University), L. Marin (UNAM, cd. Universitaria), D. Raup (University of Chicago), V. Sharpton (Lunar and Planetary Institute), E. Shoemaker (U.S. Geological Survey, Flagstaff), and G. Suarez (UNAM, cd. Universitaria). Logistics and administrative and publications support were provided by the Publications and Program Services Department staff at the Lunar and Planetary Institute.
X-ray Micro-Tomography of Ablative Heat Shield Materials
NASA Technical Reports Server (NTRS)
Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.
2016-01-01
X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation
CLOCS (Computer with Low Context-Switching Time) Operating System Reference Documents
1988-05-06
system are met. In sum, real-time constraints make programming harder in genera420], because they add a whole new dimension - the time dimension - to ...be preempted until it allows itself to be. More is Stored; Less is Computed Alan Jay Smith, of Berkeley, has said that any program can be made five...times as swift to run, at the expense of five times the storage space. While his numbers may be questioned, his premise may not: programs can be made
Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)
Somerville, Chris [Univ. of California, Berkeley, CA (United States)
2018-05-23
Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.
NASA Technical Reports Server (NTRS)
Bershader, D. (Editor); Hanson, R. (Editor)
1986-01-01
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
NASA Astrophysics Data System (ADS)
Bershader, D.; Hanson, R.
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
@berkeley.edu 510-642-1220 Research profile » A U.S. Department of Energy National Laboratory Operated by the Computational Study of Excited-State Phenomena in Energy Materials Center for X-ray Optics MSD Facilities Ion Investigators Division Staff Facilities and Centers Staff Jobs Safety Personnel Resources Committees In Case of
Canon, Shane
2018-01-24
DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
Carbon Capture (Carbon Cycle 2.0)
Smit, Berend
2018-04-26
Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
A Provost for Professional Schools and Colleges. Research & Occasional Paper Series: CSHE.3.13
ERIC Educational Resources Information Center
King, C. Judson
2013-01-01
From 1972 to 1994, the academic administrative structure of the Berkeley campus of the University of California was unusual, in that it involved two Provosts, one who was also Dean of the College of Letters and Science, and another who was responsible for the remainder of the academic units, which were for the most part professional schools and…
Cyber Security: A Crisis of Prioritization
2005-02-01
Society (CITRIS) and Professor University of California, Berkeley J. Carter Beese , Jr. President Riggs Capital Partners Pedro Celis, Ph.D. Software...Science University of North Carolina at Chapel Hill William J. Hannigan President AT&T Jonathan C. Javitt, M.D., M.P.H. Senior Fellow Potomac Institute...CHAIR F. Thomson Leighton MEMBERS J. Carter Beese , Jr. Patricia Thomas Evans Luis E. Fiallo Harold Mortazavian David A. Patterson Alice G
New Directions in X-Ray Light Sources
Falcone, Roger
2017-12-09
July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.
Dissemination of Research: Your Interface with the Public
NASA Astrophysics Data System (ADS)
McCann, S.; Scotchmoor, J. G.; Lindberg, D.; Kissack, A.
2011-12-01
In January 2011, something very special happened on the UC Berkley campus as a result of a unique partnership between two organizations - KQED, a San Francisco public broadcaster and a public university, UC Berkeley. Nineteen graduate students from the UCB Department of Integrative Biology (IB) and Department of Environmental Science, Policy and Management participated in a pilot project in which they were trained by media professionals in communicating their science to broader audiences. The class, called Dissemination of Research: Your Interface with the Public, was a two unit, seven week course on making media for science communication, a hands-on approach to the dos and don'ts of social media, blogging, photo collections, web media, video/audio interviews, visualizing data, and a survey of types of science media and journalism. The partnership itself was an extension of a project initiated by KQED in 2007. At that time, KQED launched QUEST, with the goal of contributing much needed reporting on science and the environment to Northern California audiences. The project combined an interdisciplinary media staff to create radio reports, television programming, original online media, and educator resources. Further supporting this innovative editorial framework were 16 partners including Northern California's leading science centers, museums, parks, and community-based groups. Among those partners were representatives from UC Berkeley's Natural History Museums and the Integrative Biology Department. The very name - Integrative Biology - reflects the focus of the department which brings together a diversity of disciplines that complement one another to unravel the complexity of biology thus a perfect match for the QUEST project. Building on the model developed for QUEST partner media making trainings, KQED and UC Berkeley decided to pilot a new venture by co-teaching a course, specifically aimed at helping graduate students communicate their science. Unlike similar courses that provide skills in writing press releases and tips for interviews, this one emphasized the making of media. Such a focus teaches students appropriate media formats for differing audiences and which factors make a presentation interesting and comprehensible. The course, beyond media training, required students to contribute to a weekly blog by writing about contemporary scientific research with the goal of making these findings relevant to an everyday audience. Students also produced a one-minute slide show combining photos, animation, music and narration to communicate their own research projects and areas of interest. At the end of the course, an evaluation was conducted to measure the usefulness of the class. Students rated the overall educational value of the course a 6.438 out of 7. They appreciated the interaction with media experts and the different perspectives about communicating science beyond that of scientists. In their words: "It is part of our job as scientists to be able to share our discoveries with the world and we never get trained on this, so we make a lot of mistakes."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, Chris
Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmentalmore » and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.« less
Berkeley Lab Scientist Named MacArthur "Genius" Fellow for Audio
Preservation Research | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News to digitally recover a 128-year-old recording of Alexander Graham Bell's voice, enabling people to
Genomic Advances to Improve Biomass for Biofuels (Genomics and Bioenergy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhsar, Daniel
2008-02-11
Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betancourt, Amaury P.; Mattigod, Shas V.; Wellman, Dawn M.
2010-03-07
The Berkeley Pit in Butte, Montana, is heavily contaminated with dissolved metals. Adsorption and extraction of these metals can be accomplished through the use of a selective adsorbent. For this research, the adsorbent used was thiol-functionalized Self-Assembled Monolayers on Mesoporous Supports (thiol-SAMMS), which was developed at Pacific Northwest National Laboratory (PNNL). Thiol-SAMMS selectively binds to numerous types of dissolved metals. The objective of this research was to evaluate the loading and kinetics of aluminum, beryllium, copper, and zinc on thiol-SAMMS. For the loading tests, a series of Berkeley Pit water to thiol-SAMMS ratios (mL:g) were tested. These ratios were 1000:1,more » 500:1, 100:1, and 50:1. Berkeley Pit water is acidic (pH {approx} 2.5). This can affect the performance of SAMMS materials. Therefore, the effect of pH was evaluated by conducting parallel series of loading tests wherein the Berkeley Pit water was neutralized before or after addition of thiol-SAMMS, and a series of kinetics tests wherein the Berkeley Pit water was neutralized before addition of thiol-SAMMS for the first test and was not neutralized for the second test. For the kinetics tests, one Berkeley Pit water to thiol-SAMMS ratio was tested, which was 2000:1. The results of the loading and kinetics tests suggest that a significant decrease in dissolved metal concentration at Berkeley Pit could be realized through neutralization of Berkeley Pit water. Thiol-SAMMS technology has a limited application under the highly acidic conditions posed by the Berkeley Pit. However, thiol-SAMMS could provide a secondary remedial technique which would complete the remedial system and remove dissolved metals from the Berkeley Pit to below drinking water standards.« less
The Undergraduate Origins of PhD Economists: The Berkeley Experience
ERIC Educational Resources Information Center
Olney, Martha L.
2015-01-01
The University of California, Berkeley sends more undergraduate students to economics PhD programs than any other public university. While this fact is surely a function of its size, there may be lessons from the Berkeley experience that others could adopt. To investigate why Berkeley generates so many economics PhD students, the author convened…
Microsoft Licenses Berkeley Lab's Home Energy Saver Code for Its Energy
-based tool for calculating energy use in residential buildings. About one million people visit the Home Management Software | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News
Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less
Free energy of steps using atomistic simulations
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.
Final Report. Center for Scalable Application Development Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellor-Crummey, John
2014-10-26
The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codesmore » for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.« less
Rethinking Big Science. Modest, mezzo, grand science and the development of the Bevalac, 1971-1993.
Westfall, Catherine
2003-03-01
Historians of science have tended to focus exclusively on scale in investigations of largescale research, perhaps because it has been easy to assume that comprehending a phenomenon dubbed "Big Science" hinges on an understanding of bigness. A close look at Lawrence Berkeley Laboratory's Bevalac, a medium-scale "mezzo science" project formed by uniting two preexisting machines--the modest SuperHILAC and the grand Bevatron--shows what can be gained by overcoming this preoccupation with bigness. The Bevalac story reveals how interconnections, connections, and disconnections ultimately led to the development of a new kind of science that transformed the landscape of large-scale research in the United States. Important lessons in historiography also emerge: the value of framing discussions in terms of networks, the necessity of constantly expanding and refining methodology, and the importance of avoiding the rhetoric of participants and instead finding words to tell our own stories.
Ship Motions and Capsizing in Astern Seas
1974-12-01
result of these experiments and concurrent analytical work,a great deal has been learned about the mechanism of capsizing. This...computer time. It does not appear economically feasible using present-generation machines to numerically simulate a complete experimental...a Fast Cargo Liner in San Francisco Bay." Dept. of Naval Archi- tecture, University of Calif., Berkeley. January 1972. (Dept. of Transp
Improving Data Mobility & Management for International Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borrill, Julian; Dart, Eli; Gore, Brooklin
In February 2015 the third workshop in the CrossConnects series, with a focus on Improving Data Mobility & Management for International Cosmology, was held at Lawrence Berkeley National Laboratory. Scientists from fields including astrophysics, cosmology, and astronomy collaborated with experts in computing and networking to outline strategic opportunities for enhancing scientific productivity and effectively managing the ever-increasing scale of scientific data.
NASA Astrophysics Data System (ADS)
Cuff, K. E.; Molinaro, M.
2004-12-01
The Environmental Science Information Technology Activities (ESITA) program provides grades 9 and 10 students with under-represented minority backgrounds in the East San Francisco Bay Area with real-world opportunities to learn about and apply information technologies through a series of project-based activities related to environmental science. Supported by the NSF Information Technology Experiences for Students and Teachers (ITEST) program, ESITA activities engage students in the use of newly acquired information technology (IT) skills and understandings while performing air and water quality research investigations. One project that ESITA students have become involved in relates to the currently relevant issue of elevated levels of lead found in drinking waters in Washington, D.C. Students based in the Bay Area have initiated and maintained E-mail correspondence with children who attend elementary schools in the D.C. area. After receiving a thorough explanation of required sampling procedures devised by the Bay Area students, the elementary school children have sent 500 ml water samples from their homes and schools to Berkeley along with information about the locations from which the water samples were collected. These samples were then prepared for lead analysis at Lawrence Hall of Science by ESITA students, who used resulting data to perform a preliminary assessment of the geospatial distribution of lead trouble spots throughout Washington, DC. Later, ESITA student scientists will work with students from the UC Berkeley School of Public Health to develop surveys and questionnaires that generate high quality information useful with regard to assessing the impact of the current lead crisis on younger children in the Washington, D.C. area. Through the application of new understandings to current, real-world environmental problems and issues such as that related to lead, positive changes in students' attitudes towards IT and science have occurred, which accompany increases in their content learning and skills acquisition abilities.
ERIC Educational Resources Information Center
Breslauer, George W.
2011-01-01
University of California (UC) Berkeley's chief academic officer explores the historical sources of Berkeley' academic excellence. He identifies five key factors: (1) wealth from many sources; (2) supportive and skilled governors; (3) leadership from key UC presidents; (4) the pioneering ethos within the State of California; and (5) a process of…
Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics | Berkeley Lab
astrophysics, dark energy, physics Connect twitter instagram LinkedIn facebook youtube This form needs Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics News Release Paul Preuss 510-486-6249 * October professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics
Theoretical Comparison Between Candidates for Dark Matter
NASA Astrophysics Data System (ADS)
McKeough, James; Hira, Ajit; Valdez, Alexandra
2017-01-01
Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.
Energy Demand in China (Carbon Cycle 2.0)
Price, Lynn
2018-02-14
Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Advanced Waveform Research Methods for GERESS Recordings
1991-04-15
Division of Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1620 2 Prof. William Menke Prof. Charles G. Sammis Lamont-Doherty...85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700 Newington, VA 22122 Prof. Francis T. Wu Department of...Planetary Sciences 11800 Sunrise Valley Drive, Suite 1212 California Institute of Technology Reston, VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F
A Survey of Blasting Activity in the United States
1991-05-16
Drive, Suite 1212 California Institute of Technology Reston, VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive...Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1620 Proi. William Menke Prof. Charles G. Sammis Lamont-Doherty Geological...of Geological Sciences 445 Pineda Court Austin, TX 78713-7909 Melbourne, FL 32940 Prof. Roy Greenfield William Kikendall Geosciences Department
Studies of High-Frequency Seismic Wave Propagation.
1991-03-29
William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical Sciences Vienna, VA 22180 Princeton University Princeton, NJ 08544...California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1620 2 Prof. William Menke Prof. Charles G. Sammis...University of Arizona Tucson, AZ 85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700 Newington, VA 22122 Prof. Francis T. Wu
Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)
Balsara, Nitash
2018-02-12
Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
2011-02-01
worldwide. Lawrence Berkeley National Laboratory Peer Reviewed Title: Investigation of anti-Relaxation coatings for alkali-metal vapor cells using ...2010 Abstract: Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to...preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an
A model for architectural comparison
NASA Astrophysics Data System (ADS)
Ho, Sam; Snyder, Larry
1988-04-01
Recently, architectures for sequential computers became a topic of much discussion and controversy. At the center of this storm is the Reduced Instruction Set Computer, or RISC, first described at Berkeley in 1980. While the merits of the RISC architecture cannot be ignored, its opponents have tried to do just that, while its proponents have expanded and frequently exaggerated them. This state of affairs has persisted to this day. No attempt is made to settle this controversy, since indeed there is likely no one answer. A qualitative framework is provided for a rational discussion of the issues.
DEGAS: Dynamic Exascale Global Address Space Programming Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, James
The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less
, contact: Saul Perlmutter (saul(at)lbl(dot)gov) University of California Berkeley, CA 94720 A. Spadafora (alspadafora(at)lbl(dot)gov) Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley, CA 94720
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth working with sample encased in aerogel
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researcher Zack Gainsforth working with sample encased in aerogel
Targeting Transcription Elongation Machinery for Breast Cancer Therapy
2016-05-01
Luo CONTRACTING ORGANIZATION: University of California, Berkeley Berkeley, CA 94704 REPORT DATE: May 2016 TYPE OF REPORT: Annual PREPARED FOR...ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER University of California, Berkeley BERKELEY, CA 94704 9. SPONSORING...molecules. We have employed the CRISPR /Cas9 genome-editing tool to knock out the gene encoding the SEC component AFF4 or knock in a mutant cyclin T1 (AAG
Targeting Transcription Elongation Machinery for Breast Cancer Therapy
2016-05-01
Zhou CONTRACTING ORGANIZATION: University of California, Berkeley Berkeley, CA 94704 REPORT DATE: May 2016 TYPE OF REPORT: Annual Report...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER AND ADDRESS(ES) University of California, Berkeley Berkeley, CA ...without affecting the Brd4 or PTEFb molecules. We have employed the CRISPR /Cas9 genome-editing tool to knock out the gene encoding the SEC component AFF4
ERIC Educational Resources Information Center
Teplitzky, Samantha; Phillips, Margaret
2016-01-01
The Berkeley Research Impact Initiative (BRII) was one of the first campus-based open access (OA) funds to be established in North America and one of the most active, distributing more than $244,000 to support University of California (UC) Berkeley authors. In April 2015, we conducted a qualitative study of 138 individuals who had received BRII…
SETI with Help from Five Million Volunteers: The Berkeley SETI Efforts
NASA Astrophysics Data System (ADS)
Korpela, E. J.; Anderson, D. P.; Bankay, R.; Cobb, J.; Foster, G.; Howard, A.; Lebofsky, M.; Marcy, G.; Parsons, A.; Siemion, A.; von Korff, J.; Werthimer, D.; Douglas, K. A.
2009-12-01
We summarize radio and optical SETI programs based at the University of California, Berkeley. The ongoing SERENDIP V sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with 1.6 Hz spectral resolution. Frequency stepping allows the spectrometer to cover the full 300 MHz band of the Arecibo L-band receivers. The final configuration will allow data from all 14 receivers in the Arecibo L-band Focal Array to be monitored simultaneously with over 1.8 billion simultaneous channels. SETI@home uses desktop computers volunteers to analyze over 100 TB of at taken at Arecibo. Over 5 million volunteers have run SETI@home during its 10 year history. The SETI@home sky survey is 10 times more sensitive than SERENDIP V but it covers only a 2.5 MHz band, centered on 1420 MHz. SETI@home searches a much wider parameter space, including 14 octaves of signal bandwidth and 15 octaves of pulse period with Doppler drift corrections from -100 Hz/s to +100 Hz/s. The ASTROPULSE project is the first SETI search for μs time scale pulses in the radio spectrum. Because short pulses are dispersed by the interstellar medium, and amount of dispersion is unknown, ASTROPULSE must search through 30,000 possible dispersions. Substantial computing power is required to conduct this search, so the project will use volunteers and their personal computers to carry out the computation (using distributed computing similar to SETI@home). The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F,G,K and M stars, globular cluster and galaxies.
Demonstration of the Berkeley UXO Discrimination at Live Sites
2010-02-01
BUD then occupied each of the 11 points and acquired a stationary measurement. The cart was equipped with a two-component tiltmeter and three...component magnetometer. Both devices were calibrated before the survey. The tiltmeters readings were used to compute the cart pitch (positive pitch...cart front down = negative tiltmeter change), and roll (positive=cart rightside down - positive tiltmeter change). The magnetometer values were used to
Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)
Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Nuclear Medicine & Functional Imaging
2018-01-23
Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, Chris
Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.
Integrated Array and 3-Component Processing Using a Seismic Microarray
1991-05-31
VA 22091 Pasadena, CA 91125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical Sciences Vienna, VA 22180 Princeton...Station S-CUBED University of California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1 60 2 Prof. William ...Geosciences Building #77 University of Arizona Tucson, AZ 85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700
Near Source Contributions to Teleseismic P Wave Coda and Regional Phases
1991-04-27
Pasadena, CA 91-125 Mr. William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical Sciences Vienna, VA 22180 Princeton...Station S-CUBED University of California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O.Box 1620 La Jolla, CA 92038-1620 2 Prof. William ...Geosciences- Building #77 University of Arizona Tucson, AZ 85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700 Newington
Propagation of Regional Seismic Phases in Western Europe
1991-03-08
William J. Best Prof. F. A. Dahlen 907 Westwood Drive Geological and Geophysical Sciences Vienna, VA 22180 Princeton University Princeton, NJ 08544-0636 Dr...California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1620 2 Prof. William Menke Prof. Charles G. Sammis Lamont...Arizona Tucson, AZ 85721 Dr. William Wortman Mission Research Corporation 8560 Cinderbed Rd. Suite # 700 Newington, VA 22122 Prof. Francis T. Wu
How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)
Wadia, Cyrus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-24
By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.
Carbon Cycle 2.0: Ashok Gadgil: global impact
Ashok Gadgi
2017-12-09
Ashok Gadgil speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Susan J. Frankel
2017-01-01
This special issue of Forest Phytophthoras serves as part of the proceedings from the Sixth Sudden Oak Death Science Symposium held June 21 -23, 2016 at Fort Mason Center in San Francisco, CA, USA. The symposium marked almost 16 years to the day that David Rizzo (UC Davis) and Matteo Garbelotto (UC Berkeley) identified the cause of sudden oak death to be a previously...
Office of the Chief Financial Officer Strategic Plan2008-2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Various
2007-11-19
This is an update to the Office of the Chief Financial Officer's (OCFO's) multi-year strategy to continue to build a highly effective, efficient and compliant financial and business approach to support the scientific mission of Lawrence Berkeley National Laboratory (LBNL). The guiding principles of this strategy are to provide the greatest capability for the least cost while continually raising the standards of professional financial management in service to the LBNL science mission.
Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)
Alivisatos, Paul
2018-05-08
Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
New Light on Dark Energy (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder, Eric; Ho, Shirly; Aldering, Greg
2011-04-25
A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Two new books about intrusions and computer viruses remind us that attacks against our computers on networks are the actions of human beings. Cliff Stoll's book about the hacker who spent a year, beginning in Aug. 1986, attempting to use the Lawrence Berkeley Computer as a stepping-stone for access to military secrets is a spy thriller that illustrates the weaknesses of our password systems and the difficulties in compiling evidence against a hacker engaged in espionage. Pamela Kane's book about viruses that attack IBM PC's shows that viruses are the modern version of the old problem of a Trojan horse attack. It discusses the most famous viruses and their countermeasures, and it comes with a floppy disk of utility programs that will disinfect your PC and thwart future attack.
BEARS: a multi-mission anomaly response system
NASA Astrophysics Data System (ADS)
Roberts, Bryce A.
2009-05-01
The Mission Operations Group at UC Berkeley's Space Sciences Laboratory operates a highly automated ground station and presently a fleet of seven satellites, each with its own associated command and control console. However, the requirement for prompt anomaly detection and resolution is shared commonly between the ground segment and all spacecraft. The efficient, low-cost operation and "lights-out" staffing of the Mission Operations Group requires that controllers and engineers be notified of spacecraft and ground system problems around the clock. The Berkeley Emergency Anomaly and Response System (BEARS) is an in-house developed web- and paging-based software system that meets this need. BEARS was developed as a replacement for an existing emergency reporting software system that was too closedsource, platform-specific, expensive, and antiquated to expand or maintain. To avoid these limitations, the new system design leverages cross-platform, open-source software products such as MySQL, PHP, and Qt. Anomaly notifications and responses make use of the two-way paging capabilities of modern smart phones.
Schloss, Karen B; Poggesi, Rosa M; Palmer, Stephen E
2011-06-01
The ecological valence theory (EVT) posits that preference for a color is determined by people's average affective response to everything associated with it (Palmer & Schloss, Proceedings of the National Academy of Sciences, 107, 8877-8882, 2010). The EVT thus implies the existence of sociocultural effects: Color preference should increase with positive feelings (or decrease with negative feelings) toward an institution strongly associated with a color. We tested this prediction by measuring undergraduates' color preferences at two rival universities, Berkeley and Stanford, to determine whether students liked their university's colors better than their rivals did. Students not only preferred their own colors more than their rivals did, but the degree of their preference increased with self-rated positive affect ("school spirit") for their university. These results support the EVT's claim that color preference is caused by learned affective responses to associated objects and institutions, because it is unlikely that students choose their university or develop their degree of school spirit on the basis of preexisting color preferences.
A Physicist for All Seasons: Part II
NASA Astrophysics Data System (ADS)
Oppenheimer, Frank
2013-06-01
The second part of this interview covers Frank Oppenheimer's move to the University of California at Berkeley and wartime work at the Westinghouse Research Laboratories in Pittsburgh, Pennsylvania, at the electromagnetic-separation plant in Oak Ridge, Tennessee, and at Los Alamos, New Mexico (1941-1945); his postwar research at Berkeley (1945-1947); his appointment at the University of Minnesota in 1947 and firing two years later after being required to testify before the House Un-American Activities Committee; his decade as a rancher in Colorado (1949-1959) and high-school science teacher toward the end of this period; his research at the University of Colorado in Boulder after 1959; his year as a Guggenheim Fellow at University College London in 1965; and his founding of the Exploratorium in San Francisco. California, in 1969. He also discusses his wartime relations with his older brother Robert and postwar events in Robert's life, including his Hearings before the Personnel Security Board of the Atomic Energy Commission in 1954.
Mutualism in museums: A model for engaging undergraduates in biodiversity science
Cicero, Carla; Albe, Monica J.; Barclay, Theresa L. W.; Spencer, Carol L.; Koo, Michelle S.; Bowie, Rauri C. K.; Lacey, Eileen A.
2017-01-01
Museums have an untapped potential to engage students in hands-on learning. Here, we describe the development of a tiered museum-based program at the University of California, Berkeley as a model for engaging undergraduates in biodiversity science. This decade-long effort to increase student participation in collections demonstrates the mutual benefits of undergraduate involvement. Museums benefit from critical help in collections care and an increased intellectual vitality, while students simultaneously gain essential research skills and an unparalleled exposure to biodiversity. Five first steps to creating a program are: dedicate a coordinator, offer credit, diversify participation, create a tiered structure, and build community. PMID:29161253
NASA Astrophysics Data System (ADS)
Durech, Josef; Hanus, J.; Vanco, R.
2012-10-01
We present a new project called Asteroids@home (http://asteroidsathome.net/boinc). It is a volunteer-computing project that uses an open-source BOINC (Berkeley Open Infrastructure for Network Computing) software to distribute tasks to volunteers, who provide their computing resources. The project was created at the Astronomical Institute, Charles University in Prague, in cooperation with the Czech National Team. The scientific aim of the project is to solve a time-consuming inverse problem of shape reconstruction of asteroids from sparse-in-time photometry. The time-demanding nature of the problem comes from the fact that with sparse-in-time photometry the rotation period of an asteroid is not apriori known and a huge parameter space must be densely scanned for the best solution. The nature of the problem makes it an ideal task to be solved by distributed computing - the period parameter space can be divided into small bins that can be scanned separately and then joined together to give the globally best solution. In the framework of the the project, we process asteroid photometric data from surveys together with asteroid lightcurves and we derive asteroid shapes and spin states. The algorithm is based on the lightcurve inversion method developed by Kaasalainen et al. (Icarus 153, 37, 2001). The enormous potential of distributed computing will enable us to effectively process also the data from future surveys (Large Synoptic Survey Telescope, Gaia mission, etc.). We also plan to process data of a synthetic asteroid population to reveal biases of the method. In our presentation, we will describe the project, show the first results (new models of asteroids), and discuss the possibilities of its further development. This work has been supported by the grant GACR P209/10/0537 of the Czech Science Foundation and by the Research Program MSM0021620860 of the Ministry of Education of the Czech Republic.
NASA Astrophysics Data System (ADS)
Troy, R. M.
2005-12-01
With ever increasing amounts of Earth-Science funding being diverted to the war in Iraq, the Earth-Science community must now more than ever wring every bit of utility out of every dollar. We're not likely to get funded any projects perceived by others as "pie in the sky", so we have to look at already funded programs within our community and directing new programs in a unifying direction. We have not yet begun the transition to a computationally unifying, general-purpose Earth Science computing paradigm, though it was proposed at the Fall 2002 AGU meeting in San Francisco, and perhaps earlier. Encouragingly, we do see a recognition that more commonality is needed as various projects have as funded goals the addition of the processing and dissemination of new datatypes, or data-sets, if you prefer, to their existing repertoires. Unfortunately, the timelines projected for adding a datatype to an existing system are typically estimated at around two years each. Further, many organizations have the perception that they can only use their dollars to support exclusively their own needs as they don't have the money to support the goals of others, thus overlooking opportunities to satisfy their own needs while at the same time aiding the creation of a global GeoScience cyber-infrastructure. While Computational Unification appears to be an unfunded, impossible dream, at least for now, individual projects can take steps that are compatible with a unified community and can help build one over time. This session explores these opportunities. The author will discuss the issues surrounding this topic, outlining alternative perspectives on the points of difficulty, and proposing straight-forward solutions which every Earth Science data processing system should consider. Sub-topics include distributed meta-data, distributed processing, distributed data objects, interdisciplinary concerns, and scientific defensibility with an overall emphasis on how previously written processes and functions may be integrated into a system efficiently, with minimal effort, and with an eye toward an eventual Computational Unification of the Earth Sciences. A fundamental to such systems is meta-data which describe not only the content of data but also how intricate relationships are represented and used to good advantage. Retrieval techniques will be discussed including trade-offs in using externally managed meta-data versus embedded meta-data, how the two may be integrated, and how "simplifying assumptions" may or may not actually be helpful. The perspectives presented in this talk or poster session are based upon the experience of the Sequoia 2000 and BigSur research projects at the University of California, Berkeley, which sought to unify NASA's Mission To Planet Earth's EOS-DIS, and on-going experience developed by Science Tools corporation, of which the author is a principal. NOTE: These ideas are most easily shared in the form of a talk, and we suspect that this session will generate a lot of interest. We would therefore prefer to have this session accepted as a talk as opposed to a poster session.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naulleau, Patrick
With demonstrated resist resolution of 20 nm half pitch, the SEMATECH Berkeley BUV microfield exposure tool continues to push crucial advances in the areas of BUY resists and masks. The ever progressing shrink in computer chip feature sizes has been fueled over the years by a continual reduction in the wavelength of light used to pattern the chips. Recently, this trend has been threatened by unavailability of lens materials suitable for wavelengths shorter than 193 nm. To circumvent this roadblock, a reflective technology utilizing a significantly shorter extreme ultraviolet (EUV) wavelength (13.5 nm) has been under development for the pastmore » decade. The dramatic wavelength shrink was required to compensate for optical design limitations intrinsic in mirror-based systems compared to refractive lens systems. With this significant reduction in wavelength comes a variety of new challenges including developing sources of adequate power, photoresists with suitable resolution, sensitivity, and line-edge roughness characteristics, as well as the fabrication of reflection masks with zero defects. While source development can proceed in the absence of available exposure tools, in order for progress to be made in the areas of resists and masks it is crucial to have access to advanced exposure tools with resolutions equal to or better than that expected from initial production tools. These advanced development tools, however, need not be full field tools. Also, implementing such tools at synchrotron facilities allows them to be developed independent of the availability of reliable stand-alone BUY sources. One such tool is the SEMATECH Berkeley microfield exposure tool (MET). The most unique attribute of the SEMA TECH Berkeley MET is its use of a custom-coherence illuminator made possible by its implementation on a synchrotron beamline. With only conventional illumination and conventional binary masks, the resolution limit of the 0.3-NA optic is approximately 25 nm, however, with EUV not expected in production before the 22-nm half pitch node even finer resolution capabilities are now required from development tools. The SEMATECH Berkeley MET's custom-coherence illuminator allows it to be used with aggressive modified illumination enabling kJ factors as low as 0.25. Noting that the lithographic resolution of an exposure tool is defined as k{sub 1}{lambda}/NA, yielding an ultimate resolution limit of 11 nm. To achieve sub-20-nm aerial-image resolution while avoiding forbidden pitches on Manhattan-geometry features with the centrally-obscured MET optic, a 45-degree oriented dipole pupil fill is used. Figure 1 shows the computed aerial-image contrast as a function of half pitch for a dipole pupil fill optimized to print down to the 19-nm half pitch level. This is achieved with relatively uniform performance at larger dimensions. Using this illumination, printing down to the 20-nm half pitch level has been demonstrated in chemically amplified resists as shown in Fig. 2. The SEMATECH Berkeley MET tool plays a crucial role in the advancement of EUV resists. The unique programmable coherence properties of this tool enable it to achieve higher resolution than other EUV projection tools. As presented here, over the past year the tool has been used to demonstrate resist resolutions of 20 half pitch. Although not discussed here, because the Berkeley MET tool is a true projection lithography tool, it also plays a crucial role in advanced EUV mask research. Examples of the work done in this area include defect printability, mask architecture, and phase shift masks.« less
Just Say No to Carbon Emissions (LBNL Science at the Theater)
Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt
2018-06-15
Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.
Just Say No to Carbon Emissions (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt
2010-04-26
Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency inmore » China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.« less
TOP500 Supercomputers for June 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack
2004-06-23
23rd Edition of TOP500 List of World's Fastest Supercomputers Released: Japan's Earth Simulator Enters Third Year in Top Position MANNHEIM, Germany; KNOXVILLE, Tenn.;&BERKELEY, Calif. In what has become a closely watched event in the world of high-performance computing, the 23rd edition of the TOP500 list of the world's fastest supercomputers was released today (June 23, 2004) at the International Supercomputer Conference in Heidelberg, Germany.
1987-06-01
direction- - the null direction-yields no response. In 1964, Horace Barlow and Bill Levick , working at the University of California at Berkeley, found...only output of the retina. Since Barlow and Levick used the so-called extracellular recording technique, that is the electrode recording the...two slits, placed close to each other. Barlow and Levick first measured the response of the cell when each bar was turned on and off in isolation
Robustness, Diagnostics, Computing and Graphics in Statistics
1990-01-01
seto his collection at nuformation. ruciL.ong suggestions for reducing this burden to Washington iieadcuarters Services . Directorate or information...Lewis Cornell University Keaing Lu Georgia Institute of Technology Mary Silber UC, Berkeley Matthew W. Stafford Loyola University Mary Lou Zeeman UC...wavefronts in excitable media are determined by the manner of recovery to the rest state. The distance between a pair of wavefronts tends to lock at one of
Hydraulic Conductivity Measurements Barrow 2014
Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller
2015-02-22
Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.
Preface to the Special Issue on TOUGH Symposium 2015
NASA Astrophysics Data System (ADS)
Blanco-Martín, Laura
2017-11-01
The TOUGH Symposium 2015 was held in Berkeley, California, September 28-30, 2015. The TOUGH family of codes, developed at the Energy Geosciences Division of Lawrence Berkeley National Laboratory (LBNL), is a suite of computer programs for the simulation of multiphase and multicomponent fluid and heat flows in porous and fractured media with applications in many geosciences fields, such as geothermal reservoir engineering, nuclear waste disposal, geological carbon sequestration, oil and gas reservoirs, gas hydrate research, vadose zone hydrology and environmental remediation. Since the first release in the 1980s, many modifications and enhancements have been continuously made to TOUGH and its various descendants (iTOUGH2, TOUGH+, TOUGH-MP, TOUGHREACT, TOUGH+HYDRATE, TMVOC...), at LBNL and elsewhere. Today, these codes are used worldwide in academia, government organizations and private companies in problems involving coupled hydrological, thermal, biogeochemical and geomechanical processes. The Symposia, organized every 2-3 years, bring together developers and users for an open exchange on recent code enhancements and applications. In 2015, the Symposium was attended by one hundred participants, representing thirty-four nationalities. This Special Issue in Computers & Geosciences gathers extended versions of selected Symposium proceedings related to (i) recent enhancements to the TOUGH family of codes and (ii) coupled flow and geomechanics processes modeling.
40 CFR 81.341 - South Carolina.
Code of Federal Regulations, 2014 CFR
2014-07-01
... County X Anderson County X Bamberg County X Barnwell County X Beaufort County X Berkeley County X Calhoun... County X Berkeley County X Calhoun County X Charleston County X Cherokee County X Chester County X... Beaufort County Berkeley County Calhoun County Charleston County Cherokee County Chester County...
Berkeley Screen: a set of 96 solutions for general macromolecular crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.
Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less
Berkeley Screen: a set of 96 solutions for general macromolecular crystallization
Pereira, Jose H.; McAndrew, Ryan P.; Tomaleri, Giovani P.; ...
2017-09-05
Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography programmore » at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens. The Berkeley Screen provides an efficient set of solutions for general macromolecular crystallization trials.« less
The Transition to the Elastic Regime in the Vicinity of an Underground Explosion
1990-11-18
of California A Division of Maxwell Laboratory Berkeley, CA 94720 P.O. Box 1620 La Jolla, CA 92038-1620 Dr. Richard LaCoss Prof. William Menke MIT...0741 Tucson, AZ 85721 1K (h ituphcr 11. Scholz Dr. William Wortman I a;ioi;- Ioherty G;eological Observatory Mission Research Corporation of Colurrhia... William J. Best Prof. Robert W. Clayton 907 Westwoo Drive Seismological Laboratory Vienna, VA 22180 Division of Geological & Planetary Sciences California
Carbon Cycle 2.0: Mary Ann Piette: Impact of efficient buildings
Mary Ann Piette
2017-12-09
Mary Ann Piette speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
New Light on Dark Energy (LBNL Science at the Theater)
Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew
2017-12-09
A panel of Lab scientists â including Eric Linder, Shirly Ho, and Greg Aldering â along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.
Carbon Cycle 2.0: Bill Collins: A future without CC2.0
Bill Collins
2017-12-09
Bill Collins speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
1988-10-14
Ion Ream Lithography Using Novolak Based Resist S. Matsui, Y. Kojima, and .7. Dchiai ......................................... 0, 448 FIB Direct Ion...to the line length, reflection effects occur. The impedance oscillates with small changes in frequency as constructive or destructive interference ...Materials and Chemical Sciences Division discharge rates by a factor of five. Na/ DMDS cell 1 Cyclotron Road, Berkeley, CA 94720 having I wt% CoPc were
The Kurds and their AGAS: An Assessment of the Situation in Northern Iraq
1991-09-16
Analyst at the Strategic Studies Institute, U.S. Army War College. He received his Ph.D. in Political Science from the University of California, Berkeley...has long been lost. An active political movement did formerly exist among the Kurds, attempting to institute land reforms in the Kurdish area. That...currently taking place between the Kurdish political leaders and Saddam Husayn’s government. If reporting of the revolt was badly handled, media
Carbon Cycle 2.0: Mary Ann Piette: Impact of efficient buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary Ann Piette
Mary Ann Piette speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
Carbon Cycle 2.0: Bill Collins: A future without CC2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill Collins
2010-02-09
Bill Collins speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.
2014-12-01
Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).
Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center our response, please check the specific website or page in question for the name of the appropriate
78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-17
... Marina Fourth of July Fireworks display in the Captain of the Port, San Francisco area of responsibility... Guard will enforce a 1,000 foot safety zone around the Berkeley Pier in approximate position 37[deg]51... radius 1,000 [[Page 29023
Ultra-high Resolution Coherent X-ray Imaging of Nano-Materials
NASA Astrophysics Data System (ADS)
Shapiro, David
A revolution is underway in the field of x-ray microscopy driven by the develop of experimental, theoretical and computational means of producing a complete description of coherent imaging systems from x-ray diffraction data. The methods being developed not only allow for full quantification and removal of all optical aberrations but also extension of the numerical aperture to the diffraction limit. One such method under intensive development is x-ray ptychography. This is a scanned probe method that reconstructs a scattering object and its illumination from coherent diffraction data. Within the first few years of development at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, this method has already achieved the highest resolution x-ray images ever recorded in two, three and four dimensions. With the ability of x-rays to penetrate significantly more matter than electrons, their short wavelength and their sensitivity to chemical and magnetic states of matter, x-ray ptychography is set to revolutionize how we see the nano-scale world. In this presentation I will briefly describe the technical framework for how various methods work and will give a detailed account of a practical implementation at the ALS along with various scientific applications. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.
2013-01-01
The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.
Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)
Bissell, Mina; Canaria, Christie; Celnicker, Susan; Karpen, Gary
2018-06-20
In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Gary Karpen explores how environmental factors shape genome function and disease through epigenetics.
Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory
NASA Astrophysics Data System (ADS)
Friedman, Alex
2007-07-01
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.
The Search for Life in the Universe: The Past Through the Future
NASA Astrophysics Data System (ADS)
Lebofsky, L. A.; Lebofsky, A.; Lebofsky, M.; Lebofsky, N. R.
2003-05-01
``Are we alone?'' This is a question that has been asked by humans for thousands of years. More than any other topic in science, the search for life in the Universe has captured the imagination. Now, for the first time in history, we are on the verge of answering this question. The search for life beyond the Earth can be seen as far back as the 17th century writings of Bishops F. Godwin and J. Wilkins and S. Cyrano de Bergerac to the early 20th century's H. G. Wells. From a scientific perspective, this search led to the formulation of the Drake Equation which in turn has led to a number of projects that are searching for signs of intelligent life beyond the Earth, the Search for Extraterrestrial Intelligence. SETI@home reaches millions of users, including thousands of K-12 teachers across the nation. We are developing a project that will enhance the SETI@home web site located at UC Berkeley. The project unites the resources of the SETI@home distributed computing community web site, university settings, and informal science learning centers. It will reach approximately 100,000 learners. The goal is to increase public understanding of math and science and to create and strengthen the connections between informal and formal learning communities. We will present a variety of ways that the Drake Equation and SETI@home can enhance the public and student understanding of the search for life in the Universe, from its roots in literature, to the development (and evolution) of the Drake Equation, to the actual search for life with SETI.
ERIC Educational Resources Information Center
Gardiner, John J.
Research environments of four leading universities were studied: University of California at Berkeley (UC-Berkeley), Harvard University, Massachusetts Institute of Technology (MIT), and Stanford University. Attention was directed to organizational responses for encouraging collaboration in research at these leading universities, as well as to…
Berkeley Lab - Lawrence Berkeley National Laboratory
nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into of Methane's Increasing Greenhouse Effect A Berkeley Lab research team tracked a rise in the warming effect of methane - one of the most important greenhouse gases for the Earth's atmosphere - over a 10
Index (this page) 2. Use search.lbl.gov powered by Google. 3. Use DS The Directory of both People and Berkeley Lab Lawrence Berkeley National Laboratory A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News Center
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASA Berkeley researchers Zack Gainsforth (seated) and Chris Snead working with sample encased in aerogel Note: Eric Land of NASA/AMES video crew in lower left corner providing sound support for event
City of Berkeley, California Municipal Tree Resource Analysis
S.E. Maco; E.G. McPherson; J.R. Simpson; P.J. Peper; Q. Xiao
2005-01-01
Vibrant, renowned for its livability and cultural wealth, the city of Berkeley maintains trees as an integral component of the urban infrastructure. Research indicates that healthy trees can mitigate impacts associated with the built environment by reducing stormwater runoff, energy consumption, and air pollutants. Put simply, trees improve urban life, making Berkeley...
An Internet-style Approach to Managing Wireless Link Errors
2002-05-01
implementation I used. Jamshid Mahdavi and Matt Mathis, then at the Pittsburgh Super- computer Center, and Vern Paxson of the Lawrence Berkeley National...Exposition. IEEE CS Press, 2002. [19] P. Bhagwat, P. Bhattacharya, A. Krishna , and S. Tripathi. Enhancing throughput over wireless LANs using channel...performance over wireless networks at the link layer. ACM Mobile Networks and Applications, 5(1):57– 71, March 2000. [97] Vern Paxson and Mark Allman
Development and Application of Numerical Models for Reactive Flows
1990-08-15
Shear Layers: Ill. Effect of Convective Mach number Raafat H. Guirguis Abstract Model This paper addresses some of the fundamental We have made the...OTIC FILE COPY / 0 00 DTIC N~l 9 ELECTE D CbBA9-OI Development and Application of Numerical Models for Reactive Flows Berkeley Research Associates...Laboratory for Computa- tional Physics (LCP), hav focused on developing mathematical and computational models which accurately and efficiently describe the
A Response Evaluation Approach: An Aid for Computer Assisted Instruction Lesson Writing.
1980-09-01
Arnheim, Rudolph, Visual Thinking, Berkeley and Los Angeles, California: UniversiEy of California Press, 1969. Bruner , Jerome S., Goodnow, Jacqueline J...describing a further path for each student, which would optimize his learning experience, must be at the machine’s disposal. In the student-directed...approach, the sequence of the material presented is altered only at the request of the student. The approach uses the aspect of learning by dis
Computational and Psychophysical Study of Human Vision Using Neural Networks
1989-04-28
Dept. of Molecular 800 North Quincy Street, Arlington, VA and Cell Biology , c/o Stanley/Donner ASU, 22217-5000 Univ. of California, Berkeley, CA 94720...20301-3080 Bldg. 1171/1 Newport, RI 02841 Dr. Gary Aston-Jones New York University Cdr. Robert C. Carter USN Department of Biology Naval Research...Howard, Jr. Department of Psychology Dr. Donald A. Glaser Human Performance Lab Univ of California Catholic University Dept of Molecular Biology
1999-07-30
National Science Foundation through the GOALI Program, under grant number ECS-9705134. References [1] T. Ogino, M. Aoki, Jap. J. Appl. Phys. 19 (1980... pulled from molten silicon through a graphite slot for solar cell production in economical way [8]. It was observed that EFG silicon contains high...samples the closest resem- blance to our observations is found in the Au-Hj config- uration where the --/- gold acceptor level is pulled down in the
Development of Cellulosic Biofuels (LBNL Summer Lecture Series)
Somerville, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Stanford Univ., CA (United States). Dept. of Biological Sciences
2018-05-18
Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.
Berkeley Lab - Materials Sciences Division
2018 [PDF] October 2017 [PDF] July 2017 [PDF] April 2017 [PDF] January 2017 [PDF] October 2016 [PDF ] July 2016 [PDF] April 2016 [PDF] January 2016 [PDF] October 2015 [PDF] March 2015 [PDF] December 2014 [PDF] April 2014 [PDF] February 2014 [PDF] September 2013 [PDF] March 2013 [PDF] October, 2012 [PDF
2017-12-08
NASA image release April 22, 2010 Object Names: Carina Nebula, NGC 3372 Image Type: Astronomical Credit: NASA/N. Smith (University of California, Berkeley) and NOAO/AURA/NSF To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
ECONOMICS NOBEL: Dealing With Biases and Discrete Choices.
Seife, C
2000-10-20
This year's Bank of Sweden Prize in Economic Sciences, given in honor of Alfred Nobel, goes to two researchers who gave the field of microeconomics--the study of individuals' economic behavior--new tools to help draw conclusions from imperfect data. James Heckman of the University of Chicago wins half of this year's prize for coming up with ways to deal with selection biases. Daniel McFadden of the University of California, Berkeley, tackled a different conundrum: how to quantify discrete choices rather than continuous ones.
Dominguez, Luis A.; Yildirim, Battalgazi; Husker, Allen L.; Cochran, Elizabeth S.; Christensen, Carl; Cruz-Atienza, Victor M.
2015-01-01
Each volunteer computer monitors ground motion and communicates using the Berkeley Open Infrastructure for Network Computing (BOINC, Anderson, 2004). Using a standard short‐term average, long‐term average (STLA) algorithm (Earle and Shearer, 1994; Cochran, Lawrence, Christensen, Chung, 2009; Cochran, Lawrence, Christensen, and Jakka, 2009), volunteer computer and sensor systems detect abrupt changes in the acceleration recordings. Each time a possible trigger signal is declared, a small package of information containing sensor and ground‐motion information is streamed to one of the QCN servers (Chung et al., 2011). Trigger signals, correlated in space and time, are then processed by the QCN server to look for potential earthquakes.
Crowd-Sourcing Seismic Data for Education and Research Opportunities with the Quake-Catcher Network
NASA Astrophysics Data System (ADS)
Sumy, D. F.; DeGroot, R. M.; Benthien, M. L.; Cochran, E. S.; Taber, J. J.
2016-12-01
The Quake Catcher Network (QCN; quakecatcher.net) uses low cost micro-electro-mechanical system (MEMS) sensors hosted by volunteers to collect seismic data. Volunteers use accelerometers internal to laptop computers, phones, tablets or small (the size of a matchbox) MEMS sensors plugged into desktop computers using a USB connector to collect scientifically useful data. Data are collected and sent to a central server using the Berkeley Open Infrastructure for Network Computing (BOINC) distributed computing software. Since 2008, sensors installed in museums, schools, offices, and residences have collected thousands of earthquake records, including the 2010 M8.8 Maule, Chile, the 2010 M7.1 Darfield, New Zealand, and 2015 M7.8 Gorkha, Nepal earthquakes. In 2016, the QCN in the United States transitioned to the Incorporated Research Institutions for Seismology (IRIS) Consortium and the Southern California Earthquake Center (SCEC), which are facilities funded through the National Science Foundation and the United States Geological Survey, respectively. The transition has allowed for an influx of new ideas and new education related efforts, which include focused installations in several school districts in southern California, on Native American reservations in North Dakota, and in the most seismically active state in the contiguous U.S. - Oklahoma. We present and describe these recent educational opportunities, and highlight how QCN has engaged a wide sector of the public in scientific data collection, particularly through the QCN-EPIcenter Network and NASA Mars InSight teacher programs. QCN provides the public with information and insight into how seismic data are collected, and how researchers use these data to better understand and characterize seismic activity. Lastly, we describe how students use data recorded by QCN sensors installed in their classrooms to explore and investigate felt earthquakes, and look towards the bright future of the network.
NASA Astrophysics Data System (ADS)
Schultz, G.; Granger, E.; Catz, K. N.; Wierman, T.
2010-08-01
The newly-developed Space Science Sequence (SSS) is the product of a collaboration between NASA forums/missions and the Lawrence Hall of Science (LHS) Great Explorations in Math and Science (GEMS) program, based at UC Berkeley. At the ASP 2007 conference, keynote speaker George (Pinky) Nelson made special mention of partners involved and the curriculum produced. From the proceedings: "I want to recognize Jacqueline Barber, Isabel Hawkins, Greg Schultz and their colleagues. . . for setting an example of effective partnershipldots We would do well to become familiar with [the SSS] and promote them to teachers and schoolsldots At the same time, we can learn from teachers and students using [the SSS]\\. . . " (2008; p. 3). It is specifically such professional learning, from practicing teachers and grade school students, which motivated this panel session focusing on research and evaluation studies on teacher and student gains using the Space Science Sequence for Grades 3-5.
PUB-3000 | BERKELEY LAB HEALTH AND SAFETY MANUAL
ES&H MANUAL (PUB-3000) Berkeley Lab Table of Contents Guide to Using the ES&H Manual Responsible Authors Log of ES&H Manual Changes Requesting a Change to the ES&H Manual Search the ES &H Manual Questions & Comments Lawrence Berkeley National Laboratory University of California
Silver, Lynn D; Ng, Shu Wen; Ryan-Ibarra, Suzanne; Taillie, Lindsey Smith; Induni, Marta; Miles, Donna R; Poti, Jennifer M; Popkin, Barry M
2017-04-01
Taxes on sugar-sweetened beverages (SSBs) meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake. Methods included comparison of pre-taxation (before 1 January 2015) and first-year post-taxation (1 March 2015-29 February 2016) measures of (1) beverage prices at 26 Berkeley stores; (2) point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3) a representative telephone survey (17.4% cooperation rate) of 957 adult Berkeley residents. Key hypotheses were that (1) the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2) sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3) consumer spending per transaction (checkout episode) would not increase in Berkeley stores; and (4) self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce), beverage sales (ounces), consumers' spending measured as store revenue (inflation-adjusted dollars per transaction) in two large chains, and usual beverage intake (grams/day and kilocalories/day). Tax pass-through (changes in the price after imposition of the tax) for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001) and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004), partial in pharmacies (+0.45¢/oz, p = 0.03), and negative in independent corner stores and independent gas stations (-0.64¢/oz, p = 0.004). Sales-unweighted mean price change from scanner data was +0.67¢/oz (p = 0.00) (sales-weighted, +0.65¢/oz, p = 0.003), with +1.09¢/oz (p < 0.001) for sodas and energy drinks, but a lower change in other categories. Post-tax year 1 scanner data SSB sales (ounces/transaction) in Berkeley stores declined 9.6% (p < 0.001) compared to estimates if the tax were not in place, but rose 6.9% (p < 0.001) for non-Berkeley stores. Sales of untaxed beverages in Berkeley stores rose by 3.5% versus 0.5% (both p < 0.001) for non-Berkeley stores. Overall beverage sales also rose across stores. In Berkeley, sales of water rose by 15.6% (p < 0.001) (exceeding the decline in SSB sales in ounces); untaxed fruit, vegetable, and tea drinks, by 4.37% (p < 0.001); and plain milk, by 0.63% (p = 0.01). Scanner data mean store revenue/consumer spending (dollars per transaction) fell 18¢ less in Berkeley (-$0.36, p < 0.001) than in comparison stores (-$0.54, p < 0.001). Baseline and post-tax Berkeley SSB sales and usual dietary intake were markedly low compared to national levels (at baseline, National Health and Nutrition Examination Survey SSB intake nationally was 131 kcal/d and in Berkeley was 45 kcal/d). Reductions in self-reported mean daily SSB intake in grams (-19.8%, p = 0.49) and in mean per capita SSB caloric intake (-13.3%, p = 0.56) from baseline to post-tax were not statistically significant. Limitations of the study include inability to establish causal links due to observational design, and the absence of health outcomes. Analysis of consumption was limited by the small effect size in relation to high standard error and Berkeley's low baseline consumption. One year following implementation of the nation's first large SSB tax, prices of SSBs increased in many, but not all, settings, SSB sales declined, and sales of untaxed beverages (especially water) and overall study beverages rose in Berkeley; overall consumer spending per transaction in the stores studied did not rise. Price increases for SSBs in two distinct data sources, their timing, and the patterns of change in taxed and untaxed beverage sales suggest that the observed changes may be attributable to the tax. Post-tax self-reported SSB intake did not change significantly compared to baseline. Significant declines in SSB sales, even in this relatively affluent community, accompanied by revenue used for prevention suggest promise for this policy. Evaluation of taxation in jurisdictions with more typical SSB consumption, with controls, is needed to assess broader dietary and potential health impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel inmore » a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.« less
None
2018-05-30
A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel in a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.
The Quake Catcher Network: Cyberinfrastructure Bringing Seismology into Schools and Homes
NASA Astrophysics Data System (ADS)
Lawrence, J. F.; Cochran, E. S.
2007-12-01
We propose to implement a high density, low cost strong-motion network for rapid response and early warning by placing sensors in schools, homes, and offices. The Quake Catcher Network (QCN) will employ existing networked laptops and desktops to form the world's largest high-density, distributed computing seismic network. Costs for this network will be minimal because the QCN will use 1) strong motion sensors (accelerometers) already internal to many laptops and 2) nearly identical low-cost universal serial bus (USB) accelerometers for use with desktops. The Berkeley Open Infrastructure for Network Computing (BOINC!) provides a free, proven paradigm for involving the public in large-scale computational research projects. As evidenced by the SETI@home program and others, individuals are especially willing to donate their unused computing power to projects that they deem relevant, worthwhile, and educational. The client- and server-side software will rapidly monitor incoming seismic signals, detect the magnitudes and locations of significant earthquakes, and may even provide early warnings to other computers and users before they can feel the earthquake. The software will provide the client-user with a screen-saver displaying seismic data recorded on their laptop, recently detected earthquakes, and general information about earthquakes and the geosciences. Furthermore, this project will install USB sensors in K-12 classrooms as an educational tool for teaching science. Through a variety of interactive experiments students will learn about earthquakes and the hazards earthquakes pose. For example, students can learn how the vibrations of an earthquake decrease with distance by jumping up and down at increasing distances from the sensor and plotting the decreased amplitude of the seismic signal measured on their computer. We hope to include an audio component so that students can hear and better understand the difference between low and high frequency seismic signals. The QCN will provide a natural way to engage students and the public in earthquake detection and research.
Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2005-09-30
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.« less
None
2017-12-09
Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house tomore » use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Lee D.
2009-05-11
This project provided travel awards for scientists engaged in research relevant to the DOE mission to participate in the American Geophysical Union (AGU) Chapman Conference on Biogeophysics held October 13-16, 2008, in Portland, Maine (http://www.agu.org/meetings/chapman/2008/fcall/). The objective of this Chapman Conference was to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists that are leaders in their field and have a personal interest in exploring this new interdisciplinary field or are conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community and to generate amore » roadmap for establishing biogeophysics as a critical subdiscipline of earth science research. The sixty participants were an international group of academics, graduate students and scientists at government laboratories engaged in biogeophysics related research. Scientists from Europe, Israel and China traveled to engage North American colleagues in this highly focused 3.5 day meeting. The group included an approximately equal mix of microbiologists, biogeochemists and near surface geophysicists. The recipients of the DOE travel awards were [1] Dennis Bazylinski (University of Nevada, Las Vegas), [2] Yuri Gorby (Craig Venter Institute), [3] Carlos Santamarina (Georgia Tech), [4] Susan Hubbard (Lawrence Berkeley Laboratory), [5] Roelof Versteeg (Idaho National Laboratory), [6] Eric Roden (University of Wisconsin), [7] George Luther (University of Delaware), and [8] Jinsong Chen (Lawrence Berkeley Laboratory)« less
Modernizing Natural History: Berkeley's Museum of Vertebrate Zoology in Transition.
Sunderland, Mary E
2013-01-01
Throughout the twentieth century calls to modernize natural history motivated a range of responses. It was unclear how research in natural history museums would participate in the significant technological and conceptual changes that were occurring in the life sciences. By the 1960s, the Museum of Vertebrate Zoology at the University of California, Berkeley, was among the few university-based natural history museums that were able to maintain their specimen collections and support active research. The MVZ therefore provides a window to the modernization of natural history. This paper concentrates on the directorial transitions that occurred at the MVZ between 1965 and 1971. During this period, the MVZ had four directors: Alden H. Miller (Director 1940-1965), an ornithologist; Aldo Starker Leopold (Acting Director 1965-1966), a conservationist and wildlife biologist; Oliver P. Pearson (Director 1966-1971), a physiologist and mammalogist; and David B. Wake (Director 1971-1998), a morphologist, developmental biologist, and herpetologist. The paper explores how a diversity of overlapping modernization strategies, including hiring new faculty, building infrastructure to study live animals, establishing new kinds of collections, and building modern laboratories combined to maintain collections at the MVZ's core. The paper examines the tensions between the different modernization strategies to inform an analysis of how and why some changes were institutionalized while others were short-lived. By exploring the modernization of collections-based research, this paper emphasizes the importance of collections in the transformation of the life sciences.
Star Formation near Berkeley 59: Embedded Protostars
NASA Astrophysics Data System (ADS)
Rosvick, J. M.; Majaess, D.
2013-12-01
A group of suspected protostars in a dark cloud northwest of the young (~2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, 12CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v LSR = -15 to -17 km s-1, which agrees with the velocity adopted for Berkeley 59 (-15.7 km s-1), while spectral energy distribution models yield an average interstellar extinction AV and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.
Ryan-Ibarra, Suzanne; Taillie, Lindsey Smith; Induni, Marta
2017-01-01
Background Taxes on sugar-sweetened beverages (SSBs) meant to improve health and raise revenue are being adopted, yet evaluation is scarce. This study examines the association of the first penny per ounce SSB excise tax in the United States, in Berkeley, California, with beverage prices, sales, store revenue/consumer spending, and usual beverage intake. Methods and findings Methods included comparison of pre-taxation (before 1 January 2015) and first-year post-taxation (1 March 2015–29 February 2016) measures of (1) beverage prices at 26 Berkeley stores; (2) point-of-sale scanner data on 15.5 million checkouts for beverage prices, sales, and store revenue for two supermarket chains covering three Berkeley and six control non-Berkeley large supermarkets in adjacent cities; and (3) a representative telephone survey (17.4% cooperation rate) of 957 adult Berkeley residents. Key hypotheses were that (1) the tax would be passed through to the prices of taxed beverages among the chain stores in which Berkeley implemented the tax in 2015; (2) sales of taxed beverages would decline, and sales of untaxed beverages would rise, in Berkeley stores more than in comparison non-Berkeley stores; (3) consumer spending per transaction (checkout episode) would not increase in Berkeley stores; and (4) self-reported consumption of taxed beverages would decline. Main outcomes and measures included changes in inflation-adjusted prices (cents/ounce), beverage sales (ounces), consumers’ spending measured as store revenue (inflation-adjusted dollars per transaction) in two large chains, and usual beverage intake (grams/day and kilocalories/day). Tax pass-through (changes in the price after imposition of the tax) for SSBs varied in degree and timing by store type and beverage type. Pass-through was complete in large chain supermarkets (+1.07¢/oz, p = 0.001) and small chain supermarkets and chain gas stations (1.31¢/oz, p = 0.004), partial in pharmacies (+0.45¢/oz, p = 0.03), and negative in independent corner stores and independent gas stations (−0.64¢/oz, p = 0.004). Sales-unweighted mean price change from scanner data was +0.67¢/oz (p = 0.00) (sales-weighted, +0.65¢/oz, p = 0.003), with +1.09¢/oz (p < 0.001) for sodas and energy drinks, but a lower change in other categories. Post-tax year 1 scanner data SSB sales (ounces/transaction) in Berkeley stores declined 9.6% (p < 0.001) compared to estimates if the tax were not in place, but rose 6.9% (p < 0.001) for non-Berkeley stores. Sales of untaxed beverages in Berkeley stores rose by 3.5% versus 0.5% (both p < 0.001) for non-Berkeley stores. Overall beverage sales also rose across stores. In Berkeley, sales of water rose by 15.6% (p < 0.001) (exceeding the decline in SSB sales in ounces); untaxed fruit, vegetable, and tea drinks, by 4.37% (p < 0.001); and plain milk, by 0.63% (p = 0.01). Scanner data mean store revenue/consumer spending (dollars per transaction) fell 18¢ less in Berkeley (−$0.36, p < 0.001) than in comparison stores (−$0.54, p < 0.001). Baseline and post-tax Berkeley SSB sales and usual dietary intake were markedly low compared to national levels (at baseline, National Health and Nutrition Examination Survey SSB intake nationally was 131 kcal/d and in Berkeley was 45 kcal/d). Reductions in self-reported mean daily SSB intake in grams (−19.8%, p = 0.49) and in mean per capita SSB caloric intake (−13.3%, p = 0.56) from baseline to post-tax were not statistically significant. Limitations of the study include inability to establish causal links due to observational design, and the absence of health outcomes. Analysis of consumption was limited by the small effect size in relation to high standard error and Berkeley’s low baseline consumption. Conclusions One year following implementation of the nation’s first large SSB tax, prices of SSBs increased in many, but not all, settings, SSB sales declined, and sales of untaxed beverages (especially water) and overall study beverages rose in Berkeley; overall consumer spending per transaction in the stores studied did not rise. Price increases for SSBs in two distinct data sources, their timing, and the patterns of change in taxed and untaxed beverage sales suggest that the observed changes may be attributable to the tax. Post-tax self-reported SSB intake did not change significantly compared to baseline. Significant declines in SSB sales, even in this relatively affluent community, accompanied by revenue used for prevention suggest promise for this policy. Evaluation of taxation in jurisdictions with more typical SSB consumption, with controls, is needed to assess broader dietary and potential health impacts. PMID:28419108
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, James A.; O'Hagan, Molly J.; Ho, Ming-Hsun
2013-12-09
The [Ni(PR2NR’2)2]2+ catalysts, (where PR2NR´2 is 1,5-R´-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), are some of the fastest reported for hydrogen production and oxidation, however, chair/boat isomerization and the presence of a fifth solvent ligand have the potential to slow catalysis by incorrectly positioning the pendant amines or blocking the addition of hydrogen. Here, we report the structural dynamics of a series of [Ni(PR2NR’2)2]n+ complexes, characterized by NMR spectroscopy and theoretical modeling. A fast exchange process was observed for the [Ni(CH3CN)(PR2NR’2)2]2+ complexes which depends on the ligand. This exchange process was identified to occur through a three step mechanism including dissociation of the acetonitrile, boat/chair isomerizationmore » of each of the four rings identified by the phosphine ligands (including nitrogen inversion), and reassociation of acetonitrile on the opposite side of the complex. The rate of the chair/boat inversion can be influenced by varying the substituent on the nitrogen atom, but the rate of the overall exchange process is at least an order of magnitude faster than the catalytic rate in acetonitrile demonstrating that the structural dynamics of the [Ni(PR2NR´2)2]2+ complexes does not hinder catalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP56073. Research by J.A.F., M.O., M-H. H., M.L.H, D.L.D. A.M.A., S. R. and R.M.B. was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. W.J.S. and S.L. were funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. T.L. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory; and the Jaguar supercomputer at Oak Ridge National Laboratory (INCITE 2008-2011 award supported by the Office of Science of the U.S. DOE under Contract No. DE-AC0500OR22725).« less
Glenn T. Seaborg and heavy ion nuclear science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveland, W.
1992-04-01
Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies.more » Future roles of radiochemistry in heavy ion nuclear science also will be discussed.« less
Glenn T. Seaborg and heavy ion nuclear science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveland, W.
1992-04-01
Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies.more » Future roles of radiochemistry in heavy ion nuclear science also will be discussed.« less
Townes Group Activities from 1983-2000: Personal Recollections of William Danchi
NASA Technical Reports Server (NTRS)
Danchi, William C.
2015-01-01
I arrived in Berkeley in October 1983 as a post-doc, and my appointment was at the Space Sciences Laboratory (SSL). During that time the group was very large, with multiple activities led by Charlie himself and also by Senior Fellows such as John Lacy, Dan Jaffe, and Al Betz at the top of the hill at Space Sciences. Another significant contingent of the Townes group was housed in Birge Hall on campus, led by Reinhard Genzel when he was an Assistant Professor in the Physics Department. Although the group encompassed two separate locations, it functioned as one large group. Either we rode with Charlie up and down the hill, or (if we were concerned about our safety!) we took the bus.
Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissell, Mina; Canaria, Christie; Celnicker, Susan
In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Garymore » Karpen explores how environmental factors shape genome function and disease through epigenetics.« less
2015-06-13
The Berkeley Out-of-Order Machine (BOOM): An Industry- Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio David A...Synthesizable, Parameterized RISC-V Processor Christopher Celio, David Patterson, and Krste Asanović University of California, Berkeley, California 94720...Order Machine BOOM is a synthesizable, parameterized, superscalar out- of-order RISC-V core designed to serve as the prototypical baseline processor
ERIC Educational Resources Information Center
Collins, O. R.
This paper presents a profile of minority graduate students at the University of California, Berkeley. Following a brief overview of Berkeley's Graduate Minority Program (GMP), data is presented concerning the number of GMP students supported; available funds and average grants for students from 1968-69 to 1973-74; distribution of GMP students…
Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2007-09-30
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters thatmore » contain an overview of the Laboratory, a discussion of the Laboratory’s environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.« less
Impact of the Berkeley Excise Tax on Sugar-Sweetened Beverage Consumption
Falbe, Jennifer; Thompson, Hannah R.; Becker, Christina M.; Rojas, Nadia; McCulloch, Charles E.
2016-01-01
Objectives. To evaluate the impact of the excise tax on sugar-sweetened beverage (SSB) consumption in Berkeley, California, which became the first US jurisdiction to implement such a tax ($0.01/oz) in March 2015. Methods. We used a repeated cross-sectional design to examine changes in pre- to posttax beverage consumption in low-income neighborhoods in Berkeley versus in the comparison cities of Oakland and San Francisco, California. A beverage frequency questionnaire was interviewer administered to 990 participants before the tax and 1689 after the tax (approximately 8 months after the vote and 4 months after implementation) to examine relative changes in consumption. Results. Consumption of SSBs decreased 21% in Berkeley and increased 4% in comparison cities (P = .046). Water consumption increased more in Berkeley (+63%) than in comparison cities (+19%; P < .01). Conclusions. Berkeley’s excise tax reduced SSB consumption in low-income neighborhoods. Evaluating SSB taxes in other cities will improve understanding of their public health benefit and their generalizability. PMID:27552267
NASA Astrophysics Data System (ADS)
Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.
2015-12-01
The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.
NASA Astrophysics Data System (ADS)
Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab
2018-01-01
The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.
The Global Systems Science High School Curriculum
NASA Astrophysics Data System (ADS)
Gould, A. D.; Sneider, C.; Farmer, E.; Erickson, J.
2015-12-01
Global Systems Science (GSS), a high school integrated interdisciplinary science project based at Lawrence Hall of Science at UC Berkeley, began in the early 1990s as a single book "Planet at Risk" which was only about climate change. Federal grants enabled the project to enlist about 150 teachers to field test materials in their classes and then meeting in summer institutes to share results and effect changes. The result was a series of smaller modules dealing not only with climate change, but other related topics including energy flow, energy use, ozone, loss of biodiversity, and ecosystem change. Other relevant societal issues have also been incorporated including economics, psychology and sociology. The course has many investigations/activities for student to pursue, interviews with scientists working in specific areas of research, and historical contexts. The interconnectedness of a myriad of small and large systems became an overarching theme of the resulting course materials which are now available to teachers for free online at http://www.globalsystemsscience.org/
Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours
Andy Nonaka
2017-12-09
The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.
The Center for Star Formation Studies
NASA Technical Reports Server (NTRS)
Hollenbach, D.; Bell, K. R.; Laughlin, G.
2002-01-01
The Center for Star Formation Studies, a consortium of scientists from the Space Science Division at Ames and the Astronomy Departments of the University of California at Berkeley and Santa Cruz, conducts a coordinated program of theoretical research on star and planet formation. Under the directorship of D. Hollenbach (Ames), the Center supports postdoctoral fellows, senior visitors, and students; meets regularly at Ames to exchange ideas and to present informal seminars on current research; hosts visits of outside scientists; and conducts a week-long workshop on selected aspects of star and planet formation each summer.
Piette, Mary Ann
2018-05-03
Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piette, Mary Ann
Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
The Search for Life in the Universe: The Past Through the Future
NASA Astrophysics Data System (ADS)
Lebofsky, L. A.; Lebofsky, A.; Lebofsky, M.; Lebofsky, N. R.
2003-05-01
``Are we alone?" This is a question that has been asked by humans for thousands of years. More than any other topic in science, the search for life in the Universe has captured everyone's imagination. Now, for the first time in history, we are on the verge of answering this question. The search for life beyond the Earth can be seen as far back as the 16th century writings of J. Kepler, Bishops F. Godwin and J. Wilkins, and S. Cyrano de Bergerac to the early 20th century's H. G. Wells. From a scientific perspective, this search led to the formulation of the Drake Equation which in turn has led to a number of projects that are searching for signs of intelligent life beyond the Earth, the Search for Extraterrestrial Intellegence. SETI@home reaches millions of users, including thousands of K-12 teachers across the nation. We are developing a project that will enhance the SETI@home web site located at UC Berkeley. The project unites the resources of the SETI@home distributed computing community web site , university settings, and informal science learning centers. It will reach approximately 100,000 learners. The goal is to increase public understanding of math and science and to create and strengthen the connections between informal and formal learning communities. We will present a variety of ways that the Drake Equation and SETI@home can enhance the public and student understanding of the search for life in the Universe, from its roots in literature, to the development (and evolution) of the Drake Equation, to the actual search for life with SETI.
DePaolo, Donald J. (Director, Center for Nanoscale Control of Geologic CO2); NCGC Staff
2017-12-09
'Carbon in Underland' was submitted by the Center for Nanoscale Control of Geologic CO2 (NCGC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'entertaining animation and engaging explanations of carbon sequestration'. NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from seven institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO{sub 2} is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO{sub 2}. Research topics are: bio-inspired, CO{sub 2} (store), greenhouse gas, and interfacial characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Jeff
"Carbon in Underland" was submitted by the Center for Nanoscale Controls on Geologic CO2 (NCGC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its "entertaining animation and engaging explanations of carbon sequestration". NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from sevenmore » institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO2 is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO2. Research topics are: bio-inspired, CO2 (store), greenhouse gas, and interfacial characterization.« less
Simulation of Noise in a Traveling Wave Tube
NASA Astrophysics Data System (ADS)
Verboncoeur, J. P.; Christenson, P. J.; Smith, H. B.
1999-11-01
Low frequency noise, manifested as close-in sidebands, has long been a significant limit to the performance of many traveling wave tubes. In this study, we investigate oscillations in the gun region due to the presence of plasma formed by electron-impact ionization of a background gas. The gun region of a coupled-cavity traveling wave tube is modeled using the two-dimensional XOOPIC particle-in-cell Monte Carlo collision code (J. P. Verboncoeur et al. Comput. Phys. Comm.) 87, 199-211 (1995). (available via the web: http://ptsg.eecs.berkeley.edu). The beam is 20.5 kV, 2.8 A, in near-confined flow in a solenoidal magnetic field with peak axial value of 0.263 T. Beam scalloping leads to trapping of plasma generated via electron-impact ionization of a background gas. The trapped plasma periodically leaves the system rapidly, and the density begins regenerating at a slow rate, leading to characteristic sawtooth oscillations. Plasma electrons are observed to exit the system axially about 20 ns before the ions exit primarily radially.
Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen
2010-07-01
We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.
Berkeley lab checkpoint/restart (BLCR) for Linux clusters
Hargrove, Paul H.; Duell, Jason C.
2006-09-01
This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to fault precursors (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instancemore » reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters. © 2006 IOP Publishing Ltd.« less
Status of the UC-Berkeley SETI efforts
NASA Astrophysics Data System (ADS)
Korpela, E. J.; Anderson, D. P.; Bankay, R.; Cobb, J.; Howard, A.; Lebofsky, M.; Siemion, A. P. V.; von Korff, J.; Werthimer, D.
2011-10-01
We summarize radio and optical SETI programs based at the University of California, Berkeley. The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F, G, K and M stars, globular cluster and galaxies. The ongoing SERENDIP V.v sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with ~1.6 Hz spectral resolution. Frequency stepping allows the spectrometer to cover the full 300MHz band of the Arecibo L-band receivers. The final configuration will allow data from all 14 receivers in the Arecibo L-band Focal Array to be monitored simultaneously with over 1.8 billion channels. SETI@home uses the desktop computers of volunteers to analyze over 160 TB of data at taken at Arecibo. Over 6 million volunteers have run SETI@home during its 10 year history. The SETI@home sky survey is 10 times more sensitive than SERENDIP V.v but it covers only a 2.5 MHz band, centered on 1420 MHz. SETI@home searches a much wider parameter space, including 14 octaves of signal bandwidth and 15 octaves of pulse period with Doppler drift corrections from -100 Hz/s to +100 Hz/s. SETI@home is being expanded to analyze data collected during observations of Kepler objects of interest in May 2011. The Astropulse project is the first SETI search for μs time scale pulses in the radio spectrum. Because short pulses are dispersed by the interstellar medium, and the amount of dispersion is unknown, Astropulse must search through 30,000 possible dispersions. Substantial computing power is required to conduct this search, so the project uses volunteers and their personal computers to carry out the computation (using distributed computing similar to SETI@home). Keywords: radio instrumentation, FPGA spectrometers, SETI, optical SETI, Search for Extraterrestrial Intelligence, volunteer computing, radio transients, optical transients.
NASA Technical Reports Server (NTRS)
MacElroy, R. D.; Smernoff, D. T.
1996-01-01
A Workshop on "Nitrogen Dynamics in Controlled Systems" was held September 26-28, 1995 at the Lawrence Berkeley National Laboratory. The meetings were sponsored by the NASA Advanced Life Support program and the Lawrence Berkeley National Laboratory, and hosted by Prof. Lester Packer of the University of California at Berkeley, and of the Lawrence Berkeley National Laboratory. The Workshop participants were asked to: 1. summarize current knowledge on the cycling of nitrogen in closed systems; 2. identify the needs that closed systems may have for specific forms of nitrogen; 3. identify possible ways of generating and maintaining (or avoiding) specific forms and concentrations of nitrogen; 4. compare biological and physical/chemical methods of transforming nitrogen.
Hui, C.A.
1998-01-01
Water birds with diets high in animal foods in the San Francisco Bay area are exposed to trace elements that are potentially health impairing. Water birds with herbivorous diets have been less thoroughly examined. The concentrations of trace elements in the livers and the esophageal contents of an herbivorous water bird, the American coot (Fulica americana) were measured to compare levels of contaminant exposure among different locations in the Bay system and with other water birds. A total of 39 coots were collected from four sites: Napa River and Mare Island Strait in the north, Berkeley in the middle, and Coyote Creek in the south. Livers of Berkeley samples differed significantly from those of Napa River and Mare Island Strait by their greater concentrations of As and B and lower concentrations of Cu, but they seemed to be within normal ranges for birds. Otherwise the concentrations of trace elements in the livers did not differ among sites. Ingesta samples from Berkeley differed from the other sites because they tended to be higher in Al, V, and Zn. In contrast to waterfowl, livers from the herbivorous coots in San Francisco Bay showed little exposure to Cd, Hg, Pb, or Se. Coot ingesta showed few samples with measurable levels of Cd, Hg, or Se and had low levels of Pb. The herbivorous diet of coots may shield them from exposure to such elements. However, high levels of V were present in coot livers and ingesta from all four sites, suggesting adaptation to this toxic element. Copyright (C) 1998 Elsevier Science Ltd.
Earth Sciences Division Research Summaries 2002-2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodvarsson, G.S.
2003-11-01
Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climatemore » change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental Remediation Technology; and (5) Climate Variability and Carbon Management. These programs draw from each of ESD's disciplinary departments: Microbial Ecology and Environmental Engineering, Geophysics and Geomechanics, Geochemistry, and Hydrogeology and Reservoir Dynamics. Short descriptions of these departments are provided as introductory material. A list of publications for the period from January 2002 to June 2003, along with a listing of our personnel, are appended to the end of this report.« less
NASA Astrophysics Data System (ADS)
Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.
2006-12-01
Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course (http://www.cacosee.net/collegecourse) from COSEE California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project will leverage these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort will be one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course derived from COS that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach to informal institutions and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting ISEI. COSIA partners include: Hampton University Virginia Aquarium; Oregon State University Hatfield Marine Science Visitor's Center; Rutgers University Liberty Science Center; University of California, Berkeley Lawrence Hall of Science; and University of Southern California Aquarium of the Pacific. COS has been or will soon be taught at Rutgers University, UC Berkeley, Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), Scripps Institution of Oceanography, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. For example, there was a decrease in agreement with statements describing traditional didactic teaching strategies suggesting that students who took the course developed a more sophisticated, inquiry-based philosophy of learning. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.
ERIC Educational Resources Information Center
Breslauer, George W.
2013-01-01
The University of California at Berkeley now delivers more to the public of California than it ever has, and it does this on the basis of proportionally less funding by the State government than it has ever received. This claim may come as a surprise, since it is often said that Berkeley is in the process of privatizing, becoming less of a public…
NASA Astrophysics Data System (ADS)
Deslippe, Jack; Samsonidze, Georgy; Strubbe, David A.; Jain, Manish; Cohen, Marvin L.; Louie, Steven G.
2012-06-01
BerkeleyGW is a massively parallel computational package for electron excited-state properties that is based on the many-body perturbation theory employing the ab initio GW and GW plus Bethe-Salpeter equation methodology. It can be used in conjunction with many density-functional theory codes for ground-state properties, including PARATEC, PARSEC, Quantum ESPRESSO, SIESTA, and Octopus. The package can be used to compute the electronic and optical properties of a wide variety of material systems from bulk semiconductors and metals to nanostructured materials and molecules. The package scales to 10 000s of CPUs and can be used to study systems containing up to 100s of atoms. Program summaryProgram title: BerkeleyGW Catalogue identifier: AELG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open source BSD License. See code for licensing details. No. of lines in distributed program, including test data, etc.: 576 540 No. of bytes in distributed program, including test data, etc.: 110 608 809 Distribution format: tar.gz Programming language: Fortran 90, C, C++, Python, Perl, BASH Computer: Linux/UNIX workstations or clusters Operating system: Tested on a variety of Linux distributions in parallel and serial as well as AIX and Mac OSX RAM: (50-2000) MB per CPU (Highly dependent on system size) Classification: 7.2, 7.3, 16.2, 18 External routines: BLAS, LAPACK, FFTW, ScaLAPACK (optional), MPI (optional). All available under open-source licenses. Nature of problem: The excited state properties of materials involve the addition or subtraction of electrons as well as the optical excitations of electron-hole pairs. The excited particles interact strongly with other electrons in a material system. This interaction affects the electronic energies, wavefunctions and lifetimes. It is well known that ground-state theories, such as standard methods based on density-functional theory, fail to correctly capture this physics. Solution method: We construct and solve the Dyson's equation for the quasiparticle energies and wavefunctions within the GW approximation for the electron self-energy. We additionally construct and solve the Bethe-Salpeter equation for the correlated electron-hole (exciton) wavefunctions and excitation energies. Restrictions: The material size is limited in practice by the computational resources available. Materials with up to 500 atoms per periodic cell can be studied on large HPCs. Additional comments: The distribution file for this program is approximately 110 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: 1-1000 minutes (depending greatly on system size and processor number).
Alexopoulos, Konstantinos; Lee, Mal -Soon; Liu, Yue; ...
2016-03-21
Here, to account for thermal and entropic effects caused by the dynamics of the motion of the reaction intermediates, ethanol adsorption on the Brønsted acid site of the H-ZSM-5 catalyst has been studied at different temperatures and ethanol loadings using ab initio molecular dynamics (AIMD) simulations, infrared (IR) spectroscopy and calorimetric measurements. At low temperatures (T ≤ 400 K) and ethanol loading, a single ethanol molecule adsorbed in H-ZSM-5 forms a Zundel-like structure where the proton is equally shared between the oxygen of the zeolite and the oxygen of the alcohol. At higher ethanol loading, a second ethanol molecule helpsmore » to stabilize the protonated ethanol at all temperatures by acting as a solvating agent. The vibrational density of states (VDOS), as calculated from the AIMD simulations, are in excellent agreement with measured IR spectra for C 2H 5OH, C 2H 5OD and C 2D 5OH isotopomers and support the existence of both monomers and dimers. A quasi-harmonic approximation (QHA), applied to the VDOS obtained from the AIMD simulations, provides estimates of adsorption free energy within ~10 kJ/mol of the experimentally determined quantities, whereas the traditional approach, employing harmonic frequencies from a single ground state minimum, strongly overestimates the adsorption free energy by at least ~30 kJ/mol. This discrepancy is traced back to the inability of the harmonic approximation to represent the contributions to the vibrational motions of the ethanol molecule upon confinement in the zeolite. KA, MFR, GBM were supported by the Long Term Structural Methusalem Funding by the Flemish Government – grant number BOF09/01M00409. MSL, VAG, RR and JAL were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and the Stevin Supercomputer Infrastructure at Ghent University.« less
NASA Astrophysics Data System (ADS)
Poderoso, Charie
Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.
NCALM: NSF Supported Center for Airborne Laser Mapping
NASA Astrophysics Data System (ADS)
Shrestha, R. L.; Carter, W. E.; Dietrich, W. E.
2003-12-01
The National Science Foundation (NSF) recently awarded a grant to create a research center to support the use of airborne laser mapping technology in the scientific community. The NSF supported Center for Airborne Laser Mapping (NCALM) will be operated jointly by the Department of Civil & Coastal Engineering, College of Engineering, University of Florida (UF) and the Department of Earth and Planetary Science, University of California-Berkeley (UCB). NCALM will use the Airborne Laser Swath Mapping (ALSM) system jointly owned by UF and Florida International University (FIU), based at the UF Geosensing Engineering and Mapping (GEM) Research Center. The state-of-the-art laser surveying instrumentation, GPS systems, which are installed in a Cessna 337 Skymaster aircraft, will collect research grade data in areas selected through the competitive NSF grant review process. The ALSM observations will be analyzed both at UF and UCB, and made available to the PI through an archiving and distribution center at UCB-building upon the Berkeley Seismological Laboratory (BSL) Northern California Earthquake Data Center system. The purpose of NCALM is to provide research grade data from ALSM technology to NSF supported research studies in geosciences. The Center will also contribute to software development that will increase the processing speed and data accuracy. This presentation will discuss NCALM operation and the process of submitting proposals to NSF. In addition, it will outline the process to request available NCALM seed project funds to help jump-start small scientific research studies. Funds are also available for travel by academic researchers and students for hands-on knowledge and experience in ALSM technology at UF and UCB.
Novel Adult Stem Cells for Peripheral Nerve Regeneration
2012-09-01
were also positive for MSC surface marker CD29 and CD44 (Fig. 1F-G). However, CD29 and CD44 are also expressed in SMCs, so we will not use these non...tubulin. In addition, MVSCs were negative for perivascular MSC marker CD146 (Fig. 1H) and SMC progenitor marker Sca-1 (Fig. 1I). MVSCs were also...University of California, Berkeley, California 94720, USA. 2 UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California 94720, USA. 3
UC Berkeley's Celebration of the International Year of Astronomy 2009
NASA Astrophysics Data System (ADS)
Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.
2010-08-01
We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.
A distributed system for fast alignment of next-generation sequencing data.
Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D
2010-12-01
We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd DeSantis
Scientists at Berkeley Lab and the University of California, Merced are using an innovative DNA array developed at Berkeley Lab to catalog the microbes that live among coral in the tropical waters off the coast of Puerto Rico.
Engaging Audiences in Planetary Science Through Visualizations
NASA Astrophysics Data System (ADS)
Shupla, C. B.; Mason, T.; Peticolas, L. M.; Hauck, K.
2017-12-01
One way to share compelling stories is through visuals. The Lunar and Planetary Institute (LPI), in collaboration with Laboratory for Atmospheric and Space Physics (LASP) and Space Science Laboratory at the University of California, Berkeley, has been working with planetary scientists to reach and engage audiences in their research through the use of visualizations. We will share how images and animations have been used in multiple mediums, including the planetarium, Science on a Sphere, the hyperwall, and within apps. Our objectives are to provide a tool that planetary scientists can use to tell their stories, as well as to increase audience awareness of and interest in planetary science. While scientists are involved in the selection of topics and the development of the visuals, LPI and partners seek to increase the planetary science community's awareness of these resources and their ability to incorporate them into their own public engagement efforts. This presentation will share our own resources and efforts, as well as the input received from scientists on how education and public engagement teams can best assist them in developing and using these resources, and disseminating them to both scientists and to informal science education venues.
Berkeley Lab Search - Search engine for Berkeley Lab
twitter instagram google plus facebook youtube A U.S. Department of Energy National Laboratory Managed by the University of California Questions & Comments Privacy & Security Notice twitter instagram
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASABerkeley researcher Zack Gainsforth working with sample encased in aerogel
2006-11-29
Stardust sample analysis @ UC Berkeley clean room with Dr Scott Sandford, NASA Ames Astrophysicist - mission samples provided to UC Berkeley for analysis by NASABerkeley researcher Zack Gainsforth working with sample encased in aerogel
Towards breaking the silence between the two cultures: Engineering and the other humanities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prausnitz, John M.
2003-01-01
Over the years, I have attended numerous meetings like this one at the Center for the Study of Higher Education. I have noticed that most of the attendees, and certainly the speakers, tend to come from the social sciences or humanities. Only rarely do I see anyone here from Berkeley's College of Chemistry or College of Engineering. I come from the College of Chemistry that includes Berkeley's Department of Chemical Engineering. I mention this background to indicate that my remarks here are necessarily less abstract, less theoretical and less philosophical than those of most previous seminar speakers. My remarks aremore » probably somewhat simplistic because, as a result of my engineering background, I tend to focus less on generalities and principles, giving more attention to possible solutions of limited practical problems. About seven weeks ago, I was invited to attend a conference sponsored by the Berlin Academy of Sciences where ''Sciences'' is not confined to natural sciences but includes also humanities and social sciences. The topic of the Conference was ''Sprachlosigkeit'', a German word that roughly translated means inability to speak. The subtitle was ''Silence Between the Disciplines''. The German universities are worried about the increasing gulf between what is often called ''the two cultures''. This gulf is a problem everywhere, including Berkeley, but it is my impression that it is much worse in Europe than in America. The International Conference in Berlin was attended by some big names including the presidents of the Humboldt University in Berlin, the University of Uppsala in Sweden and the Central European University of Budapest, as well as some distinguished academics from a variety of institutions including Harvard and Stanford, and the presidents of three major funding organizations: The Volkswagen Foundation, The German National Science Foundation and the Max Planck Society. The speakers were primarily from the humanities and social sciences but there also were two physicists, two biologists and one mathematician. I was the only speaker from Engineering. Following Karl Pister's generous invitation to present a seminar here, I would like to tell you in a severely revised form some of what I tried to say at the Conference in Berlin. When talking to colleagues in the Humanities and Social Sciences, one of my most difficult tasks is to persuade them that those who practice science and engineering are not confined to cold logic and bloodless experiments but that instead, science and engineering is a human enterprise, subject to all the paradoxes, inconsistencies and aesthetic judgments that characterize the human condition. When scientists and engineers are at their best, they suffer the same frustrations, self-doubt, and delights common to artists or novelists or literary critics, or to anyone who creates to extend knowledge and awareness. Like all other members of a university, scientists and engineers strive to make a better world; in participating in this common activity, they necessarily operate within the borders set by our common human nature. I stress this common activity and this common purpose because ultimately, it is this commonality that provides the only sound basis for overcoming the alienation, this Sprachlosigkeit, that under another name, is known as the silence between the cultures. I can best illustrate what I have just tried to say with a quotation and a cartoon. The quotation is a famous one, from Theodor Adorno: ''The most successful artistic creations are those that are lucky at their most dubious places''. Adorno was referring to painting, sculpture, literature and especially to music. However, what he said also holds for science and engineering. All students of history know that without occasional miracles, there would be little progress. Along with all the other humanities, sciences and engineering could not succeed without them. I would like to discuss three topics and again, I want to apologize for my simplistic views. (1) Two structural reasons that contribute to poor communication between disciplines. (2) Is Sprachlosigkeit necessarily bad? Why should we worry about it? (3) Some modest proposals that may facilitate communication across disciplinary boundaries with emphasis on the Bronowski Project for engineering students.« less
Middle and high school students shine
NASA Astrophysics Data System (ADS)
Asher, Pranoti; Saltzman, Jennifer
2012-02-01
Middle and high school students participating in after-school and summer research experiences in the Earth and space sciences are invited to participate in AGU's Bright Students Training as Research Scientists (Bright STaRS) program. The Bright STaRS program provides a dedicated forum for these students to present their research results to the scientific community at AGU's Fall Meeting, where they can also learn about exciting research, education, and career opportunities in the Earth and space sciences. Last year's program included 33 abstracts from middle and high school students involved with the Stanford University School of Earth Sciences; Raising Interest in Science and Engineering summer internship program sponsored by the Office of Science Outreach at Stanford; Lawrence Hall of Science at the University of California, Berkeley; the University of California, Santa Cruz; California Academy of Science; San Francisco State University; the University of Arizona; and the National Oceanic and Atmospheric Administration's Gulf of the Farallones National Marine Sanctuary. Their work spanned a variety of topics ranging from structural geology and paleontology to environmental geology and polar science. Nearly 100 Bright STaRS students presented their research posters on Thursday morning (8 December) of the Fall Meeting and had a chance to interact with scientists, AGU staff, and other meeting attendees.
Applied environmental fluid mechanics: what's the weather in your backyard?
NASA Astrophysics Data System (ADS)
Chow, F. K.
2011-12-01
The microclimates of the San Francisco Bay Area can lead to 30-40F differences in temperature from the coast to just 30 miles inland. The reasons for this include local topography which affects development of the atmospheric boundary layer. A Bay Area resident's experience of fog, air pollution, and weather events therefore differs greatly depending on exactly where they live. Such local weather phenomena provide a natural topic for introduction to boundary layer processes and are the basis of a new course developed at the University of California, Berkeley. This course complements the PI's research focus on numerical methods applied to atmospheric boundary layer flow over complex terrain. This new outreach and research-based course was created to teach students about the boundary layer and teach them how to use a community weather prediction model, WRF, to simulate conditions in the local area, while at the same time being actively involved in public outreach. The course was offered in the Civil and Environmental Engineering department with the collaboration and support of the Lawrence Hall of Science, Berkeley's public science museum. The students chose topics such as air quality, wind energy, climate change, and plume dispersion, all applied to the local San Francisco Bay Area. The students conducted independent research on their team projects, involving literature reviews, numerical model setup, and analysis of model results through comparison with field observations. The outreach component of the course included website design and culminated in demonstrations at the Lawrence Hall of Science. The seven student teams presented hands-on demos to 300-400 visitors, mostly kids 4-9 years old and their parents. Involving students directly in outreach efforts is hoped to encourage continued integration of research and education in their own careers. Early exposure to numerical modeling also improves student technical skills for future career experiences . Given positive feedback from students, the course will now be offered regularly as a senior design class which will also fulfill engineering graduation requirements.
joined the UC Berkeley Physics Department in 2004. He is also an astrophysicist at Lawrence Berkeley Perlmutter won the Department of Energy's E. O. Lawrence Award in Physics. In 2003 he was awarded the
Expert Meeting Report. Windows Options for New and Existing Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyck, C.; Carmody, J.; Haglund, K.
2013-05-01
The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011, at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.
Expert Meeting Report: Windows Options for New and Existing Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyk, C.; Carmody, J.; Haglund, K.
2013-05-01
The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.
Cultural Cosmos: Calpulli Huey Papalotl
NASA Astrophysics Data System (ADS)
Mendez, B.
2015-12-01
We describe a partnership to teach astronomy along with traditional Anahuacan cultural practices to local Latino families. Huey Papalotl is a Calpulli (Aztec dance group) in Berkeley California with members of all ages (babies to elders). We held weekly classes split between a first hour of astronomy lessons (presentations, hands-on activities, and outside observations of the sky) and a second hour of lessons on dances connected to the astronomical objects highlighted in the astronomy lessons (e.g. Sun, Moon, Venus, and Orion). We report on our approach to these classes, the partnership, and the efficacy interweaving science instruction with cultural learning.
TOP500 Supercomputers for November 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack
2003-11-16
22nd Edition of TOP500 List of World s Fastest Supercomputers Released MANNHEIM, Germany; KNOXVILLE, Tenn.; BERKELEY, Calif. In what has become a much-anticipated event in the world of high-performance computing, the 22nd edition of the TOP500 list of the worlds fastest supercomputers was released today (November 16, 2003). The Earth Simulator supercomputer retains the number one position with its Linpack benchmark performance of 35.86 Tflop/s (''teraflops'' or trillions of calculations per second). It was built by NEC and installed last year at the Earth Simulator Center in Yokohama, Japan.