Science.gov

Sample records for berkeley lab cosmic

  1. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    SciTech Connect

    Collier, Michael

    2002-12-17

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  2. Berkeley Lab 2nd Grader Outreach

    ScienceCinema

    Scoggins, Jackie; Louie, Virginia

    2016-07-12

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  3. Berkeley Lab 2nd Grader Outreach

    SciTech Connect

    Scoggins, Jackie; Louie, Virginia

    2012-01-01

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  4. Berkeley Lab's Cool Your School Program

    ScienceCinema

    Ivan Berry

    2016-07-12

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  5. Berkeley Lab's Cool Your School Program

    SciTech Connect

    Ivan Berry

    2012-07-30

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  6. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    SciTech Connect

    Hules, John A

    2008-12-12

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics.

  7. Microbes to Biomes at Berkeley Lab

    SciTech Connect

    2015-10-28

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  8. Microbes to Biomes at Berkeley Lab

    ScienceCinema

    None

    2016-07-12

    Microbes are the Earth's most abundant and diverse form of life. Berkeley Lab's Microbes to Biomes initiative -- which will take advantage of research expertise at the Joint Genome Institute, Advanced Light Source, Molecular Foundry, and the new computational science facility -- is designed to explore and reveal the interactions of microbes with one another and with their environment. Microbes power our planet’s biogeochemical cycles, provide nutrients to our plants, purify our water and are integral components in keeping the human body free of disease and may hold the key to the Earth’s future.

  9. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2016-07-12

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  10. Berkeley Lab: A Place of Wonder, Spring 2006

    SciTech Connect

    2008-01-01

    Video produced in early 2006. Lawrence Berkeley National Lab has been a leader in science and engineering research for more than 75 years. The Lab conducts a wide range of scientific research with key efforts in fundamental studies of the universe, quantitative biology, nanoscience, new energy systems and environmental solutions, and the use of computing as a tool for discovery. Located on a 200 acre site in the hills above the University of California's Berkeley campus, adjacent to the San Francisco Bay, Berkeley Lab holds the distinction of being the oldest of the U.S. Department of Energy's National Laboratories. Eleven Nobel laureates are associated with Berkeley Lab. It is managed by the University of California.

  11. Molecular Foundry Workshop draws overflow crowd to BerkeleyLab

    SciTech Connect

    Robinson, Art

    2002-11-27

    Nanoscale science and technology is now one of the top research priorities in the United States. With this background, it is no surprise that an overflow crowd or more than 350 registrants filled two auditoriums to hear about and contribute ideas for the new Molecular Foundry during a two-day workshop at the Lawrence Berkeley National Laboratory (Berkeley Lab). Scheduled to open for business at Berkeley Labin early 2006, the Molecular Foundry is one of three Nanoscale Science Research Centers (NSRCs) put forward for funding by the DOE's Office of Basic Energy Sciences (BES).

  12. Berkeley's Advanced Labs for Undergraduate Astronomy Majors

    NASA Astrophysics Data System (ADS)

    Heiles, C.

    1998-12-01

    We currently offer three advanced laboratory courses for undergraduate majors: optical, IR, and radio. These courses contain both intellectual and practical content; in this talk we focus on the radio lab as a representative example. The first half of the semester concentrates on fundamentals of microwave electronics and radio astronomy techniques in four formal laboratory exercises which emphasize hands-on use of microwave devices, laboratory instruments, and computer-controlled data taking. The second half of the course emphasizes astronomy, using a horn with ~ 1 m(2) aperture to map the HI in the Galaxy and a two-element interferometer composed of ~ 1 m diameter dishes on a ~ 10 m baseline to measure accurate positions of radio sources and accurate diameters for the Sun and Moon. These experiments and observations offer ideal opportunities for teaching coordinates, time, rotation matrices, data reduction techniques, least squares, signal processing, image processing, Fourier transforms, and laboratory and astronomical instrumentation. The students can't get along without using computers as actually used by astronomers. We stay away from packaged software such as IRAF, which are ``black boxes''; rather, students learn far more by writing their own software, usually for the first time. They use the IDL language to take and reduce data and prepare them for the lab reports. We insist on quality reports---including tables, postscript graphs and images, correct grammar, spelling, and all the rest---and we strongly urge (successfully!) the students to use LATEX. The other two lab courses have the same emphasis: the guiding spirit is to place the students in a real-life research-like situation. There is too much to do, so students perform the work in small groups of 3 or 4 and groups are encouraged to share their knowledge. Lab reports are written individually. These courses are very demanding, requiring an average of 20 hours per week from the students (and probably

  13. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    ScienceCinema

    Budinger, Thomas [LBNL, Center for Functional Imaging

    2016-07-12

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  14. Berkeley Lab scientists develop criteria for $20 million energy challenge

    ScienceCinema

    Walker, Iain

    2016-07-12

    Berkeley Labs Iain Walker and his colleagues in environmental energy research helped the Siebel Foundation develop the criteria for its Energy Free Home Challenge, which comes with a $20 million global incentive prize. The Challenge is a competition to create a new generation of systems and technologies for practical homes that realize a net-zero, non-renewable energy footprint without increasing the cost of ownership. It is open to everyone everywhere — university teams to handymen and hobbyists.

  15. Berkeley Lab Answers Your Home Energy Efficiency Questions

    SciTech Connect

    Walker, Iain

    2013-02-14

    In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.

  16. Better Batteries for Transportation: Behind the Scenes @ Berkeley Lab

    ScienceCinema

    Battaglia, Vince

    2016-07-12

    Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's BATT, the Batteries for Advanced Transportation Technologies Program he leads, where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. This is the first in a forthcoming series of videos taking viewers into the laboratories and research facilities that members of the public rarely get to see.

  17. Better Batteries for Transportation: Behind the Scenes @ Berkeley Lab

    SciTech Connect

    Battaglia, Vince

    2011-01-01

    Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's BATT, the Batteries for Advanced Transportation Technologies Program he leads, where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. This is the first in a forthcoming series of videos taking viewers into the laboratories and research facilities that members of the public rarely get to see.

  18. Berkeley Lab Answers Your Home Energy Efficiency Questions

    ScienceCinema

    Walker, Iain

    2016-07-12

    In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.

  19. Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011

    ScienceCinema

    Sanii, Babak

    2016-07-12

    Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011

  20. Sneak Preview of Berkeley Lab's Science at the Theatre on June 6th, 2011

    SciTech Connect

    Sanii, Babak

    2011-01-01

    Babak Sanii provides a sneak preview of Berkeley Lab's next Science at the Theater Event: Big Thinking: The Power of Nanoscience. Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Berkeley Repertory Theatre on June 6th, 2011

  1. Energy Efficient Buildings and Appliances: From Berkeley Lab to the Marketplace (LBNL Summer Lecture Series)

    ScienceCinema

    Rosenfeld, Art [Commissioner, California Energy Commission

    2016-07-12

    Summer Lecture Series 2006: Art Rosenfeld, an appointee to the California Energy Commission and one of the architects of energy efficiency research at Berkeley Lab in the 1970s, discusses what it takes to shepherd innovative energy efficiency research from the lab to the real world.

  2. Berkeley Lab Scientist Co-Leads Breast Cancer Dream Team

    ScienceCinema

    Gray, Joe

    2016-07-12

    An $16.5 million, three-year grant to develop new and more effective therapies to fight breast cancer was awarded today to a multi-institutional Dream Team of scientists and clinicians that is co-led by Joe Gray, a renowned cancer researcher with the U.S. Department of Energys Lawrence Berkeley National Laboratory. http://newscenter.lbl.gov/

  3. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    SciTech Connect

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  4. Wetlands, Microbes, and the Carbon Cycle: Behind the Scenes @ Berkeley Lab

    SciTech Connect

    Tringe, Susannah

    2012-01-01

    Susannah Tringe, who leads the Metagenome Program at the Department of Energy's Joint Genome Institute (JGI), a collaboration in which Berkeley Lab plays a leading role, takes us behind the scenes to show how DNA from unknown wild microbes is extracted and analyzed to see what role they play in the carbon cycle. Tringe collects samples of microbial communities living in the wetland muck of the Sacramento-San Joaquin River Delta, organisms that can determine how these wetlands store or release carbon.

  5. Wetlands, Microbes, and the Carbon Cycle: Behind the Scenes @ Berkeley Lab

    ScienceCinema

    Tringe, Susannah

    2016-07-12

    Susannah Tringe, who leads the Metagenome Program at the Department of Energy's Joint Genome Institute (JGI), a collaboration in which Berkeley Lab plays a leading role, takes us behind the scenes to show how DNA from unknown wild microbes is extracted and analyzed to see what role they play in the carbon cycle. Tringe collects samples of microbial communities living in the wetland muck of the Sacramento-San Joaquin River Delta, organisms that can determine how these wetlands store or release carbon.

  6. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    SciTech Connect

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

  7. Solar Fridges and Personal Power Grids: How Berkeley Lab is Fighting Global Poverty (LBNL Science at the Theater)

    SciTech Connect

    Buluswar, Shashi; Gadgil, Ashok

    2012-11-26

    At this November 26, 2012 Science at the Theater, scientists discussed the recently launched LBNL Institute for Globally Transformative Technologies (LIGTT) at Berkeley Lab. LIGTT is an ambitious mandate to discover and develop breakthrough technologies for combating global poverty. It was created with the belief that solutions will require more advanced R&D and a deep understanding of market needs in the developing world. Berkeley Lab's Ashok Gadgil, Shashi Buluswar and seven other LIGTT scientists discussed what it takes to develop technologies that will impact millions of people. These include: 1) Fuel efficient stoves for clean cooking: Our scientists are improving the Berkeley Darfur Stove, a high efficiency stove used by over 20,000 households in Darfur; 2) The ultra-low energy refrigerator: A lightweight, low-energy refrigerator that can be mounted on a bike so crops can survive the trip from the farm to the market; 3) The solar OB suitcase: A low-cost package of the five most critical biomedical devices for maternal and neonatal clinics; 4) UV Waterworks: A device for quickly, safely and inexpensively disinfecting water of harmful microorganisms.

  8. BERKELEY LAB WINDOW

    SciTech Connect

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen; Mitchell, Robin D.; Kohler, Christian; Vidanovic, Simon V.; Huizenga, Charlie

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.

  9. Use of Silicon Photomultiplier in LBL Cosmic Tay Detector

    NASA Astrophysics Data System (ADS)

    Osornio, Leo

    2012-10-01

    During a summer internship program at Hartnell Community College our team successfully constructed two complementary cosmic ray experiments. The first employed NIM electronic modules the second constructed as per specifications of a circuit board designed by the Berkeley Lab Cosmic Ray Telescope Project (http://cosmic.lbl.gov/). During the following summer at Lawrence Berkeley National Laboratory, we worked on optimizing the performance of a group of Berkeley Lab Detector and developed tools to measure its performance. The next phase was exploring whether Silicon Photomultiplier (SiPM) can be used to replace the phototube of the Berkeley Detector. Data will be presented from both summers including the dependence of the cosmic ray flux on the separation and polar angle of scintillator paddles, as well as the results from our SiPM tests. Finally, I will include prospects for curriculum development using the cosmic ray experiments.

  10. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.

    2017-01-01

    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  11. Molecular Foundry, Berkeley, California (Revised)

    SciTech Connect

    Carlisle, N.

    2008-03-01

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers. The result is an energy efficient high-performing sustainable laboratory.

  12. COSMIC-LAB: Double BSS sequences as signatures of the Core Collapse phenomenon in star clusters.

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2011-10-01

    Globular Clusters {GCs} are old stellar systems tracing key stages of the star formation and chemical enrichment history of the early Universe and the galaxy assembly phase. As part of a project {COSMIC-LAB} aimed at using GCs as natural laboratories to study the complex interplay between dynamics and stellar evolution, here we present a proposal dealing with the role of Blue Straggler Stars {BSS}.BSS are core-hydrogen burning stars more massive than the main-sequence turnoff population. The canonical scenarios for BSS formation are either the mass transfer between binary companions, or stellar mergers induced by collisions. We have recently discovered two distinct and parallel sequences of BSS in the core of M30 {Ferraro et al. 2009, Nature 462, 1082}. We suggested that each of the two sequences is populated by BSS formed by one of the two processes, both triggered by the cluster core collapse, that, based on the observed BSS properties, must have occurred 1-2 Gyr ago. Following this scenario, we have identified a powerful "clock" to date the occurrence of this key event in the GC history.Here we propose to secure WFC3 images of 4 post-core collapse GCs, reaching S/N=200 at the BSS magnitude level, in order to determine the ubiquity of the BSS double sequence and calibrate the "dynamical clock". This requires very high spatial resolution and very high precision photometry capabilities that are unique to the HST. The modest amount of requested time will have a deep impact on the current and future generations of dynamical evolutionary models of collisional stellar systems.

  13. COSMIC-LAB: Hunting for optical companions to binary MSPs in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2011-10-01

    As part of a project {Cosmic-Lab} aimed at using Globular Clusters {GCs} as natural laboratory to study dynamics and stellar evolution, here we present a proposal focussed on binary Millisecond Pulsars {MSPs}.We propose to search for the companion stars to binary MSPs in 4 GCs {namely NGC6440, M5, NGC6838 and NGC6544}, where recent radio observations have found particularly interesting objects. To achieve this challenging goal, we intend to exploit the imaging capabilities of the WFC3 and a suitable observing strategy, thus to secure deep, multi-band, time-resolved datasets where even the faintest companions can be identified.This program is the result of a large collaboration among the major groups {lead by Freire, Ransom, Stairs and Possenti} which are performing extensive MSP search in the radio bands, and our group which has a large experience in high-precision stellar photometry and astrometry in crowded stellar fields. This collaboration already produced a number of outstanding results: 4 of the 7 optical counterparts to binary MSP companions known to date in GCs have been discovered by our group.The observations here proposed will {1} easily double the existing sample of known MSP companions, allowing the first meaningful approach to the study of the formation, evolution and recycling process of pulsars in GCs; {2} constrain the incidence of collisionally induced MSPs; {3} constrain the mass of the neutron star, thus opening the possibility {in the case of NGC6440 and M5} to identify the most massive NS ever measured, with a huge impact on the equation of state of the matter at nuclear equilibrium density.

  14. Radicals in Berkeley?

    PubMed Central

    Linn, Stuart

    2015-01-01

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595–605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually. PMID:25713083

  15. Radicals in Berkeley?

    PubMed

    Linn, Stuart

    2015-04-03

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595-605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually.

  16. Berkeley Researchers Create an Invisibility Cloak

    SciTech Connect

    2009-01-01

    A team led by Xiang Zhang, a principal investigator with Berkeley Labs Materials Sciences Division and director of UC Berkeley's Nano-scale Science and Engineering Center, has created a carpet cloak from nanostructured silicon that conceals the presence of objects placed under it from optical detection. (Video by Jensen Li) http://newscenter.lbl.gov/feature-stories/2009/05/01/invisibility-cloak/

  17. Investigating Cosmic Analog Dusts in the Lab at MM/Sub-MM Wavelength

    NASA Astrophysics Data System (ADS)

    Liu, Lunjun; O'Shea, Kyle; Breyer, Fiona; Dorsey, Ronan; Chen, Hansheng; Perera, Thushara

    2017-01-01

    Cosmic dust is abundant in many interesting astronomical environments such as active galactic nuclei (AGN) and protosteller systems. It also plays a key role in star formation and galactic evolution. In an effort to understand the thermal emission of dust in various environments, a dedicated instrument for measuring the emissivity of various cosmic analog dusts in the millimeter/sub-millimeter has been assembled and tested. In particular, novel design have adopted for the Fourier Transform Spectrometer (FTS) and the cold sample holder of the apparatus. We report here on the performance of the sample holder, FTS, and other parts of the complete experimental setup as found with our initial tests. Our next step will be to obtain science data on realistic cosmic analog dust samples synthesized by us such as amorphous silicate grains containing Mg/Fe.

  18. Berkeley Lab Scientists Create Molecular Paper

    SciTech Connect

    2010-01-01

    These fluorescence microscope images show free-floating peptoid nanosheets in liquid. Each peptoid sheet is just two molecules thick yet up to hundreds of square micrometers in area—a molecular paper large enough to be visible to the naked eye.

  19. Did Berkeley foreshadow Mach?

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald

    2008-02-01

    In a recent paper I discussed Mach's rejection of Newtonian absolute space and motion and the role of Mach's principle in relating the fixed stars to the source of inertia. The importance of Mach in Einstein's development of the theory cannot be denied even though he later abandoned Mach's principle. One hundred fifty years earlier Bishop Berkeley had also rejected Newton's notions of absolute space and motion. I discuss the reason why I did not include Berkeley's criticism of Newtonian absolute space in my recent paper.

  20. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. BEVATRON SHIELDING - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Berkeley Low Background Facility

    SciTech Connect

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  2. Laboratories for the 21st Century: Case Studies, Molecular Foundry, Berkeley, California

    SciTech Connect

    Not Available

    2010-11-01

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers.

  3. Berkeley automated supernova search

    SciTech Connect

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  4. Astronomers watch the stars come out in berkeley.

    PubMed

    1993-06-25

    New and strange sightings caught the attention of astronomers at this June's American Astronomical Society (AAS) meeting in Berkeley: a supernova that has changed its identity, a clutch of mysterious blue stars, and objects at the edge of the universe, shining brilliantly at the far end of the ultraviolet spectrum. Meanwhile, a more familiar object-one species of supernova-is raising hopes of predicting the ultimate fate of this cosmic zoo.

  5. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast... Berkeley Pier, Berkeley, CA in support of the 4th of July Festival Berkeley Marina Fireworks...

  6. SERENDIP: The Berkeley SETI Program

    NASA Astrophysics Data System (ADS)

    Bowyer, Stuart

    UC Berkeley's SERENDIP program is an ongoing effort in the search for extraterrestrial intelligence. It searches for stable narrowband spectral features in the radio frequency spectrum which could conceivably be a signaling beacon sent by an alien civilization. SERENDIP is a backronym 1 for the Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations.

  7. Free Speech Advocates at Berkeley.

    ERIC Educational Resources Information Center

    Watts, William A.; Whittaker, David

    1966-01-01

    This study compares highly committed members of the Free Speech Movement (FSM) at Berkeley with the student population at large on 3 sociopsychological foci: general biographical data, religious orientation, and rigidity-flexibility. Questionnaires were administered to 172 FSM members selected by chance from the 10 to 1200 who entered and…

  8. Berkeley Lab to Help Build Straw Bale Building

    SciTech Connect

    Worsham, S.A.; Van Mechelen, G.

    1998-12-01

    The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

  9. Results of the SNS front end commissioning at Berkeley Lab

    SciTech Connect

    Ratti, A.; Ayers, J.J.; Doolittle, L.; Greer, J.B.; Keller, R.; Lewis, S.; Lionberger, C.; Monroy, M.; Pruyn, J.; Staples, J.W.; Syversrude, D.; Thomae, R.; Virostek, S.; Aleksandrov, A.; Shea, T.; SNS Accelerator Physics Group; SNS Beam Diagnostics Collaboration

    2002-08-16

    The Front-End Systems (FES) for the Spallation Neutron Source (SNS) project comprise an rf-driven H{sup -} ion source, an electrostatic 2-lens LEBT, a 2.5 MeV RFQ, followed by a 14-quadrupole, 4-rebuncher MEBT including traveling-wave fast choppers. The nominal 2.5 MeV H{sup -} beam has a current of 38 mA at a repetition rate of 60 Hz and 1 ms pulse length, for a macro duty-factor of 6%, and is chopped at a rate of approximately 1 MHz with a mini duty-factor of 68%. The normalized rms beam emittance at the MEBT exit, matching the first tank of a 402.5 MHz Alvarez linac, is measured to be approximately 0.3 {pi} mm mrad. Diagnostic elements include wire scanners, BPMs, fast current monitors, a slit-harp emittance device and RFQ field monitoring probes. The results of the beam commissioning and the operation of the RFQ and diagnostic instrumentation are reported. The entire FES was shut down at LBNL at the end of May 2002 and will be recommissioned at ORNL prior to installation of the drift-tube linac.

  10. #AskBerkeleyLab: Cost and Availability of Healthy Food

    ScienceCinema

    Buluswar, Shashi

    2016-07-12

    Shashi Buluswar, Executive Director at the LBNL Institute for Globally Transformative Technologies, answers a question from Ashley on why healthy food costs so much and is not available in low-income neighborhoods.

  11. #AskBerkeleyLab: Cost and Availability of Healthy Food

    SciTech Connect

    Buluswar, Shashi

    2014-10-22

    Shashi Buluswar, Executive Director at the LBNL Institute for Globally Transformative Technologies, answers a question from Ashley on why healthy food costs so much and is not available in low-income neighborhoods.

  12. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. CENTRAL SUPPORT COLUMN EXTENDING THROUGH CRANES AND ROOF SUPPORT TRUSS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. GENERATOR MOTORS OPPOSITE SWITCHGEAR RACKS, MECHANIC SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. CABLE RACEWAYS, CATWALK, AND WINDOWS OF OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. ROOF BLOCKS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. REMNANTS OF HYDRAULIC FIXTURES, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR AND POWER GENERATOR MOTORS, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. PUMP MOUNTS, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STUB OF BEAMLINE EXITING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR OF 51A TO SECOND FLOOR EXTERIOR EXIT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR AND POWER GENERATOR MOTORS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. GENERATOR ROOM, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. WALL AND WINDOW OVERLOOKING MAGNET ROOM, SECOND STORY OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. MAGNET OF BEAMLINE, EXITING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. END OF BEAMLINE LEAVING SHIELDING, MAGNET COILS IN EPOXY, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. BEVATRON IN CENTER OF MAGNET ROOM - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. ENTRANCE TO STAIRWAY TO TUNNEL UNDER MAIN FLOOR OF MAGNET ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SIDE OF MAGNET OF BEAMLINE EXITING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. FLOOR AND CEILING OF MAGNET ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR TO SECOND FLOOR OF MECHANICAL WINE, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-087). March 2005. GENERATOR PIT AREA, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-012). March 2005. PASSAGEWAY UNDER QUADRANT AND DIFFUSION PUMPS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection XBD200503-00117-089). March 2005. GENERATOR PIT AREA, CONCRETE FOUNDATION FOR EQUIPMENT MOUNTS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-054). March 2005. LOCAL INJECTOR ENTERING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-006). March 2005. JACKBOLTS BETWEEN MAGNET AND MAGNET FOUNDATION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-158). March 2005. CONNECTION OF MAGNET ROOM CRANE TO OUTER TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-050). March 2005. DIFFUSION PUMPS UNDER WEST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-106). March 2005. SOUTH FAN, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-052). March 2005. LOCAL INJECTOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-110). March 2005. SOUTH FAN FROM MEZZANINE, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-066). March 2005. LOCAL INJECTOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-026). March 2005. MOUSE AT EAST TANGENT, LOOKING TOWARD EAST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-004). March 2005. ENTRY TO IGLOO, ILLUSTRATING THICKNESS OF IGLOO WALL, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-027). March 2005. MOUSE AT EAST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-005). March 2005. PASSAGEWAY UNDER SOUTHEAST QUADRANT, AIR DUCT OPENINGS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-107). March 2005. NORTH FAN, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-015). March 2005. INTERIOR WALL OF MAGNET INSIDE CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-108). March 2005. FAN ROOM WITH STAIR TO FILTER BANKS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-047). March 2005. AREA OF MAGNET REMOVAL, NORTHEAST QUADRANT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  11. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-082). June 2005. CEILING AND CRANE OF BUILDING 51A, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  12. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-043). March 2005. MOUSE AT EAST TANGENT, PLUNGING MECHANISM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  13. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-077). March 2005. STUB OF SUPERHILAC BEAM, ENTERING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  14. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-143). March 2005. BUILDING 51A, EXTERIOR WALL, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  15. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    SciTech Connect

    Cheng, Robert K.

    1999-07-07

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

  16. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    SciTech Connect

    Not Available

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  17. Observations of Local ISM Emission with the Berkeley EUV/FUV Shuttle Telescope

    NASA Technical Reports Server (NTRS)

    Martin, C.; Bowyer, S.

    1984-01-01

    The Berkeley extreme ultraviolet/far ultraviolet shuttle telescope (BEST) will be launched on the Space Shuttle as part of the NASA UVX project. The Berkeley spectrometer will make observations of the cosmic diffuse background in the 600 to 1900 A band, with a spectral resolution of 10 A. The sensitivity and spectral resolution of the instrument make it ideal for the study of components of the interstellar medium in the 10 to the 4th power to 10 to the 6th power K range.

  18. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    SciTech Connect

    Chartock, Mike; Hansen, Todd

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  19. Berkeley-Madonna implementation of Ikeda's model.

    PubMed

    Fontecave-Jallon, J; Baconnier, P

    2007-01-01

    Starting from one model, we check the possibility of using Berkeley-Madonna software to transpose and simulate some existing biological integrated models. The considered model is the one of Ikeda et al., proposed in 1979, which treats of fluid regulation and which is very well described mathematically in the original paper. Despite a few mistakes or bugs, the model has been easily and successfully implemented under Berkeley-Madonna. We recover the same simulation results as Ikeda and new simulations can now easily be carried out, thanks to the user-friendly qualities of Berkeley-Madonna.

  20. Star Formation near Berkeley 59: Embedded Protostars

    NASA Astrophysics Data System (ADS)

    Rosvick, J. M.; Majaess, D.

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (~2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, 12CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v LSR = -15 to -17 km s-1, which agrees with the velocity adopted for Berkeley 59 (-15.7 km s-1), while spectral energy distribution models yield an average interstellar extinction AV and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  1. The anticentre old open clusters Berkeley 27, Berkeley 34 and Berkeley 36: new additions to the BOCCE project

    NASA Astrophysics Data System (ADS)

    Donati, P.; Bragaglia, A.; Cignoni, M.; Cocozza, G.; Tosi, M.

    2012-08-01

    In this paper, we present the investigation of the evolutionary status of three open clusters: Berkeley 27, Berkeley 34 and Berkeley 36, all located in the Galactic anticentre direction. All of them were observed with SUperb Seeing Imager 2 at the New Technology Telescope using the Bessel B, V and I filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMDs with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC and FST). This analysis shows that Berkeley 27 has an age between 1.5 and 1.7 Gyr, a reddening E(B-V) in the range 0.40-0.50 and a distance modulus (m-M)0 between 13.1 and 13.3; Berkeley 34 is older with an age in the range 2.1-2.5 Gyr, E(B-V) between 0.57 and 0.64 and (m-M)0 between 14.1 and 14.3; Berkeley 36, with an age between 7.0 and 7.5 Gyr, has a reddening of E(B-V) ˜ 0.50 and a distance modulus (m-M)0 between 13.1 and 13.2. For all the clusters, our analysis suggests a subsolar metallicity in accord with their position in the outer Galactic disc. This work is based on data collected at the European Southern Observatory (ESO) telescopes under programme 076.D-0119.

  2. STAR FORMATION NEAR BERKELEY 59: EMBEDDED PROTOSTARS

    SciTech Connect

    Rosvick, J. M.; Majaess, D.

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (∼2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, {sup 12}CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v {sub LSR} = –15 to –17 km s{sup –1}, which agrees with the velocity adopted for Berkeley 59 (–15.7 km s{sup –1}), while spectral energy distribution models yield an average interstellar extinction A{sub V} and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  3. Anatomy of the Berkeley Sensor & Actuator Center (BSAC): The NSF Industry/University Cooperative Research Center on MEMS

    DTIC Science & Technology

    2013-04-08

    graduate student researchers, UC Berkeley College of Engineering, UC Davis College of Engineering, the UC Berkeley Microlab, DARPA , the administrative staffs...typically from the Defense Advanced Projects Agency ( DARPA ), NSF,  National  Institute of Health, Army Research Lab, the California Energy Commission...Federal research agencies ( DARPA , DOE, NIH, NASA, DOC, etc) set aside some of their operating budgets  to fund promising Innovation Research through

  4. Lawrence Berkeley Laboratory catalog of research projects

    SciTech Connect

    Not Available

    1991-01-01

    Research from Lawrence Berkeley Laboratory is briefly presented. Topics include: (1) Applied Science; (2) Chemical Sciences; (3) Earth Sciences; (4) Materials Sciences; (5) Accelerator and Fusion Research; (6) Nuclear Science; (7) Physics; (8) Cell and Molecular Biology; (9) Chemical Biodynamics; (10) Research Medicine and Radiation Biophysics; (11) Engineering; (12) Environmental Protection, Health and Safety; and (13) Information and Computing Sciences. (WET)

  5. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    SciTech Connect

    Packard, Richard

    2006-09-07

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He.

  6. Berkeley, California: Solar in Action (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  7. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  8. Advanced LabVIEW Labs

    SciTech Connect

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to teach

  9. Advanced LabVIEW Labs

    SciTech Connect

    Jones, Eric D.

    1999-06-17

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach computer

  10. Tech Labs.

    ERIC Educational Resources Information Center

    Lindeman, Cheryl A., Bishop, S. William

    1997-01-01

    Describes a seminar where students explore emerging technologies through a series of labs that help boost their technical skills and their confidence in using and managing technology. Discusses charting the course, laboratory logistics, technology tips, and benefits. (JRH)

  11. THE YOUNG OPEN CLUSTER BERKELEY 55

    SciTech Connect

    Negueruela, Ignacio; Marco, Amparo E-mail: amparo.marco@ua.es

    2012-02-15

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster with a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.

  12. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    SciTech Connect

    Not Available

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  13. C. Judson King of UC Berkeley

    SciTech Connect

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director of the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.

  14. Earthquake Engineering Research at Berkeley, 1980

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Twenty one papers presented by faculty paticipants and reseach personnel illustrate some of the research work in earthquake engineering being conducted at the University of California, Berkeley. Topics covered include: determining the intensity of ground motion from earthquake effects on historical monuments; structural damages; system identification in geotechnical engineering; seismic behavior of reinforced concretes, masonry buildings, frames, and shear walls; mathematical modelling; and liquid sloshing in rigid annular cylindrical and torus tanks.

  15. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY BETWEEN MAIN FLOOR OF MAGNET ROOM AND SECOND FLOOR OF OFFICE-AND-SHOP SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  16. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR OF MAGNET ROOM TO TOP OF OUTER LAYER OF CONCRETE SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  17. Photocopy of photograph (original negative located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. TOP OF BEVATRON, BUILDING 51 ROOF TRUSS, AND CENTRAL RING TRACK FOR MAGNET ROOM CRANE, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  18. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-009). March 2005. OPENINGS OF AIR DUCTS INTO PASSAGEWAY UNDER SOUTHEAST QUADRANT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  19. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-046). March 2005. ROOF SHIELDING BLOCK AND I-BEAM SUPPORT CONSTRUCTION, CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  20. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-031). March 2005. MOUSE AT EAST TANGENT, WITH COVER OPEN, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  1. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00198-08). June 2005. DUCTWORK BETWEEN FAN ROOM AND PASSAGEWAY UNDER BEVATRON, SOUTH SIDE OF ROOM 10, MAIN FLOOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  2. Photocopy of photograph (digital image maintained in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image maintained in LBNL Photo Lab Collection, XBD200503-00117-176). March 2005. CENTRAL COLUMN SUPPORT TO ROOF SHOWING CRANES CENTER SUPPORT TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  3. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-139). March 2005. TOP OF BEVATRON, INCLUDING WOOD STAIRWAY FROM OUTER EDGE OF SHIELDING TO TOP OF ROOF BLOCK SHIELDING - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  4. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-049). March 2005. TUNNEL ENTRY FROM MAIN FLOOR OF MAGNET ROOM INTO CENTER OF BEVATRON, BENEATH SOUTHWEST QUADRANT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  5. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-034). March 2005. MOUSE AT EAST TANGENT WITH COVER CLOSED, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  6. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00198-11). June 2005. DUCTWORK BETWEEN FAN ROOM AND PASSAGEWAY UNDER BEVATRON, NORTH SIDE OF ROOM 10, MAIN FLOOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  7. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-129). March 2005. ENTRY TO ROOM 24, MAIN FLOOR, OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  8. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00218-12). June 2005. DEEP TUNNEL INTO FOUNDATION UNDER BEVATRON, VIEW OF CART ON RAILS FOR TRANSPORTING EQUIPMENT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  9. Photocopy of photograph (digital image located in LBNL Photo Lab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-035). March 2005. WEST TANGENT VIEWED FROM INTERIOR OF BEVATRON. EQUIPMENT ACCESS STAIRWAY ON LEFT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA

  10. Q&A: Cosmic gardener

    NASA Astrophysics Data System (ADS)

    Hoffman, Jascha

    2011-05-01

    Charles Jencks designs landscapes and sculptures to convey concepts in astronomy, biology and mathematics -- notably at CERN, Europe's particle-physics lab near Geneva, Switzerland, and in his Garden of Cosmic Speculation near Dumfries in Scotland, UK. On the launch of his new book, he discusses green architecture and metaphor.

  11. The Astrophysics Major at the University of California, Berkeley

    NASA Astrophysics Data System (ADS)

    Arons, J.; Heiles, C.

    2001-12-01

    The Astrophysics major offered by the Berkeley Astronomy Department has been redesigned to reflect broad educational goals. Students preparing for graduate school study mostly Physics and Mathematics, leavened with four semesters of astrophysics at the sophomore and senior level. These courses make heavy use of their concurrent Physics and Math. Astrophysics and Physics majors differ in the astrophysics courses replacing other electives which a Physics major might choose. The major's redesign also opened the door to students who wish to pursue a major which gives them broad technical training without having graduate school as a goal. Many such students follow the same track as those pursuing the graduate school option; others take courses specifically designed for people with alternate careers in mind. The major change has been a laboratory requirement for all Astrophysics majors, in either track. We now have advanced undergraduate laboratories: optical, radio, and near infrared; details are on our web page. These share the common thread of development of deep capabilities in data gathering, analysis, and presentation. Students achieve expertise in these areas because the labs include the complete range of activities normally encountered in observational or experimental research. Students use laboratory equipment to measure the fundamental parameters of devices and systems, make astronomical observations with those systems, write software in UNIX and IDL to control equipment and analyze the results, and write formal lab reports in LATEX. We avoid ``black box'' or ``cookbook'' procedures . The students leave the course having gained experience and knowledge, and a ``feel'' for how to proceed when faced with sometimes recalcitrant equipment and imperfect data. A by product of the training has been an increase in student involvement in undergraduate research projects. These innovations have led to a major that has doubled in size and, in a quite unanticipated

  12. Labs: 1987.

    ERIC Educational Resources Information Center

    Igelsrud, Don, Ed.

    1988-01-01

    This article presents a variety of topics discussed in this column and at a biology teachers' workshop concerning the quality and value of lab techniques used for teaching high school biology. Topics included are Drosophila salivary glands, sea urchins, innovations, dyes and networking. (CW)

  13. Lawrence Berkeley Laboratory 1994 site environmental report

    SciTech Connect

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  14. Technology transfer at Lawrence Berkeley Laboratory

    SciTech Connect

    Johnson, D.

    1992-09-01

    Lawrence Berkeley Laboratory (LBL) is dedicated to commercializing new technology in such fields as advanced materials, biotechnology, and electronics. Technology transfer between national laboratories and the industrial community is important in maintaining America's competitive edge. This document examines opportunities to establish working relationships with LBL. Streamlined methods for technology transfer are available with the aid of the Technology Transfer Department and the Patent Department at LBL. Research activities at LBL are concentrated in three major program areas: Energy Sciences, General Sciences, and Biosciences. Each program area consists of three research divisions. LBL welcomes both requests for information and proposals to conduct research.

  15. Technology transfer at Lawrence Berkeley Laboratory

    SciTech Connect

    Johnson, D.

    1992-09-01

    Lawrence Berkeley Laboratory (LBL) is dedicated to commercializing new technology in such fields as advanced materials, biotechnology, and electronics. Technology transfer between national laboratories and the industrial community is important in maintaining America`s competitive edge. This document examines opportunities to establish working relationships with LBL. Streamlined methods for technology transfer are available with the aid of the Technology Transfer Department and the Patent Department at LBL. Research activities at LBL are concentrated in three major program areas: Energy Sciences, General Sciences, and Biosciences. Each program area consists of three research divisions. LBL welcomes both requests for information and proposals to conduct research.

  16. Experiences with lab-centric instruction

    NASA Astrophysics Data System (ADS)

    Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.

    2010-06-01

    Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.

  17. The Society for Women in the Physical Sciences: a successful mentoring program at UC Berkeley

    NASA Astrophysics Data System (ADS)

    Lang, Kristine

    2000-04-01

    The Society for Women in the Physical Sciences (SWPS, http://socrates.berkeley.edu/ swps) at the University of California at Berkeley has been up and running successfully for three years. This organization aims to increase the number of women undergrad majors in physics, astronomy, and geology and to foster a general sense of community among all the women in these departments: faculty, postdocs, and students. The program consists of three parts: mentoring, events, and resources. The mentoring portion pairs 4 to 5 undergraduate women with one graduate mentor. These mentoring groups meet approximately weekly to visit labs, work on homework, go to science museums, or just talk and gather ideas from one another. SWPS also organizes monthly events that include all members of the department and which have in the past been social events, workshops, or discussion forums. Finally, SWPS writes and distributes, on paper and on our website, a series of guides which make “informal” information, such as where are the quiet places to study, more easily available. During this talk I will present more of the details of this program. In addition, I will present anecdotal and quantitative results of the program at Berkeley and discuss how this program has been implemented at other universities. Finally, I will discuss the general strategies behind the program and how they can be applied to other programs aimed at women in science.

  18. Careers in Data Science: A Berkeley Perspective

    NASA Astrophysics Data System (ADS)

    Koy, K.

    2015-12-01

    Last year, I took on an amazing opportunity to serve as the Executive Director of the new Berkeley Institute for Data Science (BIDS). After a 15-year career working with geospatial data to advance our understanding of the environment, I have been presented with a unique opportunity through BIDS to work with talented researchers from a wide variety of backgrounds. Founded in 2013, BIDS is a central hub of research and education at UC Berkeley designed to facilitate and nurture data-intensive science. We are building a community centered on a cohort of talented data science fellows and senior fellows who are representative of the world-class researchers from across our campus and are leading the data science revolution within their disciplines. Our initiatives are designed to bring together broad constituents of the data science community, including domain experts from the life, social, and physical sciences and methodological experts from computer science, statistics, and applied mathematics. While many of these individuals rarely cross professional paths, BIDS actively seeks new and creative ways to engage and foster collaboration across these different research fields. In this presentation, I will share my own story, along with some insights into how BIDS is supporting the careers of data scientists, including graduate students, postdocs, faculty, and research staff. I will also describe how these individuals we are helping support are working to address a number of data science-related challenges in scientific research.

  19. The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.

    2014-12-01

    The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.

  20. The Berkeley SETI program - SERENDIP IV instrumentation

    NASA Astrophysics Data System (ADS)

    Werthimer, Dan; Bowyer, Stuart; Ng, David; Donnelly, Charles; Cobb, Jeff; Lampton, Michael; Airieau, Sabine

    1997-01-01

    We discuss the hardware design of SERENDIP IV, which will be deployed in early 1997 for a 21-cm sky survey at the National Astronomy and Ionospheric Center's 305-m radio telescope in Arecibo, Puerto Rico. SERENDIP IV is a 167 million channel spectrum analyzer, covering a 100-Mhz bandwidth, with 0.6-Hz resolution and a 1.7-s integration time. SERENDIP IV's modular design incorporates a bank of digital mixers and filters to separate the 100 MHz band into 40 2.5 MHz subbands. Each 2.5 MHz subband is further broken down into 0.6 Hz bins by means of a four million point fast Fourier transform. The resulting power spectra are analyzed by 40 high-speed processors. Narrowband signals having power significantly above background noise levels are recorded along with telescope coordinates, time, and frequency. The data are sent in real time to Berkeley for analysis.

  1. ORFEUS-SPAS - The Berkeley EUV spectrometer

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Hurwitz, Mark

    1990-01-01

    The Berkeley EUV spectrometer of ORFEUS-SPAS, a joint project of NASA and the BMFT, incorporates a set of four novel spherically figured, varied line-space gratings used in a geometry that is similar to that of the classic Rowland mount to span an interval of 390 and 1200 A. Two spectral detector units containing curved microchannel plates and delay-line anodes encode the arriving photons in digital format for telemetry. An additional optic directs the image of the source in the entrance aperture onto a sealed FUV detector which is used to track the source as it drifts during an observation, enabling a postflight reconstruction of the spacecraft pointing vector. This in turn makes it possible to define with precision the wavelength of each recorded photon.

  2. Telescience at the University of California, Berkeley

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Marchant, W. T.; Kaplan, G. C.; Dobson, C. A.; Jernigan, J. G.

    1988-01-01

    The University of California at Berkeley (UCB) is a member of a university consortium involved in telescience testbed activities under the sponsorship of NASA. The Telescience Testbed Project consists of three experiments using flight hardware being developed for the Extreme Ultraviolet Explorer project at UCB's Space Sciences Laboratory. The first one is a teleoperation experiment investigating remote instrument control using a computer network such as the Internet. The second experiment is an effort to develop a system for operation of a network of remote workstations allowing coordinated software development, evaluation, and use by widely dispersed groups. The final experiment concerns simulation as a method to facilitate the concurrent development of instrument hardware and support software. Progress in these areas is described.

  3. The Berkeley extreme ultraviolet calibration facility

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Jelinsky, Patrick; Malina, Roger F.

    1988-01-01

    The vacuum calibration facilities of the Space Sciences Laboratory, University of California at Berkeley are designed for the calibration and testing of EUV and FUV spaceborne instrumentation (spectral range 44-2500 A). The facility includes one large cylindrical vacuum chamber (3 x 5 m) containing two EUV collimators, and it is equipped with a 4-axis manipulator of angular-control resolution 1 arcsec for payloads weighing up to 500 kg. In addition, two smaller cylindrical chambers, each 0.9 x 1.2 m, are available for vacuum and thermal testing of UV detectors, filters, and space electronics hardware. All three chambers open into class-10,000 clean rooms, and all calibrations are referred to NBS secondary standards.

  4. The Coronal Ultraviolet Berkeley Spectrometer (CUBS)

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Chakrabarti, Supriya

    1992-01-01

    We describe an instrument package to remotely measure thermospheric, exospheric, and plasmaspheric structure and composition. This instrument was flown aboard the second test flight of the Black Brant XII sounding rocket on December 5, 1989, which attained an apogee of 1460 km. The experiment package consisted of a spectrophotometer to measure He I 584 A, O II 834 A, O I 989 A, hydrogen Lyman beta (1025 A), hydrogen Lyman alpha (1216 A), and O I 1304 A transitions, and a photometer to measure the He II 304 A emission. The optical design of the spectrophotometer was identical to that of the Berkeley Extreme Ultraviolet (EUV) Airglow Rocket Spectrometer payload, flown on September 30, 1988 aboard the maiden flight of the Black Brant XII rocket. We present the initial data analysis and describe directions we will go toward the completion of our study.

  5. Telescience at the University of California, Berkeley

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Marchant, W. T.; Kaplan, G. C.; Dobson, C. A.; Jernigan, J. G.; Lampton, M. L.; Malina, R. F.

    1989-01-01

    The University of California at Berkeley (UCB) is a member of a university consortium involved in telescience testbed activities under the sponsorship of NASA. Our Telescience Testbed Project consists of three experiments using flight hardware being developed for the Extreme Ultraviolet Explorer project at UCB's Space Sciences Laboratory. The first one is a teleoperation experiment investigating remote instrument control using a computer network such as the Internet. The second experiment is an effort to develop a system for operation of a network of remote workstations allowing coordinated software development, evaluation, and use by widely dispersed groups. The final experiment concerns simulation as a method to facilitate the concurrent development of instrument hardware and support software. We describe our progress in these areas.

  6. Guidelines for metrication at Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1993-07-01

    This document provides a set of guidelines for the metric transition process already under way at Lawrence Berkeley Laboratory. LBL has embarked upon this course in response to Section 5164 of the Trade and Competitiveness Act of 1988, Executive Order 12770 of 1991, and DOE Order 5900.2. The core provision of DOE Order 5900.2 is Section 7b, which states: {open_quotes}Metric usage shall be required except to the extent that such use is impractical, or is likely to cause significant inefficiencies to, or loss of markets by United States firms, or an inability of the Department to fulfill its responsibilities under the laws of the Federal Government and the United States.{close_quotes} LBL`s metrication policy is meant to comply with this requirement by aggressively fostering metrication. The purpose of these guidelines is to optimize the coherence and the cost-effectiveness of the metrication process.

  7. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    SciTech Connect

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  8. Junior High Schools of Berkeley, California. Bulletin, 1923, No. 4

    ERIC Educational Resources Information Center

    Preston, James T.; Clark, W. B.; Glessner, H. H.; Hennessey, D. L.

    1923-01-01

    This bulletin demonstrates that Berkeley, California's educational problem is and has been that of meeting the varied needs of a population such as may be found in any typical American city. The varied population needs, together with the rapid growth, have brought many difficult problems to Berkeley, just has they have to other cities. Based on…

  9. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.

  10. What Made Berkeley Great? The Sources of Berkeley's Sustained Academic Excellence. Research & Occasional Paper Series CSHE.3.11

    ERIC Educational Resources Information Center

    Breslauer, George W.

    2011-01-01

    University of California (UC) Berkeley's chief academic officer explores the historical sources of Berkeley' academic excellence. He identifies five key factors: (1) wealth from many sources; (2) supportive and skilled governors; (3) leadership from key UC presidents; (4) the pioneering ethos within the State of California; and (5) a process of…

  11. Reducing Our Carbon Footprint: A Low-Energy House in Berkeley, Kabul, and Washington DC (LBNL Science at the Theater)

    ScienceCinema

    Diamond, Rick

    2016-07-12

    How well can we assess and improve building energy performance in California homes? How much energy-and carbon-do homes use in other parts of the world? Rick Diamond, deputy group leader of the Berkeley Lab Energy Performance of Buildings Group, discusses change, global solutions, and the stories of three houses in Berkeley, Kabul (Afghanistan), and Washington, D.C. Diamond, who is also a senior advisor at the California Institute for Energy and Environment, investigates user interactions with the built environment for improved building energy performance. The group has studied a wide range of issues related to energy use in housing, including duct system efficiency, user behavior, and infiltration and ventilation measurements.

  12. ORFEUS focal plane instrumentation: The Berkeley spectrometer

    NASA Technical Reports Server (NTRS)

    Hurwitz, Mark; Bowyer, Stuart

    1988-01-01

    A spectrograph for the ORFEUS mission that incorporates four varied line-space, spherically figured diffraction gratings was designed. The ORFEUS, a 1-m normal incidence telescope is equipped with 2 focal plane spectrographs. The Berkeley spectrograph was developed with an optimizing raytracing computer code. Each grating accepts the light from 20 percent of the aperture of the telescope primary mirror and has a unique set of characteristics to cover a sub-bandpass within the 390 to 1200 A spectral range. Two photon-counting detectors incorporating a time delay readout system are used to record the spectra from all four gratings simultaneously. The nominal design achieves a spectral resolution (FWHM) in excess of 5500 at all wavelengths within the bandpass. The resolution is limited primarily by the detector spatial resolution. The 1 sigma astigmatism of this design varies between 13 and 150 micrometer on the same focal surface. An independent, direct imaging system tracks the drift of the target within the spectrometer aperture and allows measurement of the misalignment between the telescope optical axis and that of the external star tracker. The resolution and astigmatism achievable with this design are superior to those of a standard Rowland spectrograph designed with the same constraints.

  13. Life sciences: Lawrence Berkeley Laboratory, 1988

    SciTech Connect

    Not Available

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  14. The Lawrence Berkeley Laboratory Technical Site Information

    SciTech Connect

    Not Available

    1992-07-01

    The Lawrence Berkeley Laboratory 1992 Technical Site Information (TSI) document is a comprehensive summary of information that is the result of the site planning process, which, in conjunction with the Site Development Plan (SDP), acts as a guide for effective use of the Laboratory's land and facilities resources. The SDP and TSI provide a conceptual and operational framework for the rehabilitation of existing facilities and the development and siting of future buildings. It has been prepared for use by the management and staff of the Laboratory, the Department of Energy, the University of California, and the neighboring communities. This TSI is based on previous planning documents and current studies and analyses. Revisions are based on the Laboratory's annual Institutional Plan, SDP, and recent planning reviews and analyses. The document describes the physical setting, planning processes and underlying planning concepts, trends in Laboratory activity, facilities requirements, and future site development. The TSI has been developed as part of a continuing planning and review process involving the Laboratory's 12 scientific and support divisions.

  15. The Lawrence Berkeley Laboratory Technical Site Information

    SciTech Connect

    Not Available

    1992-07-01

    The Lawrence Berkeley Laboratory 1992 Technical Site Information (TSI) document is a comprehensive summary of information that is the result of the site planning process, which, in conjunction with the Site Development Plan (SDP), acts as a guide for effective use of the Laboratory`s land and facilities resources. The SDP and TSI provide a conceptual and operational framework for the rehabilitation of existing facilities and the development and siting of future buildings. It has been prepared for use by the management and staff of the Laboratory, the Department of Energy, the University of California, and the neighboring communities. This TSI is based on previous planning documents and current studies and analyses. Revisions are based on the Laboratory`s annual Institutional Plan, SDP, and recent planning reviews and analyses. The document describes the physical setting, planning processes and underlying planning concepts, trends in Laboratory activity, facilities requirements, and future site development. The TSI has been developed as part of a continuing planning and review process involving the Laboratory`s 12 scientific and support divisions.

  16. Three new bricks in the wall: Berkeley 23, Berkeley 31 and King 8

    NASA Astrophysics Data System (ADS)

    Cignoni, Michele; Beccari, Giacomo; Bragaglia, Angela; Tosi, Monica

    2011-09-01

    A comprehensive census of Galactic open cluster properties places unique constraints on the Galactic disc structure and evolution. In this framework, we investigate the evolutionary status of three poorly studied open clusters, Berkeley 31, Berkeley 23 and King 8, all located in the Galactic anticentre direction. To this aim, we make use of deep Large Binocular Telescope observations, reaching more than 6 mag below the main-sequence turn-off. To determine the cluster parameters, namely age, metallicity, distance, reddening and binary fraction, we compare the observational colour-magnitude diagrams (CMDs) with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC and FST) and metallicities. We find that Berkeley 31 is relatively old, with an age between 2.3 and 2.9 Gyr, and rather high above the Galactic plane, at about 700 pc. Berkeley 23 and King 8 are younger, with best-fitting ages in the range 1.1-1.3 and 0.8-1.3 Gyr, respectively. The position above the Galactic plane is about 500-600 pc for the former and 200 pc for the latter. Although a spectroscopic confirmation is needed, our analysis suggests a subsolar metallicity for all three clusters. Based on observations collected at the Large Binocular Telescope (LBT) and in part at the Italian Telescopio Nazionale Galileo (TNG). The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona University system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia. The TNG is operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica

  17. Underwater lab

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The University of Southern California's Catalina Marine Science Center (CMSC) has announced plans to build an underwater marine research laboratory near Santa Catalina Island off the California coast. The project, which will take 2 years to build, will be sponsored by the National Oceanic and Atmospheric Administration (NOAA). The laboratory will be similar in concept to the U.S. Navy Sea Lab III, which was canceled some time ago.The project's purpose is to give divers access to a laboratory without having to surface. The project leader, Andrew Pilmanis, of the University of Southern California, stated recently (Industrial Research and Development, July 1983): “By the nature of the work, scientists require a lot of bottom time, and to do it by scuba isn't practical…. The only way to do that is with saturation diving. Once the diver is saturated with inert gas, whether the individual stays a few days or for months, only one decompression is required.” Divers will typically stay in the laboratory for 7-10 days. The laboratory will initially be placed at a depth of 20 m, later to be refloated and located at depths to 37 m.

  18. Former Fermilab boss to lead Lawrence Berkeley National Laboratory

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2016-03-01

    Particle physicist Michael Witherell - current vice-chancellor for research at the University of California, Santa Barbara (UCSB) - has been appointed the next director of the Lawrence Berkeley National Laboratory (LBL).

  19. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    SciTech Connect

    Schleimer, G.E.

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed.

  20. Energy and Resources Group, University of California, Berkeley.

    ERIC Educational Resources Information Center

    Christensen, Mark N.

    1987-01-01

    Describes an interdisciplinary program at the University of California (Berkeley) that addresses the multifaceted problems of energy and resources through a teaching and resource program. Discusses the program's structure, curriculum, research activities, students, resources, and problems and possibilities. (TW)

  1. Decisions Shape a Lab (Lab Notes).

    ERIC Educational Resources Information Center

    Porter, Bernajean

    1992-01-01

    Offers questions to guide both initial and ongoing development of a computer writing lab. Discusses ways mobile workstations (consisting of a computer, printer, overhead, and a LCD projection unit) will extend the writing lab. (SR)

  2. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    SciTech Connect

    Schleimer, G.E.; Pauer, R.O.

    1990-08-01

    The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the US Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1989 are presented, and general trends are discussed. 17 refs., 12 figs., 23 tabs.

  3. UC Berkeley's Celebration of the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Cobb, B. E.; Croft, S.; Silverman, J. M.; Klein, C.; Modjaz, M.

    2010-08-01

    We present the astronomy outreach efforts undertaken for the International Year of Astronomy 2009 at the University of California, Berkeley. Our department-wide endeavors included a monthly public lecture series by UC Berkeley astronomers and a major astronomy outreach event during a campus-wide university "open house," which included solar observing and a Starlab Planetarium. In addition to sharing our outreach techniques and outcomes, we discuss some of our unique strategies for advertising our events to the local community.

  4. Stay Tuned for Evolution.berkeley.edu

    NASA Astrophysics Data System (ADS)

    Scotchmoor, J.

    2001-12-01

    Evolution affects every aspect of our lives and is the central organizing principle that biologists use to understand the world, yet there are few comprehensive resource packages available for science teachers that address both content and pedagogy. There are even fewer resources developed specifically to increase the understanding of evolution by students and the general public. Evolution.berkeley.edu will house a new website designed to address the need for more effective education about evolution and the nature of science among three target audiences: those who teach about science (K-12 teachers), those who are learning about science in the classroom (their students), and those who are at an informal stage of their learning (the general public). With funding support from the National Science Foundation and the Howard Hughes Medical Institute, this website is being developed by the University of California Museum of Paleontology and the National Center for Science Education. Its goals are to: 1. Improve teacher understanding of the nature of science, the patterns and processes of evolution, and the history of evolutionary thought. 2. Increase teacher confidence level to teach these subjects effectively. 3. Increase student understanding of the nature of science and engage them in the process of science. 4. Improve the public's understanding of the nature of science and the patterns and processes of evolution. 5. Increase student and public awareness of the importance of understanding evolution and its relevance to their lives. For teachers, the site provides content knowledge in the form of five self-study units on the nature of science, the history of evolutionary thought, the scales and levels of evolution, the relevance of evolution to society, and the challenges to evolution. The site also provide classroom resources including a selection of effective approaches and teaching strategies and a searchable database of curricula, teacher-tested activities, and

  5. Berkeley Lab Scientist Named MacArthur ''Genius'' Fellow for Audio Preservation Research

    SciTech Connect

    Haber, Carl

    2013-09-24

    Audio Preservationist Carl Haber was named a MacArthur Fellow in 2013. The Fellowship is a $625,000, no-strings-attached grant for individuals who have shown exceptional creativity in their work and the promise to do more. Learn more at http://www.macfound.org/fellows.

  6. SCFA lead lab technical assistance at Lawrence Berkeley National Laboratory: Baseline review of three groundwater plumes

    SciTech Connect

    Hazen, Terry; et al.

    2002-09-26

    During the closeout session, members of the technical assistance team conveyed to the site how impressed they were at the thoroughness of the site's investigation and attempts at remediation. Team members were uniformly pleased at the skilled detection work to identify sources, make quick remediation decisions, and change course when a strategy did not work well. The technical assistance team also noted that, to their knowledge, this is the only DOE site at which a world-class scientist has had primary responsibility for the environmental restoration activities. This has undoubtedly contributed to the successes observed and DOE should take careful note. The following overall recommendations were agreed upon: (1) The site has done a phenomenal job of characterization and identifying and removing source terms. (2) Technologies selected to date are appropriate and high impact, e.g. collection trenches are an effective remedial strategy for this complicated geology. The site should continue using technology that is adapted to the site's unique geology, such as the collection trenches. (3) The site should develop a better way to determine the basis of cleanup for all sites. (4) The sentinel well system should be evaluated and modified, if needed, to assure that the sentinel wells provide coverage to the current site boundary. Potential modifications could include installation, abandonment or relocation of wells based on the large amount of data collected since the original sentinel well system was designed. (5) Modeling to assist in remedial design and communication should continue. (6) The site should develop a plan to ensure institutional memory. (7) The most likely possibility for improving closure to 2006 is by removing the residual source of the Old Town plume and establishing the efficacy of remediation for the 51/64 plume.

  7. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    SciTech Connect

    Leemans, W.P.; Duarte, R.; Esarey, E.; Fournier, S.; Geddes, C.G.R.; Lockhart, D.; Schroeder, C.B.; Toth, C.; Vay, J.-L.; Zimmermann, S.

    2010-06-01

    An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50- 200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

  8. Cyclotron Road at Berkeley Lab – U.S. Department of Energy

    ScienceCinema

    Kuhl, Kendra; Weitekamp, Raymond; Lehmann, Marcus; Cave, Etosha; Gur, Ilan; Lounis, Sebastien

    2016-07-12

    The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private‐sector investment, and too applied for academia. Participants receive the time, space and capital to pursue their research and the support to find viable pathways to the market.

  9. Berkeley Lab Scientist Named MacArthur ''Genius'' Fellow for Audio Preservation Research

    ScienceCinema

    Haber, Carl

    2016-07-12

    Audio Preservationist Carl Haber was named a MacArthur Fellow in 2013. The Fellowship is a $625,000, no-strings-attached grant for individuals who have shown exceptional creativity in their work and the promise to do more. Learn more at http://www.macfound.org/fellows.

  10. Cyclotron Road at Berkeley Lab – U.S. Department of Energy

    SciTech Connect

    Kuhl, Kendra; Weitekamp, Raymond; Lehmann, Marcus; Cave, Etosha; Gur, Ilan; Lounis, Sebastien

    2016-05-05

    The Department of Energy is testing a new model for clean energy research and development (R&D) through a program called Cyclotron Road. The goal is to support scientific R&D that is still too risky for private‐sector investment, and too applied for academia. Participants receive the time, space and capital to pursue their research and the support to find viable pathways to the market.

  11. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  12. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  13. Lawrence Berkeley Laboratory, Berkeley, California solar energy system performance evaluation, July 1980-June 1981

    SciTech Connect

    Wetzel, P.E.

    1981-01-01

    The Lawrence Berkeley Laboratory site is an office building in California with an active solar energy system designed to supply from 23 to 33% of the space heating load and part of the hot water load. The solar heating system is equipped with 1428 square feet of flat-plate collectors, a 2000-gallon water storage tank, and two gas-fired boilers to supply auxiliary heat for both space heating and domestic hot water. Poor performance is reported, with the solar fraction being only 4%. Also given are the solar savings ratio, conventional fuel savings, system performance factor, and the coefficient of performance. The performance data are given for the collector, storage, solar water heating and solar space heating subsystems as well as the total system. Typical system operation and solar energy utilization are briefly described. The system design, performance evaluation techniques, weather data, and sensor technology are presented. (LEW)

  14. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  15. Berkeley Phylogenomics Group web servers: resources for structural phylogenomic analysis.

    PubMed

    Glanville, Jake Gunn; Kirshner, Dan; Krishnamurthy, Nandini; Sjölander, Kimmen

    2007-07-01

    Phylogenomic analysis addresses the limitations of function prediction based on annotation transfer, and has been shown to enable the highest accuracy in prediction of protein molecular function. The Berkeley Phylogenomics Group provides a series of web servers for phylogenomic analysis: classification of sequences to pre-computed families and subfamilies using the PhyloFacts Phylogenomic Encyclopedia, FlowerPower clustering of proteins sharing the same domain architecture, MUSCLE multiple sequence alignment, SATCHMO simultaneous alignment and tree construction and SCI-PHY subfamily identification. The PhyloBuilder web server provides an integrated phylogenomic pipeline starting with a user-supplied protein sequence, proceeding to homolog identification, multiple alignment, phylogenetic tree construction, subfamily identification and structure prediction. The Berkeley Phylogenomics Group resources are available at http://phylogenomics.berkeley.edu.

  16. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  17. SLAC All Access: Laser Labs

    SciTech Connect

    Minitti, Mike; Woods Mike

    2013-03-01

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  18. SLAC All Access: Laser Labs

    ScienceCinema

    Minitti, Mike; Woods Mike

    2016-07-12

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  19. Berkeley Free Speech Movement: Paving the Way for Campus Activism.

    ERIC Educational Resources Information Center

    Cohen, Robby

    1985-01-01

    The Free Speech Movement (FSM) at Berkeley during the 1960s demonstrated to students nationwide that effective protest movements could be built on campus and that engaging in such dissident activity was not un-American but was, in fact, their moral and political right. The history of this movement is discussed. (RM)

  20. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    NASA Technical Reports Server (NTRS)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  1. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    SciTech Connect

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  2. A Survey of Summer Quarter Students at Berkeley, 1968.

    ERIC Educational Resources Information Center

    Suslow, Sidney; Pieper, W. C., Jr.

    When the University of California at Berkeley initiated year-round operation in the summer of 1967, the prevailing question concerned whether such a system would work. Midway through the summer term of the following year, a mail survey of 2,100 students --a 25% sample of those enrolled in the 1968 Summer Quarter-- was conducted to evaluate the…

  3. For Berkeley's Sports Endowment, a Goal of $1-Billion

    ERIC Educational Resources Information Center

    Keller, Josh

    2009-01-01

    Most athletics programs, if forced to raise $300-million to renovate a football stadium, would not set an ambitious endowment goal at the same time. The University of California at Berkeley is trying to do both. The university's California Memorial Stadium sits directly over an earthquake fault: it needs a major seismic retrofit that will take…

  4. Integration Defended: Berkeley Unified's Strategy to Maintain School Diversity

    ERIC Educational Resources Information Center

    Chavez, Lisa; Frankenberg, Erica

    2009-01-01

    In June 2007, the Supreme Court limited the tools that school districts could use to voluntarily integrate schools. In the aftermath of the decision, educators around the country have sought models of successful plans that would also be legal. One such model may be Berkeley Unified School District's (BUSD) plan. Earlier this year, the California…

  5. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    SciTech Connect

    Schleimer, G.E.

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs.

  6. Teaching at Berkeley: A Guide for Foreign Teaching Assistants.

    ERIC Educational Resources Information Center

    Cohen, Robby, Ed.; Robin, Ron, Ed.

    A handbook for foreign teaching assistants (TAs) is presented by foreign graduate students with teaching experience and other educators who have worked closely with them. Language skills, teaching strategies, cultural issues, resources, and the environment at the University of California, Berkeley, are addressed in 16 articles. Article titles and…

  7. Virtual Reality Lab Assistant

    NASA Technical Reports Server (NTRS)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  8. Cosmic impacts, cosmic catastrophes. II

    NASA Technical Reports Server (NTRS)

    Chapman, Clark R.; Morrison, David

    1990-01-01

    The role of extraterrestrial impacts in shaping the earth's history is discussed, arguing that cosmic impacts represent just one example of a general shift in thinking that has made the idea of catastrophes respectable in science. The origins of this view are presented and current catastrophic theory is discussed in the context of modern debate on the geological formation of the earth. Various conflicting theories are reviewed and prominent participants in the ongoing scientific controversy concerning catastrophism are introduced.

  9. Hydrogeology and tritium transport in Chicken Creek Canyon,Lawrence Berkeley National Laboratory, Berkeley, California

    SciTech Connect

    Jordan, Preston D.; Javandel, Iraj

    2007-10-31

    This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow. Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.

  10. The Undergraduate Origins of PhD Economists: The Berkeley Experience

    ERIC Educational Resources Information Center

    Olney, Martha L.

    2015-01-01

    The University of California, Berkeley sends more undergraduate students to economics PhD programs than any other public university. While this fact is surely a function of its size, there may be lessons from the Berkeley experience that others could adopt. To investigate why Berkeley generates so many economics PhD students, the author convened…

  11. Cosmic Catastrophes

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig

    2000-07-01

    In this tour de force of the ultimate and extreme in astrophysics, renowned astrophysicist and author J. Craig Wheeler takes us on a breathtaking journey to supernovae, black holes, gamma-ray bursts and adventures in hyperspace. This is no far-fetched science fiction tale, but an enthusiastic exploration of ideas at the cutting edge of current astrophysics. Wheeler follows the tortuous life of a star from birth to evolution and death, and goes on to consider the complete collapse of a star into a black hole, worm-hole time machines, the possible birth of baby bubble universes, and the prospect of a revolutionary view of space and time in a ten-dimensional string theory. Along the way he offers evidence that suggests the Universe is accelerating and describes recent developments in understanding gamma-ray bursts--perhaps the most catastrophic cosmic events of all. With the use of lucid analogies, simple language and crystal-clear cartoons, Cosmic Catastrophes makes accessible some of the most exciting and mind-bending objects and ideas in the Universe. J. Craig Wheeler is currently Samuel T. and Fern Yanagisawa Regents Professor of Astronomy at the University of Texas at Austin and Vice President of the American Astronomical Society as of 1999.

  12. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  13. Calibration of the Berkeley EUV Airglow Rocket Spectrometer

    NASA Technical Reports Server (NTRS)

    Cotton, Daniel M.; Chakrabarti, Supriya; Siegmund, Oswald

    1989-01-01

    The Berkeley Extreme-ultraviolet Airglow Rocket Spectrometer (BEARS), a multiinstrument sounding rocket payload, made comprehensive measurements of the earth's dayglow. The primary instruments consisted of two near-normal Rowland mount spectrometers: one channel to measure several atomic oxygen features at high spectral resolution (about 1.5 A) in the band passes 980-1040 and 1300-1360 A, and the other to measure EUV dayglow and the solar EUV simultaneously in a much broader bandpass (250-1150 A) at moderate resolution (about 10 A). The payload also included a hydrogen Lyman-alpha photometer to monitor the solar irradiance and goecoronal emissions. The instrument was calibrated at the EUV calibration facility at the University of California at Berkeley, and was subsequently launched successfully on September 30, 1988 aboard a four-stage experimental sounding rocket, Black Brant XII flight 12.041 WT. The calibration procedure and resulting data are presented.

  14. Cosmic plasma

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1981-01-01

    Attention is given to experimental and theoretical approaches to plasma physics, plasma phenomena in laboratory and space, field and particle aspects of plasmas, the present state of the classical theory, boundary conditions and circuit dependence, and cosmology. Electric currents in space plasmas are considered, taking into account dualism in physics, particle-related phenomena in plasma physics, magnetic field lines, filaments, local plasma properties and the circuit, electric double layers, field-aligned currents as 'cables', an expanding circuit, different types of plasma regions, the cellular structure of space, and the fine structure of active plasma regions. Other topics discussed are related to circuits, the theory of cosmic plasmas, the origin of the solar system, the coexistence of matter and antimatter, annihilation as a source of energy, the Hubble expansion in a Euclidean space, and a model for the evolution of the Metagalaxy.

  15. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect

    Not Available

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  16. Annual site environmental report of the Lawrence Berkeley Laboratory

    SciTech Connect

    Schleimer, G.E.; Pauer, R.O.

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs.

  17. Computer Lab Configuration.

    ERIC Educational Resources Information Center

    Wodarz, Nan

    2003-01-01

    Describes the layout and elements of an effective school computer lab. Includes configuration, storage spaces, cabling and electrical requirements, lighting, furniture, and computer hardware and peripherals. (PKP)

  18. Deciphering Your Lab Report

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Advertisement Proceeds from website advertising help sustain Lab Tests ... for trustworthy health information. Verify Compliance . Produced by Advertisement

  19. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  20. Evaluating the Impact of Open Access at Berkeley: Results from the 2015 Survey of Berkeley Research Impact Initiative (BRII) Funding Recipients

    ERIC Educational Resources Information Center

    Teplitzky, Samantha; Phillips, Margaret

    2016-01-01

    The Berkeley Research Impact Initiative (BRII) was one of the first campus-based open access (OA) funds to be established in North America and one of the most active, distributing more than $244,000 to support University of California (UC) Berkeley authors. In April 2015, we conducted a qualitative study of 138 individuals who had received BRII…

  1. A Museum Learning Lab

    ERIC Educational Resources Information Center

    Vandiver, Kathleen M.; Bijur, Jon Markowitz; Epstein, Ari W.; Rosenthal, Beryl; Stidsen, Don

    2008-01-01

    The "Learning Lab: The Cell" exhibit was developed by the Massachusetts Institute of Technology (MIT) Museum and the MIT Center for Environmental Health Sciences (CEHS). Specially designed for middle and high school students, the Learning Lab provides museum visitors of all ages with fascinating insights into how our living cells work. The…

  2. LabSkills

    ERIC Educational Resources Information Center

    O'Brien, Nick

    2010-01-01

    This article describes LabSkills, a revolutionary teaching tool to improve practical science in schools. LabSkills offers the chance to help improve the exposure that the average Key Stage 5 (age 16-19) student has to practical work. This is a huge area for development being highlighted by universities who are seeing a worryingly growing trend in…

  3. School Science Labs

    ERIC Educational Resources Information Center

    Schachter, Ron

    2008-01-01

    This article talks about the declining state of many school science laboratories. The author describes how school districts are renovating their science labs to improve student learning. The author also offers tips from those who have already renovated their school science labs.

  4. Physics Labs with Flavor

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  5. Making Real Virtual Labs

    ERIC Educational Resources Information Center

    Keller, Harry E.; Keller, Edward E.

    2005-01-01

    Francis Bacon began defining scientific methodology in the early 17th century, and secondary school science classes began to implement science labs in the mid-19th century. By the early 20th century, leading educators were suggesting that science labs be used to develop scientific thinking habits in young students, and at the beginning of the 21st…

  6. NOT Another Lab Report

    ERIC Educational Resources Information Center

    Ende, Fred

    2012-01-01

    Ask students to name the aspects of science class they enjoy most, and working on labs will undoubtedly be mentioned. What often won't be included, however, is writing lab reports. For many students, the process of exploration and data collection is paramount, while the explanation and analysis of findings often takes a backseat. After all, if…

  7. Lab Report Blues

    ERIC Educational Resources Information Center

    Diaz, Andrew

    2004-01-01

    For middle school students, writing a formal lab report can be challenging. For middle level teachers, reading students lab reports can be overwhelming. After grading report after report with incomplete procedures, incorrect graphs, and missing conclusions, the author's frustration level was at an all-time high. Ready to try anything, he thought,…

  8. PRIME Lab Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    Hillegonds, D. J.; Mueller, K. A.; Ma, X.; Lipschutz, M. E.

    1996-03-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is one of three NSF national facilities for accelerator mass spectrometry (AMS), and is the only one capable of determining six cosmogenic radionuclides: 10Be, 14C, 26Al, 36Cl, 41Ca, and 129I. This abstract describes the current status of the radiocarbon analysis program at PRIME Lab.

  9. The Berkeley Low Background Facility and the Black Hills State University Underground Campus at SURF

    NASA Astrophysics Data System (ADS)

    Thomas, Keenan; Mount, Brianna; Lesko, Kevin; Norman, Eric; Smith, Alan; Poon, Alan; Chan, Yuen-Dat

    2015-10-01

    The Berkeley Low Background Facility at LBNL provides a variety of low background gamma spectroscopy services to a variety of projects and experiments. It operates HPGe spectrometers in two unique facilities: a surface low background lab at LBNL and underground (4300 m.w.e.) at the Sanford Underground Research Facility in Lead, SD. A large component of the measurements performed by the BLBF are for ultralow background experiments concerned with U, Th, K, and other radioisotopes within candidate construction materials to be used to construct sensitive detectors, such as those studying dark matter or neutrinos. The BLBF also makes a variety of environmental measurements in search of other radioisotopes, such as fallout from the Fukushima nuclear power plant accident in 2011 and other radioisotope monitoring activities. A general overview of the services and facilities will be presented. In 2015, the BLBF will be relocating its underground counting stations to a new, dedicated space on the 4850L of SURF. The Black Hills State University Underground Campus will host several low background counting stations and operate in a coordinated manner to provide low background measurements to the scientific community. An overview and description of the BHUC will be presented.

  10. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    SciTech Connect

    Not Available

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  11. Polarization of the cosmic background radiation

    SciTech Connect

    Lubin, Philip M.; Smoot, George F.

    1980-08-01

    We discuss the technique and results of a measurement of the linear polarization of the Cosmic Background Radiation. Data taken between May 1978 and February 1980 from both the northern hemisphere (Berkeley Lat. 38{sup o}N) and the southern hemisphere (Lima Lat. 12{sup o}s) over 11 declinations from -37{sup o} to +63{sup o} show the radiation to be essentially unpolarized over all areas surveyed. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. A fit of all data to the anisotropic axisymmetric model of Rees (1968) yields a 95% confidence level limit of 0.15 mK for the magnitude of the polarized component. Constraints on various cosmological models are discussed in light of these limits.

  12. Polarization of the cosmic background radiation

    NASA Astrophysics Data System (ADS)

    Lubin, P. M.; Smoot, G. F.

    1981-04-01

    The technique and results of a measurement of the linear polarization of the cosmic background radiation at a wavelength of 9 mm are discussed. Data taken between 1978 May and 1980 February from both the Northern Hemisphere (Berkeley latitude 38 deg N) and the Southern Hemisphere (Lima latitude 12 deg S) over 11 declinations from -37 to +63 deg show the radiation to be essentially unpolarized over all areas surveyed. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. A fit of all data to the anisotropic axisymmetric model of Rees (1968) yields a 95% confidence level limit of 0.15 mK for the magnitude of the polarized component. Constraints on various cosmological models are discussed in light of these limits.

  13. Polarization of the cosmic background radiation

    SciTech Connect

    Lubin, P.M.

    1980-03-01

    The results and technique of a measurement of the linear polarization of the Cosmic Background Radiation are discussed. The ground-based experiment utilizes a single horn (7/sup 0/ beam width) Dicke-type microwave polarimeter operating at 33 GHz (9.1 mm). Data taken between May 1978 and February 1980 from both the northern hemisphere (Berkeley Lat. = 38/sup 0/N) and the southern hemisphere (Lima Lat. = 12/sup 0/S) show the radiation to be essentially unpolarized over all areas surveyed. For the 38/sup 0/ declination data the 95% confidence level limit on a linearly polarized component is 0.3 mK for the average and 12 and 24 hour periods. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. Constraints on various cosmological models are discussed in light of these limits.

  14. Lipoprotein subclasses in genetic studies: The Berkeley Data Set

    SciTech Connect

    Krauss, R.M.; Williams, P.T.; Blanche, P.J.; Cavanaugh, A.; Holl, L.G.; Austin, M.A.

    1992-10-01

    Data from the Berkeley Data Set was used to investigate familial correlations of HDL-subclasses. Analysis of the sibling intraclass correlation coefficient by HDL particle diameter showed that sibling HDL levels were significantly correlated for HDL{sub 2b}, HDL{sub 3a} and HDL{sub 3b} subclasses. The percentage of the offsprings` variance explained by their two parents. Our finding that parents and offspring-have the highest correlation for HDL{sub 2b} is consistent with published reports that show higher heritability estimates for HDL{sub 2} compared with HDL{sub 3}{minus} cholesterol.

  15. Heinz Heinemann. The Berkeley Years (1978-1993)

    SciTech Connect

    Coble, Inger M.

    2009-08-27

    Heinz Heineman came to Berkeley in 1978 and stayed there for 15 years. This was the time of the energy crisis and we did not have anybody like him who had such a tremendous industrial experience with oil and coal conversion technology and science. He was interested in the conversion of coal to gaseous molecules and our studies with model catalysts appealed to him and attracted him. In a way, Heinz Heineman was bigger than life, since he played such a seminal role in the history of American catalysis science.

  16. High speed optical links between LLNL and Berkeley

    SciTech Connect

    Lennon, W.J.; Thombley, R.L.

    1994-08-08

    The Advanced Telecommunications Program at Lawrence Livermore National Laboratory, in collaboration with Pacific Bell, is developing an experimental high speed, four wavelength, protocol independent optical link for evaluating wide area networking interconnection schemes and the use of fiber amplifiers. Lawrence Livermore National Laboratory, as a super-user, supercomputer, and super-application site, is anticipating the future bandwidth and protocol requirements to connect to other such sites as well as to connect to remote sited control centers and experiments. In this paper we discuss our vision of the future of Wide Area Networking and describe the plans for the wavelength division multiplexed link between Livermore and the University of California at Berkeley.

  17. Lawrence Berkeley National Laboratory 1995 site environmental report

    SciTech Connect

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  18. USING DOE-2.1 AT LAWRENCE BERKELEY LABORATORY

    SciTech Connect

    Building Energy Analysis Group.; Authors, Various

    1980-09-01

    The purpose of this manual is to assist the DOE-2 user to run DOE-2 and its utility programs at Lawrence Berkeley Laboratory (LBL). It is organized to reflect the facts that every DOE-2 job run at LBL requires certain steps, and that there are options related to DOE-2 job runs available to any DOE-2 user. The standard steps for running a DOE-2 job are as follows: 1. Prepare a job deck 2. Process a job deck 3. Obtain standard output reports.

  19. Plasmonic Smart Windows: A New Invention from Berkeley's Molecular Foundry

    NASA Astrophysics Data System (ADS)

    Garcia, Guillermo

    2014-03-01

    In the United States, roughly 20% of the annual energy consumption comes from lighting and thermal management within buildings. By adjusting to the surrounding environment, dynamic ``smart'' window coatings minimize the need for heating and artificial lighting through solar gain optimization. Current dynamic windows can only operate through a visible tint, which reduces natural light during thermal management. This talk will focus on discussing a near infrared plasmonic electrochromic coating developed at Berkeley's Molecular Foundry that dynamically modulate solar heat without affecting visible light. Use of this new class of dynamic coating can improve energy consumption by minimizing artificial lighting during solar gain optimization.

  20. Current status of clinical particle radiotherapy at Lawrence Berkeley Laboratory

    SciTech Connect

    Castro, J.R.; Quivey, J.M.; Lyman, J.T.; Chen, G.T.Y.; Phillips, T.L.; Tobias, C.A.; Alpen, E.L.

    1980-08-15

    Clinical experience with charged particle irradiation of human cancers has been underway at the University of California Lawrence Berkeley Laboratory. Over 150 patients have been irradiated with heavy charged particle beams including helium, carbon, neon, and argon ions. Pilot studies have included such tumor sites as glioma of the brain, carcinoma of the esophagus, carcinoma of the pancreas, carcinoma of the stomach, ocular melanoma, and carcinoma of the uterine cervix. Prospective studies are planned to investigate the improved dose localization potential (helium) and the enhanced biologic and physical dose potential (carbon, neon) in a controlled trial against the best available megavoltage irradiation techniques.

  1. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    SciTech Connect

    Schleimer, G.E.

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  2. My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series

    SciTech Connect

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2016-09-08

    The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  3. Cosmic Interactions

    NASA Astrophysics Data System (ADS)

    2008-01-01

    An image based on data taken with ESO's Very Large Telescope reveals a triplet of galaxies intertwined in a cosmic dance. ESO PR Photo 02/08 ESO PR Photo 02/08 NGC 7173, 7174, and 7176 The three galaxies, catalogued as NGC 7173 (top), 7174 (bottom right) and 7176 (bottom left), are located 106 million light-years away towards the constellation of Piscis Austrinus (the 'Southern Fish'). NGC 7173 and 7176 are elliptical galaxies, while NGC 7174 is a spiral galaxy with quite disturbed dust lanes and a long, twisted tail. This seems to indicate that the two bottom galaxies - whose combined shape bears some resemblance to that of a sleeping baby - are currently interacting, with NGC 7176 providing fresh material to NGC 7174. Matter present in great quantity around the triplet's members also points to the fact that NGC 7176 and NGC 7173 have interacted in the past. Astronomers have suggested that the three galaxies will finally merge into a giant 'island universe', tens to hundreds of times as massive as our own Milky Way. ESO PR Photo 02/08 ESO PR Photo 02b/08 NGC 7173, 7174, and 7176 The triplet is part of a so-called 'Compact Group', as compiled by Canadian astronomer Paul Hickson in the early 1980s. The group, which is the 90th entry in the catalogue and is therefore known as HCG 90, actually contains four major members. One of them - NGC 7192 - lies above the trio, outside of this image, and is another peculiar spiral galaxy. Compact groups are small, relatively isolated, systems of typically four to ten galaxies in close proximity to one another. Another striking example is Robert's Quartet. Compact groups are excellent laboratories for the study of galaxy interactions and their effects, in particular the formation of stars. As the striking image reveals, there are many other galaxies in the field. Some are distant ones, while others seem to be part of the family. Studies made with other telescopes have indeed revealed that the HCG 90 group contains 16 members

  4. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    SciTech Connect

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  5. Clean option: Berkeley Pit water treatment and resource recovery strategy

    SciTech Connect

    Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

    1995-09-01

    The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

  6. The little-studied cluster Berkeley 90 - III. Cluster parameters

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio

    2017-02-01

    The open cluster Berkeley 90 is the home to one of the most massive binary systems in the Galaxy, LS III +46°11, formed by two identical, very massive stars (O3.5 If* + O3.5 If*), and a second early-O system (LS III +46°12 with an O4.5 IV((f)) component at least). Stars with spectral types earlier than O4 are very scarce in the Milky Way, with no more than 20 examples. The formation of such massive stars is still an open question today, and thus the study of the environments where the most massive stars are found can shed some light on this topic. To this aim, we determine the properties and characterize the population of Berkeley 90 using optical, near-infrared and WISE photometry and optical spectroscopy. This is the first determination of these parameters with accuracy. We find a distance of 3.5^{+0.5}_{-0.5} kpc and a maximum age of 3 Ma. The cluster mass is around 1000 M⊙ (perhaps reaching 1500 M⊙ if the surrounding population is added), and we do not detect candidate runaway stars in the area. There is a second population of young stars to the southeast of the cluster that may have formed at the same time or slightly later, with some evidence for low-activity ongoing star formation.

  7. Jefferson Lab Virtual Tour

    SciTech Connect

    2013-07-13

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  8. Jefferson Lab Virtual Tour

    ScienceCinema

    None

    2016-07-12

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  9. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  10. Cosmic electrons. [literature review

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1974-01-01

    The published literature on cosmic electrons is summarized. The primary and secondary sources of cosmic electrons are discussed, and the propagation of the electrons in the interstellar medium is studied with respect to energy loss mechanisms, age distributions, and spectral modifications during flight. Various portions of the electron and positron spectra are then considered in relation to problems of astrophysics. New information is presented on such topics as the origin of low-energy positrons, the decay kinematics of the pi-mu-e process, the application of age distributions for nuclear cosmic rays to cosmic electrons, and the possibility of nonidentical sources for cosmic electrons and protons.

  11. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    SciTech Connect

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy`s inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  12. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  13. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  14. Recent geothermal reservoir engineering activities at Lawrence Berkeley Laboratory

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.; Benson, S.M.; Pruess, K.

    1987-09-01

    This paper briefly describes the most recent activities in reservoir engineering for the geothermal group of Lawrence Berkeley Laboratory (LBL). The primary emphasis of the geothermal program of LBL is dedicated to reservoir engineering including theoretical investigations, the development and application of mathematical models, and field studies. The objectives of these activities are to develop and validate methods and instruments which will be utilized in the determination of the parameters of geothermal systems, and the identification and evaluation of the importance of the distinct processes which occur in reservoirs. The ultimate goal of the program is the development of state of the art technologies which characterize geothermal reservoirs and evaluate their productive capacity and longevity.

  15. The advanced light source at the Lawrence Berkeley laboratory

    NASA Astrophysics Data System (ADS)

    Jackson, Alan

    1991-05-01

    The Advanced Light Source (ALS), a national facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation, in the energy range from a few eV to 10 keV. The design is based on a 1-1.9 GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. In this paper we describe the main accelerator components of the ALS, the variety of insertion devices, the radiation spectra expected from these devices, and the complement of experiments that have been approved for initial operation, starting in April 1993.

  16. The Advanced Light Source at Lawrence Berkeley Laboratory

    NASA Astrophysics Data System (ADS)

    Robinson, A. L.; Perera, R. C. C.; Schlachter, A. S.

    1992-01-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL), scheduled to be operational in the spring of 1993 as a U.S. Department of Energy national user facility, will be a next-generation source of soft x-ray and ultraviolet (XUV) synchrotron radiation. Undulators will provide the world's brightest synchrotron radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes above 10 keV. These capabilities will support an extensive research program in a broad spectrum of scientific and technological areas in which XUV radiation is used to study and manipulate matter in all its varied gaseous, liquid, and solid forms. The ALS will also serve those interested in developing the fabrication technology for microstructures and nanostructures, as well as for characterizing them.

  17. Lawrence Berkeley Laboratory magnetic-moment sorting system

    NASA Astrophysics Data System (ADS)

    Nelson, D. H.; Barale, P. J.; Green, M. I.; Vandyke, D. A.

    1985-07-01

    The Magnetic Measurements Engineering Group at Lawrence Berkeley Laboratory (LBL) has designed and built, and is currently using, a Magnetic-moment Measurement and Sorting System (MMSS). The MMSS measures magnetic moments of permanent-magnet material and sorts the material according to selected criteria. The MMSS represents the latest application of the LBL General Purpose Magnetic Measurement Data Acquisition System reported on a MT-8. We describe the theoretical basis for the MMSS, the analog and digital components, and a unique method of calibrating the MMSS using only measured electrical quantities. We also discuss the measurement and sorting of permanent-magnet material to be incorporated in beam-line elements (dipoles and quadrupoles) in the Lawrence Livermore National Laboratory Advanced Test Accelerator Beam Director.

  18. The Lawrence Berkeley Laboratory geothermal program in northern Nevada

    NASA Technical Reports Server (NTRS)

    Mirk, K. F.; Wollenberg, H. A.

    1974-01-01

    The Lawrence Berkeley Laboratory's geothermal program began with consideration of regions where fluids in the temperature range of 150 to 230 C may be economically accessible. Three valleys, located in an area of high regional heat flow in north central Nevada, were selected for geological, geophysical, and geochemical field studies. The objective of these ongoing field activities is to select a site for a 10-MW demonstration plant. Field activities (which started in September 1973) are described. A parallel effort has been directed toward the conceptual design of a 10-MW isobutane binary plant which is planned for construction at the selected site. Design details of the plant are described. Project schedule with milestones is shown together with a cost summary of the project.

  19. Visualization and communication of pharmacometric models with berkeley madonna.

    PubMed

    Krause, A; Lowe, P J

    2014-05-28

    Population or other pharmacometric models are a useful means to describe, succinctly, the relationships between drug administration, exposure (concentration), and downstream changes in pharmacodynamic (PD) biomarkers and clinical endpoints, including the mixed effects of patient factors and random interpatient variation (fixed and random effects). However, showing a set of covariate equations to a drug development team is perhaps not the best way to get a message across. Visualization of the consequences of the knowledge encapsulated within the model is the key component. Yet in many instances, it can take hours, perhaps days, to collect ideas from teams, write scripts, and run simulations before presenting the results-by which time they have moved on. How much better, then, to seize the moment and work interactively to decide on a course of action, guided by the model. We exemplify here the visualization of pharmacometric models using the Berkeley Madonna software with a particular focus on interactive sessions. The examples are provided as Supplementary Material.

  20. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more

  1. Narrative and Spectacle in the Hollywood Musical: Contrasting the Choreography of Busby Berkeley and Gene Kelly

    ERIC Educational Resources Information Center

    Pattullo, Lauren

    2007-01-01

    This paper examines the relationship between narrative and spectacle in the Hollywood musical, with reference to the work of Busby Berkeley and Gene Kelly. It discusses Busby Berkeley's "backstage" musicals in terms of his "aggregate" approach to dealing with the narrative/spectacle relationship, and considers the effect of the backstage musical's…

  2. Morphological and functional platelet abnormalities in Berkeley sickle cell mice.

    PubMed

    Shet, Arun S; Hoffmann, Thomas J; Jirouskova, Marketa; Janczak, Christin A; Stevens, Jacqueline R M; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A; Cynober, Therese; Coller, Barry S

    2008-01-01

    Berkeley sickle cell mice are used as animal models of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37+/-3.2 vs. 27+/-1.4, mean+/-SD; p<0.001), in association with moderate thrombocytopenia (505+/-49 x 10(3)/microl vs. 1151+/-162 x 10(3)/microl; p<0.001). Despite having marked splenomegaly, SS mice had elevated levels of Howell-Jolly bodies and "pocked" erythrocytes (p<0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5+/-1% vs. 1+/-1%; p<0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease.

  3. Measurements of the cosmic background radiation

    NASA Technical Reports Server (NTRS)

    Lubin, P.; Villela, T.

    1987-01-01

    Maps of the large scale structure (theta is greater than 6 deg) of the cosmic background radiation covering 90 percent of the sky are now available. The data show a very strong 50-100 sigma (statistical error) dipole component, interpreted as being due to our motion, with a direction of alpha = 11.5 + or - 0.15 hours, sigma = -5.6 + or - 2.0 deg. The inferred direction of the velocity of our galaxy relative to the cosmic background radiation is alpha = 10.6 + or - 0.3 hours, sigma = -2.3 + or - 5 deg. This is 44 deg from the center of the Virgo cluster. After removing the dipole component, the data show a galactic signature but no apparent residual structure. An autocorrelation of the residual data, after substraction of the galactic component from a combined Berkeley (3 mm) and Princeton (12 mm) data sets, show no apparent structure from 10 to 180 deg with a rms of 0.01 mK(sup 2). At 90 percent confidence level limit of .00007 is placed on a quadrupole component.

  4. Cosmic ray antiprotons from nearby cosmic accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Gupta, Nayantara

    2015-05-01

    The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.

  5. My Green Car: Taking it to the Streets (Ep. 3) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2016-10-12

    The researcher team finds enthusiastic consumers at familiar Berkeley hangouts. Then Industry Mentor Russell Carrington pushes the group to consider who will pay for the information the fuel economy app provides. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  6. LCOGT Imaging Lab

    NASA Astrophysics Data System (ADS)

    Tufts, Joseph R.; Lobdill, Rich; Haldeman, Benjamin J.; Haynes, Rachel; Hawkins, Eric; Burleson, Ben; Jahng, David

    2008-07-01

    The Las Cumbres Observatory Global Telescope Network (LCOGT) is an ambitious project to build and operate, within 5 years, a worldwide robotic network of 50 0.4, 1, and 2 m telescopes sharing identical instrumentation and optimized for precision photometry of time-varying sources. The telescopes, instrumentation, and software are all developed in house with two 2 m telescopes already installed. The LCOGT Imaging Lab is responsible for assembly and characterization of the network's cameras and instrumentation. In addition to a fully equipped CNC machine shop, two electronics labs, and a future optics lab, the Imaging Lab is designed from the ground up to be a superb environment for bare detectors, precision filters, and assembled instruments. At the heart of the lab is an ISO class 5 cleanroom with full ionization. Surrounding this, the class 7 main lab houses equipment for detector characterization including QE and CTE, and equipment for measuring transmission and reflection of optics. Although the first science cameras installed, two TEC cooled e2v 42-40 deep depletion based units and two CryoTiger cooled Fairchild Imaging CCD486-BI based units, are from outside manufacturers, their 18 position filter wheels and the remainder of the network's science cameras, controllers, and instrumentation will be built in house. Currently being designed, the first generation LCOGT cameras for the network's 1 m telescopes use existing CCD486-BI devices and an in-house controller. Additionally, the controller uses digital signal processing to optimize readout noise vs. speed, and all instrumentation uses embedded microprocessors for communication over ethernet.

  7. The NOAO Data Lab

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, M.; Olsen, K.; Stobie, E. B.; Mighell, K. J.; Norris, P.

    2015-09-01

    We describe the NOAO Data Lab to help community users take advantage of current large surveys and prepare them even larger surveys in the era of LSST. The Data Lab will allow users to efficiently utilize catalogs of billions of objects, combine traditional telescope image and spectral data with external archives, share custom results with collaborators, publish data products to other users, and experiment with analysis toolkits. Specific science cases will be used to develop a prototype framework and tools, allowing us to work directly with scientists from survey teams to ensure development remains focused on scientifically productive tasks.

  8. Canadian ADL Partnership Lab

    DTIC Science & Technology

    2009-08-19

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Canadian Defense Academy,PO Box 17000 Station Forces ,Kingston ON CANADA K7K 7B4...CMP Canadian ADL Partnership Lab Presentation by CDA Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the... Canadian ADL Partnership Lab 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  9. SmallSat Lab

    DTIC Science & Technology

    2014-03-05

    CubeSat. Mr. Alvarez worked with four students on the PCB layout for the solar panels and the construction of the 6U CubeSat mockup . Support for Mr...Hull and Mr. Alvarez was $49k including fringe benefits. !! Purchases: During this time period a license for MatLab software and the Princeton...Satellite ToolBox was purchased using funds from this award. This software adds tremendous capability to the SmallSat Lab by enabling students to analyze

  10. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  11. Computer Labs: New Perceptions.

    ERIC Educational Resources Information Center

    Prochaska, Nancy

    1989-01-01

    Describes the use of computer labs in a Texas high school. Highlights include word processing; a study skills course; software programs currently in use by English and English-as-a-Second-Language classes; physical layout, including security considerations and furniture; hardware, including printers; and guidelines for the selection of software.…

  12. Modifying Cookbook Labs.

    ERIC Educational Resources Information Center

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  13. Materials Lab Equipment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The photo shows one of the waveguide setups in the Electromaganetic Properties Measurements Lab (EPML). This setup is for measuring permittivity and permeability of the materials at the L-band frequencies (1.12-1.7 ghz). The EMPL is in the Elecromagnetics Research Branch at NASA Langley.

  14. Elemental Chem Lab

    ERIC Educational Resources Information Center

    Franco Mariscal, Antonio Joaquin

    2008-01-01

    This educative material uses the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs. This teaching material has been divided into three puzzles according to the type of the laboratory equipment: (i) glassware as reaction vessels or containers; (ii) glassware for measuring, addition or…

  15. The Haunted Physics Lab

    NASA Astrophysics Data System (ADS)

    Zepf, Thomas H.

    2004-10-01

    During the Halloween season at Creighton University, our students and the public are treated to a haunted physics laboratory. Visitors to the lab learn physics while having fun as they are confronted with a maze of exhibits that demonstrate optical, electrical, and mechanical phenomena in the context of Halloween.

  16. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  17. The Crime Lab Project.

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2003-01-01

    Describes the Crime Lab Project, which takes an economical, hands-on, interdisciplinary approach to studying the career of forensics in the middle or high school classroom. Includes step-by-step student requirements for the investigative procedure, a sample evidence request form, and an assessment rubric. (KHR)

  18. Inside Linden Lab

    ERIC Educational Resources Information Center

    Atkinson, Tom

    2008-01-01

    In this article, the author provides an overview of Second Life[trademark], or simply SL, which was developed at Linden Lab, a San Francisco-based corporation. SL is an online society within a threee-dimensional virtual world entirely built and owned by its residents, where they can explore, build, socialize and participate in their own economy.…

  19. Decontamination and decommissioning of rooms 62-248 and 62-250 at Ernest Orlando Lawrence Berkeley National Laboratory

    SciTech Connect

    Garabedian, G.

    1996-05-01

    This document details the decontamination and decommissioning (D&D) process of Rooms 248 and 250 of Building 62 at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL). The document describes the D&D efforts for the rooms, their contents, and adjacent areas containing ancillary equipment. The rooms and equipment, before being released, were required to meet the unrestricted release criteria and requirements set forth in DOE orders 5400.5 and 5480.11, LBNL`s internal release-criteria procedure (EH&S Procedure 708), and the LBNL Radiological Control Manual. The radioactive material and items not meeting the release criteria were either sent to the Hazardous Waste Handling Facility (HWHF) for disposal or transferred to other locations approved for radioactive material. The D&D was undertaken by the Radiation Protection Group of LBNL`s Environment, Health and Safety (EH&S) Division at the request of the Materials Sciences Division. Current and past use of radioactive material in both Rooms 248 and 250 necessitated the D&D in order to release both rooms for nonradioactive work. (1) Room 248 was designated a {open_quotes}controlled area.{close_quotes} There was contained radioactive material in some of the equipment. The previous occupants of Room 248 had worked with radioactive materials. (2) Room 250 was designated a {open_quotes}Radioactive Materials Management Area{close_quotes} (RMMA) because the current occupants used potentially dispersible radioisotopes. Both laboratories, during the occupancy of U.C. Berkeley Professor Leo Brewer and Ms. Karen Krushwitz, were kept in excellent condition. There was a detailed inventory of all radioactive materials and chemicals. All work and self surveys were documented. The labs were kept extremely orderly, clean, and in compliance. In October 1993 Ms. Krushwitz received an award in recognition of her efforts in Environmental Protection, Health, and Safety at LBNL.

  20. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  1. The cosmic neutrino background

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1991-01-01

    The cosmic neutrino background is expected to consist of relic neutrinos from the big bang, of neutrinos produced during nuclear burning in stars, of neutrinos released by gravitational stellar collapse, and of neutrinos produced by cosmic ray interactions with matter and radiation in the interstellar and intergalactic medium. Formation of baryonic dark matter in the early universe, matter-antimatter annihilation in a baryonic symmetric universe, and dark matter annihilation could have also contributed significantly to the cosmic neutrino background. The purpose of this paper is to review the properties of these cosmic neutrino backgrounds, the indirect evidence for their existence, and the prospects for their detection.

  2. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    SciTech Connect

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2016-09-08

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  3. 77 FR 75448 - Welded Tube-Berkeley Including On-Site Leased Workers From Snelling, Aerotek and Express...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... Employment and Training Administration Welded Tube--Berkeley Including On-Site Leased Workers From Snelling... Worker Adjustment Assistance on October 10, 2012, applicable to workers of Welded Tube--Berkeley... Welded Tube-- Berkeley. The Department has determined that these workers were sufficiently under...

  4. Maria Montessori's Cosmic Vision, Cosmic Plan, and Cosmic Education

    ERIC Educational Resources Information Center

    Grazzini, Camillo

    2013-01-01

    This classic position of the breadth of Cosmic Education begins with a way of seeing the human's interaction with the world, continues on to the grandeur in scale of time and space of that vision, then brings the interdependency of life where each growing human becomes a participating adult. Mr. Grazzini confronts the laws of human nature in…

  5. Labs That Are a Blast.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1996-01-01

    Presents activities that use a simple homemade apparatus called "the cannon" to demonstrate Newton's Third Law. Reviews the chemistry concepts behind the ignition of the cannon and presents the Momentum Lab and the Projectile Motion Lab. (JRH)

  6. ERLN Lab Compendium Fact Sheet

    EPA Pesticide Factsheets

    The Compendium is an online database of environmental testing laboratories nationwide. It enables labs to create profiles of their capabilities, so emergency responders can quickly identify a lab that will meet their support needs.

  7. Modernizing Natural History: Berkeley's Museum of Vertebrate Zoology in Transition.

    PubMed

    Sunderland, Mary E

    2013-01-01

    Throughout the twentieth century calls to modernize natural history motivated a range of responses. It was unclear how research in natural history museums would participate in the significant technological and conceptual changes that were occurring in the life sciences. By the 1960s, the Museum of Vertebrate Zoology at the University of California, Berkeley, was among the few university-based natural history museums that were able to maintain their specimen collections and support active research. The MVZ therefore provides a window to the modernization of natural history. This paper concentrates on the directorial transitions that occurred at the MVZ between 1965 and 1971. During this period, the MVZ had four directors: Alden H. Miller (Director 1940-1965), an ornithologist; Aldo Starker Leopold (Acting Director 1965-1966), a conservationist and wildlife biologist; Oliver P. Pearson (Director 1966-1971), a physiologist and mammalogist; and David B. Wake (Director 1971-1998), a morphologist, developmental biologist, and herpetologist. The paper explores how a diversity of overlapping modernization strategies, including hiring new faculty, building infrastructure to study live animals, establishing new kinds of collections, and building modern laboratories combined to maintain collections at the MVZ's core. The paper examines the tensions between the different modernization strategies to inform an analysis of how and why some changes were institutionalized while others were short-lived. By exploring the modernization of collections-based research, this paper emphasizes the importance of collections in the transformation of the life sciences.

  8. Lawrence Berkeley Laboratory, FY 1993 Site Development Plan

    SciTech Connect

    Not Available

    1993-04-01

    The Lawrence Berkeley Laboratory (LBL) 1993 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). It is a concise policy document, prepared in compliance with DOE Order 4320.1 B, and is coupled to the 1993 Laboratory Integrated Facilities Plan (LIFP). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The plan is reviewed and approved by the DOE San Francisco Field Office. The specific purposes of the SDP are to: Summarize the mission and community setting of the Laboratory; Describe program trends and projections and future resource requirements; Describe site planning goals and future facilities and land uses; and Describe site planning issues and potential infrastructure replacement solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1993 LIFP and other planning data provide detailed support for the plans identified in this document.

  9. Visualization and Communication of Pharmacometric Models With Berkeley Madonna

    PubMed Central

    Krause, A; Lowe, P J

    2014-01-01

    Population or other pharmacometric models are a useful means to describe, succinctly, the relationships between drug administration, exposure (concentration), and downstream changes in pharmacodynamic (PD) biomarkers and clinical endpoints, including the mixed effects of patient factors and random interpatient variation (fixed and random effects). However, showing a set of covariate equations to a drug development team is perhaps not the best way to get a message across. Visualization of the consequences of the knowledge encapsulated within the model is the key component. Yet in many instances, it can take hours, perhaps days, to collect ideas from teams, write scripts, and run simulations before presenting the results—by which time they have moved on. How much better, then, to seize the moment and work interactively to decide on a course of action, guided by the model. We exemplify here the visualization of pharmacometric models using the Berkeley Madonna software with a particular focus on interactive sessions. The examples are provided as Supplementary Material. PMID:24872204

  10. The berkeley wavelet transform: a biologically inspired orthogonal wavelet transform.

    PubMed

    Willmore, Ben; Prenger, Ryan J; Wu, Michael C-K; Gallant, Jack L

    2008-06-01

    We describe the Berkeley wavelet transform (BWT), a two-dimensional triadic wavelet transform. The BWT comprises four pairs of mother wavelets at four orientations. Within each pair, one wavelet has odd symmetry, and the other has even symmetry. By translation and scaling of the whole set (plus a single constant term), the wavelets form a complete, orthonormal basis in two dimensions. The BWT shares many characteristics with the receptive fields of neurons in mammalian primary visual cortex (V1). Like these receptive fields, BWT wavelets are localized in space, tuned in spatial frequency and orientation, and form a set that is approximately scale invariant. The wavelets also have spatial frequency and orientation bandwidths that are comparable with biological values. Although the classical Gabor wavelet model is a more accurate description of the receptive fields of individual V1 neurons, the BWT has some interesting advantages. It is a complete, orthonormal basis and is therefore inexpensive to compute, manipulate, and invert. These properties make the BWT useful in situations where computational power or experimental data are limited, such as estimation of the spatiotemporal receptive fields of neurons.

  11. The BErkeley Atmospheric CO2 Observation Network: initial evaluation

    NASA Astrophysics Data System (ADS)

    Shusterman, Alexis A.; Teige, Virginia E.; Turner, Alexander J.; Newman, Catherine; Kim, Jinsol; Cohen, Ronald C.

    2016-10-01

    With the majority of the world population residing in urban areas, attempts to monitor and mitigate greenhouse gas emissions must necessarily center on cities. However, existing carbon dioxide observation networks are ill-equipped to resolve the specific intra-city emission phenomena targeted by regulation. Here we describe the design and implementation of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), a distributed CO2 monitoring instrument that utilizes low-cost technology to achieve unprecedented spatial density throughout and around the city of Oakland, California. We characterize the network in terms of four performance parameters - cost, reliability, precision, and systematic uncertainty - and find the BEACO2N approach to be sufficiently cost-effective and reliable while nonetheless providing high-quality atmospheric observations. First results from the initial installation successfully capture hourly, daily, and seasonal CO2 signals relevant to urban environments on spatial scales that cannot be accurately represented by atmospheric transport models alone, demonstrating the utility of high-resolution surface networks in urban greenhouse gas monitoring efforts.

  12. Berkeley PHOG: PhyloFacts orthology group prediction web server.

    PubMed

    Datta, Ruchira S; Meacham, Christopher; Samad, Bushra; Neyer, Christoph; Sjölander, Kimmen

    2009-07-01

    Ortholog detection is essential in functional annotation of genomes, with applications to phylogenetic tree construction, prediction of protein-protein interaction and other bioinformatics tasks. We present here the PHOG web server employing a novel algorithm to identify orthologs based on phylogenetic analysis. Results on a benchmark dataset from the TreeFam-A manually curated orthology database show that PHOG provides a combination of high recall and precision competitive with both InParanoid and OrthoMCL, and allows users to target different taxonomic distances and precision levels through the use of tree-distance thresholds. For instance, OrthoMCL-DB achieved 76% recall and 66% precision on this dataset; at a slightly higher precision (68%) PHOG achieves 10% higher recall (86%). InParanoid achieved 87% recall at 24% precision on this dataset, while a PHOG variant designed for high recall achieves 88% recall at 61% precision, increasing precision by 37% over InParanoid. PHOG is based on pre-computed trees in the PhyloFacts resource, and contains over 366 K orthology groups with a minimum of three species. Predicted orthologs are linked to GO annotations, pathway information and biological literature. The PHOG web server is available at http://phylofacts.berkeley.edu/orthologs/.

  13. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    SciTech Connect

    Not Available

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  14. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  15. Interactions of cosmic superstrings

    SciTech Connect

    Jackson, Mark G.; /Fermilab

    2007-06-01

    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p; q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.

  16. Deepening Cosmic Education

    ERIC Educational Resources Information Center

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  17. Our Cosmic Insignificance

    PubMed Central

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  18. Light from cosmic strings

    SciTech Connect

    Steer, Daniele A.; Vachaspati, Tanmay

    2011-02-15

    The time-dependent metric of a cosmic string leads to an effective interaction between the string and photons--the ''gravitational Aharonov-Bohm'' effect--and causes cosmic strings to emit light. We evaluate the radiation of pairs of photons from cosmic strings and find that the emission from cusps, kinks and kink-kink collisions occurs with a flat spectrum at all frequencies up to the string scale. Further, cusps emit a beam of photons, kinks emit along a curve, and the emission at a kink-kink collision is in all directions. The emission of light from cosmic strings could provide an important new observational signature of cosmic strings that is within reach of current experiments for a range of string tensions.

  19. My Green Car: Taking it to the Streets (Ep. 3) – DOE Lab-Corps Video Series

    SciTech Connect

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2016-09-08

    The researcher team finds enthusiastic consumers at familiar Berkeley hangouts. Then Industry Mentor Russell Carrington pushes the group to consider who will pay for the information the fuel economy app provides. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  20. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  1. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect

    Not Available

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  2. An organizational cultural assessment of Lawrence Berkeley Laboratory

    SciTech Connect

    Haber, S.B.; Crouch, D.A.

    1991-02-15

    An Organizational Cultural Assessment (OCA) was performed at the Lawrence Berkeley Laboratory (LBL) by administering an Organizational Culture Survey (OCS) that queried employees on the subjects of organizational culture, various aspects of communications employee commitment, work group cohesion, coordination of work, environmental concerns, hazardous nature of work, safety and overall job satisfaction. Many of these subjects are assessed in the OCS through highly developed and validated scales that have been administered in many different types of organizations. Some of the issues, especially the questions on environmental concerns, are newly developed and are still being modified. The purpose of the OCS is to measure in a quantitative and objective way the notion of culture;'' that is, the values, attitudes and beliefs of the individuals working within the organization. In addition, through the OCS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OCS also provides a descriptive profile of the organization at one point in time that can than be compared to a profile taken at a different point in time to assess changes in the culture of the organization. All data from the OCS is presented in group summaries, by division, managerial level, and job classification. Statistically significant differences between groups are identified and discussed. The organizational profile which emerges from the results of the LBL samples is a positive one. The overall cultural style is best described as a constructive one, with high mean scores on the Humanistic, Affiliative, Achievement and Self-actualizing Scales. Four aspects to the communication process were assessed in this OCS; Trust, Accuracy, Interaction and Satisfaction. 9 refs., 57 figs., 6 tabs.

  3. Lawrence Berkeley Laboratory FY 1992 Site Development Plan

    SciTech Connect

    Not Available

    1992-03-01

    The Lawrence Berkeley Laboratory 1992 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL's role as a multiprogram national laboratory operated by the University of California for the DOE. It is a concise policy document, prepared in compliance with DOE Order 4320.1B and based on revisions to the 1991 Technical Site Information (TSI). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The specific purposed of the SDP are to: Summarize the mission and community setting of the Laboratory; describe program trends and projections and future resource requirements; describe site planning goals and future facilities and land uses; and describe site planning issues and potential solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1992 TSI document and other planning data provide detailed support for the plans identified in this document. Preparation of the SDP was coordinated by the Office for Planning and Development with technical support and data preparation by the Plant Engineering Department. Programmatic data and information are from program divisions and technical resource divisions, including the Environment, Health Safety Division. The 1992 SDP is consistent with approved university guidelines and future building area, land use, and population projections identified in the 1987 LRDP and the 1987 Site Development Plan Environmental Impact Report prepared under the California Environment Quality Act.

  4. Lawrence Berkeley Laboratory FY 1992 Site Development Plan

    SciTech Connect

    Not Available

    1992-03-01

    The Lawrence Berkeley Laboratory 1992 Site Development Plan (SDP) provides analysis and policy guidance for the effective use and orderly development of land and facilities at the LBL main site. The SDP directly supports LBL`s role as a multiprogram national laboratory operated by the University of California for the DOE. It is a concise policy document, prepared in compliance with DOE Order 4320.1B and based on revisions to the 1991 Technical Site Information (TSI). It also serves as the current DOE framework for the implementation of the 1987 Long Range Development Plan (LRDP) approved by the Regents of the University of California. The SDP is updated annually, with periodic major revisions consistent with DOE policy and approved plans of the Regents. The specific purposed of the SDP are to: Summarize the mission and community setting of the Laboratory; describe program trends and projections and future resource requirements; describe site planning goals and future facilities and land uses; and describe site planning issues and potential solutions. The SDP concisely expresses the policies for future development based on planning concepts, the anticipated needs of research programs, and site potential and constraints. The 1992 TSI document and other planning data provide detailed support for the plans identified in this document. Preparation of the SDP was coordinated by the Office for Planning and Development with technical support and data preparation by the Plant Engineering Department. Programmatic data and information are from program divisions and technical resource divisions, including the Environment, Health & Safety Division. The 1992 SDP is consistent with approved university guidelines and future building area, land use, and population projections identified in the 1987 LRDP and the 1987 Site Development Plan Environmental Impact Report prepared under the California Environment Quality Act.

  5. Survey and Alighment for the ALS Project at LBL Berkeley

    SciTech Connect

    Keller, R.; Lauritzen, T.; Friedsam, H.; /SLAC

    2005-08-12

    The Advanced Light Source (ALS), now under construction at Lawrence Berkeley Laboratory, is a synchrotron radiation source of the third generation designed to produce extremely bright photon beams in the UV and soft X-ray regions. Its main accelerator components are a 1-1.9 GeV electron storage ring with 196.8 m circumference and 12 super-periods, a 1.5 GeV booster synchrotron with 75.0 m circumference and 4 super-periods, and a 50 MeV linac, as shown in Fig. 1. The storage ring has particularly tight positioning tolerances for lattice magnets and other components to assure the required operational characteristics. The general survey and alignment concept for the ALS is based on a network of fixed monuments installed in the building floor, to which all component positions are referred. Measurements include electronic distance measurements and separate sightings for horizontal and vertical directions, partially with automated electronic data capture. Most of the data processing is accomplished by running a customized version of PC-GEONET. It provides raw data storage, data reduction, and the calculation of adjusted coordinates, as well as an option for error analysis. PC-GEONET has also been used to establish an observation plan for the monuments and calculate their expected position accuracies, based on approximate coordinates. Additionally, for local survey tasks, the commercial software package ECDS is used. In this paper, the ALS survey and alignment strategy and techniques are presented and critically discussed. First experiences with the alignment of the linac and booster components are described.

  6. Seismic Landslide Hazard for the City of Berkeley, California

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.

    2001-01-01

    This map describes the possible hazard from earthquake-induced landslides for the city of Berkeley, CA. The hazard depicted by this map was modeled for a scenario corresponding to an M=7.1 earthquake on the Hayward, CA fault. This scenario magnitude is associated with complete rupture of the northern and southern segments of the Hayward fault, an event that has an estimated return period of about 500 years. The modeled hazard also corresponds to completely saturated ground-water conditions resulting from an extreme storm event or series of storm events. This combination of earthquake and ground-water scenarios represents a particularly severe state of hazard for earthquake-induced landslides. For dry ground-water conditions, overall hazard will be less, while relative patterns of hazard are likely to change. Purpose: The map is intended as a tool for regional planning. Any site-specific planning or analysis should be undertaken with the assistance of a qualified geotechnical engineer. This hazard map should not be used as a substitute to the State of California Seismic Hazard Zones map for the same area. (See California Department of Conservation, Division of Mines and Geology, 1999). As previously noted for maps of this type by Wieczorek and others (1985), this map should not be used as a basis to determine the absolute risk from seismically triggered landslides at any locality, as the sole justification for zoning or rezoning any parcel, for detailed design of any lifeline, for site-specific hazard-reduction planning, or for setting or modifying insurance rates.

  7. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    SciTech Connect

    Not Available

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  8. Supermassive cosmic string compactifications

    SciTech Connect

    Blanco-Pillado, Jose J.; Reina, Borja; Sousa, Kepa; Urrestilla, Jon E-mail: borja.reina@ehu.es E-mail: jon.urrestilla@ehu.es

    2014-06-01

    The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4d Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N = 1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.

  9. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-07

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry.

  10. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of soil analysis on NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL will attempt to determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Phoenix's Wet Chemistry Lab

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an illustration of the analytical procedure of NASA's Phoenix Mars Lander's Wet Chemistry Lab (WCL) on board the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument. By dissolving small amounts of soil in water, WCL can determine the pH, the abundance of minerals such as magnesium and sodium cations or chloride, bromide and sulfate anions, as well as the conductivity and redox potential.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. e-Learning - Physics Labs

    NASA Astrophysics Data System (ADS)

    Mohottala, Hashini

    2014-03-01

    The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.

  13. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  14. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  15. Astrophysics: Cosmic jet engines

    NASA Astrophysics Data System (ADS)

    Young, Andy

    2010-02-01

    In some galaxies, matter falling onto a supermassive black hole is ejected in narrow jets moving at close to the speed of light. New observations provide insight into the workings of these cosmic accelerators.

  16. Cosmic Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.

  17. Low Background Counting with the Berkeley Low Background Facility and the Black Hills State University Underground Campus at SURF

    NASA Astrophysics Data System (ADS)

    Poon, Alan; Thomas, Keenan; Mount, Brianna; Lesko, Kevin; Smith, Alan; Norman, Eric; Chan, Yuen-Dat; Berkeley Low Background Facility Team; Black Hills State University Underground Campus Team

    2016-09-01

    The Berkeley Low Background Facility provides a variety of low background gamma spectroscopy services to a variety of projects and experiments. It operates HPGe spectrometers in two unique facilities: a surface low background lab at LBNL and 4,850 feet underground (4300 m.w.e.) at the Sanford Underground Research Facility in Lead, SD in a dedicated cleanroom at the Black Hills State University Underground Campus (BHUC). A large component of the measurements performed by the BLBF are for ultralow background experiments concerned with U, Th, K, and other radioisotopes within candidate construction materials to be used to construct sensitive detectors. Experiments utilizing these needs often include those studying dark matter, neutrinos, or neutrinoless double beta decay. A general overview of the services and facilities will be presented. The BHUC will ultimately host several HPGe low background counting stations and other sensitive instruments from several incoming low background groups and projects that will operate in a coordinated manner to provide low background measurements to the scientific community. An overview and description of the BHUC facility, status, and future plans will also be discussed.

  18. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of January 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Marketing and customer service activities in this period are presented as is the progress report of NASTRAN maintenance and support. Tables of disseminations and budget summary conclude the report.

  19. The Cosmic Labyrinth

    NASA Astrophysics Data System (ADS)

    Atkinson, M.

    2011-06-01

    This paper discusses the intertwined relationship between the terrestrial and celestial using the labyrinth as a metaphor referencing sources from art, gardens and Australian Indigenous culture. Including the Morning Star with the labyrinthine mortuary ritual in Arnhem Land, the cosmic plan garden at Auschwitz and Marea Atkinson's art project undertaken at the Villa Garzoni garden in Italy to create The Cosmic Labyrinth installation exhibited at Palazzo Franchetti, Venice, during the sixth conference on the Inspiration of Astronomical Phenomena.

  20. Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  1. Inexpensive DAQ based physics labs

    NASA Astrophysics Data System (ADS)

    Lewis, Benjamin; Clark, Shane

    2015-11-01

    Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.

  2. SETI Programs at the University of California, Berkeley

    NASA Astrophysics Data System (ADS)

    Korpela, E. J.; Siemion, A. V. P.; Werthimer, D.; Korff, J. V.; Gautham, A.; Cobb, J.; Lebofsky, M.; Dexter, M.; MacMahon, D.; Wright, S.

    2014-03-01

    I describe recent SETI efforts by the University of California, Berkeley SETI Research center and efforts to be undertaken in the near future. In addition to our well known SETI@home (Korpela 2011) and Astropulse (Von Korff et al. 2013) public participation SETI survey projects, we have performed several targeted obsevations of different object classes. These include 1) Observations between 1.1 and 1.9 GHz of planetary systems idenfied by Kepler as containing earthlike planets in or near the habitable zones. (Siemion et al. 2013) 2) Wide-band Arecibo observations of 112 sky locations where the Astropulse project has identified strong µs duration dispersed radio pulses. 3) Observations of Kepler identified planetary systems at times when two planets would appear to be in conjuction when viewed from Earth. We plan a future campaign to simultaneously observe known planetary systems at radio, optical and IR wavelengths. We have also continued to advance our instrumentation. We are currently building the sixth generation of our SERENDIP (Siemion et al. 2011, Korpela et al. 2011) series of SETI instrumentation for installation at both Arecibo and GBT. SERENDIP VI will utilize an FPGA based polyphase filter bank course spectrometer feeding 8 or more GPU based compute nodes. The Arecibo version of this spectrometer will be capable of providing thresholded 1Hz resolution spectra of all seven beams of the 320 MHz bandwidth Arecibo L-band Feed Array in dual polarization. A separate front end will be available to allow up to 2.2 GHz of bandwidth in dual polarization from single pixel receivers. The Green Bank version of this spectrometer will utilize the single pixel front end. We are invesitating the possibility of simultaneous back end stages operating on the same or minimal processed data, for example, we could support simulataneous detection of fast extragalactic radio bursts (Thornton et al. 2013) by adding additional compute nodes. We are also developing new instruments

  3. Circumsolar Radiation Data: The Lawrence Berkeley Laboratory Reduced Data Base

    DOE Data Explorer

    The Lawrence Berkeley Laboratory Reduced Data Base contains approximately 288 megabytes of information, including detailed intensity profiles of the solar and circumsolar region, the total and spectrally divided direct normal radiation data, as well as the total hemispherical solar radiation in the horizontal plane and the plane facing the sun. Data are available for 11 locations in the United States in the period 1976 to 1981. The measurements were made by four circumsolar telescopes operating about 16 hours per day. The Reduced Data Base represents about one-tenth of the total data taken by the circumsolar telescopes. The sites, the amount of data available for each site, and the collection dates are: • Albuquerque (STTF), New Mexico (28,971 data sets from 4/77 to 10/79 • Albuquerque (TETF), New Mexico (13,851 data sets from 5/76 to 3/77) • Argonne, Illinois (9,702 data sets from 8/77 to 8/78) • Atlanta, Georgia (38,405 data sets from 6/77 to 6/80) • Barstow, California (36,632 data sets from 7/77 to 10/79) • Boardman, Oregon (4,782 data sets from 2/77 to 5/77) • China Lake, California (10,683 data sets from 7/76 to 3/77) • Colstrip, Montana (616 data sets from 5/77 to 6/77) • Edwards Air Force Base, California (27,344 data sets from 10/79 to 6/81) • Fort Hood (Bunker), Texas (5,150 data sets from 7/76 to 11/76) • Fort Hood (TES), Texas (8,250 data sets from 11/76 to 8/77) Note that each data set is composed of 20 lines of information with each line consistingof 77 characters. These are archived ASCII files. [Information on sites, number of data sets, etc. taken from the online publication (out of print) at http://rredc.nrel.gov/solar/pubs/circumsolar/index.html

  4. Application of PSI to Investigate the Berkeley Hills Landslides

    NASA Astrophysics Data System (ADS)

    Lei, L.; Bürgmann, R.

    2010-12-01

    Resolving the kinematics of landslides is a pre-requisite for improving our understanding of the mechanics of these potentially hazardous features. We need to better understand how landslides destabilize during large rainstorms and seismic events. In the Berkeley Hills there are four large, slow moving, deep-seated landslides. All the landslides extend through residential areas and move on the order of cm/year, each covering an area of roughly 0.25-1.00km2. These slides are located in a rapidly uplifting zone adjacent to the Hayward fault. A lot of damage to homes, breakage of underground utility pipes, and confusion over property lines were caused by landslides over the years although deformation on these landslides is typically small and slow. While standard InSAR measurements that rely on one or a stack of several interferograms can resolve the motion of large landslides, it is still often hampered by significant noise introduced by atmospheric delays and by loss of coherence in vegetated or high-relief terrain. The Persistent Scatterer Interferometry (PSI) approach can enhance the ability to find suitable scatterers in relatively low-coherence terrains. We use Stanford Method for Persistent Scatterers (StaMPS) which was developed at Stanford University by Dr. Andy Hooper (Hooper et al., 2004). Right now, we only used 12 scenes of Stripmap data which span the time interval from May 2009 to April 2010 to analysis. We constructed eleven interferograms relative to the master scene of May 10, 2010 with Doris (Delft Object-oriented Radar Interferometric Software). All of these images were used to identify persistent and coherent pixels. The results are generally consistent with southwest motion of the landslides. For the future work, we would like to apply PSI to all the TerraSAR-X data we have and hope the four beams of TerraSAR-X Spotlight data from different viewing geometry will significantly improve our ability to full characterize the kinematics and temporal

  5. Status of the UC-Berkeley SETI efforts

    NASA Astrophysics Data System (ADS)

    Korpela, E. J.; Anderson, D. P.; Bankay, R.; Cobb, J.; Howard, A.; Lebofsky, M.; Siemion, A. P. V.; von Korff, J.; Werthimer, D.

    2011-10-01

    We summarize radio and optical SETI programs based at the University of California, Berkeley. The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths. It utilizes an automated 30 inch telescope, three ultra fast photo multiplier tubes and a coincidence detector. The target list includes F, G, K and M stars, globular cluster and galaxies. The ongoing SERENDIP V.v sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with ~1.6 Hz spectral resolution. Frequency stepping allows the spectrometer to cover the full 300MHz band of the Arecibo L-band receivers. The final configuration will allow data from all 14 receivers in the Arecibo L-band Focal Array to be monitored simultaneously with over 1.8 billion channels. SETI@home uses the desktop computers of volunteers to analyze over 160 TB of data at taken at Arecibo. Over 6 million volunteers have run SETI@home during its 10 year history. The SETI@home sky survey is 10 times more sensitive than SERENDIP V.v but it covers only a 2.5 MHz band, centered on 1420 MHz. SETI@home searches a much wider parameter space, including 14 octaves of signal bandwidth and 15 octaves of pulse period with Doppler drift corrections from -100 Hz/s to +100 Hz/s. SETI@home is being expanded to analyze data collected during observations of Kepler objects of interest in May 2011. The Astropulse project is the first SETI search for μs time scale pulses in the radio spectrum. Because short pulses are dispersed by the interstellar medium, and the amount of dispersion is unknown, Astropulse must search through 30,000 possible dispersions. Substantial computing power is required to conduct this search, so the project uses volunteers and their personal computers to carry out the computation (using distributed computing similar to SETI@home). Keywords: radio instrumentation, FPGA spectrometers, SETI, optical

  6. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    SciTech Connect

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and

  7. Target selection and deselection at the Berkeley Structural Genomics Center.

    PubMed

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E

    2006-02-01

    At the Berkeley Structural Genomics Center (BSGC), our goal is to obtain a near-complete structural complement of proteins in the minimal organisms Mycoplasma genitalium and M. pneumoniae, two closely related pathogens. Current targets for structure determination have been selected in six major stages, starting with those predicted to be most tractable to high throughput study and likely to yield new structural information. We report on the process used to select these proteins, as well as our target deselection procedure. Target deselection reduces experimental effort by eliminating targets similar to those recently solved by the structural biology community or other centers. We measure the impact of the 69 structures solved at the BSGC as of July 2004 on structure prediction coverage of the M. pneumoniae and M. genitalium proteomes. The number of Mycoplasma proteins for which the fold could first be reliably assigned based on structures solved at the BSGC (24 M. pneumoniae and 21 M. genitalium) is approximately 25% of the total resulting from work at all structural genomics centers and the worldwide structural biology community (94 M. pneumoniae and 86 M. genitalium) during the same period. As the number of structures contributed by the BSGC during that period is less than 1% of the total worldwide output, the benefits of a focused target selection strategy are apparent. If the structures of all current targets were solved, the percentage of M. pneumoniae proteins for which folds could be reliably assigned would increase from approximately 57% (391 of 687) at present to around 80% (550 of 687), and the percentage of the proteome that could be accurately modeled would increase from around 37% (254 of 687) to about 64% (438 of 687). In M. genitalium, the percentage of the proteome that could be structurally annotated based on structures of our remaining targets would rise from 72% (348 of 486) to around 76% (371 of 486), with the percentage of accurately modeled

  8. ERLN Technical Support for Labs

    EPA Pesticide Factsheets

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  9. My Green Car: Painting Motor City Green (Ep. 2) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2016-10-12

    The Lab’s MyGreenCar team kicks off its customer discovery process in Detroit with a business boot camp designed for scientists developing energy-related technologies. Customer interviews lead to late night discussions and insights on less-than-receptive consumers. Back in Berkeley, the team decides to fine tune targeted customer segments. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  10. Alternatives to Traditional Labs: a Discovery Lab Based on Analogy

    NASA Astrophysics Data System (ADS)

    Liff, Mark I.

    2006-12-01

    In search for alternatives to traditional labs, it is worthwhile to turn to the creativity research. Analogy is believed by many to be at the heart of creativity. A discovery lab that requires use of analogy had been developed. A basis of the lab is a re-discovery of Gough-Joule effect of contraction of stretched rubber upon heating. The difficulties of designing an analogybased lab are discussed. The students' reaction to the unusual lab is analyzed. The data suggest that the students need to be provided with the base for analogy use. They also need to be given directions for the search of solution by changing and modification of analogies, and weeding out the misleading ones and selectively retaining productive analogies. This study shows that thought processes of divergent nature--commonly accessible only to experts--can be employed under the discussed conditions by novices as well.

  11. The QuarkNet/Grid collaborative learning e-lab

    SciTech Connect

    Bardeen, Marjorie; Gilbert, Eric; Jordan, Thomas; Nepywoda, Paul; Quigg, Elizabeth; Wilde, Mike; Zhao, Yong; /Chicago U.

    2004-12-01

    We describe a case study that uses grid computing techniques to support the collaborative learning of high school students investigating cosmic rays. Students gather and upload science data to our e-Lab portal. They explore those data using techniques from the GriPhyN collaboration. These techniques include virtual data transformations, workflows, metadata cataloging and indexing, data product provenance and persistence, as well as job planners. Students use web browsers and a custom interface that extends the GriPhyN Chiron portal to perform all of these tasks. They share results in the form of online posters and ask each other questions in this asynchronous environment. Students can discover and extend the research of other students, modeling the processes of modern large-scale scientific collaborations. Also, the e-Lab portal provides tools for teachers to guide student work throughout an investigation.

  12. Cosmic questions: an introduction.

    PubMed

    Primack, J R; Abrams, N E

    2001-12-01

    This introductory talk at the Cosmic Questions conference sponsored by the AAAS summarizes some earlier pictures of the universe and some pictures based on modern physics and cosmology. The uroboros (snake swallowing its tail) is an example of a traditional picture. The Biblical flat-earth picture was very different from the Greek spherical earth-centered picture, which was the standard view until the end of the Middle Ages. Many people incorrectly assume that the Newtonian picture of stars scattered through otherwise empty space is still the prevailing view. Seeing Earth from space shows the power of a new picture. The Hubble Space Telescope can see all the bright galaxies, all the way to the cosmic Dark Ages. We are at the center of cosmic spheres of time: looking outward is looking backward in time. All the matter and energy in the universe can be represented as a cosmic density pyramid. The laws of physics only allow the material objects in the universe to occupy a wedge-shaped region on a diagram of mass versus size. All sizes--from the smallest size scale, the Planck scale, to the entire visible universe--can be represented on the Cosmic Uroboros. There are interesting connections across this diagram, and the human scale lies in the middle.

  13. Report from the banding lab

    USGS Publications Warehouse

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  14. Physics Labs with Flavor II

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2011-01-01

    This paper was inspired by the numerous requests from "TPT" readers to expand the number of examples of "recurrent study" lab exercises described in my previous paper "Physics Labs with Flavor." I recommend that readers examine it first in order to better understand this one as my attempt here is to be brief. In that paper, one can find details…

  15. Mapping the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven

    The following sections are included: * A Brief History of Our Universe: From Soup to Galaxies * The Hidden Cosmic Dawn * The Solution: Flipping Spins * The Spin-Flip Transition as an Astronomical Tool * Foiled!: Early Cosmology with the Spin-Flip Transition * Spin-Flip Radiation Holds the Key to Observing the Cosmic Dawn * The Spin-Flip Background: The First Stars * The Spin-Flip Background: The First Black Holes * The Spin-Flip Background: The Epoch of Reionization * FM Radio Antennae as Cosmic Observatories * Piles and Tiles of Antennae: Mapping the Spin-Flip Background * Mountains to Scale: Challenges to Observing the Spin-Flip Background * Sound and Fury, Signifying Statistics * An Explosion of Telescopes * Dreams for the Future * An Unfinished Story

  16. The History of Earthquake Engineering at the University of California at Berkeley and Recent Developments of Numerical Methods and Computer Programs at CSI Berkeley

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.

    The purpose of this paper is to summarize, from a personal viewpoint, some research in structural dynamics within the Department of Civil Engineering at the University of California at Berkeley during the period of 1950 to 1990. The second part of the paper is to present a few recently developed numerical algorithms for dynamic analysis that are required in the design of wind, wave and earthquake resistant structures. These algorithms have been incorporated into the SAP 2000 programs (developed by Computers and Structures, Inc. in Berkeley) and have been used in the analysis of hundreds of large structural systems. This most recent research and development work was conducted since the author's retirement in 1991 from teaching at the University.

  17. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  18. Thinking Outside the Lab

    NASA Astrophysics Data System (ADS)

    Colter, Tabitha

    2017-01-01

    As an undergraduate physics major who spent 2015 deep in a quantum optics lab at Oak Ridge National Laboratory, I knew my 2016 experience with the House of Representatives Energy and Commerce Committee would be a completely new challenge. I have long had a passion for the bridge of communication between the technical and non-technical worlds but it was only through my AIP Mather internship this summer that I was able to see that passion come to life in the realm of science policy. Suddenly, I went from squeezing political philosophy classes into my packed schedule to witnessing the political process first-hand. I was thrilled to find that the skills of critical thinking and communicating complex issues I have developed throughout my training as a physicist were directly applicable to my work in Congress. Overall, my experience this summer has given me insight into the inner workings of the federal policy process, deepened my appreciation for the work of government employees to keep Congressional members informed on the pressing current issues, and exposed me to a whole range of alternative careers within science. AIP and SPS

  19. Inaugural Conference of the Berkeley Research Group in Nonlinear Systems and Dynamics.

    DTIC Science & Technology

    1986-05-01

    ELEMENT. PROJECT. TASK n F OAREA & WORK UNIT NUMBERS to University of California, Berkeley < Berkeley, CA 94720 CONTROLLING OFFICE NAME AND ADDRESS 12...SCNHEDU LE’, I. DISTRIBUTION STATEMENT (of this Report)’ DTIC Approved for public release; distribution unlimited. ii nl JUN 2 681 W6 D III 1I...of the Army position, policy , or decision, unless so dagigpn-red hy rthor dm-nmPntainn ’.’ 1IS. KEY WORDS (Continwe an revetrse ide It necessary) and

  20. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    NASA Astrophysics Data System (ADS)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  1. Cosmic Needles versus Cosmic Microwave Background Radiation

    NASA Astrophysics Data System (ADS)

    Li, Aigen

    2003-02-01

    It has been suggested by a number of authors that the 2.7 K cosmic microwave background (CMB) radiation might have arisen from the radiation of ``Population III'' objects thermalized by conducting cosmic graphite/iron needle-shaped dust. Due to a lack of an accurate solution to the absorption properties of exceedingly elongated grains, in existing literature which studies the CMB thermalizing process they are generally modeled as (1) needle-like spheroids in terms of the Rayleigh approximation, (2) infinite cylinders, and (3) antennae. We show here that the Rayleigh approximation is not valid since the Rayleigh criterion is not satisfied for highly conducting needles. We also show that the available intergalactic iron dust, if modeled as infinite cylinders, is not sufficient to supply the required opacity at long wavelengths to obtain the observed isotropy and Planckian nature of the CMB. If appealing to the antenna theory, conducting iron needles with exceedingly large elongations ( >104) appear able to provide sufficient opacity to thermalize the CMB within the iron density limit. But the applicability of the antenna theory to exceedingly thin needles of nanometer/micrometer thickness has not yet been verified.

  2. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  3. Methamphetamine Lab Incidents, 2004-2014

    MedlinePlus

    ... Liderazgo de la DEA Resource Center » Statistics & Facts » Methamphetamine Lab Incidents Methamphetamine Lab Incidents, 2004-2014 NOTE: These maps include all meth incidents, including labs, "dumpsites" or "chemical and glassware" ...

  4. Neutron Transversity at Jefferson Lab

    SciTech Connect

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  5. Our Cosmic Connection

    ERIC Educational Resources Information Center

    Young, Donna L.

    2005-01-01

    To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…

  6. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  7. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  8. State of the Lab 2012

    ScienceCinema

    King, Alex

    2016-07-12

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  9. State of the Lab 2012

    SciTech Connect

    King, Alex

    2012-01-01

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  10. Generalized Nanosatellite Avionics Testbed Lab

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Sorgenfrei, Matthew C.; Nehrenz, Matt

    2015-01-01

    The Generalized Nanosatellite Avionics Testbed (G-NAT) lab at NASA Ames Research Center provides a flexible, easily accessible platform for developing hardware and software for advanced small spacecraft. A collaboration between the Mission Design Division and the Intelligent Systems Division, the objective of the lab is to provide testing data and general test protocols for advanced sensors, actuators, and processors for CubeSat-class spacecraft. By developing test schemes for advanced components outside of the standard mission lifecycle, the lab is able to help reduce the risk carried by advanced nanosatellite or CubeSat missions. Such missions are often allocated very little time for testing, and too often the test facilities must be custom-built for the needs of the mission at hand. The G-NAT lab helps to eliminate these problems by providing an existing suite of testbeds that combines easily accessible, commercial-offthe- shelf (COTS) processors with a collection of existing sensors and actuators.

  11. Black Power in Berkeley: Postmodern Constructions in the Rhetoric of Stokely Carmichael.

    ERIC Educational Resources Information Center

    Gallagher, Victoria J.

    2001-01-01

    Examines a speech at Berkeley by Stokely Carmichael that revealed a potential in discourse that enabled him to develop a strategic rhetoric of blackness. Examines contemporary discursive practices addressing issues of civil rights and race in light of the principles and purposes developed by Carmichael. Challenges rhetorical scholars and critics…

  12. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    ERIC Educational Resources Information Center

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  13. THE "FREE SPEECH" CRISES AT BERKELEY, 1964-1965--SOME ISSUES FOR SOCIAL AND LEGAL RESEARCH.

    ERIC Educational Resources Information Center

    LUNSFORD, TERRY F.

    AN EXAMINATION WAS MADE OF THE ISSUES AND EVENTS OF THE "FREE SPEECH" CRISES ON THE BERKELEY CAMPUS OF THE UNIVERSITY OF CALIFORNIA IN AN ATTEMPT TO PROVIDE THE BASIS FOR MORE SYSTEMATIC AND DISPASSIONATE STUDY OF CERTAIN ISSUES BEHIND THE STUDENT PROTESTS, AND TO STIMULATE SOCIAL AND LEGAL RESEARCH ON THESE ISSUES. FOLLOWING AN…

  14. The University of California at Berkeley: An Emerging Global Research University

    ERIC Educational Resources Information Center

    Ma, Wanhua

    2008-01-01

    Federal government science policy and R&D investment are two major factors for the success of research universities in the United States. This case analysis examines how the University of California at Berkeley shifted from a regional to a globally oriented research university by the influence of federal government science policy and R&D…

  15. You Learn What You Eat: Cognition Meets Nutrition in Berkeley Schools.

    ERIC Educational Resources Information Center

    Sobel, David

    2001-01-01

    In the past 5 years, the Center for Ecoliteracy's Food Systems Project has grown from one schoolyard garden to the complete reinvention of Child Nutrition Services throughout the Berkeley Unified School District. Using food as the organizing principle for systemic change, the project is devising a pattern of healthy food, improved academic…

  16. Information Access for a Digital Library: Cheshire II and the Berkeley Environmental Digital Library.

    ERIC Educational Resources Information Center

    Larson, Ray R.; Carson, Chad

    1999-01-01

    Reviews the characteristics of the Cheshire II system that is being used to implement full-text and fielded searching of bibliographic information for the University of California Berkeley Digital Library Initiative. Examines its performance when applied to a collection of large full-text documents in the TREC Interactive Retrieval Track and its…

  17. UC Berkeley's Undocumented Student Program: Holistic Strategies for Undocumented Student Equitable Success across Higher Education

    ERIC Educational Resources Information Center

    Sanchez, Ruben Elias Canedo; So, Meng L.

    2015-01-01

    In this essay, Ruben Elias Canedo Sanchez and Meng L. So share the history and development of the Undocumented Student Program at the University of California, Berkeley. In describing the creation of the program, the authors offer reflections on the strategies employed to holistically support undocumented students' success on campus. By drawing on…

  18. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    ERIC Educational Resources Information Center

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  19. The Berkeley Puppet Interview: A Screening Instrument for Measuring Psychopathology in Young Children

    ERIC Educational Resources Information Center

    Stone, Lisanne L.; van Daal, Carlijn; van der Maten, Marloes; Engels, Rutger C. M. E.; Janssens, Jan M. A. M.; Otten, Roy

    2014-01-01

    Background: While child self-reports of psychopathology are increasingly accepted, little standardized instruments are utilized for these practices. The Berkeley Puppet Interview (BPI) is an age-appropriate instrument for self-reports of problem behavior by young children. Objective: Psychometric properties of the Dutch version of the BPI will be…

  20. "A Woman's World": The University of California, Berkeley, during the Second World War

    ERIC Educational Resources Information Center

    Dorn, Charles

    2008-01-01

    During World War II, female students at the University of California, Berkeley--then the most populous undergraduate campus in American higher education--made significant advances in collegiate life. In growing numbers, women enrolled in male-dominated academic programs, including mathematics, chemistry, and engineering, as they prepared for…

  1. Berkeley Pact with a Swiss Company Takes Technology Transfer to a New Level.

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    1998-01-01

    In search of increased support for graduate students in plant science and upgraded laboratories, the College of Plant and Microbial Biology, University of California Berkeley, offered the college's expertise in exchange for major financial backing from the single company making the best offer. The resulting five-year, $25-million alliance with one…

  2. Visual Access to Visual Images: The UC Berkeley Image Database Project.

    ERIC Educational Resources Information Center

    Besser, Howard

    1990-01-01

    Discusses the problem of access in managing image collections and describes a prototype system for the University of California Berkeley which would include the University Art Museum, Architectural Slide Library, Geography Department's Map Library and Lowie Museum of Anthropology photographs. The system combines an online public access catalog…

  3. Examination of Grants Awarded to the Berkeley Unified School District and to Bilingual Children's Television, Inc.

    ERIC Educational Resources Information Center

    Comptroller General of the U.S., Washington, DC.

    At the request of Congresswoman Edith Green, the Comptroller General of the United States reviewed grant procedures covering two awards made by the Office of Education (OE). The first award, made to the Berkeley Unified School District, was funded under Title VII of the Elementary and Secondary Education Act of 1965, as amended, which provides…

  4. The Panopticon of Childhood: Harold E. Jones Child Study Center, Berkeley, California, 1946-1960

    ERIC Educational Resources Information Center

    de Coninck-Smith, Ning

    2005-01-01

    In 1946 the well-known Danish educator Sofie Rifbjerg (1886-1991) travelled for six months to the USA. The purpose of her trip was to study American developmental psychology. On her way she spent some time at the Institute of Child Welfare at the University of California, Berkeley. The institute had become famous because of its working on…

  5. Transition or Transformation? Personal and Political Development of Former Berkeley Free Speech Movement Activists.

    ERIC Educational Resources Information Center

    Nassi, Alberta J.; Abramowitz, Stephen I.

    1979-01-01

    Former Berkeley Free Speech Movement activists' sociopolitical status, self constructions, perceptions of parents' child-rearing practices, and moral reasoning were compared with assessments made 11 years earlier. An argument was made for their continued political and psychosocial distinctiveness as a generational cohort although some important…

  6. Searching the "Nuclear Science Abstracts" Data Base by Use of the Berkeley Mass Storage System

    ERIC Educational Resources Information Center

    Herr, J. Joanne; Smith, Gloria L.

    1972-01-01

    Advantages of the Berkeley Mass Storage System (MSS) for information retrieval other than its size are: high serial-read rate, archival data storage; and random-access capability. By use of this device, the search cost in an SDI system based on the Nuclear Science Abstracts" data base was reduced by 20 percent. (6 references) (Author/NH)

  7. Survey of Spring 1982 Graduating Seniors in the College of Engineering, University of California, Berkeley.

    ERIC Educational Resources Information Center

    Thomson, Gregg E.

    Opinions and experiences of college seniors majoring in engineering at the University of California, Berkeley, were studied in spring 1982. Specific attention was focused on the unequal distribution of interest in the various engineering programs. Data were analyzed by program, year of entry, and commitment to engineering in general and/or one's…

  8. An Evaluation of the New Curriculum at the University of California, Berkeley, School of Optometry.

    ERIC Educational Resources Information Center

    Harris, Michael G.; Kashani, Sandy; Saroj, Namrata

    2001-01-01

    Evaluated the new curriculum at the University of California, Berkeley, School of Optometry by comparing the content of the new curriculum to the old curriculum and by surveying faculty and students regarding their opinion of the new curriculum. Findings indicated that the curriculum is successful in implementing desired changes, including reduced…

  9. The PRIME Lab biomedical program

    NASA Astrophysics Data System (ADS)

    Jackson, George S.; Elmore, David; Rickey, Frank A.; Musameh, Sharif M.; Sharma, Pankaj; Hillegonds, Darren; Coury, Louis; Kissinger, Peter

    2000-10-01

    The biomedical accelerator mass spectrometry (AMS) initiative at PRIME Lab including the status of equipment and sample preparation is described. Several biomedical projects are underway involving one or more of the nuclides: 14C, 26Al and 41Ca. Routine production of CaF 2 and graphite is taking place. Finally, the future direction and plans for improvement of the biomedical program at PRIME Lab are discussed.

  10. Multiple Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California

    USGS Publications Warehouse

    Pike, Richard J.; Graymer, Russell W.

    2008-01-01

    With the exception of Los Angeles, perhaps no urban area in the United States is more at risk from landsliding, triggered by either precipitation or earthquake, than the San Francisco Bay region of northern California. By January each year, seasonal winter storms usually bring moisture levels of San Francisco Bay region hillsides to the point of saturation, after which additional heavy rainfall may induce landslides of various types and levels of severity. In addition, movement at any time along one of several active faults in the area may generate an earthquake large enough to trigger landslides. The danger to life and property rises each year as local populations continue to expand and more hillsides are graded for development of residential housing and its supporting infrastructure. The chapters in the text consist of: *Introduction by Russell W. Graymer *Chapter 1 Rainfall Thresholds for Landslide Activity, San Francisco Bay Region, Northern California by Raymond C. Wilson *Chapter 2 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike and Steven Sobieszczyk *Chapter 3 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven Sobieszczyk *Chapter 4 Landslide Hazard Modeled for the Cities of Oakland, Piedmont, and Berkeley, Northern California, from a M=7.1 Scenario Earthquake on the Hayward Fault Zone by Scott B. Miles and David K. Keefer *Chapter 5 Synthesis of Landslide-Hazard Scenarios Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike The plates consist of: *Plate 1 Susceptibility to Deep-Seated Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Richard J. Pike, Russell W. Graymer, Sebastian Roberts, Naomi B. Kalman, and Steven Sobieszczyk *Plate 2 Susceptibility to Shallow Landsliding Modeled for the Oakland-Berkeley Area, Northern California by Kevin M. Schmidt and Steven

  11. Virtual Labs and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boehler, Ted

    2006-12-01

    Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner

  12. A Comparison of Particulate Matter Concentrations in West Oakland and Berkeley, California

    NASA Astrophysics Data System (ADS)

    Artis, M.; Bailey, D.; Delfin-Polk, S.; Figueroa, L.; Harris, S.; Haynes, C.; Johnson, K.; Lewis, K.; Marks-Block, T.; Martin, C.; Vieira, A.; Williams, J.

    2011-12-01

    Using a Dustrak 8530 aerosol sensor equipped with a Global Positioning System (GPS) receiver, and a Fluke 983 particle counter our research team collected Particulate Matter (PM) data throughout the communities of West Oakland and Berkeley, California. Data was collected by walking on foot along paths that wound through residential areas as well as busy intersections in each community. Identical starting times and locations were implemented in association with each in West Oakland. To reach Berkeley, research team members traveled from West Oakland on a local commuter train (Bay Area Rapid Transit), on which data also was collected. Using the Dustrak instrument samples of particulate (<2.5μm) mass (μg) in a given volume (m3) were collected every second, and using the Fluke instrument samples of particle sizes ranging from 0.3μm to 10μm were collected at specified locations and analyzed for concentration levels . Preliminary results indicate higher average PM concentrations in West Oakland compared to Berkeley sampling locations, as well as high PM concentration levels at points along the commuter train route, including those associated with underground locations. These results support our initial hypothesis that West Oakland has higher levels of PM compared to Berkeley, most likely due to its proximity to a major, functioning port and because it has considerably less street and backyard vegetation to filter PM. However, PM concentration levels in certain areas of Berkeley with heavy traffic did mirror PM averages in West Oakland, and above average PM levels were found in areas with ongoing construction in both communities.

  13. Cyclist safety on bicycle boulevards and parallel arterial routes in Berkeley, California.

    PubMed

    Minikel, Eric

    2012-03-01

    This study compares the safety of bicyclists riding on bicycle boulevards to those riding on parallel arterial routes in Berkeley, California. Literature on the impact of motor vehicle traffic characteristics on cyclist safety shows that high motor vehicle speeds and volumes and the presence of heavy vehicles are all detrimental to cyclist safety. This suggests that cyclists may be safer on side streets than on busy arterials. Bicycle boulevards-traffic-calmed side streets signed and improved for cyclist use-purport to offer cyclists a safer alternative to riding on arterials. Police-reported bicycle collision data and manually collected cyclist count data from bicycle boulevards and parallel arterial routes in Berkeley, California from 2003 to 2010 are used to test the hypothesis that Berkeley's bicycle boulevards have lower cyclist collision rates and a lower proportion of bicycle collisions resulting in severe injury. While no significant difference is found in the proportion of collisions that are severe, results show that collision rates on Berkeley's bicycle boulevards are two to eight times lower than those on parallel, adjacent arterial routes. The difference in collision rate is highly statistically significant, unlikely to be caused by any bias in the collision and count data, and cannot be easily explained away by self-selection or safety in numbers. Though the used dataset is limited and the study design is correlational, this study provides some evidence that Berkeley's bicycle boulevards are safer for cyclists than its parallel arterial routes. The results may be suggestive that, more generally, properly implemented bicycle boulevards can provide cyclists with a safer alternative to riding on arterials.

  14. Construction of a hadron calorimeter for Jefferson Lab Hall-A Super Bigbite Spectrometer

    NASA Astrophysics Data System (ADS)

    Mamyan, Vahe

    2015-04-01

    A ``shashlik'' hadron calorimeter is being constructed for the new Super Bigbite Spectrometer in Jefferson Lab Hall-A. The calorimeter will be used in nucleon-coincidence form-factor experiments taking advantage of Jefferson Labs' 12 GeV upgrade. An adiabatic light guide has been developed for the calorimeter based on laser cut acrylic sheets. A prototype module has been built to measure time resolution of the calorimeter for cosmic ray muons as well as to validate the Geant4 simulation. Several innovations in the calorimeter design will be discussed, in particular the choice of the scintillator, wave length shifter and the construction process of the light. The results of prototype tests is compared with Geant4 simulation for cosmic ray muons and prediction of HCal time and special resolution for hadrons in the 2-10 GeV/c momentum range will be presented. SBS COLLABORATION.

  15. My Green Car: The Adventure Begins (Ep. 1) – DOE Lab-Corps Video Series

    ScienceCinema

    Saxena, Samveg; Shah, Nihar; Hansen, Dana

    2016-10-12

    One key difference between a great technology that stays in the lab and one that reaches the marketplace is customer interest. In Episode 1, the Lab’s MyGreenCar team gets ready to step outside the lab and test their technology’s value to consumers in a scientific way. What makes a new technology compelling enough to transition out of the lab and become a consumer product? That’s the question Berkeley Lab researchers Samveg Saxena, Nihar Shah, and Dana Hansen plus industry mentor Russell Carrington set out to answer for MyGreenCar, an app providing personalized fuel economy or electric vehicle range estimates for consumers researching new cars. DOE’s Lab-Corps program offered the technology team some answers. The EERE-funded program, based on the National Science Foundation’s I-Corps™ model for entrepreneurial training, provides tools and training to move energy-related inventions to the marketplace. During Lab-Corp’s intensive six-week session, technology teams interview 100 customer and value chain members to discover which potential products based on their technologies will have significant market pull. A six video series follows the MyGreenCar team’s Lab-Corps experience, from pre-training preparation with the Lab’s Innovation and Partnerships Office through the ups and downs of the customer discovery process. Will the app make it to the marketplace? You’ll just have to watch.

  16. Cosmic structure formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edumund

    1994-01-01

    This article reviews the prevailing paradigm for how galaxies and larger structures formed in the universe: gravitational instability. Basic observational facts are summarized to motivate the standard cosmological framework underlying most detailed investigations of structure formation. The observed univers approaches spatial uniformity on scales larger than about 10(exp 26) cm. On these scales gravitational dynamics is almost linear and therefore relatively easy to relate to observations of large-scale structure. On smaller scales cosmic structure is complicated not only by nonlinear gravitational clustering but also by nonlinear nongravitational gas dynamical processes. The complexity of these phenomena makes galaxy formation one of the grand challenge problems of the physical sciences. No fully satisfactory theory can presently account in detail for the observed cosmic structure. However, as this article summarizes, significant progress has been made during the last few years.

  17. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of April 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Five articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: GAP 1.0 - Groove Analysis Program, Version 1.0; SUBTRANS - Subband/Transform MATLAB Functions for Image Processing; CSDM - COLD-SAT Dynamic Model; CASRE - Computer Aided Software Reliability Estimation; and XOPPS - OEL Project Planner/Scheduler Tool. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and disseminations are also described along with a budget summary.

  18. Cosmic Origin of Quantization

    NASA Astrophysics Data System (ADS)

    Calogero, Francesco

    An estimate is presented of the angular momentum associated with the stochastic cosmic tremor, which has been hypothesized to be caused by universal gravitation and by the granularity of matter, and to be itself the cause of quantization ("cosmic origin of quantization"). If that universal tremor has the spatial coherence which is instrumental in order that the estimated action associated with it have the order of magnitude of Planck's constant h, then the estimated order of magnitude of the angular momentum associated with it also has the same value. We moreover indicate how these findings (originally based on a simplified model of the Universe, as being made up only of particles having the nucleon mass) are affected (in fact, essentially unaffected) by the possible presence in the mass of the Universe of a large component made up of particles much lighter than nucleons ("dark", or "missing", mass).

  19. Note on cosmic censorship

    NASA Astrophysics Data System (ADS)

    Tipler, F. J.

    1985-05-01

    A number of recent theorems by Krolak (1983) and Newman (1983) purport to prove cosmic censorship by showing that strong-curvature singularities must be hidden behind horizons. It is shown that the 'null strong-curvature' condition which Newman imposes on certain classes of null geodesics to restrict curvature growth in the space-time does not hold in many physically realistic space-times: it is not satisfied by any null geodesic in the relevant class in any open Friedmann cosmological model, nor does it hold for any null geodesic in the relevant class in maximal Schwarzschild space. More generally it is argued that the singularity predicted by the Penrose singularity theorem is unlikely to be of the type eliminated by Newman. Thus the Newman theorems are probably without physical significance. The Krolak theorems, although based on a physically significant definition of strong curvature singularity, are mathematically invalid, and this approach cannot be used to obtain a cosmic-censorship theorem.

  20. Jigsaw Cooperative Learning Improves Biology Lab Courses.

    ERIC Educational Resources Information Center

    Colosi, Joseph C.; Zales, Charlotte Rappe

    1998-01-01

    Describes how a jigsaw cooperative learning structure divides lab work in a constructive, efficient way and provides a mechanism for sharing information. Pre-lab lectures are replaced with focused student discussions about the lab exercises. Students become more involved with the lab exercises, take responsibility for their own learning, and are…

  1. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  2. Web life: Cosmic Diary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    What is it? Cosmic Diary brings together a smorgasbord of blogging astronomers from around the world, with more than 50 contributors commenting on new discoveries and long-standing questions in astronomy - as well as offering insights into their ordinary working lives and outside interests. The site is sponsored by the International Astronomical Union and UNESCO, and it is one of 11 "cornerstone projects" of the International Year of Astronomy 2009 (IYA2009).

  3. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  4. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  5. A Warped Cosmic String

    SciTech Connect

    Slagter, R. J.

    2010-06-23

    We present a cosmic string solution in Einstein-Yang-Mills Gauss-Bonnet theory on a warped 5 dimensional space-time conform the Randall-Sundrum-2 theory. In a simplipied model, we find an exact solutions with exponential decreasing or periodic warp function. In a more general setting, where the metric- and Yang-Mills components depend on both scales and one of the YM components resides in the bulk, we find a time dependent numerical solution.

  6. Measuring the Cosmic Particle Radiation from electrons to actinides - HNX/TIGERISS

    NASA Astrophysics Data System (ADS)

    Mitchell, John

    2017-01-01

    The Heavy Nuclei eXplorer (HNX) mission will measure the abundances of nuclei from Carbon (Z =6) to Curium (Z =96) in the cosmic radiation with the resolution to identify the atomic number of each detected nucleus. HNX will measure a significant number of actinides. HNX utilizes two high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-Ray Trans-Iron Galactic Element Recorder (CosmicTIGER), located in a SpaceX DragonLab capsule orbiting the Earth. This talk will discuss the motivating science, the HNX mission, the design and performance of the HNX instruments, and another new instrument, TIGERISS (Trans-Iron Galactic Element Recorder on the ISS), that will be proposed as an intermediate between SuperTIGER and HNX.

  7. The cosmic background explorer

    SciTech Connect

    Gulkis, G. ); Lubin, P.M. ); Meyer, S.S. ); Silverberg, R.F.

    1990-01-01

    Late last year the National Aeronautics and Space Administration launched its first satellite dedicated to the study of phenomena related to the origins of the universe. The satellite, called the Cosmic Background Explorer (COBE), carries three complementary detectors that will make fundamental measurements of the celestial radiation. Part of that radiation is believed to have originated in processes that occurred at the very dawn of the universe. By measuring the remnant radiation at wavelengths from one micrometer to one centimeter across the entire sky, scientists hope to be able to solve many mysteries regarding the origin and evolution of the early universe. Unfortunately, these radiative relics of the early universe are weak and veiled by local astrophysical and terrestrial sources of radiation. The wavelengths of the various cosmic components may also overlap, thereby making the understanding of the diffuse celestial radiation a challenge. Nevertheless, the COBE instruments, with their full-sky coverage, high sensitivity to a wide range of wavelengths and freedom from interference from the earth's atmosphere, will constitute for astrophysicists an observatory of unprecedented sensitivity and scope. The interesting cosmic signals will then be separated from one another and from noncosmic radiation sources by a comprehensive analysis of the data.

  8. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  9. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  10. Advanced Physics Lab at TCU

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.

    2009-04-01

    The one semester, one credit hour Modern Physics Lab is viewed as a transition between the structured Physics 1 and 2 labs and junior/senior research. The labs focus on a variety of experiments built around a multichannel analyzer, various alpha, beta and gamma ray detectors and weak radioactive sources. Experiments include radiation safety and detection with a Geiger counter and NaI detector, gamma ray spectroscopy with a germanium detector, beta spectrum, alpha energy loss, gamma ray absorption, Compton effect, nuclear and positron annihilation lifetime, speed of gamma rays. Other experiments include using the analog oscilloscope, x-ray diffraction of diamond and using an SEM/EDX. Error analysis is emphasized throughout. The semester ends with an individual project, often an extension of one of the earlier experiments, and students present their results as a paper and an APS style presentation to the department.

  11. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2016-07-12

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  12. The Systematic Interpretation of Cosmic Ray Data (The Transport Project)

    NASA Technical Reports Server (NTRS)

    Guzik, T. Gregory

    1997-01-01

    The Transport project's primary goals were to: (1) Provide measurements of critical fragmentation cross sections; (2) Study the cross section systematics; (3) Improve the galactic cosmic ray propagation methodology; and (4) Use the new cross section measurements to improve the interpretation of cosmic ray data. To accomplish these goals a collaboration was formed consisting of researchers in the US at Louisiana State University (LSU), Lawrence Berkeley Laboratory (LBL), Goddard Space Flight Center (GSFC), the University of Minnesota (UM), New Mexico State University (NMSU), in France at the Centre d'Etudes de Saclay and in Italy at the Universita di Catania. The US institutions, lead by LSU, were responsible for measuring new cross sections using the LBL HISS facility, analysis of these measurements and their application to interpreting cosmic ray data. France developed a liquid hydrogen target that was used in the HISS experiment and participated in the data interpretation. Italy developed a Multifunctional Neutron Spectrometer (MUFFINS) for the HISS runs to measure the energy spectra, angular distributions and multiplicities of neutrons emitted during the high energy interactions. The Transport Project was originally proposed to NASA during Summer, 1988 and funding began January, 1989. Transport was renewed twice (1991, 1994) and finally concluded at LSU on September, 30, 1997. During the more than 8 years of effort we had two major experiment runs at LBL, obtained data on the interaction of twenty different beams with a liquid hydrogen target, completed the analysis of fifteen of these datasets obtaining 590 new cross section measurements, published nine journal articles as well as eighteen conference proceedings papers, and presented more than thirty conference talks.

  13. Cosmic ray hazards in the solar system.

    NASA Technical Reports Server (NTRS)

    Milford, S. N.

    1965-01-01

    Cosmic ray hazards in solar system considered from measurements of cosmic ray energy and charge spectra near Earth and in interplanetary space near Earth, together with interaction of cosmic rays with Moon surface

  14. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  15. A Community of Scientists and Educators: The Compass Project at UC Berkeley

    NASA Astrophysics Data System (ADS)

    Roth, Nathaniel; Schwab, Josiah

    2016-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.

  16. A community of educators: professional development for graduate students within the Berkeley Compass Project

    NASA Astrophysics Data System (ADS)

    Schwab, Josiah; Roth, Nathaniel; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. Graduate students, together with upper-level undergraduates, design and run all Compass programs. We strive to create a community of educators that incorporates best practices from the science education literature. Along the way, we develop experience in curriculum development, fundraising, grant writing, interfacing with university administration, and other aspects of running an effective organization. Our experience in Compass leaves us better poised to be successful researchers, teachers, and mentors.

  17. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    SciTech Connect

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs.

  18. Latest results from the SEMATECH Berkeley extreme ultraviolet microfield exposure tool

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher N.; Chiu, Jerrin; Dean, Kim; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Hoef, Brian; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; Ma, Andy; Montgomery, Warren; Niakoula, Dimitra; Park, Joo-On; Wallow, Tom; Wurm, Stefan

    2008-09-02

    Microfield exposure tools (METs) continue to play a dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the 0.3 numerical aperture SEMATECH Berkeley MET operating as a resist and mask test center. Here they present an update on the tool summarizing some of the latest test and characterization results. they provide an update on the long-term aberration stability of the tool and present line-space imaging in chemically amplified photoresist down to the 20-nm half-pitch level. Although resist development has shown substantial progress in the area of resolution, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of mask contributors to the LER observed from the SEMATECH Berkeley microfield tool.

  19. The SEMATECH Berkeley microfield exposure tool: learning a the 22-nm node and beyond

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Goldstein, Michael; Hoef, Brian; Hudyma, Russ; Jones, Gideon; Koh, Chawon; La Fontaine, Bruno; McClinton, Brittany; Miyakawa, Ryan; Montgomery, Warren; Roller, John; Wallow, Tom; Wurm, Stefan

    2009-02-16

    Microfield exposure tools (METs) continue to playa dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the SEMATECH Berkeley 0.3-NA MET operating as a SEMATECH resist and mask test center. Here we present an update summarizing the latest resist test and characterization results. The relatively small numerical aperture and limited illumination settings expected from 1st generation EUV production tools make resist resolution a critical issue even at the 32-nm node. In this presentation, sub 22 nm half pitch imaging results of EUV resists are reported. We also present contact hole printing at the 30-nm level. Although resist development has progressed relatively well in the areas of resolution and sensitivity, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of system-level contributors to the LER observed from the SEMA TECH Berkeley microfield tool.

  20. The Emergence of Cosmic Education. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Trudeau, Sr. Christina Marie

    2002-01-01

    Discusses the influence of Hindu, Moslem, and Buddhist metaphysics on Maria Montessori's own pedagogical philosophy of Cosmic Education, which she regarded as the core of all learning experiences, after her visit to India. Considers the relationship between Montessori's ideas of child development and Cosmic Education, and the effect of Indian…

  1. On Becoming a Cosmic Educator. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Maier, Biff

    2002-01-01

    Discusses Maria Montessori's five pedagogical guidelines for her Cosmic Education concept: starting with the larger context; treating planet Earth as a cosmic organism; stressing similarities among seemingly different groups of people, organisms, or objects; showing chains of interdependence among all things; and examining behavior from a cosmic…

  2. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    SciTech Connect

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed.

  3. 2nd CRISPR Research Conference Berkeley, CA, July 23-25 2009

    SciTech Connect

    Banfield, Jillian

    2014-05-01

    The second meeting dedicated to the topic of clustered, regularly interspaced palindromic repeat (CRISPR)-based microbial immunity to viruses was held in Berkeley on July 23 and 25, 2009. The goal of this meeting was to stimulate discussion and advance understanding of the recently described acquired viral resistance system in bacteria and archaea and to explore its relevance in natural populations and communities. The meeting involved around X scientists with a range of backgrounds, with a program designed for extensive discussion.

  4. Progress report on the Berkeley/Anglo-Australian Observatory high-redshift supernova search

    SciTech Connect

    Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R.A. . Center for Particle Astrophysics Lawrence Berkeley Lab., CA ); Couch, W. ); Boyle, B. . Inst. of Astronomy)

    1990-11-01

    There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring {Omega}. It is the latter that I want to discuss in this paper. 3 refs., 18 figs.

  5. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  6. The Berkeley EUV/FUV Shuttle Telescope - Observations of dust reflection in the FUV

    NASA Technical Reports Server (NTRS)

    Hurwitz, Mark; Martin, Christopher; Bowyer, Stuart

    1986-01-01

    Observations by the Berkeley EUV/FUV Shuttle Telescope of the FUV reflection from dust clouds are reported. Spectra of the diffuse UV background from regions of low and high hydrogen column density have been taken. The intensity of the continuum correlates well with the column density of neutral hydrogen, and the slope of this correlation is interpreted with a simple model of optically thin scattering to obtain a measurement of a combination of the albedo and asymmetry parameter in the FUV.

  7. CIRCE, the Proposed Coherent Infrared Center at the LawrenceBerkeley National Laboratory

    SciTech Connect

    Byrd, John M.; Martin, Michael M.; Sannibale, Fernando

    2005-07-12

    At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL), we are proposing the construction of CIRCE (Coherent InfraRed Center), a ring-based photon source completely optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range [1]. CIRCE exploits the full complement of the CSR-production mechanisms presently available for obtaining top performance, including a photon flux exceeding by more than nine orders of magnitude that of existing ''conventional'' broadband terahertz sources.

  8. Status of the Berkeley small cyclotron AMS (accelerator mass spectrometry) project

    SciTech Connect

    Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.; Welch, J.J.

    1987-04-01

    A small, low-energy cyclotron has been designed and built at Berkeley for direct detection dating of /sup 14/C. The system combines the use of a negative ion source to reject /sup 14/N with the high resolution of a cyclotron to reject other background ions. In order to allow the dating of old and small samples, the present system incorporates a high-current external ion source and injection beamline. The system is expected to be operational by mid-1987.

  9. Progress Report on the Berkeley/Anglo-Australian Observatory High-redshift Supernova Search

    DOE R&D Accomplishments Database

    Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R. A.; Couch, W.; Boyle, B.

    1990-11-01

    There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring {Omega}. It is the latter that I want to discuss in this paper.

  10. CosmicSIG science and plans

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2014-03-01

    Recent activities of the Cosmic Ray Science Interest Group (CosmicSIG) of the Physics of the Cosmos PAG will be reviewed. CosmicSIG was formed to provide an assessment to NASA HQ and the PCOS program office of the status of current and future missions in the area of cosmic-ray astrophysics. CosmicSIG also strives to act as a focal point and forum for the cosmic ray community.

  11. Cosmic Background Radiation

    NASA Astrophysics Data System (ADS)

    Sidharth, B. G.; Valluri, S. R.

    2015-08-01

    It is shown that a collection of photons with nearly the same frequency exhibits a "condensation" type of phenomenon corresponding to a peak intensity. The observed cosmic background radiation can be explained from this standpoint. We have obtained analogous results by extremization of the occupation number for photons with the use of the Lambert W function. Some of the interesting applications of this function are briefly discussed in the context of graphene which exhibits an interesting two dimensional structure with several characteristic properties and diverse practical applications.

  12. Antiprotons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Streitmatter, R. E.

    1987-01-01

    Recent experimental observations and results are discussed. It was found that the approximately 50 antiprotons collected in balloon experiments to date have generated considerable theoretical interest. Clearly, confirmatory experiments and measurements over an extended energy range are required before definite conclusions are drawn. Antiproton measurements have a bearing on astrophysical problems ranging from cosmic ray propagation to issues of cosmological import. The next generation of balloon experiments and the Particle Astrophysics Magnet Facility being discussed for operation on NASA's space station should provide data and insights of highest interest.

  13. Wormhole cosmic censorship

    NASA Astrophysics Data System (ADS)

    Matos, Tonatiuh; Ureña-López, L. Arturo; Miranda, Galaxia

    2016-05-01

    We analyze the properties of a Kerr-like wormhole supported by phantom matter, which is an exact solution of the Einstein-phantom field equations. It is shown that the solution has a naked ring singularity which is unreachable to null geodesics falling freely from the outside. Similarly to Roger Penrose's cosmic censorship, that states that all naked singularities in the Universe must be protected by event horizons, here we conjecture from our results that a naked singularity can also be fully protected by the intrinsic properties of a wormhole's throat.

  14. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  15. The Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  16. Inclusion of the electron-phonon interaction in the BerkeleyGW computational package

    NASA Astrophysics Data System (ADS)

    Vigil-Fowler, Derek; Lany, Stephan

    The BerkeleyGW package is a highly optimized and efficient code for calculating, among others, the dielectric response, bandstructures, lifetimes, and optical absorption of materials from nanostructures and two-dimensional sheets to bulk materials. In the past the only interactions included in BerkeleyGW were electron-electron interactions, with other packages being used to include the effect of, say, electron-phonon interactions. One common approach is to use Wannier functions to interpolate all needed quantities to a very fine grids in energy and momentum, which leads to very accurate electron-phonon couplings and lifetimes. However, in materials with complex, even unknown, chemical environments the generation of Wannier functions can be quite time consuming and constitutes another step in an already difficult calculation. The BerkeleyGW package has a wavefunction-based interpolation scheme that is used in solving the Bethe-Salpeter equation and which is much more easily automated than Wannier interpolation. In this talk, we discuss results for the carrier lifetimes due to the electron-phonon interaction using this interpolation scheme. In particular, we discuss the computational efficiency and scalability, and the prospects for applying this method to a wide range of materials to get first principles lifetimes, and related quantities, such as mobilities and diffusion lengths. Derek Vigil-Fowler's work is supported by the National Renewable Energy Laboratory's Director's Postdoctoral Fellowship.

  17. A Radiation Homeland Security Workshop Presented to the City of Berkeley Fire Department

    NASA Astrophysics Data System (ADS)

    Matis, Howard

    2005-04-01

    A radiation incident in a community, ranging from a transportation accident to a dirty bomb, is expected to be rare, but still can occur. First responders to such an incident must be prepared. City of Berkeley officials met with members of the Lawrence Berkeley National Laboratory staff and agreed that the laboratory participants would create material and teach it to all of their fire fighting staff. To design such a course, nuclear physicists, biologists and health physicists merged some of their existing teaching material together with previous homeland security efforts to produce a course that lasted one full day. The material was designed to help alleviate the myths and fear of radiation experienced by many first responders. It included basic nuclear physics information, biological effects, and methods that health physicists use to detect and handle radiation. The curriculum included several hands on activities which involved working directly with the meters the Berkeley Fire Department possessed. In addition, I will discuss some observations from teaching this course material plus some unusual problems that we encountered, such as suddenly the whole class responding to a fire.

  18. Academic Pipeline and Futures Lab

    DTIC Science & Technology

    2016-02-01

    level for summer time programs. The Academic Pipeline will also work with other programs at AFRL and with other universities and organizations to...AFRL-RY-WP-TR-2015-0186 ACADEMIC PIPELINE AND FUTURES LAB Brian D. Rigling Wright State University FEBRUARY 2016...PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. // Signature// // Signature// KELLY MILLER, Program Manager CHRISTINA

  19. Where Lab Tests Are Performed

    MedlinePlus

    ... labs also vary in complexity, the volume of tests performed, the technology utilized, and the number and type of professionals who conduct the testing . There are important differences among the various testing settings. This information will be useful in ... Proudly sponsored by ... Learn ...

  20. A Lab for All Reasons.

    ERIC Educational Resources Information Center

    Cronin-Jones, Linda L.

    1990-01-01

    Described is a demonstration science laboratory at the University of Florida. Discussed is laboratory design, including instructional space, lab stations, sink areas, safety areas, and a storage and distribution area. The impact of this type of design is cited. Diagrams and photographs are included. (CW)

  1. Biodiversity Lab: Using Local Resources.

    ERIC Educational Resources Information Center

    Gillie, Lynn L.

    1997-01-01

    Examining living organisms in one's own backyard is a key first step toward appreciating the scope and importance of biological diversity throughout the world. The goals of this lab are to involve students in exploring the biodiversity around them, appreciating its scope, and asking questions of new organisms that they may never have noticed…

  2. Evaluating E-Labs' Experimentation

    ERIC Educational Resources Information Center

    Plaisent, Michel; Maguiraga, Lassana; Bernard, Prosper; Larhrib, Samir

    2004-01-01

    This communication discusses preliminary results on an experimentation of e-Learning with MIS students, mainly in order to cope with the logistics of lab organization. A learning management software was installed which changed completely the learning process, from content to logistics. Students have expressed their satisfaction with the e-Learning…

  3. Safety Equipment in the Lab.

    ERIC Educational Resources Information Center

    Denham, Willard A.S.

    1964-01-01

    Findings of two recent surveys on safety equipment in laboratory facilities are presented. The first survey was a pilot study of emergency shower and eye wash equipment. This study was followed by a more comprehensive random survey of safety equipment in 2,820 labs. Among other findings, the surveys indicate that many plants are underequipped, or…

  4. Fraud strikes top genome lab

    SciTech Connect

    Marshall, E.

    1996-11-08

    Francis Collins, head of NIH`s Human Genome Project has informed colleagues that a junior researcher in his lab facke data in five papers co-authored by Collins. This article describes the whole scenario, how it was discovered, and what the reprocussions are.

  5. Research Perspectives at Jefferson Lab

    SciTech Connect

    Kees de Jager

    2005-06-05

    The plans for upgrading the CEBAF accelerator at Jefferson Lab to 12 GeV are presented. The research program supporting that upgrade is illustrated with a few selected examples. The instrumentation under design to carry out that research program is discussed.

  6. State of the Lab Address

    ScienceCinema

    King, Alex

    2016-07-12

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  7. A Simple, Successful Capacitor Lab

    ERIC Educational Resources Information Center

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  8. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  9. Superbubbles and Local Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Streitmatter, Robert E.; Jones, Frank C.

    2005-01-01

    We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.

  10. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  11. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  12. Cosmic Ray Neutron Flux Measurements

    NASA Astrophysics Data System (ADS)

    Dayananda, Mathes

    2009-11-01

    Cosmic rays are high-energetic particles originating from outer space that bombard the upper atmosphere of the Earth. Almost 90% of cosmic ray particles consist of protons, electrons and heavy ions. When these particles hit the Earth's atmosphere, cascade of secondary particles are formed. The most abundant particles reach to the surface of the Earth are muons, electrons and neutrons. In recent years many research groups are looking into potential applications of the effects of cosmic ray radiation at the surface of the Earth [1, 2]. At Georgia State University we are working on a long-term measurement of cosmic ray flux distribution. This study includes the simultaneous measurement of cosmic ray muons, neutrons and gamma particles at the Earth surface in downtown Atlanta. The initial effort is focusing on the correlation studies of the cosmic ray particle flux distribution and the atmospheric weather conditions. In this presentation, I will talk about the development of a cosmic ray detector using liquid scintillator and the preliminary results. [4pt] [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, ``Radiographic imaging with cosmic-ray muons'', Nature, Vol.422, p.277, Mar.2003[0pt] [2] Svensmark Henrik, Physical Review 81, 3, (1998)

  13. The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor

    DTIC Science & Technology

    2015-06-13

    The Berkeley Out-of-Order Machine (BOOM): An Industry- Competitive, Synthesizable, Parameterized RISC-V Processor Christopher Celio David A...Synthesizable, Parameterized RISC-V Processor Christopher Celio, David Patterson, and Krste Asanović University of California, Berkeley, California 94720...Order Machine BOOM is a synthesizable, parameterized, superscalar out- of-order RISC-V core designed to serve as the prototypical baseline processor

  14. Genuine cosmic hair

    NASA Astrophysics Data System (ADS)

    Kastor, David; Ray, Sourya; Traschen, Jennie

    2017-02-01

    We show that asymptotically future de Sitter (AFdS) spacetimes carry ‘genuine’ cosmic hair; information that is analogous to the mass and angular momentum of asymptotically flat spacetimes and that characterizes how an AFdS spacetime approaches its asymptotic form. We define new ‘cosmological tension’ charges associated with future asymptotic spatial translation symmetries, which are analytic continuations of the ADM mass and tensions of asymptotically planar AdS spacetimes, and which measure the leading anisotropic corrections to the isotropic, exponential de Sitter expansion rate. A cosmological Smarr relation, holding for AFdS spacetimes having exact spatial translation symmetry, is derived. This formula relates cosmological tension, which is evaluated at future infinity, to properties of the cosmology at early times, together with a ‘cosmological volume’ contribution that is analogous to the thermodynamic volume of AdS black holes. Smarr relations for different spatial directions imply that the difference in expansion rates between two directions at late times is related in a simple way to their difference at early times. Hence information about the very early universe can be inferred from cosmic hair, which is potentially observable in a late time de Sitter phase. Cosmological tension charges and related quantities are evaluated for Kasner–de Sitter spacetimes, which serve as our primary examples.

  15. Cosmic Diffuse Analysis

    NASA Technical Reports Server (NTRS)

    Ryan, James M.

    1999-01-01

    The final analysis of the COMPTEL cosmic diffuse flux analysis is summarized in the accompanying figure. It shows the intensity of the cosmic diffuse flux spectrum measured jointly between the Virgo region and the South Galactic pole. This spectrum represents flux per unit solid angle over the range of 0.8 to 30 MeV. It contains the first positive measurement of the flux above 10 MeV. The spectrum merges smoothly with that measured with the EGRET instrument, starting at 30 MeV. It also merges smoothly with the latest results of the HEAO-1 measurements. However, the spectrum below is softer than the spectrum above the COMPTEL energy band. In the COMPTEL energy band there must exist a change in spectral shape as the source objects or processes change from the lower energy regime to the higher energy regime. The details of the analysis and the implications and meanings of the results are spelled out in the thesis of Dr. Cheenu Kappadath which is enclosed.

  16. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of May 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Nine articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) WFI - Windowing System for Test and Simulation; (2) HZETRN - A Free Space Radiation Transport and Shielding Program; (3) COMGEN-BEM - Composite Model Generation-Boundary Element Method; (4) IDDS - Interactive Data Display System; (5) CET93/PC - Chemical Equilibrium with Transport Properties, 1993; (6) SDVIC - Sub-pixel Digital Video Image Correlation; (7) TRASYS - Thermal Radiation Analyzer System (HP9000 Series 700/800 Version without NASADIG); (8) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (VAX VMS Version); and (9) NASADIG - NASA Device Independent Graphics Library, Version 6.0 (UNIX Version). Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  17. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of August, 1993. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Ten articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: (1) MOM3D - A Method of Moments Code for Electromagnetic Scattering (UNIX Version); (2) EM-Animate - Computer Program for Displaying and Animating the Steady-State Time-Harmonic Electromagnetic Near Field and Surface-Current Solutions; (3) MOM3D - A Method of Moments Code for Electromagnetic Scattering (IBM PC Version); (4) M414 - MIL-STD-414 Variable Sampling Procedures Computer Program; (5) MEDOF - Minimum Euclidean Distance Optimal Filter; (6) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (Macintosh Version); (7) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (IBM PC Version); (8) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (UNIX Version); (9) CLIPS 6.0 - C Language Integrated Production System, Version 6.0 (DEC VAX VMS Version); and (10) TFSSRA - Thick Frequency Selective Surface with Rectangular Apertures. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and dissemination are also described along with a budget summary.

  18. Testing Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  19. Fault zone structure of the Wildcat fault in Berkeley, California - Field survey and fault model test -

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Onishi, C. T.; Karasaki, K.; Tanaka, S.; Hamada, T.; Sasaki, T.; Ito, H.; Tsukuda, K.; Ichikawa, K.; Goto, J.; Moriya, T.

    2010-12-01

    In order to develop hydrologic characterization technology of fault zones, it is desirable to clarify the relationship between the geologic structure and hydrologic properties of fault zones. To this end, we are performing surface-based geologic and trench investigations, geophysical surveys and borehole-based hydrologic investigations along the Wildcat fault in Berkeley,California to investigate the effect of fault zone structure on regional hydrology. The present paper outlines the fault zone structure of the Wildcat fault in Berkeley on the basis of results from trench excavation surveys. The approximately 20 - 25 km long Wildcat fault is located within the Berkeley Hills and extends northwest-southeast from Richmond to Oakland, subparallel to the Hayward fault. The Wildcat fault, which is a predominantly right-lateral strike-slip fault, steps right in a releasing bend at the Berkeley Hills region. A total of five trenches have been excavated across the fault to investigate the deformation structure of the fault zone in the bedrock. Along the Wildcat fault, multiple fault surfaces are branched, bent, paralleled, forming a complicated shear zone. The shear zone is ~ 300 m in width, and the fault surfaces may be classified under the following two groups: 1) Fault surfaces offsetting middle Miocene Claremont Chert on the east against late Miocene Orinda formation and/or San Pablo Group on the west. These NNW-SSE trending fault surfaces dip 50 - 60° to the southwest. Along the fault surfaces, fault gouge of up to 1 cm wide and foliated cataclasite of up to 60 cm wide can be observed. S-C fabrics of the fault gouge and foliated cataclasite show normal right-slip shear sense. 2) Fault surfaces forming a positive flower structure in Claremont Chert. These NW-SE trending fault surfaces are sub-vertical or steeply dipping. Along the fault surfaces, fault gouge of up to 3 cm wide and foliated cataclasite of up to 200 cm wide can be observed. S-C fabrics of the fault

  20. Hayward Fault rate constraints at Berkeley: Evaluation of the 335-meter Strawberry Creek offset

    NASA Astrophysics Data System (ADS)

    Williams, P. L.

    2007-12-01

    At UC Berkeley the active channel of Strawberry Creek is offset 335 meters by the Hayward fault and two abandoned channels of Strawberry Creek are laterally offset 580 and 730 meters. These relationships record the displacement of the northern Hayward fault at Berkeley over a period of tens of millennia. The Strawberry Creek site has a similar geometry to the central San Andreas fault's Wallace Creek site, which arguably provides the best geological evidence of "millennial" fault kinematics in California (Sieh and Jahns, 1984). Slip rate determinations are an essential component of overall hazard evaluation for the Hayward fault, and this site is ripe to disclose a long-term form of this parameter, to contrast with geodetic and other geological rate evidence. Large offsets at the site may lower uncertainty in the rate equation relative to younger sites, as the affect of stream abandonment age, generally the greatest source of rate uncertainty, is greatly reduced. This is helpful here because it more-than-offsets uncertainties resulting from piercing projections to the fault. Strawberry Creek and its ancestral channels suggest west-side-up vertical deformation across the Hayward fault at this location. The development of the vertical deformation parameter will complement ongoing geodetic measurements, particularly InSAR, and motivate testing of other geological constraints. Up-to-the-west motion across the Hayward fault at Berkeley has important implications for the partitioning of strain and kinematics of the northern Hayward fault, and may explain anomalous up-on-the-west landforms elsewhere along the fault. For example, geological features of the western Berkeley Hills are consistent with rapid and recent uplift to the west of the fault. On the basis of a preliminary analysis of the offset channels of Strawberry Creek, up-to-the-west uplift is about 0.5mm/yr across the Hayward fault at Berkeley. If this is in fact the long-term rate, the 150 m height of the Hills

  1. Cosmic Ray Physics at CERN

    NASA Astrophysics Data System (ADS)

    Fernandéz, A.; Gámez, E.; López, R.; Román, S.; Zepeda, A.

    2003-06-01

    In recent decades, cosmic ray air showers initiated by high-energy proton or nucleus collisions in the atmosphere have been studied with large area experiments on the surface of the Earth or with muon measurements deep underground. In principle, these cosmic ray experiments explore two completely different realms of physics, particle astrophysics and particle interaction physics, which are, however, intimately related by the interpretation of the data. In this paper we briefly review the cosmic ray physics activities developed at CERN in the last years. In particular we present some results from a small underground cosmic ray experiment and we discuss the capabilities of ALICE to detect high multiplicity muon events arising from cosmic ray air showers and some other astroparticle phenomena.

  2. Teaching and implementing autonomous robotic lab walkthroughs in a biotech laboratory through model-based visual tracking

    NASA Astrophysics Data System (ADS)

    Wojtczyk, Martin; Panin, Giorgio; Röder, Thorsten; Lenz, Claus; Nair, Suraj; Heidemann, Rüdiger; Goudar, Chetan; Knoll, Alois

    2010-01-01

    After utilizing robots for more than 30 years for classic industrial automation applications, service robots form a constantly increasing market, although the big breakthrough is still awaited. Our approach to service robots was driven by the idea of supporting lab personnel in a biotechnology laboratory. After initial development in Germany, a mobile robot platform extended with an industrial manipulator and the necessary sensors for indoor localization and object manipulation, has been shipped to Bayer HealthCare in Berkeley, CA, USA, a global player in the sector of biopharmaceutical products, located in the San Francisco bay area. The determined goal of the mobile manipulator is to support the off-shift staff to carry out completely autonomous or guided, remote controlled lab walkthroughs, which we implement utilizing a recent development of our computer vision group: OpenTL - an integrated framework for model-based visual tracking.

  3. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    SciTech Connect

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  4. Flexible HVAC System for Lab or Classroom.

    ERIC Educational Resources Information Center

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  5. Updated version of an interim connection space LabPQR for spectral color reproduction: LabLab.

    PubMed

    Cao, Qian; Wan, Xiaoxia; Li, Junfeng; Liang, Jingxing

    2016-09-01

    In this paper, we propose a new interim connection space (ICS) called LabLab, which is an updated version of LabPQR, to overcome the drawback that the last three dimensions of LabPQR have no definite colorimetric meanings. We extended and improved the method by which the first three dimensions of LabPQR are deduced to obtain an ICS consisting of two sets of CIELAB values under different illuminants, and the reconstructed spectra from LabLab were obtained by minimizing colorimetric errors by means of the computational formula of the CIE-XYZ tristimulus values combined with least-squares best fit. The improvement obtained from the proposed method was tested to compress and reconstruct the reflectance spectra of the 1950 Natural Color System color chips and more than 50,000 ISO SOCS color patches as well as six multispectral images acquired by multispectral image acquisition systems using 1600 glossy Munsell color chips as training samples. The performance was evaluated by the mean values of color differences between the original and reconstructed spectra under the CIE 1931 standard colorimetric observer and the CIE standard illuminants D50, D55, D65, D75, F2, F7, F11, and A as well as five multichip white LED light sources. The mean and maximum values of the root mean square errors between the original and reconstructed spectra were also calculated. The experimental results show that the proposed three LabLab interim connection spaces significantly outperform principal component analysis, LabPQR, XYZLMS, Fairman-Brill, and LabRGB in colorimetric reconstruction accuracy at the cost of slight reduction of spectral reconstruction accuracy and illuminant independence of color differences of the suggested LabLab interim connection spaces outperform other interim connection spaces. In addition, the presented LabLab interim connection spaces could be quite compatible with the extensively used colorimetric management system since each dimension has definite colorimetric

  6. The Development of MSFC Usability Lab

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.

  7. Cosmic Dawn Science Interest Group

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Cosmic Origins Program Analysis Group

    2016-01-01

    Cosmic Dawn was identified as one of the three science objectives for this decade in the _New Worlds, New Horizons_ Decadal report, and it will likely continue to be a research focus well into the next decade. Cosmic Dawn refers to the interval during which the Universe transitioned from a nearly completely neutral state back to a nearly fully ionized state and includes the time during which the first stars formed and the first galaxies assembled.The Cosmic Dawn Science Interest Group (SIG) was formed recently under the auspices of the Cosmic Origins Program Analysis Group (COPAG). The Cosmic Dawn SIG focusses on the science cases, observations, and technology development needed to address the "great mystery" of Cosmic Origins. The reach of this SIG is broad, involving the nature of the first stars and the detectability of gamma-ray bursts at high redshifts, the extent to which the first galaxies and first supermassive black holes grew together, and the technology required to pursue these questions.For further information, consult the Cosmic Dawn SIG Web site http://cd-sig.jpl.nasa.gov/ and join the mailing list (by contacting the author).Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  8. New Features in ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Di Milia, G.; Luker, J.; Murray, S. S.

    2013-01-01

    The NASA Astrophysics Data System (ADS) has been working hard on updating its services and interfaces to better support our community's research needs. ADS Labs is a new interface built on the old tried-and-true ADS Abstract Databases, so all of ADS's content is available through it. In this presentation we highlight the new features that have been developed in ADS Labs over the last year: new recommendations, metrics, a citation tool and enhanced fulltext search. ADS Labs has long been providing article-level recommendations based on keyword similarity, co-readership and co-citation analysis of its corpus. We have now introduced personal recommendations, which provide a list of articles to be considered based on a individual user's readership history. A new metrics interface provides a summary of the basic impact indicators for a list of records. These include the total and normalized number of papers, citations, reads, and downloads. Also included are some of the popular indices such as the h, g and i10 index. The citation helper tool allows one to submit a set of records and obtain a list of top 10 papers which cite and/or are cited by papers in the original list (but which are not in it). The process closely resembles the network approach of establishing "friends of friends" via an analysis of the citation network. The full-text search service now covers more than 2.5 million documents, including all the major astronomy journals, as well as physics journals published by Springer, Elsevier, the American Physical Society, the American Geophysical Union, and all of the arXiv eprints. The full-text search interface interface allows users and librarians to dig deep and find words or phrases in the body of the indexed articles. ADS Labs is available at http://adslabs.org

  9. The CLAS12 Forward Tagger Detector at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Rehman, Talha; de Vita, Raffaella; Battaglieri, Marco; Forward Tagger-CLAS12 Collaboration

    2016-09-01

    The CLAS12-Forward Tagger is designed to detect electrons produced by the interaction of CEBAF 11 GeV electron beam with the target. This detector is composed by an electromagnetic calorimeter (FT-Cal), based on lead tungstate scintillating crystals, a hodoscope (FT-Hodo), based on plastic scintillator tiles and two layers of Micromegas trackers (FT-Trck). The Forward Tagger is designed to measure electrons scattered between 2.5 and 5 degrees. Before the installation in the Hall-B of Jefferson Lab, the FT has been assembled in laboratory and is currently tested with cosmic rays. The calorimeter response is being measured to perform the energy calibration of the system. Cosmic rays crossing the calorimeter crystals release on average a fixed amount of energy that can be used to determine the absolute calibration of the system. The stability of system response can be monitored by studying the variation of calibration constants as a function of time. The results obtained in a few weeks of operation indicates that the energy response of the calorimeter is consistent with expectations and does not show significant time dependence.

  10. The CLAS12 Forward Tagger Detector at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Rehman, Talha; de Vita, Raffaella, , Dr.; Battaglieri, Marco, , Dr.; Clas12 Collaboration Collaboration

    2017-01-01

    The CLAS12-Forward Tagger is designed to detect electrons produced by the interaction of CEBAF 11 GeV electron beam with the target. This detector is composed by an electromagnetic calorimeter (FT-Cal), based on lead tungstate scintillating crystals, a hodoscope (FT-Hodo), based on plastic scintillator tiles and two layers of Micromegas trackers (FT-Trck). The Forward Tagger is designed to measure electrons scattered between 2.5 and 5 degrees. Before the installation in the Hall-B of Jefferson Lab, the FT has been assembled in laboratory and is currently tested with cosmic rays. The calorimeter response is being measured to perform the energy calibration of the system. Cosmic rays crossing the calorimeter crystals release on average a fixed amount of energy that can be used to determine the absolute calibration of the system. The stability of system response can be monitored by studying the variation of calibration constants as a function of time. The results obtained in a few weeks of operation indicates that the energy response of the calorimeter is consistent with expectations and does not show significant time dependence.

  11. THE COSMIC ORIGINS SPECTROGRAPH

    SciTech Connect

    Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John; Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Sembach, Kenneth; Linsky, Jeffrey L.; Savage, Blair D.; Siegmund, Oswald H. W.; Spencer, John; Alan Stern, S.; Welsh, Barry; and others

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  12. Cosmic Dust Catalog

    NASA Astrophysics Data System (ADS)

    Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth, S.; Dodson, A.; Zolensky, Michael E.

    1997-07-01

    Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.

  13. The Cosmic Origins Spectrograph

    NASA Technical Reports Server (NTRS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V; Andrews, John; Morse, Jon

    2010-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in May 2009, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F(sub lambda) approximates 1.0 X 10(exp -14) ergs/s/cm2/Angstrom, COS can achieve comparable signal to noise (when compared to STIS echelle modes) in 1-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (September 2009 - June 2011) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is 9 times that sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of June 2011. COS has measured, for the first time with high reliability, broad Lya absorbers and Ne VIII in the intergalactic medium, and observed the HeII reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  14. The Cosmic Origins Spectrograph

    NASA Astrophysics Data System (ADS)

    Green, James C.; Froning, Cynthia S.; Osterman, Steve; Ebbets, Dennis; Heap, Sara H.; Leitherer, Claus; Linsky, Jeffrey L.; Savage, Blair D.; Sembach, Kenneth; Shull, J. Michael; Siegmund, Oswald H. W.; Snow, Theodore P.; Spencer, John; Stern, S. Alan; Stocke, John; Welsh, Barry; Béland, Stéphane; Burgh, Eric B.; Danforth, Charles; France, Kevin; Keeney, Brian; McPhate, Jason; Penton, Steven V.; Andrews, John; Brownsberger, Kenneth; Morse, Jon; Wilkinson, Erik

    2012-01-01

    The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F λ ≈ 1.0 × 10-14 erg cm-2 s-1 Å-1, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Lyα absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

  15. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  16. Reionization from cosmic string loops

    SciTech Connect

    Olum, Ken D.; Vilenkin, Alexander

    2006-09-15

    Loops formed from a cosmic string network at early times would act as seeds for early formation of halos, which would form galaxies and lead to early reionization. With reasonable guesses about astrophysical and string parameters, the cosmic string scale G{mu} must be no more than about 3x10{sup -8} to avoid conflict with the reionization redshift found by WMAP. The bound is much stronger for superstring models with a small string reconnection probability. For values near the bound, cosmic string loops may explain the discrepancy between the WMAP value and theoretical expectations.

  17. NGC 1817, NGC 2141 and Berkeley 81: three BOCCE clusters of intermediate age

    NASA Astrophysics Data System (ADS)

    Donati, P.; Beccari, G.; Bragaglia, A.; Cignoni, M.; Tosi, M.

    2014-01-01

    In this paper we analyse the evolutionary status of three open clusters: NGC 1817, NGC 2141 and Berkeley 81. They are all of intermediate age, two are located in the Galactic anticentre direction while the third one is located in the Galactic Centre direction. All of them were observed with Large Binocular Camera at Large Binocular Telescope using the Bessel B, V and I filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMDs with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC and FST). This analysis shows that NGC 1817 has subsolar metallicity, age between 0.8 and 1.2 Gyr, reddening E(B - V) in the range 0.21 and 0.34 and distance modulus (m - M)0 of about 10.9; NGC 2141 is older, with age in the range 1.25 and 1.9 Gyr, E(B - V) between 0.36 and 0.45, (m - M)0 between 11.95 and 12.21 and subsolar metallicity; Berkeley 81 has metallicity about solar, with age between 0.75 and 1.0 Gyr, has reddening E(B - V) ˜ 0.90 and distance modulus (m - M)0 ˜ 12.4. Exploiting the large field of view of the instrument we derive the structure parameters for NGC 2141 and Berkeley 81 by fitting a King profile to the estimated density profile. Combining this information with the synthetic CMD technique we estimate a lower limit for the cluster total mass for these two systems.

  18. Fun and games in Berkeley: the early years (1956-2013).

    PubMed

    Tinoco, Ignacio

    2014-01-01

    Life at Berkeley for the past 57 years involved research on the thermodynamics, kinetics, and spectroscopic properties of RNA to better understand its structures, interactions, and functions. We (myself and all the graduate students and postdocs who shared in the fun) began with dinucleoside phosphates and slowly worked our way up to megadalton-sized RNA molecular motors. We used UV absorption, circular dichroism, circular intensity differential scattering, fluorescence, NMR, and single-molecule methods. We learned a lot and had fun doing it.

  19. Recent results from the Berkeley 0.3-NA microfield exposure tool

    SciTech Connect

    Naulleau, Patrick; Anderson, Christopher N.; Dean, Kim; Denham, Paul; Goldberg, Kenneth A.; Hoef, Brian; La Fontaine, Bruno; Wallow, Tom

    2007-03-01

    Operating as a SEMATECH resist test center, the Berkeley 0.3-NA EUV microfield exposure tool continues to play a crucial role in the advancement of EUV resists and masks. Here we present recent resist-characterization results from the tool as well as tool-characterization data. In particular we present lithographic-based aberration measurements demonstrating the long-term stability of the tool. We also describe a recent upgrade to the tool which involved redesign of the programmable coherence illuminator to provide improved field uniformity as well as a programmable field size.

  20. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  1. High energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays are understood to result from energetic processes in the galaxy, probably from supernova explosions. However, cosmic ray energies extend several orders of magnitude beyond the limit thought possible for supernova blast waves. Over the past decade several ground-based and space-based investigations were initiated to look for evidence of a limit to supernova acceleration in the cosmic-ray chemical composition at high energies. These high-energy measurements are difficult because of the very low particle fluxes in the most interesting regions. The space-based detectors must be large enough to collect adequate statistics, yet stay within the weight limit for space flight. Innovative approaches now promise high quality measurements over an energy range that was not previously possible. The current status of high energy cosmic-ray composition measurements and planned future missions are discussed in this paper.

  2. Cosmic Rays and Particle Physics

    NASA Astrophysics Data System (ADS)

    Gaisser, Thomas K.; Engel, Ralph; Resconi, Elisa

    2016-06-01

    Preface to the first edition; Preface to the second edition; 1. Cosmic rays; 2. Cosmic ray data; 3. Particle physics; 4. Hadronic interactions and accelerator data; 5. Cascade equations; 6. Atmospheric muons and neutrinos; 7. Neutrino masses and oscillations; 8. Muons and neutrinos underground; 9. Cosmic rays in the Galaxy; 10. Extragalactic propagation of cosmic rays; 11. Astrophysical - rays and neutrinos; 12. Acceleration; 13. Supernovae in the Milky Way; 14. Astrophysical accelerators and beam dumps; 15. Electromagnetic cascades; 16. Extensive air showers; 17. Very high energy cosmic rays; 18. Neutrino astronomy; A.1. Units, constants and definitions; A.2. References to flux measurements; A.3. Particle flux, density, and interaction cross section; A.4. Fundamentals of scattering theory; A.5. Regge amplitude; A.6. Glauber model of nuclear cross sections; A.7. Earth's atmosphere; A.8. Longitudinal development of air showers; A.9. Secondary positrons and electrons; A.10. Liouville's theorem and cosmic ray propagation; A.11. Cosmology and distances measures; A.12. The Hillas splitting algorithm; References; Index.

  3. Cosmic Rays for High School Students

    NASA Astrophysics Data System (ADS)

    Bardeen, Marjorie; Peterson, Robert; Jordan, Thomas

    2012-03-01

    We discuss a suite of QuarkNet activities that provide data from the Fermilab cosmic ray DAQ for three learning modes: survey, exploration and investigation. Teachers and students assemble our classroom detectors. They study data locally and/or upload data to a server for others; students without detectors have access to the data. In survey mode, students may sum columns, draw plots comparing columns, calculate descriptive statistics. They can describe patterns and may indicate outliers. Exploration mode provides visual or tabular data for doing measurements that couple values in different columns for a newly derived measurement. Students still draw plots, calculate statistics and describe patterns. Students may attend a master class performing these tasks in a group setting. Students in investigation mode use data and provided analysis and investigation tools to perform research-type investigations. Students can investigate relationships between measurements extant in the data as well as relationships between the presented data and external data sets. They also may perform the same tasks that they do in other modes e.g., draw plots. Students use a project map associated with a browser-based e-Lab to guide their investigations.

  4. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  5. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    SciTech Connect

    McKone, T.E.; Brand, K.P.; Shan, C.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  6. Relativistic Interaction of 22Ne and 26Mg in Hydrogen and the Cosmic-Ray Implications

    NASA Astrophysics Data System (ADS)

    Chen, C.-X.; Albergo, S.; Caccia, Z.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Greiner, L.; Guzik, T. G.; Insolia, A.; Knott, C. N.; Lindstrom, P. J.; McMahon, M.; Mitchell, J. W.; Potenza, R.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.

    1997-04-01

    The isotopic production cross sections for 22Ne projectiles at 377,581, and 894 MeV nucleon-1 and 26Mg projectiles at 371 and 576 MeV nucleon-1 interacting in a liquid hydrogen target have been measured by the Transport Collaboration at the Lawrence Berkeley Laboratory Heavy-Ion Spectrometer System (LBL HISS) facility. These cross sections are compared with those predicted by semi-empirical formulae. The systematics are studied to develop suitable inputs for calculations of galactic cosmic-ray interstellar transport. These calculations are used to unfold the transport effects from available observations of cosmic-ray CNO isotopes to extract the underlying source composition. With these new cross section measurements, the previously reported enhancement of 18O at the cosmic-ray source, which is sensitive to the cross sections for production from 22Ne and 26Mg and the uncertainties in cross section prediction formulae, may be explained. There is no evidence for an enhancement of 18O when these new cross sections are used in a weighted slab propagation calculation.

  7. The role of vergence in the perception of distance: a fair test of Bishop Berkeley's claim.

    PubMed

    Logvinenko, A D; Epelboim, J; Steinman, R M

    2001-01-01

    Binocular eye movements were measured while subjects perceived the wallpaper illusion in order to test the claim made by Bishop Berkeley in 1709 that we perceive the distance of nearby objects by evaluating the vergence angles of our eyes. Four subjects looked through a nearby fronto-parallel array of vertical rods (28-35 cm away) as they binocularly fixated a point about 1 meter away. The wallpaper illusion was perceived under these conditions, i.e. the rods appeared farther away than their physical location. We found that although binocular fixation at an appropriate distance was needed to begin perceiving the wallpaper illusion (at least for naive observers), once established, the illusion was quite robust in the sense that it was not affected by changing vergence. No connection between the apparent localization of the rods and vergence was observed. We conclude that it is unlikely that vergence, itself, is responsible for the perceived distance shift in the wallpaper illusion, making it unlikely that vergence contributes to the perception of distance as Bishop Berkeley suggested. We found this to be true even when vergence angles were relatively large (more than 2 deg), the region in which the control of vergence eye movements has been shown to be both fast and effective.

  8. Shiitake (Lentinula edodes (Berkeley) Pegler) extracts as a modulator of micronuclei induced in HEp-2 cells.

    PubMed

    Miyaji, C K; Poersch, A; Ribeiro, L R; Eira, A F; Cólus, I M S

    2006-12-01

    Shiitake (Lentinula edodes (Berkeley) Pegler) is one of the most consumed mushrooms, for both therapeutic purposes and as food, therefore, the study of its biological properties is of great interest for producers and consumers. Aqueous extracts of the shiitake mushroom (L. edodes (Berkeley) Pegler) were evaluated by the micronucleus test (MN) in HEp-2 cells in vitro, to analyze their possible mutagenic and antimutagenic activities. None of the three extract concentrations tested (0.5, 1.0 and 1.5mg/mL) presented mutagenicity at any of the preparation temperatures (4 degrees C, 22+/-2 degrees C and 60 degrees C). In the antimutagenicity evaluation, all extract concentrations at all preparation temperatures presented a strong protective activity for the HEp-2 cells in response to the alkylating agent methyl methanesulfonate (MMS) in the different treatment protocols: pre-treatment, simultaneous treatment and post-treatment. The extracts prepared at 22+/-2 degrees C presented the lowest frequencies of MN in the evaluations of mutagenicity and antimutagenicity, indicating these as the best option for potential therapeutic use.

  9. Pathology of Berkeley sickle cell mice: similarities and differences with human sickle cell disease.

    PubMed

    Manci, Elizabeth A; Hillery, Cheryl A; Bodian, Carol A; Zhang, Zheng G; Lutty, Gerard A; Coller, Barry S

    2006-02-15

    Because Berkeley sickle cell mice are used as an animal model for human sickle cell disease, we investigated the progression of the histopathology in these animals over 6 months and compared these findings to those published in humans with sickle cell disease. The murine study groups were composed of wild-type mixed C57Bl/6-SV129 (control) mice and sickle cell (SS) mice (alpha-/-, beta-/-, transgene +) of both sexes and between 1 and 6 months of age. SS mice were similar to humans with sickle cell disease in having erythrocytic sickling, vascular ectasia, intravascular hemolysis, exuberant hematopoiesis, cardiomegaly, glomerulosclerosis, visceral congestion, hemorrhages, multiorgan infarcts, pyknotic neurons, and progressive siderosis. Cerebral perfusion studies demonstrated increased blood-brain barrier permeability in SS mice. SS mice differed from humans with sickle cell disease in having splenomegaly, splenic hematopoiesis, more severe hepatic infarcts, less severe pulmonary manifestations, no significant vascular intimal hyperplasia, and only a trend toward vascular medial hypertrophy. Early retinal degeneration caused by a homozygous mutation (rd1) independent from that causing sickle hemoglobin was an incidental finding in some Berkeley mice. While our study reinforces the fundamental strength of this model, the notable differences warrant careful consideration when drawing parallels to human sickle cell disease.

  10. Evaluating a science diversity program at UC Berkeley: more questions than answers.

    PubMed

    Matsui, John; Liu, Roger; Kane, Caroline M

    2003-01-01

    For the past three decades, much attention has been focused on developing diversity programs designed to improve the academic success of underrepresented minorities, primarily in mathematics, science, and engineering. However, ethnic minorities remain underrepresented in science majors and careers. Over the last 10 years, the Biology Scholars Program (BSP), a diversity program at the University of California (UC), Berkeley, has worked to increase the participation and success of students majoring in the biological sciences. A quantitative comparison of students in and out of the program indicates that students in BSP graduate with a degree in biology at significantly higher rates than students not in BSP regardless of race/ethnicity. Furthermore, students who are in BSP have statistically lower high school grade point averages (GPAs) and Scholastic Achievement Test (SAT) scores than students not in BSP. African-American and Hispanic students who join BSP graduate with significantly higher UC Berkeley biology GPAs than non-BSP African-American and Hispanic students, respectively. Majority (Asian and White) students in BSP graduate with statistically similar UC GPAs despite having lower SAT scores than non-BSP majority students. Although BSP students are more successful in completing a biology degree than non-program members, the results raise a series of questions about why the program works and for whom.

  11. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  12. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2006-06-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  13. Preface: Cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander

    2015-02-01

    Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.

  14. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  15. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  16. Measurement of low energy cosmic rays aboard Spacelab-1

    NASA Technical Reports Server (NTRS)

    Beaujean, R.; Oschlies, K.; Enge, W.

    1985-01-01

    In December 1983 the first Spacelab mission was launched for a duration of 10 days. Aboard was the Kiel experiment Isotopic Stack designed for measurement of heavy cosmic ray nuclei with nuclear charge equal to or greater than 3 and energies up to some 100MeV/nuc. One part of the stack was rotated in well defined steps registered by an angle encoder to receive information on impact times of the nuclei. Using this time resolving system geomagnetically forbidden particles can be detected. The chemical composition and energy spectra of mainly CNO particles are examined using a rotated 300 microns m thick CR-39 foil beneath a fixed 100 microns m thick Kodak-Cellulose Nitrate foil. About 600 sq cm have been scanned yielding nearly 100 nuclear tracks within an energy range of approximately 8 to 30 MeV/nuc. The calibration is done by means of a postflight irradiation with 410 MeV/nuc Fe-56 at Berkeley Laboratory, California, USA. Relative abundances and energy spectra are presented.

  17. Environmental assessment for the recycling of slightly activated copper coil windings from the 184-Inch Cyclotron at Lawrence Berkeley Laboratory, Berkeley, California

    SciTech Connect

    Not Available

    1993-08-02

    The proposed action is to recycle slightly activated copper that is currently stored in a warehouse leased by Lawrence Berkeley Laboratory (LBL) to a scrap metal dealer. Subsequent reutilization of the copper would be unrestricted. This document addresses the potential environmental effects of recycling and reutilizing the activated copper. In addition, the potential environmental effects of possible future uses by the dealer are addressed. Direct environmental effects from the proposed action are assessed, such as air emissions from reprocessing the activated copper, as well as indirect beneficial effects, such as averting air emissions that would result from mining and smelting an equivalent quantity of copper ore. Evaluation of the human health impacts of the proposed action focuses on the pertinent issues of radiological doses and protection of workers and the public. Five alternatives to the proposed action are considered, and their associated potential impacts are addressed. The no-action alternative is the continued storage of the activated copper at the LBL warehouse. Two recycling alternatives are considered: recycling the activated copper at the Scientific Ecology Group (SEG) facility for re-use at a DOE facility and selling or giving the activated copper to a foreign government. In addition, two disposal alternatives evaluate the impacts attributable to disposing of the activated copper either at a local sanitary landfill or at the Hanford Low-Level Waste Burial Site. The proposed project and alternatives include no new construction or development of new industry.

  18. Injecting Inquiry into Undergraduate Astronomy Labs

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Noel-Storr, J.; Spiegel, D.

    2002-12-01

    We present examples and results of instructors using inquiry-based teaching strategies in the undergraduate astronomy lab at Columbia University. Each instructor integrated varying degrees of inquiry depending on the topic of the lab and their own preferences for this style of instruction. We use student surveys to quantify how well the spectrum of inquiry-based labs, from guided activities to independent investigations, reached our educational goals of building scientific knowledge, skills and attitudes.

  19. A Cosmic Searchlight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A Cosmic Searchlight Streaming out from the center of the galaxy M87 like a cosmic searchlight is one of nature's most amazing phenomena, a black-hole- powered jet of electrons and other sub-atomic particles traveling at nearly the speed of light. In this NASA Hubble Space Telescope image, the blue of the jet contrasts with the yellow glow from the combined light of billions of unseen stars and the yellow, point-like globular clusters that make up this galaxy. At first glance, M87 (also known as NGC 4486) appears to be an ordinary giant elliptical galaxy; one of many ellipticals in the nearby Virgo cluster of galaxies. However, as early as 1918, astronomer H.D. Curtis noted a 'curious straight ray' protruding from M87. In the 1950s when the field of radio was blossoming, one of the brightest radio sources in the sky, Virgo A, was discovered to be associated with M87 and its jet. After decades of study, prompted by these discoveries, the source of this incredible amount of energy powering the jet has become clear. Lying at the center of M87 is a supermassive black hole, which has swallowed up a mass equivalent to 2 billion times the mass of our Sun. The jet originates in the disk of superheated gas swirling around this black hole and is propelled and concentrated by the intense, twisted magnetic fields trapped within this plasma. The light that we see (and the radio emission) is produced by electrons twisting along magnetic field lines in the jet, a process known as synchrotron radiation, which gives the jet its bluish tint. M87 is one of the nearest and is the most well-studied extragalactic jet, but many others exist. Wherever a massive black hole is feeding on a particularly rich diet of disrupted stars, gas, and dust, the conditions are right for the formation of a jet. Interestingly, a similar phenomenon occurs around young stars, though at much smaller scales and energies. At a distance of 50 million light-years, M87 is too distant for Hubble to discern

  20. Cosmic Microwave Background spectral distortions from cosmic string loops

    SciTech Connect

    Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex; Morrison, Ian A.; Xia, Daixi E-mail: rhb@physics.mcgill.ca E-mail: imorrison@physics.mcgill.ca

    2016-02-01

    Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be able to provide limits which rule out a range of string tensions between G μ ∼ 10{sup −15} and G μ ∼ 10{sup −12}, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.

  1. Robust Constraint on Cosmic Textures from the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Johnson, Matthew C.; Mortlock, Daniel J.; Peiris, Hiranya V.

    2012-06-01

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply Bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  2. Fracture trace map and single-well aquifer test results in a carbonate aquifer in Berkeley County, West Virginia

    USGS Publications Warehouse

    McCoy, Kurt J.; Podwysocki, Melvin H.; Crider, E. Allen; Weary, David J.

    2005-01-01

    These data contain information on the results of single-well aquifer tests, lineament analysis, and a bedrock geologic map compilation for the low-lying carbonate and shale areas of eastern Berkeley County, West Virginia. Efforts have been initiated by management agencies of Berkeley County in cooperation with the U.S. Geological Survey to further the understanding of the spatial distribution of fractures in the carbonate regions and their correlation with aquifer properties. This report presents transmissivity values from about 200 single-well aquifer tests and a map of fracture-traces determined from aerial photos and field investigations. Transmissivity values were compared to geologic factors possibly affecting its magnitude.

  3. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  4. MatLab Script and Functional Programming

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  5. Curricular Adaptations in Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly

    2017-01-01

    When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.

  6. Retinal changes in rats flown on Cosmos 936 - A cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Corbett, R.; Turnbill, C.; Black, S.; Dayhoff, D.; Mcgourty, J.; Lee, R.; Harrison, G.; Savik, L.

    1980-01-01

    Ten rats, five centrifuged during flight to simulate gravity and five stationary in flight and experiencing hypogravity, orbited the Earth. No differences were noted between flight-stationary and flight-centrifuged animals, but changes were seen between these two groups and ground controls. Morphological alterations were observed comparable to those in the experiment flown on Cosmos 782 and to the retinal cells exposed to high-energy particles at Berkeley. Affected cells in the outer nuclear layer showed swelling, clearing of cytoplasm, and disruption of the membranes. Tissue channels were again found, similar to those seen on 782. After space flight, preliminary data indicated an increase in cell size in montages of the nuclear layer of both groups of flight animals. This experiment shows that weightlessness and environmental conditions other than cosmic radiation do not contribute to the observed damage of retinal cells.

  7. Cosmic logic: a computational model

    SciTech Connect

    Vanchurin, Vitaly

    2016-02-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.

  8. Cosmic rays: Space Weather Perspective

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    The concept of Space Weather was launched before a decade to describe the short-term variations in the different form of solar ac-tivity and their effect in the near Earth environ-ment. Space weather affects the Earth's atmos-phere in many ways and through various phe-nomena. Among them, geomagnetic storms and the variability of the galactic cosmic ray flux be-long to the most important ones as for the lower atmosphere. We have performed superposed ep-och analysis using hourly neutron monitor data for three different neutron-monitoring stations of different cut off rigidity as a measure of cosmic ray intensity. In the present study for superposed epoch analysis the time of occurrence of CMEs are defined as key time (zero or epoch hour/day). It is noteworthy that the use of cosmic ray data in space weather research plays a key role for its prediction. We have studied the cosmic ray, geo-magnetic and interplanetary plasma/field data to understand the physical mechanism responsible for Forbush decrease and geomagnetic storm that can be used as a signature to forecast space weather. Keywords: Space weather, cosmic ray, geomag-netic storm, forbush decrease

  9. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  10. Jefferson Lab's Trim Card II

    SciTech Connect

    Trent Allison; Sarin Philip; C. Higgins; Edward Martin; William Merz

    2005-05-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) uses Trim Card I power supplies to drive approximately 1900 correction magnets. These trim cards have had a long and illustrious service record. However, some of the employed technology is now obsolete, making it difficult to maintain the system and retain adequate spares. The Trim Card II is being developed to act as a transparent replacement for its aging predecessor. A modular approach has been taken in its development to facilitate the substitution of sections for future improvements and maintenance. The resulting design has been divided into a motherboard and 7 daughter cards which has also allowed for parallel development. The Trim Card II utilizes modern technologies such as a Field Programmable Gate Array (FPGA) and a microprocessor to embed trim card controls and diagnostics. These reprogrammable devices also provide the versatility to incorporate future requirements.

  11. Z Machine at Sandia Labs

    SciTech Connect

    2007-10-17

    Sandia Labs' Z machine is the largest laboratory source of x-rays in the world. For the few nanoseconds of a Z Machine test, its electrical output equals the output of 50x the electrical generating stations of all the power plants on earth. The Z Machine complex encompasses an area roughly the size of a major college basketball arena. Originally created to validate nuclear weapons models, the Z Machine is also considered a "dark horse" in the race for viable fusion energy production. After the famous "arcs and sparks" photo of Z (a photo no longer possible after its refurbishment), this is a fast-motion video of workers completing Z's recent refurbishment.

  12. Space Science Lab at PARI

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Blake, M.; Clavier, D.; Whitworth, C.; Cline, J. D.

    2006-12-01

    Native American, Hispanic, African American, and other underrepresented high school students in rural Western North Carolina have unprecedented opportunity as researchers in the Space Science Lab to conduct visible and radio observations of the Sun. The program involves 90 students over a three year period. The students conduct their own research and also interact with scientists around the world. The primary goal is to reach students who otherwise would not have this opportunity and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. The program objectives are aligned with the North Carolina Standard Course of Study for grades 9-12 in the areas of Earth/Environmental Science, Physical Science and Physics. The first group of 27 students spent a week in the Space Science Lab located on the campus of the Pisgah Astronomical Research Institute (PARI) during the Summer 2006. Students constructed their own JOVE radio telescopes that they took home to continue their observations. They share their results during four follow-up sessions throughout the school year. The students also have Internet access to radio telescopes and solar monitoring equipment at PARI. We expect their enthusiasm for science will increase by experiencing research investigations that are fun and relevant to their understanding of the world around them. We gratefully acknowledge support from the Burroughs Wellcome Fund Student Science Enrichment Program.

  13. Is cosmic acceleration slowing down?

    SciTech Connect

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked and that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)

  14. Cosmic necklaces from string theory

    SciTech Connect

    Leblond, Louis; Wyman, Mark

    2007-06-15

    We present the properties of a cosmic superstring network in the scenario of flux compactification. An infinite family of strings, the (p,q) strings, are allowed to exist. The flux compactification leads to a string tension that is periodic in p. Monopoles, appearing here as beads on a string, are formed in certain interactions in such networks. This allows bare strings to become cosmic necklaces. We study network evolution in this scenario, outlining what conditions are necessary to reach a cosmologically viable scaling solution. We also analyze the physics of the beads on a cosmic necklace, and present general conditions for which they will be cosmologically safe, leaving the network's scaling undisturbed. In particular, we find that a large average loop size is sufficient for the beads to be cosmologically safe. Finally, we argue that loop formation will promote a scaling solution for the interbead distance in some situations.

  15. People Interview: Cosmic rays uncover universe theories

    NASA Astrophysics Data System (ADS)

    2012-07-01

    INTERVIEW Cosmic rays uncover universe theories David Smith talks to Paula Chadwick about why she is fascinated by cosmic and gamma rays, and how this is the year that their profile is going to be raised

  16. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  17. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  18. The Status of Cross Section Measurements for Neutron-induced Reactions Needed for Cosmic Ray Studies

    NASA Technical Reports Server (NTRS)

    Sisterson, J. M.

    2003-01-01

    Cosmic ray interactions with lunar rocks and meteorites produce small amounts of radionuclides and stable isotopes. Advances in Accelerator Mass Spectrometry (AMS) allow production rates to be measured routinely in well-documented lunar rocks and meteorites. These measurements are analyzed using theoretical models to learn about the object itself and the history of the cosmic rays that fell on it. Good cross section measurements are essential input to the theoretical calculations. Most primary cosmic ray particles are protons so reliable cross sections for proton-induced reactions are essential. A cross section is deemed accurate if measurements made by different experimenters using different techniques result in consistent values. Most cross sections for proton induced reactions are now well measured. However, good cross section measurements for neutron-induced reactions are still needed. These cross sections are required to fully account for all galactic cosmic ray interactions at depth in an extraterrestrial object. When primary galactic cosmic ray (GCR) particles interact with an object many secondary neutrons are produced, which also initiate spallation reactions. Thus, the total GCR contribution to the overall cosmogenic nuclide archive has to include the contribution from the secondary neutron interactions. Few relevant cross section measurements have been reported for neutron-induced reactions at neutron energies greater than approximately 20 MeV. The status of the cross section measurements using quasi-monoenergetic neutron energies at iThemba LABS, South Africa and white neutron beams at Los Alamos Neutron Science Center (LANSCE), Los Alamos are reported here.

  19. The Cosmic Shoreline

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin J.; Catling, D. C.

    2013-01-01

    in 2004 when there were just two transiting exoplanets to consider. The trend was well-defined by late 2007. Figure 1 shows how matters stood in Dec 2012 with approx.240 exoplanets. The figure shows that the boundary between planets with and without active volatiles - the cosmic shoreline, as it were - is both well-defined and follows a power law.

  20. The Berkeley accelerator space effects facility (BASE) - A newmission for the 88-inch cyclotron at LBNL

    SciTech Connect

    McMahan, M.A.

    2005-09-06

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R&D in accelerator technology and a test facility for the National Security Space (NSS) community (the U.S. Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the Cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator and Space Effects (BASE) facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 AMeV ''cocktail'' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades.

  1. VizieR Online Data Catalog: Berkeley supernova Ia program. II. (Silverman+, 2012)

    NASA Astrophysics Data System (ADS)

    Silverman, J. M.; Kong, J. J.; Filippenko, A. V.

    2013-08-01

    In this second paper in a series, we present measurements of spectral features of 432 low-redshift (z<0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20d of maximum brightness. The data were obtained from 1989 to the end of 2008 as part of the Berkeley Supernova Ia Program (BSNIP) and are presented in BSNIP I by Silverman et al. (J/MNRAS/425/1789). We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEWs), spectral feature depths and fluxes at the centre and endpoints of each of nine major spectral feature complexes. (10 data files).

  2. Studies, Transport and Treatment Concept for Boilers from Berkeley NPP, England - 13599

    SciTech Connect

    Wirendal, Bo; Saul, David; Robinson, Joe; Davidson, Gavin

    2013-07-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. Four boilers have been processed and the fifth is planned for completion by end of December 2012.The project had many challenges including a very tight timescale and has been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the first four boilers. It is the first UK project to send large components overseas for recycling and provides new insight into the processing of Magnox gas-circuit components. (authors)

  3. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    DOE R&D Accomplishments Database

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  4. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.

  5. Base-flow yields of watersheds in the Berkeley County area, West Virginia

    USGS Publications Warehouse

    Evaldi, Ronald D.; Paybins, Katherine S.

    2006-01-01

    Base-flow yields at approximately 50 percent of the annual mean ground-water recharge rate were estimated for watersheds in the Berkeley County area, W.Va. These base-flow yields were determined from two sets of discharge measurements made July 25-28, 2005, and May 4, 2006. Two sections of channel along Opequon Creek had net flow losses that are expressed as negative base-flow watershed yields; these and other base-flow watershed yields in the eastern half of the study area ranged from -940 to 2,280 gallons per day per acre ((gal/d)/acre) and averaged 395 (gal/d)/acre. The base-flow yields for watersheds in the western half of the study area ranged from 275 to 482 (gal/d)/acre and averaged 376 (gal/d)/acre.

  6. Relation of bacteria in limestone aquifers to septic systems in Berkeley County, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.

    2000-01-01

    Water samples collected from 50 wells in Berkeley County, West Virginia, during June 2000 were analyzed for indicator bacteria. Of the 50 wells sampled, 62 percent (31 wells) contained total coliform bacteria, 32 percent (16 wells) contained Escherichia coli, and 30 percent (15 wells) contained fecal coliform bacteria. Although bacteria were present in many wells regardless of the number of septic systems in a 5-acre circular area around each well, no apparent correlation was detected between septic-system density and concentrations of bacteria colonies. There was also little difference in the frequency of total coliform bacteria detection between shallow and deep wells; however, the highest concentrations of E. coli and fecal coliform bacteria were found in the shallowest wells. At least one of the three bacteria types was found in samples of untreated water in 32 of the 50 wells. At 21 of the 32 wells with bacteria present, there was no treatment of the ground water to remove bacteria.

  7. Last days in the old radiation laboratory (ORL), Berkeley, California, 1954.

    PubMed

    Benson, Andrew A

    2010-09-01

    Govindjee, the founding editor of the Historical Corner of Photosynthesis Research, invited me 3 years ago to tell the story of why I left Melvin Calvin's laboratory in the mid 1950s long before the 1961 Nobel Prize in Chemistry was awarded to Calvin for the path of carbon in photosynthesis. I have already written my scientific perspective on this topic (see Benson (Photosynth Res 73:29-49, 2002); also see Bassham (Photosynth Res 76:35-52, 2003) as he was also a major player in this research). Here, I present my recollections of my last days in the old radiation laboratory (ORL) at Berkeley, California. References have been added by Govindjee for the benefit of the readers.

  8. A forensic laboratory tests the Berkeley microfabricated capillary array electrophoresis device.

    PubMed

    Greenspoon, Susan A; Yeung, Stephanie H I; Johnson, Kelly R; Chu, Wai K; Rhee, Han N; McGuckian, Amy B; Crouse, Cecelia A; Chiesl, Thomas N; Barron, Annelise E; Scherer, James R; Ban, Jeffrey D; Mathies, Richard A

    2008-07-01

    Miniaturization of capillary electrophoresis onto a microchip for forensic short tandem repeat analysis is the initial step in the process of producing a fully integrated and automated analysis system. A prototype of the Berkeley microfabricated capillary array electrophoresis device was installed at the Virginia Department of Forensic Science for testing. Instrument performance was verified by PowerPlex 16 System profiling of single source, sensitivity series, mixture, and casework samples. Mock sexual assault samples were successfully analyzed using the PowerPlex Y System. Resolution was assessed using the TH01, CSF1PO, TPOX, and Amelogenin loci and demonstrated to be comparable with commercial systems along with the instrument precision. Successful replacement of the Hjerten capillary coating method with a dynamic coating polymer was performed. The accurate and rapid typing of forensic samples demonstrates the successful technology transfer of this device into a practitioner laboratory and its potential for advancing high-throughput forensic typing.

  9. FIFI: The MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Geis, Norbert; Genzel, Reinhard; Haggerty, M.; Herrmann, F.; Jackson, J.; Madden, Suzanne C.; Nikola, T.; Poglitsch, Albrecht; Rumitz, M.; Stacey, G. J.

    1995-01-01

    We describe the performance characteristics of the MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer (FIFI) for the Kuiper Airborne Observatory (KAO). The spectrometer features two or three cryogenic tunable Fabry-Perot filters in series giving spectral resolution R of up to 10(exp 5) in the range of 40 microns less than lambda less than 200 microns, and an imaging 5x5 array of photoconductive detectors with variable focal plane plate scale. The instrument works at background limited sensitivity of up to 2 x 10(exp -19) W cm(exp -2) Hz(exp -1/2) per pixel per resolution element at R = 10(exp 5) on the KAO.

  10. Last days in the old radiation laboratory (ORL), Berkeley, California, 1954

    PubMed Central

    2010-01-01

    Govindjee, the founding editor of the Historical Corner of Photosynthesis Research, invited me 3 years ago to tell the story of why I left Melvin Calvin’s laboratory in the mid 1950s long before the 1961 Nobel Prize in Chemistry was awarded to Calvin for the path of carbon in photosynthesis. I have already written my scientific perspective on this topic (see Benson (Photosynth Res 73:29–49, 2002); also see Bassham (Photosynth Res 76:35–52, 2003) as he was also a major player in this research). Here, I present my recollections of my last days in the old radiation laboratory (ORL) at Berkeley, California. References have been added by Govindjee for the benefit of the readers. PMID:20811808

  11. VizieR Online Data Catalog: Berkeley 90. III. Cluster parameters (Marco+, 2017)

    NASA Astrophysics Data System (ADS)

    Marco, A.; Negueruela, I.

    2017-01-01

    We present tables with coordinates in J2000, Johnson photometry and near-IR photometry for stars in the open cluster Berkeley 90 and a field to the southeast of this region. We used the imager and spectrograph Andalucia Faint Object Spectrograph and Camera (ALFOSC) on the Nordic Optical Telescope (NOT) at the La Palma observatory to obtain UBVR photometry on the night of 2007 July 9, and spectroscopy of 20 selected stars on the nights of 2004 October 4, 2005 October 2-4 and 2007 July 10. We also downloaded UKIDSS (https://www.ukidss.org/archive/archive.html) images in the JHKS filters to perform deep near-IR photometry. (2 data files).

  12. Lawrence Berkeley National Laboratory 1995 site environmental report: Volume 2, Data appendix

    SciTech Connect

    1996-07-01

    Ernest Orlando Lawrence Berkeley National Laboratory presents Volume II, Data Appendix as a reference document to supplement the 1995 Site Environmental Report. Volume II contains the raw environmental monitoring and sampling data used to generate many of the summary results included in the main report. Supplemental data is provided for sitewide activities involving the media of stack and ambient air quality, rainwater, surface water, stormwater, wastewater, and soil and sediment. Volume II also contains supplemental data on the special preoperational monitoring study for the new Hazardous Waste Handling Facility. The Table of Contents provides a cross-reference to the data tables of the main report and this appendix. Data are given in System International (SI) units.

  13. The Advanced Light Source at the Lawrence Berkeley Laboratory (ALS, LBL)

    SciTech Connect

    Jackson, A.

    1990-08-01

    The Advanced Light Source (ALS), a national facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation, in the energy range from a few eV to 10 keV. The design is based on a 1-1.9 GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. In this paper we describe the main accelerator components of the ALS, the variety of insertion devices, the radiation spectra expected from these devices, and the complement of experiments that have been approved for initial operation, starting in April 1993.

  14. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  15. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  16. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  17. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  18. Nonproliferation through international lab-to-lab technology cooperation

    SciTech Connect

    Dunlop, W H

    1998-09-10

    Lab-to- Lab activities are currently with the FSU, that experience is leading to important and productive interactions with other countries and regions, most significantly, China and the Middle East. In contrast to the Cold War years, when most technologies developed at LLNL were solely for the US national defense efforts and therefore classified, many of NAI's new technologies and tools are unclassified and designed for use in a multilateral security environment. PPAC is the proliferation "Prevention" element of NAI's four-element "Prevention-Reversal-Response-Avoid Surprise" program. We direct some twenty different projects. which have realized about a factor of ten growth in the last four years.

  19. UC Berkeley's Adaptations to the Crisis of Public Higher Education in the US: Privatization? Commercialization? or Hybridization? Research & Occasional Paper Series: CSHE.17.13

    ERIC Educational Resources Information Center

    Breslauer, George W.

    2013-01-01

    The University of California at Berkeley now delivers more to the public of California than it ever has, and it does this on the basis of proportionally less funding by the State government than it has ever received. This claim may come as a surprise, since it is often said that Berkeley is in the process of privatizing, becoming less of a public…

  20. Cosmic-Ray Detectors With Interdigitated Electrodes

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.; Mazed, Mohammed; Holtzman, Melinda J.; Fossum, Eric R.

    1995-01-01

    Detectors measure both positions of incidence and energies of incident charged particles. Stack of detector wafers intercept cosmic ray. Measure positions of incidence to determine cosmic-ray trajectory and charge generated within them (proportional to cosmic-ray energy dissipated within them). Interdigital electrode pattern repeated over many rows and columns on tops of detector wafers in stack. Electrode pattern defines pixels within which points of incidence of incident cosmic rays located.