1973-02-01
No Deec F3202 B P egcak what(oniud 8 +Yes Fe d . Each phase is discussed in detail in Section 3 of this report. The logic flow of BURFA is shown in...Clas Flowchart for Function INFST D-14 ASSGN Call SORT Initialize Berth Facilities J=1,3 2 ISN I A Ship Yet Assigned E Berth No Determine N1 , N2 3 K N1
49 CFR 393.76 - Sleeper berths.
Code of Federal Regulations, 2010 CFR
2010-10-01
... case of a sleeper berth which utilizes an adjustable mechanical suspension system, the required... communication may consist of a telephone, speaker tube, buzzer, pull cord, or other mechanical or electrical...) A mattress filled with a fluid and of sufficient thickness when filled to prevent “bottoming-out...
NASA Astrophysics Data System (ADS)
Zhang, Xin; Liu, Jinguo
2018-07-01
Although many motion planning strategies for missions involving space robots capturing floating targets can be found in the literature, relatively little has discussed how to select the berth position where the spacecraft base hovers. In fact, the berth position is a flexible and controllable factor, and selecting a suitable berth position has a great impact on improving the efficiency of motion planning in the capture mission. Therefore, to make full use of the manoeuvrability of the space robot, this paper proposes a new viewpoint that utilizes the base berth position as an optimizable parameter to formulate a more comprehensive and effective motion planning strategy. Considering the dynamic coupling, the dynamic singularities, and the physical limitations of space robots, a unified motion planning framework based on the forward kinematics and parameter optimization technique is developed to convert the planning problem into the parameter optimization problem. For getting rid of the strict grasping position constraints in the capture mission, a new conception of grasping area is proposed to greatly simplify the difficulty of the motion planning. Furthermore, by utilizing the penalty function method, a new concise objective function is constructed. Here, the intelligent algorithm, Particle Swarm Optimization (PSO), is worked as solver to determine the free parameters. Two capturing cases, i.e., capturing a two-dimensional (2D) planar target and capturing a three-dimensional (3D) spatial target, are studied under this framework. The corresponding simulation results demonstrate that the proposed method is more efficient and effective for planning the capture missions.
Shuttle interaction study extension
NASA Technical Reports Server (NTRS)
1982-01-01
The following areas of Space Shuttle technology were discussed: variable altitude strategy, spacecraft servicing, propellant storage, orbiter plume impingement, space based design, mating (docking and berthing), shuttle fleet utilization, and mission/traffic model.
NASA Technical Reports Server (NTRS)
Golias, Mihalis M.
2011-01-01
Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.
46 CFR 111.75-15 - Lighting requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... spaces. (1) Each space used by passengers or crew must be fitted with lighting that provides for a safe... provide for safe egress from each space. (d) Berth lights. Each crew berth must have a fixed berth light... passageways, public spaces, and berthing compartments. The supply to lights in each passageway, public space...
77 FR 24556 - Waiver of Acceptable Risk Restriction for Launch and Reentry
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... designed to stimulate efforts by the private sector to demonstrate safe, reliable, and cost-effective space... ensure safe approach and berthing with the International Space Station, utilizing considerable fuel. In... economic growth and entrepreneurial activity through use of the space environment; (2) to encourage the...
A study on ship automatic berthing with assistance of auxiliary devices
NASA Astrophysics Data System (ADS)
Tran, Van Luong; Im, Namkyun
2012-09-01
The recent researches on the automatic berthing control problems have used various kinds of tools as a control method such as expert system, fuzzy logic controllers and artificial neural network (ANN). Among them, ANN has proved to be one of the most effective and attractive options. In a marine context, the berthing maneuver is a complicated procedure in which both human experience and intensive control operations are involved. Nowadays, in most cases of berthing operation, auxiliary devices are used to make the schedule safer and faster but none of above researches has taken into account. In this study, ANN is applied to design the controllers for automatic ship berthing using assistant devices such as bow thruster and tug. Using back-propagation algorithm, we trained ANN with set of teaching data to get a minimal error between output values and desired values of four control outputs including rudder, propeller revolution, bow thruster and tug. Then, computer simulations of automatic berthing were carried out to verify the effecttiveness of the system. The results of the simulations showed good performance for the proposed berthing control system.
NASA Astrophysics Data System (ADS)
Salido, Miguel A.; Rodriguez-Molins, Mario; Barber, Federico
The Container Stacking Problem and the Berth Allocation Problem are two important problems in maritime container terminal's management which are clearly related. Terminal operators normally demand all containers to be loaded into an incoming vessel should be ready and easily accessible in the terminal before vessel's arrival. Similarly, customers (i.e., vessel owners) expect prompt berthing of their vessels upon arrival. In this paper, we present an artificial intelligence based-integrated system to relate these problems. Firstly, we develop a metaheuristic algorithm for berth allocation which generates an optimized order of vessel to be served according to existing berth constraints. Secondly, we develop a domain-oriented heuristic planner for calculating the number of reshuffles needed to allocate containers in the appropriate place for a given berth ordering of vessels. By combining these optimized solutions, terminal operators can be assisted to decide the most appropriated solution in each particular case.
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
14 CFR 23.785 - Seats, berths, litters, safety belts, and shoulder harnesses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... combination of structural analysis and static load tests to limit load; or (3) Static load tests to ultimate... OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY... resulting from the ultimate static load factors prescribed in § 23.561(b)(2) of this part. Each occupant...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-11
... Aircraft Carrier Berthing, and Army Air and Missile Defense Task Force'' dated July 2010. Pursuant to 40... day care), some site-specific training, and open space (e.g., parade grounds, open training areas, and open green space in communities). The proposed action also includes the utilities and infrastructure...
Impact of sleeper berth usage on commercial driver fatigue : task 1
DOT National Transportation Integrated Search
1999-11-01
Driver fatigue is recognized as a major factor in the safety of long-haul commercial driving. Sleeper berths are often provided on tractors to allow the driver to sleep and rest when not driving. However, the sleeper berth environment and/or the mann...
46 CFR 108.203 - Berths and lockers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Berths and lockers. 108.203 Section 108.203 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.203 Berths and lockers. (a) Each sleeping...) Each occupant of a sleeping space must have a readily accessible locker of hard, smooth material. (k...
46 CFR 108.203 - Berths and lockers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Berths and lockers. 108.203 Section 108.203 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.203 Berths and lockers. (a) Each sleeping...) Each occupant of a sleeping space must have a readily accessible locker of hard, smooth material. (k...
46 CFR 108.203 - Berths and lockers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Berths and lockers. 108.203 Section 108.203 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.203 Berths and lockers. (a) Each sleeping...) Each occupant of a sleeping space must have a readily accessible locker of hard, smooth material. (k...
46 CFR 108.203 - Berths and lockers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Berths and lockers. 108.203 Section 108.203 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.203 Berths and lockers. (a) Each sleeping...) Each occupant of a sleeping space must have a readily accessible locker of hard, smooth material. (k...
46 CFR 108.203 - Berths and lockers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Berths and lockers. 108.203 Section 108.203 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.203 Berths and lockers. (a) Each sleeping...) Each occupant of a sleeping space must have a readily accessible locker of hard, smooth material. (k...
46 CFR 111.75-15 - Lighting requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... spaces. (1) Each space used by passengers or crew must be fitted with lighting that provides for a safe habitable and working environment under normal conditions. (2) Sufficient illumination must be provided by... provide for safe egress from each space. (d) Berth lights. Each crew berth must have a fixed berth light...
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
Berthing simulator for space station and orbiter
NASA Technical Reports Server (NTRS)
Veerasamy, Sam
1991-01-01
The development of a real-time man-in-the-loop berthing simulator is in progress at NASA Lyndon B. Johnson Space Center (JSC) to conduct a parametric study and to measure forces during contact conditions of the actual docking mechanisms for the Space Station Freedom and the orbiter. In berthing, the docking ports of the Space Station and the orbiter are brought together using the orbiter robotic arm to control the relative motion of the vehicles. The berthing simulator consists of a dynamics docking test system (DDTS), computer system, simulator software, and workstations. In the DDTS, the Space Station, and the orbiter docking mechanisms are mounted on a six-degree-of-freedom (6 DOF) table and a fixed platform above the table. Six load cells are used on the fixed platform to measure forces during contact conditions of the docking mechanisms. Two Encore Concept 32/9780 computers are used to simulate the orbiter robotic arm and to operate the berthing simulator. A systematic procedure for a real-time dynamic initialization is being developed to synchronize the Space Station docking port trajectory with the 6 DOF table movement. The berthing test can be conducted manually or automatically and can be extended for any two orbiting vehicles using a simulated robotic arm. The real-time operation of the berthing simulator is briefly described.
Experimental validation of docking and capture using space robotics testbeds
NASA Technical Reports Server (NTRS)
Spofford, John
1991-01-01
Docking concepts include capture, berthing, and docking. The definitions of these terms, consistent with AIAA, are as follows: (1) capture (grasping)--the use of a manipulator to make initial contact and attachment between transfer vehicle and a platform; (2) berthing--positioning of a transfer vehicle or payload into platform restraints using a manipulator; and (3) docking--propulsive mechanical connection between vehicle and platform. The combination of the capture and berthing operations is effectively the same as docking; i.e., capture (grasping) + berthing = docking. These concepts are discussed in terms of Martin Marietta's ability to develop validation methods using robotics testbeds.
Analysis of dangerous area of single berth oil tanker operations based on CFD
NASA Astrophysics Data System (ADS)
Shi, Lina; Zhu, Faxin; Lu, Jinshu; Wu, Wenfeng; Zhang, Min; Zheng, Hailin
2018-04-01
Based on the single process in the liquid cargo tanker berths in the state as the research object, we analyzed the single berth oil tanker in the process of VOCs diffusion theory, built network model of VOCs diffusion with Gambit preprocessor, set up the simulation boundary conditions and simulated the five detection point sources in specific factors under the influence of VOCs concentration change with time by using Fluent software. We analyzed the dangerous area of single berth oil tanker operations through the diffusion of VOCs, so as to ensure the safe operation of oil tanker.
Shipboard Facilities Maintenance and Manpower Utilization: Problem and Approach
1975-11-01
sweeping, butting, polishing, lacquering, stenciling, vacuuming and shampooing , garbage disposal and trash removal, and all manner of sanitary and...spaces, passageways, heads and showers, crew lounge, mess decks, exterior deck and ship sides, and all office spaces; and limited facilities...maintenance in all passageways, heads , mess decks, office spaces, and berthing areas. They will also per- form sanitization and exterior deck and
14 CFR 25.785 - Seats, berths, safety belts, and harnesses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...
14 CFR 25.785 - Seats, berths, safety belts, and harnesses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...
14 CFR 25.785 - Seats, berths, safety belts, and harnesses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...
14 CFR 25.785 - Seats, berths, safety belts, and harnesses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...
14 CFR 25.785 - Seats, berths, safety belts, and harnesses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...
Autonomous berthing/unberthing of a Work Attachment Mechanism/Work Attachment Fixture (WAM/WAF)
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Antrazi, Sami S.
1992-01-01
Discussed here is the autonomous berthing of a Work Attachment Mechanism/Work Attachment Fixture (WAM/WAF) developed by NASA for berthing and docking applications in space. The WAM/WAF system enables fast and reliable berthing (unberthing) of space hardware. A successful operation of the WAM/WAF requires that the WAM motor velocity be precisely controlled. The operating principle and the design of the WAM/WAF is described as well as the development of a control system used to regulate the WAM motor velocity. The results of an experiment in which the WAM/WAF is used to handle an orbital replacement unit are given.
Orlandi, Luca; Brooks, Benjamin
2018-05-01
This paper investigates the effects of shiphandling manoeuvres on mental workload and physiological reactions in ten marine pilots. Each pilot performed four berthings in a ship simulator. Those berthings were differentiated by two factors, level of difficulty and familiarity with the port. Each berthing could also be divided into five phases, three during the execution and two resting periods, one before and one after the execution (dedicated to baseline physiological data collection). Mental workload was measured through two self assessment scales: the NASA TLX and a Likert scale. Power spectral densities on Beta bands 1 and 2 were obtained from EEG. Heart rate and heart rate variability were obtained from ECG. Pupil dilation was obtained from eye tracking. Workload levels were higher as berthings increased in difficulty level and/or the pilots completed the berthings in unfamiliar ports. Responses differed across specific phases of the berthings. Physiological responses could indirectly monitor levels of mental workload, and could be adopted in future applications to evaluate training improvements and performance. This study provides an example of an applied methodology aiming to define an upper redline of task demands in the context of marine pilotage. Copyright © 2018. Published by Elsevier Ltd.
Analysis of Protection Measures for Naval Vessels Berthed at Harbor Against Terrorist Attacks
2016-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited ANALYSIS OF...2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ANALYSIS OF PROTECTION MEASURES FOR NAVAL VESSELS BERTHED AT HARBOR... ANALYSIS OF PROTECTION MEASURES FOR NAVAL VESSELS BERTHED AT HARBOR AGAINST TERRORIST ATTACKS Raja I. Sikandar Lieutenant Commander, Pakistan Navy
Practical solutions for reducing container ships' waiting times at ports using simulation model
NASA Astrophysics Data System (ADS)
Sheikholeslami, Abdorreza; Ilati, Gholamreza; Yeganeh, Yones Eftekhari
2013-12-01
The main challenge for container ports is the planning required for berthing container ships while docked in port. Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion. Good planning and management of container terminal operations reduces waiting time for liner ships. Reducing the waiting time improves the terminal's productivity and decreases the port difficulties. Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions. Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships. We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems. We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results. The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.
An Analysis of Unit Deployments Through US East Coast Ports
1992-06-01
comprehensive description of port facilities and an analysis of ship/berth capability. B. PURPOSE To evaluate US east coast commercial port facilities to...an internal highway bridge. This bridge crosses Colgate Creek. The site was formerly a containment area for disposal of excavated material from the...and Sea-Land can berth breakbulk vessels. However, loading at the Sea-Land berth will be time- consuming because of the configuration of the pier. II
Designing berthing mechanisms for international compatibility
NASA Technical Reports Server (NTRS)
Winch, John; Gonzalez-Vallejo, Juan J.
1991-01-01
The paper examines the technological issues regarding common berthing interfaces for the Space Station Freedom and pressurized modules from U.S., European, and Japanese space programs. The development of the common berthing mechanism (CBM) is based on common requirements concerning specifications, launch environments, and the unique requirements of ESA's Man-Tended Free Flyer. The berthing mechanism is composed of an active and a passive half, a remote manipulator system, 4 capture-latch assemblies, 16 structural bolts, and a pressure gage to verify equalization. Extensive graphic and verbal descriptions of each element are presented emphasizing the capture-latch motion and powered-bolt operation. The support systems to complete the interface are listed, and the manufacturing requirements for consistent fabrication are discussed to ensure effective international development.
2013-09-15
ISS037-E-001110 (15 Sept. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, installs the Common Berthing Mechanism (CBM) Centerline Berthing Camera System (CBCS) inside the International Space Station’s Harmony node.
2013-09-15
ISS037-E-001084 (15 Sept. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, installs the Common Berthing Mechanism (CBM) Centerline Berthing Camera System (CBCS) inside the International Space Station’s Harmony node.
23. CREW'S BERTHING, TOWARDS PORT, BUNKS ALONG PORT WALL, LOCKERS ...
23. CREW'S BERTHING, TOWARDS PORT, BUNKS ALONG PORT WALL, LOCKERS LINE CROSS CORRIDOR. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME
23. CREWS' BERTHING, SHOWING DETAIL OF INTERIOR LOCKING MECHANISM ON ...
23. CREWS' BERTHING, SHOWING DETAIL OF INTERIOR LOCKING MECHANISM ON HATCH DOOR (INTERIOR SIDE OF DOOR IN IMAGE 22). - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
21. DECK ABOVE CREW'S BERTHING, LOOKING TOWARDS STERN, SHOWING DETAIL ...
21. DECK ABOVE CREW'S BERTHING, LOOKING TOWARDS STERN, SHOWING DETAIL OF THIS DECK THAT WAS EXTENDED IN THE 1960'S. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
Raymond International Inc. will construct twin berthing facilities for loading and offloading crude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-03-06
Raymond International Inc. will construct twin berthing facilities for loading and offloading crude in St. James Parish, La. The $16.6 million contract was let under the Strategic Petroleum Reserve program. Completion is expected in 1978.
46 CFR 177.810 - Overnight accommodations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... TONS) CONSTRUCTION AND ARRANGEMENT Passenger Accommodations § 177.810 Overnight accommodations. (a) A... three high and must be constructed of wood, fiber reinforced plastic, or metal. A berth located more... construction and arrangement of berths and other furniture must allow free and unobstructed access to each...
... Diagnosis and Therapy . 6th ed. Philadelphia, PA: Elsevier; 2016:chap 24. Vivehanantha S, Berth-Jones J. Alopecia areata. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: Comprehensive Therapeutic Strategies . 4th ed. Philadelphia, PA: ... Updated by: David L. Swanson, MD, Vice Chair ...
22. FROM CREW'S BERTHING, LOOKING TOWARDS STERN, SHOWING DETAIL OF ...
22. FROM CREW'S BERTHING, LOOKING TOWARDS STERN, SHOWING DETAIL OF INTERIOR LICKING MECHANISM OF HATCH DOOR OPENING TO FANTAIL (INTERIOR SIDE OF DOOR IN IMAGE 22). - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME
46 CFR 116.810 - Overnight accommodations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS CONSTRUCTION AND... space above. (b) Berths must not be located more than three high and must be constructed of wood, fiber... fitted with a suitable aid for access. (c) The construction and arrangement of berths and other furniture...
46 CFR 69.117 - Spaces exempt from inclusion in gross tonnage.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., berthing areas, staterooms, bathrooms, toilets, libraries, writing rooms, lounges, dining rooms, saloons... exempt from gross tonnage only when it has no berthing accommodations and is an open structure under paragraph (d) of this section. (d) Open structures. (1) Structures that are located on or above the line of...
46 CFR 69.117 - Spaces exempt from inclusion in gross tonnage.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., berthing areas, staterooms, bathrooms, toilets, libraries, writing rooms, lounges, dining rooms, saloons... exempt from gross tonnage only when it has no berthing accommodations and is an open structure under paragraph (d) of this section. (d) Open structures. (1) Structures that are located on or above the line of...
DOT National Transportation Integrated Search
2001-10-04
Data from 41 long-haul truck drivers were collected and analyzed for the Federal Motor Carriers Safety Administration (FMCSA) sponsored project entitled, Impact of Sleeper Berth Usage on Driver Fatigue (Dingus et al., 2001). This data was colle...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Equipment. 168.15-20 Section 168.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS CIVILIAN NAUTICAL SCHOOL VESSELS Accommodations § 168.15-20 Equipment. (a) Each person shall have a separate berth and not more than 1 berth may...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
..., rents or leases any container vessel, passenger vessel, or refrigerated cargo vessel that visits any of...-Berth Regulation requires fleets of container vessels, passenger vessels and refrigerated cargo vessels... and particulate matter from auxiliary diesel engines on container vessels, passenger vessels and...
SFU retrieval and berth in shuttle orbiter Endeavour's payload bay
1996-01-13
STS072-734-011 (11 Jan. 1996) --- The crewmembers captured this 35mm view of the Japanese Space Flyer Unit (SFU) during its berthing with the Remote Manipulator System (RMS). Yet to be deployed is the Office of Aeronautics and Space Technology (OAST) Flyer satellite, seen at bottom center.
Navy Littoral Combat Ship (LCS)/Frigate Program: Background and Issues for Congress
2015-12-22
the ships. The Navy continues to review manning to determine appropriate levels, and is adding 20 berths to all seaframes. The increased berthing ...ships would determine the allocation of the three FY2010 ships, with the winning team getting two of the FY2010 ships and the other team getting one
Space Station Common Berthing Mechanism, a multi-body simulation application
NASA Technical Reports Server (NTRS)
Searle, Ian
1993-01-01
This paper discusses an application of multi-body dynamic analysis conducted at the Boeing Company in connection with the Space Station (SS) Common Berthing Mechanism (CBM). After introducing the hardware and analytical objectives we will focus on some of the day-to-day computational issues associated with this type of analysis.
46 CFR 72.20-20 - Sleeping accommodations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room shall... another. The berth must be composed of materials not likely to corrode. The overall size of a berth must...
46 CFR 72.20-20 - Sleeping accommodations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room shall... another. The berth must be composed of materials not likely to corrode. The overall size of a berth must...
Navy Littoral Combat Ship (LCS)/Frigate Program: Background and Issues for Congress
2016-01-05
and is adding 20 berths to all seaframes. The increased berthing supports small increases in the size of the core crew, mission package detachments...for both the FY2009 ships and the FY2010 ships would determine the allocation of the three FY2010 ships, with the winning team getting two of the
Space Operations Center, shuttle interaction study, volume 1
NASA Technical Reports Server (NTRS)
1981-01-01
The feasibility of the shuttle remote manipulator system (SRMS)-aided space operations center (SOC)/orbiter berthing was evaluated to determine: (1) whether the initial rates between the SOC and the orbiter can be removed by the arm; (2) what is the best strategy to be used; (3) whether the post-capture and maneuvering loads are within the capability of the SRMS; (4) can the SOC berthing port be brought in the immediate proximity of the orbiter berthing port; and (5) what is the best way to remove the residual relative motions. Various notational conventions are established and various important locations on the orbiter and SOC structures are defined. Reference frames are defined together with the mass properties of both the SOC and the orbiter.
46 CFR 32.40-20 - Sleeping accommodations-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... must be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room... another. The berth must be composed of materials not likely to corrode. The overall size of a berth must...
46 CFR 32.40-20 - Sleeping accommodations-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room... another. The berth must be composed of materials not likely to corrode. The overall size of a berth must...
65. Photocopy of General Arrangement, Crew's Mess & Berthing Space, ...
65. Photocopy of General Arrangement, Crew's Mess & Berthing Space, Wash Room, Galley & Galley Stores. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No.540-WAGL-3306-1, dated January 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
a Floating Mobile Quay for Super Container Ships in a Hub Port
NASA Astrophysics Data System (ADS)
Chae, Jang-Won; Park, Woo-Sun
A floating mobile quay (FMQ), which is an innovative berth system, has functions of not only both side loading/unloading but also direct transshipment to feeder ships in a hub port. Applying the FMQ to a hub port such as the west terminal of Busan New Port of Korea, it is shown from a physical modeling and field model test that the quay is dynamically stable and workable in the prevailing wave condition and also safe in a design storm condition, respectively. The terminal productivity is increased by 30% comparing with the present land based berth. The B/C ratio of the new berth system is evaluated as 1.13 considering super-large container ships. It appears that the FMQ is a technically and economically feasible system in the hub port.
46 CFR 72.20-90 - Vessels contracted for prior to November 19, 1952.
Code of Federal Regulations, 2010 CFR
2010-10-01
... reasonable and practicable, a minimum of 1 toilet, shower, and washbasin must be provided for each 10 members of the crew or fraction thereof. (3) Crew spaces must have a volume of at least 3.4 cubic meters (120... space for the exclusive use of the sick or injured. Berths must be provided in the ratio of 1 berth for...
46 CFR 72.20-90 - Vessels contracted for prior to November 19, 1952.
Code of Federal Regulations, 2011 CFR
2011-10-01
... reasonable and practicable, a minimum of 1 toilet, shower, and washbasin must be provided for each 10 members of the crew or fraction thereof. (3) Crew spaces must have a volume of at least 3.4 cubic meters (120... space for the exclusive use of the sick or injured. Berths must be provided in the ratio of 1 berth for...
46 CFR 72.20-90 - Vessels contracted for prior to November 19, 1952.
Code of Federal Regulations, 2012 CFR
2012-10-01
... reasonable and practicable, a minimum of 1 toilet, shower, and washbasin must be provided for each 10 members of the crew or fraction thereof. (3) Crew spaces must have a volume of at least 3.4 cubic meters (120... space for the exclusive use of the sick or injured. Berths must be provided in the ratio of 1 berth for...
46 CFR 72.20-90 - Vessels contracted for prior to November 19, 1952.
Code of Federal Regulations, 2013 CFR
2013-10-01
... reasonable and practicable, a minimum of 1 toilet, shower, and washbasin must be provided for each 10 members of the crew or fraction thereof. (3) Crew spaces must have a volume of at least 3.4 cubic meters (120... space for the exclusive use of the sick or injured. Berths must be provided in the ratio of 1 berth for...
46 CFR 72.20-90 - Vessels contracted for prior to November 19, 1952.
Code of Federal Regulations, 2014 CFR
2014-10-01
... reasonable and practicable, a minimum of 1 toilet, shower, and washbasin must be provided for each 10 members of the crew or fraction thereof. (3) Crew spaces must have a volume of at least 3.4 cubic meters (120... space for the exclusive use of the sick or injured. Berths must be provided in the ratio of 1 berth for...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1050 Oakland Outer Harbor adjacent to the Military Ocean Terminal, Bay Area, Pier No. 8 (Port of Oakland Berth No. 10); restricted area. (a...
Berthing mechanism final test report and program assessment
NASA Technical Reports Server (NTRS)
1988-01-01
The purpose is to document the testing performed on both hardware and software developed under the Space Station Berthing Mechanisms Program. Testing of the mechanism occurred at three locations. Several system components, e.g., actuators and computer systems, were functionally tested before assembly. A series of post assembly tests were performed. The post assembly tests, as well as the dynamic testing of the mechanism, are presented.
Automatic satellite capture and berthing with robot arm (ASCABRA)
NASA Technical Reports Server (NTRS)
Inaba, Noriyasu; Wakabayashi, Yasufumi; Iijima, Takahiko
1994-01-01
The NASDA office of R&D is studying an automatic technique to capture and berth free-floating satellites using a robot arm on another satellite. A demonstration experiment plan with the Japanese engineering test satellite ETS-7 is being developed based on the basic research on the ground. The overview and key technologies of this experiment plan are presented, and future applications of the automatic capture technique are also reviewed.
Investigating Outfitting Density as a Cost Driver in Submarine Construction
2015-09-01
Outfitting and furnishings, such as offices, medical, stores, berthing , joiner work and paint are allocated 12 to group 600. Group 700 is armament...handling, fire control, steering 600 Outfit and Furnishings Hull fittings, paint, insulation, berthing , offices, storerooms, medical 700 Armament...and is allocated for the service-life of the submarine. The AWE serves as the baseline weight for the Milestone B costing position for projected
2012-10-10
ISS033-E-011279 (10 Oct. 2012) --- NASA astronaut Sunita Williams, Expedition 33 commander; and Japan Aerospace Exploration Agency astronaut Aki Hoshide, flight engineer, work the controls at the robotics workstation in the International Space Station’s seven-windowed Cupola during the rendezvous and berthing of the SpaceX Dragon commercial cargo craft. Using the Canadarm2 robotic arm, Williams and Hoshide captured and berthed Dragon to the Earth-facing side of the Harmony node Oct. 10, 2012.
Robot arm system for automatic satellite capture and berthing
NASA Technical Reports Server (NTRS)
Nishida, Shinichiro; Toriu, Hidetoshi; Hayashi, Masato; Kubo, Tomoaki; Miyata, Makoto
1994-01-01
Load control is one of the most important technologies for capturing and berthing free flying satellites by a space robot arm because free flying satellites have different motion rates. The performance of active compliance control techniques depend on the location of the force sensor and the arm's structural compliance. A compliance control technique for the robot arm's structural elasticity and a consideration for an end-effector appropriate for it are presented in this paper.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070943 (25 May 2012) --- Backdropped against the Namib Desert on the Atlantic coast of Namibia, the SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m.
Dragon Spacecraft on Approach to the ISS
2014-04-20
ISS039-E-013552 (20 April 2014) --- This is one of an extensive series of still photos documenting the April 20 arrival and ultimate capture and berthing of the SpaceX Dragon at the International Space Station, as photographed by the Expedition 39 crew members onboard the orbital outpost. In this photo, the two orbiting spacecraft were above a point in Yemen. The Dragon spacecraft was captured by the space station and successfully berthed using the Canadian-built space station remote manipulator system or Canadarm2.
View of HTV3 berthed to Node 2
2012-07-27
ISS032-E-010473 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.
View of HTV3 berthed to Node 2
2012-07-27
ISS032-E-010464 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.
View of HTV3 berthed to Node 2
2012-07-27
ISS032-E-010476 (27 July 2012) --- The unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) is featured in this image photographed by an Expedition 32 crew member shortly after the HTV-3 was berthed to the Earth-facing port of the International Space Station's Harmony node using the Canadarm2 robotic arm. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012. Earth?s horizon and the blackness of space provide the backdrop for the scene.
International Space Station Powered Bolt Nut Anomaly and Failure Analysis Summary
NASA Technical Reports Server (NTRS)
Sievers, Daniel E.; Warden, Harry K.
2010-01-01
A key mechanism used in the on-orbit assembly of the International Space Station (ISS) pressurized elements is the Common Berthing Mechanism. The mechanism that effects the structural connection of the Common Berthing Mechanism halves is the Powered Bolt Assembly. There are sixteen Powered Bolt Assemblies per Common Berthing Mechanism. The Common Berthing Mechanism has a bolt which engages a self aligning Powered Bolt Nut (PBN) on the mating interface (Figure 1). The Powered Bolt Assemblies are preloaded to approximately 84.5 kN (19000 lb) prior to pressurization of the CBM. The PBNs mentioned below, manufactured in 2009, will be used on ISS future missions. An on orbit functional failure of this hardware would be unacceptable and in some instances catastrophic due to the failure of modules to mate and seal the atmosphere, risking loss of crew and ISS functions. The manufacturing processes that create the PBNs need to be strictly controlled. Functional (torque vs. tension) acceptance test failures will be the result of processes not being strictly followed. Without the proper knowledge of thread tolerances, fabrication techniques, and dry film lubricant application processes, PBNs will be, and have been manufactured improperly. The knowledge gained from acceptance test failures and the resolution of those failures, thread fabrication techniques and thread dry film lubrication processes can be applied to many aerospace mechanisms to enhance their performance. Test data and manufactured PBN thread geometry will be discussed for both failed and successfully accepted PBNs.
Dragon Spacecraft on Approach to ISS
2014-04-20
ISS039-E-013405 (20 April 2014) --- This is one of an extensive series of still photos documenting the April 20 arrival and ultimate capture and berthing of the SpaceX Dragon at the International Space Station, as photographed by the Expedition 39 crew members onboard the orbital outpost. The two orbiting spacecraft were above a point in the Gulf of Aden near the Red Sea, off the coast of Yemen. The Dragon spacecraft was captured by the space station and successfully berthed using the Canadian-built space station remote manipulator system or Canadarm2.
Voice control of the space shuttle video system
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Dotson, R. S.; Brown, J. W.; Lewis, J. L.
1981-01-01
A pilot voice control system developed at the Jet Propulsion Laboratory (JPL) to test and evaluate the feasibility of controlling the shuttle TV cameras and monitors by voice commands utilizes a commercially available discrete word speech recognizer which can be trained to the individual utterances of each operator. Successful ground tests were conducted using a simulated full-scale space shuttle manipulator. The test configuration involved the berthing, maneuvering and deploying a simulated science payload in the shuttle bay. The handling task typically required 15 to 20 minutes and 60 to 80 commands to 4 TV cameras and 2 TV monitors. The best test runs show 96 to 100 percent voice recognition accuracy.
Modelling and simulation of Space Station Freedom berthing dynamics and control
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.
1994-01-01
A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.
Dragon Spacecraft on Approach to the ISS
2014-04-20
ISS039-E-013569 (20 April 2014) --- This is one of an extensive series of still photos documenting the April 20 arrival and ultimate capture and berthing of the SpaceX Dragon at the International Space Station, as photographed by the Expedition 39 crew members onboard the orbital outpost. In this photo, the two orbiting spacecraft were above a point in Yemen. Part of the Gulf of Aden and the Red Sea, can be seen at left. The Dragon spacecraft was captured by the space station and successfully berthed using the Canadian-built space station remote manipulator system or Canadarm2.
Dragon Spacecraft on Approach to the ISS
2014-04-20
ISS039-E-013570 (20 April 2014) --- This is one of an extensive series of still photos documenting the April 20 arrival and ultimate capture and berthing of the SpaceX Dragon at the International Space Station, as photographed by the Expedition 39 crew members onboard the orbital outpost. In this photo, the two orbiting spacecraft were above a point in Yemen. Part of the Gulf of Aden and the Red Sea, can be seen at left. The Dragon spacecraft was captured by the space station and successfully berthed using the Canadian-built space station remote manipulator system or Canadarm2.
Dragon Spacecraft on Approach to the ISS
2014-04-20
ISS039-E-013566 (20 April 2014) --- This is one of an extensive series of still photos documenting the April 20 arrival and ultimate capture and berthing of the SpaceX Dragon at the International Space Station, as photographed by the Expedition 39 crew members onboard the orbital outpost. In this photo, the two orbiting spacecraft were above a point in Yemen. Part of the Gulf of Aden and the Red Sea can be seen at left. The Dragon spacecraft was captured by the space station and successfully berthed using the Canadian-built space station remote manipulator system or Canadarm2.
Dragon Spacecraft on Approach to the ISS
2014-04-20
ISS039-E-013567 (20 April 2014) --- This is one of an extensive series of still photos documenting the April 20 arrival and ultimate capture and berthing of the SpaceX Dragon at the International Space Station, as photographed by the Expedition 39 crew members onboard the orbital outpost. In this photo, the two orbiting spacecraft were above a point in Yemen. Part of the Gulf of Aden and the Red Sea, can be seen at left. The Dragon spacecraft was captured by the space station and successfully berthed using the Canadian-built space station remote manipulator system or Canadarm2.
Conceptual Designs for Berthing Pier Galleries and Deck Lighting.
1983-06-01
to 100 feet wide and 1,200 feet long, providing four 600-foot-long berths. o For des ign purposes, a pier should accommodate a maximum of eight ships...points4. It identifies the locrit ion aind 01 ovat ion otf eajch service for oarih des igo ship frht tror and port si d-. Th is, wais used tO de to rino t...rung a n I or ea chI 11li O!l ip11), :id pos it ion i g moo r inig f it t ings alIong the p)iecr t o prope-rly, .ree;,modrite all of the des ;ign clalss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-25
The U.S. National Transportation Safety Board (NTSB) has recommended that the U.S. Coast Guard (USCG) and Exxon Co. USA require shipmasters assigned to a vessel equipped with an automated radar plotting aid to complete an approved training course before assignment to avoid the recurrence of accidents similar to the collision of the Exxon Chester tankship and the Regal Sword Liberian freighter in the Atlantic Ocean near Cape Cod, Massachusetts, on 6/18/79. Following the explosion, burning, and sinking of the Liberian tankship, Seatiger, at a Sun Oil Terminal Inc. berth in Nederland, Texas on 4/19/79, NTSB also urged USCG to requiremore » foreign and domestic crude oil tankers of 20,000 dwt and above that are equipped with inert systems to place these systems in operation while in US waters, except when cargo tanks are gas-free; instructed Sun Oil Terminals Inc. to provide an emergency communication system between berthed vessels and its terminal office during communication system between berthed vessels and its terminal office during cargo discharging; and recommended that the American Bureau of Shipping instruct tanker surveyors to examine flame screens. Other safety recommendations and responses by federal agencies are also discussed.« less
NASA Technical Reports Server (NTRS)
Yunis, Isam S.; Carney, Kelly S.
1993-01-01
A new aerospace application of structural reliability techniques is presented, where the applied forces depend on many probabilistic variables. This application is the plume impingement loading of the Space Station Freedom Photovoltaic Arrays. When the space shuttle berths with Space Station Freedom it must brake and maneuver towards the berthing point using its primary jets. The jet exhaust, or plume, may cause high loads on the photovoltaic arrays. The many parameters governing this problem are highly uncertain and random. An approach, using techniques from structural reliability, as opposed to the accepted deterministic methods, is presented which assesses the probability of failure of the array mast due to plume impingement loading. A Monte Carlo simulation of the berthing approach is used to determine the probability distribution of the loading. A probability distribution is also determined for the strength of the array. Structural reliability techniques are then used to assess the array mast design. These techniques are found to be superior to the standard deterministic dynamic transient analysis, for this class of problem. The results show that the probability of failure of the current array mast design, during its 15 year life, is minute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardon, D.V.; Faeth, M.T.; Curth, O.
1981-01-01
At International Marine Terminals' Plaquemines Parish Terminal, design optimization was accomplished by optimizing the dock pile bent spacing and designing the superstructure to distribute berthing impact forces and bollard pulls over a large number of pile bents. Also, by resisting all longitudinal forces acting on the dock at a single location near the center of the structure, the number of longitudinal batter piles was minimized and the need for costly expansion joints was eliminated. Computer techniques were utilized to analyze and optimize the design of the new dock. Pile driving procedures were evaluated utilizing a wave equation technique. Tripod dolphinsmore » with a resilient fender system were provided. The resilent fender system, a combination of rubber shear type and wing type fenders, adds only a small percentage to the total cost of the dolphins but greatly increases their energy absorption capability.« less
Afon, Yinka; Ervin, David
2008-03-01
The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid.
Station Module Move in 4K Video Resolution
2015-06-09
Robotics flight controllers in Mission Control Houston and Canada detached the large Permanent Multipurpose Module (PMM), used as a supply depot on the orbital laboratory, from the Earth-facing port of the Unity module and robotically relocated it to the forward port of the Tranquility module. This move cleared the Unity port for its conversion into the spare berthing location for U.S. cargo spacecraft; the Earth-facing port on Harmony is the primary docking location. Harmony’s space-facing port currently is the spare berthing location for cargo vehicles, so this move frees that location to be used in conjunction with Harmony’s forward port as the arrival locations for commercial crew spacecraft.
The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle Endeavour's cargo bay in the grasp of the Remote Manipulator System (RMS). The free-flyer was re-captured by the six crew members on May 21, 1996. The crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:51:29.
NASA Astrophysics Data System (ADS)
Acomi, N.; Acomi, O. C.
2016-08-01
Marine pollution is one of the main concerns of our society. In order to reduce air pollution produced by ships, the International Maritime Organization has developed technical, operational and management measures. Part of the operational measures refers to CO2 emissions that contribute to the energy efficiency of the vessel. The difficulty in assessing the energy efficiency of the vessel rests with the diversity of voyage parameters, including quantity of cargo, distance and type of fuel in use. Assessing the energy efficiency of the vessel is thus not a matter of determining the absolute value of the CO2, but of providing a meaningful construct to enable tracking performance trends over time, for the same ship, a fleet of ships or across the industry. This concept is the Energy Efficiency Operational Index, EEOI. The purpose of this study is to analyse the influence of a well predicted voyage on the EEOI value. The method used consists in a comparative analysis of two situations regarding berthing prospects: the real passage plan and an early prediction that supposes the vessel to arrive on time as required. The results of the study represent a monitoring tool for the ship owners to assess the EEOI from the early stage of designing the berthing prospects.
Satellite Services Workshop, Volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
Key issues associated with the orbital servicing of satellites are examined including servicing spacecraft and equipment, servicing operations, economics, satellite design, docking and berthing, and fluid management.
Dragon Spacecraft, SSRMS and Dextre
2012-05-27
ISS031-E-077666 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station’s Harmony node. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used it to berth Dragon to the at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft, SSRMS and Dextre
2012-05-27
ISS031-E-077562 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station’s Harmony node. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used it to berth Dragon to the at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- The Spartan 207 free-flyer is held in a low-hover mode above its berth in the Space Shuttle Endeavour's cargo bay in the grasp of the Remote Manipulator System (RMS). The Spacehab module can be seen in the foreground. The free-flyer was re-captured by the six crew members on May 21, 1996. The crew has spent a portion of the early stages of the mission in various activities involving the Spartan 207 and the related Inflatable Antenna Experiment (IAE). The Spartan project is managed by NASA's Goddard Space Flight Center (GSFC) for NASA's Office of Space Science, Washington, D.C. GMT: 09:51:50.
Space station full-scale docking/berthing mechanisms development
NASA Technical Reports Server (NTRS)
Burns, Gene C.; Price, Harold A.; Buchanan, David B.
1988-01-01
One of the most critical operational functions for the space station is the orbital docking between the station and the STS orbiter. The program to design, fabricate, and test docking/berthing mechanisms for the space station is described. The design reflects space station overall requirements and consists of two mating docking mechanism halves. One half is designed for use on the shuttle orbiter and incorporates capture and energy attenuation systems using computer controlled electromechanical actuators and/or attenuators. The mating half incorporates a flexible feature to allow two degrees of freedom at the module-to-module interface of the space station pressurized habitat volumes. The design concepts developed for the prototype units may be used for the first space station flight hardware.
... Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 657. Gelmetti C. Gianotti-Crosti syndrome. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: ...
NASA Technical Reports Server (NTRS)
Radtke, Robert; Woolley, Charles; Arnold, Lana
1993-01-01
The purpose of the NASA Space Assembly and Servicing Working Group (SASWG) is to study enabling technologies for on-orbit spacecraft maintenance and servicing. One key technology required for effective space logistics activity is the development of standard spacecraft interfaces, including the 'Basic Set' defined by NASA, the U.S. Space Command, and industry panelists to be the following: (1) navigation aids; (2) grasping, berthing, and docking; and (3) utility connections for power, data, and fluids. Draft standards have been prepared and referred to professional standards organizations, including the AIAA, EIA, and SAE space standards committee. The objective of the SASWG is to support these committees with the technical expertise required to prepare standards, guidelines, and recommended practices which will be accepted by the ANSI and international standards organizations, including the ISO, IEC, and PASC.
Spacecraft automatic umbilical system
NASA Technical Reports Server (NTRS)
Goldin, R. W.; Jacquemin, G. G.; Johnson, W. H.
1981-01-01
An umbilical system design is described that incorporates all the features specified for a power system to payload interconnect capability. A proof-of-concept prototype of the umbilical system was built to determine experimentally the suitability of the threading characteristics of the ram mechanism and to verify freedom from cross threading. It is concluded that Berthing systems that utilize remote manipulator systems (RMS) can be simplified by using RMS targets, closed circuit TV cameras, tie into the RMS control system, and grapple-fixture and end-effector-like capture and secure mechanisms. To effect a remotely controlled umbilical interconnect in proximity with a manned spacecraft and to provide for extravehicular activity backup and maintenance capabilities, 18 different mechanisms are found to be necessary. The weight impact of proving for maintenance capability in a large multiple connector umbilical system was found to be in the order of +60 percent.
... Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 269. Vleugels RA, Callen JP. Dermatomyositis. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: ...
... Diagnosis and Therapy. 6th ed. Philadelphia, PA: Elsevier; 2016:chap 16. Scott M, Werth VP. Bullous pemphigoid. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: ...
... Cecil Medicine. 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 80. Katugampola RP, Finlay AY. Livedo reticularis. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: ...
Dragon Spacecraft Approaches ISS for Grapple
2012-05-25
ISS031-E-071143 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070730 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071121 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071135 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071134 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-070663 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS
2012-05-25
ISS031-E-071075 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Evolution of the IBDM Structural Latch Development into a Generic Simplified Design
NASA Technical Reports Server (NTRS)
DeVriendt, K.; Dittmer, H.; Vrancken, D.; Urmston, P.; Gracia, O.
2010-01-01
This paper presents the evolution in the development of the structural latch for the International Berthing Docking Mechanism (IBDM, see Figure 1). It reports on the lessons learned since completion of the test program on the engineering development unit of the first generation latching system in 2007. The initial latch design has been through a second generation concept in 2008, and now evolved into a third generation of this mechanism. Functional and structural testing on the latest latch hardware has recently been completed with good results. The IBDM latching system will provide the structural connection between two mated space vehicles after berthing or docking. The mechanism guarantees that the interface seals become compressed to form a leak-tight pressure system that creates a passageway for the astronauts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LiVecchi, Albert
The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriatemore » instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.« less
46 CFR 169.311 - Fire protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... by a recognized testing laboratory, must be installed in each berthing compartment, sail locker, and...) Lamp, paint, oil lockers and similar compartments must be constructed of metal or wholly lined with...
46 CFR 169.311 - Fire protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... by a recognized testing laboratory, must be installed in each berthing compartment, sail locker, and...) Lamp, paint, oil lockers and similar compartments must be constructed of metal or wholly lined with...
46 CFR 169.311 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... by a recognized testing laboratory, must be installed in each berthing compartment, sail locker, and...) Lamp, paint, oil lockers and similar compartments must be constructed of metal or wholly lined with...
46 CFR 169.311 - Fire protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... by a recognized testing laboratory, must be installed in each berthing compartment, sail locker, and...) Lamp, paint, oil lockers and similar compartments must be constructed of metal or wholly lined with...
46 CFR 169.311 - Fire protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... by a recognized testing laboratory, must be installed in each berthing compartment, sail locker, and...) Lamp, paint, oil lockers and similar compartments must be constructed of metal or wholly lined with...
... Skin: Clinical Dermatology . 12th ed. Philadelphia, PA: Elsevier; 2016:chap 11. Tobin AM, Kirby B. Pityriasis rubra pilaris. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: ...
Code of Federal Regulations, 2014 CFR
2014-10-01
... of communication within the United States offering passage or soliciting passengers for an ocean voyage anywhere in the world, by a vessel of one hundred gross tons or over having berth or stateroom...
Code of Federal Regulations, 2013 CFR
2013-10-01
... of communication within the United States offering passage or soliciting passengers for an ocean voyage anywhere in the world, by a vessel of one hundred gross tons or over having berth or stateroom...
Code of Federal Regulations, 2011 CFR
2011-10-01
... of communication within the United States offering passage or soliciting passengers for an ocean voyage anywhere in the world, by a vessel of one hundred gross tons or over having berth or stateroom...
Code of Federal Regulations, 2010 CFR
2010-10-01
... of communication within the United States offering passage or soliciting passengers for an ocean voyage anywhere in the world, by a vessel of one hundred gross tons or over having berth or stateroom...
Code of Federal Regulations, 2012 CFR
2012-10-01
... of communication within the United States offering passage or soliciting passengers for an ocean voyage anywhere in the world, by a vessel of one hundred gross tons or over having berth or stateroom...
Herpes zoster - treatment ... Mays RM, Petersen ET, Gordon RA, Tyring SK. Herpes zoster. In: Lebwohl MG, Heymann WR, Berth-Jones ... Saunders; 2014:chap 101. Whitley RJ. Chickenpox and herpes zoster (varicella-zoster virus). In: Bennett JE, Dolin ...
... ed. Clinical Dermatology . 6th ed. Philadelphia, PA: Elsevier; 2016:chap 21. Regan TD, Lawrence N. Bowen's disease and erythroplasia of Queyrat. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson IH, eds. Treatment of Skin Disease: ...
2009-08-07
ISS020-E-028611 (7 Aug. 2009) --- European Space Agency astronaut Frank De Winne (foreground) and Canadian Space Agency astronaut Robert Thirsk, both Expedition 20 flight engineers, work the controls of the Space Station Remote Manipulator System (SSRMS) and the Centerline Berthing Camera System (CBCS) in the International Space Station’s Destiny laboratory to relocate the Pressurized Mating Adapter 3 (PMA-3) from the Unity node nadir port to Unity’s port side. This relocation is required to allow reconfigurations on the side of the Unity node port bulkhead by the crew in a pressurized environment where PMA-3 is now located. Once these reconfigurations are completed, PMA-3 will be relocated back to Unity’s nadir port, after which the Tranquility node will be brought up and berthed to Unity’s port side on mission STS-130/20A.
Dragon Spacecraft, SSRMS and Dextre
2012-05-27
ISS031-E-077669 (25 May 2012) --- With rays of sunshine and the thin blue atmosphere of Earth serving as a backdrop, the SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station’s Harmony node. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used it to berth Dragon to the at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval
Dragon Spacecraft on Approach to the ISS
2012-05-25
ISS031-E-070745 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft on Approach to the ISS
2012-05-25
ISS031-E-071140 (25 May 2012) --- The SpaceX Dragon commercial cargo craft approaches the International Space Station on May 25, 2012 for grapple and berthing. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft, SSRMS and Dextre
2012-05-27
ISS031-E-077670 (25 May 2012) --- With rays of sunshine and the thin blue atmosphere of Earth serving as a backdrop, the SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station’s Harmony node. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) with the Canadarm2 robotic arm and used it to berth Dragon to the at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval
NASA Technical Reports Server (NTRS)
Dunne, Matthew J.
2011-01-01
The development of computer software as a tool to generate visual displays has led to an overall expansion of automated computer generated images in the aerospace industry. These visual overlays are generated by combining raw data with pre-existing data on the object or objects being analyzed on the screen. The National Aeronautics and Space Administration (NASA) uses this computer software to generate on-screen overlays when a Visiting Vehicle (VV) is berthing with the International Space Station (ISS). In order for Mission Control Center personnel to be a contributing factor in the VV berthing process, computer software similar to that on the ISS must be readily available on the ground to be used for analysis. In addition, this software must perform engineering calculations and save data for further analysis.
6. VIEW SHOWING NORTHEAST END OF WHARF REAR FROM LANDSLIDE ...
6. VIEW SHOWING NORTHEAST END OF WHARF REAR FROM LANDSLIDE - U.S. Naval Base, Pearl Harbor, Berthing Wharf S378, Beckoning Point, Southeast of Cowpens Street, Ford Island, Pearl City, Honolulu County, HI
... RG. Folliculitis. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: Comprehensive Therapeutic Strategies . 4th ed. Philadelphia, PA: Elsevier; 2014:chap 83. Review Date 10/24/2016 Updated by: David L. Swanson, MD, Vice Chair ...
... Seborrheic kertosis. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: Comprehensive Therapeutic Strategies . 4th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 220. Review Date 10/24/2016 Updated by: David L. Swanson, MD, Vice Chair ...
... Pityriasis rosea. In: Lebwohl MG, Heymann WR, Berth-Jones J, Coulson I, eds. Treatment of Skin Disease: Comprehensive Therapeutic Strategies . 4th ed. Philadelphia, PA: Elsevier; 2014:chap 186. Review Date 12/10/2016 Updated by: Linda J. Vorvick, MD, Clinical Associate ...
Resiman during Expedition 16/STS-123 EVA 1
2008-03-14
ISS016-E-032705 (13/14 March 2008) --- Astronaut Garrett Reisman, Expedition 16 flight engineer, uses a digital camera to expose a photo of his helmet visor during the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. Also visible in the reflections in the visor are various components of the station, the docked Space Shuttle Endeavour and a blue and white portion of Earth. During the seven-hour and one-minute spacewalk, Reisman and astronaut Rick Linnehan (out of frame), STS-123 mission specialist, prepared the Japanese logistics module-pressurized section (JLP) for removal from Space Shuttle Endeavour's payload bay; opened the Centerline Berthing Camera System on top of the Harmony module; removed the Passive Common Berthing Mechanism and installed both the Orbital Replacement Unit (ORU) tool change out mechanisms on the Canadian-built Dextre robotic system, the final element of the station's Mobile Servicing System.
Overview of LIDS Docking and Berthing System Seals
NASA Technical Reports Server (NTRS)
Daniels, Christopher C.; Dunlap, Patrick H., Jr.; deGroh, Henry C., III; Steinetz, Bruce M.; Oswald, Jay J.; Smith, Ian
2007-01-01
This viewgraph presentation describes the Low Impact Docking System (LIDS) docking and berthing system seals. The contents include: 1) Description of the Application: Low Impact Docking System (LIDS); 2) LIDS Seal Locations: Vehicle Undocked (Hatch Closed); 3) LIDS Seal Locations: Mechanical Pass Thru; 4) LIDS Seal Locations: Electrical and Pyro Connectors; 5) LIDS Seal Locations: Vehicle Docked (Hatches Open); 6) LIDS Seal Locations: Main Interface Seal; 7) Main Interface Seal Challenges and Specifications; 8) Approach; 9) Seal Concepts Under Development/Evaluation; 10) Elastomer Material Evaluations; 11) Evaluation of Relevant Seal Properties; 12) Medium-Scale (12") Gask-O-Seal Compression Tests; 13) Medium-Scale Compression Results; 14) Adhesion Forces of Elliptical Top Gask-o-seals; 15) Medium-Scale Seals; 16) Medium-Scale Leakage Results: Effect of Configuration; 17) Full Scale LIDS Seal Test Rig Development; 18) Materials International Space Station Experiment (MISSE 6A and 6B); and 19) Schedule.
22. FANTAIL DECK, SHOWING DETAIL OF DECK EXTENSION AND EXTERIOR ...
22. FANTAIL DECK, SHOWING DETAIL OF DECK EXTENSION AND EXTERIOR LOCKING MECHANISM ON HATCH DOOR TO CREW'S BERTHING. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
33 CFR 165.111 - Safety Zone: Boston Harbor, Boston, Massachusetts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Boston Harbor from the time such vessels depart their respective berths until the time they complete... the face of both piers to the landside points where both piers end. (3) Around the U.S.S. Constitution...
78 FR 23543 - Procurement List Deletions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... Logistics Agency Troop Support, Philadelphia, PA NSN: 1680-00-677-2060--Bottom Assembly, Crew Berth NPA: None assigned. Contracting Activity: Defense Logistics Agency Aviation, Richmond, VA Service Service... Area Rehabilitation Centers, Inc., Madison, WI Contracting Activity: GSA, Public Buildings Service...
Daehne, Dagmar; Fürle, Constanze; Thomsen, Anja; Watermann, Burkard; Feibicke, Michael
2017-09-01
The authorization of biocidal antifouling products for leisure boats is the subject of the European Union Biocides Regulation 528/2012. National specifics may be regarded by the member states in their assessment of environmental risks. The aim of this survey was to collect corresponding data and to create a database for the environmental risk assessment of antifouling active substances in German surface waters. Water concentrations of current antifouling active substances and selected breakdown products were measured in a single-sampling campaign covering 50 marinas at inland and coastal areas. Increased levels were found for Zn, Cu, and cybutryne. For the latter, the maximum allowable concentration according to Directive 2013/39/EU was exceeded at 5 marinas. For Cu, local environmental quality standards were exceeded at 10 marinas. Base data on the total boat inventory in Germany were lacking until now. For that reason, a nationwide survey of mooring berths was conducted by use of aerial photos. About 206 000 mooring berths obviously used by boats with a potential antifouling application were counted. The blind spot of very small marinas was estimated at 20 000 berths. Seventy-one percent of berths were located at freshwater sites, illustrating the importance of navigable inland waterways for leisure boat activities and underlining the need for a customized exposure assessment in these areas. Moreover, the national consumption of all antifouling products for leisure boats was calculated. The total amount of 794 tonnes/annum (t/a) consisted of 179 t/a of inorganic Cu compounds, 19 t/a of organic cobiocides, and 49.5 t/a of Zn. With regard to weight proportion, 141 t/a Cu and 40 t/a Zn were consumed. Assuming an emission ratio of 50% during service life, 70.5 t/a of Cu amounted to 15% of all external sources for Cu release to German surface waters. These figures highlight the need for mitigation measures. Integr Environ Assess Manag 2017;13:892-905. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
The response of pile-guided floats subjected to dynamic loading.
DOT National Transportation Integrated Search
2014-08-01
Pile-Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis for esti...
DETAIL ELEVATION SHOWING THE ROOF TRUSSES, PURLINS, AND SKYLIGHT. NOTE ...
DETAIL ELEVATION SHOWING THE ROOF TRUSSES, PURLINS, AND SKYLIGHT. NOTE THE DOORS TO THE WEIGHTLIFTING ROOM. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI
21. FANTAIL DECK, SHOWING DETAIL OF DECK EXTENSION AND EXTERIOR ...
21. FANTAIL DECK, SHOWING DETAIL OF DECK EXTENSION AND EXTERIOR LOCKING MECHANISM ON HATCH DOOR TO CREW'S BERTHING. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME
DETAIL OF ORIGINAL SLIDING DOORS ALTERED WITH OPENING FOR HINGED ...
DETAIL OF ORIGINAL SLIDING DOORS ALTERED WITH OPENING FOR HINGED DOOR. WITH GRADUATED SCALE IN 1' INCREMENTS. VIEW FACING NORTHWEST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI
DETAIL OF ORIGINAL SIXOVERSIXLIGHT DOUBLEHUNG SASH WINDOWS WITH GRADUATED SCALE ...
DETAIL OF ORIGINAL SIX-OVER-SIX-LIGHT DOUBLE-HUNG SASH WINDOWS WITH GRADUATED SCALE IN 1' INCREMENTS. VIEW FACING NORTHWEST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI
DETAIL OF THE INTERIOR WALL VENTILATION BAND FROM THE MAIN ...
DETAIL OF THE INTERIOR WALL VENTILATION BAND FROM THE MAIN GYMNASIUM AREA TO THE LOCKER ROOM AREA. VIEW FACING WEST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI
33 CFR 149.680 - What are the requirements for medical treatment rooms?
Code of Federal Regulations, 2010 CFR
2010-07-01
... on a stretcher; (c) A single berth or examination table that is accessible from both sides; and (d) A... accommodation modules, must have a medical treatment room that has: (a) A sign at the entrance designating it as...
33 CFR 149.680 - What are the requirements for medical treatment rooms?
Code of Federal Regulations, 2011 CFR
2011-07-01
... on a stretcher; (c) A single berth or examination table that is accessible from both sides; and (d) A... accommodation modules, must have a medical treatment room that has: (a) A sign at the entrance designating it as...
NASA Technical Reports Server (NTRS)
1983-01-01
Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.
NASA Technical Reports Server (NTRS)
Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael
2011-01-01
In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.
The response of pile-guided floats subjected to dynamic loading : volume I final report.
DOT National Transportation Integrated Search
2014-08-01
Pile : - : Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis fo...
The response of pile-guided floats subjected to dynamic loading : volume II annex.
DOT National Transportation Integrated Search
2014-08-01
Pile-Guided floats can be a desirable alternative to stationary berthing structures. Both floats and guide piles are subjected to dynamic : forces such as wind generated waves and impacts from vessels. This project developed a rational basis for esti...
Krikalev with CPAs in Node 1/Unity CBA
2005-06-21
ISS011-E-09392 (21 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, moves one of the two Control Panel Assemblies (CPA) from the Unity nodes Common Berthing Assembly (CBA) on the International Space Station (ISS).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Lighting. 190.20-45 Section 190.20-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT Accomodations for Officers, Crew, and Scientific Personnel § 190.20-45 Lighting. Each berth must...
STS-52 CANEX-2 Canadian Target Assembly (CTA) held by RMS over OV-102's PLB
1992-11-01
STS052-71-057 (22 Oct-1 Nov 1992) --- This 70mm frame, photographed with a handheld Hasselblad camera aimed through Columbia's aft flight deck windows, captures the operation of the Space Vision System (SVS) experiment above the cargo bay. Target dots have been placed on the Canadian Target Assembly (CTA), a small satellite, in the grasp of the Canadian-built remote manipulator system (RMS) arm. SVS utilized a Shuttle TV camera to monitor the dots strategically arranged on the satellite, to be tracked. As the satellite moved via the arm, the SVS computer measured the changing position of the dots and provided real-time television display of the location and orientation of the CTA. This type of displayed information is expected to help an operator guide the RMS or the Mobile Servicing System (MSS) of the future when berthing or deploying satellites. Also visible in the frame is the U.S. Microgravity Payload (USMP-01).
The Space Shuttle orbiter payload retention systems
NASA Technical Reports Server (NTRS)
Hardee, J. H.
1982-01-01
Payloads are secured in the orbiter payload bay by the payload retention system or are equipped with their own unique retention systems. The orbiter payload retention mechanisms provide structural attachments for each payload by using four or five attachment points to secure the payload within the orbiter payload bay during all phases of the orbiter mission. The payload retention system (PRS) is an electromechanical system that provides standarized payload carrier attachment fittings to accommodate up to five payloads for each orbiter flight. The mechanisms are able to function under either l-g or zero-g conditions. Payload berthing or deberthing on orbit is accomplished by utilizing the remote manipulator system (RMS). The retention mechanisms provide the capability for either vertical or horizontal payload installation or removal. The payload support points are selected to minimize point torsional, bending, and radial loads imparted to the payloads. In addition to the remotely controlled latching system, the passive system used for nondeployable payloads performs the same function as the RMS except it provides fixed attachments to the orbiter.
Ferry Terminals and Small Craft Berthing Facilities. Design Manual 25.5.
1981-07-01
become water-logged and sink in a few years. Use is generally not recommended. (2) Extruded polystyrene (Styrofoam). Available in several sizes of precast...Supplemental facilities, such as boardroom, coffee- break room or snack bar, engineering room, and storage room, fol large installations. b
Evaluating Efficiencies in Preventive Medicine: Comparing Approaches Between the Services
2016-02-29
Prank] + Σn [(Td * L) + (Td * Pdiem)] C: Cost in dollars T: Time allocated for training in days Prank: Pay for the expected rank in dollars per...of food service facilities and storage areas, berthing spaces, childcare facilities, recreational facilities, potable water and wastewater disposal
46 CFR 108.199 - Arrangement of sleeping spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Arrangement of sleeping spaces. 108.199 Section 108.199... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.199 Arrangement of sleeping spaces. To the extent practicable, each occupation group must be berthed together in sleeping spaces...
46 CFR 108.199 - Arrangement of sleeping spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Arrangement of sleeping spaces. 108.199 Section 108.199... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.199 Arrangement of sleeping spaces. To the extent practicable, each occupation group must be berthed together in sleeping spaces...
46 CFR 108.199 - Arrangement of sleeping spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Arrangement of sleeping spaces. 108.199 Section 108.199... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.199 Arrangement of sleeping spaces. To the extent practicable, each occupation group must be berthed together in sleeping spaces...
46 CFR 108.199 - Arrangement of sleeping spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Arrangement of sleeping spaces. 108.199 Section 108.199... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.199 Arrangement of sleeping spaces. To the extent practicable, each occupation group must be berthed together in sleeping spaces...
46 CFR 108.199 - Arrangement of sleeping spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Arrangement of sleeping spaces. 108.199 Section 108.199... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.199 Arrangement of sleeping spaces. To the extent practicable, each occupation group must be berthed together in sleeping spaces...
Krikalev with CPAs in Node 1/Unity CBA
2005-06-21
ISS011-E-09373 (21 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, prepares to uninstall two of the four Control Panel Assemblies (CPA) from the Unity nodes Common Berthing Assembly (CBA) on the International Space Station (ISS).
50 CFR 600.1202 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... at a dock, berth, beach, seawall, or ramp to begin offloading fish. Shark finning means taking a..., DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Shark Finning § 600.1202 Definitions. (a) In addition... the following meanings: Land or landing means offloading fish, or causing fish to be offloaded, from a...
50 CFR 600.1202 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... at a dock, berth, beach, seawall, or ramp to begin offloading fish. Shark finning means taking a..., DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Shark Finning § 600.1202 Definitions. (a) In addition... the following meanings: Land or landing means offloading fish, or causing fish to be offloaded, from a...
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje S.; Stillwater, Ryan A.; Babula, Maria; Moreau, Michael C.; Riedel, J. Ed; Mrozinski, Richard B.; Bradley, Arthur; Bryan, Thomas C.
2012-01-01
The ability of space assets to rendezvous and dock/capture/berth is a fundamental enabler for numerous classes of NASA fs missions, and is therefore an essential capability for the future of NASA. Mission classes include: ISS crew rotation, crewed exploration beyond low-Earth-orbit (LEO), on-orbit assembly, ISS cargo supply, crewed satellite servicing, robotic satellite servicing / debris mitigation, robotic sample return, and robotic small body (e.g. near-Earth object, NEO) proximity operations. For a variety of reasons to be described, NASA programs requiring Automated/Autonomous Rendezvous and Docking/Capture/Berthing (AR&D) capabilities are currently spending an order-of-magnitude more than necessary and taking twice as long as necessary to achieve their AR&D capability, "reinventing the wheel" for each program, and have fallen behind all of our foreign counterparts in AR&D technology (especially autonomy) in the process. To ensure future missions' reliability and crew safety (when applicable), to achieve the noted cost and schedule savings by eliminate costs of continually "reinventing the wheel ", the NASA AR&D Community of Practice (CoP) recommends NASA develop an AR&D Warehouse, detailed herein, which does not exist today. The term "warehouse" is used herein to refer to a toolbox or capability suite that has pre-integrated selectable supply-chain hardware and reusable software components that are considered ready-to-fly, low-risk, reliable, versatile, scalable, cost-effective, architecture and destination independent, that can be confidently utilized operationally on human spaceflight and robotic vehicles over a variety of mission classes and design reference missions, especially beyond LEO. The CoP also believes that it is imperative that NASA coordinate and integrate all current and proposed technology development activities into a cohesive cross-Agency strategy to produce and utilize this AR&D warehouse. An initial estimate indicates that if NASA strategically coordinates the development of a robust AR&D capability across the Agency, the cost of implementing AR&D on a spacecraft could be reduced from roughly $70M per mission to as low as $7M per mission, and the associated development time could be reduced from 4 years to 2 years, after the warehouse is completely developed. Table 1 shows the clear long-term benefits to the Agency in term of costs and schedules for various missions. (The methods used to arrive at the Table 1 numbers is presented in Appendices A and B.)
ELEVATION OF FACILITY 667 WITH GRADUATED SCALE IN 1' INCREMENTS. ...
ELEVATION OF FACILITY 667 WITH GRADUATED SCALE IN 1' INCREMENTS. NOTE: THE TORPEDO IN THE FOREGROUND IS A DISPLAY ASSOCIATED WITH FACILITY 683. VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI
VIEW OF THE ROOF TRUSSES OF THE MEN'S LOCKER ROOM. ...
VIEW OF THE ROOF TRUSSES OF THE MEN'S LOCKER ROOM. NOTE THE WIDENED BAND OF VENTILATION SECREENING TO THE OUTSIDE AT THE EAVES (LEFT). VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Gymnasium Building, North Waterfront & Pierce Street near Berth S-13, Pearl City, Honolulu County, HI
DOT National Transportation Integrated Search
2012-10-01
Fiber reinforced polymer (FRP) composite piles were used on a pier rehabilitation project at : Little Diamond Island in Casco Bay near Portland Maine. The project was the replacement : of an aging wooden pier at the ferry berthing terminal. The FRP p...
46 CFR 315.5 - Appointment of agents.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Agent by MARAD, the contracting office shall transmit the Service Agreement or Ship Manager contract to... Agreement and Ship Manager Contract may be obtained from the Office of Acquisition at the address appearing... appointment as General Agent, Berth Agent or Ship Manager may be obtained from, and inquiries and other...
46 CFR 315.5 - Appointment of agents.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Agent by MARAD, the contracting office shall transmit the Service Agreement or Ship Manager contract to... Agreement and Ship Manager Contract may be obtained from the Office of Acquisition at the address appearing... appointment as General Agent, Berth Agent or Ship Manager may be obtained from, and inquiries and other...
46 CFR 315.5 - Appointment of agents.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Agent by MARAD, the contracting office shall transmit the Service Agreement or Ship Manager contract to... Agreement and Ship Manager Contract may be obtained from the Office of Acquisition at the address appearing... appointment as General Agent, Berth Agent or Ship Manager may be obtained from, and inquiries and other...
46 CFR 108.201 - Size of sleeping spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Size of sleeping spaces. 108.201 Section 108.201... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.201 Size of sleeping spaces. (a) No sleeping space may berth more than four persons, except that a sleeping space for personnel not...
46 CFR 108.201 - Size of sleeping spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Size of sleeping spaces. 108.201 Section 108.201... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.201 Size of sleeping spaces. (a) No sleeping space may berth more than four persons, except that a sleeping space for personnel not...
46 CFR 108.201 - Size of sleeping spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Size of sleeping spaces. 108.201 Section 108.201... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.201 Size of sleeping spaces. (a) No sleeping space may berth more than four persons, except that a sleeping space for personnel not...
46 CFR 108.201 - Size of sleeping spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Size of sleeping spaces. 108.201 Section 108.201... AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.201 Size of sleeping spaces. (a) No sleeping space may berth more than four persons, except that a sleeping space for personnel not...
U.S. ports and the funding of intermodal facilities : an overview of key issues
DOT National Transportation Integrated Search
2000-03-28
The growing us eof containers to move freight has led carriers to use fewer but larger ports. In their efforts to attract and retain carriers, U.S. ports have made or are planning substantial investments in new berths, docks, and improved connections...
50 CFR 600.1202 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Shark Finning § 600.1202 Definitions. (a) In addition... at a dock, berth, beach, seawall, or ramp to begin offloading fish. Shark finning means taking a shark, removing a fin or fins (whether or not including the tail), and returning the remainder of the...
50 CFR 600.1202 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Shark Finning § 600.1202 Definitions. (a) In addition... at a dock, berth, beach, seawall, or ramp to begin offloading fish. Shark finning means taking a shark, removing a fin or fins (whether or not including the tail), and returning the remainder of the...
50 CFR 600.1202 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS Shark Finning § 600.1202 Definitions. (a) In addition... at a dock, berth, beach, seawall, or ramp to begin offloading fish. Shark finning means taking a shark, removing a fin or fins (whether or not including the tail), and returning the remainder of the...
NASA Technical Reports Server (NTRS)
1983-01-01
Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... composed solely of container or refrigerated cargo vessels making fewer than twenty-five (25) visits to the.... \\7\\ ``Fleet'' means ``all container, passenger, and refrigerated cargo vessels, visiting a specific... of nitrogen and particulate matter from auxiliary diesel engines on container vessels, passenger...
Code of Federal Regulations, 2011 CFR
2011-07-01
... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... terminal and used with a vessel's cargo gear to load or unload by means of married falls. Inspection, as... examination of all visible parts of the device. Intermodal container means a reusable cargo container of a... terminal immediately adjacent to a vessel berth and used in the direct transfer of cargo between the...
78 FR 29687 - Ocean Dumping; Atchafalaya-West Ocean Dredged Material Disposal Site Designation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
..., including the Department of Defense. Industry and general public Port authorities, marinas and harbors... owning and/or responsible for ports, harbors, and/or berths, Government agencies requiring disposal of... the ODMDS-East. Background suspended solids concentrations were approximately 100 mg/L and currents...
33 CFR 110.230 - Puget Sound Area, Wash.
Code of Federal Regulations, 2012 CFR
2012-07-01
... radar reflector screens of metal of sufficient size to permit target indication on the radar screen of... permission from the Captain of the Port (COTP), or his authorized representative. Vessel Traffic Service... grant revocable permits for the continuous use of the same berth. For the Anacortes General Anchorages...
46 CFR 15.710 - Working hours.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., prescribes certain rest periods, and prohibits unnecessary work on Sundays and certain holidays when the... can require any part of the crew to work when, in his or her judgment, they are needed for: (a) Maneuvering, shifting berth, mooring, unmooring; (b) Performing work necessary for the safety of the vessel...
SFU rendezvous and SAP jettison
1996-01-13
STS072-720-076 (13 Jan. 1996) --- The crewmembers captured this 35mm view of the Japanese Space Flyer Unit (SFU) following the jettisoning of the solar panels. Later they used the Remote Manipulator System (RMS) to latch onto the satellite and berth it in the Space Shuttle Endeavour's aft cargo bay.
46 CFR 32.40-45 - Lighting-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Lighting-T/ALL. 32.40-45 Section 32.40-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-45 Lighting—T/ALL. Each berth must have a light. ...
46 CFR 32.40-45 - Lighting-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Lighting-T/ALL. 32.40-45 Section 32.40-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Accommodations for Officers and Crew § 32.40-45 Lighting—T/ALL. Each berth must have a light. ...
DOT National Transportation Integrated Search
2001-01-01
The problems associated with dredging and disposal in the New York and New Jersey harbor area over the past ten years have triggered sedimentation avoidance as being one of many possible tools in an ever-growing arsenal of dredged material management...
29 CFR 1917.16 - Line handling. (See also § 1917.95(b)).
Code of Federal Regulations, 2011 CFR
2011-07-01
... also § 1917.95(b)). (a) In order to provide safe access for handling lines while mooring and unmooring... be used. (b) When stringpiece or apron width is insufficient for safe footing, grab lines or rails... the water edge of a berth and a shed or other structure.) ...
29 CFR 1917.16 - Line handling. (See also § 1917.95(b)).
Code of Federal Regulations, 2010 CFR
2010-07-01
... also § 1917.95(b)). (a) In order to provide safe access for handling lines while mooring and unmooring... be used. (b) When stringpiece or apron width is insufficient for safe footing, grab lines or rails... the water edge of a berth and a shed or other structure.) ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... through its Ombudsman Service. The CADRS staff is trained to serve as third-party neutrals in a..., services and facilities relating thereto not yet performed. 46 CFR 540.2(i). 3. Customer will deposit on... shall arrange, offer, advertise, or provide passage on a vessel having berth or stateroom accommodations...
14 CFR 27.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2010 CFR
2010-01-01
....561(b) and dynamic conditions specified in § 27.562. (b) Each occupant must be protected from serious... combination with the safety belt, constitutes a torso restraint system as described in TSO-C114. (c) Each... weight of at least 170 pounds, considering the dimensional characteristics of the restraint system...
14 CFR 29.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... dynamic conditions specified in § 29.562. (b) Each occupant must be protected from serious head injury by... combination with the safety belt, constitutes a torso restraint system as described in TSO-C114. (c) Each... weight of at least 170 pounds, considering the dimensional characteristics of the restraint system...
NASA Technical Reports Server (NTRS)
1979-01-01
Topics covered include growth options evaluation, mass properties, attitude control and structural dynamics, contamination evaluation, berthing concepts, orbit reboost options and growth kit concepts. Systems support elements and space support equipment are reviewed with emphasis on power module operations and technology planning.
Nowak reads a checklist during OBSS berthing operations on STS-121
2006-07-05
S121-E-05401 (5 July 2006) --- Astronaut Lisa M. Nowak, STS-121 mission specialist, uses a handy reference manual while stationed at the controls on the aft flight deck of the Space Shuttle Discovery. She is preparing for the next day's activities which include docking with the International Space Station.
Nowak reads a checklist during OBSS berthing operations on STS-121
2006-07-05
S121-E-05402 (5 July 2006) --- Astronaut Lisa M. Nowak, STS-121 mission specialist, uses a handy reference manual while stationed at the controls on the aft flight deck of the Space Shuttle Discovery. She is preparing for the next day's activities which include docking with the International Space Station.
33 CFR 83.34 - Maneuvering and warning signals (Rule 34).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Maneuvering and warning signals... SECURITY INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.34 Maneuvering and warning signals... maneuvering and warning signals. (g) Power-driven vessels leaving dock or berth. When a power-driven vessel is...
33 CFR 83.34 - Maneuvering and warning signals (Rule 34).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maneuvering and warning signals... SECURITY INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.34 Maneuvering and warning signals... maneuvering and warning signals. (g) Power-driven vessels leaving dock or berth. When a power-driven vessel is...
33 CFR 144.20-5 - Exposure suits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... readily accessible location in or near the berthing area of the person for whom the exposure suit is... stowed in that location) is readily accessible to the station. (c) Each exposure suit on a MODU must be... type or multi-tone type, of corrosion resistant construction, and in good working order. The whistle...
Japanese Space Flyer Unit (SFU) satellite rendezvous
1996-01-20
STS072-720-042 (13 Jan. 1996) --- The crew members captured this 70mm view of the Japanese Space Flyer Unit (SFU) just prior to the jettisoning of the solar panels. Later, they used the Remote Manipulator System (RMS) to latch onto the satellite and berth it in the Space Shuttle Endeavour’s aft cargo bay.
NASA Technical Reports Server (NTRS)
Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi
1994-01-01
The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.
Endeavour's payload bay with the Raphaello module and Canadarm 2
2001-04-20
S100-E-5015 (20 April 2001) --- One of the crew members of STS-100 aimed a digital still camera through Endeavour's aft flight deck windows to record this image of the cargo bay, backdropped against a scene of black space and Earth's horizon. Housed in the bay, beyond the docking mechanism in the foreground, is the Italian Space Agency-provided Raffaello cargo module, which is carrying several tons of equipment for the Expedition Two crew and racks of hardware for installation in Destiny which will be used for scientific research in the future. Raffaello, which is the second of three such logistics modules, will be berthed to the ISS on April 23 so its contents can be transferred to the station throughout the course of docked operations. Also in the bay is the 57-foot-long Canadarm2, which will be mounted on the Destiny Laboratory for future station assembly work. Endeavour's Canadian-built Remote Manipulator System (RMS) arm can be seen in its berthed position on the port side of the payload bay.
Endeavour's payload bay with the Raphaello module and Canadarm 2
2001-04-20
S100-E-5018 (20 April 2001) --- One of the crew members of STS-100 aimed a digital still camera through Endeavour's aft flight deck windows to record this image of the cargo bay, backdropped against a scene of black space and Earth's horizon. Housed in the bay, beyond the docking mechanism in the foreground, is the Italian Space Agency-provided Raffaello cargo module, which is carrying several tons of equipment for the Expedition Two crew and racks of hardware for installation in Destiny which will be used for scientific research in the future. Raffaello, which is the second of three such logistics modules, will be berthed to the ISS on April 23 so its contents can be transferred to the station throughout the course of docked operations. Also in the bay is the 57-foot-long Canadarm2, which will be mounted on the Destiny Laboratory for future station assembly work. Endeavour's Canadian-built Remote Manipulator System (RMS) arm can be seen in its berthed position on the port side of the payload bay.
Endeavour's payload bay with the Raphaello module and Canadarm 2
2001-04-20
S100-E-5002 (20 April 2001) --- One of the crew members of STS-100 aimed a digital still camera through Endeavour's aft flight deck windows to record this image of the cargo bay, backdropped against a scene of black space and Earth's horizon. Housed in the bay, beyond the docking mechanism in the foreground, is the Italian Space Agency-provided Raffaello cargo module, which is carrying several tons of equipment for the Expedition Two crew and racks of hardware for installation in Destiny which will be used for scientific research in the future. Raffaello, which is the second of three such logistics modules, will be berthed to the ISS on April 23 so its contents can be transferred to the station throughout the course of docked operations. Also in the bay is the 57-foot-long Canadarm2, which will be mounted on the Destiny Laboratory for future station assembly work. Endeavour's Canadian-built Remote Manipulator System (RMS) arm can be seen in its berthed position on the port side of the payload bay.
Endeavour's payload bay with the Raphaello module and Canadarm 2
2001-04-20
S100-E-5017 (20 April 2001) --- One of the crew members of STS-100 aimed a digital still camera through Endeavour's aft flight deck windows to record this image of the cargo bay, backdropped against a scene of black space and Earth's horizon. Housed in the bay, beyond the docking mechanism in the foreground, is the Italian Space Agency-provided Raffaello cargo module, which is carrying several tons of equipment for the Expedition Two crew and racks of hardware for installation in Destiny which will be used for scientific research in the future. Raffaello, which is the second of three such logistics modules, will be berthed to the ISS on April 23 so its contents can be transferred to the station throughout the course of docked operations. Also in the bay is the 57-foot-long Canadarm2, which will be mounted on the Destiny Laboratory for future station assembly work. Endeavour's Canadian-built Remote Manipulator System (RMS) arm can be seen in its berthed position on the port side of the payload bay.
Distributed cooperating processes in a mobile robot control system
NASA Technical Reports Server (NTRS)
Skillman, Thomas L., Jr.
1988-01-01
A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.
Comparisons of Men and Women at the U.S. Naval Academy: Outcomes and Processes in Their Development.
ERIC Educational Resources Information Center
Harrison, Patrick R.; Leadbetter, Beth
The integration of women into the U.S. Naval Academy is analyzed. Areas of concern identified before the arrival of women in the class of 1980 were fraternization, acceptance, physical conditioning, berthing, leading and counseling females, publicity, athletic outlets, extra-curricular involvement, summer cruises, weight and diet requirements, and…
Metallic Seal Development for Advanced Docking/Berthing System
NASA Technical Reports Server (NTRS)
Oswald, Jay; Daniels, Christopher; Dunlap, Patrick, Jr.; Steinetz, Bruce
2006-01-01
Feasibility of metal-to-metal androgenous seals has been demonstrated. Techniques to minimize surface irregularities must be examined. Two concepts investigated: 1) Flexible metal interface with elastomeric preloader; 2) Flexibility will accommodate any surface irregularities from the mating surface. Rigid metal interface with elastomeric preloader. Rigidity of the metal surface will prevent irregularities (waves) from occurring.
46 CFR 92.20-20 - Sleeping accommodations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... must be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room... placed above another. The berth must be composed of materials not likely to corrode. The overall size of...
46 CFR 92.20-20 - Sleeping accommodations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... must be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room... placed above another. The berth must be composed of materials not likely to corrode. The overall size of...
NWEI Azura September 2016 Data
Terry Lettenmaier
2016-10-15
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-06-07
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-11-11
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-08-31
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-10-14
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-03-07
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-03-31
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-08-31
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-06-08
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-12-07
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
2012-10-14
ISS033-E-012429 (14 Oct. 2012) --- Attached to the Earth-facing side of the Harmony node, the SpaceX Dragon commercial cargo craft is featured in this image photographed by an Expedition 33 crew member on the International Space Station. Dragon was berthed to Harmony on Oct. 10 and is scheduled to spend 18 days attached to the station.
2012-10-14
ISS033-E-012422 (14 Oct. 2012) --- Attached to the Earth-facing side of the Harmony node, the SpaceX Dragon commercial cargo craft is featured in this image photographed by an Expedition 33 crew member on the International Space Station. Dragon was berthed to Harmony on Oct. 10 and is scheduled to spend 18 days attached to the station.
2012-10-14
ISS033-E-012424 (14 Oct. 2012) --- Attached to the Earth-facing side of the Harmony node, the SpaceX Dragon commercial cargo craft is featured in this image photographed by an Expedition 33 crew member on the International Space Station. Dragon was berthed to Harmony on Oct. 10 and is scheduled to spend 18 days attached to the station.
33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...
33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...
33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...
33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...
33 CFR 110.185 - Atlantic Ocean, off the Port of Palm Beach, FL.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Atlantic Ocean, off the Port of... HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.185 Atlantic Ocean, off the Port... regulations. (1) Vessels in the Atlantic Ocean near Lake Worth Inlet awaiting berthing space at the Port of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... project. Berths 302-305 are currently operational and encompass approximately 291 acres of land and water... pursuant to Section 10 of the Rivers and Harbors Act, and Section 103 of the Marine Protection, Research... low water (MLLW) plus an additional two feet of overdepth dredging to -57 feet MLLW, (4) disposal of...
14 CFR 27.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... head injury by a safety belt plus a shoulder harness that will prevent the head from contacting any injurious object except as provided for in § 27.562(c)(5). A shoulder harness (upper torso restraint), in... serious injury in an emergency landing as a result of the static inertial load factors specified in § 27...
14 CFR 27.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... head injury by a safety belt plus a shoulder harness that will prevent the head from contacting any injurious object except as provided for in § 27.562(c)(5). A shoulder harness (upper torso restraint), in... serious injury in an emergency landing as a result of the static inertial load factors specified in § 27...
14 CFR 27.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... head injury by a safety belt plus a shoulder harness that will prevent the head from contacting any injurious object except as provided for in § 27.562(c)(5). A shoulder harness (upper torso restraint), in... serious injury in an emergency landing as a result of the static inertial load factors specified in § 27...
14 CFR 29.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... serious injury in an emergency landing as a result of the inertial factors specified in § 29.561(b) and dynamic conditions specified in § 29.562. (b) Each occupant must be protected from serious head injury by a safety belt plus a shoulder harness that will prevent the head from contacting any injurious...
14 CFR 29.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... serious injury in an emergency landing as a result of the inertial factors specified in § 29.561(b) and dynamic conditions specified in § 29.562. (b) Each occupant must be protected from serious head injury by a safety belt plus a shoulder harness that will prevent the head from contacting any injurious...
14 CFR 29.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... serious injury in an emergency landing as a result of the inertial factors specified in § 29.561(b) and dynamic conditions specified in § 29.562. (b) Each occupant must be protected from serious head injury by a safety belt plus a shoulder harness that will prevent the head from contacting any injurious...
14 CFR 27.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... head injury by a safety belt plus a shoulder harness that will prevent the head from contacting any injurious object except as provided for in § 27.562(c)(5). A shoulder harness (upper torso restraint), in... serious injury in an emergency landing as a result of the static inertial load factors specified in § 27...
14 CFR 29.785 - Seats, berths, litters, safety belts, and harnesses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... serious injury in an emergency landing as a result of the inertial factors specified in § 29.561(b) and dynamic conditions specified in § 29.562. (b) Each occupant must be protected from serious head injury by a safety belt plus a shoulder harness that will prevent the head from contacting any injurious...
Terry Lettenmaier
2015-12-14
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of O'ahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-01-01
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2015-12-14
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2016-02-21
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of O'ahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2015-12-14
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawai'i (MCBH) on the windward (northeast) coast of the island of O'ahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2015-12-15
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2015-12-14
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Terry Lettenmaier
2015-12-14
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
Hubble Space Telescope nears Shuttle Endeavour
1993-12-04
STS061-73-040 (4 Dec 1993) --- Backdropped against the blackness of space, the Hubble Space Telescope (HST) nears the Space Shuttle Endeavour. With the aid of the Remote Manipulator System (RMS), the STS-61 crew members later grappled the spacecraft and berthed it in the cargo bay for five-days of servicing chores by four space walkers.
NASA Technical Reports Server (NTRS)
Emmet, Brian R.
1991-01-01
This paper describes the results of the feasibility study using Centaur or other CTV's to deliver payloads to the Space Station Freedom (SSF). During this study was examined the requirements upon unmanned cargo transfer stages (including Centaur) for phasing, rendezvous, proximity operations and docking/berthing (capture).
49 CFR 177.841 - Division 6.1 and Division 2.3 materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this section, bearing or required to bear a POISON or POISON INHALATION HAZARD label or placard in the... loaded into another closed unit load device; (2) Bearing or required to bear a POISON, POISON GAS or POISON INHALATION HAZARD label in the driver's compartment (including a sleeper berth) of a motor vehicle...
49 CFR 177.841 - Division 6.1 and Division 2.3 materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this section, bearing or required to bear a POISON or POISON INHALATION HAZARD label or placard in the... loaded into another closed unit load device; (2) Bearing or required to bear a POISON, POISON GAS or POISON INHALATION HAZARD label in the driver's compartment (including a sleeper berth) of a motor vehicle...
49 CFR 177.841 - Division 6.1 and Division 2.3 materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this section, bearing or required to bear a POISON or POISON INHALATION HAZARD label or placard in the... loaded into another closed unit load device; (2) Bearing or required to bear a POISON, POISON GAS or POISON INHALATION HAZARD label in the driver's compartment (including a sleeper berth) of a motor vehicle...
49 CFR 177.841 - Division 6.1 and Division 2.3 materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this section, bearing or required to bear a POISON or POISON INHALATION HAZARD label or placard in the... loaded into another closed unit load device; (2) Bearing or required to bear a POISON, POISON GAS or POISON INHALATION HAZARD label in the driver's compartment (including a sleeper berth) of a motor vehicle...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lettenmaier, Terry
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lettenmaier, Terry
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lettenmaier, Terry
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.
HST,survey views of Hubble after berthing in payload bay on Flight Day 3
1997-02-13
S82-E-5140 (13 Feb. 1997) --- A back-lighted full view of the Hubble Space Telescope (HST) in the grasp of the Remote Manipulation System (RMS) following capture early today. The limb of Earth forms part of the background. This view was taken with an Electronic Still Camera (ESC).
49 CFR 395.1 - Scope of rules in this part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... from work within 12 consecutive hours; (iii)(A) A property-carrying commercial motor vehicle driver has...-berth and off-duty time amounting to at least 10 hours; or (4) The equivalent of at least 10 consecutive... paragraph (g)(1)(i)(A)(1) through (4) of this section; and (C) May not drive after the 14th hour after...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Size. 168.15-15 Section 168.15-15 Shipping COAST GUARD... § 168.15-15 Size. (a) Sleeping accommodations must be divided into rooms, no one of which may berth more... accommodate, must be marked outside the space. (b) Each room must be of such size that there is at least 1.8...
46 CFR 190.20-20 - Sleeping accommodations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... persons. (c) Each room must be of such size that there are at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The... size of a berth must not be less than 68 centimeters (27 inches) wide by 190 centimeters (75 inches...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Size. 168.15-15 Section 168.15-15 Shipping COAST GUARD... § 168.15-15 Size. (a) Sleeping accommodations must be divided into rooms, no one of which may berth more... accommodate, must be marked outside the space. (b) Each room must be of such size that there is at least 1.8...
Approach of SpaceX Dragon cargo craft
2015-01-12
ISS042E119867(01/12/2015)--- This image, photographed by one of the Expedition 42 crew members aboard the International Space Station, shows the SpaceX Dragon cargo craft approaching on Jan. 12 2015 for its grapple and berthing and the start of a month attached to the complex. Dragon carried more than 2 ½ tons of supplies and experiments to the station.
2017-09-01
ADCP locations used for model calibration. ......................................................................... 12 Figure 4-3. Sample water...Example of fine sediment sample [Set d, Sample B30]. (B) Example of coarse sediment sample [Set d, sample B05...Turning Basin average sediment size distribution curve. ................................................... 21 Figure 5-5. Turning Basin average size
75 FR 59197 - Hazardous Materials: Limiting the Use of Electronic Devices by Highway
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
............ 3.1 7.6 Look back in sleeper berth 2.3 0.2 Talk or listen to hand-held phone... 1.0 0.2 Eating 1.0 0... text messaging. Participants followed a pace car in the right lane, which braked 42 times... video and kinematic vehicle sensors) in actual driving situations created a scientific method to study...
76 FR 10771 - Hazardous Materials: Limiting the Use of Electronic Devices by Highway
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... grooming 4.5 0.2 Reach for object in vehicle 3.1 7.6 Look back in sleeper berth 2.3 0.2 Talk or listen to... a pace car in the right lane, which braked 42 times, intermittently. Participants were 0.2 seconds... drivers (through video and kinematic vehicle sensors) in actual driving situations created a scientific...
36. ENGINE ROOM FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING ...
36. ENGINE ROOM FROM STARBOARD SIDE OF CONTROL CONSOLE, LOOKING AT TWO DIESEL ENGINES, STAIRS LEAD UP TO CREW'S BERTHING. THIS IMAGE IS CLOSER TO THE STERN AND MORE ANGLED TOWARDS THE PORT THAN IMAGE 34. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME
A quantitative risk analysis approach to port hydrocarbon logistics.
Ronza, A; Carol, S; Espejo, V; Vílchez, J A; Arnaldos, J
2006-01-16
A method is presented that allows quantitative risk analysis to be performed on marine hydrocarbon terminals sited in ports. A significant gap was identified in the technical literature on QRA for the handling of hazardous materials in harbours published prior to this work. The analysis is extended to tanker navigation through port waters and loading and unloading facilities. The steps of the method are discussed, beginning with data collecting. As to accident scenario identification, an approach is proposed that takes into account minor and massive spills due to loading arm failures and tank rupture. Frequency estimation is thoroughly reviewed and a shortcut approach is proposed for frequency calculation. This allows for the two-fold possibility of a tanker colliding/grounding at/near the berth or while navigating to/from the berth. A number of probability data defining the possibility of a cargo spill after an external impact on a tanker are discussed. As to consequence and vulnerability estimates, a scheme is proposed for the use of ratios between the numbers of fatal victims, injured and evacuated people. Finally, an example application is given, based on a pilot study conducted in the Port of Barcelona, where the method was tested.
Docking of the SpaceX Dragon Commercial cargo craft
2012-10-10
ISS033-E-011170 (10 Oct. 2012) --- The SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station's Harmony node. Working from the robotics workstation inside the seven-windowed Cupola, Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, with the assistance of NASA astronaut Sunita Williams, commander, captured Dragon at 6:56 a.m. (EDT) and used the Canadarm2 robotic arm to berth Dragon to Harmony Oct. 10, 2012. Dragon is scheduled to spend 18 days attached to the station. During that time, the crew will unload 882 pounds of crew supplies, science research and hardware from the cargo craft and reload it with 1,673 pounds of cargo for return to Earth. After Dragon?s mission at the station is completed, the crew will use Canadarm2 to detach Dragon from Harmony and release it for a splashdown about six hours later in the Pacific Ocean, 250 miles off the coast of southern California. Dragon launched atop a Falcon 9 rocket at 8:35 p.m. Oct. 7 from Cape Canaveral Air Force Station in Florida, beginning NASA's first contracted cargo delivery flight, designated SpaceX CRS-1, to the station.
NASA Technical Reports Server (NTRS)
Manouchehri, Davoud; Lindsay, Thomas; Ghosh, David
1994-01-01
NASA's Langley Research Center (LaRC) is addressing the problem of isolating the vibrations of the Shuttle remote manipulator system (RMS) from its end-effector and/or payload by modeling an RMS flat-floor simulator with a dynamic payload. Analysis of the model can lead to control techniques that will improve the speed, accuracy, and safety of the RMS in capturing satellites and eventually facilitate berthing with the space station. Rockwell International Corporation, also involved in vibration isolation, has developed a hardware interface unit to isolate the end-effector from the vibrations of an arm on a Shuttle robotic tile processing system (RTPS). To apply the RTPS isolation techniques to long-reach arms like the RMS, engineers have modeled the dynamics of the hardware interface unit with simulation software. By integrating the Rockwell interface model with the NASA LaRC RMS simulator model, investigators can study the use of a hardware interface to isolate dynamic payloads from the RMS. The interface unit uses both active and passive compliance and damping for vibration isolation. Thus equipped, the RMS could be used as a telemanipulator with control characteristics for capture and berthing operations. The hardware interface also has applications in industry.
Lonati, Giovanni; Cernuschi, Stefano; Sidi, Shelina
2010-12-01
This work is intended to assess the impact on local air quality due to atmospheric emissions from port area activities for a new port in project in the Mediterranean Sea. The sources of air pollutants in the harbour area are auxiliary engines used by ships at berth during loading/offloading operations. A fleet activity-based methodology is first applied to evaluate annual pollutant emissions (NO(X), SO(X), PM, CO and VOC) based on vessel traffic data, ships tonnage and in-port hotelling time for loading/offloading operations. The 3-dimensional Calpuff transport and dispersion model is then applied for the subsequent assessment of the ground level spatial distribution of atmospheric pollutants for both long-term and short-term averaging times. Compliance with current air quality standards in the port area is finally evaluated and indications for port operation are provided. Some methodological aspects of the impact assessment procedure, namely those concerning the steps of emission scenario definitions and model simulations set-up at the project stage, are specifically addressed, suggesting a pragmatic approach for similar evaluations for small new ports in project. Copyright © 2010 Elsevier B.V. All rights reserved.
Fuzzy logic techniques for rendezvous and docking of two geostationary satellites
NASA Technical Reports Server (NTRS)
Ortega, Guillermo
1995-01-01
Large assemblings in space require the ability to manage rendezvous and docking operations. In future these techniques will be required for the gradual build up of big telecommunication platforms in the geostationary orbit. The paper discusses the use of fuzzy logic to model and implement a control system for the docking/berthing of two satellites in geostationary orbit. The system mounted in a chaser vehicle determines the actual state of both satellites and generates torques to execute maneuvers to establish the structural latching. The paper describes the proximity operations to collocate the two satellites in the same orbital window, the fuzzy guidance and navigation of the chaser approaching the target and the final Fuzzy berthing. The fuzzy logic system represents a knowledge based controller that realizes the close loop operations autonomously replacing the conventional control algorithms. The goal is to produce smooth control actions in the proximity of the target and during the docking to avoid disturbance torques in the final assembly orbit. The knowledge of the fuzzy controller consists of a data base of rules and the definitions of the fuzzy sets. The knowledge of an experienced spacecraft controller is captured into a set of rules forming the Rules Data Base.
NREL MOIS Data for NWEI Azura September 2016
Eric Nelson
2016-10-07
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura June 2016
Eric Nelson
2016-06-30
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura July 2016
Eric Nelson
2016-09-25
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura August 2016
Eric Nelson
2016-10-03
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is... waters, extending from the surface to the sea floor, within a 500 yard radius around any LHG tank vessel that is moored, or in the process of mooring, at any berth within the Los Angeles or Long Beach port...
33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is... waters, extending from the surface to the sea floor, within a 500 yard radius around any LHG tank vessel that is moored, or in the process of mooring, at any berth within the Los Angeles or Long Beach port...
33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is... waters, extending from the surface to the sea floor, within a 500 yard radius around any LHG tank vessel that is moored, or in the process of mooring, at any berth within the Los Angeles or Long Beach port...
33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is... waters, extending from the surface to the sea floor, within a 500 yard radius around any LHG tank vessel that is moored, or in the process of mooring, at any berth within the Los Angeles or Long Beach port...
An Analysis of Test And Evaluation in Rapid Acquisition Programs
2015-12-01
program manager is assigned the requirement and allocated resources to carry out with an acquisition plan. 2. Role of Test and Evaluation Test and...Manual, verify the Maintenance Allocation Chart, and ensure the completeness of the System Support Package. The Maintainability Demonstration measured...additional outside personnel that require additional logistics support, such as security, facilitates, and berthing placing additional strain on units. CLS
NREL MOIS Data for NWEI Azura November 2015
Eric Nelson
2016-05-25
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura August 2015
Eric Nelson
2016-05-23
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura July 2015
Eric Nelson
2016-05-23
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura April 2016
Eric Nelson
2016-05-31
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura June 2015
Eric Nelson
2016-05-18
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura March 2016
Eric Nelson
2016-05-31
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura December 2015
Eric Nelson
2016-05-27
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura January 2016
Eric Nelson
2016-05-27
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura February 2016
Eric Nelson
2016-05-31
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura September 2015
Eric Nelson
2016-05-24
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
NREL MOIS Data for NWEI Azura October 2015
Eric Nelson
2016-05-24
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
....V. and Coach USA AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of... exemption from Van Hool N.V. and Coach USA (Van Hool/Coach USA) to allow the use of double deck motorcoaches..., Van Hool/Coach USA is requesting an exemption that would allow the use of sleeper berths that comply...
37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING ...
37. ENGINE ROOM, FROM PORT SIDE OF CONTROL CONSOLE, LOOKING TOWARDS STERN, PORT ENGINE AT RIGHT, STARBOARD ENGINE AT LEFT, BOTH ARE DIESEL ENGINES, IN BACKGROUND IS STAIRS UP TO CREWS' BERTHING, BEYONE THE STAIRS IS THE DOOR TO AFT ENGINE ROOM & MACHINE SHOP. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
A method for modeling contact dynamics for automated capture mechanisms
NASA Technical Reports Server (NTRS)
Williams, Philip J.
1991-01-01
Logicon Control Dynamics develops contact dynamics models for space-based docking and berthing vehicles. The models compute contact forces for the physical contact between mating capture mechanism surfaces. Realistic simulation requires proportionality constants, for calculating contact forces, to approximate surface stiffness of contacting bodies. Proportionality for rigid metallic bodies becomes quite large. Small penetrations of surface boundaries can produce large contact forces.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... approximately 350 acres and would include a three- berth, deep-water wharf. The proposed wharf would be 3,000 feet long and 105 feet wide, with access to suitably deep water provided by an approximately 1,100 foot... and at the Web site www.eisgatewaypacificwa.gov or can be requested by contacting the Corps, Seattle...
Army Logistician. Volume 41, Issue 2, March-April 2009
2009-04-01
environment of full-spectrum military operations. The expansion of the RFI equipment list and its truly remarkable reception by Soldiers and units...the 45th Sustainment Brigade from Fort Shafter, Hawaii, served as the reception , staging, and onward movement commander. JLOTS is a key enabler to...2008. MARCH–APRIL 200922 dry; showers; morale, welfare, and recreation facil- ity; movie tent; gym; chapel; and over 250 berthing [sleeping] tents
A Guide for Marina and Harbor Managers
1991-03-01
the natural ecology of an area, and harm wildlife habitat and breeding areas. Permit authority and environmental protection agencies are designed to...designed to serve boats of various sizes. They are usually constructed of wood or metal docks that are either mounted on piers, anchored, or of the...find information on berthing facilities for possible construction. He would be referred to the laws section and the regulation that governs contruction
NASA Technical Reports Server (NTRS)
Card, Michael E.
1991-01-01
The areas of space exploration in which robotic devices will play a part are identified, and progress to date in the space agency plans to acquire this capability is briefly reviewed. Roles and functions on orbit for robotic devices include well known activities, such as inspection and maintenance, assembly, docking, berthing, deployment, retrieval, materials handling, orbital replacement unit exchange, and repairs. Missions that could benefit from a robotic capability are discussed.
ERIC Educational Resources Information Center
Wilkinson, B.
Training is one of the many means that an organization may use to help its employees in their adaption to organizational change. F. Olsen Ltd. is a major Norwegian International Shipping organization. This study was concerned with the Olsen Berths based at Mill Docks in the Port of London. The major problems, as defined by senior management at…
NASA Astrophysics Data System (ADS)
Seddiek, Ibrahim S.; Mosleh, Mosaad A.; Banawan, Adel A.
2013-12-01
The progress of economic globalization, the rapid growth of international trade, and the maritime transportation has played an increasingly significant role in the international supply chain. As a result, worldwide seaports have suffered from a central problem, which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed. Many ports have taken the necessary precautions to overcome this problem, while others still suffer due to the presence of technical and financial constraints. In this paper, the barriers, interconnection standards, rules, regulations, power sources, and economic and environmental analysis related to ships, shore-side power were studied in efforts to find a solution to overcome his problem. As a case study, this paper investigates the practicability, costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga, Egypt. The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving. Moreover, environmentally, it could achieve an annual reduction in exhaust gas emissions of CO2, CO, NO x , P.M, and SO2 by 276, 2.32, 18.87, 0.825 and 3.84 tons, respectively.
Modeling of nitrogen oxides (NO(x)) concentrations resulting from ships at berth.
Abdul-Wahab, Sabah A; Elkamel, Ali; Al Balushi, Abdullah S; Al-Damkhi, Ali M; Siddiqui, Rafiq A
2008-12-01
Oxides of nitrogen (NO(x)) emissions from ships (marine vessels) contribute to poor air quality that negatively impacts public health and communities in coastal areas and far inland. These emissions often excessively harm human health, environment, wildlife habituates, and quality of life of communities and indigenous of people who live near ports. This study was conducted to assess the impact of NO(x) emissions origination from ships at berth on a nearby community. It was undertaken at Said Bin Sultan Naval base in Wullayat Al-Mussana (Sultanate of Oman) during the year 2005. The Industrial Source Complex Short Term (ISCST) model was adopted to determine the dispersion of NO(x) into port and beyond into surrounding urban areas. The hourly and monthly contours (isopleths) of NO(x) concentrations in and around the port were plotted. The results were analyzed to determine the affected area and the level of NO(x) concentrations. The highest concentration points in the studied area were also identified. The isopleths of NO(x) indicated that most shipping emissions of NO(x) occur at the port can be transported over land. The output results can help to derive advice of recommendations ships operators and environmentalists to take the correct decision to prevent workers and surrounded environment from pollution.
NASA Technical Reports Server (NTRS)
Liddle, Donn
2017-01-01
When photogrammetrists read an article entitled "Photogrammetry in Space" they immediately think of terrestrial mapping using satellite imagery. However in the last 19 years the roll of close range photogrammetry in support of the manned space flight program has grown exponentially. Management and engineers have repeatedly entrusted the safety of the vehicles and their crews to the results of photogrammetric analysis. In February 2010, the Node 3 module was attached to the port side Common Berthing Mechanism (CBM) of the International Space Station (ISS). Since this was not the location at which the module was originally designed to be located on the ISS, coolant lines containing liquid ammonia, were installed externally from the US Lab to Node 3 during a spacewalk. During mission preparation I had developed a plan and a set of procedures to have the astronauts acquire stereo imagery of these coolant lines at the conclusion of the spacewalk to enable us to map their as-installed location relative to the rest of the space station. Unfortunately, the actual installation of the coolant lines took longer than expected and in an effort to wrap up the spacewalk on time, the mission director made a real-time call to drop the photography. My efforts to reschedule the photography on a later spacewalk never materialized, so rather than having an as-installed model for the location of coolant lines, the master ISS CAD database continued to display an as-designed model of the coolant lines. Fast forward to the summer of 2015, the ISS program planned to berth a Japanese cargo module to the nadir Common Berthing Mechanism (CBM), immediately adjacent to the Node 3 module. A CAD based clearance analysis revealed a negative four inch clearance between the ammonia lines and a thruster nozzle on the port side of the cargo vehicle. Recognizing that the model of the ammonia line used in the clearance analysis was "as-designed" rather than "as-installed", I was asked to determine the real clearance between the ammonia lines and expected position of the thruster bell using existing on-orbit imagery. Imagery of the area of interest, taken several years earlier from the Space Shuttle during a fly-around of the ISS, was found and used to set a stereo pair. Space Vision System Targets and Handrail bolts measured in the ISS analytical coordinate system (ISSACS) prior to launch, were used to obtain an absolute orientation so all photogrammetric measurement's would be in the ISSACS coordinate system. Coordinates for the design location of the edges of the thruster bell, when the cargo vehicle was fully berthed to the ISS, were displayed in 3-D relative to the as-installed ammonia lines. This immediately revealed a positive clearance, which was later quantified to be a minimum of 10" +/0.5". The analysis was completed over a single weekend by a single analyst. Using updated imagery, acquired from the station's robotic arm, a complete as-installed model of the coolant lines was generated from stereo photography and replaced the design model in the master ISS CAD database.
USSR and Eastern Europe Scientific Abstracts. Engineering and Equipment. Number 26
1976-11-10
harbor in- volves a sea sector and a river sector. The author indicates the hypotheses taken into consideration, including the number of berths in the...river and sea sectors, the arrivals of sea - and river-going ships, and ship operation time. Also indicated is the system of equations describing...diffusion for plastic deformation by torsion is greater than plastic deformation by tension. The main energy diffusion mechanism is microplastic
The National Shipbuilding Research Program, 1990 Ship Production Symposium
1990-08-01
deck, sides and bottom Shear stresses which may be important for certain classes of vessels, are not accounted for in this study. The net sectional...and the superstructure. The highly pre-outfitted blocks then can be transferred to the dry dock by a gantry crane . After integrating the blocks into...manager. 2A-2-3 Examples of cost centres are: Plate Production Unit Pre-outfitting Hull Construction Ship Outfitting (Weapons Compartments) Berth Cranes
1984-04-01
battle- cruiser LJLQQ,, was "booed" and "jeered at" by dockyard workmen as she slipped into her berth after the battle ( 12 :250). Why such a negative...of May in 1916. Until the Battle of Jutland, the Royal Navy had not been seriously challenged since 1805 when Admirals Nelson and...Unique because of its design as an "all big-gun ship," she carried ten 12 -inch guns, was turbine driven, and
30. VERTICAL AERIAL VIEW OF THE MOUTH OF THE FEDERAL ...
30. VERTICAL AERIAL VIEW OF THE MOUTH OF THE FEDERAL CHANNEL, SCALE 1:14,400. TO THE SOUTH OF THE CHANNEL ARE THE RUNWAYS OF THE FORMER ALAMEDA NAVAL AIR STATION; TO THE NORTH ARE THE BERTHS AND BUILDINGS OF THE FORMER NAVAL SUPPLY CENTER, OAKLAND. Date and time of photography '12-9-98 10:51." - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA
2009-09-23
ISS020-E-042237 (23 Sept. 2009) --- NASA astronaut Nicole Stott and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).
2009-09-23
ISS020-E-042225 (23 Sept. 2009) --- NASA astronaut Nicole Stott and European Space Agency astronaut Frank De Winne, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).
Broome, Richard A; Cope, Martin E; Goldsworthy, Brett; Goldsworthy, Laurie; Emmerson, Kathryn; Jegasothy, Edward; Morgan, Geoffrey G
2016-02-01
This study investigates the mortality effect of primary and secondary PM2.5 related to ship exhaust in the Sydney greater metropolitan region of Australia. A detailed inventory of ship exhaust emissions was used to model a) the 2010/11 concentration of ship-related PM2.5 across the region, and b) the reduction in PM2.5 concentration that would occur if ships used distillate fuel with a 0.1% sulfur content at berth or within 300 km of Sydney. The annual loss of life attributable to 2010/11 levels of ship-related PM2.5 and the improvement in survival associated with use of low-sulfur fuel were estimated from the modelled concentrations. In 2010/11, approximately 1.9% of the region-wide annual average population weighted-mean concentration of all natural and human-made PM2.5 was attributable to ship exhaust, and up to 9.4% at suburbs close to ports. An estimated 220 years of life were lost by people who died in 2010/11 as a result of ship exhaust-related exposure (95% CIβ: 140-290, where CIβ is the uncertainty in the concentration-response coefficient only). Use of 0.1% sulfur fuel at berth would reduce the population weighted-mean concentration of PM2.5 related to ship exhaust by 25% and result in a gain of 390 life-years over a twenty year period (95% CIβ: 260-520). Use of 0.1% sulfur fuel within 300 km of Sydney would reduce the concentration by 56% and result in a gain of 920 life-years over twenty years (95% CIβ: 600-1200). Ship exhaust is an important source of human exposure to PM2.5 in the Sydney greater metropolitan region. This assessment supports intervention to reduce ship emissions in the GMR. Local strategies to limit the sulfur content of fuel would reduce exposure and will become increasingly beneficial as the shipping industry expands. A requirement for use of 0.1% sulfur fuel by ships within 300 km of Sydney would provide more than twice the mortality benefit of a requirement for ships to use 0.1% sulfur fuel at berth. Copyright © 2015 Elsevier Ltd. All rights reserved.
During STS-57, EURECA is grappled by OV-105's RMS end effector
1993-06-24
STS057-93-052 (24 June 1993) --- The European Retrievable Carrier (EURECA) is held in the grasp of the Space Shuttle Endeavour's Remote Manipulator System (RMS). The photo was taken after EURECA's "capture" from Earth-orbit but prior to its berthing in the Shuttle's cargo bay. The southern two-thirds of the state of Florida, part of the Gulf of Mexico and clouds over the Atlantic form the backdrop for the 70mm image.
The Air Force in Space, Fiscal Year 1962
1966-06-01
station was, of course, not unique to the Air Force, it being first introduced into scientific litera- ture by the German theorist, Hermann Oberth . In his...pioneering work on space flight published in 1923, Oberth suggested launching nobserving stations,’ into orbit from which man would be able nto see...serving as refuel- ing stations for extraterrestrial flight. In case of war, Oberth said, the stations would have nstrategie value.„ 37 (U) °berth’s ideas
1984-05-01
design as the one that had been dropped on Nagasaki, Japan. Each had a yield of 23 KT (the equivalent of 23,000 tons of TNT). This weapon type had been...tional control of the Commander-in-Chief, Pacific Fleet (CINCPACFLT). On 3 June 1947, CNO sent a dispatch to CINIPACFLT designating three ships for...addition berths near Eneu Island designated by letters or their phonetic equivalent , e.g., Able for A, Jig for J. Oboe for 0, etc. Figure A.1 shows the
Raffaello Multi-Purpose Logistics Module (MPLM) in the Endeavour payload bay prior to docking
2001-04-21
ISS002-E-5815 (21 April 2001) --- The Raffaello Multi-Purpose Logistics Module (MPLM), built by the Italian Space Agency (ASI), sits in its berthed position in the cargo bay of the Space Shuttle Endeavour as the STS-100 crew eases the vehicle close to the International Space Station (ISS) for docking. The image was recorded with a digital still camera by one of the Expedition Two crew members aboard the Station.
Evaluation of Modern Navies’ Damage Control and Firefighting Training using Simulator Platforms
2011-09-01
Figure 18 below is a two-story concrete structure including holes in bulkheads, ruptured pipelines, and almost all situations that can cause flooding...the four simulators address Class A, B, and C fires. The first one—the “Basic Firefighting Trainer”—is a single-story concrete structure with four...Figure 19—is a three-story concrete structure that houses berthing facilities, engine rooms, storage compartments and electrical and engine room mock
NASA MSFC hardware in the loop simulations of automatic rendezvous and capture systems
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Naumann, Charles B.; Sutton, William; Bryan, Thomas C.
1991-01-01
Two complementary hardware-in-the-loop simulation facilities for automatic rendezvous and capture systems at MSFC are described. One, the Flight Robotics Laboratory, uses an 8 DOF overhead manipulator with a work volume of 160 by 40 by 23 feet to evaluate automatic rendezvous algorithms and range/rate sensing systems. The other, the Space Station/Station Operations Mechanism Test Bed, uses a 6 DOF hydraulic table to perform docking and berthing dynamics simulations.
De Winne and Stott at JEM-RMS controls
2009-09-23
ISS020-E-041828 (23 Sept. 2009) --- European Space Agency astronaut Frank De Winne and NASA astronaut Nicole Stott, both Expedition 20 flight engineers, work the controls of the JEM Robotic Manipulator System (JEM-RMS) in the Kibo laboratory of the International Space Station. De Winne and Stott used the JEM-RMS to grapple the Exposed Pallet (EP) from the station’s Canadarm2 and berth it to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).
Employing lighting techniques during on-orbit operations
NASA Technical Reports Server (NTRS)
Wheelwright, Charles D.; Toole, Jennifer R.
1991-01-01
As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.
Employing lighting techniques during on-orbit operations
NASA Astrophysics Data System (ADS)
Wheelwright, Charles D.; Toole, Jennifer R.
As a result of past space missions and evaluations, many procedures have been established and shown to be prudent applications for use in present and future space environment scenarios. However, recent procedures to employ the use of robotics to assist crewmembers in performing tasks which require viewing remote and obstructed locations have led to a need to pursue alternative methods to assist in these operations. One of those techniques which is under development entails incorporating the use of suitable lighting aids/techniques with a closed circuit television (CCTV) camera/monitor system to supervise the robotics operations. The capability to provide adequate lighting during grappling, deploying, docking and berthing operations under all on-orbit illumination conditions is essential to a successful mission. Using automated devices such as the Remote Manipulator System (RMS) to dock and berth a vehicle during payload retrieval, under nighttime, earthshine, solar, or artificial illumination conditions can become a cumbersome task without first incorporating lighting techniques that provide the proper target illumination, orientation, and alignment cues. Studies indicate that the use of visual aids such as the CCTV with a pretested and properly oriented lighting system can decrease the time necessary to accomplish grappling tasks. Evaluations have been and continue to be performed to assess the various on-orbit conditions in order to predict and determine the appropriate lighting techniques and viewing angles necessary to assist crewmembers in payload operations.
International Space Station (ISS)
2001-03-11
STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Susan Helms Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Design and Verification of Space Station EVA-Operated Truss Attachment System
NASA Technical Reports Server (NTRS)
Katell, Gabriel
2001-01-01
This paper describes the design and verification of a system used to attach two segments of the International Space Station (ISS). This system was first used in space to mate the P6 and Z1 trusses together in December 2000, through a combination of robotic and extravehicular tasks. Features that provided capture, coarse alignment, and fine alignment during the berthing process are described. Attachment of this high value hardware was critical to the ISS's sequential assembly, necessitating the inclusion of backup design and operational features. Astronauts checked for the proper performance of the alignment and bolting features during on-orbit operations. During berthing, the system accommodates truss-to-truss relative displacements that are caused by manufacturing tolerances and on-orbit thermal gradients. After bolt installation, the truss interface becomes statically determinate with respect to in-plane shear loads and isolates attach bolts from bending moments. The approach used to estimate relative displacements and the means of accommodating them is explained. Confidence in system performance was achieved through a cost-effective collection of tests and analyses, including thermal, structural, vibration, misalignment, contact dynamics, underwater simulation, and full-scale functional testing. Design considerations that have potential application to other mechanisms include accommodating variations of friction coefficients in the on-orbit joints, wrench torque tolerances, joint preload, moving element clearances at temperature extremes, and bolt-nut torque reaction.
Computer graphics applications to crew displays
NASA Technical Reports Server (NTRS)
Wyzkoski, J.
1983-01-01
Astronauts are provided much data and information via the monochrome CRT displays on the orbiter. For this project two areas were investigated for the possible introduction of computer graphics to enhance and extend the utility of these displays. One involved reviewing the current orbiter displays and identifying those which could be improved via computer graphics. As an example, the tabular data on electrical power distribution and control was enhanced by the addition of color and bar charts. The other dealt with the development of an aid to berthing a payload with the Remote Manipulator System (RMS). This aid consists of a graphics display of the top, front and side views of the payload and cargo bay and point of resolution (POR) position and attitude data for the current location of the payload. The initial implementation was on an IBM PC clone. The demonstration software installed in the Johnson Space Center Manipulator Development Facility (MD) was reviewed. Due to current hardware limitations, the MDF verision is slow, i.e., about a 40+ seond update rate and, hence, not real-time. Despite this fact, the evaluation of this additional visual cue as an RMS operator aid indicates that this display, with modifications for speed, etc., can assist the crew. Further development is appropriate.
1998-11-06
Workers in the Space Station Processing Facility watch as cables and a crane lift the Passive Common Berthing Mechanism (PCBM) before mating it to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
1998-11-06
Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
Advanced Pier Concepts Users Guide.
1985-10-01
about 4-5 inches. 0 Resistance to Lateral Loads Using the environmental conditions at NAVSTA Charleston and assuming the highest ship lateral loading ...near the channel and non-uniform loading is exper- ienccd; i.e. the lateral forces on an AD-41 and DD-9o3 are ab- sorbed by only 16 bents, the worst...maximum wind and C(lrrell [ - w 3-8 %. S..’.* ,. load acting on 4 berthed ships, then a maximum lateral force would be experienced. For a load of 1365
SpaceX Dragon before Departure
2016-05-11
ISS047e109559 (05/11/2016) --- The SpaceX Dragon is seen berthed to the Earth-facing side of the station’s Harmony module shortly before departure. The vehicle was ultimately released by Expedition 47 robotic arm operator Tim Peake of ESA (European Space Agency) at 9:18 a.m. EDT. Dragon returned to Earth carrying more than 3,700 pounds of NASA cargo and science samples from human research, biology and biotechnology studies, physical science investigations and education activities sponsored by NASA and the U.S. national laboratory.
ISS Commercial Cargo Service: Requirements and Constraints Summary
NASA Technical Reports Server (NTRS)
Thorn, Valin; Lemmons, Neil; Scheutz, Matt
2005-01-01
A viewgraph presentation describing the fundamental requirements and constraints necessary to begin the acquisition of an International Space Station commercial cargo service is presented. The topics include: 1) Background; 2) Philosophy; 3) Cargo Balance; 4) Cargo Types; 5) ICCS Flight Rate; 6) Late and Early Access; 7) Power to Payloads; 8) Mating Locatin Options; 9) ISS Docking and Berthing; 10) Vehicle Stay Time; 11) ISS Resource Availability; 12) Robotic and EVA Compatability; 13) Return Cargo; and 14) Key Requirements Summary.
SPX-8 Dragon Approach and Retreat Monitoring
2016-04-10
ISS047e050792 (04/10/2016) --- The SpaceX Dragon cargo craft approaches to be grappled by the International Space Station Expedition 47 crew. This view is from the Cupola where the primary controls of the Canadarm 2 are located. Crewmembers use the robotic arm to grapple the spaceship before berthing it to the Earth-facing port on the Harmony module. The spacecraft delivered about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM.
2015-12-01
B. THE PROSPECTIVE 2040 7TH FLEET FORCES Based on the current and planned naval forces allocated to 7th Fleet, it is assumed that the Navy’s 2040...approximately 15 percent of The Advanced Surface Force Fleet, or 20 ships, are allocated to 7th Fleet. Furthermore, 12 of The Advanced Surface...production, personnel support for cleanup and recovery efforts, berthing capability, and medical support.90 After determining the critical missions
View of HST as it approaches Endeavour, taken from aft flight deck window
1993-12-04
STS061-53-026 (4 Dec 1993) --- One of the Space Shuttle Endeavour's aft flight deck windows frames this view of the Hubble Space Telescope (HST) as it approaches the Endeavour. Backdropped against western Australia, the Remote Manipulator System (RMS) arm awaits the arrival of the telescope. Once berthed in Endeavour's cargo bay, HST underwent five days of servicing provided by four space walking crew members. Shark Bay (upper left) and Perth (lower left) are visible in the frame.
2012-07-27
ISS032-E-010834 (27 July 2012) --- The International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
2012-07-27
ISS032-E-010832 (27 July 2012) --- The International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Seal with integrated shroud for androgenous docking and berthing in contaminated environments
NASA Technical Reports Server (NTRS)
Daniels, Christopher C. (Inventor)
2012-01-01
The present invention is directed to a specially configured seal system which provides a barrier to gas leakage flow between a pressurized module and its external environment. The seal includes a shroud covering which protects the sealing interface from its environment when not in use, and retracts to expose the sealing interface when mated. The seal system is constructed and arranged to mate with a seal of identical construction and arrangement or to mate with a flat surface.
1998-11-06
Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
Prepping Orbital Sciences? Cygnus commercial cargo spacecraft for undock
2013-10-21
ISS037-E-016758 (21 Oct. 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 37 flight engineer, gives a thumbs up signal after closing the hatch between the International Space Station’s Harmony node and the Orbital Sciences’ Cygnus commercial cargo spacecraft in preparation for its release after completing a successful demonstration mission to the space station. Cygnus delivered 1,300 pounds of gear on Sept. 29 when it arrived and was captured by Canadarm2 and berthed to the Harmony node.
View of the HST berthed to the Shuttle Atlantis
2009-05-13
S125-E-007257 (14 May 2009) --- A wide view of the Hubble Space Telescope, locked down in the cargo bay of the Earth-orbiting Space Shuttle Atlantis, which will be site of a great deal of hands-on servicing over the next five days. The Canadian-built remote manipulator system arm (right), with its video cameras documenting activity in the shuttle's cargo bay all week, was instrumental in grappling and subsequently capturing the giant orbital observatory for the final servicing mission.
NASA Astrophysics Data System (ADS)
Marín, M.; Dubert, D.; Simón, M. J.; Ollé, J.; Gavaldà, Jna.; Ruiz, X.
2018-04-01
The present work aims to investigate the degree of correlation existing between the information contained in the ISS reduced quasi-steady accelerometric data and different external mechanical disturbances (reboostings, dockings/undockings, berthings/deberthings and Extra Vehicular Activities), compiled for the period 2009 to 2016. The eight hour mean (Mean8h) and the eight hour root mean square (RMS8h) acceleration values, considered as reduced data, have been extracted from the quasi-steady records provided by NASA Principal Investigator Microgravity Services website. The advantage of applying the present strategy is to drastically reduce the amount of information to be processed all along these eight years. The Mean8h values have been used for the evaluation of trends as function of time while the RMS8h ones were used to define the level (weak, medium and strong) of the different kind of external mechanical disturbances considered. These criteria has been applied for approximately four hundred selected disturbances, compiled in the Appendix. Results indicate that reboosting is always detected as a strong disturbance, while dockings/undockings, as weak ones, having lower, though detectable level, depending on the type of spacecraft considered. Extra Vehicular Activities are undetectable by the use of this reduced quasi-steady approach. The inverse problem, in other words, knowing the value of the RMS8h one could try to predict the kind of disturbance responsible of it, is thus feasible except for berthing/deberthings and Extra Vehicular Activities.
Magnetic docking aid for orbiter to ISS docking
NASA Technical Reports Server (NTRS)
Schneider, William C.; Nagy, Kornel; Schliesing, John A.
1996-01-01
The present docking system for the Orbiter uses mechanical capture latches that are actuated by contact forces. The forces are generated when the two approaching masses collide at the docking mechanism. There is always a trade-off between having high enough momentum to effect capture and low enough momentum to avoid structural overload or unacceptable angular displacements. The use of the present docking system includes a contact thrusting maneuver that causes high docking loads to be included into Space Station. A magnetic docking aid has been developed to reduce the load s during docking. The magnetic docking aid is comprised of two extendible booms that are attached adjacent to the docking structure with electromagnets attached on the end of the boom. On the mating vehicle, two steel plates are attached. As the Orbiter approaches Space Station, the booms are extended, and the magnets attach to the actuated (without thrusting), by slowly driving the extendible booms to the stowed position, thus reacting the load into the booms. This results in a docking event that has lower loads induced into Space Station structure. This method also greatly simplifies the Station berthing tasks, since the Shuttle Remote Manipulation System (SRMS) arm need only place the element to be berthed on the magnets (no load required), rather than firing the Reaction Control System (RCS) jets to provide the required force for capture latch actuation. The Magnetic Docking Aid was development testing on a six degree-of-freedom (6 DOF) system at JSC.
Simulation for assessment of bulk cargo berths number
NASA Astrophysics Data System (ADS)
Kuznetsov, A. L.; Kirichenko, A. V.; Slitsan, A. E.
2017-10-01
The world trade volumes of mineral resources have been growing constantly for decades, notwithstanding any economical crises. At the same time, the proximity of the bulk materials as products to the starting point of the integrated value added or logistic supply chain makes their unit price relatively low. This fact automatically causes a strong economic sensitivity of the supply chain to the level of operational expenses in every link. The core of the integrated logistic supply chain is its maritime segment, with the fleet and terminals (i.e. the cargo transportation system) serving as the base platform for it. In its turn, the terminal berths play a role of the interface between the fleet and the land-transportation sub-system. Current development of the maritime transportation technologies, ships and terminal specialization, vessel size growth, rationalization of route patterns, regionalization of trade etc., has made conventional calculation methods inadequate. The solution of the problem is in using object oriented simulation. At the same time, this approch usually assumes only ad hoc models. Thus, it does not provide the generality of its conventional analytical predecessors. The time and labor consumpting procedure of simulation results in a very narrow application domain of the model. This article describes a new simulation instrument, combining the generality of the analytical technoques with the efficiency of the object-oriented simulation. The approach implemented as a software module, which validity and adequacy are proved. The software was tested on several sea terminal design projects and confirmed its efficiency.
1998-11-06
Workers in the Space Station Processing Facility watch the Passive Common Berthing Mechanism (PCBM) lifted high to move it over to the Z1 integrated truss structure at right. It will be mated to the Z1 truss, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
Action Cam Footage from U.S. Spacewalk 41
2017-05-09
This footage was taken by NASA astronaut Peggy Whitson during a spacewalk on the International Space Station on Thursday, March 30. She was joined on the spacewalk by NASA astronaut Shane Kimbrough. The two spacewalkers reconnected cables and electrical connections on PMA-3 at its new home on top of the Harmony module. They also installed the second of the two upgraded computer relay boxes on the station’s truss and installed shields and covers on PMA-3 and the now-vacant common berthing mechanism port on Tranquility.
Investigation into Deep-Draft Vessel Berthing Problems at Selected U. S. Naval Facilities.
1980-10-01
AOR I WICHITA Alameda, CA 1-24-75 AOR 2 MILWAUKEE Norfolk, VA 1-01-74 AOR 3 KANSAS CITY Alameda, CA 2-16-74 AOR 4 SAVANNAH Norfolk, VA 12-05-70 AOR...auger-cutter assembly dislodges and delivers the material to the pump suction intake. The slurry is pumped to a pipeline for transmission to a remote...complete loss of control of the course steered. Large current eddies having the same effect are found in the vicinity of the foundation piers of the San
NREL MOIS Data for NWEI Azura May 2016
Eric Nelson
2016-06-07
NREL MOIS data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below). Note: DMS, load cell, and analog data files were not collected during the month of May, 2016 due to a controller software problem that was resolved in early June 2016.
2007-06-10
This nadir view of the STS-117 mission Space Shuttle Atlantis, taken by the Expedition 15 crew aboard the International Space Station (ISS), occurred just before the two spacecraft linked up in Earth orbit. Berthed in the cargo bay are the 17.8 ton second and third (S3 and S4) truss segments ready for installment. STS-117 mission objectives included the addition of S3 and S4 with Photovoltaic Radiator (PVR), the deployment of the third set of solar arrays, and the retraction of the P4 starboard solar array wing and one radiator.
1986-12-01
65 THE COASTAL COMMUNITY IN THE STATE OF ALASKA Dr. John B. Olson, DOT and PUBLIC FACILITIES ..................... 69 ST. GEORGE HARBOR LOW...WRSC-D) 0930 - 0945 COFFEE BREAK 0945 - 1030 Continuation of Chief’s Initiatives BG Patrick J. Kelly (DAEN-CWZ) 1030 - 1100 The Coastal Community in...weather permit- ting, they just tell them to slow down till a berth is available. 68 THE COASTAL COMMUNITY IN THE STATE OF ALASKA Dr. John B. Olson Special
Expedition 32 Crew Members monitor HTV-3 Approach
2012-07-27
ISS032-E-010681 (27 July 2012) --- NASA astronaut Joe Acaba (with still camera) and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 FE Acaba poses for a photo in the Cupola
2012-07-27
ISS032-E-010613 (27 July 2012) --- NASA astronaut Joe Acaba is pictured in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
View of HTV3 grappled by SSRMS
2012-07-27
ISS032-E-010443 (27 July 2012) --- Backdropped by Earth’s horizon and the blackness of space, the International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
View of HTV3 grappled by SSRMS
2012-07-27
ISS032-E-010436 (27 July 2012) --- As seen through a window in the Cupola, the International Space Station’s Canadarm2 grapples the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 Crew Members monitor HTV-3 Approach
2012-07-27
ISS032-E-010672 (27 July 2012) --- NASA astronaut Joe Acaba (foreground) and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
2012-07-27
ISS032-E-010609 (27 July 2012) --- As seen through windows in the Cupola, the station's Canadarm2 robotic arm moves toward the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) as it approaches the International Space Station. NASA astronaut Joe Acaba and Japan Aerospace Exploration Agency astronaut Aki Hoshide, both Expedition 32 flight engineers, used the station's robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Forward end (+XA side) of the PMA-2 prior to mating to the Orbiter Docking System (ODS).
1998-12-05
STS088-335-017 (5 Dec. 1998) --- One of the STS-88 astronauts aimed a 35mm camera through Endeavour's aft flight deck windows to record this Dec. 5 image of the Unity connecting module as it was being unberthed in the cargo bay. The berthing and mating process constituted the first link in a long chain of events that led up to the eventual deployment in Earth orbit of the connected Unity and Zarya modules later in the 11-day mission. Photo credit: NASA
STS-39 SPAS-II IBSS is grappled by RMS over OV-103's payload bay (PLB)
1991-05-06
STS039-15-017 (3 May 1990) --- This STS-39 35mm scene shows the Strategic Defense Initiative Organization (SDIO) Shuttle Pallet Satellite (SPAS-II) during its berthing following a period of data collection. During the eight-day flight, SPAS collected data in both a free-flying mode and while attached to the end effector of Discovery's remote manipulator system (RMS). Additional cargo, elements of the Air Force Program (AFP) 675 package, is seen near Discovery's aft bulkhead in the 60-ft. long payload bay.
Analysis of Radiation Exposure for Naval Units of Operation CROSSROADS. Volume 1. Basic Report
1982-03-03
m^m 341500 2195F UNDERWAY "ROM ANCHORAGE 341623 2000E ANCHORED IN BERTH #219 341829 2000E UNDERWAY LL RIVER . PROCEEDING TO ANCHORAGE IN VICINITY...DUTTON (AGS-8) USS ENOREE (AO-69) USS ETLAH (AN-79) USS FALL RIVER (CA-131) USS FLUSSER (DD-368) USS FULTON (AS-11) USS FURSE (DD-882) USS...24) USS SUNCOCK (AN-80) USS SYLVANIA (AKA-44) USSTELAMON(ARB-8) USSTOMBIGBEE(AOG-ll) USS TURNER (DD-834) USS WALKE (DD-723) USS WENATCHEE (ATF
Single launch lunar habitat derived from an NSTS external tank
NASA Technical Reports Server (NTRS)
King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.
1990-01-01
A concept for using the spent external tank from a National Space Transportation System (NSTS) to derive a lunar habitat is described. The external tank is carried into low Earth orbit where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS orbiter can place the external tank in LEO, provide orbiter astronauts for disassembly of the external tank, and transport the required subsystem hardware for outfitting the lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen intertank modifications utilize existing structures and openings for man access without compromising the structural integrity of the tank. The modifications include installation of living quarters, instrumentation, and an airlock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal control, environmental control and life support, and propulsion. The converted lunar habitat is designed for unmanned transport and autonomous soft landing on the lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyer. The lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a lunar lander for crew changeover and resupply.
Low Impact Docking System (LIDS)
NASA Technical Reports Server (NTRS)
LaBauve, Tobie E.
2009-01-01
Since 1996, NASA has been developing a docking system that will simplify operations and reduce risks associated with mating spacecraft. This effort has focused on developing and testing an original, reconfigurable, active, closed-loop, force-feedback controlled docking system using modern technologies. The primary objective of this effort has been to design a docking interface that is tunable to the unique performance requirements for all types of mating operations (i.e. docking and berthing, autonomous and piloted rendezvous, and in-space assembly of vehicles, modules and structures). The docking system must also support the transfer of crew, cargo, power, fluid, and data. As a result of the past 10 years of docking system advancement, the Low Impact Docking System or LIDS was developed. The current LIDS design incorporates the lessons learned and development experiences from both previous and existing docking systems. LIDS feasibility was established through multiple iterations of prototype hardware development and testing. Benefits of LIDS include safe, low impact mating operations, more effective and flexible mission implementation with an anytime/anywhere mating capability, system level redundancy, and a more affordable and sustainable mission architecture with reduced mission and life cycle costs. In 1996 the LIDS project, then known as the Advanced Docking Berthing System (ADBS) project, launched a four year developmental period. At the end of the four years, the team had built a prototype of the soft-capture hardware and verified the control system that will be used to control the soft-capture system. In 2001, the LIDS team was tasked to work with the X- 38 Crew Return Vehicle (CRV) project and build its first Engineering Development Unit (EDU).
Mechanism test bed. Flexible body model report
NASA Technical Reports Server (NTRS)
Compton, Jimmy
1991-01-01
The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined.
NASA Technical Reports Server (NTRS)
1972-01-01
Information backing up the key features of the manipulator system concept and detailed technical information on the subsystems are presented. Space station assembly and shuttle cargo handling tasks are emphasized in the concept analysis because they involve shuttle berthing, transferring the manipulator boom between shuttle and station, station assembly, and cargo handling. Emphasis is also placed on maximizing commonality in the system areas of manipulator booms, general purpose end effectors, control and display, data processing, telemetry, dedicated computers, and control station design.
Terry Lettenmaier
2016-12-29
Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission. This month's data only covers the period Dec 1-6, 2016. On Dec 7, the Azura was shut down and disconnected in preparation for its Dec 8 removal from the WETS 30 m site. The Azura will be modified and re-deployed in 2017.
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
Expedition 32 Crew Members pose for a photo in the Cupola
2012-07-27
ISS032-E-010701 (27 July 2012) --- NASA astronauts Sunita Williams and Joe Acaba (center), along with Japan Aerospace Exploration Agency astronaut Aki Hoshide, all Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola following the rendezvous with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 FE Hoshide poses for a photo in the Cupola
2012-07-27
ISS032-E-010583 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide is pictured near the windows in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and NASA astronaut Joe Acaba (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 Crew Members in the Cupola during HTV3 Approach
2012-07-27
ISS032-E-010605 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide (left) and NASA astronaut Joe Acaba, both Expedition 32 flight engineers, are pictured near the windows in the International Space Station?s Cupola as the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3) approaches the station. Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 Crew Members pose for a photo in the Cupola
2012-07-27
ISS032-E-010700 (27 July 2012) --- NASA astronauts Sunita Williams and Joe Acaba (center), along with Japan Aerospace Exploration Agency astronaut Aki Hoshide, all Expedition 32 flight engineers, are pictured in the International Space Station’s Cupola following the rendezvous with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and Acaba used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Expedition 32 FE Hoshide poses for a photo in the Cupola
2012-07-27
ISS032-E-010615 (27 July 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide is pictured in the Cupola of the International Space Station during rendezvous operations with the unpiloted Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV-3). Hoshide and NASA astronaut Joe Acaba (out of frame), both Expedition 32 flight engineers, used the station's Canadarm2 robotic arm to capture and berth the HTV-3 to the Earth-facing port of the station's Harmony node. The attachment was completed at 10:34 a.m. (EDT) on July 27, 2012.
Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A
NASA Technical Reports Server (NTRS)
Woodcock, G. R.
1982-01-01
The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.
International Space Station (ISS)
2001-03-11
STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-11
STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut James Voss Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
STS-102 Astronaut Susan Helms Participates in Space Walk
NASA Technical Reports Server (NTRS)
2001-01-01
STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Advanced Docking System With Magnetic Initial Capture
NASA Technical Reports Server (NTRS)
Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang
2004-01-01
An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.
A single launch lunar habitat derived from an NSTS external tank
NASA Technical Reports Server (NTRS)
King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.
1990-01-01
A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.
Computer-aided controllability assessment of generic manned Space Station concepts
NASA Technical Reports Server (NTRS)
Ferebee, M. J.; Deryder, L. J.; Heck, M. L.
1984-01-01
NASA's Concept Development Group assessment methodology for the on-orbit rigid body controllability characteristics of each generic configuration proposed for the manned space station is presented; the preliminary results obtained represent the first step in the analysis of these eight configurations. Analytical computer models of each configuration were developed by means of the Interactive Design Evaluation of Advanced Spacecraft CAD system, which created three-dimensional geometry models of each configuration to establish dimensional requirements for module connectivity, payload accommodation, and Space Shuttle berthing; mass, center-of-gravity, inertia, and aerodynamic drag areas were then derived. Attention was also given to the preferred flight attitude of each station concept.
1998-11-06
Still suspended by a crane and cables in the Space Station Processing Facility, yet hidden by the top of the Z1 integrated truss structure, the Passive Common Berthing Mechanism (PCBM) is lowered onto the truss for attachment. Workers at the top of a workstand guide it into place. A component of the International Space Station (ISS), the Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
Electro-optical rendezvous and docking sensors
NASA Technical Reports Server (NTRS)
Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.
1991-01-01
Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.
STS-117 S3 and S4 Trusses in the Space Shuttle Atlantis Cargo Bay
NASA Technical Reports Server (NTRS)
2007-01-01
This nadir view of the STS-117 mission Space Shuttle Atlantis, taken by the Expedition 15 crew aboard the International Space Station (ISS), occurred just before the two spacecraft linked up in Earth orbit. Berthed in the cargo bay are the 17.8 ton second and third (S3 and S4) truss segments ready for installment. STS-117 mission objectives included the addition of S3 and S4 with Photovoltaic Radiator (PVR), the deployment of the third set of solar arrays, and the retraction of the P4 starboard solar array wing and one radiator.
2008-11-26
S126-E-11974 (26 Nov. 2008) --- Backdropped against white clouds, the aft section of Endeavour's cargo bay, now holding the multipurpose logistics module Leonardo, is featured in this digital still photo, framed through a window on the International Space Station. Endeavour and the orbital outpost have been docked for almost two weeks while their crews have joined efforts in home improvement on the station and other work. Astronauts Donald Pettit and Shane Kimbrough, operating the space station's robot arm from inside the Destiny laboratory module, detached the Leonardo cargo canister from its temporary parking place on the station a few hours earlier and re-berthed it in the cargo bay.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2013-01-01
A concept of using paraffin wax phase change material (PCM) with a melting point between -10 deg C and 10 deg C for payload thermal energy storage in a Space Exploration Technologies (SpaceX) Dragon trunk is presented. It overcomes the problem of limited heater power available to a payload with significant radiators when the Dragon is berthed to the International Space Station (ISS). It stores adequate thermal energy to keep a payload warm without power for 6 hours during the transfer from the Dragon to an ExPRESS logistics carrier (ELC) on the ISS.
Decommissioning and Dismantling of the Floating Maintenance Base 'Lepse' - 13316
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, D.; Mizen, K.
The Lepse was built in Russia in 1934 and commissioned as a dry cargo ship. In 1961 she was re-equipped for use as a nuclear service ship (NSS), specifically a floating maintenance base (FMB), to support the operation of the civilian nuclear fleet (ice-breakers) of the USSR. In 1988 Lepse was taken out of service and in 1990 she was re-classified as a 'berth connected ship', located at a berth near the port of Murmansk under the ownership of Federal State Unitary Enterprise (FSUE) Atomflot. Lepse has special storage facilities for spent nuclear fuel assemblies (SFA) that have been usedmore » to store several hundred SFAs for nearly 40 years. High and intermediate-level liquid radioactive waste (LRW) is also present in the spent nuclear fuel assembly storage channels, in special tanks and also in the SFA cooling circuit. Many of the SFAs stored in Lepse are classified as damaged and cannot be removed using standard procedures. The removal of the SFA and LRW from the Lepse storage facilities is a hazardous task and requires specially designed tools, equipment and an infrastructure in which these can be deployed safely. Lepse is a significant environmental hazard in the North West of Russia. Storing spent nuclear fuel and high-level liquid radioactive waste on board Lepse in the current conditions is not acceptable with respect to Russian Federation health, safety and environmental standards and with international best practice. The approved concept design for the removal of the SFA and LRW and dismantling of Lepse requires that the ship be transported to Nerpa shipyard where specialist infrastructure will be constructed and equipment installed. One of the main complexities of the Project lies within the number of interested stakeholders involved in the Project. The Lepse project has been high focus on the international stage for many years with previous international efforts failing to make significant progress towards the objective of decommissioning Lepse. The Northern Dimension Environmental Partnership (NDEP) approved an internationally funded project to identify and prioritise nuclear and environmental hazards in NW Russia. Within this project the Lepse was recognised as being one of the highest nuclear hazards in NW Russia. Removal of SNF, SRW and LRW from Lepse requires innovative design and development of bespoke equipment. The main drivers of the NDEP Donors are first to safely transport Lepse in 2012 from her current berth close to the local population in Murmansk to the nominated dismantling shipyard, and secondly to raise Lepse from the water in 2013 onto the slip-way at the dismantling shipyard. A description is provided of the approach and progress towards preparing the Lepse for the removal of SFAs and other radioactive waste, to decontaminate and then dismantle the vessel under international donor funding. (authors)« less
2008-10-01
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, STS-127 crew members become familiar with the payload and hardware for their mission. Here they are looking at the Experiment Logistics Module - Exposed Section, or ELM-ES, berthing mechanism, including the longeron trunnion/scuff plate, Payload Disconnect Assembly and WIF socket. The mission payload also includes the Extended Facility and the Inter Orbit Communication System Extended Facility, or ICS-EF. Equipment familiarization is part of a Crew Equipment Interface Test. The payload will be launched to the International Space Station aboard the space shuttle Endeavour on the STS-127 mission, targeted for launch on May 15, 2009. Photo credit: NASA/Kim Shiflett
Control - Demands mushroom as station grows
NASA Technical Reports Server (NTRS)
Szirmay, S. Z.; Blair, J.
1983-01-01
The NASA space station, which is presently in the planning stage, is to be composed of both rigid and nonrigid modules, rotating elements, and flexible appendages subjected to environmental disturbances from the earth's atmospheric gravity gradient, and magnetic field, as well as solar radiation and self-generated disturbances. Control functions, which will originally include attitude control, docking and berthing control, and system monitoring and management, will with evolving mission objectives come to encompass such control functions as articulation control, autonomous navigation, space traffic control, and large space structure control. Attention is given to the advancements in modular, distributed, and adaptive control methods, as well as system identification and hardware fault tolerance techniques, which will be required.
U.S. experience in satellite servicing and linkage to the Space Station era
NASA Technical Reports Server (NTRS)
Browning, R. K.
1986-01-01
A history of on-orbit servicing and repair is given with emphasis placed on the Solar Maximum Repair Mission. The experience gained thus far in on-orbit servicing and the design of the Space Station's servicing capabilities impose the following requirements on users: (1) satellites must have a standard grapple for capture and a standard berthing interface, (2) Space Station safety requirements must meet to preclude damage to the Space Station or injury to the EVA crew, (3) sensitive instruments will need to implement remotely controlled protective devices to prevent damage, and (4) satellite thermal systems must be designed to maintain survival temperatures during transfer from orbit to the Space Station servicing facility.
The investigation of a tuberculosis outbreak in the closed environment of a U.S. Navy ship, 1987.
DiStasio, A J; Trump, D H
1990-08-01
A sailor on a U.S. Navy ship had smear-positive, cavitary, pulmonary tuberculosis. Contact investigation of the entire ship's crew found 216 new reactors to tuberculin skin test (24.5%) among 881 previously tuberculin-negative sailors. The risk for new infection was highest among sailors in the patient's department (relative risk, 4.4; 95% confidence interval 3.7, 5.3); 95% (15/16) of sailors in his division were new reactors. While crewmembers in all departments were at risk for a new tuberculosis infection, working and berthing in compartments that were distant from those of the index case were protective. The ship's closed ventilation system contributed to the outbreak.
International Space Station (ISS)
2001-05-08
This is the insignia for the STS-108 mission, which marked a major milestone in the assembly of the International Space Station (ISS) as the first designated Utilization Flight, UF-1. The crew of Endeavour delivered the Expedition Four crew to ISS and returned the Expedition Three crew to Earth. Endeavour launched with a Multi-Purpose Logistics Module (MPLM) that was berthed to the ISS and unloaded. The MPLM was returned to Endeavour for the trip home and used again on a later flight. The crew patch depicts Endeavour and the ISS in the configuration at the time of arrival and docking. The Station is shown viewed along the direction of flight as seen by the Shuttle crew during their final approach and docking along the X-axis. The three ribbons and stars on the left side of the patch signify the returning Expedition Three crew. The red, white and blue order of the ribbons represents the American commander for that mission. The three ribbons and stars on the right depict the arriving Expedition Four crew. The white, blue, and red order of the Expedition Four ribbon matches the color of the Russian flag and signifies that the commander of Expedition Four is a Russian cosmonaut. Each white star in the center of the patch represents the four Endeavour crew members. The names of the four astronauts who crewed Endeavour are shown along the top border of the patch. The three astronauts and three cosmonauts of the two expedition crews are shown on the chevron at the bottom of the patch.
SpaceX Dragon Air Circulation System
NASA Technical Reports Server (NTRS)
Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro
2011-01-01
The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.
Dynamics and control of robot for capturing objects in space
NASA Astrophysics Data System (ADS)
Huang, Panfeng
Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base. After capturing the object, the space robot must complete the following two tasks: one is to berth the object, and the other is to re-orientate the attitude of the whole robot system for communication and power supply. Therefore, I propose a method to accomplish these two tasks simultaneously using manipulator motion only. The ultimate goal of space services is to realize the capture and manipulation autonomously. Therefore, I propose an affective approach based on learning human skill to track and capture the objects automatically in space. With human-teaching demonstration, the space robot is able to learn and abstract human tracking and capturing skill using an efficient neural-network learning architecture that combines flexible Cascade Neural Networks with Node Decoupled Extended Kalman Filtering (CNN-NDEKF). The simulation results attest that this approach is useful and feasible in tracking trajectory planning and capturing of space robot. Finally I propose a novel approach based on Genetic Algorithms (GAs) to optimize the approach trajectory of space robots in order to realize effective and stable operations. I complete the minimum-torque path planning in order to save the limited energy in space, and design the minimum jerk trajectory for the stabilization of the space manipulator and its space base. These optimal algorithms are very important and useful for the application of space robot.
Der Lebenszyklus von Porphyrostromium obscurum (Bangiophyceae, Rhodophyta)
NASA Astrophysics Data System (ADS)
Kornmann, P.
1987-06-01
Studies on the sexuality and the heteromorphous life cycle of Erythrotrichia ciliaris provided decisive criteria for the establishment of the genus Erythrotrichopeltis (Kornmann, 1984). This genus was transferred by Wynne (1986) to Porphyrostromium Trevisan 1848. In the present study Erythrotrichia obscura, the original species of Berthold's (1882) classical observations on the sexuality of this genus, is incorporated to Porphyrostromium. Previously regarded as synonyms, Porphyrostromium ciliare (Carm. ex Harv.) Wynne and P. obscurum (Berth.) nov. comb. proved to be distinct species, differing both in the filamentous and in the peltoid phases of their life cycle. The relationship between P. ciliare and P. boryanum (Montagne) Trevisan, type species of the genus, may only be elucidated by future investigations on the basis of field collected material.
Power system interface and umbilical system study
NASA Technical Reports Server (NTRS)
1980-01-01
System requirements and basic design criteria were defined for berthing or docking a payload to the 25 kW power module which will provide electrical power and attitude control, cooling, data transfer, and communication services to free-flying and Orbiter sortie payloads. The selected umbilical system concept consists of four assemblies and command and display equipment to be installed at the Orbiter payload specialist station: (1) a movable platen assembly which is attached to the power system with EVA operable devices; (2) a slave platen assembly which is attached to the payload with EVA operable devices; (3) a fixed secondary platen permanently installed in the power system; and (4) a fixed secondary platen permanently installed on the payload. Operating modes and sequences are described.
The Ariane Transfer Vehicle (ATV) system studies
NASA Astrophysics Data System (ADS)
Thomas, U.; Thirkettle, A.
1991-08-01
Two distinct concepts of the Ariane transfer vehicle (ATV) are compared which incorporate existing ATV technology and offer logistics delivery at competitive costs. One concept is based on the Ariane-5 upper stage and the Vehicle Equipment Bay, and the other does not include Ariane-5 functions so that existing upper-stage limitations can be eliminated. Both concepts are required to accomplish the same transport, rendezvous, and berthing maneuvers and allow for controlled destructive reentry. An ATV reference mission is outlined, and key ATV design drivers are listed which include safety requirements, debris protection, and propulsion criteria. The Ariane-5 upgrade is the most cost-effective design although the second design is more operationally efficient. The ATV can potentially be used to relieve the schedule of the shuttle flights required for building the Space Station Freedom.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070804 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070799 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft Approaches ISS for Grapple
2012-05-25
ISS031-E-071146 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is about to be grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-071534 (25 May 2012) --- With clouds over Earth forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070790 (25 May 2012) --- With clouds and land forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070798 (25 May 2012) --- The SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
2007-11-01
KENNEDY SPACE CENTER, FLA. -- At ground-breaking ceremonies for SpaceX's new Falcon 9 rocket launch facilities at Space Launch Complex 40 at Cape Canaveral, Elon Musk, founder and CEO of Space Exploration Technologies, talks about opportunity for both SpaceX and the 45th Space Wing that the new facility will provide. As part of NASA’s Commercial Orbital Transportation Services, or COTS, competition, SpaceX will launch a Falcon 9 with a cargo-carrying payload on a series of three demonstration missions from Cape Canaveral to the International Space Station, culminating with the delivery of supplies to the $100 billion dollar orbiting laboratory. SpaceX intends to demonstrate its launch, maneuvering, berthing and return abilities by 2009 – a year before NASA has scheduled the conclusion of Space Shuttle operations. Photo credit: NASA/George Shelton
Centaur operations at the space station
NASA Technical Reports Server (NTRS)
Porter, J.; Thompson, W.; Bennett, F.; Holdridge, J.
1987-01-01
A study was conducted on the feasibility of using a Centaur vehicle as a testbed to demonstrate critical OTV technologies at the Space Station. Two Technology Demonstration Missions (TDMs) were identified: (1) Accommodations, and (2) Operations. The Accommodations TDM contained: (1) berthing, (2) checkout, maintenance and safing, and (3) payload integration missions. The Operations TDM contained: (1) a cryogenic propellant resupply mission, and (2) Centaur deployment activities. A modified Space Station Co-Orbiting Platform (COP) was selected as the optimum refueling and launch node due to safety and operational considerations. After completion of the TDMs, the fueled Centaur would carry out a mission to actually test deployment and help offset TDM costs. From the Station, the Centaur could carry a single payload in excess of 20,000 pounds to geosynchronous orbit or multiple payloads.
The connector space reduction mechanism
NASA Technical Reports Server (NTRS)
Milam, M. Bruce
1990-01-01
The Connector Space Reduction Mechanism (CSRM) is a simple device that can reduce the number of electromechanical devices on the Payload Interface Adapter/Station Interface Adapter (PIA/SIA) from 4 to 1. The device uses simplicity to attack the heart of the connector mating problem for large interfaces. The CSRM allows blind mate connector mating with minimal alignment required over short distances. This eliminates potential interface binding problems and connector damage. The CSRM is compatible with G and H connectors and Moog Rotary Shutoff fluid couplings. The CSRM can be used also with less forgiving connectors, as was demonstrated in the lab. The CSRM is NASA-Goddard exclusive design with patent applied for. The CSRM is the correct mechanism for the PIA/SIA interface as well as other similar berthing interfaces.
Minchin, Dan
2012-10-01
A rapid assessment, using the abundance and distribution range method, was used to evaluate the status of a large branching bryozoan, Zoobotryon verticillatum attached to the immersed part of marina pontoons in the Canary Islands. Colonies were also found attached to the hulls of leisure craft berthed alongside pontoons at three marinas in Lanzarote during 2012. Low levels of abundance and distribution of the bryozoan occurred in marinas with a freshwater influence whereas in a sheltered marina lacking direct freshwater inputs colonies occurred at ∼2 per metre of combined pontoon length. While the occurrence of this bryozoan is recent it may be expected to occur elsewhere in Macaronesia most probably spread by leisure craft. Copyright © 2012 Elsevier Ltd. All rights reserved.
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is prepared for installation while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
2010-07-28
CAPE CANAVERAL, Fla. -- A DragonEye proximity sensor developed by Space Exploration Technologies (SpaceX) is installed while space shuttle Discovery is in Orbiter Processing Facility-3 at NASA's Kennedy Space Center in Florida. DragonEye is a Laser Imaging Detection and Ranging (LIDAR) sensor that will be tested on Discovery's docking operation with the International Space Station. Discovery's STS-133 mission, targeted to launch Nov. 1, will be the second demonstration of the sensor, following shuttle Endeavour's STS-127 mission in 2009. The DragonEye sensor will guide SpaceX's Dragon spacecraft as it approaches and berths to the station on future cargo re-supply missions. The Dragon spacecraft is a free-flying, reusable spacecraft being developed by SpaceX, which is contracted by NASA's Commercial Orbital Transportation Services (COTS) program. Photo credit: NASA/Jim Grossmann
View taken during berthing of MPLM
2005-08-05
ISS011-E-11517 (5 August 2005) --- Canadarm2 or the Space Station Remote Manipulator System arm grasps the Italian-built Multi-Purpose Logistics Module Raffaello to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the U.S. Lab, Destiny, on the international space station, Astronauts James M. Kelly, pilot, and Wendy B. Lawrence, mission specialist, were in control of the transfer. The MPLM was being moved from its temporary parking place on the Station's Unity node to the payload bay of Discovery for the return trip to Earth. The Discovery astronauts arrived nine days ago with tons of fresh supplies for the Station, and with much effort, replaced that space on Raffaello with unneeded materials from the orbital outpost.
Kelly and Lawrence in Destiny Laboratory module during berthing of MPLM
2005-08-05
ISS011-E-11515 (5 August 2005) --- On the early Friday morning agenda for Astronauts James M. Kelly, pilot, and Wendy B. Lawrence, mission specialist, was important robotics duty at the controls of the Canadarm2 in the U.S. Lab, Destiny, on the International Space Station. Several digital photos in this sequence reveal the focal point of their work on the other end of the arm as the Italian-built Multi-Purpose Logistics Module Raffaello. The MPLM was being moved from its temporary parking place on the Station's Unity node to the payload bay of Discovery. The astronauts had arrived nine days ago with tons of fresh supplies for the Station, and with much effort, replaced that space on Raffaello with unneeded materials from the orbital outpost.
Space station dynamic modeling, disturbance accommodation, and adaptive control
NASA Technical Reports Server (NTRS)
Wang, S. J.; Ih, C. H.; Lin, Y. H.; Metter, E.
1985-01-01
Dynamic models for two space station configurations were derived. Space shuttle docking disturbances and their effects on the station and solar panels are quantified. It is shown that hard shuttle docking can cause solar panel buckling. Soft docking and berthing can substantially reduce structural loads at the expense of large shuttle and station attitude excursions. It is found predocking shuttle momentum reduction is necessary to achieve safe and routine operations. A direct model reference adaptive control is synthesized and evaluated for the station model parameter errors and plant dynamics truncations. The rigid body and the flexible modes are treated. It is shown that convergence of the adaptive algorithm can be achieved in 100 seconds with reasonable performance even during shuttle hard docking operations in which station mass and inertia are instantaneously changed by more than 100%.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070772 (25 May 2012) --- With darkness, Earth's horizon and thin line of atmosphere forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-070774 (25 May 2012) --- With darkness, Earth's horizon and thin line of atmosphere forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-071199 (25 May 2012) --- With clouds over Earth forming a backdrop, the SpaceX Dragon commercial cargo craft is photographed during grappling operations with the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
Dragon Spacecraft grappled by SSRMS
2012-05-25
ISS031-E-071203 (25 May 2012) --- With the blackness of space and clouds over Earth forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. (EDT) and used the robotic arm to berth Dragon to the Earth-facing side of the station's Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval.
75 FR 82243 - Security Zones; Moored Cruise Ships, Port of San Diego, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
...The Coast Guard is establishing a temporary security zone regulation from December 21, 2010, through June 20, 2011. The security zones created by this rule will encompass all navigable waters extending from the surface to the sea floor, within a 100 yard radius around any cruise ship that is moored at any berth within the San Diego port area inside the sea buoys bounding the Port of San Diego. This temporary final rule is necessary to provide for the safety of the cruise ship, vessels, and users of the waterway. Entry into these security zones will be prohibited unless specifically authorized by the Captain of the Port (COTP) San Diego, or his or her designated representative. This rule will also suspend paragraph (b)(2) of 33 CFR 165.1108, a related regulation.
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-08-31
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket is in position for a wet dress rehearsal at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
2012-08-31
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket is in position for a wet dress rehearsal at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians load cargo into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-08-31
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket is in position for a wet dress rehearsal at Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, preparations are under way to load cargo into the Space Exploration Technologies Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians stow cargo in the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
Unity connecting module placed in new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module, part of the International Space Station, is placed in a work station in the Space Station Processing Facility (SSPF). As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag slides through the docking ring into the Space Exploration Technologies Dragon capsule for stowage for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
Unity connecting module before being moved to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF), the Unity connecting module, part of the International Space Station, sits on a workstand before its move to a new location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, a crane lifts the remote manipulator system boom out of Atlantis’ payload bay. The boom will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, the remote manipulator system boom is lifted away from Atlantis’ payload bay and will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
2012-05-22
CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – An exhaust cloud begins to form around the SpaceX Falcon 9 rocket as it lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
NASA Technical Reports Server (NTRS)
Glaese, John R.; Tobbe, Patrick A.
1986-01-01
The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.
The international space station as a free flyer servicing node
NASA Astrophysics Data System (ADS)
Antol, Jeffrey; Headley, David E.
1999-01-01
The International Space Station will provide a multitude of opportunities for an expanding customer base to make use of this international resource. One such opportunity is servicing of various visiting vehicles that are in a similar orbit to the station. Servicing may include change-out of payloads, replenishment of consumables, repair, and refurbishment operations. Previous studies have been conducted in which ``paper'' free flyers have been assessed against the station's ability to accommodate them. Over the last several months though, an already flown free flyer, EURECA, was assessed as a real-life visiting free flyer design reference mission. Issues such as capture/berthing, servicing, logistics support, and stowage were assessed for station design and operational approaches. This paper will highlight critical visiting vehicle design considerations, identify station issues, and provide recommendations for accommodation of a wide range of visiting vehicle requirements of the future.
2012-05-22
CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-04-29
CAPE CANAVERAL, Fla. - The SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann
2012-08-31
CAPE CANAVERAL, Fla. -- At Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida, the Space Exploration Technologies, or SpaceX, Falcon 9 rocket is moved into a vertical position for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians close the hatch of the Dragon capsule. The hatch was open for cargo to be stowed in the capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket roars into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rusty Backer
2012-05-22
CAPE CANAVERAL, Fla. – The nine Merlin engines beneath the SpaceX Falcon 9 rocket roar to life at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rusty Backer
2012-04-29
CAPE CANAVERAL, Fla. – The 227-foot-tall 69.2 meter) SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars into space from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault
2012-05-22
CAPE CANAVERAL, Fla. – Frost and ice breaks away from the SpaceX Falcon 9 rocket following ignition of its nine Merlin engines at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-04-29
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station in Florida, Space Launch Complex-40 is ablaze as the SpaceX Falcon 9 rocket begins its ascent after liftoff at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-04-29
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – Powered by nine Merlin engines, the SpaceX Falcon 9 rocket roars into space at 3:44 a.m. EDT from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-08-31
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket rolls out of its processing hangar toward Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, delivering the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-08-31
CAPE CANAVERAL, Fla. -- At Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida, the Space Exploration Technologies, or SpaceX, Falcon 9 rocket is moved into a vertical position for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station in Florida, Space Launch Complex-40 is ablaze as the SpaceX Falcon 9 rocket lifts off at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket begins to lift off from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-08-31
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket rolls out of its processing hangar toward Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket soars into space from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault
2012-05-17
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket makes its way to the pad at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-08-31
CAPE CANAVERAL, Fla. -- The Space Exploration Technologies, or SpaceX, Falcon 9 rocket rolls out of its processing hangar toward Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-05-22
CAPE CANAVERAL, Fla. – Nine Merlin engines ignite under the SpaceX Falcon 9 rocket at 3:44 a.m. EDT at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Rick Wetherington, Tim Powers and Tim Terry
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, the hatch of the Space Exploration Technologies Dragon capsule has been closed following stowage of cargo in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-04-29
CAPE CANAVERAL, Fla. – Under the watchful eye of technicians, the SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann
2012-05-22
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket lifts off Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida at 3:44 a.m. EDT, carrying the Dragon capsule to orbit. The launch is the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services, or COTS, Program. During the flight, the Dragon will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Alan Ault
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, Space Exploration Technologies technicians prepare to close the hatch of the Dragon capsule. The hatch was open for cargo to be stowed in the capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-04-29
CAPE CANAVERAL, Fla. – The SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann
2012-04-29
CAPE CANAVERAL, Fla. – The 227-foot-tall 69.2 meter) SpaceX Falcon 9 rocket stands at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann
2012-04-29
CAPE CANAVERAL, Fla. – In this nose-on view, the SpaceX Falcon 9 rocket arrives at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. Liftoff with the SpaceX Dragon capsule aboard is set for 4:55 a.m. EDT on May 19. The launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services Program, or COTS. During the flight, the capsule will conduct a series of check-out procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. If the capsule performs as planned, the cargo and experiments it is carrying will be transferred to the station. The cargo includes food, water and provisions for the station’s Expedition crews, such as clothing, batteries and computer equipment. Under COTS, NASA has partnered with two aerospace companies to deliver cargo to the station. For more information, visit http://www.nasa.gov/spacex Photo credit: NASA/Jim Grossmann
2012-08-31
CAPE CANAVERAL, Fla. -- At Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida, the Space Exploration Technologies, or SpaceX, Falcon 9 rocket is moved into a vertical position for a wet dress rehearsal. During the rehearsal, the rocket will be fully fueled and launch controllers will perform a countdown demonstration. The rehearsal is in preparation for the company's first Commercial Resupply Services, or CRS, mission to the International Space Station aboard the Dragon capsule. The SpaceX CRS contract with NASA provides for 12 cargo resupply missions to the station through 2015, the first of which is targeted to launch in October 2012.SpaceX became the first private company to berth a spacecraft with the space station in 2012 during its final demonstration flight under the Commercial Orbital Transportation Services, or COTS, program managed by NASA's Johnson Space Center in Houston. Photo credit: NASA/Jim Grossmann
The International Space Station As a Free Flyer Servicing Node
NASA Technical Reports Server (NTRS)
Antol, Jeffrey; Headley, David E.
1999-01-01
The International Space Station will provide a multitude of opportunities for an expanding customer base to make use of this international resource. One such opportunity is servicing of various visiting vehicles that are in a similar orbit to the station. Servicing may include change-out of payloads, replenishment of consumables, repair, and refurbishment operations. Previous studies have been conducted in which "paper" free flyers have been assessed against the station s ability to accommodate them. Over the last several months though, an already flown free flyer, EURECA, was assessed as a real-life visiting free flyer design reference mission. Issues such as capture/berthing, servicing, logistics support, and stowage were assessed for station design and operational approaches. This paper will highlight critical visiting vehicle design considerations, identify station issues, and provide recommendations for accommodation of a wide range of visiting vehicle requirements of the future.
NASA Technical Reports Server (NTRS)
Cepollina, Frank J. (Inventor); Corbo, James E. (Inventor); Burns, Richard D. (Inventor); Jedhrich, Nicholas M. (Inventor); Holz, Jill M. (Inventor)
2009-01-01
This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR, and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time as well as the ability to intervene using manual override to teleoperate the robot.
Commercialisation of Solid Oxide Fuel Cells - opportunities and forecasts
NASA Astrophysics Data System (ADS)
Dziurdzia, B.; Magonski, Z.; Jankowski, H.
2016-01-01
The paper presents the analysis of commercialisation possibilities of the SOFC stack designed at AGH. The paper reminds the final design of the stack, presented earlier at IMAPS- Poland conferences, its recent modifications and measurements. The stack consists of planar double-sided ceramic fuel cells which characterize by the special anode construction with embedded fuel channels. The stack features by a simple construction without metallic interconnectors and frames, lowered thermal capacity and quick start-up time. Predictions for the possible applications of the stack include portable generators for luxurious caravans, yachts, ships at berth. The SOFC stack operating as clean, quiet and efficient power source could replace on-board diesel generators. Market forecasts shows that there is also some room on a market for the SOFC stack as a standalone generator in rural areas far away from the grid. The paper presents also the survey of SOFC market in Europe USA, Australia and other countries.
Space station dynamics, attitude control and momentum management
NASA Technical Reports Server (NTRS)
Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi
1989-01-01
The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF) Unity is suspended in air as it is moved to a now location in the SSPF. At right, visitors watch through a viewing window, part of the visitors tour at the Center. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, the Unity connecting module, part of the International Space Station, is shown with Pressurized Mating Adapters 1 (left) and 2 (right) attached. Unity is scheduled to undergo testing of the common berthing mechanism to which other space station elements will dock. Unity is the primary payload on mission STS-88, targeted to launch Dec. 3, 1998. Other testing includes the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27. The Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF), workers guide the suspended Unity connecting module, part of the International Space Station, as they move it to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module lifted from workstand before move to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility (SSPF) oversee the lifting of the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module moving to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility (SSPF) the Unity connecting module, part of the International Space Station, hangs suspended during its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
Unity connecting module prepared for move to new site in SSPF
NASA Technical Reports Server (NTRS)
1998-01-01
Workers in the Space Station Processing Facility (SSPF) attach a frame to lift the Unity connecting module, part of the International Space Station, for its move to another location in the SSPF. As the primary payload on mission STS-88, scheduled to launch Dec. 3, 1998, Unity will be mated to the Russian-built Zarya control module which should already be in orbit at that time. In the SSPF, Unity is undergoing testing such as the Pad Demonstration Test to verify the compatibility of the module with the Space Shuttle, as well as the ability of the astronauts to send and receive commands to Unity from the flight deck of the orbiter, and the common berthing mechanism to which other space station elements will dock. Unity is expected to be ready for installation into the Shuttle's payload canister on Oct. 25, and transported to Launch Pad 39-A on Oct. 27.
The effect of wind direction and building surroundings on a marina bay in the Black Sea
NASA Astrophysics Data System (ADS)
Katona, Cosmin; Safta, Carmen Anca
2017-01-01
The wind effect has usually a major importance in the marina bay. These environmental sites are an interplay between tourist and commercial activities, requiring a high-detailed and definition studies of the dynamic fluid in the harbor. Computational Fluid Dynamics (CFD) has been used elaborately in urban surroundings research. However, most CFD studies were performed for harbors for only a confined number of wind directions and/or without considering the building surroundings effects. This paper presents the results of different simulations based on various wind flows and the CFD simulation of coupled urban wind flow and general wind directions upon a semi-closed area. Thus the importance of wind effects on the evaluation of the marina bay will be pointed out to achieve a safe and secure mooring at the berth and eventually a good potential of renewable energy for an impending green harbor.
Dynamic Analysis of a Two Member Manipulator Arm
NASA Technical Reports Server (NTRS)
McGinley, Mark; Shen, Ji Y.
1997-01-01
Attenuating start-up and stopping vibrations when maneuvering large payloads attached to flexible manipulator systems is a great concern for many space missions. To address this concern, it was proposed that the use of smart materials, and their applications in smart structures, may provide an effective method of control for aerospace structures. In this paper, a modified finite element model has been developed to simulate the performance of piezoelectric ceramic actuators, and was applied to a flexible two-arm manipulator system. Connected to a control voltage, the piezoelectric actuators produce control moments based on the optimal control theory. The computer simulation modeled the end-effector vibration suppression of the NASA manipulator testbed for berthing operations of the Space Shuttle to the Space Station. The results of the simulation show that the bonded piezoelectric actuators can effectively suppress follow-up vibrations of the end-effector, stimulated by some external disturbance.
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a Space Exploration Technologies technician attaches a cargo bag to the crane that will lift it toward the Dragon capsule where it will be stowed in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
2012-04-04
CAPE CANAVERAL, Fla. – In a processing hangar at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida, a cargo bag is lowered into the hands of a Space Exploration Technologies technician who will load it into the Dragon capsule in preparation for its scheduled April 30 liftoff aboard a Falcon 9 rocket. Known as SpaceX, the launch will be the company's second demonstration test flight for NASA's Commercial Orbital Transportation Services program, or COTS. During the flight, the capsule will conduct a series of checkout procedures to test and prove its systems, including rendezvous and berthing with the International Space Station. The cargo includes food and provisions for the station’s Expedition crews, such as clothing, batteries, and computer equipment. Under COTS, NASA has partnered with two private companies to launch cargo safely to the station. For more information, visit http://www.nasa.gov/spacex. Photo credit: NASA/Jim Grossmann
Structural systems for deep sea terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, A.
1995-10-01
This paper describes the various structural systems that can be used for loading and unloading crude oil and other by-products by small and large tankers using fixed berths. The overall facility generally consists of a long trestle supporting piping and roadway, loading and unloading platforms supporting loadings arms, metering skid, antenna towers, gangways, surge tanks, etc., breasting dolphins to absorb ships impact, mooring dolphins, and walkways. The paper examines each unit of the facility with the various structural systems applicable with their relative merits and demerits. Some of the structural systems examined are as follows: Use of multiple steel modulesmore » supported by free standing piles versus steel jackets/mini-jackets for loading platforms; Use of concrete platforms; Use of prestress concrete sections versus steel plate girders or steel trusses for trestles; Use of rubblemound causeway in lieu of a trestle in shallow waters; Use of large spare monopile dolphins versus multi-pile steel dolphins.« less
Two mooring dolphin concept for exposed tanker terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, J.; Birt, C.
1978-02-01
The conventional design of a tanker terminal provides for two or more mooring dolphins on each side of the breasting dolphins. Head and stern lines are attached to the outer mooring dolphins and breast lines to the inner mooring dolphins. In exposed locations, the expense of construction may be significantly reduced if a way can be found to reduce the number of mooring dolphins required for the safe mooring of ships at a fixed berth. A study based on plans for a proposed terminal for tankers from 25,000 to 100,000 dwt in the Bay of Fundy in eastern Canada considersmore » the possibility of reducing the total number of mooring dolphins from four to two. Results of a static analysis of mooring loads due to wind and current and a hydraulic model test for mooring loads due to waves are presented.« less
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, a crane is lowered toward the remote manipulator system boom in Atlantis’ payload bay. The boom is being removed from Atlantis and will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, workers secure a crane to the remote manipulator system boom in Atlantis’ payload bay. The boom is being removed from Atlantis and will be temporarily stored.. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.
2005-11-07
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility Bay 1 at NASA Kennedy Space Center, the remote manipulator system boom that was removed from Atlantis’ payload bay is lifted out of the way. The boom will be temporarily stored. The RMS includes the electromechanical arm that maneuvers a payload from the payload bay of the orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. The RMS arm is 50 feet 3 inches long and 15 inches in diameter. It weighs 905 pounds, and the total system weighs 994 pounds. The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload.