NASA Astrophysics Data System (ADS)
Lum, Jullieta Enone; Viljoen, Fanus; Cairncross, Bruce; Frei, Dirk
2016-12-01
The granite hosted pegmatites of the Erongo Volcanic Complex in central Namibia are well known for the wide variety of minerals present, of considerable interest to mineral collectors. These include (amongst others) often spectacular, museum quality examples of beryl, schorl, jeremejevite, fluorite, quartz, goethite and cassiterite. The locality is particularly recognized for hosting a variety of beryl types, including green, yellow (heliodor), colorless (goshenite) and blue/greenish blue (aquamarine) variants. Comprehensive geochemical studies of the Erongo beryls are very limited. The present contribution serves to document the visual characteristics (colour, colour zoning, inclusion content) as well as the major and trace element chemistry of 42 blue, two green and one colorless beryl from Erongo, and to compare these with other localities worldwide. The beryls from Erongo are generally subhedral to euhedral with a well-formed prismatic habit. Idiomorphic crystals, characterised by strong hexagonal prisms, are common. Beryl is commonly associated with schorl, quartz, muscovite, alkali feldspar, plagioclase feldspar, iron oxides, foitite, rossmanite and cassiterite. Aquamarines range from pale blue to deep blue or greenish blue, with marked colour zoning seen in a number of samples. One of the two green beryls examined is of a medium green colour, and is heavily included, while the other specimen has a pale yellowish green colour. The goshenite sample is colourless, clear, and transparent. Numerous cracks are present in the samples examined, and these are usually filled by iron oxides. Inclusions species encountered in the beryl samples are schorl, quartz, muscovite, feldspar, iron oxides and cassiterite, clearly reflective of the host pegmatite mineralogy. Aquamarine and green beryl contain iron as the main chromophore while goshenite is devoid of chromophores. Fe contents in beryl increase with colour intensity, consistent with the known chromatic effects of Fe in blue, yellow and green beryl. Consistently low Cr contents in all studied beryls do not concur with Cr being a chromophore element for green beryl. Marked compositional zoning is present, with variable Fe (0.79-3.19 wt% FeOT), Na (0.09-0.35 wt% Na2O), Al (15.99-18.18 wt% Al2O3) in aquamarine. Zoning patterns range from simple core-to-rim transitions, to more complex sector and/or oscillatory zoning. Trace element contents vary amongst the beryl types examined, with the highest contents and most extreme variations observed in the aquamarines. This is probably partly due to sampling bias relating to the size of the sample set examined. Octahedral cation substitution is dominant, with Na incorporated (over Cs) at the channels, in order to maintain charge balance. Inferences based on charge balance arguments suggest that tetrahedral Be-Li substitution in these beryls may also be present. Cs, Sc, Ga and Mn are positively correlated with Rb, consistent with the incorporation of these elements at the octahedral site (Sc, Mn and minor Ga) or the channel site (Cs, Rb), in order to preserve charge balance. In contrast, Ca, Zn and Ti do not correlate with Rb, nor with Cs. This is unexpected, as Ti and Ca are known to substitute at the octahedral site in beryl, while Ca may also enter the 2a channel site of beryl. The major and trace element chemistry of the beryls are generally similar to other worldwide beryl deposits of similar colour and do not serve to distinguish beryls from Erongo.
The absorption- and luminescence spectra of Mn3+ in beryl and vesuvianite
NASA Astrophysics Data System (ADS)
Czaja, Maria; Lisiecki, Radosław; Chrobak, Artur; Sitko, Rafał; Mazurak, Zbigniew
2018-05-01
The electron absorption-, photoluminescence- and electron paramagnetic-resonance spectra of Mn3+ in red beryl from Wah Wah Mountains (Utah USA) and of pink- and purple vesuvianite from Jeffrey Mine (Asbestos, Canada) were measured at room- and low temperatures. The crystal field stabilization energies are equal to 130.9 kJ/mol for the red beryl, and 151.5-158.0 and 168.0 kJ/mol for for the pink- and the purple vesuvianite, respectively. The red photoluminescence of Mn3+ was not intensive either at room- or at low temperatures. The high Mn content in the crystals caused the emergence of an additional emission band and short photoluminescence-decay lifetimes. The latter are only 183 μs for beryl and 17 μs for vesuvianite.
The absorption- and luminescence spectra of Mn3+ in beryl and vesuvianite
NASA Astrophysics Data System (ADS)
Czaja, Maria; Lisiecki, Radosław; Chrobak, Artur; Sitko, Rafał; Mazurak, Zbigniew
2017-12-01
The electron absorption-, photoluminescence- and electron paramagnetic-resonance spectra of Mn3+ in red beryl from Wah Wah Mountains (Utah USA) and of pink- and purple vesuvianite from Jeffrey Mine (Asbestos, Canada) were measured at room- and low temperatures. The crystal field stabilization energies are equal to 130.9 kJ/mol for the red beryl, and 151.5-158.0 and 168.0 kJ/mol for for the pink- and the purple vesuvianite, respectively. The red photoluminescence of Mn3+ was not intensive either at room- or at low temperatures. The high Mn content in the crystals caused the emergence of an additional emission band and short photoluminescence-decay lifetimes. The latter are only 183 μs for beryl and 17 μs for vesuvianite.
Beryl-bearing pegmatites in the Ruby Mountains and other areas in Nevada and northwestern Arizona
Olson, Jerry C.; Hinrichs, E. Neal
1960-01-01
Pegmatite occurs widely in Nevada and northwestern Arizona, but little mining has been done for such pegmatite minerals as mica, feldspar, beryl, and lepidolite. Reconnaissance for beryl-bearing pegmatite in Nevada and in part of Mohave County, Ariz., and detailed studies in the Dawley Canyon area, Elko County, Nev., have shown that beryl occurs in at least 11 districts in the region. Muscovite has been prospected or mined in the Ruby and Virgin Mountains, Nev., and in Mohave County, Ariz. Feldspar has been mined in the southern part of the region near Kingman, Ariz., and in Clark County, Nev. The pegmatites in the region range in age from Precambrian to late Mesozoic or Tertiary. Among the pegmatite minerals found or reported in the districts studied are beryl, chrysoberyl, scheelite, wolframite, garnet, tourmaline, fluorite, apatite, sphene, allanite, samarskite, euxenite, gadolinite, monazite, autunite, columbite-tantalite, lepidolite, molybdenite, and pyrite and other sulflde minerals. The principal beryl-bearing pegmatites examined are in the Oreana and Lakeview (Humboldt Canyon) areas, Pershing County; the Dawley Canyon area in the Ruby Mountains, Elko County, Nev.; and on the Hummingbird claims in the Virgin Mountains, Mohave County, Ariz. Beryl has also been reported in the Marietta district, Mineral County; the Sylvania district, Esmeralda County; near Crescent Peak and near Searchlight, Clark County, Nev.; and in the Painted Desert near Hoover Dam, Mohave County, Ariz. Pegmatites are abundant in the Ruby Mountains, chiefly north of the granite stock at Harrison Pass. In the Dawley Canyon area of 2.6 square miles at least 350 pegmatite dikes more than 1 foot thick were mapped, and beryl was found in small quantities in at least 100 of these dikes. Four of these dikes exceed 20 feet in thickness, and 1 is 55 feet thick. A few pegmatites were also examined in the Corral Creek, Gilbert Canyon, and Hankins Canyon areas in the Ruby Mountains.The pegmatite dikes in the Dawley Canyon area intrude granite and metamorphic rocks which consist chiefly of quartzite and schist of probable Early Cambrian age. The granite is of two types: a biotite-muscovite granite that forms the main mass of the stock and albite granite that occurs in the metamorphic rocks near the borders of the stock. The pegmatites were emplaced chiefly along fractures in the granite and along schistosity or bedding planes in the metamorphic rocks.Many of the Dawley Canyon pegmatite dikes are zoned, having several rock units of contrasting mineralogy or grain size formed successively from the walls inward. Aplitic units occur either as zones or in irregular positions in the pegmatite dikes and are a distinctive feature of the Dawley Canyon pegmatites. Some of the aplitic and fine-grained pegmatite units are characterized by thin layers of garnet crystals, forming many parallel bands on outcrop surfaces. The occurrence of aplitic and pegmatitic textures in the same dike presumably indicates abrupt changes in physical-chemical conditions during crystallization, such as changes in viscosity and in content of volatile constituents. Concentrations of 0.1 percent or more beryl, locally more than 1 percent, occur in certain zones in the Dawley Canyon pegmatites. Spectrographic analyses of 23 samples indicate that the BeO content ranges from 0.0017 to 0.003 percent in the albite granite, from ,0.0013 to 0.039 percent in aplitic units in pegmatite, from 0.0005 to 0.10 percent in coarse-grained pegmatite, and from less than 0.0001 to 0.0004 percent in massive quartz veins. The scheelite-beryl deposits at Oreana and in Humboldt Canyon, Pershing County, are rich in beryllium. Twelve samples from the Lakeview (Humboldt Canyon) deposit range from 0.018 to 0.11 percent BeO, but underground crosscuts have failed to intersect similar rock at depth. Beryl locally constitutes as much as 10 percent of the pegmatitic ore at Oreana. The beryl was not recovered during tungsten mining at Oreana and is now in the tailings of the mill at Toulon, Nev. The percentage of beryl is lower than the Oreana ore because of dilution by tailings from other ores milled at Toulon. Beryl has been found in many pegmatite dikes in the Virgin Mountains. Both beryl and chrysoberyl occur in dikes on the Hummingbird claims, north of Virgin Peak, in Mohave County, Ariz. Spectrographic analyses of 5 representative samples of the principal dike on the Hummingbird claims range from 0.055 to 0.11 percent BeO.
Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C
2008-01-01
Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were < 20% in low-energy input operation areas (ore crushing, hydroxide product drumming) and > 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol particles may confer higher bioavailability, respirable ore dusts likely confer considerably less. While finished product beryllium hydroxide particles may confer bioavailability similar to that of high-CBD risk aerosols, physical exposure factors (i.e., large particle sizes) may limit development of alveolar lung burdens.
NASA Astrophysics Data System (ADS)
Yin, Qiong; Liu, Wei
2017-12-01
This paper focuses on beryl mines in the Maji region of Yunnan Province, which are characterized by fluid inclusions. Based on petrography theory, mineralogy, and ore-forming geological conditions, beryl can be divided as CO2 and CO2-H2O inclusions. In addition, the characteristics of inclusions in the coordinate of A/B is summarized. The homogenization temperature of fluid inclusions in the coordinate of A ranges from 250 °C to 397 °C, while the salinity of fluid inclusions ranges from 0.18% to 4.27%. By contrast, the homogenization temperature in the coordinate of B ranges from 210 °C to 340 °C, and the salinity is from 0.22% to 5.11%. The pressure of ore-forming fluid in the coordinate of A/B is approximately 83 MPa with densities of 0.8034 g/m3 and 0.8363 g/m3, which are characteristic of mediumtemperature, low-salinity, and medium-density fluids. Based on Raman spectra and different metallogenic depths, the two types of beryl belong to different metallogenic belts. The beryl deposits in Gongshan are of medium-temperature gas-hydrothermal type.
Pegmatites of the Crystal Mountain district, Larimer County, Colorado
Thurston, William R.
1952-01-01
The Front Range of Colorado is composed chiefly of schists of the pre-Cambrian Idaho Springs formation which have been intruded by a variety of granitic batholiths. In the Crystal Mountain district the Mount Olympus granite, a satellite of the Longs Peak batholith, forms sills and essentially concordant multiple intrusions in quartz-mica schist that dips southward at moderate to steep angles. A great number of pegmatites accompanied and followed the intrusion of the sills, and formed concordant and discordant bodies in schist and granite. Over 1,300 pegmatites in the Hyatt area north of the Big Thompson River are mapped and individually described. There are 27 pegmatites in the area that are made up of a wall zone and a core, and one, the pegmatite at the Hyatt mine, is composed of five zones. The largest pegmatites in the area are discordant in schist and occupy zones that are interpreted to be tear faults and tension fractures produced by the successive intrusions of granite that formed multiple sills. The majority of pegmatites in the large multiple sills were emplaced along the foliation and fractures. The composition of 96 percent of the pegmatites is granitic, 3.5 percent are quartz-rich pegmatites, and a few are tourmaline-rich. The pegmatites were intruded over a period of time and probably were derived from a granitic magma at different stages during differentiation. Solutions escaping from many of the pegmatites tournalinized and silicified the wall rocks for a few inches to two feet, but chemical and spectrographic analyses fail to show the transport of any other constituents. Perthite, plagioclase, and quartz are the essential minerals of the pegmatites, and muscovite is a minor but widespread constituent. Tourmaline, garnet, beryl, and apatite are common accessory minerals, and lithiophillitite-triphylite, bismuthinite, uraninite, columbite-tantalite, and chrysoberyl are rare constituents. Beryl is found in 250 or 27 percent of the pegmatites and makes up 0.01 percent or more of 77 bodies. The beryl-bearing pegmatites are richest in two of the three large granite masses, and are somewhat less rich at a distance of more than a thousand feet from the margins of the intrusives, but contain the least beryl in the thousand-foot belt immediately surrounding the intrusives. The Hyatt pegmatite is by far the richest deposit of beryl in the area mapped. Most of the pegmatites mapped are "unzoned" or homogeneous pegmatites. All gradations are visible between bodies consisting of uniform texture and mineral distribution to zoned pegmatites. The interpretation is made that, for most pegmatites, the initial composition determines whether or not zones will form. Pegmatites containing many zones can form from a magma composed of the elements in perthite, plagioclase, quartz, and muscovite, depending on the proportions of the components crystallizing at any given time. The complexly zoned deposits depend for their formation on the presence of a number of the rarer elements, principally lithium. Replacement textures in zones result from the interaction of the rest-liquid with the earlier-formed solid crystals. No mappable pegmatite in the Crystal Mountain district formed from the replacement of pre-existing pegmatite by solutions escaping from the rest-liquid, or by solutions originating outside the pegmatite. Three beryl-bearing zoned pegmatites, the Hyatt, Big Boulder, and Buckhorn Mica deposits, were explored by core drilling. Each deposit is mapped and described in detail, and the mineral reserves evaluated. The exploration indicates a total of 2,000 tons of beryl, of which 480 tons is estimated to be recoverable by hand sorting. The mapping of the 3 3/4-square mile Hyatt area indicates beryl in sufficient abundance to infer beryl resources of an additional 1,150 tons. Small tonnages of scrap mica and perthite may be obtained from the Hyatt and Big Boulder prospects, and columbite-tantalite may occur in sufficient amounts at the Buckhorn Mica mine and Tantalum claim to produce several hundred pounds as a byproduct of beryl mining. Dumps at the various deposits contain 25 to 50 tons of beryl.
Cloud-to-Ground Lightning Characteristics of a Major Tropical Cyclone Tornado Outbreak
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven J.
1999-01-01
It is well known that most tropical cyclones (TCs) that make landfall along the Gulf coast of the United States spawn at least a few tornadoes. Although most landfalling TCs generate fewer than a dozen such tornadoes, a small proportion produce large swarm outbreaks, with as many as 25 or more tornadoes. Usually, these major outbreaks occur in large, intense hurricane-strength TCs, but on 15-17 August 1994 Tropical Storm Beryl spun off 37 tornadoes along its path from the Florida panhandle through the mid-Atlantic states. Some 32 of these tornadoes occurred on 16 August 1994 from eastern Georgia to southern Virginia, with most of these taking place in South Carolina. Beryl's 37 tornadoes moved it into what was at that time fifth place historically in terms of TC tornado productivity. The Beryl outbreak is especially noteworthy in that at least three of the tornadoes achieved peak intensity of F3 on the Fujita damage intensity scale. Although no fatalities resulted from the Beryl outbreak, at least 50 persons suffered injuries, and property damages totalled more than $50 million . The Beryl outbreak is a good example of a TC whose greatest danger to the public is its post-landfall severe weather. In this respect, and in the character of its swarm outbreak of tornadoes, it resembles another large tornado outbreak spawned by a relatively weak TC, Hurricane Danny of 1985). In the Danny outbreak, numerous shallow mini-supercell storms were found to have occurred, and it was noted that, because of the storms' relatively shallow depth, cloud-to-ground (CG) lightning was negligible. Better observations of future TC tornado outbreaks, especially with modern surveillance tools such as Doppler radars and the National Lightning Detection Network (NLDN), were recommended. Although the Beryl tornado outbreak is not the first set of TC-spawned tornado storms to be observed with the NLDN, it is one of the largest and likely the most intense such outbreak. The purpose of this paper is to document the NLDN-derived CG lightning characteristics of Beryl's tornadic storms, and to see how they compare with observations of CG lightning activity in other types of severe storms. In particular, we attempt to quantify the CG flash rates of TC tornadic cells, and to discover if there are any characteristics of their CG activity that may be useful to operational forecasters seeking to distinguish which cells are most likely to produce severe weather.
THz-IR spectroscopy of single H2O molecules confined in nanocage of beryl crystal lattice
NASA Astrophysics Data System (ADS)
Gorshunov, Boris P.; Zhukova, Elena S.; Torgashev, Victor I.; Motovilova, Elizaveta A.; Lebedev, Vladimir V.; Prokhorov, Anatoly S.; Shakurov, Gil'man S.; Kremer, Reinhard K.; Uskov, Vladimir V.; Pestrjakov, Efim V.; Thomas, Victor G.; Fursenko, Dimitri A.; Kadlec, Christelle; Kadlec, Filip; Dressel, Martin
2014-11-01
We have measured the terahertz-infrared (3-7000 cm-1) spectra of the optical conductivity of iron-doped single crystals of beryl, (Mn,Fe):Be3Al2Si6O18, that contain lone water molecules isolated within nanometer-sized cages formed by the ions of beryl crystal lattice. By comparing the spectra with those of dehydrated crystals, we exclude phonon resonances and reconstruct the spectra determined exclusively by vibrations of the water molecules. At liquid-helium temperatures, well-known intramolecular H2O modes are observed above 1000 cm-1 and accompanied with satellite resonances that are combinations of intramolecular and external vibrations of H2O molecules. At terahertz frequencies, a broad bump centred around 20 cm-1 (at 5 K) is observed with three rather narrow resonances at its high-frequency shoulder (38, 42 and 46 cm-1). The origin of these low-energy excitations is discussed.
Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah
Mower, R.W.
1981-01-01
This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)
Beryl pegmatite at Jabal Tarban, southern Najd region, Kingdom of Saudi Arabia
NASA Astrophysics Data System (ADS)
Jackson, Norman J.
Beryl pegmatite near Jabal Tarban forms a carapace on a small stock of alkali-feldspar microgranite. Geological, petrographic and geochemical features indicate a genetic relationship between pegmatite and microgranite. Crystallization of quartz and alkali feldspar from a low-Ca granitic magma resulted in formation of a residuum enriched in rare elements. Silica separated from this residuum to form a pegmatitic carapace over the stock; the remainder crystallized as the fine-grained albite-rich groundmass of the microgranite.
Quantum Tunneling of Water in Beryl. A New State of the Water Molecule
Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; ...
2016-04-22
When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.
Quantum Tunneling of Water in Beryl. A New State of the Water Molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani
When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakubovich, O. V., E-mail: yakubol@geol.msu.ru; Pekov, I. V.; Steele, I. M.
2009-05-15
The crystal structures of high-alkali beryl, i.e., vorobyevite Cs{sub 0.08}Na{sub 0.42}(H{sub 2}O){sub 0.18+y} x [Al{sub 2}(Be{sub 2.35}Li{sub 0.65})Si{sub 6}O{sub 18}], (a = 9.2102(14) A, c = 9.2179(14) A, space group P6/mcc, Z = 2, {rho}{sub calcd}= 2.74 g/cm{sup 3}) and pezzottaite Cs{sub 0.75}Na{sub 0.23}(H{sub 2}O){sub 0.24}[Al{sub 2}Be{sub 2}Li(Si{sub 6}O{sub 18})] (a = 15.955(3) A, c = 27.810(8) A, space group, R3-barc, Z = 18, {rho}{sub calcd}= 3.13 g/cm{sup 3}), are determined at a temperature of 100 K. It is confirmed that, at a high lithium content in minerals of the beryl group, lithium is selectively incorporated into Be tetrahedra. Themore » positive charge deficit due to the replacement of Be{sup 2+} cations by Li{sup +} cations is compensated by incorporating large alkali cations into the 'zeolite' channel. It is shown that, when the lithium content becomes close to unity per the corresponding formula, the Li and Be atoms are ordered and the rhombohedral structure of pezzottaite is formed. It is proposed to retain the historical name vorobyevite for the lithium- and cesium-containing variety of beryl with a disordered distribution of Be and Li atoms.« less
Geology of the Quartz Creek Pegmatite District, Gunnison County Colorado
Staatz, Mortimer H.; Trites, A.F.
1952-01-01
Inferred reserves of the district are estimated for beryl, scrap mica, both hand-cobbing and milling feldspar, lepidolite, columbite-tantalite, topaz, monazite, and microlite. No sheet mica was found. Reserves are small and transportation costs are high so substantial production of low-priced feldspar and scrap mica will depend on the adoption of economica milling techniques for recovering the large quantities of feldspar available. Beryl is irregularly distributed and its recovery as a byproduct will depend on the establishment of a stable market for feldspar and scrap mica. Lepidolite reserves are small low grade.
Multi-element analysis of emeralds and associated rocks by k(o) neutron activation analysis
Acharya; Mondal; Burte; Nair; Reddy; Reddy; Reddy; Manohar
2000-12-01
Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k0 method (k0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method.
NASA Astrophysics Data System (ADS)
Lazzeri, K. E.; Bebout, G. E.; Idleman, B. D.; Geiger, C. A.; Li, L.
2011-12-01
The N isotope system shows potential for tracing the transfer of volatiles among Earth's major reservoirs, including the transfer of organic N into solid inorganic phases. This work explores the potential for the storage of N (i.e., N2 and possibly as ammonium) in various microporous minerals (pores or channels), specifically the cyclosilicates beryl and cordierite (see early work on beryl by Scalan, 1958, dissertation, Univ. Arkansas). Isotopic analyses of the N2 residing in these phases could help elucidate fluid-rock interactions, potentially contributing information regarding fluid-mineral fractionation, and provide records of past biological processes (see Palya et al., 2011, Chem. Geol.). We are investigating the N release from beryl crystals of different size separates by using various heating regimes. Samples are first examined petrographically to determine equilibrium mineral assemblages (based on textures of the coexisting phases) and to identify possible mica (or other mineral) inclusions that could contaminate the N analyses. Analyses of one beryl sample from New England, USA, yielded very similar N concentrations and δ15Nair (40 ppm N; +5%) when tested over a wide range of grain sizes (0.25 to 1.00 mm), extraction temperatures (1050-1100°C), and durations of heating (3-5 hours at maximum T), which is consistent with complete extraction of the N2 from the channels of beryl. Shift to higher N and δ15N concentrations, in some analyses, can be attributed to very small amounts of mica as inclusions (observed by SEM) not removed by sieving and hand-picking. Preliminary work on cordierite has concentrated on several samples of iolite (gemstone variety of cordierite)-bearing, chlorite-muscovite schist from Connecticut, USA. For these rock samples, mica-rich matrices contain up to 350 ppm N with δ15Nair near +3.5%, whereas the iolite grains contain little or no measurable N. This contrasts with the observation by Palya et al. (2011) that cordierites in granulite-facies metasedimentary migmatites at Mt. Stafford, Australia, contain up to 350 ppm N with δ15N similar to that of the whole-rocks. Ongoing work is also being directed at analyzing a suite of pure cordierite separates from different petrologic enviironments, for which Geiger et al. (in revision for GCA) conducted degassing experiments and noted the presence of N2. In a related study, we are examining the N concentrations and isotopic compositions of silicate phases crystalized in various low-T hydrothermal settings. Some low-temperature silicates, such as zeolites and melanophlogite (silica clathrate), as well as palagonitized volcanic glasses, can preserve records of low-temperature biogeochemical processes on Earth and potentially on early Mars as well (Bebout et al., 2011, abstract LPSC).
Foreign molecules and ions in beryl obtained by infrared and visible spectroscopy
NASA Astrophysics Data System (ADS)
Jelić, Ivana; Logar, Mihovil; Milošević, Maja
2017-04-01
Beryl minerals of Serbia were slightly studied in the last century and despite that there is some obtainable data about main characteristics there is a limited amount of information about foreign molecules in the mineral structure. Two beryl samples from different locations in Serbia were examined in detail but infrared spectroscopy (IR) and spectrophotometry (VIS) was used for determination of foreign molecules and ions in the structure and the obtained data is shown in this paper. The infrared (IR) and visible spectra (VIS) of two natural beryl samples indicate the presence of two types of water molecule, Fe2+, Fe3+ ions and CO3. The spectra of two types of water molecules can be recognized with molecular fundamental vibrations at 3687 cm-1 (asymmetric stretching) for type I, at 3574 cm-1 and 3585 cm-1 both symmetric stretching, and with deformation vibrations at 1627 cm-1 and 1632 cm-1 for type II. In range of symmetric stretching there is broad vibrational band which can be explained by presence of water molecules type II near alkali ions. Overtones and combinations of these fundamental vibrations have been identified. The type I molecules have their C2 symmetry axes perpendicular to the crystal C6 axis, while the type II molecules are rotated by 90 degrees and have their C2 symmetry axes parallel to the crystal C6 axis. Vibrational absorption frequency of 1425 cm-1 indicate the presence of CO3. Pale blue beryl is colored according to the relative intensities of two spectral features attributable to iron ions: a) a broad band in the extraordinary ray (Er) at 16000 cm-1 due to Fe2+ in a channel site and b) a broad band in range of 22500-31400 cm-1 in both ordinary ray (Or) and Er due to octahedral Fe3+ in the Al3+ site. Two other features, also attributable to iron, do not produce any visible coloration: a) an absorption edge at 12350 cm-1 in Or is due to Fe2+ in the octahedral site and b) a broad band in Er and Or, centered around 12350 cm-1, is due to Fe2+ in channel site. These spectral features are interpreted on the basis of the crystal field theory. Infrared and visible spectroscopy data of two natural beryl minerals from Serbia has shown that water molecules, carbonates and iron ions represent the main impurities in the crystal structure. Nature of the fluid inclusions and quantitative content of Fe2+ and Fe3+ ions remain to be examined in the future.
Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl
NASA Astrophysics Data System (ADS)
Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.
2017-12-01
A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973-980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,{Fe}_{{{0.07}}}^{{{3}+}} )Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as 1520 cm-1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm-1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm-1, suggests a comparatively high degree of covalency in the octahedral Fe3+-O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm-1.
Spectroscopic study of synthetic hydrothermal Fe3+-bearing beryl
NASA Astrophysics Data System (ADS)
Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.
2018-05-01
A synthetic hydrothermal beryl Fe-4-51, investigated previously by Taran and Rossman (Am Miner 86:973-980, 2001), was additionally studied by microprobe, Mössbauer, optical absorption, Raman and IR spectroscopy. For comparison, polarized spectra of natural blue aquamarine and Cr3+, Fe3+-bearing alexandrite, both from Brazil, are also presented. Fe-4-51 is a nearly pure Fe3+-bearing beryl, with a homogeneous composition as shown by electron microprobe. Averaging over 22 points gives a formula of Be3.07(Al1.94,{Fe}_{{{0.07}}}^{{{3}+}})Σ=2.01Si5.95O18, with Fe3+ replacing Al3+ in the octahedral site of the structure. The Mössbauer spectrum is dominated by a broad disordered pattern with beryl-suitable parameters; for Fe2+, IS = 1.21 mm/s, QS = 2.71 mm/s, area ≈ 5% and for Fe3+, IS = 0.34 mm/s, QS = 0.71 mm/s, and area ≈ 67%—are distinguished overlying a broad disordered continuum. The optical absorption spectrum is typical of octahedral Fe3+. From it, the crystal field strength Dq is derived as 1520 cm-1 and the values of Racah parameters of interelectronic repulsion B and C are found to be 665 and 3415 cm-1, respectively. This rather low B value, compared with that of a free Fe3+ ion, 814 cm-1, suggests a comparatively high degree of covalency in the octahedral Fe3+-O bond. Infrared spectra show the presence of channel H2O of both I and II structural type in comparable quantities, about 0.5 and 1 mass%, respectively. Raman data show the expected five bands in the energy range from 300 to 1200 cm-1.
Cloud-to-Ground Lightning Characteristics of a Major Tropical Cyclone Tornado Outbreak
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven J.
1999-01-01
A comprehensive analysis has been conducted of the cloud-to-ground lightning activity occurring within a landfalling tropical cyclone that produced an outbreak of strong and damaging tornadoes. Radar data indicate that 12 convective cells were responsible for 29 tornadoes, several of which received an F3 intensity rating, in the southeastern United States on 16 August 1994 within the remnants of Tropical Storm Beryl. Of these 12 tornadic storms, the most active cell produced 315 flashes over a 5.5 hour period, while the other storms were less active. Three tornadic storms failed to produce any CG lightning at all. In general, the tornadic storms were more active electrically than other non-tornadic cells within Beryl's remnants, although the flash rates were rather modest by comparison with significant midlatitude severe storm events. Very few positive polarity flashes were found in the Beryl outbreak. During some of the stronger tornadoes, CG flash rates in the parent storms showed sharp transient decreases. Doppler radar data suggest the stronger tornadic storms were small supercells, and the lightning data indicate these storms exhibited lightning characteristics similar to those found in heavy-precipitation supercell storms.
Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa
NASA Astrophysics Data System (ADS)
O'Bannon, Earl; Williams, Quentin
2016-10-01
The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm-1 shifts negatively by -4.57 (±0.55) cm-1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that extensive twinning occurs across this transition.
Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes
NASA Technical Reports Server (NTRS)
Mccaul, Eugene W., Jr.; Buechler, Dennis E.; Goodman, Steven J.; Cammarata, Michael
2004-01-01
Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.
Hemingway, B.S.; Barton, M.D.; Robie, R.A.; Haselton, H.T.
1986-01-01
The heat capacities of beryl, phenakite, euclase and bertrandite have been measured between approx 5 and 800 K by combined quasi-adiabatic cryogenic calorimetry and differential scanning calorimetry. The heat capacities of chrysoberyl have been measured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimental data and simultaneously adjusted using the programme PHAS20 to provide an internally consistent set of thermodynamic properties for several important beryllium phases. The experimental heat capacities and tables of derived thermodynamic properties are presented.-J.A.Z.
NASA Astrophysics Data System (ADS)
Fridrichová, Jana; Bačík, Peter; Ertl, Andreas; Wildner, Manfred; Dekan, Július; Miglierini, Marcel
2018-01-01
Red beryl from Utah is chemically homogeneous and contains only Fe < 0.163, Mn < 0.018, and Mg < 0.016 apfu. Channel sites contain only up to Cs 0.011, K 0.009, Rb 0.004, and Na 0.004 apfu. This suggests only very slight tetrahedral (Cs,K,Rb)Li□-1Be-1 substitution, octahedral Na(Fe2+,Mg)□-1Al-1 substitution can be excluded. Fe and Mn are trivalent as documented by Mössbauer spectroscopy and optical absorption spectroscopy. Red beryl optimized formula is ∼[(Cs,Rb,K)0.02□0.98]Σ1.00□1.00(Al1.79Fe3+0.16Mn3+0.02Ti4+0.02Mg0.01)Σ2.00Be3(Si6O18). Location of Mn3+ was estimated to the octahedral Al3+ site, other choices are improbable due to the bond-length requirements. No Mn3+-induced Jahn-Teller structural distortion was detected due to site symmetry restrictions and small Mn3+ content. However, optical spectroscopy shows broad band at ∼7190 cm-1 assigned to the excited level of the spin-allowed pseudo-tetragonal split E ground state of elongated six-fold Mn3+ coordination. Crystal field calculations indicate that the local Mn3+ environment complies well with crystal chemical expectations for Jahn-Teller distorted Mn3+O6 octahedra.
Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah
Fix, Philip F.; Nelson, W.B.; Lofgren, B.E.; Butler, R.G.
1950-01-01
Escalante Valley in southwestern Utah is one of the largest and most important ground-water areas of the State, with 1,300 square miles of arid land and an additional 1,500 square miles in its tributary drainage basin. Ground water is obtained from gravel and sand beds in the unconsolidated valley fill. In 1950 more irrigation wells were pumped than in any other basin of Utah, and their total pumpage exceeded 80,000 acre-feet. Farming is done chiefly in the Beryl-Enterprise district at the south (upper) end of the valley, where it depends almost entirely upon ground water, and in the Milford and Minersville districts in the northeast-central part of the valley. This progress report concerns chiefly the Beryl-Enterprise and Milford districts.
Wegner, R.; Heinrich-Ramm, R.; Nowak, D.; Olma, K.; Poschadel, B.; Szadkowski, D.
2000-01-01
OBJECTIVES—Gemstone cutters are potentially exposed to various carcinogenic and fibrogenic metals such as chromium, nickel, aluminium, and beryllium, as well as to lead. Increased beryllium concentrations had been reported in the air of workplaces of beryl cutters in Idar-Oberstein, Germany. The aim of the survey was to study the excretion of beryllium in cutters and grinders with occupational exposure to beryls—for example, aquamarines and emeralds—to examine the prevalence of beryllium sensitisation with the beryllium lymphocyte transformation test (BeLT), to examine the prevalence of lung disease induced by beryllium, to describe the internal load of the respective metals relative to work process, and to screen for genotoxic effects in this particular profession. METHODS—In a cross sectional investigation, 57 out of 100 gemstone cutters working in 12 factories in Idar-Oberstein with occupational exposure to beryls underwent medical examinations, a chest radiograph, lung function testing (spirometry, airway resistance with the interrupter technique), and biological monitoring, including measurements of aluminium, chromium, and nickel in urine as well as lead in blood. Beryllium in urine was measured with a newly developed direct electrothermal atomic absorption spectroscopy technique with a measurement limit of 0.06 µg/l. Also, cytogenetic tests (rates of micronuclei and sister chromatid exchange), and a BeLT were performed. Airborne concentrations of beryllium were measured in three factories. As no adequate local control group was available, the cutters were categorised into those with an exposure to beryls of >4 hours/week (group A) and ⩽4 hours/week (group B). RESULTS—Clinical, radiological, or spirometric abnormalities indicating pneumoconiosis were detected in none of the gemstone cutters. Metal concentrations in biological material were far below the respective biological limit values, and beryllium in urine was only measurable in subjects of group A. Cytogenetic investigations showed normal values which were independent of the duration of beryllium exposure. In one subject, the BeLT was positive. Beryllium stimulation indices were significantly higher in subjects with detectable beryllium in the urine than in those with beryllium concentrations below the detection limit (p<0.05). In one factory, two out of four measurements of airborne beryllium concentrations were well above the German threshold limit value of 2 µg/m3 (twofold and 10-fold), and all gemstone cutters working in this factory had measurable beryllium concentrations in urine. CONCLUSION—No adverse clinical health effects were found in this cross sectional investigation of gemstone cutters working with beryls. However, an improvement in workplace hygiene is recommended, accompanied by biological monitoring of beryllium in urine. Keywords: gemstone cutter; beryllium in urine; lymphocyte transformation test PMID:10711282
NASA Astrophysics Data System (ADS)
Loughrey, Lara; Marshall, Dan; Jones, Peter; Millsteed, Paul; Main, Arthur
2012-06-01
The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich `striped' colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.
Quantum Electric Dipole Lattice - Water Molecules Confined to Nanocavities in Beryl
NASA Astrophysics Data System (ADS)
Dressel, Martin; Zhukova, Elena S.; Thomas, Victor G.; Gorshunov, Boris P.
2018-02-01
Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
NASA Astrophysics Data System (ADS)
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-09-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.
Single Crystals Grown Under Unconstrained Conditions
NASA Astrophysics Data System (ADS)
Sunagawa, Ichiro
Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).
TEN RILLINGTON PLACE AND THE CHANGING POLITICS OF ABORTION IN MODERN BRITAIN.
Jones, Emma L; Pemberton, Neil
2014-12-01
This article addresses the social, cultural, and political history of backstreet abortion in post-war Britain, focusing on the murders of Beryl Evans and her daughter Geraldine, at Ten Rillington Place in 1949. It shows how the commonplace connection of John Christie to abortion and Beryl Evan's death was not a given in the wider public, legal, political, and forensic imagination of the time, reflecting the multi-layered and shifting meanings of abortion from the date of the original trials in the late 1940s and 1950s, through the subsequent judicial and literary reinvestigations of the case in the 1960s, to its cinematic interpretation in the 1970s. Exploring the language of abortion used in these different contexts, the article reveals changes in the gendering of abortionists, the increasing power and presence of abortion activists and other social reformers, the changing representation of working-class women and men, and the increasing critique of the practice of backstreet abortion. The case is also made for a kind of societal blind spot on abortion at the time of both the Evans and Christie trials; in particular, a reluctance to come to terms with the concept of the male abortionist, which distorted the criminal investigations and the trials themselves. Only when public acceptance for legalizing abortion grew in the more liberal climate of the 1960s and beyond did a revisionist understanding of the murder of Beryl Evans, in which abortion came to be positioned as a central element, gain a sustained hearing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anovitz, Lawrence; Mamontov, Eugene; Ishai, Paul ben
2013-01-01
The properties of fluids can be significantly altered by the geometry of their confining environments. While there has been significant work on the properties of such confined fluids, the properties of fluids under ultraconfinement, environments where, at least in one plane, the dimensions of the confining environment are similar to that of the confined molecule, have not been investigated. This paper investigates the dynamic properties of water in beryl (Be3Al2Si6O18), the structure of which contains approximately 5-A-diam channels parallel to the c axis. Three techniques, inelastic neutron scattering, quasielastic neutron scattering, and dielectric spectroscopy, have been used to quantify thesemore » properties over a dynamic range covering approximately 16 orders of magnitude. Because beryl can be obtained in large single crystals we were able to quantify directional variations, perpendicular and parallel to the channel directions, in the dynamics of the confined fluid. These are significantly anisotropic and, somewhat counterintuitively, show that vibrations parallel to the c-axis channels are significantly more hindered than those perpendicular to the channels. The effective potential for vibrations in the c direction is harder than the potential in directions perpendicular to it. There is evidence of single-file diffusion of water molecules along the channels at higher temperatures, but below 150 K this diffusion is strongly suppressed. No such suppression, however, has been observed in the channel-perpendicular direction. Inelastic neutron scattering spectra include an intramolecular stretching O-H peak at 465 meV. As this is nearly coincident with that known for free water molecules and approximately 30 meV higher than that in liquid water or ice, this suggests that there is no hydrogen bonding constraining vibrations between the channel water and the beryl structure. However, dielectric spectroscopic measurements at higher temperatures and lower frequencies yield an activation energy for the dipole reorientation of 16.4 0.14 kJ/mol, close to the energy required to break a hydrogen bond in bulk water. This may suggest the presence of some other form of bonding between the water molecules and the structure, but the resolution of the apparent contradiction between the inelastic neutron and dielectric spectroscopic results remains uncertain.« less
Olson, D.W.
2012-01-01
The estimated value of natural gemstones produced from U.S. deposits during 2011 was $10.6 million, a 6-percent increase from 2010. U.S. gemstone production included agate, amber, beryl, coral, garnet, jade, jasper, opal, pearl, quartz, sapphire, shell, topaz, tourmaline, turquoise and many other gem materials.
Olson, D.W.
2013-01-01
The estimated value of natural gemstones produced from U.S. deposits during 2012 was $11.1 million, a slight increase from 2011. U.S. gemstone production included agate, amber, beryl, coral, garnet, jade, jasper, opal, pearl, quartz, sapphire, shell, topaz, tourmaline, turquoise and many other gem materials.
Olson, D.W.
2011-01-01
The estimated value of natural gemstones produced from U.S. deposits during 2010 was $8.5 million, a slight increase from 2009. U.S. gemstone production included agate, amber, beryl, coral, garnet, jade, jasper, opal, pearl, quartz, sapphire, shell, topaz, tourmaline, turquoise and many other gem materials.
Magellan View of Crater Markham, 0° N, 163° E
1998-06-04
This perspective view of Venus, generated by computer from NASA Magellan data and color-coded with emissivity, shows the impact crater Markham, named after the English aviator Beryl Markham. http://photojournal.jpl.nasa.gov/catalog/PIA00312
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-01-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. PMID:27687693
Aggarwal, A. K.; Sharma, Richa; Sharma, Sanjeev
2014-01-01
The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure. PMID:24523632
Laurs, B.M.; Dilles, J.H.; Snee, L.W.
1996-01-01
Emerald mineralization is found within 0.1- to 1-m-thick hydrothermal veins and granitic pegmatites cutting amphibolite within the Nanga Parbat - Haramosh massif, in northern Pakistan. The amphibolite forms a sill-like body within garnet-mica schist, and both are part of a regional layered gneiss unit of Proterozoic (?) age. The 40Ar/39Ar data for muscovite from a pegmatite yield a plateau age of 9.13 ?? 0.04 Ma. Muscovite from mica schist and hornblende from amphibolite yield disturbed spectra with interpreted ages of 9 to 10 Ma and more than 225 Ma, respectively, which indicate that peak Tertiary metamorphism reached 325 to 550??C prior to 10 Ma. Pegmatites were emplaced after peak metamorphism during this interval and are older than pegmatites farther south in the massif. At Khaltaro, simply zoned albite-rich miarolitic pegmatites and hydrothermal veins containing various proportions of quartz, albite, tourmaline, muscovite, and beryl are associated with a 1- to 3-m-thick heterogeneous leucogranite sill, that is locally albitized. The pegmatites likely crystallized at 650 to 600??C at pressures of less than 2 kbar. Crystals of emerald form within thin (0.20, 0.54-0.89 wt%), to pale blue beryl (<0.07, 0.10-0.63%), to colorless beryl (<0.07, 0.07-0.28%). The amphibolite is metasomatized in less than 20-cm-wide selvages that are symmetrically zoned around veins or pegmatites. A sporadic inner zone containing F-rich biotite, tourmaline, and fluorite, with local albite, muscovite, quartz, and rare beryl, gives way to an intermediate zone containing biotite and fluorite with local plagioclase and quartz, and to an outer zone of amphibolite containing sparse biotite and local quartz. The inner and intermediate zones experienced gains of K, H, F, B, Li, Rb, Cs, Be, Ta, Nb, As, Y and Sr, and losses of Si, Mg, Ca, Fe, Cr, V and Sc. The outer alteration zone has gained F, Li, Rb, Cs, and As. Oxygen isotope analyses of igneous and hydrothermal minerals indicate that a single fluid of magmatic origin with ??18OH2O = 8??? produced the pegmatite-vein system and hydrothermal alteration at temperatures between 550 and 400??C. The formation of emerald results from introduction of HF-rich magmatic-hydrothermal fluids into the amphibolite, which caused hydrogen ion metasomatism and released Cr and Fe into the pegmatite-vein system.
Mower, Reed W.; Sandberg, George Woodard
1982-01-01
An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).
Development of beamline U3A for AXAF synchrotron reflectivity calibrations
NASA Astrophysics Data System (ADS)
Burek, Anthony J.; Cobuzzi, J. C.; Fitch, Jonathan J.; Graessle, Dale E.; Ingram, R. H.; Sweeney, J. B.; Blake, Richard L.; Francoeur, R.; Sullivan, E. S.
1998-11-01
We discuss the development of beamline U3A at NSLS for AXAF telescope witness mirror reflectivity calibrations in the 1- 2 keV energy range. The beamline was originally constructed as a white light beamline and has been upgraded with the addition of a monochromator to meet the needs of the AXAF calibration program. The beamline consists of an upstream horizontally focussing gold coated elliptical mirror, a differential pumping section, a sample/filter chamber, a monochromator and a downstream filter set. The mirror is set at a 2 degree incident angle for a nominal high energy cutoff at 2 keV. The monochromator is a separated element, scanning, double crystal/multilayer design having low to moderate energy resolution. A fixed exit beam is maintained through the 7-70 degree Bragg angle range by longitudinal translation of the second scanning crystal. Tracking is achieved by computer control of the scan motors with lookup table positioning of the crystal rotary tables. All motors are in vacuum and there are no motional feedthroughs. Several different multilayer or crystal pairs are co-mounted on the monochromator crystal holders and can be exchanged in situ. Currently installed are a W/Si multilayer pair, beryl, and Na-(beta) alumina allowing energy coverage from 180 eV to 2000 eV. Measurements with Na-(beta) alumina and beryl show that beam impurity less than 0.1 percent can be achieved in the 1-2 keV energy range. Measured resolving powers are E/(Delta) E equals 60 for W/Si, 500-800 for (beta) alumina and 1500 to 3000 for beryl. Initial results suggest that signal to noise and beam purity are adequate in the 1-2 keV region to achieve the 1 percent calibration accuracy required by AXAF. This allows overlap of Ir MV edge data taken on x-ray beamline X8A and with low energy data taken on ALS beamline 6.3.2.
40 CFR 421.154 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ore as beryllium Beryllium 1,842.000 831.000 Chromium (total) 831.000 336.900 Copper 2,875.000 1,370... pounds) of beryllium carbonate produced from beryl ore as beryllium Beryllium 180.4 81.4 Chromium (total... beryllium carbonate produced as beryllium Beryllium 175.900 79.370 Chromium (total) 79.370 32.180 Copper 274...
Olson, D.W.
2006-01-01
During 2005, the estimated value of natural gemstones produced from US deposits was $13.9 million. Production included agates, amber, beryl, coral, garnet, jade, jasper, opal, pearl, quartz, sapphire, shell, topaz, tourmaline, and torquoise among others. For the year, the US gemstone trade with all countries and territories exceeded $26 billion. There are indication that there may be continued growth in the US diamond and jewelry markets in 2006.
Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven; Cammarata, Michael
2003-01-01
Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine in detail the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Several other tornadic cells also exhibited great longevity, with cell lifetimes greater than ever previously documented in a landfalling tropical cyclone tornado event, and comparable to those found in major midlatitude tornadic supercell outbreaks. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D radar. In addition, cloud-to-ground (CG) lightning data are examined for the outbreak, the most intense tropical cyclone tornado event studied thus far. Although the tornadic cells were responsible for most of Beryl's CG lightning, flash rates were only weak to moderate, even in the most intense supercells, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. In the stronger cells, there is some evidence that CG lightning rates decreased during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Surprisingly, both peak currents and positive flash percentages were larger in Beryl s nontornadic storms than in the tornadic ones. Despite some intriguing patterns, the CG lightning behavior in this outbreak remains mostly inconsistent and ambiguous, and offers only secondary value for warning guidance. The present findings argue in favor of the implementation of observing systems capable of continuous monitoring of total lightning activity in storms.
Mineral resource of the month: beryllium
,
2013-01-01
The article discusses information about Beryllium. It notes that Beryllium is a light metal that has a gray color. The metal is used in the production of parts and devices including bearings, computer-chip heat sinks, and output windows of X-ray tubes. The article mentions Beryllium's discovery in 1798 by French chemist, Louis-Nicolas Vanquelin. It cites that bertrandite and beryl are the principal mineral components for the commercial production of beryllium.
Military Competency-Based Human Capital Management: A Step Toward the Future
2006-01-27
upon competencies rather than test scores.”3 Competency concepts, however, only truly began to enter the mainstream business sector with the work of Dr...categorized. In a Personnel Psychology article on competency analysis, the following observation by Shippmann, et al., contrasting job analysis...5. 4 Ibid, 5. 5 Shippman, Jeffery S; Ash, Ronald A.; Battista, Mariangela; Carr, Linda; Eyde , Lorraine D.; Hesketh, Beryl; Kehoe, Jerry; Pearlman
National Positioning, Navigation, and Timing Architecture Study
2008-09-01
Ballooning • Trip Planning Environment • Tide / Current Measures • BLM Tract Management • Oil Spill Containment • Hazardous Waste Remediation...SMC/GPSW (Aerospace) Adde, Barbara GOVT NASA Alexander, Dexter LTC USA SMDC Alexander, Ken GOVT FAA Rep to NCO Allen, Leonard GOVT FRA...Shawn Lt Col USAF NSSO/PNT Brewer, Mike Col USAF OASD/NII Space Programs Brodsky, Beryl CTR NASA (Overlook) Broussard, Robert CTR AFSPC/A5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Derkach, I. K.; Dimitrova, O. V.
2013-05-15
Crystals of a new representative of ring-radical dodecaborates Pb{sub 6}(Li{sub 0.65}Na{sub 0.19})[B{sub 12}O{sub 24}]I{sub 0.84} {center_dot} 0.168H{sub 2}O, space group R3bar m , are obtained under hydrothermal conditions. The structure is determined with-out preliminary knowledge of the chemical formula. It is close to that of the Pb{sub 6}[B{sub 12}O{sub 24}] {center_dot} H{sub 2}O dodecaborate studied earlier, but unlike the latter structure it contains admixtures of iodide anion, lithium cation, and water molecule, which incompletely populate positions in channels. The formation of the second variety, which brings to light ion-exchange properties of the crystals, is due to mineralizing ions available inmore » the concen-trated solution in the course of crystallization. The new compound is compared with beryl and cordierite, which have close structures with channels capable of capturing various groups. Structures of synthetic Na and Ag dodecaborates with analogous but distorted ring dodecaborate radicals are discussed.« less
Water Resources Program. Volume II. Milford and Beryl Operational Bases, Escalante Valley, Utah.
1981-05-28
12 3.2 Climate .......................................... 14 3.3 Vegetation....................................... 14 4.0...and clay toward the center of the valley. -Erta E-TR-51 -II5 14 I 3.2 CLIMATE The climate of Escalante Valley is semiarid and is character- ized by mild...the Escalante Valley, the natural vegetative associations are I characteristic of a semiarid climate and, in some cases, are i indicatots of the depth
Laser Spectroscopy Investigations of Materials for Solid State Laser Systems.
1988-02-01
34 ing tools such as electron paramagnetic resonance and ". oc Be11 uniaxial stress. 19 However, the lattice structure of chryso- .,Pt AI3 PAIR 4 beryl... paramagnetic of these new emission bands is not known at the present time. resonance spectrum. 15The other features of the optical spectra cannot be...solution is peak absorption c-iefficient, and E, is the saturation field. The detuning parameter which accounts for the width of the resonant electronic
United States Air Force Graduate Student Research Program. 1989 Program Technical Report. Volume 2
1989-12-01
Patterson Air Force Base) 1. Fred Arnold 4. Jon Longtin 2. Duane Daddis 5. John McCord 3. Robert Gabruk 6. Scott VanDam ARMAMENT LABORATORY (ATL) ( Eglin Air...Report as Dr. Beryl Barber *** Engineering and Services Center 22 Effects of Jet Aircraft Noise on Jon Zern Domestic Goats 23 Contaminant Flux...Pertaining to Ground Water Contamination and Laboratory Quality Control *** Same Report as Dr. Barbara Alvin * School of Aerospace Medicine 93
A Leadership Competency Model for U.S. Air Force Wing Chaplains
2009-02-12
45th Annual Conference of the International Military Testing Association, 3-6 November 2003, Pensacola, FL, 721-33, http://www.interrnationalmta.org...2005). 19 31 David C. McClelland, “ Testing for Competence Rather than for ‘Intelligence,’” American Psychologist 28, no. 1 (1973): 1-14. 32 C.K...Ronald Ash, Mariana Batista, Linda Carr, Lorraine D. Eyde , Beryl Hesketh, Jerry Kehoe, Kenneth Pearlman, Erich Prien, and Juan I. Sanchez, “The Practice of
1980-06-01
Appendix C), only the following three offered even a slight hope that they might be useful to amphibian developments: the Amphibious Air Track, page A...be associated with future amphibians. Within the past year, the University of Michigan College of Engineering has established the Office for the...Land Interface: Claude A. Blackmon, Beryle G. Stinson Jack K. Stoll AD 881 357 Engineering Design Handbook; Wheeled Amphbians: No author listed AD
Mower, R.W.; Bartholoma, Scott D.
1981-01-01
The computer model presented in this report was used to simulate the principal ground-water reservoir in the Beryl-Enterprise area, Escalante Desert, Beaver, Iron, and Washington Counties, Utah (Mower, 1981). The details of the formulation of the model, testing of its validity, and the results of predictions are discussed in the cited report. This report was prepared as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. It is an addendum to the principal interpretive report, and it is presented in order to make the model available to anyone desiring to use it for additional predictions. The main program used was the finite-difference model for aquifer simulation in two dimensions documented by Trescott, Pinder, and Larson, (1976). Minor modifications were made to adapt the program to the principal ground-water reservoir in the Beryl-Enterprise area. All the modifications are listed at the top of table 1, and were related to parameter input and output, thus none of the computational subroutines were affected. The parameter arrays (table 1) and map of the area with a grid overlay (pi. 1) are given on following pages. The model simulates an aquifer- under water-table conditions, mostly composed of unconsoliuated basin-fill deposits. The boundaries of the modeled area (pi. 1) generally coincide with the boundaries of the saturated basin fill. However, in the southwest-central part of the model, permeable consolidated rock is included; and that part of the northern boundary between the Black and Wah Wah Mountains is an arbitrary boundary in basin fill between the Beryl-Enterprise area and the Milford area that lies to the northeast. The ignimbrite at Table Butte also was included in the active part of the model. The model includes simulation of discharge by evapotranspiration from phreatophytes. The areal recharge array was used to simulate recharge entering the modeled area at its boundaries and from stream infiltration in the southern corner near Enterprise. In addition, this array included discharge by wells operated during the period simulated as being under steady-state conditions (virtually 1937), and discharging wells simulating flow of water northeast to the Milford area. These wells also were included in the transient-state simulation (1937-77), although any changes in this discharge were modeled using the pumpage array (Group IV, table 1). The wells simulating outflow to the Milford area are shown on plate 1, but the wells pumping in 1937 are not shown unless they also were pumped during 1937-77. The pumpage array was used to simulate: (1) Discharge from wells, (2) discharge after 1977 from a mine in the southwest-central part of the model and recharge resulting form the mine discharge (pi. 1), and (3) changes in discharge in wells operated during the steady-state period. Recharge from irrigation was simulated by reducing pumpage from nodes where irrigation occurs. Discharge from all wells was reduced by 5 percent by multiplying all pumpage by 0.95 in the computer program. North of Newcastle, in T. 35 S., R. 15 W., pumpage was reduced by 35 percent because surface materials are very permeable.
Master Environmental Plan, Jefferson Proving Ground, Madison, Indiana
1990-11-15
Act Comprehensive Environmental Response, Compensation, and Liability Act cadmium Code of Federal Regulations carbon monoxide carbon dioxide...T) Arsenic (III)@ 360 190 0.175 (C) 0.022 (C) Barium 1,000 (D) Beryl 1i urn 1.17 (C) 0.068 (C) Cadmium #@ (1.128[ln Hard*]-3.828) p(0.7852[ln...all waters. Fluoride shall not exceed 2.0 mg/1 in all waters, except the Ohio River and Interstate Wabash River where it shall not exceed 1.0 mg/1
Olson, D.W.
2007-01-01
Part of the 2006 industrial minerals review. During 2006, total U.S. gemstone trade with all countries and territories exceeded $28.3 billion. Estimates indicate that U.S. gemstone markets accounted for over 35 percent of world gemstone demand in 2006. Natural gemstone production from U.S. deposits during 2006 was worth an estimated $13.3 million, a slight decrease from 2005, and included agates, amber, beryl, coral, garnet, jade, jasper, opal, pearl, quartz, sapphire, shell, topaz, tourmaline, turquoise, and many other gem materials. Laboratory-created gemstone production in the U.S. was worth an estimated $47.4 million, a 7 percent drop compared to 2005 production.
1981-03-20
There are no croplands within the study area. Oil and gas leases are widely scattered in the area, and deep tests are currently being drilled. There...sightings from Uinta Basin in 1972 and 1975, from New Green River, Utah, in 1976, and from Rich and Emery counties in 1977 and 1978. The primary prey...located in a transitional area between the Great Basin and the Mojave Desert, and it contains vegeta- tion representative of both regions. Plant and
Foley, Nora K.; Jaskula, Brian W.; Piatak, Nadine M.; Schulte, Ruth F.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Beryllium is a mineral commodity that is used in a variety of industries to make products that are essential for the smooth functioning of a modern society. Two minerals, bertrandite (which is supplied domestically) and beryl (which is currently supplied solely by imports), are necessary to ensure a stable supply of high-purity beryllium metal, alloys, and metal-matrix composites and beryllium oxide ceramics. Although bertrandite is the source mineral for more than 90 percent of the beryllium produced globally, industrial beryl is critical for the production of the very high purity beryllium metal needed for some strategic applications. The current sole domestic source of beryllium is bertrandite ore from the Spor Mountain deposit in Utah; beryl is imported mainly from Brazil, China, Madagascar, Mozambique, and Portugal. High-purity beryllium metal is classified as a strategic and critical material by the Strategic Materials Protection Board of the U.S. Department of Defense because it is used in products that are vital to national security. Beryllium is maintained in the U.S. stockpile of strategic materials in the form of hot-pressed beryllium metal powder.Because of its unique chemical properties, beryllium is indispensable for many important industrial products used in the aerospace, computer, defense, medical, nuclear, and telecommunications industries. For example, high-performance alloys of beryllium are used in many specialized, high-technology electronics applications, as they are energy efficient and can be used to fabricate miniaturized components. Beryllium-copper alloys are used as contacts and connectors, switches, relays, and shielding for everything from cell phones to thermostats, and beryllium-nickel alloys excel in producing wear-resistant and shape-retaining high-temperature springs. Beryllium metal composites, which combine the fabrication ability of aluminum with the thermal conductivity and highly elastic modulus of beryllium, are ideal for producing aircraft and satellite structural components that have a high stiffness-to-weight ratio and low surface vibration. Beryllium oxide ceramics are used in a wide range of applications, including missile guidance systems, radar applications, and cell phone transmitters, and they are critical to medical technologies, such as magnetic resonance imaging (MRI) machines, medical lasers, and portable defibrillators.The United States is expected to remain self-sufficient with respect to most of its beryllium requirements, based on information available at the time this chapter was prepared (2013). The United States is one of only three countries that currently process beryllium ores and concentrate them into beryllium products, and these three countries supply most of the rest of the world with these products. Exploration for new deposits in the United States is limited because domestic beryllium production is dominated by a single producer that effectively controls the domestic beryllium market, which is relatively small and specialized, and the market cannot readily accommodate new competition on the raw material supply side.
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Cammarata, Michael; Arnold, James E. (Technical Monitor)
2002-01-01
Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 12 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Time-height analyses of the three strongest supercells are presented in order to document storm kinematic structure and evolution. These Beryl mini-supercells were comparable in radar-observed intensity but much more persistent than other tropical cyclone-spawned tornadic cells documented thus far with Doppler radars. Cloud-to-ground lightning data are also examined for all the tornadic cells in this severe swarm-type tornado outbreak. These data show many of the characteristics of previously reported heavy-precipitation supercells. Lightning rates were weak to moderate, even in the more intense supercells, and in all the storms the lightning flashes were almost entirely negative in polarity. No lightning at all was detected in some of the single-tornado storms. In the stronger cells, there is some evidence that lightning rates can decrease during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final cloud-to-ground lightning flashes. These findings suggest possible benefits from implementation of observing systems capable of monitoring intracloud as well as cloud-to-ground lightning activity.
Off-Axis Seamount Lavas at 8°20' N Span the Entire Range of East Pacific Rise MORB Compositions
NASA Astrophysics Data System (ADS)
Anderson, M.; Wanless, V. D.; Perfit, M. R.; Gregg, P. M.; Fornari, D. J.; McCully, E.; Ridley, W. I.
2017-12-01
Lavas erupted at off-axis seamounts can provide a window into mantle heterogeneity and melting systematics that are not easily observed on-axis at fast-spreading mid-ocean ridges (MORs), where melts are efficiently mixed and homogenized within shallow axial magma chambers. To investigate off-axis magmatism, we systematically mapped the 8°20' N seamount chain in November of 2016 on R/V Atlantis using shipboard EM122 multibeam system and AUV Sentry. This 160-km long chain of off-axis seamounts and ridges is located perpendicular to the ridge axis, west of the East Pacific Rise (EPR) and north of the Siqueiros Fracture Zone. The high-resolution surface and AUV-based multibeam and AUV sidescan maps are combined with geochemical analyses of 300 basalt samples, collected using HOV Alvin and dredging, to evaluate magmatic plumbing and sources off-axis. Preliminary major and trace element concentrations reveal remarkable geochemical heterogeneity (including both normal and enriched basalt compositions) across the entire seamount chain and within individual seamounts. For example, (La/Sm)N contents span the entire range of known values for basalts from northern Pacific MORs and seamounts (0.45—2.76). MgO contents vary from 10.25 to 4.56 wt. % across the seamount chain and by as much as 3.61 wt. % from volcanic features sampled at an individual seamount (Beryl). Additionally, K2O/TiO2 ratios range from 4.9 to 61.3 across the seamount chain, and by as much as 54.4 at a single seamount (Beryl), indicating heterogeneous mantle sources or variable extents of melting occur at both regional and local scales. We combine the geochemical results and bathymetric maps with petrologic models to evaluate extents and depths of fractional crystallization and mantle melting in the off-axis environment.
Quantum Behavior of Water Molecules Confined to Nanocavities in Gemstones.
Gorshunov, Boris P; Zhukova, Elena S; Torgashev, Victor I; Lebedev, Vladimir V; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A; Dressel, Martin
2013-06-20
When water is confined to nanocavities, its quantum mechanical behavior can be revealed by terahertz spectroscopy. We place H2O molecules in the nanopores of a beryl crystal lattice and observe a rich and highly anisotropic set of absorption lines in the terahertz spectral range. Two bands can be identified, which originate from translational and librational motions of the water molecule isolated within the cage; they correspond to the analogous broad bands in liquid water and ice. In the present case of well-defined and highly symmetric nanocavities, the observed fine structure can be explained by macroscopic tunneling of the H2O molecules within a six-fold potential caused by the interaction of the molecule with the cavity walls.
1980-12-01
4.4.2-4 Distribution of the larger playa lakes in the Texas high plains. 4-793 4.4.2-5 Distribution of elk in the vicinity of Beryl, Utah, OB. 4-796 4.4.2... lIMA 28DAA SUITABILITY AREAS * 221 Ci~)HYDROLOGIC SUBUNITS 08 SUITABILITY AREAS (2 ARIONA In 22M 2211 212 / 3222-D Table 4.3.2.10-1. Summary of energy...is constructed 4-636 W F’ 130 --- *47 In- IGIA 744 711 soo LPL IS12 13 0 Um ?S ______________ 119 47 lIMA 14PROVO 13 UTN4 SEVE -. 4 t UT "SA 2111 06
A Personal Reflection on the History of Radiation Oncology at Memorial Sloan-Kettering Cancer Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Florence C.H., E-mail: hermanl@mskcc.org; Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY; Division of Radiation Therapy, New York Hospital-Cornell Medical Center, New York, NY
Purpose: To provide a historical and personal narrative of the development of radiation oncology at Memorial Sloan-Kettering Cancer Center (MSKCC), from its founding more than 100 years ago to the present day. Methods and Materials: Historical sources include the Archives of MSKCC, publications by members of MSKCC, the author's personal records and recollections, and her communications with former colleagues, particularly Dr. Basil Hilaris, Dr. Zvi Fuks, and Dr. Beryl McCormick. Conclusions: The author, who spent 38 years at MSKCC, presents the challenges and triumphs of MSKCC's Radiation Oncology Department and details MSKCC's breakthroughs in radiation oncology. She also describes MSKCC'smore » involvement in the founding of the American Society for Therapeutic Radiology and Oncology.« less
Maps showing geology, structure, and geophysics of the central Black Hills, South Dakota
Redden, Jack A.; DeWitt, Ed
2008-01-01
This 1:100,000-scale digital geologic map details the complex Early Proterozoic granitic rocks, Early Proterozoic supracrustal metamorphic rocks, and Archean crystalline basement of the Black Hills. The granitic rocks host pegmatite deposits renowned for their feldspar, mica, spodumene, and beryl. The supracrustal rocks host the Homestake gold mine, which produced more than 40 million ounces of gold over a 125-year lifetime. The map documents the Laramide deformation of Paleozoic and Mesozoic cover rocks; and shows the distribution of Laramide plutonic rocks associated with precious-metals deposits. Four 1:300,000-scale maps summarize Laramide structures; Early Proterozoic structures; aeromagnetic anomalies; and gravity anomalies. Three 1:500,000-scale maps show geophysical interpretations of buried Early Proterozoic to Archean rocks in western South Dakota and eastern Wyoming.
Rare gases in cyclosilicates and cogenetic minerals
NASA Technical Reports Server (NTRS)
Saito, K.; Alexander, E. C., Jr.; Dragon, J. C.; Zashu, S.
1984-01-01
The cyclosilicate minerals, beryl, tourmaline, and cordierite, typically contain large amounts of He-4 and Ar-40 which are not in situ radiogenic products. In the study of excess rare gases in cyclosilicates, one of the most enigmatic observations is the age effect, a qualitative tendency for geologically older samples to contain more excess He-4 and Ar-40 than younger samples. The present investigation is concerned with measurements regarding the abundance and isotopic composition of all five rare gases in a number of cyclosilicates as well as in their cogenetic minerals. The significance of the obtained data is discussed. The data indicate that cyclosilicates sample the rare gases present in the environment in which they crystallize. This 'sampling' involves major elemental fractionations which are variable but mineral specific. Cyclosilicates can, therefore, be used to probe the isotopic ratios and elemental compositions.
May, I.; Rowe, J.J.
1965-01-01
A modified Morey bomb was designed which contains a removable nichromecased 3.5-ml platinium crucible. This bomb is particularly useful for decompositions of refractory samples for micro- and semimicro-analysis. Temperatures of 400-450?? and pressures estimated as great as 6000 p.s.i. were maintained in the bomb for periods as long as 24 h. Complete decompositions of rocks, garnet, beryl, chrysoberyl, phenacite, sapphirine, and kyanite were obtained with hydrofluoric acid or a mixture of hydrofluoric and sulfuric acids; the decomposition of chrome refractory was made with hydrochloric acid. Aluminum-rich samples formed difficultly soluble aluminum fluoride precipitates. Because no volatilization losses occur, silica can be determined on sample solutions by a molybdenum-blue procedure using aluminum(III) to complex interfering fluoride. ?? 1965.
Langer, William H.
2015-01-01
Previous PRISM reports discuss a variety of industrial minerals. Gypsum, phosphate, salt, stone, sulfur, and ilmenite command the majority of the attention in the earlier geologic reports. (Ilmenite is evaluated in a separate U.S. Geological Survey report in the current study). Asbestos, arsenic, barite, fluorite, and kaolin are listed in indices (occurrence datasets) as potential mineral resources (Marsh and Anderson, 2015), but previous reports do not elaborate on their development potential. Beryl, described herein with the discussions of pegmatites, is also listed in indices of potential mineral resources, but has not been described in terms of its industrial mineral potential. Short discussions on the potential for cement (carbonate rocks), glass sand, peat, and sillimanite resources are included in this report.
Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals
NASA Astrophysics Data System (ADS)
Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng
2011-06-01
Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.
SILL HILL, HAUSER, AND CALIENTE ROADLESS AREAS, CALIFORNIA.
Todd, Victoria R.; Peters, Thomas J.
1984-01-01
Probable resource potential for metallic minerals and gemstones was identified during mineral-resource surveys in the Sill Hill, Hauser, and Caliente Roadless Areas, California. Parts of the Sill Hill Roadless Area have a probable potential for gold, tungsten, and nickel and by-product copper. Part of the Caliente Roadless Area has a probable potential for tourmaline, beryl, quartz, and possibly other specimen minerals and gemstones. No mineral-resource potential was identified in the Hauser Roadless Area, although potash feldspar is abundant as a rock-forming constituent in two parts of the area. The Caliente Roadless Area lies less than 1 mi from an area of hot springs activity which may be part of a low-grade geothermal resource area, but no geothermal resource potential was identified in this or any of the other areas. No resource potential for nuclear energy was identified in this study and the geologic terrane precludes the occurrence of hydrocarbon resources.
Hingganite-(Y) from a small aplite vein in granodiorite from Oppach, Lusatian Mts., E-Germany
NASA Astrophysics Data System (ADS)
Thomas, Rainer; Davidson, Paul
2017-12-01
Crystals of hingganite-(Y) occur co-trapped in quartz crystals from miarolitic cavities in an aplite vein in the Cadomian granodiorite from Oppach/Lusatian, Germany. We describe the chemical composition and provide a reference Raman spectrum of this mineral, for which little useful spectral data has been published. In addition, we provide some inferences as to the genesis of this mineral in relationship to melt and fluid inclusions in quartz. The paragenetic sequence of minerals conserved only as small crystal inclusions in quartz, demonstrates an unusual occurrence in the Lusatian aplites, characterized by an unusual, extremely water-rich, near-supercritical melt-fluid system with high concentrations in alkali carbonates and sulfates. We propose that a sulfate-rich system was responsible for the fixation of Be and REE as hingganite-(Y), rather than the more common beryl + REE mineral assemblage. This may provide an explanation for the formation of this otherwise rare mineral
Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukova, Elena S., E-mail: zhukovaelenka@gmail.com; Gorshunov, Boris P.; 1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart
2014-06-14
Low-energy excitations of a single water molecule are studied when confined within a nano-size cavity formed by the ionic crystal lattice. Optical spectra are measured of manganese doped beryl single crystal Mn:Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}, that contains water molecules individually isolated in 0.51 nm diameter voids within the crystal lattice. Two types of orientation are distinguished: water-I molecules have their dipole moments aligned perpendicular to the c axis and dipole moments of water-II molecules are parallel to the c-axis. The optical conductivity σ(ν) and permittivity ε{sup ′}(ν) spectra are recorded in terahertz and infrared ranges, at frequencies from severalmore » wavenumbers up to ν = 7000 cm{sup −1}, at temperatures 5–300 K and for two polarizations, when the electric vector E of the radiation is parallel and perpendicular to the c-axis. Comparative experiments on as-grown and on dehydrated samples allow to identify the spectra of σ(ν) and ε{sup ′}(ν) caused exclusively by water molecules. In the infrared range, well-known internal modes ν{sub 1}, ν{sub 2}, and ν{sub 3} of the H{sub 2}O molecule are observed for both polarizations, indicating the presence of water-I and water-II molecules in the crystal. Spectra recorded below 1000 cm{sup −1} reveal a rich set of highly anisotropic features in the low-energy response of H{sub 2}O molecule in a crystalline nano-cavity. While for E∥c only two absorption peaks are detected, at ∼90 cm{sup −1} and ∼160 cm{sup −1}, several absorption bands are discovered for E⊥c, each consisting of narrower resonances. The bands are assigned to librational (400–500 cm{sup −1}) and translational (150–200 cm{sup −1}) vibrations of water-I molecule that is weakly coupled to the nano-cavity “walls.” A model is presented that explains the “fine structure” of the bands by a splitting of the energy levels due to quantum tunneling between the minima in a six-well potential relief felt by a molecule within the cavity.« less
Culka, Adam; Baštová, Markéta; Bašta, Petr; Kuntoš, Jaroslav
2016-01-01
A miniature lightweight portable Raman spectrometer and a palm-sized device allow for fast and unambiguous detection of common gemstones mounted in complex jewels. Here, complex religious artefacts and the Ring Monstrance from the Loreto treasury (Prague, Czech Republic; eighteenth century) were investigated. These discriminations are based on the very good correspondence of the wavenumbers of the strongest Raman bands of the minerals. Very short laser illumination times and efficient collection of scattered light were sufficient to obtain strong diagnostic Raman signals. The following minerals were documented: quartz and its varieties, beryl varieties (emerald), corundum varieties (sapphire), garnets (almandine, grossular), diamond as well as aragonite in pearls. Miniature Raman spectrometers can be recommended for common gemmological work as well as for mineralogical investigations of jewels and cultural heritage objects whenever the antiquities cannot be transported to a laboratory. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799426
Jehlička, Jan; Culka, Adam; Baštová, Markéta; Bašta, Petr; Kuntoš, Jaroslav
2016-12-13
A miniature lightweight portable Raman spectrometer and a palm-sized device allow for fast and unambiguous detection of common gemstones mounted in complex jewels. Here, complex religious artefacts and the Ring Monstrance from the Loreto treasury (Prague, Czech Republic; eighteenth century) were investigated. These discriminations are based on the very good correspondence of the wavenumbers of the strongest Raman bands of the minerals. Very short laser illumination times and efficient collection of scattered light were sufficient to obtain strong diagnostic Raman signals. The following minerals were documented: quartz and its varieties, beryl varieties (emerald), corundum varieties (sapphire), garnets (almandine, grossular), diamond as well as aragonite in pearls. Miniature Raman spectrometers can be recommended for common gemmological work as well as for mineralogical investigations of jewels and cultural heritage objects whenever the antiquities cannot be transported to a laboratory.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).
New data on the substantial composition of Kalba rare metal deposits
NASA Astrophysics Data System (ADS)
Oitseva, T. A.; Dyachkov, B. A.; Vladimirov, A. G.; Kuzmina, O. N.; Ageeva, O. V.
2017-12-01
Geotectonic position, features of the geological structure and rare metal specialization of the Kalba-Narym granitoid belt formed in the Hercynian cycle in the postcollision (orogenic) geodynamic situation are considered. A geological-genetic model for the formation of the leading type of rare-metal pegmatite deposits (Ta, Nb, Be, Li, etc.) is presented. They are spatially and genetically related mainly to the granitoids of the 1st phase of the Kalba complex, P1 (Bakennoye, Jubilee, Belaya Gora, etc.). The rhythmically pulsating orientation of the process of pegmatite formation with the introduction of ore-bearing fluids (H2O, F, B, Cl, Ta, Nb, Be, etc.) is emphasized from the intracamera focus of a semi-closed magmatic system. The preferred location of ore pegmatite veins in granitoids of moderate basicity occupying an intermediate position in the petrochemical composition between normal granites and granodiorites geochemically specialized in Li, Rb, Cs, Sn, Nb, Ta. The leading ore-controlling role of the latitudinal deep faults of the ancient site in the distribution of rare-metal ore fields and deposits (Ognevsk-Bakennoye, Asubulak, Belogorsk, etc.) is determined. There is a zonal structure of pegmatite veins, a gradual development of mineral complexes from the graphic and oligoclase-microcline (non-ore) to microcline-albite and color albite-spodumene (ore). The mineralization of pegmatite veins is determined by the degree of intensity of the manifestation in them of metasomatic processes (microclinization, alibitization, greisenization, spodumenization, tourmalinization, etc.) and the identification of the main ore minerals (tantalite-columbite, cassiterite, spodumene and beryl). The diversity of the material composition of rare-metal pegmatites containing many unique minerals (cleavelandite, lepidolite, ambligonite, color tourmaline, spodumene, pollucite, etc.) is reflected, which brings them closer to the pegmatite deposits of foreign countries (Koktogai, Bernik Lake, etc.). New results of the investigation of the material composition of ore-bearing granites, pegmatites and typomorphic minerals using electron microscopy reflecting the distribution of rare-earth, rare-metal, chalcophile and other elements in them are presented. Indicators of rare metal ore formation are rock-forming minerals of granites (quartz, microcline, biotite, muscovite), ore and associated minerals (cleavelandite, lepidolite, cassiterite, etc.). The most informative minerals include mica (muscovite, giltbertite, lepidolite), colored tourmalines and beryls of different composition and color. Identified typomorphic minerals and geochemical elements-indicators of rare metal pegmatite formation are considered as a leading search criterion in assessing the prospects of the territory of East Kazakhstan.
Structure analysis on synthetic emerald crystals
NASA Astrophysics Data System (ADS)
Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou
2013-05-01
Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.
NASA Astrophysics Data System (ADS)
Miladinović, Zoran; Simić, Vladimir; Jelenković, Rade; Ilić, Miloje
2016-06-01
Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.
Geology of the Spruce Pine District, Avery, Mitchell, and Yancy Counties, North Carolina
Brobst, Donald Albert
1962-01-01
The Spruce Pine pegmatite district, a northeastward-trending belt 25 miles long and 10 miles wide, lies in parts of Avery, Mitchell, and Yancey Counties in the Blue Ridge Province of western North Carolina. The most abundant rocks in the district are interlayered mica and amphibole gneisses and schists, all of which are believed to be of Precambrian age. These rocks are cut by small bodies of dunite and associated rocks of Precambrian (?) age, large bodies of alaskite and associated pegmatite of early Paleozoic age, and basaltic and diabasic dikes and sills of Triassic (?) age. The rocks of the district have been weathered to saprolite that is locally 50 feet thick. The major structure in the area is a southwestward-plunging asymmetrical synclinorium that has its steeper limb on the northwest side. Feldspar, muscovite as sheet and scrap (ground) mica, and kaolin from the alaskite and associated pegmatite account for over 90 percent of the total mineral production of the district. Amounts of other pegmatite minerals, including quartz, beryl, columbite-tantalite, rare-earth and uranium minerals are an extremely small part of the mineral resources. Actual or potential products from other rocks are olivine, vermiculite, asbestos, talc, chromium and nickel, soapstone, mica schist, garnet, kyanite, dolomite marble, and construction materials.
The first X-ray diffraction measurements on Mars.
Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert
2014-11-01
The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.
Diffusion of Carbon Dioxide in Cordierite-like Structures: a FTIR Imaging Approach
NASA Astrophysics Data System (ADS)
Radica, F.; Bellatreccia, F.; Della Ventura, G.; Freda, C.; Cinque, G.; Cestelli Guidi, M.
2013-12-01
In the last decades microporous and mesoporous minerals have been recognized to be very important materials from both a geological and a technological viewpoint. In this context, cordierite plays a key role since it represents the only case of a widespread microporous mineral able to trap significant amounts of molecular H2O and CO2 [1] under extreme geological conditions, spanning from the amphibolite facies to ultra-high temperature metamorphism to crustal anatexis [2]. The analysis of volatiles in cordierite can be a very useful tool to define the composition of coexisting fluids during its formation, thus a deeper knowledge of their diffusion mechanism through the structure is crucial in petrologic studies. However, it may have significant implications on technological issues such as the design of new strategies for the permanent sequestration of atmospheric CO2. The incorporation of CO2 into cordierite has been studied by several authors [1, 3], who pointed out the extreme difficulty to reach the sample saturation and homogenization, implying that in experimental studies knowledge of the actual distribution of the volatile molecules in the run samples is crucial to derive any scientific conclusion. In this work, we addressed this problem using FTIR imaging. Our experiments were carried out in tandem on natural cordierite and synthetic CO2-free beryl, a mineral which is isostructural with cordierite. All samples were treated in CO2-saturated atmosphere at different pressure, temperature and time conditions using a non end-load piston-cylinder apparatus at INGV. The run products were oriented using a spindle stage, cut and doubly polished, and analyzed using polarized micro-FTIR spectroscopy at INFN-LNF in order to study the distribution across the sample and quantify the CO2 content. Preliminary data show that both pressure and time play a major role on the diffusion of gaseous CO2 in both cordierite and beryl, whereas the effect of temperature is less noticeable. High-resolution FPA (focal-plane-array of detectors) SR (synchrotron radiation)-FTIR imaging was done at beamline B22, Diamond laboratory (Oxford, UK). The data show that the diffusion of CO2 occurs exclusively along the structural channels running along the c-axis direction. Notably, the diffusion path of CO2 does not exceed 200 μm even after 10 days treatment. Sample cracks formed during the experimental runs speed up the gas diffusion; measured CO2 contents along these cracks are up to 4 times higher. Several CO2-rich samples were heat-treated up to 1200 °C using a Linkam heating stage to investigate the rate of CO2 evacuation as a function of temperature. In situ FTIR spectra have shown that the decarbonation process starts around 800 °C. Continuous heating experiments on 60 μm thick slabs pointed out that the diffusion rates are very low; complete CO2 extraction could not be achieved even after 2 hour heating at 1000 °C. [1] Armbruster and Bloss (1982) Am. Mineral. 67, 284-291. [2] Vry et al. (1990) Am. Mineral. 75, 71-88 [3] Le Breton (1989) Contrib. Mineral. Petrol. 103, 387-396.
NASA Astrophysics Data System (ADS)
Kesraoui, M.; Marignac, C.; Hamis, A.; Cuney, M.
2012-04-01
In the c. 525 Ma RMG province of the Laouni terrane of the Pan-African Tuareg Shield (Hoggar), the small N20°E elliptic Rechla cupola (200x100 m) is particularized by a rim of Qtz-Kfs-Znw pegmatite. It is a medium-grained Na-Li-F granite, with quartz, albite (An01), rare microcline, topaz, Mn-lepidolite (≤ 8% MnO) and Hf-zircon, and: 71.4 % SiO2, 0.93% FeO+MgO+MnO (Mg # 0.19, Mg/Mg+Fe+Mn 0.09), 9.22% Na2O+K2O (Na # 0.7), Al-Na-K-2Ca from 55 to 85, and low P2O5 (0.05%) and ∑ REE (23 ppm) contents, with a pronounced tetrad effect and <0 Eu anomaly in the REE pattern. Such a composition is typical of a low-P peraluminous RMG deriving from highly potassic calcalkaline suites (A2 type) (Linnen & Cuney 2005), enriched in F (1.6%), Li (1,600 ppm), Zn (300 ppm), Be (7 ppm), Sn (740 ppm), W (40 ppm) and specially Ta (165 ppm, Ta/Nb between 2.4 and 2.6), the latter as columbo-tantalite and Mn-wodginite (Ta # 0.8). The pegmatite rim comprises, towards the intrusion (i) thick Kfs lenses (palissadic crystals ≥ 50 cm), (ii) a laminated quartz-zinnwaldite-(beryl) sequence , and (iii) a discontinuous band of fine-grained granite, with quartz, albite, topaz, Mn-lepidolite and beryl, equally fractionated: 69.4% SiO2, 0.85% FeO+MgO+MnO (Mg# 0.06, Mg/Mg+Fe+Mn 0.02), Al-Na-K-2Ca = 32, F 0.4%, Li 610 ppm, Ta 240 ppm (Ta/Nb = 2.4), Be 500 ppm. The laminated sequence overprints the Kfs lenses. It comprises thick (≤ 20 m) quartz lenses cross-cut by 10 cm-sized alternating bands of euhedral quartz and Mn-zinnwaldite (≤ 6.5% MnO). REE-patterns of the Mn-Znw display a clear inverse tetrad effect, symmetrical of the granite pattern. At the boundary with the fine-grained internal band, euhedral quartz crystals are projecting toward the inner wall. The Rechla body and its surrounding pegmatites are intrusive into a porphyritic biotite-granite representative of the evolved magmas of the A2-type Taourirt suite (Azzouni-Sekkal & Boissonnas 1993), with a classical "seagull" pattern and a pronounced <0 Eu anomaly. Geochemical modelling shows that the main Rechla magma is likely the fractionated product of this already differentiated magma, mainly involving quartz and Kfs. The pegmatite rim is interpreted as the result of the sequential crystallization of a Rechla-type melt, with late individualisation of a Fe-rich magmatic-hydrothermal phase responsible for the quartz-zinnwaldite assemblage, leaving a strongly Be-enriched residual liquid (the fine-grained granite). As demonstrated by the Rechla occurrence, Ta concentration at levels similar to those in Beauvoir-type high-P peraluminous granites may be reached in the low-P low-Ta A2 suites, provided that extreme fractionation processes are established. Azzouni-Sekkal, A., Boissonnas, J. (1993). Une province magmatique de transition du calco-alcalin à l'alcalin : les granitoïdes pan-africains à structure annulaire de la chaîne pharusienne du Hoggar (Algérie). Bulletin Société Géologique France 164, 597-608. Linnen, R.L., Cuney, M. (2005). Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: RL Linnen, IM Samson (eds), Rare-element geochemistry and mineral deposits, Geological Association of Canada (GAC) Short Course Notes 17, pp. 45-67.
Fournier, R.O.; Weltman, U.; Counce, D.; White, L.D.; Janik, C.J.
2002-01-01
Each year at Norris Geyser Basin, generally in August or September, a widespread hydrothermal 'disturbance' occurs that is characterized by simultaneous changes in the discharge characteristics of many springs, particularly in the Back Basin. During the summer season of 1995, water samples from eight widely distributed hot springs and geysers at Norris were collected each week and analyzed to determine whether chemical and isotopic changes also occurred in the thermal waters at the time of the disturbance. In addition, Beryl Spring in Gibbon Canyon, 5.8 km southwest of Norris Geyser Basin, was included in the monitoring program. Waters discharged by four of the monitored hot springs and geysers appear to issue from relatively deep reservoirs where temperatures are at least 270 C and possibly higher than 300 C. At the time of, and for several days after, the onset of the 1995 disturbance, the normally neutral-chloride waters discharged by these four features all picked up an acid-sulfate component and became isotopically heavier. The acid-sulfate component appears to be similar in composition to some waters discharged in 100 Spring Plain that issue from subsurface regions where temperatures are in the range 170-210 C. However, the two monitored springs that discharge acid-chloride-sulfate waters in the 100 Spring Plain region did not show any significant chemical or isotopic response to the annual disturbance. Beryl Spring, and two neutral-chloride hot springs at Norris that appear to draw their water from reservoirs where temperatures are 250 C or less, also did not show any significant chemical or isotopic response to the annual disturbance. After the start of the annual disturbance, chloride concentrations in water sampled from Double Bulger Geyser in the Back Basin increased from about 800 ppm to about 1500 ppm, nearly twice as high as any previously reported chloride concentration in a thermal water at Yellowstone. The isotopic composition of that water precludes an origin of the high chloride by evaporation at atmospheric pressure. One way to account for the unique chemical and isotopic composition of this highly concentrated wateris by recirculation of water that had gone through one cycle of adiabatic cooling during upflow (decompressional boiling) back down into the hydrothermal system, where it is reheated to greater than 220 C. This previously boiled water then undergoes additional cycles of decompressional boiling during subsequent upflow. Another way the unique chemical and isotopic composition of Double Bulger water might evolve is by excess boiling in the formation that results from a decrease in fluid pressure within the channels of upflow. The annual disturbance at Norris Geyser Basin generally appears to be triggered by a cyclic up and down movement of the boilingpoint curve within the hydrothermal system in response to changes in the potentiometric surface of the cold water that is adjacent to, and interconnected with, that hydrothermal system. Annual disturbance phenomena that are easily recognized at Norris Geyser Basin may not be easily recognized elsewhere in Yellowstone National Park because (1) the neutral-chloride waters at Norris ascend directly from higher-temperature and higherpressure reservoirs (270 to >300 C at Norris compared to 180-215C at Upper and Lower Geyser Basins) that are capable of producing massive amounts of high-pressure steam, and (2) the clay that makes hot spring and geyser waters become turbid at Norris, heralding the start of the disturbance, comes from acid altered rocks that are widely distributed at intermediate depths at Norris, and that are rare in other geyser basins.
Dings, M.G.; Schafer, Max
1953-01-01
During the summer of 1952 most of the mines and prospects in the Garfield and Taylor Park quadrangles of west-central Colorado were examined radiometrically by the U. S. Geological Survey to determine the extent, grade, and mode of occurrence of radioactive substances. The region contains a relatively large number of rock types, chiefly pre-Cambrian schists, gneisses, and granites; large and small isolated areas of sedimentary rocks of Paleozoic and Mesozoic ages; and a great succession of intrusive rocks of Tertiary age that range from andesite to granite and occur as stocks, chonoliths, sills, dikes, and one batholith. The prevailing structures are northwest-trending folds and faults. Ores valued at about $30,000,000 have been produced from this region. Silver, lead, zinc, and gold have accounted for most of this value, but small tonnages of copper, tungsten, and molybdenum have also been produced. The principal ore minerals are sphalerite, silver-bearing galena, cerussite, smithsonite, and gold-bearing pyrite and limonite; they occur chiefly as replacement bodies in limestone and as shoots in pyritic quartz veins. Anomalous radioactivity is uncommon and the four localities at which it is known are widely separated in space. The uranium content of samples from these localities is low. Brannerite, the only uranium-bearing mineral positively identified in the region, occurs sparingly in a few pegmatites and in one quartz-beryl-pyrite vein. Elsewhere radioactivity is associated with (l) black shale seams in the Manitou dolomite, (2) a quartz-pyrite-molybdenite vein, (3) a narrow border zone of oxidized material surrounding a small lead zinc ore body in the Manitou dolomite along a strong fault zone.
The heat capacity of hydrous cordierite above 295 K
NASA Astrophysics Data System (ADS)
Carey, J. William
1993-04-01
The heat capacity of synthetic hydrous cordierite (Mg2Al4Si5O18·nH2O) has been determined by differential scanning calorimetry (DSC) from 295 to 425 K as a function of H2O content. Six samples with H2O contents ranging from 0 to 0.82 per formula unit were examined. The partial molar heat capacity of H2O in cordierite over the measured temperature interval is independent of composition and temperature within experimental uncertainty and is equal to 43.3 ±0.8 J/mol/ K. This value exceeds the molar heat capacity of gaseous H2O by 9.7 J/mol/K, but is significantly smaller than the heat capacity of H2O in several zeolites and liquid H2O. A statistical-mechanical model of the heat capacity of adsorbed gas species (Barrer 1978) is used to extrapolate the heat capacity of hydrous cordierite to temperatures greater than 425 K. In this model, the heat capacity of hydrous cordierite (Crd·nH2O) is represented as follows: Cp(Crd · nH2O) = Cp(Crd)+ n{Cp(H2O, gas)+ R(gas constant)} (1) An examination of calorimetric data for hydrous beryl, analcime, mordenite, and clinoptilolite (Hemingway et al. 1986; Johnson et al. 1982, 1991, 1992) demonstrates the general applicability of the statistical-mechanical model for the extrapolation of heat capacity data of zeolitic minerals. The heat capacity data for cordierite are combined with the data of Carey and Navrotsky (1992) to obtain the molar enthalpy of formation and enthalpy of hydration of hydrous cordierite as a function of temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dionne, B.; Tzanos, C. P.
To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model andmore » methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.« less
Koblin, Beryl; Hirshfield, Sabina; Chiasson, Mary Ann; Wilton, Leo; Usher, DaShawn; Nandi, Vijay; Hoover, Donald R; Frye, Victoria
2017-12-19
HIV testing is a critical component of HIV prevention and care. Interventions to increase HIV testing rates among young black men who have sex with men (MSM) and black transgender women (transwomen) are needed. Personalized recommendations for an individual's optimal HIV testing approach may increase testing. This randomized trial tests the hypothesis that a personalized recommendation of an optimal HIV testing approach will increase HIV testing more than standard HIV testing information. A randomized trial among 236 young black men and transwomen who have sex with men or transwomen is being conducted. Participants complete a computerized baseline assessment and are randomized to electronically receive a personalized HIV testing recommendation or standard HIV testing information. Follow-up surveys are conducted online at 3 and 6 months after baseline. The All About Me randomized trial was launched in June 2016. Enrollment is completed and 3-month retention is 92.4% (218/236) and has exceeded study target goals. The All About Me intervention is an innovative approach to increase HIV testing by providing a personalized recommendation of a person's optimal HIV testing approach. If successful, optimizing this intervention for mobile devices will widen access to large numbers of individuals. ClinicalTrial.gov NCT02834572; https://clinicaltrials.gov/ct2/show/NCT02834572 (Archived by WebCite at http://www.webcitation.org/6vLJWOS1B). ©Beryl Koblin, Sabina Hirshfield, Mary Ann Chiasson, Leo Wilton, DaShawn Usher, Vijay Nandi, Donald R Hoover, Victoria Frye. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 19.12.2017.
McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Holloway, JoAnn M.
2010-01-01
The Gibbon River in Yellowstone National Park (YNP) is an important natural resource and habitat for fisheries and wildlife. However, the Gibbon River differs from most other mountain rivers because its chemistry is affected by several geothermal sources including Norris Geyser Basin, Chocolate Pots, Gibbon Geyser Basin, Beryl Spring, and Terrace Spring. Norris Geyser Basin is one of the most dynamic geothermal areas in YNP, and the water discharging from Norris is much more acidic (pH 3) than other geothermal basins in the upper-Madison drainage (Gibbon and Firehole Rivers). Water samples and discharge data were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006. Surface inflows from Norris Geyser Basin were sampled to identify point sources and to quantify solute loading to the Gibbon River. The source and fate of the major solutes (Ca, Mg, Na, K, SiO2, Cl, F, HCO3, SO4, NO3, and NH4) in the Gibbon River were determined in this study and these results may provide an important link in understanding the health of the ecosystem and the behavior of many trace solutes. Norris Geyser Basin is the primary source of Na, K, Cl, SO4, and N loads (35–58%) in the Gibbon River. The largest source of HCO3 and F is in the lower Gibbon River reach. Most of the Ca and Mg originate in the Gibbon River upstream from Norris Geyser Basin. All the major solutes behave conservatively except for NH4, which decreased substantially downstream from Gibbon Geyser Basin, and SiO2, small amounts of which precipitated on mixing of thermal drainage with the river. As much as 9–14% of the river discharge at the gage is from thermal flows during this period.
NASA Astrophysics Data System (ADS)
Oo, Tin Ko
2011-07-01
The Mogok Stone Tract area has long been known for world famous finest ruby since 1597. The Mogok area lies in northern Myanmar and is located at about 205.99km northeast from Mandalay, the second largest city of Myanmar. The Mogok Group of metasedimentary rocks is divided into four units: (1) Wabyudaung Marble, (2) Ayenyeinchantha Calc-silicate, (3) Gwebin Quartzite, and (4) Kabe Gneiss. Igneous rocks in the Mogok area are classified into two units: (1) Kabaing Granite and (2) Pingutaung Leucogranite. The Mogok area has a complex structure involving several folds and faults. Using marbles and calc-silicates as marker horizons, a series of anticline and syncline can be identified such as Mogok syncline, Ongaing anticline, Bawpadan syncline, and Kyatpyin anticline. All the foldings show a low-angle plunge to the south. The main precious stones of the Mogok area are ruby and sapphire; and the other important semi-precious stones are spinel, topaz, peridot, garnet, apatite, beryl, tourmaline (rubellite), quartz, diopside, fluorite, and enstatite. Geological and remote sensing data are processed to extract the indicative features of gem mineralized areas: lithology, structure, and hydrothermal alteration. Density slice version of Landsat ETM band ratios 5/7 is used to map clay alterations. Filtering Landsat ETM band 5 by using edge detection filter is applied for lineament mapping. Spatial integration of various geoscience and remote sensing data sets such as geological maps, Landsat ETM images, and the location map of gem mines show the distribution of alteration zones associated with the gem mineralization in the study area. Geographic Information System (GIS) model has been designed and implemented by ARCVIEW software package based on the overlay of lithologic, lineament, and alteration vector maps. This process has resulted in delineation of most promising areas of probable gem mineralized zones as on the output map.
NASA Astrophysics Data System (ADS)
Castroviejo, R.
1990-12-01
Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite — accompanied by quartz, adularia, sericite, ± (tourmaline, chlorite, carbonates, graphite), as main gangue minerals -with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrothermal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.;
2013-01-01
X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in the Rocknest samples.
Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia
Hummel, C.L.; Ankary, Abdullah O.
1972-01-01
Rocks, structures, and mineral deposits which are the result of both the older Halaban petro-tectonic cycle and the younker Najd Wrench Fault deformation are present in the Ash Shumta area. Northward-trending belts of granitic rocks and folded, layered metavolcanic and metasedimentary rocks of the Halaban Formation which they intrude represent the effects of the Halaban cycle. These older rocks are everywhere transected and deformed by northwestward- and northeastward-striking fractures and strike-slip faults and by eastward-striking fractures and fracture-controlled silicic dikes which belong to the Najd Wrench Fault deformation. Several kinds of epigenetic mineral deposits of hydrothermal origin are present throughout the Ash Shumta area. All occur in or ape closely associated with structures of the Najd Wrench Fault deformation. The mineralization which produced the deposits is thought to have taken place during the period of deformation which produced the Najd Wrench Fault structures. The hydrothermal deposits include many metalliferous quartz veins most of which occur in three mineralized areas: two major areas at Jabal Ash Shumta and Jabal El Khom in the northern half of the quadrangle and a minor area along Wadj al Boharah in the southeastern part of the quadrangle. The metalliferous lodes possess the only economic potential in the area of the Jabal Ash Shumta quadrangle. These lodes consist mainly of gold and base metal-bearing quartz veins, some of which were mined for gold in ancient times. The mineralized area at Jabal Ash Shumta has the best of these veins. Higher temperature veins with wolframite as a major constituent and beryl as a minor one occur in a granite cupola in the eastern part of the El Khom area. These veins have altered, gneissen-like wall rocks. Although the grade of the veins is low at the surface, the made could increase at depth. The tungsten-bearing veins and El Khom area possess the greatest economic promise in the Jabal Ash Shumta quadrangle. They deserve detailed surface investigation followed if needed by exploration at depth.
Sandberg, George W.
1963-01-01
This report is intended to serve two purposes: (1) to make available to the public basic ground-water data useful in planning and studying development of water resources, and (2) to supplement an interpretive report that will be published later.Records were collected during the period 1935-62 by the U.S. Geological Survey in cooperation with the Utah State Engineer as part of the investigation of ground-water conditions in the Beaver, Escalante, Cedar City, and Parowan Walleys. This report will include records collected subsequent to data published in earlier reports listed in the bibliography. The interpretive material will be published in a companion report by George W. Sandberg.This report is most useful in predicting conditions likely to be found in areas that are being considered as well sites. The person considering the new well can spot the proposed site on plate 1 and examine the records of nearby wells as shown in the tables and figure 2. From table 1 he can note such things as diameter, depth, water level, yield, use of water, and depth to aquifers in wells in the vicinity, and from the well logs in table 3 he can note the type of material that yields water to the wells. Table 2 gives several years record of yields and pumping levels of irrigation wells, and in table 4 are the chemical analyses of water from wells and springs. Figure 2 shows the historic fluctuations and trends of water levels in the four valleys. If the reader decides from his examination that conditions are favorable, he can place an application to drill a well with the State Engineer. During the past several years, however, the State Engineer has rejected new applications to appropriate water in major portions of Beaver Valley, Milford and Beryl-Enterprise districts in Escalante Valley, and Cedar City Valley. Anyone seeking to initiate a new ground-water right in any of these areas should obtain information from the State Engineer's Office in either Salt Lake City or Cedar City to determine the likelihood of approval of the required application.The report is also useful when planning large-scale developments of water supply. This and other uses of the report will be helped by use of the interpretive report upon its release.
NASA Astrophysics Data System (ADS)
Chukanov, N. V.; Aksenov, S. M.; Pekov, I. V.; Ternes, B.; Schüller, W.; Belakovskiy, D. I.; Van, K. V.; Blass, G.
2014-12-01
A new mineral, ferroindialite, a Fe2+-dominant analog of indialite, has been found in a pyrometamorphosed xenolith of pelitic rock hosted in alkaline basalts. Associated minerals are phlogopite, sanidine, sillimanite, pyroxenes of the enstatite-ferrosilite series, wagnerite, fluorapatite, tridymite, zircon and almandine. Ferroindialite forms brown-purple to gray with a violet-blue tint short prismatic or thick tabular hexagonal crystals up to 1.5 mm in size. The new mineral is brittle, with a Mohs' hardness of 7. Cleavage is not observed. D meas = 2.66(1), D calc = 2.667 g/cm3. IR spectrum shows neither H2O nor OH groups. Ferroindialite is anomalously biaxial (-), α = 1.539(2), β = 1.552(2), γ = 1.554(2), 2 V meas = 30(10)°. The mineral is weakly pleochroic, ranging from colorless on X to pale violet on Z. Dispersion is weak, r < v. The chemical composition (electron microprobe, mean of five point analyses, wt %) is as follows: 0.14 Na2O, 0.46 K2O, 4.95 MgO, 1.13 MnO, 12.66 FeO, 2.64 Fe2O3, 30.45 Al2O3, 47.22 SiO2, total is 99.65. The distribution of total iron content between Fe2+ and Fe3+ was carried out according to structural data. The empirical formula of ferroindialite is: (K0.06Na0.03)(Fe{1.12/2+}Mg0.78Mn0.10)Σ2.00(Al3.79Fe{0.21/3+})Σ4.00Si4.98O18. The simplified formula is: (Fe2+,Mg)2Al4Si5O18. The crystal structure has been refined on a single crystal, R = 0.049. Ferroindialite is hexagonal, space group P6/ mcc; a = 9.8759(3), c = 9.3102(3) Å, V = 786.40(3) Å3, Z = 2. The strongest lines in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 8.59 (100) (100), 4.094 (27) (102), 3.390 (35) (112), 3.147 (19) (202), 3.055 (31) (211), 2.657 (12) (212), 1.695 (9) (224). The type specimen of ferroindialite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4400/1.
NASA Astrophysics Data System (ADS)
Knierzinger, Wolfgang; Palzer, Markus; Wagreich, Michael; Meszar, Maria; Gier, Susanne
2016-04-01
A newly developed, MATLAB based garnet provenance plot allows a three-dimensional tetrahedral representation of the chemistry of garnets for the endmembers almandine, pyrope, spessartine and grossular. Based on a freely accessible database of Suggate & Hall (2013) and additional EPMA-data on the internet, the chemistry of more than 2500 garnets was evaluated and used to create various subfields that correspond to different facies conditions of metapelitic, metasomatic and metaigneous rocks as well as granitic rocks. These triangulated subfields act as reference structures within the tetrahedron, facilitating assignments of garnet chemistries to different lithologies. In comparison with conventional tenary garnet discrimination diagrams by Mange & Morton (2007), Wright/Preston et al. (1938/2002) and Aubrecht et al. (2009), this tetrahedral provenance plot enables a better assessment of the conditions of formation of garnets by reducing the overlapping of certain subfields. In particular, a clearer distinction between greenschist facies rocks, amphibolite facies rocks and granitic rocks can be achieved. First applications of the tetrahedral garnet plot provided new insights on sedimentary processes during the Lower Miocene in the pre-Alpine Molasse basin. Bibliography Aubrecht, R., Meres, S., Sykora, M., Mikus, T. (2009). Provenance of the detrital garnets and spinels from the Albian sediments of the Czorsztyn Unit (Pieniny Klippen Belt , Western Carpathians, Slovakia). In: Geologica Carpathica, Dec. 2009, 60, 6, pp. 463-483. Mange, M.A., Morton, A.C. (2007). Geochemistry of Heavy Minerals. In: Mange, M.A. & Wright, D.T.(2007).Heavy Minerals in Use, Amsterdam, pp. 345-391. Preston, J., Hartley, A., Mange-Rajetzky, M., Hole, M., May, G., Buck, S., Vaughan, L. (2002). The provenance of Triassic continental sandstones from the Beryl Field, northern North Sea: Mineralogical, geochemical and sedimentological constraints. In: Journal of Sedimentary Research, 72, pp. 18-29. Suggate, S.M., Hall, R., (2013). Using detrital garnet compositions to determine provenance: a new compositional database and procedure. In: Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N. (Eds.), Sediment Provenance Studies in Hydrocarbon Exploration and Production. Geological Society of London, Special Publication, 386. http://dx.doi.org/10.1144/SP386.8 Wright, W.I., (1938).The composition and occurrence of garnets. In: American Mineralogist, 23,pp. 436 - 449.
Mineral-deposit model for lithium-cesium-tantalum pegmatites
Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.
2017-06-20
Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be derived by fractional crystallization. In cases where a parental granite pluton is not exposed, one is inferred to lie at depth. Lithium-cesium-tantalum LCT pegmatite melts are enriched in fluxing components including H2O, F, P, and B, which depress the solidus temperature, lower the density, and increase rates of ionic diffusion. This, in turn, enables pegmatites to form thin dikes and massive crystals despite having a felsic composition and temperatures that are significantly lower than ordinary granitic melts. Lithium-cesium-tantalum pegmatites crystallized at remarkably low temperatures (about 350–550 °C) in a remarkably short time (days to years).Lithium-cesium-tantalum pegmatites form in orogenic hinterlands as products of plate convergence. Most formed during collisional orogeny (for example, Kings Mountain district, North Carolina). Specific causes of LCT pegmatite-related magmatism could include: ordinary arc processes; over thickening of continental crust during collision or subduction; slab breakoff during or after collision; slab delamination before, during, or after collision; and late collisional extensional collapse and consequent decompression melting. Lithium-cesium-tantalum pegmatite deposits are present in all continents including Antarctica and in rocks spanning 3 billion years of Earth history. The global age distribution of LCT pegmatites is similar to those of common pegmatites, orogenic granites, and detrital zircons. Peak times of LCT pegmatite genesis at about 2640, 1800, 960, 485, and 310 Ma (million years before present) correspond to times of collisional orogeny and supercontinent assembly. Between these pulses were long intervals when few or no LCT pegmatites formed. These minima overlap with supercontinent tenures at ca. 2450–2225, 1625–1000, 875–725, and 250–200 Ma.Exploration and assessment for LCT pegmatites are guided by a number of observations. In frontier areas where exploration has been minimal at best, the key first-order criteria are an orogenic hinterland setting, appropriate regional metamorphic grades, and the presence of evolved granites and common granitic pegmatites. New LCT pegmatites are most likely to be found near known deposits. Pegmatites tend to show a regional mineralogical and geochemical zoning pattern with respect to the inferred parental granite, with the greatest enrichment in the more distal pegmatites. Mineral-chemical trends in common pegmatites that can point toward an evolved LCT pegmatite include: increasing rubidium in potassium feldspar, increasing lithium in white mica, increasing manganese in garnet, and increasing tantalum and manganese in columbite-tantalite. Most LCT pegmatite bodies show a distinctive internal zonation featuring four zones: border, wall, intermediate (where lithium, cesium, and tantalum are generally concentrated), and core. This zonation is expressed both in cross section and map view; thus, what may appear to be a common pegmatite may instead be the edge of a mineralized body.Neither lithium-cesium-tantalum pegmatites nor their parental granites are likely to cause serious environmental concerns. Soils and country rock surrounding a LCT pegmatite, as well as waste from mining operations, may be enriched in characteristic elements relative to global average soil and bedrock values. These elements may include lithium, cesium, tantalum, beryllium, boron, fluorine, phosphorus, manganese, gallium, rubidium, niobium, tin, and hafnium. Among this suite of elements, however, the only ones that might present a concern for environmental health are beryllium and fluorine, which are included in the U.S. Environmental Protection Agency drinking-water regulations with maximum contaminant levels of 4 micrograms per liter and 4 milligrams per liter, respectively.
Geology of the Ralston Buttes district, Jefferson County, Colorado: a preliminary report
Sheridan, Douglas M.; Maxwell, Charles H.; Albee, Arden L.; Van Horn, Richard
1956-01-01
The Ralston Buttes district in Jefferson County is one of the most significant new uranium districts located east of the Continental Divide in Colorado. The district is east of the Colorado Front Range mineral belt, along the east front of the range. From November 1953 through October 1956, about 10,000 tons of uranium ore, much of which was high-grade pitchblende-bearing vein material, was shipped from the district. The ore occurs in deposits that range in size from bodies containing less than 50 tons to ore shoots containing over 1,000 tons. The only other mining activity in the area has been a sporadic production of beryl, feldspar, and scrap mica from Precambrian pegmatites, and quarrying of dimension stone, limestone, and clay from sedimentary rocks. Most of the Ralston Buttes district consists of complexly folded Precambrian metamorphic and igneous rocks - gneiss, schist, quartzite, amphibolite, and granodiorite. Paleozoic and Mesozoic sedimentary rocks crop out in the northeastern part of the district. These rocks are cut by northwesterly-trending fault systems of Laramide age and by small bodies of intrusive rocks that are Tertiary in age. The typical uranium deposits in the district are hydrothermal veins occupying openings in Laramide fault breccias or related fractures that cut the Precambrian rocks. Pitchblende and lesser amounts of secondary uranium minerals are associated with sparse base-mental sulfides in a gangue of carbonate minerals, potash feldspar, and, more rarely, quartz. Less common types of deposits consist of pitchblende and secondary uranium minerals that occupy fractures cutting pegmatites and quartz veins. The uranium deposits are concentrated in two areas, the Ralston Creek area and the Golden Gate Canyon area. The deposits in the Ralston Creek area are located along the Rogers fault system, and the deposits in the Golden Gate Canyon area are along the Hurricane Hill fault system. Two geologic factors were important to the localization of the uranium deposits: (1) favorable structural environment and (2) favorable host rocks. The deposits in each of the two major areas are located where a northwesterly-trending Laramide fault system splits into a complex network of faults. Also, most of the deposits appear to be localized where the faults cut Precambrian rocks rich in hornblende, biotite, or garnet and biotite. The ore controls recognized in this relatively new uranium district may have wider application in areas of similar geology elsewhere in the Front Range.
NASA Astrophysics Data System (ADS)
Dewaele, S.; Muchez, Ph; Burgess, R.; Boyce, A.
2015-12-01
The Central African Mesoproterozoic Karagwe-Ankole belt in the Great Lakes area (DRCongo, Rwanda, Burundi, Uganda and Tanzania) forms a metallogenic province that hosts a variety of granite-related mineralization, which contains cassiterite, columbite-tantalite, wolframite/ferberite, spodumene and beryl. The Kalima area in the Maniema province of the DRCongo forms one of the most important areas for cassiterite mineralization in the eastern part of the DRCongo, even after many decades of exploitation. The mineralization dominantly consists of quartz veins that are hosted in Mesoproterozoic metasediments at the contact with granitic rocks of the Kalima granite (Avuanga and Yubuli) or directly crosscutting these granitic rocks (Atondo). Only limited - and mainly unmineralized pegmatites - have been described in the Lutshurukuru area. Mineralized quartz veins - and some granite bodies - intruded following the regional tectonic foliation or existing fracture zones, confirming the late-to post-tectonic origin of the fertile granite system. The emplacement of the quartz veins resulted in an alteration of the metasedimentary and granitic host-rocks, mainly resulting in muscovitization, tourmalinization and silicification. Cassiterite itself formed relatively late during vein formation and is associated with muscovite in fractures in or along the margins of the quartz veins. 40Ar-39Ar age dating of muscovite of an unmineralized pegmatite from the Lutshurukuru area gave an excellent plateau age of 1024 ± 5.5 Ma, while the muscovite associated with mineralization gave plateau ages of 986 ± 5.3 Ma for the Atondo deposit and 992.4 ± 5.4 Ma for the Yubuli deposit. The rather large spread in ages between the supposed parental granite/pegmatite and quartz veins is interpreted to reflect different magmatic events in the evolution of a composite granite system, starting at ∼1020 Ma and ending with mineralized quartz vein formation at ∼990 Ma. The latter age corresponds with the U-Pb age reported for columbite-tantalite in the area (993 ± 1 Ma at Kamisuku), which could be interpreted as the primary formation age of a new generation of mineralized pegmatites in the Kalima area, or as the resetting age of the U-Pb system during the ∼990 Ma mineralizing event. Muscovite of a mineralized greisen sample of Avuanga gave a plateau age with relaxed constraints of 1010.3 ± 5.9 Ma, which has been interpreted as a partially resetting of muscovite formed at ∼1020 Ma age, during the ∼990 Ma event.
A Mapping of the Electron Localization Function for Earth Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Cox, David F.; Ross, Nancy
2005-06-01
The electron localization function, ELF, generated for a number of geometry-optimized earth materials, provides a graphical representation of the spatial localization of the probability electron density distribution as embodied in domains ascribed to localized bond and lone pair electrons. The lone pair domains, displayed by the silica polymorphs quartz, coesite and cristobalite, are typically banana-shaped and oriented perpendicular to the plane of the SiOSi angle at ~0.60 Å from the O atom on the reflex side of the angle. With decreasing angle, the domains increase in magnitude, indicating an increase in the nucleophilic character of the O atom, rendering itmore » more susceptible to potential electrophilic attack. The Laplacian isosurface maps of the experimental and theoretical electron density distribution for coesite substantiates the increase in the size of the domain with decreasing angle. Bond pair domains are displayed along each of the SiO bond vectors as discrete concave hemispherically-shaped domains at ~0.70 Å from the O atom. For more closed-shell ionic bonded interactions, the bond and lone pair domains are often coalesced, resulting in concave hemispherical toroidal-shaped domains with local maxima centered along the bond vectors. As the shared covalent character of the bonded interactions increases, the bond and lone pair domains are better developed as discrete domains. ELF isosurface maps generated for the earth materials tremolite, diopside, talc and dickite display banana-shaped lone pair domains associated with the bridging O atoms of SiOSi angles and concave hemispherical toroidal bond pair domains associated with the nonbridging ones. The lone pair domains in dickite and talc provide a basis for understanding the bonded interactions between the adjacent neutral layers. Maps were also generated for beryl, cordierite, quartz, low albite, forsterite, wadeite, åkermanite, pectolite, periclase, hurlbutite, thortveitite and vanthoffite. Strategies are reviewed for finding potential H docking sites in the silica polymorphs and related materials. As observed in an earlier study, the ELF is capable of generating bond and lone pair domains that are similar in number and arrangement to those provided by Laplacian and deformation electron density distributions. The formation of the bond and lone pair domains in the silica polymorphs and the progressive decrease in the SiO length as the value of the electron density at the bond critical point increases indicates that the SiO bonded interaction has a substantial component of covalent character.« less
Geochemical Analysis for Sedimentary Emerald Mineralization in Western Emerald belt, Colombia
NASA Astrophysics Data System (ADS)
Nino Vasquez, Gabriel Felipe; Song, Sheng-Rong
2017-04-01
1Gabriel Felipe Nino Vasquez and 1Sheng-Rong Song 1Department of Geosciences, National Taiwan University Colombia hosts a large quantity of mineral resources due to its complex tectonic arrangement, and emerald deposits are one of the most representatives for the country. Emeralds in Colombia occur mainly in black shale, and are located in eastern Andes Cordillera with two parallel belts separated by approximately 130 Km: the Western belt (WB) and the Eastern belt (EB). The geological, mineralogical and tectonic features from these belts are quite similar (Buenaventura 2002). Previous researchers concluded that emeralds in Colombia came from hydrothermal sedimentary processes without any magmatic influence, and suggested that the source of Cr, V and Be (which are important components of the beryl) was the host rock. According to their results, the process which allowed the shale to release these cations was the metasomatism (albitization and carbonization), which was resulted from the interaction between the rocks and the alkaline brines. Fractures and fault planes originated by these tectonic movements were fulfilled by enriched fluids, which they allowed emeralds and the other minerals precipitation with decreasing alkalinity and pressure (Giuliani et al. 1994). However, there were several pitfalls of conclusions drawn from previous researches. Firstly, Cr and V were widely distributed and come from mafic and ultramafic rocks, and Be was mostly found in pegmatites, finding these elements in sedimentary rocks suggest that probably the ultramafic rocks occurred not far from the deposits. Secondly, there was an inconsistency in the estimated temperatures of emeralds formation, i.e. temperature of hydrothermal sedimentary deposits was only 200° C, while laboratory analysis showed that the formation of emeralds was higher than 300° C. Therefore, there might still be an allocthonus influence on emerald formation that significantly increases the temperature. This research is going to contribute information in order to clarify these inconsistencies, We have done the O and C isotopes in calcite and S isotope in pyrite and shale from different mines along the (WB) in order to determine the main fluid source of the mineralization. Selected samples will also be analyzed with EDS, RAMAN and ICP-MS methods to obtain the exact compositions of elements with extremely low concentrations in host rock, metazomatized host rock and mineralization (productive and not productive veins); the main purpose is to measure how strong were the fluid-rock interaction to leach elements out from the black shale. Thin sections from the altered shale and vein have been analyzed with the purpose of identify paragenesis and microstructures in the mineralization. Finally, we would like to gather the results from different sectors and compare it with the previous studies.
Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.
2008-01-01
Water analyses are reported for 157 samples collected from numerous hot springs, their overflow drainages, and Lemonade Creek in Yellowstone National Park (YNP) during 2003-2005. Water samples were collected and analyzed for major and trace constituents from ten areas of YNP including Terrace and Beryl Springs in the Gibbon Canyon area, Norris Geyser Basin, the West Nymph Creek thermal area, the area near Nymph Lake, Hazle Lake, and Frying Pan Spring, Lower Geyser Basin, Washburn Hot Springs, Mammoth Hot Springs, Potts Hot Spring Basin, the Sulphur Caldron area, and Lemonade Creek near the Solfatara Trail. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, and sulfur redox distribution in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved onsite. Water temperature, specific conductance, pH, Eh (redox potential relative to the Standard Hydrogen Electrode), and dissolved hydrogen sulfide were measured onsite at the time of sampling. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally minutes to hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved-iron and ferrous-iron concentrations often were measured onsite in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride-generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methyl mercury were determined by cold-vapor atomic-fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved nitrite were determined by colorimetry or chemiluminescence. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties
NASA Astrophysics Data System (ADS)
Konovalenko, Sergey I.; Ananyev, Sergey A.; Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Aksenov, Sergey M.; Baeva, Anna A.; Gainov, Ramil R.; Vagizov, Farit G.; Lopatin, Oleg N.; Nebera, Tatiana S.
2015-11-01
A new mineral rossovskyite named after L.N. Rossovsky was discovered in granite pegmatites of the Bulgut occurrence, Altai Mts., Western Mongolia. Associated minerals are microcline, muscovite, quartz, albite, garnet of the almandine-spessartine series, beryl, apatite, triplite, zircon, pyrite, yttrobetafite-(Y) and schorl. Rossovskyite forms flattened anhedral grains up to 6 × 6 × 2 cm. The color of the mineral is black, and the streak is black as well. The luster is semi-metallic, dull. Mohs hardness is 6. No cleavage or parting is observed. Rossovskyite is brittle, with uneven fracture. The density measured by the hydrostatic weighing method is 6.06 g/cm2, and the density calculated from the empirical formula is 6.302 g/cm3. Rossovskyite is biaxial, and the color in reflection is gray to dark gray. The IR spectrum contains strong band at 567 cm-1 (with shoulders at 500 and 600 cm-1) corresponding to cation-oxygen stretching vibrations and weak bands at 1093 and 1185 cm-1 assigned as overtones. The reflection spectrum in visible range is obtained. According to the Mössbauer spectrum, the ratio Fe2+:Fe3+ is 35.6:64.4. The chemical composition is as follows (electron microprobe, Fe apportioned between FeO and Fe2O3 based on Mössbauer data, wt%): MnO 1.68, FeO 5.92, Fe2O3 14.66, TiO2 7.69, Nb2O5 26.59, Ta2O5 37.51, WO3 5.61, total 99.66. The empirical formula calculated on four O atoms is: {{Mn}}_{0.06}^{2 + } {{Fe}}_{0.21}^{2 + } {{Fe}}_{0.47}^{3 + } Ti0.25Nb0.51Ta0.43W0.06O4. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is monoclinic, space group P2/ c, a = 4.668(1), b = 5.659(1), c = 5.061(1) Å, β = 90.21(1)º; V = 133.70(4) Å3, Z = 2. Topologically, the structure of rossovskyite is analogous to that of wolframite-group minerals. The crystal-chemical formula of rossovskyite is [(Fe3+, Fe2+, Mn)0.57Ta0.32Nb0.11][Nb0.40Ti0.25Fe0.18Ta0.11W0.06]O4. The strongest lines of the powder X-ray diffraction pattern [ d, Å (I, %) ( hkl)] are as follows: 3.604 (49) (110), 2.938 (100) (-1-11), 2.534 (23) (002), 2.476 (29) (021), 2.337 (27) (200), 1.718 (26) (-202), 1.698 (31) (-2-21), 1.440 (21) (-311). The type specimen of rossovskyite is deposited in the Mineralogical Museum of the Tomsk State University, Tomsk, 634050 Russia, with the inventory number 20927.
Ball, James W.; McMleskey, R. Blaine; Nordstrom, D. Kirk
2010-01-01
Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006-2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an on-site mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively. Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on-site in the mobile laboratory vehicle. Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively coupled plasma-optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methylmercury were determined by cold-vapor atomic fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. For many samples, concentrations of dissolved fluoride also were determined by ion-specific electrode. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO2 equilibration techniques, respectively.
Mapping contact metamorphic aureoles in Extremadura, Spain, using Landsat thematic mapper images
Rowan, L.C.; Anton-Pacheco, C.; Brickey, D.W.; Kingston, M.J.; Payas, A.
1987-01-01
In the Extremadura region of western Spain, Ag, Pb, Zn, and Sn deposits occur in the pieces of late Hercynian granitic plutons and near the pluton contacts in late Proterozoic slate and metagraywacke that have been regionally metamorphosed to the green schist facies. The plutons generally are well exposed and have distinctive geomorphological expression and vegetation; poor exposures of the metasedimentary host rocks and extensive cultivation, however, make delineation of the contact aureoles difficult. Landsat Thematic Mapper (TM) images have been used to distinguish soil developed on the contact metamorphic rocks from soil formed on the stratigraphically equivalent slate-metagraywacke sequence. The mineral constituents of these soils are similar, except that muscovite is more common in the contact metamorphic soil; carbonaceous material is common in both soils. Contact metamorphic soil have lower reflectance, especially in the 1.6-micrometers wavelength region (TM 5), and weaker Al-OH, Mg-OH, and Fe3+ absorption features than do spectra of the slate-metagraywacke soil. The low-reflectance and subdued absorption features exhibited by the contact metamorphic soil spectra are attributed to the high absorption coefficient f the carbonaceous material caused by heating during emplacement of the granitic plutons. These spectral differences are evident in a TM 4/3, 4/5, 3/1 color-composite image. Initially, this image was used to outline the contact aureoles, but digital classification of the TM data was necessary for generating internally consistent maps of the distribution of the exposed contact metamorphic soil. In an August 1984, TM scene of the Caceras area, the plowed, vegetation-free fields were identified by their low TM 4/3 values. Then, ranges of TM 4/5 and 3/1 values were determine for selected plower fields within and outside the contact aureoles; TM 5 produced results similar to TM 4/5. Field evaluation, supported by X-ray diffraction and petrographic studies, confirmed the presence of more extensive aureoles than shown in published geologic maps; few misclassified areas were noted. Additional plowed fields consisting of exposed contact metamorphic soil were mapped digitally in an August 1985 TM scene. Subsequently, this approach was used to map two 1-km-wide linear zones of contact metamorphosed rock and oil in the San Nicolas-Sn-W Mine area, which is located approximated 125 km southeast of the Caceras study area. Exposures of granite in the San Nicolas area are limited to a few unaltered granitic dikes in the mine and a small exposure of unaltered pegmatite-bearing granite in a quarry about 1.5 km west of the mine. The present of coarsely crystalline biotite and beryl in the granite in the quarry and of contact metamorphosed slate up to 2.5 km from the nearest granite exposure suggest that only the apical part of a pluton is exposed in the quarry and that a larger, shallowly buried body is probably present. These results indicate that potential application of TM image analysis to mineral exploration in lithologically similar areas that are cultivated in spite of poor rock exposures.
Koblin, Beryl A; Nandi, Vijay; Hirshfield, Sabina; Chiasson, Mary Ann; Hoover, Donald R; Wilton, Leo; Usher, DaShawn; Frye, Victoria
2017-07-07
Regular human immunodeficiency virus (HIV) testing of persons at risk is critical to HIV prevention. Infrequent HIV testing and late diagnosis of HIV infection have been observed among young black men who have sex with men (MSM) and transwomen (transgender women)-two groups overrepresented in the HIV epidemic. The objective of this study was to inform the development of a brief mobile phone intervention to increase HIV testing among young black MSM and transwomen by providing a tailored recommendation of an optimal HIV testing approach. We identified demographic, behavioral, psychosocial, and sociostructural factors associated with intentions to use three specific HIV testing approaches: self-testing, testing at a clinic or other provider, and couples HIV testing and counseling (CHTC). Individuals were eligible for a Web-based survey if they were male at birth; were between the ages of 16 and 29 years; self-identified as black, African American, Caribbean black, African black, or multiethnic black; were not known to be HIV-infected; and reported insertive or receptive anal intercourse with a man or transwoman in the last 12 months. Recruitment occurred via banner advertisements placed on a range of social and sexual networking websites and apps in New York City and nationally, and via events attended by young black MSM and transwomen in New York City. Intention to test by each testing method was analyzed using logistic regression with best subset models and stepwise variable selection. Among 169 participants, intention to use a self-test was positively associated with comfort in testing by a friend or a partner at home (Adjusted odds ratio, AOR, 2.40; 95% CI 1.09-5.30), and stigma or fear as a reason not to test (AOR 8.61; 95% CI 2.50-29.68) and negatively associated with higher social support (AOR 0.48; 95% CI 0.33-0.72) and having health insurance (AOR 0.21; 95% CI 0.09-0.54). Intention to test at a clinic or other provider was positively associated with self-efficacy for HIV testing (AOR 2.87; 95% CI 1.48-5.59) and social support (AOR 1.98; 95% CI 1.34-2.92), and negatively associated with a lifetime history of incarceration (AOR 0.37; 95% CI 0.16-0.89). Intention to test by CHTC was negatively associated with higher educational level (Some college or Associate's degree vs high school graduate or less [AOR 0.81; 95% CI 0.39-1.70]; Bachelor's degree or more vs high school graduate or less [AOR 0.28; 95% CI 0.11-0.70]). Unique factors were associated with intention to test using specific testing approaches. These data will be critical for the development of a tailored intervention that shows promise to increase comfort and experiences with a variety of testing approaches among young black MSM and transwomen. ©Beryl A Koblin, Vijay Nandi, Sabina Hirshfield, Mary Ann Chiasson, Donald R Hoover, Leo Wilton, DaShawn Usher, Victoria Frye. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 07.07.2017.