Science.gov

Sample records for beryllium halides

  1. Studies on extraction of beryllium from thiocyanate solutions by quaternary ammonium halides.

    PubMed

    El-Yamani, I S; El-Messieh, E N

    A 0.4M tricaprylmethylammonium chloride solution in n-hexane was used for the quantitative extraction of beryllium from hydrochloric acid (pH 3) and 5M potassium thiocyanate. Beryllium was stripped from the organic phase with 1M sodium hydroxide, then determined volumetrically with bismuthyl perchlorate and bromocresol green indicator. Beryllium was extracted in presence of a large number of elements which are usually associated with it in beryl and in fission products of nuclear fuel.

  2. METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE

    DOEpatents

    Runnals, O.J.C.

    1959-02-24

    The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  3. Method of making alloys of beryllium with plutonium and the like

    DOEpatents

    Runnals, O J.C.

    1959-02-24

    The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  4. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  5. Beryllium disease.

    PubMed Central

    Jones Williams, W.

    1988-01-01

    The increasing use of beryllium in a variety of industries continues to be a hazard. New cases are still being reported to the UK Beryllium Case Registry, now numbering 60 in the period 1945-1988. The majority of cases follow inhalation which results in acute beryllium disease (chemical pneumonitis) or more commonly chronic beryllium disease--a granulomatous pneumonitis. Granulomatous skin nodules also occur following local implantation. The clinical and radiological features are briefly described with the emphasis on pathology and immunology. Laser microprobe mass spectrometry analysis of tissue sections is a major advance in diagnosis. Detection of beryllium distinguishes the granulomas of chronic beryllium disease from other diseases, in particular sarcoidosis. The role of beryllium lymphocyte transformation tests is discussed. Chronic beryllium disease is steroid dependent and local excision of skin lesions appears to be curative. There is no evidence that beryllium is carcinogenic. Images Figure 1 PMID:3074283

  6. Beryllium Toxicity

    MedlinePlus

    ... potential for exposure to it. People working in industries where beryllium is mined, processed, machined, or converted into metal, alloys, and other chemicals may be exposed to high levels of beryllium. ...

  7. Chronic Beryllium Disease

    MedlinePlus

    ... an immune response or “allergy” to beryllium metal, ceramic or alloy, termed beryllium sensitization (BeS). Beryllium sensitization ... Mroz MM, Newman LS. Beryllium disease screening in ceramics industry: Blood test performance and exposure-disease relations. ...

  8. Beryllium disease

    SciTech Connect

    Not Available

    1991-12-20

    After two workers at the nuclear weapons plant at Oak Ridge National Laboratory in Tennessee were diagnosed earlier this year with chronic beryllium disease (CBD), a rare and sometimes fatal scarring of the lungs, the Department of Energy ordered up a 4-year probe. Now, part of that probe has begun - tests conducted by the Oak Ridge Associated Universities' Center for Epidemiological Research measuring beryllium sensitivity in 3,000 people who've been exposed to the metal's dust since Manhattan Project managers opened the Y-12 plant at Oak Ridge in 1943. Currently, 119 Y-12 employees process beryllium, which has a number of industrial uses, including rocket heat shields and nuclear weapon and electrical components. The disease often takes 20 to 25 years to develop, and the stricken employees haven't worked with beryllium for years. There is no cure for CBD, estimated to strike 2% of people exposed to the metal. Anti-inflammatory steroids alleviate such symptoms as a dry cough, weight loss, and fatigue. Like other lung-fibrosis diseases that are linked to lung cancer, some people suspect CBD might cause some lung cancer. While difficult to diagnose, about 900 cases of CBD have been reported since a Beryllium Case Registry was established in 1952. The Department of Energy (DOE) estimates that about 10,000 DOE employees and 800,000 people in private industry have worked with beryllium.

  9. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  10. Beryllium weldability

    SciTech Connect

    Hill, M.A.; Damkroger, B.K.; Dixon, R.D. ); Robertson, E. )

    1990-01-01

    Welding processes and metallurgical considerations for beryllium welding are discussed in this review. The primary difficulties of welding beryllium are hot cracking, cracking at defects, and ductility limitation or thermally induced cracking. Solutions to these welding problems include control of the Fe/Al ratio in the base metal to reduce hot cracking, minimization of the BeO content and starting grain size to limit cracking at defects and ductility limitation cracking, and optimization of the welding process and process variables. 25 refs., 9 figs., 2 tabs.

  11. Method for welding beryllium

    SciTech Connect

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1995-12-31

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. Beryllium parts made using this method can be used as structural components in aircraft, satellites and space applications.

  12. Method for welding beryllium

    DOEpatents

    Dixon, R.D.; Smith, F.M.; O`Leary, R.F.

    1997-04-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon. 9 figs.

  13. THORIUM-BERYLLIUM ALLOYS AND METHOD OF PRODUCING SAME

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1959-09-01

    >The preparation is described of thorium-berylium alloys from halides of the metals by stmultaneously reducing thorium fluoride and beryllium fluoride with calcium at approximately 650 deg C and maintaining the temperature until the thorium-beryhltum alloy separates from the slag.

  14. Laser fabrication of beryllium components

    SciTech Connect

    Hanafee, J.E.; Ramos, T.J.

    1995-08-01

    Working with the beryllium industry on commercial applications and using prototype parts, the authors have found that the use of lasers provides a high-speed, low-cost method of cutting beryllium metal, beryllium alloys, and beryllium-beryllium oxide composites. In addition, they have developed laser welding processes for commercial structural grades of beryllium that do not need a filler metal; i.e., autogenous welds were made in commercial structural grades of beryllium by using lasers.

  15. Superplasticity of beryllium

    NASA Astrophysics Data System (ADS)

    Papirov, I. I.; Nikolaenko, A. A.; Shokurov, V. S.; Tuzov, Yu. V.

    2016-04-01

    Beryllium is a metal having unique physicomechanical properties, including a record specific rigidity, but it undergoes cold and red brittleness. As a result of long-term investigations, we were the first to manufacture high-purity fine-grained beryllium, which has the room-temperature plasticity that is higher than that of commercial-purity powdered beryllium by an order of magnitude and exhibits superplastic flow at elevated temperatures. In this review, we summarize the results of the long-term study of the superplastic flow of beryllium and the mechanisms of high-temperature deformation.

  16. Beryllium: genotoxicity and carcinogenicity.

    PubMed

    Gordon, Terry; Bowser, Darlene

    2003-12-10

    Beryllium (Be) has physical-chemical properties, including low density and high tensile strength, which make it useful in the manufacture of products ranging from space shuttles to golf clubs. Despite its utility, a number of standard setting agencies have determined that beryllium is a carcinogen. Only a limited number of studies, however, have addressed the underlying mechanisms of the carcinogenicity and mutagenicity of beryllium. Importantly, mutation and chromosomal aberration assays have yielded somewhat contradictory results for beryllium compounds and whereas bacterial tests were largely negative, mammalian test systems showed evidence of beryllium-induced mutations, chromosomal aberrations, and cell transformation. Although inter-laboratory differences may play a role in the variability observed in genotoxicity assays, it is more likely that the different chemical forms of beryllium have a significant effect on mutagenicity and carcinogenicity. Because workers are predominantly exposed to airborne particles which are generated during the machining of beryllium metal, ceramics, or alloys, testing of the mechanisms of the mutagenic and carcinogenic activity of beryllium should be performed with relevant chemical forms of beryllium.

  17. Beryllium Desorption from Sediments

    NASA Astrophysics Data System (ADS)

    Boschi, V.; Willenbring, J. K.

    2015-12-01

    Beryllium isotopes have provided a useful tool in the field of geochronology and geomorphology over the last 25 years. The amount of cosmogenic meteoric 10Be and native 9Be absorbed to soils often scales with the residence time and chemical weathering of sediments in a landscape, respectively. Thus, the concentrations in river sediment may be used to quantify the denudation of specific watersheds. When deposited in ocean sediment, these concentrations are thought to record the history of denudation on Earth over the last ~10 Ma. The use of both isotopes often relies on the premise of beryllium retention to sediment surfaces in order to preserve a landscape's erosion and weathering signature. Changes in setting, en route from the soil to fluvial system to the ocean, can cause beryllium desorption and may preclude some applications of the 10Be/9Be system. Four mechanisms were tested to determine the desorption potential of beryllium including a reduction in pH, an increase in ionic strength and complexation with soluble organic and inorganic species. These processes have the potential to mobilize beryllium into solution. For example, by both reducing the pH and increasing the ionic strength, competition for adsorption sites increases, potentially liberating beryllium from the sediment surface. In addition, organic and inorganic ligands can complex beryllium causing it to become mobilized. To determine which of these alterations influence beryllium desorption and to quantify the effect, we prepared separate solutions of beryllium bound to minerals and organic compounds and measured beryllium concentrations in solution before and after adjusting the pH, ionic strength, and changing inorganic and organic ligand concentrations. We conclude from our observations that overall, beryllium sorbed to organic compounds was more resistant to desorption relative to mineral-associated beryllium. Among the methods tested, a reduction in pH resulted in the greatest amount of

  18. METHOD OF BRAZING BERYLLIUM

    DOEpatents

    Hanks, G.S.; Keil, R.W.

    1963-05-21

    A process is described for brazing beryllium metal parts by coating the beryllium with silver (65- 75 wt%)-aluminum alloy using a lithium fluoride (50 wt%)-lithium chloride flux, and heating the coated joint to a temperature of about 700 un. Concent 85% C for about 10 minutes. (AEC)

  19. METHOD OF WORKING BERYLLIUM

    DOEpatents

    Macherey, R.E.

    1959-02-01

    >A process is presented for fabricating beryllium metal. The billet cf beryllium metal is sheathed with a jacket of either copper or stainless steel. It may then be worked by drawing or the like at a tcmperature of 300 to 400 C.

  20. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  1. Cooperativity in beryllium bonds.

    PubMed

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia

    2014-03-01

    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  2. Beryllium Manufacturing Processes

    SciTech Connect

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  3. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  4. Some Properties of Beryllium Oxide and Beryllium Oxide - Columbium Ceramals

    NASA Technical Reports Server (NTRS)

    Robards, C F; Gangler, J J

    1951-01-01

    High-temperature tensile and thermal-shock investigations were conducted on beryllium oxide and beryllium oxide plus columbium metal additions. X-ray diffraction and metallographic results are given. The tensile strength of 6150 pounds per square inch for beryllium oxide at 1800 degrees F compared favorably with the zirconia bodies previously tested. Additions of 2, 5, 8, 10, 12, and 15 percent by weight of columbium metal failed to improve the shock resistance over that of pure beryllium oxide.

  5. Containerless processing of beryllium

    NASA Technical Reports Server (NTRS)

    Wouch, G.; Keith, G. H.; Frost, R. T.; Pinto, N. P.

    1977-01-01

    Melting and solidification of a beryllium alloy containing 1.5% BeO by weight in the weightless environment of space has produced cast beryllium with a relatively uniform dispersion of BeO throughout. Examination of the cast material shows that it is coarse grained, although the BeO is not heavily agglomerated in the flight specimen. Ground based comparison experiments show extreme agglomeration and segregation of BeO, resulting in large zones which are practically free of the oxide. Several postulated hypotheses for the failure to grain refine the beryllium are formulated. These are: (1) spherodization of the BeO particles during specimen preparation and during the molten phase of the experiment; (2) loss of nucleation potency through aging in the molten phase; and (3) inability of BeO to act as a grain refiner for beryllium. Further investigation with non spherodized particles and shorter dwell times molten may delineate which of these hypotheses are valid. The results of this flight experiment indicate that the weightless environment of space is an important asset in conducting research to find grain refiners for beryllium and other metals for which cast dispersions of grain refining agents cannot be prepared terrestrially due to gravitationally driven settling and agglomeration.

  6. Beryllium and compounds

    Integrated Risk Information System (IRIS)

    Beryllium and compounds ; CASRN 7440 - 41 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  7. Designer ligands for beryllium: Stability and detection of beryllium?

    SciTech Connect

    Keizer, T. S.; Scott, B. L.; Sauer, N. N.; McCleskey, T. M.

    2004-01-01

    With the incorporation of beryllium into mainstream consumer products, there is a concern with the environmental and health implications of wide spread beryllium use. With little experimental research undertaken to address the toxic nature of beryllium (the worst case leading to chronic beryllium disease), there is a need for a fundamental understanding of the way the metal interacts with the environment and it's interaction within the human body. In addition, a better insight into beryllium interactions can lead to improvements in detection methods, which are vital with respect to preventing exposure and for the rapid clean up of beryllium in the environment. The MHC-class II receptor has been identified as the receptor that binds Be in the body. The proposed key binding sites in the antigen consist of two sections of the sequence, and each section contains three carboxylates in a row. Therefore, efforts in characterization of compounds with multiple carboxylates and hydroxides species are pursued.

  8. Reprocessing technology development for irradiated beryllium

    SciTech Connect

    Kawamura, H.; Sakamoto, N.; Tatenuma, K.

    1995-09-01

    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  9. T cell recognition of beryllium.

    PubMed

    Dai, Shaodong; Falta, Michael T; Bowerman, Natalie A; McKee, Amy S; Fontenot, Andrew P

    2013-12-01

    Chronic beryllium disease (CBD) is a granulomatous lung disorder caused by a hypersensitivity to beryllium and characterized by the accumulation of beryllium-specific CD4(+) T cells in the lung. Genetic susceptibility to beryllium-induced disease is strongly associated with HLA-DP alleles possessing a glutamic acid at the 69th position of the β-chain (βGlu69). The structure of HLA-DP2, the most prevalent βGlu69-containing molecule, revealed a unique solvent-exposed acidic pocket that includes βGlu69 and represents the putative beryllium-binding site. The delineation of mimotopes and endogenous self-peptides that complete the αβTCR ligand for beryllium-specific CD4(+) T cells suggests a unique role of these peptides in metal ion coordination and the generation of altered self-peptides, blurring the distinction between hypersensitivity and autoimmunity.

  10. Aerosols generated during beryllium machining.

    PubMed

    Martyny, J W; Hoover, M D; Mroz, M M; Ellis, K; Maier, L A; Sheff, K L; Newman, L S

    2000-01-01

    Some beryllium processes, especially machining, are associated with an increased risk of beryllium sensitization and disease. Little is known about exposure characteristics contributing to risk, such as particle size. This study examined the characteristics of beryllium machining exposures under actual working conditions. Stationary samples, using eight-stage Lovelace Multijet Cascade Impactors, were taken at the process point of operation and at the closest point that the worker would routinely approach. Paired samples were collected at the operator's breathing zone by using a Marple Personal Cascade Impactor and a 35-mm closed-faced cassette. More than 50% of the beryllium machining particles in the breathing zone were less than 10 microns in aerodynamic diameter. This small particle size may result in beryllium deposition into the deepest portion of the lung and may explain elevated rates of sensitization among beryllium machinists.

  11. Rocky Flats Beryllium Health Surveillance.

    PubMed

    Stange, A W; Furman, F J; Hilmas, D E

    1996-10-01

    The Rocky Flats Beryllium Health Surveillance Program (BHSP), initiated in June 1991, was designed to provide medical surveillance for current and former employees exposed to beryllium. The BHSP identifies individuals who have developed beryllium sensitivity using the beryllium lymphocyte proliferation test (BeLPT). A detailed medical evaluation to determine the prevalence of chronic beryllium disease (CBD) is offered to individuals identified as beryllium sensitized or to those who have chest X-ray changes suggestive of CBD. The BHSP has identified 27 cases of CBD and another 74 cases of beryllium sensitization out of 4268 individuals tested. The distribution of BeLPT values for normal, sensitized, and CBD-identified individuals is described. Based on the information collected during the first 3 1/3 years of the BHSP, the BeLPT is the most effective means for the early identification of beryllium-sensitized individuals and to identify individuals who may have CBD. The need for BeLPT retesting is demonstrated through the identification of beryllium sensitization in individuals who previously tested normal. Posterior/anterior chest X-rays were not effective in the identification of CBD. PMID:8933045

  12. Characterization of Shocked Beryllium

    SciTech Connect

    Cady, Carl M; Adams, Chris D; Hull, Lawrence M; Gray III, George T; Prime, Michael B; Addessio, Francis L; Wynn, Thomas A; Brown, Eric N

    2012-08-24

    Beryllium metal has many excellent structural properties in addition to its unique radiation characteristics, including: high elastic modulus, low Poisson's ratio, low density, and high melting point. However, it suffers from several major mechanical drawbacks: 1) high anisotropy - due to its hexagonal lattice structure and its susceptibility to crystallographic texturing; 2) susceptibility to impurity-induced fracture - due to grain boundary segregation; and 3) low intrinsic ductility at ambient temperatures thereby limiting fabricability. While large ductility results from deformation under the conditions of compression, the material can exhibit a brittle behavior under tension. Furthermore, there is a brittle to ductile transition at approximately 200 C under tensile conditions. While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. The beryllium used in this study was Grade S200-F (Brush Wellman, Inc., Elmore, OH) material. The work focused on high strain rate deformation and examine the validity of constitutive models in deformation rate regimes, including shock, the experiments were modeled using a Lagrangian hydrocode. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using the same set of quasi-static and Hopkinson bar data taken at temperatures from 77K to 873K and strain rates from 0.001/sec to 4300/sec. In spite of being calibrated on the same data, the two models give noticeably different results when compared with the measured wave profiles. These high strain rate tests were conducted using both explosive drive and a gas gun to

  13. Joining of Beryllium

    SciTech Connect

    Goldberg, A

    2006-02-01

    A handbook dealing with the many aspects of beryllium that would be important for the users of this metal is currently being prepared. With an introduction on the applications, advantages and limitations in the use of this metal the following topics will be discussed in this handbook: physical, thermal, and nuclear properties; extraction from the ores; purification and casting of ingots; production and types of beryllium powders; consolidation methods, grades, and properties; mechanical properties with emphasis on the various factors affecting these properties; forming and mechanical working; welding, brazing, bonding, and fastening; machining; powder deposition; corrosion; health aspects; and examples of production of components. This report consists of ''Section X--Joining'' from the handbook. The prefix X is maintained here for the figures, tables and references. In this section the different methods used for joining beryllium and the advantages, disadvantages and limitations of each are presented. The methods discussed are fusion welding, brazing, solid state bonding (diffusion bonding and deformation bonding), soldering, and mechanical fastening. Since beryllium has a high affinity for oxygen and nitrogen with the formation of oxides and nitrides, considerable care must be taken on heating the metal, to protect it from the ambient atmosphere. In addition, mating surfaces must be cleaned and joints must be designed to minimize residual stresses as well as locations for stress concentration (notch effects). In joining any two metals the danger exists of having galvanic corrosion if the part is subjected to moisture or to any type of corroding environment. This becomes a problem if the less noble (anodic) metal has a significantly smaller area than the more noble (cathodic) metal since the ions (positive charges) from the anodic (corroding) metal must correspond to the number of electrons (negative charges) involved at the cathode. Beryllium is anodic to almost

  14. 5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF BERYLLIUM PROCESSING AREA, ROLLING MILL. BERYLLIUM FORMING BEGAN IN SIDE A OF THE BUILDING IN 1962. (11/5/73) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  15. Plasma spraying of beryllium and beryllium-aluminum-silver alloys

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.; Jacobson, L.A.

    1993-12-31

    A preliminary investigation on plasma-spraying of beryllium and a beryllium-aluminum 4% silver alloy was done at the Los Alamos National Laboratory`s Beryllium Atomization and Thermal Spray Facility (BATSF). Spherical Be and Be-Al-4%Ag powders, which were produced by centrifugal atomization, were used as feedstock material for plasma-spraying. The spherical morphology of the powders allowed for better feeding of fine (<38 {mu}m) powders into the plasma-spray torch. The difference in the as-deposited densities and deposit efficiencies of the two plasma-sprayed powders will be discussed along with the effect of processing parameters on the as-deposited microstructure of the Be-Al-4%Ag. This investigation represents ongoing research to develop and characterize plasma-spraying of beryllium and beryllium-aluminum alloys for magnetic fusion and aerospace applications.

  16. Chronic Beryllium Disease and Sensitization at a Beryllium Processing Facility

    PubMed Central

    Rosenman, Kenneth; Hertzberg, Vicki; Rice, Carol; Reilly, Mary Jo; Aronchick, Judith; Parker, John E.; Regovich, Jackie; Rossman, Milton

    2005-01-01

    We conducted a medical screening for beryllium disease of 577 former workers from a beryllium processing facility. The screening included a medical and work history questionnaire, a chest radiograph, and blood lymphocyte proliferation testing for beryllium. A task exposure and a job exposure matrix were constructed to examine the association between exposure to beryllium and the development of beryllium disease. More than 90% of the cohort completed the questionnaire, and 74% completed the blood and radiograph component of the screening. Forty-four (7.6%) individuals had definite or probable chronic beryllium disease (CBD), and another 40 (7.0%) were sensitized to beryllium. The prevalence of CBD and sensitization in our cohort was greater than the prevalence reported in studies of other beryllium-exposed cohorts. Various exposure measures evaluated included duration; first decade worked; last decade worked; cumulative, mean, and highest job; and highest task exposure to beryllium (to both soluble and nonsoluble forms). Soluble cumulative and mean exposure levels were lower in individuals with CBD. Sensitized individuals had shorter duration of exposure, began work later, last worked longer ago, and had lower cumulative and peak exposures and lower nonsoluble cumulative and mean exposures. A possible explanation for the exposure–response findings of our study may be an interaction between genetic predisposition and a decreased permanence of soluble beryllium in the body. Both CBD and sensitization occurred in former workers whose mean daily working lifetime average exposures were lower than the current allowable Occupational Safety and Health Administration workplace air level of 2 μg/m3 and the Department of Energy guideline of 0.2 μg/m3. PMID:16203248

  17. Technical Basis for PNNL Beryllium Inventory

    SciTech Connect

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  18. Method for fabricating beryllium structures

    DOEpatents

    Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.

    1977-01-01

    Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.

  19. Thermal fatigue of beryllium

    SciTech Connect

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  20. The INEL beryllium multiplication experiment

    SciTech Connect

    Smith, J.R.; King, J.J.

    1991-03-01

    The experiment to measure the multiplication of 14-MeV neutrons in bulk beryllium has been completed. The experiment consists of determining the ratio of {sup 56}Mn activities induced in a large manganese bath by a central 14-MeV neutron source, with and without a beryllium sample surrounding the source. In the manganese bath method a neutron source is placed at the center of a totally-absorbing aqueous solution of MnSo{sub 4}. The capture of neutrons by Mn produces a {sup 56}Mn activity proportional to the emission rate of the source. As applied to the measurement of the multiplication of 14- MeV neutrons in bulk beryllium, the neutron source is a tritium target placed at the end of the drift tube of a small deuteron accelerator. Surrounding the source is a sample chamber. When the sample chamber is empty, the neutrons go directly to the surrounding MnSO{sub 4} solution, and produce a {sup 56}Mn activity proportional to the neutron emission rate. When the chamber contains a beryllium sample, the neutrons first enter the beryllium and multiply through the (n,2n) process. Neutrons escaping from the beryllium enter the bath and produce a {sup 56}Mn activity proportional to the neutron emission rate multiplied by the effective value of the multiplication in bulk beryllium. The ratio of the activities with and without the sample present is proportional to the multiplication value. Detailed calculations of the multiplication and all the systematic effects were made with the Monte Carlo program MCNP, utilizing both the Young and Stewart and the ENDF/B-VI evaluations for beryllium. Both data sets produce multiplication values that are in excellent agreement with the measurements for both raw and corrected values of the multiplication. We conclude that there is not real discrepancy between experimental and calculated values for the multiplication of neutrons in bulk beryllium. 12 figs., 11 tabs., 18 refs.

  1. The solar abundance of beryllium

    NASA Technical Reports Server (NTRS)

    Ross, J. E.; Aller, L. H.

    1974-01-01

    The solar abundance of beryllium is deduced from high-resolution Kitt Peak observations of the 3130.43- and 3131.08-A lines of Be II interpreted by the method of spectrum synthesis. The results are in good agreement with those previously obtained by Grevesse (1968) and by Hauge and Engvold (1968) and indicate that in the photospheric layers, beryllium is depleted below the chondritic value by a factor of about two. It is found that the beryllium abundance is equal to logN(Be)/N(H) + 12 = 1.08 plus or minus 0.05.

  2. The natural history of beryllium sensitization and chronic beryllium disease.

    PubMed Central

    Newman, L S; Lloyd, J; Daniloff, E

    1996-01-01

    With the advent of in vitro immunologic testing, we can now detect exposed individuals who are sensitized to beryllium and those who have chronic beryllium disease (CBD) with lung pathology and impairment. Earlier detection and more accurate diagnostic tools raise new questions about the natural history of sensitization and granulomatous disease. Preliminary data suggest that early detection identifies people who are sensitized to beryllium and that these individuals are at risk for progressing into clinical disease. This article discusses the historical, recent, and ongoing studies germane to our understanding of CBD natural history, including the immunologic and inflammatory basis of the disease, the environmental and host risk factors for disease progression, biological markers of disease severity and activity that may help predict outcome, and the implications for broad-based workplace screening to identify patients at the earliest stages of beryllium sensitization and disease. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D PMID:8933038

  3. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  4. Beryllium Interactions in Molten Salts

    SciTech Connect

    G. S. Smolik; M. F. Simpson; P. J. Pinhero; M. Hara; Y. Hatano; R. A. Anderl; J. P. Sharpe; T. Terai; S. Tanaka; D. A. Petti; D.-K. Sze

    2006-01-01

    Molten flibe (2LiF·BeF2) is a candidate as a cooling and tritium breeding media for future fusion power plants. Neutron interactions with the salt will produce tritium and release excess free fluorine ions. Beryllium metal has been demonstrated as an effective redox control agent to prevent free fluorine, or HF species, from reacting with structural metal components. The extent and rate of beryllium solubility in a pot design experiments to suppress continuously supplied hydrogen fluoride gas has been measured and modeled[ ]. This paper presents evidence of beryllium loss from specimens, a dependence of the loss upon bi-metal coupling, i.e., galvanic effect, and the partitioning of the beryllium to the salt and container materials. Various posttest investigative methods, viz., scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) were used to explore this behavior.

  5. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    SciTech Connect

    Longhurst, G.R.

    1991-12-01

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET.

  6. Beryllium Related Matter

    SciTech Connect

    Gaylord, R F

    2008-12-23

    In recent months, LLNL has identified, commenced, and implemented a series of interim controls, compensatory measures, and initiatives to ensure worker safety, and improve safety processes with regards to potential worker exposure to beryllium. Many of these actions have been undertaken in response to the NNSA Independent Review (COR-TS-5/15/2008-8550) received by LLNL in November of 2008. Others are the result of recent discoveries, events or incidents, and lessons learned, or were scheduled corrective actions from earlier commitments. Many of these actions are very recent in nature, or are still in progress, and vary in the formality of implementation. Actions are being reviewed for effectiveness as they progress. The documentation of implementation, and review of effectiveness, when appropriate, of these actions will be addressed as part of the formal Corrective Action Plan addressing the Independent Review. The mitigating actions taken fall into the following categories: (1) Responses to specific events/concerns; (2) Development of interim controls; (3) Review of ongoing activities; and (4) Performance improvement measures.

  7. Actinide halide complexes

    SciTech Connect

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1991-02-07

    A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  8. Processing Irradiated Beryllium For Disposal

    SciTech Connect

    T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

    2005-11-01

    The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

  9. Machining of low percentage beryllium copper alloys

    NASA Technical Reports Server (NTRS)

    Habermeyer, J. G.

    1969-01-01

    Airborne beryllium sampling during machining of low percentage beryllium-copper alloys shows that normal dry machining creates 45.2 microgram/cu m of airborne beryllium in the casting operators breathing zone and 2.3 microgram/cu m in an adjacent machine working area. A small vacuum system placed over the tool effectively removes airborne beryllium in the breathing zone sample to 0.2 microgram/cu m.

  10. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    ,

    2013-01-01

    The article discusses information about Beryllium. It notes that Beryllium is a light metal that has a gray color. The metal is used in the production of parts and devices including bearings, computer-chip heat sinks, and output windows of X-ray tubes. The article mentions Beryllium's discovery in 1798 by French chemist, Louis-Nicolas Vanquelin. It cites that bertrandite and beryl are the principal mineral components for the commercial production of beryllium.

  11. Heat capacity of molten halides.

    PubMed

    Redkin, Alexander A; Zaikov, Yurii P; Korzun, Iraida V; Reznitskikh, Olga G; Yaroslavtseva, Tatiana V; Kumkov, Sergey I

    2015-01-15

    The heat capacities of molten salts are very important for their practical use. Experimental investigation of this property is challenging because of the high temperatures involved and the corrosive nature of these materials. It is preferable to combine experimental investigations with empirical relationships, which allows for the evaluation of the heat capacity of molten salt mixtures. The isobaric molar heat capacities of all molten alkali and alkaline-earth halides were found to be constant for each group of salts. The value depends on the number of atoms in the salt, and the molar heat capacity per atom is constant for all molten halide salts with the exception of the lithium halides. The molar heat capacities of molten halides do not change when the anions are changed.

  12. Heat capacity of molten halides.

    PubMed

    Redkin, Alexander A; Zaikov, Yurii P; Korzun, Iraida V; Reznitskikh, Olga G; Yaroslavtseva, Tatiana V; Kumkov, Sergey I

    2015-01-15

    The heat capacities of molten salts are very important for their practical use. Experimental investigation of this property is challenging because of the high temperatures involved and the corrosive nature of these materials. It is preferable to combine experimental investigations with empirical relationships, which allows for the evaluation of the heat capacity of molten salt mixtures. The isobaric molar heat capacities of all molten alkali and alkaline-earth halides were found to be constant for each group of salts. The value depends on the number of atoms in the salt, and the molar heat capacity per atom is constant for all molten halide salts with the exception of the lithium halides. The molar heat capacities of molten halides do not change when the anions are changed. PMID:25530462

  13. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  14. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  15. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  16. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  17. 10 CFR 850.33 - Beryllium emergencies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for handling... employer must comply with 29 CFR 1910.120(q) for handling beryllium emergencies related to all...

  18. METHOD FOR PREPARATION OF SINTERABLE BERYLLIUM OXIDE

    DOEpatents

    Sturm, B.J.

    1963-08-13

    High-purity beryllium oxide for nuclear reactor applications can be prepared by precipitation of beryllium oxalate monohydrate from aqueous solution at a temperature above 50 deg C and subsequent calcination of the precipitate. Improved purification with respect to metallic impurities is obtained, and the product beryllium oxide sinters reproducibly to a high density. (AEC)

  19. Beryllium--important for national defense

    USGS Publications Warehouse

    Boland, M.A.

    2012-01-01

    Beryllium is one of the lightest and stiffest metals, but there was little industrial demand for it until the 1930s and 1940s when the aerospace, defense, and nuclear sectors began using beryllium and its compounds. Beryllium is now classified by the U.S. Department of Defense as a strategic and critical material because it is used in products that are vital to national security. The oxide form of beryllium was identified in 1797, and scientists first isolated metallic beryllium in 1828. The United States is the world's leading source of beryllium. A single mine at Spor Mountain, Utah, produced more than 85 percent of the beryllium mined worldwide in 2010. China produced most of the remainder, and less than 2 percent came from Mozambique and other countries. National stockpiles also provide significant amounts of beryllium for processing. To help predict where future beryllium supplies might be located, U.S.Geological Survey (USGS) scientists study how and where beryllium resources are concentrated in Earth's crust and use that knowledge to assess the likelihood that undiscovered beryllium resources may exist. Techniques to assess mineral resources have been developed by the USGS to support the stewardship of Federal lands and to better evaluate mineral resource availability in a global context. The USGS also compiles statistics and information on the worldwide supply of, demand for, and flow of beryllium. These data are used to inform U.S. national policymaking.

  20. METHOD OF PREPARING METAL HALIDES

    DOEpatents

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  1. Neutron irradiation of beryllium pebbles

    SciTech Connect

    Gelles, D.S.; Ermi, R.M.; Tsai, H.

    1998-03-01

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  2. Cause of pitting in beryllium

    SciTech Connect

    Kershaw, R.P.

    1982-04-16

    Light microscopy, bare-film radiography, secondary ion mass spectroscopy, electron microprobe and physical testing were used to examine beryllium specimens exhibiting a stratified, pitted, pattern after chemical milling. The objective was to find the cause of this pattern. Specimens were found to have voids in excess of density specification allowances. These voids are attributed, at least in part, to the sublimation of beryllium fluoride during the vacuum hot pressing operation. The origin of the pattern is attributed to these voids and etching out of fines and associated impurities. Hot isostatic pressing with a subsequent heat treatment close residual porosity and dispersed impurities enough to correct the problem.

  3. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  4. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  5. Beryllium Technology Research in the United States

    SciTech Connect

    Glen R. Longhurst; Robert A. Anderl; M. Kay Adleer-Flitton; Gretchen E. Matthern; Troy J. Tranter; Kendall J. Hollis

    2005-02-01

    While most active research involving beryllium in the United States remains tied strongly to biological effects, there are several areas of technology development in the last two years that should be mentioned. (1) Beryllium disposed of in soil vaults at the Idaho National Laboratory (INL) Radioactive Waste Management Complex (RWMC) has been encapsulated in-situ by high-temperature and pressure injection of a proprietary wax based material to inhibit corrosion. (2) A research program to develop a process for removing heavy metals and cobalt from irradiated beryllium using solvent extraction techniques has been initiated to remove components that prevent the beryllium from being disposed of as ordinary radioactive waste. (3) The JUPITER-II program at the INL Safety and Tritium Applied Research (STAR) facility has addressed the REDOX reaction of beryllium in molten Flibe (a mixture of LiF and BeF2) to control tritium, particularly in the form of HF, bred in the Flibe by reactions involving both beryllium and lithium. (4) Work has been performed at Los Alamos National Laboratory to produce beryllium high heat flux components by plasma spray deposition on macro-roughened substrates. Finally, (5) corrosion studies on buried beryllium samples at the RWMC have shown that the physical form of some of the corroded beryllium is very filamentary and asbestos-like. This form of beryllium may exacerbate the contraction of chronic beryllium disease.

  6. US Beryllium Case Registry through 1977

    SciTech Connect

    Sprince, N.L.; Kazemi, H.

    1980-02-01

    A synopsis of the cases reported to the Beryllium Case Registry between 1973 and 1977 is presented. As of 1973, there were 832 cases of beryllium disease entered into the Registry. In the five years since that report, 55 additional cases have been added, 40 men and 15 women. Exposures occured in the electronics and nuclear industries in the production and use of beryllium containing alloys and beryllium oxide ceramis. Pathological changes in the lung tissue are described. Cases continue to be reported in which the diagnosis was sarcoidosis until the history of beryllium exposure led to the finding of beryllium in the lung tissue or mediastinal lymph node biopsy. Data from the Registry support the fact that chronic beryllium disease is a continued occupational hazard.

  7. Reactivity test between beryllium and copper

    SciTech Connect

    Kawamura, H.; Kato, M.

    1995-09-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  8. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  9. Galvanic corrosion of beryllium welds

    SciTech Connect

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-12-01

    Beryllium is difficult to weld because it is highly susceptible to cracking. The most commonly used filler metal in beryllium welds is Al-12 wt.% Si. Beryllium has been successfully welded using Al-Si filler metal with more than 30 wt.% Al. This filler creates an aluminum-rich fusion zone with a low melting point that tends to backfill cracks. Drawbacks to adding a filler metal include a reduction in service temperature, a lowering of the tensile strength of the weld, and the possibility for galvanic corrosion to occur at the weld. To evaluate the degree of interaction between Be and Al-Si in an actual weld, sections from a mock beryllium weldment were exposed to 0.1 M Cl{sup {minus}} solution. Results indicate that the galvanic couple between Be and the Al-Si weld material results in the cathodic protection of the weld and of the anodic dissolution of the bulk Be material. While the cathodic protection of Al is generally inefficient, the high anodic dissolution rate of the bulk Be during pitting corrosion combined with the insulating properties of the Be oxide afford some protection of the Al-Si weld material. Although dissolution of the Be precipitate in the weld material does occur, no corrosion of the Al-Si matrix was observed.

  10. Notes on UHV beryllium windows

    SciTech Connect

    Hartman, P.L.

    1986-10-01

    Techniques are described for making large ultrahigh vacuum beryllium windows for use in synchrotron radiation installations. Procedures are given for affecting both hard brazed seals and demountable seals involving either lead or copper gaskets. Brazed seals can be made to either stainless steel or copper. Possible alternative methods are suggested.

  11. Worker Environment Beryllium Characterization Study

    SciTech Connect

    NSTec Environment, Safety, Health & Quality

    2009-12-28

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”

  12. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  13. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  14. Beryllium sensitization and chronic beryllium disease at a former nuclear weapons facility.

    PubMed

    Stange, A W; Hilmas, D E; Furman, F J; Gatliffe, T R

    2001-03-01

    The prevalence of beryllium sensitization and chronic beryllium disease by job category was examined among individuals tested in the Rocky Flats Beryllium Health Surveillance Program. The program offered ongoing beryllium health surveillance for any current or former employee who believed they may have been exposed to beryllium at the Rocky Flats Environmental Technology Site. Of the 18,589 living individuals contacted, 7,573 requested participation and 6,614 (87.3%) eventually participated. Of this group, 78.2 percent were found to have verifiable job and building histories. The beryllium lymphocyte proliferation test was used to identify beryllium-sensitized individuals. Sensitization and chronic beryllium disease rates were analyzed with respect to gender, building work location(s), and length of employment at Rocky Flats. Several job categories and buildings were strongly associated with the 81 cases of chronic beryllium disease and the additional 154 cases of beryllium sensitization in this population. Beryllium sensitization was highest among beryllium machinists, 11.4 percent (odds ratio = 3.04, compared to the remainder of those tested, 95 % confidence interval = 1.48, 3.97) and health physics technicians, 11.9 percent (odds ratio = 2.87, 95% confidence interval = 1.12, 7.36). However, odds ratios were also increased among custodial employees, 5.64 percent (odds ratio = 1.30, 95% confidence interval = 0.92, 1.85) and other job titles that were thought to have only minimal potential for exposure to beryllium. PMID:11297055

  15. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    SciTech Connect

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  16. Beryllium - A Unique Material in Nuclear Applications

    SciTech Connect

    T., A. Tomberlin

    2004-11-01

    Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector. A high radiation environment in a test reactor produces radiation damage and other changes in beryllium. These changes necessitate safety analysis of the beryllium, methods to predict performance, and appropriate surveillances. Other nuclear applications also utilize beryllium. Beryllium, given its unique atomic, physical, and chemical characteristics, is widely used as a “window” for x-rays and gamma rays. Beryllium, intimately mixed with high-energy alpha radiation emitters has been successfully used to produce neutron sources. This paper addresses operational experience and methodologies associated with the use of beryllium in nuclear test reactors and in “windows” for x-rays and gamma rays. Other nuclear applications utilizing beryllium are also discussed.

  17. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  18. Defense programs beryllium good practice guide

    SciTech Connect

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to

  19. Advances in identifying beryllium sensitization and disease.

    PubMed

    Middleton, Dan; Kowalski, Peter

    2010-01-01

    Beryllium is a lightweight metal with unique qualities related to stiffness, corrosion resistance, and conductivity. While there are many useful applications, researchers in the 1930s and 1940s linked beryllium exposure to a progressive occupational lung disease. Acute beryllium disease is a pulmonary irritant response to high exposure levels, whereas chronic beryllium disease (CBD) typically results from a hypersensitivity response to lower exposure levels. A blood test, the beryllium lymphocyte proliferation test (BeLPT), was an important advance in identifying individuals who are sensitized to beryllium (BeS) and thus at risk for developing CBD. While there is no true "gold standard" for BeS, basic epidemiologic concepts have been used to advance our understanding of the different screening algorithms.

  20. Method for hot pressing beryllium oxide articles

    DOEpatents

    Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  1. Advances in Identifying Beryllium Sensitization and Disease

    PubMed Central

    Middleton, Dan; Kowalski, Peter

    2010-01-01

    Beryllium is a lightweight metal with unique qualities related to stiffness, corrosion resistance, and conductivity. While there are many useful applications, researchers in the 1930s and l940s linked beryllium exposure to a progressive occupational lung disease. Acute beryllium disease is a pulmonary irritant response to high exposure levels, whereas chronic beryllium disease (CBD) typically results from a hypersensitivity response to lower exposure levels. A blood test, the beryllium lymphocyte proliferation test (BeLPT), was an important advance in identifying individuals who are sensitized to beryllium (BeS) and thus at risk for developing CBD. While there is no true “gold standard” for BeS, basic epidemiologic concepts have been used to advance our understanding of the different screening algorithms. PMID:20195436

  2. Mutagenicity, carcinogenicity and teratogenicity of beryllium.

    PubMed

    Léonard, A; Lauwerys, R

    1987-07-01

    The carcinogenicity of a number of beryllium compounds has been confirmed in experiments on laboratory animals and this metal has to be treated as a possible carcinogenic threat to man. These carcinogenic properties are associated with mutagenic activity as shown by the results of short-term tests performed in vitro with beryllium chloride and beryllium sulfate. These soluble beryllium compounds can produce some infidelity of in vitro synthesis, forward gene mutations in microorganisms and in mammalian cells. They are also able to induce cell transformation. In addition to the positive results obtained in several short-term assays beryllium compounds have been found to bind to nucleoproteins, to inhibit certain enzymes needed for DNA synthesis, to bind nucleic acids to cell membranes and to inhibit microtubule polymerization. The teratogenicity of beryllium salts is relatively unknown and needs additional investigation.

  3. Inhibited solid propellant composition containing beryllium hydride

    NASA Technical Reports Server (NTRS)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  4. MEASUREMENTS OF THE PROPERTIES OF BERYLLIUM FOIL

    SciTech Connect

    ZHAO,Y.; WANG,H.

    2000-03-31

    The electrical conductivity of beryllium at radio frequency (800 MHz) and liquid nitrogen temperature were investigated and measured. This summary addresses a collection of beryllium properties in the literature, an analysis of the anomalous skin effect, the test model, the experimental setup and improvements, MAFIA simulations, the measurement results and data analyses. The final results show that the conductivity of beryllium is not as good as indicated by the handbook, yet very close to copper at liquid nitrogen temperature.

  5. Brazing of beryllium for structural applications

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.

    1972-01-01

    Progress made in fabricating a beryllium compression tube structure and a stiffened beryllium panel. The compression tube was 7.6cm in diameter and 30.5cm long with titanium end fittings. The panel was 203cm long and stiffened with longitudinal stringers. Both units were assembled by brazing with BAg-18 braze alloy. The detail parts were fabricated by hot forming 0.305cm beryllium sheet and the brazing parameters established.

  6. MANAGING BERYLLIUM IN NUCLEAR FACILITY APPLICATIONS

    SciTech Connect

    R. Rohe; T. N. Tranter

    2011-12-01

    Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant {sup 60}Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient {sup 14}C and {sup 94}Nb to render the irradiated beryllium 'Greater-Than-Class-C' for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

  7. Recommended design correlations for S-65 beryllium

    SciTech Connect

    Billone, M.C.

    1995-12-31

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined form the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing(HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  8. Beryllium Use in the Advanced Test Reactor

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) began operation in 1967. It makes use of a unique serpentine fuel core design and a beryllium reflector. Reactor control is achieved with rotating beryllium cylinders to which have been fastened plates of hafnium. Over time, the beryllium develops rather high helium content because of nuclear transmutations and begins to swell. The beryllium must be replaced at nominally 10-year intervals. Determination of when the replacement is made is by visual observation using a periscope to examine the beryllium surface for cracking and swelling. Disposition of the irradiated beryllium was once accomplished in the INL’s Radioactive Waste Management Complex, but that is no longer possible. Among contributing reasons are high levels of specific radioactive contaminants including transuranics. The INL is presently considering disposition pathways for this irradiated beryllium, but presently is storing it in the canal adjacent to the reactor. Numerous issues are associated with this situation including (1) Is there a need for ultra-low uranium material? (2) Is there a need to recover tritium from irradiated beryllium either because this is a strategic material resource or in preparation for disposal? (3) Is there a need to remove activation and fission products from irradiated beryllium? (4) Will there be enough material available to meet requirements for research reactors (fission and fusion)? In this paper will be discussed the present status of considerations on these issues.

  9. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  10. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  11. Process for synthesis of beryllium chloride dietherate

    DOEpatents

    Bergeron, Charles; Bullard, John E.; Morgan, Evan

    1991-01-01

    A low temperature method of producing beryllium chloride dietherate through the addition of hydrogen chloride gas to a mixture of beryllium metal in ether in a reaction vessel is described. A reflux condenser provides an exit for hydrogen produced form the reaction. A distillation condenser later replaces the reflux condenser for purifying the resultant product.

  12. Fracture toughness of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Lemon, D. D.; Brown, W. F., Jr.

    1985-01-01

    This paper presents the results of an investigation into the fracture toughness, sustained-load flaw growth, and fatigue-crack propagation resistance of S200E hot-pressed beryllium at room temperature. It also reviews the literature pertaining to the influence of various factors on the fracture toughness of hot-pressed beryllium determined using fatigue-cracked specimens.

  13. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    SciTech Connect

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  14. Development of beryllium mirror turning technology

    SciTech Connect

    Arnold, J.B.

    1991-04-01

    Because of the unique properties of beryllium (Be) and the advantages of single point turning, a development program has been instituted to single point turn beryllium as a means to produce optics. Initial effort to diamond turn beryllium resulted in less than desirable results and development efforts were directed at finding a more suitable tool material. Both single and polycrystalline tool materials were evaluated and cubic boron nitride (CBN) was found to produce the better results. Tool wear has been the primary limitation in precision machining beryllium and advances have allowed a two order-of-magnitude reduction in this problem. After considerable efforts, results with CBN appear to be approaching a limit, and diamond, as tool material, was re-evaluated with promising results. A development program is now under way to determine if diamond may be used to machine larger and more complex beryllium parts.

  15. Beryllium in sediments of Nagoya harbor estuaries

    SciTech Connect

    Itoh, K.

    1986-06-01

    Beryllium occurs naturally in minerals and oils. Other than the natural sources, considerable quantity of beryllium has been discharged from its smelting industry. Soil pollutants caused by beryllium in the circumference of its smelting industry on the banks of Nagoya harbor estuaries have been reported. Several methods for the spectroscopic determination of beryllium can not eliminate the interference caused by fluoride ion which remains in the digestion solution when hydrofluoric acid is used to degradate the silicate lattice. Accordingly, the authors attempted to improve the pretreatment in order to eliminate the effect of fluoride ion, and to make the procedure simpler and faster with high precision. A simple and sensitive method is presented for the determination of beryllium in sediments by atomic absorption spectroscopy using methylisobutylketone extraction with acetylacetone. They have carried out an extensive investigation on the pollution of sea water and sediments of Nagoya harbor estuaries, which is located in one of the most active industrial areas in Japan.

  16. Use of Beryllium and Beryllium Oxide in Space Reactors

    SciTech Connect

    Snead, L. L.; Zinkle, S. J.

    2005-02-06

    Beryllium and beryllium oxide are attractive candidate materials for neutron reflector application in space reactors due to their beneficial combination of low density and high neutron moderation and reflection capabilities. Drawbacks to their use include the expense of working with toxic materials, a limited industrial infrastructure, and material properties that are challenging in the non-irradiated state and seriously degrade under neutron irradiation. As an example of neutron effects, mechanical properties degrade under relevant conditions to the point where encasement in structural alloys is necessary. Such measures are required if neutron fluence exceeds {approx}1x1024 n/m2 (E>0.1 MeV). At high temperatures (>500 deg. C for Be and >600 deg. C for BeO), irradiation-induced swelling may also limit the maximum allowable dose without additional engineering measures. Significant volumetric swelling (>5%) can occur in these materials during neutron irradiation at elevated temperatures for neutron fluences above 1x1025 n/m2. This paper will review Be and BeO fabrication considerations, and summarize the effects of neutron irradiation on material properties.

  17. Postirradiation examination of beryllium pebbles

    SciTech Connect

    Gelles, D.S.

    1998-03-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements.

  18. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    DOEpatents

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  19. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  20. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  1. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  2. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  3. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  4. Metal halide perovskite light emitters

    PubMed Central

    Kim, Young-Hoon; Cho, Himchan; Lee, Tae-Woo

    2016-01-01

    Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field. PMID:27679844

  5. Technical issues for beryllium use in fusion blanket applications

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  6. Beryllium derivatives of a phenyl-substituted β-diketiminate: a well-defined ring opening reaction of tetrahydrofuran.

    PubMed

    Arrowsmith, Merle; Crimmin, Mark R; Hill, Michael S; Kociok-Köhn, Gabriele

    2013-07-14

    The phenyl-substituted β-diketiminate ligand precursor (Ph)LH, [(Dipp)NC(Ph)CHC(Ph)NH(Dipp)] (Dipp = 2,6-di-isopropylphenyl) and its lithium and beryllium halide derivatives [(Ph)LLi(OEt2)], [(Ph)LBeCl] and [(Ph)LBeI] have been synthesised and characterised by NMR and X-ray structural analysis. The iodoberyllium complex [(Ph)LBeI] reacts with THF in a well-defined ring-opening insertion reaction to form the 4-iodo-n-butoxide complex [(Ph)LBeO(CH2)4I].

  7. Beryllium recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2004-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  8. Beryllium Recycling in the United States in 2000

    USGS Publications Warehouse

    Cunningham, Larry D.

    2003-01-01

    This report describes the flow of beryllium in the United States in 2000 with emphasis on the extent to which beryllium was either recycled or reused. Beryllium was recycled mostly from new scrap that was generated during the manufacture of beryllium-related components. In 2000, about 35 metric tons of beryllium was either recycled or reused, about 14 percent of which was derived from old scrap. The beryllium recycling rate was calculated to be about 10 percent, and beryllium scrap recycling efficiency, about 7 percent.

  9. Recommended design correlations for S-65 beryllium

    SciTech Connect

    Billone, M.C.

    1995-09-01

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  10. A study of beryllium and beryllium-lithium complexes in single crystal silicon

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed.

  11. Study of beryllium and beryllium-lithium complexes in single-crystal silicon.

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-meV level is due to a more complex beryllium configuration than the 191-meV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two new acceptor levels at 106 and 81 meV. Quenching and annealing studies indicate that these new levels are due to lithium forming a complex with the defects responsible for the 191- and 145-meV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-meV beryllium-lithium level is split into two levels, presumably by internal strains. Tentative models are proposed to explain these results.

  12. Beryllium at Argonne East, past and present

    SciTech Connect

    Woodring, J.L.; Davis, J.T.

    1998-07-01

    The focus of this presentation is the present activities at Argonne related to the control of beryllium exposure. However, since present activities involve some of the past uses of beryllium, the authors will review briefly the history as they have been able to resurrect it from records, memory and interviews with some of the people involved. The goal of the program is to identify past contaminated areas for remedial action, identify employees with past and current exposure who may benefit from additional medical monitoring and provide guidance and support so that any ongoing activities involving beryllium can be conducted safely.

  13. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect

    Glen R. Longhurst

    2007-12-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  14. Pulmonary toxicity of beryllium in albino rat

    SciTech Connect

    Goel, K.A.; Agrawal, V.P.; Garg, V.

    1980-01-01

    Arsenic compounds, if chronically exposed to human beings, significantly increase incidences of epidermoid carcinomas of the skin and lung. Nickel has been considered to be an important metallic carcinogen. Regarding beryllium, different opinions are held so far as its carcinogenic nature is concerned. While it is reported that there is an equivocal increase in the incidences of respiratory cancers in patients with chronic pulmonary berylliosis, investigation shows no increase in the incidence of respiratory cancer. Among experimental animals, intravenous injections of suspensions of beryllium salts to rabbits have been shown to induce osteogenic sarcomas. This abstract deals with the histopathological and enzymological study of lungs of albino rats after prolonged beryllium treatment.

  15. Crystallization of Beryllium-Boron Metallic Glasses

    SciTech Connect

    Jankowski, A F; Wall, M A; Nieh, T G

    2002-02-14

    Prior studies of evaporation and sputter deposition show that the grain size of pure beryllium can be dramatically refined through the incorporation of metal impurities. Recently, the addition of boron at a concentration greater than 11% is shown to serve as a glassy phase former in sputter deposited beryllium. Presently, thermally induced crystallization of the beryllium-boron metallic glass is reported. The samples are characterized during an in-situ anneal treatment with bright field imaging and electron diffraction using transmission electron microscopy. A nanocrystalline structure evolves from the annealed amorphous phase and the crystallization temperature is affected by the boron concentration.

  16. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  17. Efficacy of serial medical surveillance for chronic beryllium disease in a beryllium machining plant.

    PubMed

    Newman, L S; Mroz, M M; Maier, L A; Daniloff, E M; Balkissoon, R

    2001-03-01

    There is limited information on the use of the blood beryllium lymphocyte proliferation test (BeLPT) at regular intervals in medical surveillance. Employees of a beryllium machining plant were screened with the BeLPT biennially, and new employees were screened within 3 months of hire. Of 235 employees screened from 1995 to 1997, a total of 15 (6.4%) had confirmed abnormal BeLPT results indicating beryllium sensitization; nine of these employees were diagnosed with chronic beryllium disease. Four of the 15 cases were diagnosed within 3 months of first exposure. When 187 of the 235 employees participated in biennial screening in 1997 to 1999, seven more had developed beryllium sensitization or chronic beryllium disease, increasing the overall rate to 9.4% (22 of 235). The blood BeLPT should be used serially in beryllium disease surveillance to capture new or missed cases of sensitization and disease. Beryllium sensitization and chronic beryllium disease can occur within 50 days of first exposure in modern industry.

  18. Multiple-Wavelength Metal/Halide Laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1984-01-01

    Single device produces multiple lasing lines. Laser capable of producing many lasing lines has several reservoirs of halide lasant mixed with chlorides of copper, manganese and iron. Convection-control technique possible to rapidly change from one metal halide to another at maximum energy.

  19. Chemical Analysis Of Beryllium Shells

    SciTech Connect

    Gunther, J; Cook, R

    2005-11-17

    There is a need to understand the level of high-Z impurities in Beryllium shells prepared by sputter coating. The Ignition Point Design Requirements state the following: ''Except for allowed ingredients, as listed in the ablator composition entries, the ablator material in all layers shall contain sufficiently low impurity levels that the sum over all impurities of atom fraction*Z{sup 2} shall be less than or equal to 0.2''. This is a tight specification that requires careful materials analysis. Early in the first quarter of FY06, we undertook a study of Be shell impurities via ICP-MS{sup 2} and determined that the impurity levels in the sputtered shells are very close to the specification.

  20. Combined aging of beryllium bronze

    SciTech Connect

    Duraev, P.P.; Kaplun, Yu.A.; Pastukhova, Zh.P.; Rakhshtadt, A.G.

    1986-01-01

    This article evaluates the possibility of increasing the resistance of beryllium bronze to small plastic deformations as a result of the application of stepped aging under stress. Low-temperature aging under conditions of bending under a stress of about 100 MPa was applied to alloy BrBNT1, 9Mg at 150, 180, and 210 /sup 0/C, high-temperature aging at 300 and 340 /sup 0/C under stress and without stress. As a result of applying stepped aging under stress, the elastic limit of the alloy BrBNT1, 9Mg was raised to 900 MPa. Stepped aging under stress has a substantial effect on the relaxation stability of the alloy. The procedure suggested in the article for aging may be used efficiently for treating elastic elements made of other brands of bronze as well.

  1. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  2. Chronic Beryllium Disease Prevention Program Report

    SciTech Connect

    Lee, S

    2012-03-29

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  3. Beryllium concentration in pharyngeal tonsils in children.

    PubMed

    Nogaj, Ewa; Kwapulinski, Jerzy; Misiołek, Maciej; Golusiński, Wojciech; Kowol, Jolanta; Wiechuła, Danuta

    2014-01-01

    Power plant dust is believed to be the main source of the increased presence of the element beryllium in the environment which has been detected in the atmospheric air, surface waters, groundwater, soil, food, and cigarette smoke. In humans, beryllium absorption occurs mainly via the respiratory system. The pharyngeal tonsils are located on the roof of the nasopharynx and are in direct contact with dust particles in inhaled air. As a result, the concentration levels of beryllium in the pharyngeal tonsils are likely to be a good indicator of concentration levels in the air. The presented study had two primary aims: to investigate the beryllium concentration in pharyngeal tonsils in children living in southern Poland, and the appropriate reference range for this element in children's pharyngeal tonsils. Pharyngeal tonsils were extracted from a total of 379 children (age 2-17 years, mean 6.2 ± 2.7 years) living in southern Poland. Tonsil samples were mineralized in a closed cycle in a pressure mineralizer PDS 6, using 65% spectrally pure nitric acid. Beryllium concentration was determined using the ICP-AES method with a Perkin Elmer Optima 5300DVTM. The software Statistica v. 9 was used for the statistical analysis. It was found that girls had a significantly greater beryllium concentration in their pharyngeal tonsils than boys. Beryllium concentration varies greatly, mostly according to the place of residence. Based on the study results, the reference value for beryllium in pharyngeal tonsils of children is recommended to be determined at 0.02-0.04 µg/g.

  4. Characteristics of beryllium bonds; a QTAIM study.

    PubMed

    Eskandari, K

    2012-08-01

    The nature of beryllium bonds formed between BeX2 (X is H, F and Cl) and some Lewis bases have been investigated. The distribution of the Laplacian of electron density shows that there is a region of charge depletion around the Be atom, which, according to Laplacian complementary principal, can interact with a region of charge concentration of an atom in the base and form a beryllium bond. The molecular graphs of the investigated complexes indicate that beryllium in BeH2 and BeF2 can form “beryllium bonds” with O, N and P atoms but not with halogens. In addition, eight criteria based on QTAIM properties, including the values of electron density and its Laplacian at the BCP, penetration of beryllium and acceptor atom, charge, energy, volume and first atomic moment of beryllium atom, have been considered and compared with the corresponding ones in conventional hydrogen bonds. These bonds share many common features with very strong hydrogen bonds, however,some differences have also been observed.

  5. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  6. Shallow halogen vacancies in halide optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Du, Mao-Hua

    2014-11-01

    Halogen vacancies (VH ) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., C H3N H3Pb I3 and TlBr. Both C H3N H3Pb I3 and TlBr have been found to have shallow VH , in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., C H3N H3Pb I3 , C H3N H3Sn I3 (photovoltaic materials), TlBr, and CsPbB r3 (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of n s2 ions both play important roles in creating shallow VH in halides such as C H3N H3Pb I3 , C H3N H3Sn I3 , and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH , such as those with large cation-cation distances and low anion coordination numbers and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH . The results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  7. Shallow halogen vacancies in halide optoelectronic materials

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VHmore » is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.« less

  8. Illness Absences Among Beryllium Sensitized Workers

    PubMed Central

    Watkins, Janice P.; Ellis, Elizabeth D.; Girardi, David J.; Cragle, Donna L.

    2014-01-01

    Objectives. This study examined absence rates among US Department of Energy workers who had beryllium sensitization (BeS) or were diagnosed with chronic beryllium disease (CBD) compared with those of other workers. Methods. We used the lymphocyte proliferation test to determine beryllium sensitivity. In addition, we applied multivariable logistic regression to compare absences from 2002 to 2011 between workers with BeS or CBD to those without, and survival analysis to compare time to first absence by beryllium sensitization status. Finally, we examined beryllium status by occupational group. Results. Fewer than 3% of the 19 305 workers were BeS, and workers with BeS or CBD had more total absences (odds ratio [OR] = 1.31; 95% confidence interval [CI] = 1.18, 1.46) and respiratory absences (OR = 1.51; 95% CI = 1.24, 1.84) than did other workers. Time to first absence for all causes and for respiratory conditions occurred earlier for workers with BeS or CBD than for other workers. Line operators and crafts personnel were at increased risk for BeS or CBD. Conclusions. Although not considered “diseased,” workers with BeS have higher absenteeism compared with nonsensitized workers. PMID:25211750

  9. Chronic beryllium disease: Diagnosis and management

    SciTech Connect

    Rossman, M.D.

    1996-10-01

    Chronic beryllium disease is predominantly a pulmonary granulomatosis that was originally described in 1946. Symptoms usually include dyspnea and cough. Fever, anorexia, and weight loss are common. Skin lesions are the most common extrathoracic manifestation. Granulomatous hepatitis, hypercalcemia, and kidney stones can also occur. Radiographic and physiologic abnormalities are similar to those in sarcoidosis. While traditionally the pathologic changes included granulomas and cellular interstitial changes, the hallmark of the disease today is the well-formed granuloma. Immunologic studies have demonstrated a cell-mediated response to beryllium that is due to an accumulation of CD4{sup +} T cells at the site of disease activity. Diagnosis depends on the demonstration of pathologic changes (i.e., granuloma) and evidence that the granuloma was caused by a hypersensitivity to beryllium (i.e., positive lung proliferative response to beryllium). Using these criteria, the diagnosis of chronic beryllium disease can now be made before the onset of clinical symptoms. Whether, with early diagnosis, the natural course of this condition will be the same as when it was traditionally diagnosed is not known. Currently, corticosteroids are used to treat patients with significant symptoms or evidence of progressive disease. 21 refs.

  10. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  11. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  12. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  13. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  14. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  15. 10 CFR 850.20 - Baseline beryllium inventory.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.20 Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of...

  16. Occupational and non-occupational allergic contact dermatitis from beryllium.

    PubMed

    Vilaplana, J; Romaguera, C; Grimalt, F

    1992-05-01

    There are various references to sensitization to beryllium in the literature. Since introducing a patch testing series for patients with suspected sensitization to metals, we have found 3 cases of sensitization to beryllium. Of these 3 cases, we regard the first 2 as having relevant sensitization. Beryllium chloride (1% pet.) was positive in 3 patients and negative in 150 controls.

  17. Characteristics of beryllium exposure to small particles at a beryllium production facility.

    PubMed

    Virji, M Abbas; Stefaniak, Aleksandr B; Day, Gregory A; Stanton, Marcia L; Kent, Michael S; Kreiss, Kathleen; Schuler, Christine R

    2011-01-01

    Epidemiological studies have reported process-specific elevated prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) among workers. However, exposure-response relationships have been inconsistent, possibly due to incomplete characterization of many biologically relevant aspects of exposure, including particle size. In 1999, two surveys were conducted 3-5 months apart at a beryllium metal, oxide, and alloy production facility during which personal impactor samples (n = 198) and personal 37-mm closed-face cassette (CFC) 'total' samples (n = 4026) were collected. Among process areas, median particle mass median aerodynamic diameter ranged from 5 to 14 μm. A large fraction of the beryllium aerosol was in the nonrespirable size range. Respirable beryllium concentrations were among the highest for oxide production [geometric mean (GM) = 2.02 μg m⁻³, geometric standard deviation (GSD) = 1.3] and pebbles plant (GM = 1.05 μg m⁻³, GSD = 2.9), areas historically associated with high risk of BeS and CBD. The relationship between GM 'CFC total' and GM respirable beryllium for jobs varied by process areas; the rank order of the jobs showed high overall consistency (Spearman r = 0.84), but the overall correlation was moderate (Pearson r = 0.43). Total beryllium concentrations varied greatly within and between workers among process areas; within-worker variance was larger than between-worker variance for most processes. A review of exposure characteristics among process areas revealed variation in chemical forms and solubility. Process areas with high risk of BeS and CBD had exposure to both soluble and insoluble forms of beryllium. Consideration of biologically relevant aspects of exposure such as beryllium particle size distribution, chemical form, and solubility will likely improve exposure assessment.

  18. Evaluation of beryllium for space shuttle components

    NASA Technical Reports Server (NTRS)

    Trapp, A. E.

    1972-01-01

    Application of beryllium to specific full-scale space shuttle structural components and assemblies was studied. Material evaluations were conducted to check the mechanical properties of as-received material to gain design information on characteristics needed for the material in the space shuttle environment, and to obtain data needed for evaluating component and panel tests. Four beryllium structural assemblies were analyzed and designed. Selected components of these assemblies, representing areas of critical loading or design/process uncertainty, were designed and tested, and two panel assemblies were fabricated. Trends in cost and weight factors were determined by progressive estimation at key points of preliminary design, final design, and fabrication to aid in a cost/weight evaluation of the use of beryllium.

  19. [Effects of beryllium chloride on cultured cells].

    PubMed

    Sakaguchi, T; Sakaguchi, S; Nakamura, I; Kagami, M

    1984-05-01

    The effects of beryllium on cultured cells were investigated. Three cell-lines (HeLa-S3, Vero, HEL-R66) were used in these experiments and they were cultured in Eagle's MEM plus 5 or 10% FBS (Fetal Bovine Serum) containing beryllium in various concentrations. HeLa cells or Vero cells were able to grow in the medium with 10 micrograms Be/ml (1.1 mM). On the other hand, the growth of HEL cells were strongly inhibited, even when cultured in the medium with 1 microgram Be/ml (1.1 X 10(-1) mM) and the number of living cells showed markedly low level as compared to that of the control samples cultured in the medium without beryllium. The cytotoxic effects of beryllium on these cells, which were cultured for three days in the medium with beryllium, were observed. None of cytotoxic effects were found on HeLa cells cultured with 0.5 micrograms/ml (5.5 X 10(-2) mM) and on Vero cells cultured with 0.05 micrograms Be/ml (5.5 X 10(-3) mM), while HEL cells received cytotoxic effects even when cultured in the medium containing 0.05 micrograms Be/ml (5.5 X 10(-3) mM), and these effects on the cells appeared strong when cultured in the medium without FBS. It was revealed from these experiments that HEL cells are very sensitive in terms of toxic effects of beryllium. Therefore, there cells can be used for the toxicological study on low level concentrations of the metal.

  20. Mineral resource of the month: beryllium

    USGS Publications Warehouse

    Shedd, Kim B.

    2006-01-01

    Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.

  1. Scattering by anisotropic grains in beryllium mirrors

    SciTech Connect

    Church, E.L. ); Takacs, P.Z. ); Stover, J.C. )

    1990-08-01

    Scattering from mirror surfaces arises from topographic and non-topographic sources. This paper considers the nontopographic scattering of beryllium mirrors modelled as a collection of randomly oriented bireflective grains. Simple scattering theory shows that this type of scatting scales as {lambda}{sup {minus}2}, rather than as {lambda}{sup {minus}4} for topographic scattering, which means that it is relatively more important at long radiation wavelengths. Estimates of the intensity based an available short-wavelength values of the anisotropic optical constants of beryllium indicate that this type of scattering could dominate the topographic scattering from smooth surfaces at CO{sub 2} wavelengths. 10 refs., 2 figs.

  2. Alloying of aluminum-beryllium alloys

    NASA Astrophysics Data System (ADS)

    Molchanova, L. V.; Ilyushin, V. N.

    2013-01-01

    The existing phase diagrams of Al-Be- X alloys, where X is an alloying element, are analyzed. Element X is noted to poorly dissolve in both aluminum and beryllium. It is shown that the absence of intermetallic compounds in the Al-Be system affects the phase equilibria in an Al-Be- X system. Possible phase equilibria involving phases based on aluminum, beryllium, and intermetallic compounds are proposed, and the types of strengthening of Al-Be alloys by an addition of a third element are classified.

  3. Preliminary results for explosion bonding of beryllium to copper

    SciTech Connect

    Butler, D.J.; Dombrowski, D.E.

    1995-09-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques.

  4. Halide Ion Enhancement of Nitrate Ion Photolysis

    NASA Astrophysics Data System (ADS)

    Richards, N. K.; Wingen, L. M.; Callahan, K. M.; Tobias, D. J.; Finlayson-Pitts, B. J.

    2009-12-01

    Nitrate ion photochemistry is an important source of NOx in the polar regions. It is uncertain whether coexisting ions such as halides play a role in nitrate photochemistry. The effect of halides on NO3 photolysis was investigated using photolysis experiments in 230 L Teflon chambers that contain deliquesced aerosols of NaBr:NaNO3, KBr:KNO3 and ternary mixtures of NaCl:NaBr:NaNO3. Gas phase NO2 and gaseous halogen products were measured as a function of photolysis time using long path FTIR, NOx chemiluminescence and API-MS (atmospheric pressure ionization mass spectrometry). Experiments were conducted with NO3- held at a constant 0.5 M and with the amount of total halide concentration varying from 0.25 M to 4 M. Studies on NaBr:NaNO3 mixtures suggest that as the bromide ion to nitrate ion ratio increases, there is an enhancement in the rate of production of NO2 in the nitrate-bromide mixtures over that formed in the photolysis of NaNO3. Molecular dynamic (MD) simulations provide molecular level insight into the ions near the air-water interface in the aqueous halide-nitrate mixtures. These studies suggest that the presence of sodium halides at the air-water interface may encourage some nitrate ions to approach the top layers of water, allowing for more efficient escape of photoproducts than is seen in the absence of halides. Experiments on mixtures of KBr:KNO3 are being conducted to determine potential cation effects. In addition, ternary mixtures of NaCl:NaBr:NaNO3 are being examined to determine the effects of mixtures of halides on production of NO2 and gaseous halogen products. The implications of this photochemistry for tropospheric chemistry will be discussed.

  5. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  6. Summary of beryllium specifications, current and historical

    SciTech Connect

    Abeln, S.P.; Kyed, P.

    1990-12-28

    This report summarizes beryllium properties included in producer, Department of Energy, and government specifications. The specifications are divided into two major categories: current and historical. Within each category the data are arranged primarily according to increasing purity and secondarily by increasing tensile properties. Qualitative comments on formability and weldability are included. Also, short summaries of powder production and consolidation techniques are provided.

  7. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.G.

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.

  8. Shallow halogen vacancies in halide optoelectronic materials

    SciTech Connect

    Shi, Hongliang; Du, Mao -Hua

    2014-11-05

    Halogen vacancies (VH) are usually deep color centers (F centers) in halides and can act as major electron traps or recombination centers. The deep VH contributes to the typically poor carrier transport properties in halides. However, several halides have recently emerged as excellent optoelectronic materials, e.g., CH3NH3PbI3 and TlBr. Both CH3NH3PbI3 and TlBr have been found to have shallow VH, in contrast to commonly seen deep VH in halides. In this paper, several halide optoelectronic materials, i.e., CH3NH3PbI3, CH3NH3SnI3 (photovoltaic materials), TlBr, and CsPbBr3, (gamma-ray detection materials) are studied to understand the material chemistry and structure that determine whether VH is a shallow or deep defect in a halide material. It is found that crystal structure and chemistry of ns2 ions both play important roles in creating shallow VH in halides such as CH3NH3PbI3, CH3NH3SnI3, and TlBr. The key to identifying halides with shallow VH is to find the right crystal structures and compounds that suppress cation orbital hybridization at VH, such as those with long cation-cation distances and low anion coordination numbers, and those with crystal symmetry that prevents strong hybridization of cation dangling bond orbitals at VH. Furthermore, the results of this paper provide insight and guidance to identifying halides with shallow VH as good electronic and optoelectronic materials.

  9. The Remarkable Reactivity of Aryl Halides with Nucleophiles

    ERIC Educational Resources Information Center

    Bunnett, Joseph F.

    1974-01-01

    Discusses the reactivity of aryl halides with nucleophilic or basic reagents, including nucleophilic attacks on carbon, hydrogen, halogen, and arynes. Suggestions are made concerning revisions of the sections on aryl halide chemistry courses and the corresponding chapters in textbooks. (CC)

  10. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Quaternary ammonium alkyltherpropyl... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  11. 40 CFR 721.4095 - Quaternary ammonium alkyltherpropyl trialkylamine halides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Quaternary ammonium alkyltherpropyl... Specific Chemical Substances § 721.4095 Quaternary ammonium alkyltherpropyl trialkylamine halides. (a... generically as quaternary ammonium alkyltherpropyl trialkylamine halides (PMNs...

  12. Method for recovering hydrocarbons from molten metal halides

    DOEpatents

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  13. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  14. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  15. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  16. 40 CFR 721.10698 - Polyfluorinated alkyl halide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl halide (generic... Specific Chemical Substances § 721.10698 Polyfluorinated alkyl halide (generic). (a) Chemical substance and... polyfluorinated alkyl halide (PMN P-11-527) is subject to reporting under this section for the significant...

  17. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  18. 40 CFR 721.575 - Substituted alkyl halide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted alkyl halide. 721.575... Substances § 721.575 Substituted alkyl halide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as substituted alkyl halide (PMN P-83-1222)...

  19. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  20. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  1. Beryllium contamination inside vehicles of machine shop workers

    SciTech Connect

    Sanderson, W.T.; Henneberger, P.K.; Martyny, J.; Ellis, K.; Mroz, M.M.; Newman, L.S. |

    1999-04-01

    Inhalation of beryllium particles causes a chronic, debilitating lung disease--chronic beryllium disease (CBD)--in immunologically sensitized workers. Evidence that very low concentrations of beryllium may initiate this chronic disease is provided by incidences of the illness in family members exposed to beryllium dust from workers` clothes and residents in neighborhoods surrounding beryllium refineries. This article describes the results of a cross-sectional survey to evaluate potential take-home beryllium exposures by measuring surface concentrations on the hands and in vehicles of workers at a precision machine shop where cases of CBD had recently been diagnosed. Many workers did not change out of their work clothes and shoes at the end of their shift, increasing the risk of taking beryllium home to their families. Wipe samples collected from workers` hands and vehicle surfaces were analyzed for beryllium content by inductively coupled argon plasma-atomic emission spectroscopy (ICP-AES). The results ranged widely, from nondetectable to 40 {micro}g/ft{sup 2} on workers` hands and up to 714 {micro}g/fg{sup 2} inside their vehicles, demonstrating that many workers carried residual beryllium on their hands and contaminated the inside of their vehicles when leaving work. The highest beryllium concentrations inside the workers` vehicles were found on the drivers` floor (GM = 19 {micro}g/ft{sup 2}, GSD = 4.9), indicating that workers were carrying beryllium on their shoes into their vehicles. A safe level of beryllium contamination on surfaces is not known, but it is prudent to reduce the potential for workers to carry beryllium away from the work site.

  2. Control of beryllium powder at a DOE facility

    SciTech Connect

    Langner, G.C.; Creek, K.L.; Castro, R.G.

    1997-12-31

    Beryllium is contained in a number of domestic and national defense items. Although many items might contain beryllium in some manner, few people need worry about the adverse effects caused by exposure to beryllium because it is the inhalable form of beryllium that is most toxic. Chronic beryllium disease (CBD), a granulomas and fibrotic lung disease with long latency, can be developed after inhalation exposures to beryllium. It is a progressive, debilitating lung disease. Its occurrence in those exposed to beryllium has been difficult to predict because some people seem to react to low concentration exposures whereas others do not react to high concentration exposures. Onset of the disease frequently occurs between 15 to 20 years after exposure begins. Some people develop the disease after many years of low concentration exposures but others do not develop CBD even though beryllium is shown to be present in lungs and urine. Conclusions based on these experiences are that their is some immunological dependence of developing CBD in about 3--4% of the exposed population, but the exact mechanism involved has not yet been identified. Acute beryllium disease can occur after a single exposure to a concentration of greater than 0.100 mg/m3 (inhalation exposure); it is characterized by the development of chemical pneumoconiosis, a respiratory disease. The acute effect of skin contact is a dermatitis characterized by itching and reddened, elevated, or fluid-accumulated lesions which appear particularly on the exposed surfaces of the body, especially the face, neck, arms, and hands. Small particles of beryllium that enter breaks in the skin can lead to the development of granulomas and/or open sores that do not heal until the beryllium has been removed. Our interest is only airborne beryllium, which is found in areas that machine or produce beryllium.

  3. Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups

    SciTech Connect

    Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

    1997-12-31

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface.

  4. Plasma cleaning of beryllium coated mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET

    2016-02-01

    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  5. Dynamic Behavior of Beryllium as a Function of Texture

    SciTech Connect

    Blumenthal, W.R.; Abeln, S.P.; Mataya, M.C.; Gray, G.T. III; Cannon, D.D.

    1999-01-05

    The high-strain-rate stress-strain responses of commercial hot-pressed beryllium and rolled-sheet beryllium were studied as a function of orientation in compression and room temperature. Hot-pressed beryllium exhibits isotropic mechanical properties; whereas 16:1 rolled sheet was highly anisotropic. Rolled sheet displayed a factor of two difference in strength between the thickness and in-plane (lowest) directions. Twinning is a key deformation mechanism at high rates.

  6. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  7. Beryllium window for an APS diagnostics beamline

    SciTech Connect

    Sheng, I.C.; Yang, B.X.; Sharma, Y.S.

    1997-09-01

    A beryllium (Be) window for an Advanced Photon Source (APS) diagnostics beamline has been designed and built. The window, which has a double concave axisymmetrical profile with a thickness of 0.5 mm at the center, receives 160 W/mm{sup 2} (7 GeV/100 mA stored beam) from an undulator beam. The window design as well as thermal and thermomechanical analyses, including thermal buckling of the Be window, are presented.

  8. Neutron counter based on beryllium activation

    NASA Astrophysics Data System (ADS)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  9. Surface chemistry and structure of beryllium oxide

    SciTech Connect

    Fuller, E.L. Jr.; Eager, M.H.; Smithwick, R.W. III; Smyrl, N.R.

    1982-02-01

    Detailed examination of nitrogen sorption isotherms related to the surface chemistry and structure of high-purity beryllium oxide and the products of alkali treatment aid in a better understanding of the topochemical problems encountered in the production of ceramic items. Details are corroborated by additional techniques: diffuse reflectance infrared Fourier transform (DRIFT); mercury intrusion porosimetry (MIP); and scanning electron microscopy (SEM). The results correlate well with studies on other oxides when the unique thermophysical properties of this material are considered.

  10. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  11. Molecular compressibility of some halides in alcohols

    NASA Technical Reports Server (NTRS)

    Serban, C.; Auslaender, D.

    1974-01-01

    After measuring ultrasonic velocity and density, the molecular compressibility values from Wada's formula were calculated, for alkali metal halide solutions in methyl, ethyl, butyl, and glycol alcohol. The temperature and concentration dependence were studied, finding deviations due to the hydrogen bonds of the solvent.

  12. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2010-08-24

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  13. Quantitative method of determining beryllium or a compound thereof in a sample

    DOEpatents

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.

    2006-10-31

    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  14. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.B.

    1994-12-31

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing components of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/ release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. In this current work, the range of anticipated fusion operating conditions is reviewed with regard to surface heat loads, temperatures, displacement damage rates and levels, tritium generation rates and levels and helium generation rates and levels. The thermal, mechanical, chemical compatibility, tritium retention/release, and helium retention/swelling data bases are then reviewed for the proposed fabrication methods and fusion operating conditions of interest. Properties correlations and uncertainty ranges are also discussed brief.

  15. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  16. Beryllium-10 in Australasian tektites: evidence for a sedimentary precursor

    SciTech Connect

    Pal, D.K.; Tuniz, C.; Moniot, R.K.; Kruse, T.H.; Herzog, G.F.

    1982-11-19

    Each of seven Australasian tektites contains about 1 x 10/sup 8/ atoms of beryllium-10 (half-life, 1.53 x 10/sup 6/ years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event.

  17. Beryllium-10 in australasian tektites: evidence for a sedimentary precursor.

    PubMed

    Pal, D K; Tuniz, C; Moniot, R K; Kruse, T H; Herzog, G F

    1982-11-19

    Each of seven Australasian tektites contains about 1 x l0(8) atoms of beryllium-10 (half-life, 1.53 x 10(6) years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event.

  18. The bioinorganic chemistry and associated immunology of chronic beryllium disease†

    PubMed Central

    McCleskey, T. Mark; Chaudhary, Anu; Hong-Geller, Elizabeth; Gnanakaran, S.

    2013-01-01

    Chronic beryllium disease (CBD) is a debilitating, incurable, and often fatal disease that is caused by the inhalation of beryllium particulates. The growing use of beryllium in the modern world, in products ranging from computers to dental prosthetics (390 tons of beryllium in the US in the year 2000) necessitates a molecular based understanding of the disease in order to prevent and cure CBD. We have investigated the molecular basis of CBD at Los Alamos National Laboratory during the past six years, employing a multidisciplinary approach of bioinorganic chemistry and immunology. The results of this work, including speciation, inhalation and dissolution, and immunology will be discussed. PMID:18566702

  19. The Rocky Flats Environmental Technology Site beryllium characterization project

    SciTech Connect

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-06-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

  20. Possible health risks from low level exposure to beryllium.

    PubMed

    Stange, A W; Hilmas, D E; Furman, F J

    1996-07-17

    The first case of chronic beryllium disease (CBD) at the Rocky Flats Environmental Technology Site (Rocky Flats) was diagnosed in a machinist in 1984. Rocky Flats, located 16 miles northwest of Denver, Colorado, is part of the United States Department of Energy (DOE) nuclear weapons complex. Research and development operations using beryllium began at Rocky Flats in 1953, and beryllium production operations began in 1957. Exposures could have occurred during foundry operations, casting, shearing, rolling, cutting, welding, machining, sanding, polishing, assembly, and chemical analysis operations. The Beryllium Health Surveillance Program (BHSP) was established in June 1991 at Rocky Flats to provide health surveillance for beryllium exposed employees using the Lymphocyte Proliferation Test (LPT) to identify sensitized individuals. Of the 29 cases of CBD and 76 cases of beryllium sensitization identified since 1991, several cases appear to have had only minimal opportunistic exposures to beryllium, since they were employed in administrative functions rather than primary beryllium operations. In conjunction with other health surveillance programs, a questionnaire and interview are administered to obtain detailed work and health histories. These histories, along with other data, are utilized to estimate the extent of an individual's exposure. Additional surveillance is in progress to attempt to characterize the possible risks from intermittent or brief exposures to beryllium in the workplace. PMID:8711738

  1. Piezoresistance and hole transport in beryllium-doped silicon.

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Robertson, J. B.

    1972-01-01

    The resistivity and piezoresistance of p-type silicon doped with beryllium have been studied as a function of temperature, crystal orientation, and beryllium doping concentration. It is shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gauge factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, while the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  2. Beryllium-10 in Australasian tektites - Evidence for a sedimentary precursor

    NASA Technical Reports Server (NTRS)

    Pal, D. K.; Moniot, R. K.; Kruse, T. H.; Herzog, G. F.; Tuniz, C.

    1982-01-01

    Each of seven Australasian tektites contains about 100 micron atoms of beryllium-10 (half-life, 1.53 million years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event.

  3. Beryllium-10 in australasian tektites: evidence for a sedimentary precursor.

    PubMed

    Pal, D K; Tuniz, C; Moniot, R K; Kruse, T H; Herzog, G F

    1982-11-19

    Each of seven Australasian tektites contains about 1 x l0(8) atoms of beryllium-10 (half-life, 1.53 x 10(6) years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event. PMID:17771035

  4. Determination of Natural Beryllium (Be) in Soil and Swipe Samples Utilizing Yttrium/Beryllium Ratio

    SciTech Connect

    2010-09-30

    1. Objective: A method to determine whether beryllium (Be) components in surface swipe samples are from a natural source is needed. 2. Methods: Soil samples and surface swipes from area facilities were analyzed for marker elements to identify source pathways for beryllium (Be). To be useful, the natural marker element must be present at reasonably consistent levels across the site, must correlate with the Be concentration, and not have the potential to be present from non-natural sources. 3. Results: The research on marker elements used to identify source pathways for beryllium (Be) concentrations demonstrates a clear correlation between Be and yttrium (Y) in natural soils on the Nevada National Security Site. The Y/Be ratio is proposed as a method to characterize the source of Be in soil and surface swipe samples and to aid in recommendations for follow up actions. Swipe samples are analyzed using an ICP/MS method and compared with results from soil samples. Natural soil constituent levels and the Y/Be Ratio range is determined for the occupied and historical facilities and surrounding areas. Y/Be ratios within the statistical range established indicate the Be is from a natural source. Y/Be ratios lower than this range indicate the presence of another Be source, and may then be correlated to alloy, ceramic, or other operational sources by the ratios of copper, nickel, cobalt, uranium, and/or niobium. Example case studies of evaluations of buildings with historical operational beryllium usage, current ongoing technical processes, and heavy equipment used in large building demolitions are included demonstrating the value of the ratio approach. 4. Conclusions: This differentiation is valuable as there is no known correlation between natural beryllium in soil and beryllium disease.

  5. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  6. Functionally Graded Nanophase Beryllium/Carbon Composites

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg A.; Tompa, Gary S.

    2003-01-01

    Beryllium, beryllium alloys, beryllium carbide, and carbon are the ingredients of a class of nanophase Be/Be2C/C composite materials that can be formulated and functionally graded to suit a variety of applications. In a typical case, such a composite consists of a first layer of either pure beryllium or a beryllium alloy, a second layer of B2C, and a third layer of nanophase sintered carbon derived from fullerenes and nanotubes. The three layers are interconnected through interpenetrating spongelike structures. These Be/Be2C/C composite materials are similar to Co/WC/diamond functionally graded composite materials, except that (1) W and Co are replaced by Be and alloys thereof and (2) diamond is replaced by sintered carbon derived from fullerenes and nanotubes. (Optionally, one could form a Be/Be2C/diamond composite.) Because Be is lighter than W and Co, the present Be/Be2C/C composites weigh less than do the corresponding Co/WC/diamond composites. The nanophase carbon is almost as hard as diamond. WC/Co is the toughest material. It is widely used for drilling, digging, and machining. However, the fact that W is a heavy element (that is, has high atomic mass and mass density) makes W unattractive for applications in which weight is a severe disadvantage. Be is the lightest tough element, but its toughness is less than that of WC/Co alloy. Be strengthened by nanophase carbon is much tougher than pure or alloy Be. The nanophase carbon has an unsurpassed strength-to-weight ratio. The Be/Be2C/C composite materials are especially attractive for terrestrial and aerospace applications in which there are requirements for light weight along with the high strength and toughness of the denser Co/WC/diamond materials. These materials could be incorporated into diverse components, including cutting tools, bearings, rocket nozzles, and shields. Moreover, because Be and C are effective as neutron moderators, Be/Be2C/C composites could be attractive for some nuclear applications.

  7. Beryllium metal II. a review of the available toxicity data.

    PubMed

    Strupp, Christian

    2011-01-01

    Beryllium metal was classified in Europe collectively with beryllium compounds, e.g. soluble salts. Toxicological equivalence was assumed despite greatly differing physicochemical properties. Following introduction of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation, beryllium metal was classified as individual substance and more investigational efforts to appropriately characterize beryllium metal as a specific substance apart from soluble beryllium compounds was required. A literature search on toxicity of beryllium metal was conducted, and the resulting literature compiled together with the results of a recently performed study package into a comprehensive data set. Testing performed under Organisation for Economic Co-Operation and Development guidelines and Good Laboratory Practice concluded that beryllium metal was neither a skin irritant, an eye irritant, a skin sensitizer nor evoked any clinical signs of acute oral toxicity; discrepancies between the current legal classification of beryllium metal in the European Union (EU) and the experimental results were identified. Furthermore, genotoxicity and carcinogenicity were discussed in the context of the literature data and the new experimental data. It was concluded that beryllium metal is unlikely to be a classical nonthreshold mutagen. Effects on DNA repair and morphological cell transformation were observed but need further investigation to evaluate their relevance in vivo. Animal carcinogenicity studies deliver evidence of carcinogenicity in the rat; however, lung overload may be a species-specific confounding factor in the existing studies, and studies in other species do not give convincing evidence of carcinogenicity. Epidemiology has been intensively discussed over the last years and has the problem that the studies base on the same US beryllium production population and do not distinguish between metal and soluble compounds. It is noted that the correlation

  8. Beryllium Metal II. A Review of the Available Toxicity Data

    PubMed Central

    Strupp, Christian

    2011-01-01

    Beryllium metal was classified in Europe collectively with beryllium compounds, e.g. soluble salts. Toxicological equivalence was assumed despite greatly differing physicochemical properties. Following introduction of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation, beryllium metal was classified as individual substance and more investigational efforts to appropriately characterize beryllium metal as a specific substance apart from soluble beryllium compounds was required. A literature search on toxicity of beryllium metal was conducted, and the resulting literature compiled together with the results of a recently performed study package into a comprehensive data set. Testing performed under Organisation for Economic Co-Operation and Development guidelines and Good Laboratory Practice concluded that beryllium metal was neither a skin irritant, an eye irritant, a skin sensitizer nor evoked any clinical signs of acute oral toxicity; discrepancies between the current legal classification of beryllium metal in the European Union (EU) and the experimental results were identified. Furthermore, genotoxicity and carcinogenicity were discussed in the context of the literature data and the new experimental data. It was concluded that beryllium metal is unlikely to be a classical nonthreshold mutagen. Effects on DNA repair and morphological cell transformation were observed but need further investigation to evaluate their relevance in vivo. Animal carcinogenicity studies deliver evidence of carcinogenicity in the rat; however, lung overload may be a species-specific confounding factor in the existing studies, and studies in other species do not give convincing evidence of carcinogenicity. Epidemiology has been intensively discussed over the last years and has the problem that the studies base on the same US beryllium production population and do not distinguish between metal and soluble compounds. It is noted that the correlation

  9. Three-coordinate beryllium β-diketiminates: synthesis and reduction chemistry.

    PubMed

    Arrowsmith, Merle; Hill, Michael S; Kociok-Köhn, Gabriele; MacDougall, Dugald J; Mahon, Mary F; Mallov, Ian

    2012-12-17

    A series of mononuclear, heteroleptic beryllium complexes supported by the monoanionic β-diketiminate ligand [HC{CMeNDipp}(2)](-) (L; Dipp = 2,6-diisopropylphenyl) have been synthesized. Halide complexes of the form [LBeX] (X = Cl, I) and a bis(trimethylsilyl)amide complex were produced via salt metathesis routes. Alkylberyllium β-diketiminate complexes of the form [LBeR] (R = Me, (n)Bu) were obtained by salt metathesis from the chloride precursor [LBeCl]. Controlled hydrolysis of [LBeMe] afforded an air-stable, monomeric β-diketiminatoberyllium hydroxide complex. [LBeMe] also underwent facile protonolysis with alcohols to form the corresponding β-diketiminatoberyllium alkoxides [LBeOR] (R = Me, (t)Bu, Ph). High temperatures and prolonged reaction times were required for protonolysis of [LBeMe] with primary amines to yield the β-diketiminatoberyllium amide complexes [LBeNHR] (R = (n)Bu, CH(2)Ph, Ph). No reactions were observed between [LBeMe] and silanes, terminal acetylenes, or secondary amines. All compounds were characterized by (1)H, (13)C, and (9)Be NMR spectroscopy and, in most cases, by X-ray crystallography. Reduction of the beryllium chloride complex with potassium metal resulted in apparent hydrogen-atom transfer between two β-diketiminate backbones, yielding two dimeric, potassium chloride bridged diamidoberyllium species. X-ray analysis of a cocrystallized mixture of the 18-crown-6 adducts of these species allowed unambiguous identification of the two reduced diketiminate ligands, one of which had been deprotonated at a backbone methyl substituent and the other reduced by hydride addition to the β-imine position. It is proposed that this process occurs by the formation of an unobserved radical anion species and intermolecular hydrogen-atom transfer by a radical-based hydrogen abstraction mechanism.

  10. Chronic beryllium disease and beryllium sensitization at Rocky Flats: a case-control study.

    PubMed

    Viet, S M; Torma-Krajewski, J; Rogers, J

    2000-01-01

    A case-control study was conducted to evaluate the risk of chronic beryllium disease (CBD) and beryllium sensitization (SENS) associated with various levels of historical beryllium exposure at the Rocky Flats nuclear weapons facility. Fifty CBD and 74 SENS cases were matched to controls of the same age group, race, gender, and smoking status. A job exposure matrix was developed from job history data and fixed airhead (FAH) exposure data available from 1960 to 1988. Job titles and building areas were assigned factors based on exposure relative to a machinist in the Building 444 Beryllium Shop. Concurrence on these factors was obtained from past and present Rocky Flats industrial hygienists. Using the matrix, long-term mean and cumulative exposures were estimated for each subject. Both exposure estimates (p < 0.0001) and years of employment (p = 0.010) were found to be significantly higher for CBD cases as compared with their controls, but not so for the SENS cases as compared with their controls. Logistic regression analyses showed statistically significant relationships between both cumulative and mean exposure and CBD, but not for SENS. These findings suggest that reduced worker exposures might lower the future incidence of CBD, but may not necessarily lower the incidence of SENS. PMID:10782196

  11. Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid.

    PubMed

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2011-05-01

    Dissolution of a lung burden of poorly soluble beryllium particles is hypothesized to be necessary for development of chronic beryllium lung disease (CBD) in humans. As such, particle dissolution rate must be sufficient to activate the lung immune response and dissolution lifetime sufficient to maintain chronic inflammation for months to years to support development of disease. The purpose of this research was to investigate the hypothesis that poorly soluble beryllium compounds release ions via dissolution in lung fluid. Dissolution kinetics of 17 poorly soluble particulate beryllium materials that span extraction through ceramics machining (ores, hydroxide, metal, copper-beryllium [CuBe] fume, oxides) and three CuBe alloy reference materials (chips, solid block) were measured over 31 d using artificial lung alveolar macrophage phagolysosomal fluid (pH 4.5). Differences in beryllium-containing particle physicochemical properties translated into differences in dissolution rates and lifetimes in artificial phagolysosomal fluid. Among all materials, dissolution rate constant values ranged from 10(-5) to 10(-10)gcm(-2)d(-1) and half-times ranged from tens to thousands of days. The presence of magnesium trisilicate in some beryllium oxide materials may have slowed dissolution rates. Materials associated with elevated prevalence of CBD had faster beryllium dissolution rates [10(-7)-10(-8)gcm(-2)d(-1)] than materials not associated with elevated prevalence (p<0.05).

  12. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  13. Beryllium toxicity testing in the suspension culture of mouse fibroblasts.

    PubMed

    Rössner, P; Bencko, V

    1980-01-01

    Suspension culture of mouse fibroblast cell line L-A 115 was used to test beryllium toxicity in the presence of magnesium ions. Beryllium added to the MEM cultivation medium was bound in a complex with sulphosalicylic acid BeSSA complex, because the use of beryllium chloride turned out to yield ineffective beryllium phosphate that formed macroscopically detectable insoluble opacities. The BeSSA complex was used in the concentration range: 10(-3)--10(-9)M, magnesium was used in 3 concentrations: 10(-1)M, 5 x 10(-2)M and 10(-2)M. Growth curve analysis revealed pronounced beryllium toxicity at the concentration of 10(-3)M, magnesium-produced toxic changes were observed only at the concentration of 10(-1)M. No competition between the beryllium and magnesium ions was recorded. It is assumed that the possible beryllium-magnesium competition was significantly modified by the use of BeSSA complex-bound beryllium.

  14. Simulating beryllium electrorefining with AspenPlus{copyright}

    SciTech Connect

    Polston, C.E.; Parkinson, W.J.; Abeln, S.P.; Wantuck, P.J.; Corle, R.R.

    1998-12-01

    Beryllium is a lightweight, high strength metal with excellent thermal properties. It is a high cost material that has applications in electronics, the space program, and the defense industry. Beryllium is irreplaceable in several defense applications and therefore the US government maintains a reserve supply of several grades of the metal. However, the current defense industry (the largest metallic beryllium user) use has dwindled to the point that the only metallic beryllium producer in the US, Brush Wellman Inc., continually evaluates the profitability of continued production. The production dilemma has been compounded by health concerns associated with the generation of beryllium fines during production. An electrorefining method, previously developed, shows promise for recycling low purity beryllium scraps and produces a high grade material. Recycling and purification can reduce costs and waste disposal problems and increase the beryllium reserves in the event that Brush Wellman discontinues production. In this paper, the authors demonstrate how to use a commercially available process simulator for improving a process to electrorefine both scrap and low purity beryllium into a high purity product.

  15. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  16. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... a person's immune system becomes highly responsive (allergic) to the presence of beryllium in the... Beryllium Disease Prevention Program (CBDPP) (63 FR 66940). After considering the comments received, DOE published its final rule establishing CBDPP on December 8, 1999 (64 FR 68854). At that time, DOE sought...

  17. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR BERYLLIUM AND COMPOUNDS

    EPA Science Inventory

    EPA's assessment of the noncancer health effects and carcinogenic potential of Beryllium was added to the IRIS database in 1998. The IRIS program is updating the IRIS assessment for Beryllium. This update will incorporate health effects information published since the last assess...

  18. Enhanced preventive programme at a beryllium oxide ceramics facility reduces beryllium sensitisation among new workers

    PubMed Central

    Cummings, Kristin J; Deubner, David C; Day, Gregory A; Henneberger, Paul K; Kitt, Margaret M; Kent, Michael S; Kreiss, Kathleen; Schuler, Christine R

    2007-01-01

    Background A 1998 survey at a beryllium oxide ceramics manufacturing facility found that 10% of workers hired in the previous 6 years had beryllium sensitisation as determined by the beryllium lymphocyte proliferation test (BeLPT). In response, the facility implemented an enhanced preventive programme to reduce sensitisation, including increased respiratory and dermal protection and particle migration control. Aim To assess the programme's effectiveness in preventing sensitisation. Methods In 2000, the facility began testing newly hired workers for beryllium sensitisation with the BeLPT at time of hire and during employment. The sensitisation rate and prevalence for workers hired from 2000 to 2004 were compared with that for workers hired from 1993 to 1998, who were tested in the 1998 survey. Facility environmental conditions for both time periods were evaluated. Results Newly hired workers in both cohorts worked for a mean of 16 months. Of the 97 workers hired from 2000 to 2004 with at least one employment BeLPT result, four had abnormal results at time of hire and one became sensitised during employment. Of the 69 workers hired from 1993 to 1998 and tested in 1998, six were found to be sensitised. The sensitisation rate for the 2000–4 workers was 0.7–2.7/1000 person‐months of employment, and that for the 1993–8 workers was 5.6/1000 person‐months, at least 2.1 (95% confidence interval (CI) 0.6 to 8.4) and up to 8.2 (95% CI 1.2 to 188.8) times higher than that for the 2000–4 workers. The sensitisation prevalence for the 2000–4 workers was 1% and that for the 1993–8 workers was 8.7%, 8.4 (95% CI 1.04 to 68.49) times higher than that for the 2000–4 workers. Airborne beryllium levels for production workers for the two time periods were similar. Conclusions A comprehensive preventive programme reduced beryllium sensitisation in new workers during the first years of employment, despite airborne beryllium levels for production workers that were

  19. Beryllium particulate exposure and disease relations in a beryllium machining plant.

    PubMed

    Kelleher, P C; Martyny, J W; Mroz, M M; Maier, L A; Ruttenber, A J; Young, D A; Newman, L S

    2001-03-01

    We examined the relationship between exposure to beryllium and the presence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers in a beryllium precision machining facility. Twenty workers with BeS or CBD (cases) were compared with 206 worker-controls in a case-control study. Exposure for each job title was measured using cascade impactors placed in the workers' breathing zone to measure total beryllium exposure and exposure to particles < 6 microns and < 1 micron in aerodynamic diameter. Cumulative exposure was calculated as sigma (job title exposure estimate x years in job title). Individual lifetime-weighted (LTW) exposure was calculated as sigma [(job title exposure x years in job title) divided by total years employment)]. Workers in the case group were more likely to have worked as machinists (odds ratio, 4.4; 95% confidence interval, 1.1 to 17.5) than those in the control group. The median cumulative exposure was consistently greater in the cases compared with the controls for all exposure estimates and particle size fractions, although this was not statistically significant. The median cumulative exposure was 2.9 micrograms/m3-years in the cases versus 1.2 micrograms/m3-years in the controls for total exposure, and 1.7 micrograms/m3-years in the cases versus 0.5 microgram/m3-years in the controls for exposure to particles < 6 microns in diameter. With cumulative exposure categorized into low-, intermediate-, and high-exposure groups, the odds ratios were 2.4 (95% confidence interval, 0.7 to 8.2) for the intermediate-exposure group and 1.2 (95% confidence interval, 0.4 to 4.2) for the high-exposure group compared with the low-exposure group. The median LTW exposure was 0.25 microgram/m3 in both groups. The median LTW exposure to particles < 6 microns was 0.20 microgram/m3 in the cases compared with 0.14 microgram/m3 in the controls. The differences in cumulative and LTW exposure were not statistically significant. None

  20. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-01

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. PMID:26376773

  1. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  2. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    PubMed

    Chen, Kun; Tüysüz, Harun

    2015-11-01

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites.

  3. Infrared spectra of FHF - in alkali halides

    NASA Astrophysics Data System (ADS)

    Chunnilall, C. J.; Sherman, W. F.

    1982-03-01

    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  4. Halide electroadsorption on single crystal surfaces

    SciTech Connect

    Ocko, B.M.; Wandlowski, T.

    1997-07-01

    The structure and phase behavior of halides have been investigated on single crystals of Ag and Au using synchrotron x-ray scattering techniques. The adlayer coverages are potential dependent. For all halides studied the authors found that with increasing potential, at a critical potential, a disordered adlayer transforms into an ordered structure. Often these ordered phases are incommensurate and exhibit potential-dependent lateral separations (electrocompression). The authors have analyzed the electrocompression in terms of a model which includes lateral interactions and partial charge. A continuous compression is not observed for Br on Ag(100). Rather, they find that the adsorption is site-specific (lattice gas) in both the ordered and disordered phases. The coverage increases with increasing potential and at a critical potential the disordered phase transforms to a well-ordered commensurate structure.

  5. Lanthanide-halide based humidity indicators

    DOEpatents

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  6. Spectrofluorimetric Determination of Beryllium by Mean Centering of Ratio Spectra.

    PubMed

    Chamsaz, Mahmoud; Samghani, Kobra; Arbab-Zavar, Mohammad Hossein; Heidari, Tahereh

    2016-07-01

    Trace amounts of beryllium has been determined by spectrofluorimetric method that used morin as fluorimetric reagent. Beryllium gives a highly fluorescent complex with morin. The excitation wavelength of morin and Be-morin complex were 410 and 430. The fluorescence spectra of morin and Be-morin complex were overlaped in excitation wavelength of 430 nm. A method based on mean centering of ratio spectra has been performed to remove the interference caused by morin as it overlaps with the Be-morin spectra. The linear range of beryllium concentration is in 0.2-200 ppb range. The parameters of detection limit and RSD were 0.18 ppb and 4.6 % respectively. This method was used for determination of beryllium in copper-beryllium alloy as a real sample. In determination of Be(II), the interference by Cu(II) was very serious, which was eliminated by adding triethanolamine. PMID:27265354

  7. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect

    Yi, S. A. Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H.; Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J.

    2014-09-15

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  8. Release of beryllium into artificial airway epithelial lining fluid.

    PubMed

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2012-01-01

    Inhaled beryllium particles that deposit in the lung airway lining fluid may dissolve and interact with immune-competent cells resulting in sensitization. As such, solubilization of 17 beryllium-containing materials (ore, hydroxide, metal, oxide, alloys, and process intermediates) was investigated using artificial human airway epithelial lining fluid. The maximum beryllium release in 7 days was 11.78% (from a beryl ore melter dust), although release from most materials was < 1%. Calculated dissolution half-times ranged from 30 days (reduction furnace material) to 74,000 days (hydroxide). Despite rapid mechanical clearance, billions of beryllium ions may be released in the respiratory tract via dissolution in airway lining fluid. Beryllium-containing particles that deposit in the respiratory tract dissolve in artificial lung epithelial lining fluid, thereby providing ions for absorption in the lung and interaction with immune-competent cells in the respiratory tract.

  9. Estimating occupational beryllium exposure from compliance monitoring data.

    PubMed

    Hamm, Michele P; Burstyn, Igor

    2011-01-01

    Occupational exposure to beryllium is widespread and is a health risk. The objectives of this study were to develop plausible models to estimate occupational airborne beryllium exposure. Compliance monitoring data were obtained from the Occupational Safety and Health Administration for 12,148 personal measurements of beryllium exposure from 1979 to 2005. Industry codes were maintained as reported or collapsed based on the number of measurements per cell of a job-exposure matrix (JEM). Probability of exposure was predicted based on year, industry, job, and sampling duration. In these models, probability of exposure decreased over time, was highest in full-shift personal samples, and varied with industry and job. The probability of exposure was calculated using 6 JEMs, each providing similar rankings of the likelihood of non-negligible exposure to beryllium. These statistical models, with expert appraisal, are suitable for the assessment of the probability of elevated occupational exposure to beryllium.

  10. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  11. Spectrofluorimetric Determination of Beryllium by Mean Centering of Ratio Spectra.

    PubMed

    Chamsaz, Mahmoud; Samghani, Kobra; Arbab-Zavar, Mohammad Hossein; Heidari, Tahereh

    2016-07-01

    Trace amounts of beryllium has been determined by spectrofluorimetric method that used morin as fluorimetric reagent. Beryllium gives a highly fluorescent complex with morin. The excitation wavelength of morin and Be-morin complex were 410 and 430. The fluorescence spectra of morin and Be-morin complex were overlaped in excitation wavelength of 430 nm. A method based on mean centering of ratio spectra has been performed to remove the interference caused by morin as it overlaps with the Be-morin spectra. The linear range of beryllium concentration is in 0.2-200 ppb range. The parameters of detection limit and RSD were 0.18 ppb and 4.6 % respectively. This method was used for determination of beryllium in copper-beryllium alloy as a real sample. In determination of Be(II), the interference by Cu(II) was very serious, which was eliminated by adding triethanolamine.

  12. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    DOEpatents

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  13. Double Photoionization of excited Lithium and Beryllium

    SciTech Connect

    Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2010-05-20

    We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.

  14. Process and composition for drying of gaseous hydrogen halides

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  15. Solvation at nanoscale: Alkali-halides in water clusters

    SciTech Connect

    Partanen, Leena; Mikkelae, Mikko-Heikki; Huttula, Marko; Tchaplyguine, Maxim; Zhang Chaofan; Andersson, Tomas; Bjoerneholm, Olle

    2013-01-28

    The solvation of alkali-halides in water clusters at nanoscale is studied by photoelectron spectroscopy using synchrotron radiation. The Na 2p, K 3p, Cl 2p, Br 3d, and I 4d core level binding energies have been measured for salt-containing water clusters. The results have been compared to those of alkali halide clusters and the dilute aqueous salt solutions. It is found that the alkali halides dissolve in small water clusters as ions.

  16. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  17. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL... CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper... introduction of pollutants into publicly owned treatment works from the forming of beryllium copper alloys....

  18. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL... Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper forming... of pollutants into publicly owned treatment works from the forming of beryllium copper alloys....

  19. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL... Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper forming... of pollutants into publicly owned treatment works from the forming of beryllium copper alloys....

  20. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL... CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper... introduction of pollutants into publicly owned treatment works from the forming of beryllium copper alloys....

  1. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL... CATEGORY Beryllium Copper Forming Subcategory § 468.20 Applicability; description of the beryllium copper... introduction of pollutants into publicly owned treatment works from the forming of beryllium copper alloys....

  2. Thick beryllium coatings by magnetron sputtering

    SciTech Connect

    Wu, H; Nikroo, A; Youngblood, K; Moreno, K; Wu, D; Fuller, T; Alford, C; Hayes, J; Detor, A; Wong, M; Hamza, A; van Buuren, T; Chason, E

    2011-04-14

    Thick (>150 {micro}m) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility (NIF). As an added complication, the coatings are deposited on mm-scale spherical substrates, as opposed to flats. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. We used ultra small angle x-ray spectroscopy (USAXS) to characterize the void fraction and distribution along the spherical surface. We investigated the void structure using a combination focused ion beam (FIB) and scanning electron microscope (SEM), along with transmission electron microscopy (TEM). Our results show a few volume percent of voids and a typical void diameter of less than two hundred nanometers. Understanding how the stresses in the deposited material develop with thickness is important so that we can minimize film cracking and delamination. To that end, an in-situ multiple optical beam stress sensor (MOSS) was used to measure the stress behavior of thick Beryllium coatings on flat substrates as the material was being deposited. We will show how the film stress saturates with thickness and changes with pressure.

  3. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  4. Beryllium medical surveillance at a former nuclear weapons facility during cleanup operations.

    PubMed

    Sackett, Holly M; Maier, Lisa A; Silveira, Lori J; Mroz, Margaret M; Ogden, Lorraine G; Murphy, James R; Newman, Lee S

    2004-09-01

    Despite increasing need to remediate beryllium-contaminated buildings in industry, little is known about the magnitude of risk associated with beryllium abatement or the merits of beryllium medical surveillance for cleanup workers. We examined beryllium lymphocyte proliferation tests and reviewed medical evaluations on workers at a nuclear weapons facility during the process of decontamination and decommissioning. Of 2,221 workers, 19 (0.8%) were beryllium sensitized based on two or more abnormal beryllium lymphocyte proliferation tests. Eight of 19 sensitized individuals underwent full clinical evaluation, of whom two were diagnosed with chronic beryllium disease (CBD). Notably, seven beryllium sensitized and CBD cases were hired after the start of cleanup operations. Beryllium medical surveillance detects sensitization and CBD in cleanup workers. Exposure controls and medical surveillance need to be 'broad-based' to include all cleanup workers involved in beryllium-contaminated building remediation.

  5. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides

    PubMed Central

    Biswas, Soumik; Weix, Daniel J.

    2013-01-01

    The direct cross-coupling of two different electrophiles, such as an aryl halide with an alkyl halide, offers many advantages over conventional cross-coupling methods that require a carbon nucleophile. Despite its promise as a versatile synthetic strategy, a limited understanding of the mechanism and origin of cross selectivity has hindered progress in reaction development and design. Herein, we shed light on the mechanism for the nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides and demonstrate that the selectivity arises from an unusual catalytic cycle that combines both polar and radical steps to form the new C-C bond. PMID:23952217

  6. Sarcoidosis and chronic beryllium disease: similarities and differences.

    PubMed

    Mayer, Annyce S; Hamzeh, Nabeel; Maier, Lisa A

    2014-06-01

    Chronic beryllium disease (CBD) is a granulomatous lung disease that may be pathologically and clinically indistinguishable from pulmonary sarcoidosis, except through use of immunologic testing, such as the beryllium lymphocyte proliferation test (BeLPT). Similar to sarcoidosis, the pulmonary manifestations of CBD are variable and overlap with other respiratory diseases. Definitive diagnosis of CBD is established by evidence of immune sensitization to beryllium and diagnostic bronchoscopy with bronchoalveolar lavage and transbronchial biopsy. However, the diagnosis of CBD can also be established on a medically probable basis in beryllium-exposed patients with consistent radiographic imaging and clinical course. Beryllium workers exposed too much higher levels of beryllium in the past demonstrated a much more fulminant disease than is usually seen today. Some extrapulmonary manifestations similar to sarcoidosis were noted in these historic cohorts, although with a narrower spectrum. Extrapulmonary manifestations of CBD are rare today. Since lung-predominant sarcoidosis can very closely resemble CBD, CBD is still misdiagnosed as sarcoidosis when current or past exposure to beryllium is not recognized and no BeLPT is obtained. This article describes the similarities and differences between CBD and sarcoidosis, including clinical and diagnostic features that can help physicians consider CBD in patients with apparent lung-predominant sarcoidosis.

  7. Direct Drive Beryllium Ablator Capsules for the Omega Laser

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Wilson, D. C.; Cobble, J. A.; Murphy, T. J.; Cooley, J. C.; Salazar, M. A.; Rivera Nobile, G., Jr.

    2001-10-01

    We are designing direct drive beryllium ablator capsules for the Omega laser as part of our effort to develop beryllium ablator ignition capsules for the National Ignition Facility (NIF). The main goals for this experimental campaign is to develop the fabrication expertise for roughly NIF size capsules and obtain experimental data on how the copper- brazed joint between the beryllium hemispheres affects the implosion. Our proposed design calls for an 1180 micron outisde diameter capsule with 40 micron thick beryllium walls containing 50 atm of deuterium gas. Some of the capsules will also have 0.05 atm of argon. We plan to image the joints with argon fluorescence from inside the capsule. Our plan is to use a 1 ns square pulse with 30 kJ of laser energy. With this drive, we expect the convergence ratio to be about 6.5 to 7. Depending on the capsule design details, we expect that the peak temperature will be 490 ± 40 eV, and the neutron yield will be anywhere from 1× 10^8 to 8× 10^8 neutrons. Some of the uncertainty comes from whether or not we use argon and questions about how much mix the copper-brazed joint will cause. The yield also depends strongly on which beryllium alloy we use. We calculate better implosions in direct drive with pure beryllium, but requirements on allowable grain size may force us to use copper-doped beryllium, which would reduce the yield by about 50%.

  8. A Novel Biomarker for Beryllium Sensitization in Humans - Final Report

    SciTech Connect

    Albertini, R. J.

    2001-04-16

    This research project will determine the T-cell receptor (TCR) gene usages of beryllium reactive T-lymphocytes isolated directly from the peripheral blood of individuals exposed at a U.S. Department of Energy site. The objective is to develop a sensitive and novel biomarker for identifying early human sensitization to environmental beryllium. This is a collaborative project involving the Genetics Laboratory of the University of Vermont and both the Center for Epidemiological Research and the scientific staff of the Cytogenetics Program at the Oak Ridge Institute for Science and Education (ORISE). The > 2000 beryllium exposed workers who have been contacted for participation in the ORISE study ''Follow-up of Beryllium Workers at the Y-12 Plant/Efficacy of the Peripheral Blood Lymphocyte Proliferation (LPT) and other Non-Invasive Procedures for Diagnosis of Chronic Beryllium Disease'' will provide the pool of potential participants for the proposed study. Beryllium reactive T-lymphocytes will be directly isolated from peripheral blood using a novel antigen-independent method of surrogate selection for in vivo arising hprt mutants as representatives of clones that are undergoing chronic proliferation. The T-cells undergoing chronic proliferation in beryllium sensitized individuals will be enriched for beryllium reactive cells. The TCR gene usage of these T-cell isolates will be determined and their junctional (CDR3) regions sequenced. Beryllium reactive T-cell clones will also be recovered following in vitro beryllium stimulation of peripheral blood lymphocytes from these same individuals and the TCR gene CDR3 region sequences similarly determined. The TCR genes used by the beryllium reactive isolates and their CRD3 region sequences will be compared within (in vivo vs. in vitro derived) and among individuals with attention to kinds and durations of beryllium exposure and HPA DPB Glu 69 status. A method for quantitating total body loads of these antigen reactive T

  9. Beryllium Health and Safety Committee Data Reporting Task Force

    SciTech Connect

    MacQueen, D H

    2007-02-21

    On December 8, 1999, the Department of Energy (DOE) published Title 10 CFR 850 (hereafter referred to as the Rule) to establish a chronic beryllium disease prevention program (CBDPP) to: {sm_bullet} reduce the number of workers currently exposed to beryllium in the course of their work at DOE facilities managed by DOE or its contractors, {sm_bullet} minimize the levels of, and potential for, expos exposure to beryllium, and {sm_bullet} establish medical surveillance requirements to ensure early detection of the disease.

  10. Inhibitory effects of beryllium chloride on rat liver microsomal enzymes.

    PubMed

    Teixeira, C F; Yasaka, W J; Silva, L F; Oshiro, T T; Oga, S

    1990-04-30

    A single i.v. dose (0.1 mmol Be2+/kg) of beryllium chloride prolonged the duration of pentobarbital-induced sleep and zoxazolamine-induced paralysis, in rats. The effects are correlated with changes of the pharmacokinetic parameters and with the in vitro inhibition of both aliphatic and aromatic hydroxylation of pentobarbital and zoxazolamine. In vitro N-demethylation of meperidine and aminopyrine was partially inhibited while O-demethylation of quinidine was unaffected by liver microsomes of rats pretreated with beryllium salt. The findings give clues that beryllium chloride inhibits some forms of cytochrome P-450, especially those responsible for hydroxylation of substrates, like pentobarbital and zoxazolamine.

  11. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  12. Isomorphism of anhydrous tetrahedral halides and silicon chalcogenides: energy landscape of crystalline BeF2, BeCl2, SiO2, and SiS2.

    PubMed

    Zwijnenburg, Martijn A; Corà, Furio; Bell, Robert G

    2008-08-20

    We employ periodic density functional theory calculations to compare the structural chemistry of silicon chalcogenides (silica, silicon sulfide) and anhydrous tetrahedral halides (beryllium fluoride, beryllium chloride). Despite the different formal oxidation states of the elements involved, the divalent halides are known experimentally to form crystal structures similar to known SiX2 frameworks; the rich polymorphic chemistry of SiO2 is however not matched by divalent halides, for which a very limited number of polymorphs are currently known. The calculated energy landscapes yield a quantitative match between the relative polymorphic stability in the SiO2/BeF2 pair, and a semiquantitative match for the SiS2/BeCl2 pair. The experimentally observed polymorphs are found to lie lowest in energy for each composition studied. For the two BeX2 compounds studied, polymorphs not yet synthesized are predicted to lie very low in energy, either slightly above or even in between the energy of the experimentally observed polymorphs. The experimental lack of polymorphism for tetrahedral halide materials thus does not appear to stem from a lack of low-energy polymorphs but more likely is the result of a lack of experimental exploration. Our calculations further indicate that the rich polymorphic chemistry of SiO2 can be potentially matched, if not extended, by BeF2, provided that milder synthetic conditions similar to those employed in zeolite synthesis are developed for BeF2. Finally, our work demonstrates that both classes of materials show the same behavior upon replacement of the 2p anion with the heavier 3p anion from the same group; the thermodynamic preference shifts from structures with large rings to structures with larger fractions of small two and three membered rings.

  13. Cosmis Lithium-Beryllium-Boron Story

    NASA Astrophysics Data System (ADS)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  14. [Emissions of methyl halides from coastal salt marshes: A review].

    PubMed

    Xie, Wen-xia; Zhao, Quan-sheng; Cui, Yu-qian; Du, Hui-na; Ye, Si-yuan

    2015-11-01

    Methyl halides are the major carrier of halogens in the atmosphere, and they play an important role in tropospheric and stratospheric ozone depletion. Meanwhile, methyl halides can act as greenhouse gases in the atmosphere, and they are also environmentally significant because of their toxicity. Coastal salt marshes, the important intertidal ecosystems at the land-ocean interface, have been considered to be a large potential natural source of methyl halides. In this paper, the research status of the natural source or sink of methyl halides, the mechanisms of their emission from coastal salt marshes and affecting factors were summarized. In view of this, the following research fields need to be strengthened in the future: 1) Long time-scale and large region-range researches about the emission of methyl halides and the evaluation of their source and sink function, 2) Accurate quantification of contribution rates of different plant species and various biological types to fluxes of methyl halides, 3) Further researches on effects of the tidal fluctuation process and flooding duration on methyl halides emission, 4) Effects of the global change and human activities on methyl halides emission. PMID:26915215

  15. Progression from Beryllium Exposure to Chronic Beryllium Disease: An Analytic Model

    PubMed Central

    Harber, Philip; Bansal, Siddharth; Balmes, John

    2009-01-01

    Background Understanding the progression from beryllium exposure (BeE) to chronic beryllium disease (CBD) is essential for optimizing screening and early intervention to prevent CBD. Methods We developed an analytic Markov model of progression to CBD that assigns annual probabilities for progression through three states: from BeE to beryllium sensitization and then to CBD. We used calculations of the number in each state over time to assess which of several alternative progression models are most consistent with the limited available empirical data on prevalence and incidence. We estimated cost-effectiveness of screening considering both incremental (cost/case) and cumulative program costs. Results No combination of parameters for a simple model in which risk of progression remains constant over time can meet the empirical constraints of relatively frequent early cases and continuing development of new cases with long latencies. Modeling shows that the risk of progression is initially high and then declines over time. Also, it is likely that there are at least two populations that differ significantly in risk. The cost-effectiveness of repetitive screening declines over time, although new cases will still be found with long latencies. However, screening will be particularly cost-effective when applied to persons with long latencies who have not been previously screened. Conclusions To optimize use of resources, the intensity of screening should decrease over time. Estimation of lifetime cumulative CBD risk should consider the declining risk of progression over time. PMID:19590692

  16. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  17. Research Update: Luminescence in lead halide perovskites

    NASA Astrophysics Data System (ADS)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  18. Nanoscale investigation of organic - inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Cacovich, S.; Divitini, G.; Vrućinić, M.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H.; Deschler, F.; Ducati, C.

    2015-10-01

    Over the last few years organic - inorganic halide perovskite-based solar cells have exhibited a rapid evolution, reaching certified power conversion efficiencies now surpassing 20%. Nevertheless the understanding of the optical and electronic properties of such systems on the nanoscale is still an open problem. In this work we investigate two model perovskite systems (based on iodine - CH3NH3PbI3 and bromine - CH3NH3PbBr3), analysing the local elemental composition and crystallinity and identifying chemical inhomogeneities.

  19. Polarizabilities of the beryllium clock transition

    SciTech Connect

    Mitroy, J.

    2010-11-15

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s{sup 2} {sup 1}S{sup e} ground state (37.73a{sub 0}{sup 3}) and the 2s2p {sup 3}P{sub 0}{sup o} metastable state (39.04a{sub 0}{sup 3}) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s{sup 2} {sup 1}S{sup e}-2s2p {sup 3}P{sub 0}{sup o} clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  20. First-Principles Thermoelasticity of Beryllium

    NASA Astrophysics Data System (ADS)

    Legrand, Ph.; Robert, G.

    2009-12-01

    The temperature dependence α of the shear modulus in beryllium is calculated using two different methods within the framework of Density Functional Theory. In Density Function Perturbation Theory, the usual technique to determine the values of elastic constants at T = 0 K is to access the temperature-dependence of the elastic constants through phonon calculations. The elastic constants are then combined to give the Voigt-Reuss-Hill shear modulus for each phase (hcp and bcc). In Quantum Molecular Dynamics, through a certainly crude assumption, we connect the ratio of mean square displacements at around melting temperature to the temperature-dependence of the shear modulus. With both techniques, we obtain α = 0.24±0.14, in good agreement with the model of D. L. Preston and D. C. Wallace [Solid State Comm; 81 277 (1992)].

  1. Advances in beryllium powder consolidation simulation

    SciTech Connect

    Reardon, B.J.

    1998-12-01

    A fuzzy logic based multiobjective genetic algorithm (GA) is introduced and the algorithm is used to optimize micromechanical densification modeling parameters for warm isopressed beryllium powder, HIPed copper powder and CIPed/sintered and HIPed tantalum powder. In addition to optimizing the main model parameters using the experimental data points as objective functions, the GA provides a quantitative measure of the sensitivity of the model to each parameter, estimates the mean particle size of the powder, and determines the smoothing factors for the transition between stage 1 and stage 2 densification. While the GA does not provide a sensitivity analysis in the strictest sense, and is highly stochastic in nature, this method is reliable and reproducible in optimizing parameters given any size data set and determining the impact on the model of slight variations in each parameter.

  2. Large-area beryllium metal foils

    NASA Astrophysics Data System (ADS)

    Stoner, J. O., Jr.

    1997-02-01

    To manufacture beryllium filters having diameters up to 82 mm and thicknesses in the range 0.1-1 μm, it was necessary to construct apparatus in which the metal could safely be evaporated, and then to find an acceptable substrate and evaporation procedure. The metal was evaporated resistively from a tantalum dimple boat mounted in a baffled enclosure that could be placed in a conventional vacuum bell jar, obviating the need for a dedicated complete vacuum system. Substrates were 102 mm × 127 mm × 0.05 mm cleaved mica sheets, coated with 0.1 μm of NaCl, then with approximately 50 μg/cm 2 of cellulose nitrate. These were mounted on poly(methyl methacrylate) sheets 3 mm thick that were in turn clamped to a massive aluminum block for thermal stability. Details of the processes for evaporation, float off, and mounting are given, and the resulting foils described.

  3. Simulations of threshold displacement in beryllium

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew L.; Fossati, Paul C. M.; Grimes, Robin W.

    2016-07-01

    Atomic scale molecular dynamics simulations of radiation damage have been performed on beryllium. Direct threshold displacement simulations along a geodesic projection of directions were used to investigate the directional dependence with a high spatial resolution. It was found that the directionally averaged probability of displacement increases from 0 at 35 eV, with the energy at which there is a 50% chance of a displacement occurring is 70 eV and asymptotically approaching 1 for higher energies. This is, however, strongly directionally dependent with a 50% probability of displacement varying from 35 to 120 eV, with low energy directions corresponding to the nearest neighbour directions. A new kinetic energy dependent expression for the average maximum displacement of an atom as a function of energy is derived which closely matches the simulated data.

  4. Primordial beryllium as a big bang calorimeter.

    PubMed

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  5. Primordial beryllium as a big bang calorimeter.

    PubMed

    Pospelov, Maxim; Pradler, Josef

    2011-03-25

    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles. PMID:21517297

  6. Total quadruple photoionization cross section of beryllium

    SciTech Connect

    Emmanouilidou, Agapi

    2007-11-15

    In a quasiclassical framework, we formulate the quadruple ionization by single-photon absorption of the Coulomb five-body problem. We present the quadruple photoionization total cross section of the ground state of beryllium for energies up to 620 eV. Our results for energies close to threshold are in agreement with the Wannier threshold law for four-electron escape. In addition, the agreement of our results with a shape formula provides support for the overall shape of our total quadruple cross section. Finally, we find that the photon energy where the maximum of the total photoionization cross section occurs for single, double, triple, and quadruple photoionization of H, He, Li, and Be, respectively, seems to follow a linear relation with the threshold energy for complete breakup of the respective element.

  7. Investigation of the ion beryllium surface interaction

    SciTech Connect

    Guseva, M.I.; Birukov, A.Yu.; Gureev, V.M.

    1995-09-01

    The self -sputtering yield of the Be was measured. The energy dependence of the Be self-sputtering yield agrees well with that calculated by W. Eckstein et. al. Below 770 K the self-sputtering yield is temperature independent; at T{sub irr}.> 870 K it increases sharply. Hot-pressed samples at 370 K were implanted with monoenergetic 5 keV hydrogen ions and with a stationary plasma (flux power {approximately} 5 MW/m{sup 2}). The investigation of hydrogen behavior in beryllium shows that at low doses hydrogen is solved, but at doses {ge} 5x10{sup 22} m{sup -2} the bubbles and channels are formed. It results in hydrogen profile shift to the surface and decrease of its concentration. The sputtering results in further concentration decrease at doses > 10{sup 25}m{sup -2}.

  8. Beryllium isotope geochemistry in tropical river basins

    SciTech Connect

    Brown, E.T.; Edmond, J.M. ); Raisbeck, G.M.; Bourles, D.L.; Yiou, F. ); Measures, C.I. )

    1992-04-01

    The distributions of beryllium-9 and beryllium-10 in rivers within the Orinoco and Amazon basins have been examined to extend the understanding of their geochemical cycles and to develop their use both in geochronometry, and in studying erosional processes. Analyses of {sup 9}Be in dissolved and suspended material from rivers with a wide range of chemical compositions indicate that its geochemistry is primarily controlled by two major factors: (1) its abundance in the rocks of the watershed and (2) the extent of its adsorption onto particle surfaces. The relative importance of these parameters in individual rivers is determined by the extent of interaction with flood-plain sediments and the riverine pH. This understanding of {sup 9}Be geochemistry forms a basis for examination of the geochemical cycling of {sup 10}Be. In rivers which are dominated by interaction with sediments, the riverine concentration of dissolved {sup 10}Be is far lower than that in the incoming rainwater, indicating that a substantial proportion of it is retained within the soils of the basin or is adsorbed onto riverine particles. However, in acidic rivers in which the stable dissolved Be concentration is determined by the Be level in the rocks of the drainage basin, dissolved {sup 10}Be has essentially the same concentration as in precipitation. These observations imply that the soil column in such regions must be saturated with respect to {sup 10}Be, and that the ratio of the inventory to the flux does not represent an age, as may be the case in temperate latitudes, but rather a residence time.

  9. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 CLAIMS FOR COMPENSATION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000, AS AMENDED Survivors; Payments... has established chronic beryllium disease....

  10. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 CLAIMS FOR COMPENSATION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000, AS AMENDED Survivors; Payments... has established chronic beryllium disease....

  11. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 CLAIMS FOR COMPENSATION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000, AS AMENDED Survivors; Payments... has established chronic beryllium disease....

  12. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 CLAIMS FOR COMPENSATION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000, AS AMENDED Survivors; Payments... has established chronic beryllium disease....

  13. 20 CFR 30.508 - What is beryllium sensitivity monitoring?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000 CLAIMS FOR COMPENSATION UNDER THE ENERGY EMPLOYEES OCCUPATIONAL ILLNESS COMPENSATION PROGRAM ACT OF 2000, AS AMENDED Survivors; Payments... has established chronic beryllium disease....

  14. Age hardening in beryllium-aluminum-silver alloys

    SciTech Connect

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1996-11-01

    Three different alloys of beryllium-aluminum-silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight percent, Be-47.5Al-2.5Ag, Be-47Al-3Ag, and Be-46Al-4Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which separates from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatic pressing. Samples of hot isostatically pressed material were solution treated at 550 C for 1 h, followed by a water quench. Aging temperatures were 150, 175, 200, and 225 C for times ranging from half an hour to 65 h. Results indicate that peak hardness was reached in 36--40 h at 175 C and 12--16 h at 200 C aging temperature, relatively independent of alloy composition.

  15. Molecular Dynamics Simulation of Dynamic Response of Beryllium

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan P.; Lane, J. Matthew D.; Baskes, Michael I.; Desjarlais, Michael P.

    2009-06-01

    The response of beryllium to dynamic loading has been extensively studied, both experimentally and theoretically, due to its importance in several technological areas. Compared to other metals, it is quite challenging to accurately represent the various anomalous behaviors of beryllium using classical interatomic potentials. The spherically-symmetric EAM potential can not reproduce the observed c/a ratio for α-Be under ambient conditions, which is significantly smaller than the ideal HCP value. The directional-dependence of the MEAM potential overcomes this problem, but introduces additional complexity. We will compare predictions of these classical potentials to experimental measurements of beryllium at ambient conditions, and also to theoretical calculations at high temperatures and pressures. Finally, we will present initial results from non-equilibrium molecular dynamics simulations of beryllium under dynamic loading. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories.

  16. Plans and status of the Beryllium ablator campaign on NIF

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Krasheninnikova, N. S.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Dewald, E. L.; Edwards, M. J.; MacKinnon, A. J.; Meezan, N. B.

    2014-10-01

    Beryllium has long been known to have excellent properties for indirectly driven ICF implosions including enhanced ablation pressure, implosion velocity, and mass ablation rate. The high ablation velocity leads to stabilization of ablative hydrodynamic instabilities and higher ablation pressures. Recent ``high foot'' experiments have shown ablative Rayleigh-Taylor to be a leading cause of degraded performance for ICF implosions. While Beryllium ablators have these advantages, there are also risks associated with Beryllium target designs. A campaign is underway to design and to test these advantages for comparison with other ablator options and determine which provides the best path forward for ICF. Experiments using Beryllium ablators are expected to start in the late summer of 2014. This presentation will discuss the status of the experiments and layout the plans/goals for the campaign. This work is supported by the US DOE.

  17. The mechanical behavior of cross-rolled beryllium sheet

    NASA Technical Reports Server (NTRS)

    Henkener, J. A.; Spiker, I. K.; Castner, W. L.

    1992-01-01

    In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures.

  18. New facility for post irradiation examination of neutron irradiated beryllium

    SciTech Connect

    Ishitsuka, Etsuo; Kawamura, Hiroshi

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  19. Mortality study of beryllium industry workers' occupational lung cancer

    SciTech Connect

    Mancuso, T.F.

    1980-02-01

    A cohort of 3685 white males employed during 1937 to 1948 in two major industries manufacturing beryllium was followed to the end of 1976 to evaluate lung cancer mortality experience. Lung cancer mortality among beryllium-exposed workers was contrasted with that of workers employed in the viscose rayon industry. Study results demonstrated that lung cancer mortality among berylliumm-exposed workers was significantly greater than that expected on the basis of lung cancer mortality experience of workers in the viscose rayon industry having similar employment patterns. The results of the present study are consistent with earlier animal bioassay studies and recent epidemiologic studies indicating that beryllium is carcinogenic. The results of the present study are not consistent with speculation attributing the excessive lung cancer mortality among beryllium-exposed workers to personal characteristics of individuals having unstable employment patterns.

  20. Development of Biomarkers for Chronic Beryllium Disease in Mice

    SciTech Connect

    Gordon, Terry

    2013-01-25

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in which the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify

  1. Removing tritium and other impurities during industrial recycling of beryllium from a fusion reactor

    SciTech Connect

    Dylst, K.; Seghers, J.; Druyts, F.; Braet, J.

    2008-07-15

    Recycling beryllium used in a fusion reactor might be a good way to overcome problems related to the disposal of neutron irradiated beryllium. The critical issues for the recycling of used first wall beryllium are the presence of tritium and (transuranic) impurities. High temperature annealing seems to be the most promising technique for detritiation. Purification of the de-tritiated beryllium can be achieved by chlorination of the irradiated beryllium and the subsequent reduction of beryllium chloride to highly pure metallic beryllium. After that, the beryllium can be re-fabricated into first wall tiles via powder metallurgy which is already a mature industrial practice. This paper outlines the path to define the experimental needs for beryllium recycling and tackles problems related to the detritiation and the purification via the chlorine route. (authors)

  2. Actinide/beryllium neutron sources with reduced dispersion characteristics

    DOEpatents

    Schulte, Louis D.

    2012-08-14

    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  3. Beryllium contamination and exposure monitoring in an inhalation laboratory setting.

    PubMed

    Muller, Caroline; Audusseau, Séverine; Salehi, Fariba; Truchon, Ginette; Chevalier, Gaston; Mazer, Bruce; Kennedy, Greg; Zayed, Joseph

    2010-02-01

    Beryllium (Be) is used in several forms: pure metal, beryllium oxide, and as an alloy with copper, aluminum, or nickel. Beryllium oxide, beryllium metal, and beryllium alloys are the main forms present in the workplace, with inhalation being the primary route of exposure. Cases of workers with sensitization or chronic beryllium disease challenge the scientific community for a better understanding of Be toxicity. Therefore, a toxicological inhalation study using a murine model was performed in our laboratory in order to identify the toxic effects related to different particle sizes and chemical forms of Be. This article attempts to provide information regarding the relative effectiveness of the environmental monitoring and exposure protection program that was enacted to protect staff (students and researchers) in this controlled animal beryllium inhalation exposure experiment. This includes specific attention to particle migration control through intensive housekeeping and systematic airborne and surface monitoring. Results show that the protective measures applied during this research have been effective. The highest airborne Be concentration in the laboratory was less than one-tenth of the Quebec OEL (occupational exposure limit) of 0.15 microg/m(3). Considering the protection factor of 10(3) of the powered air-purifying respirator used in this research, the average exposure level would be 0.03 x 10(- 4) microg/m(3), which is extremely low. Moreover, with the exception of one value, all average Be concentrations on surfaces were below the Quebec Standard guideline level of 3 microg/100 cm(2) for Be contamination. Finally, all beryllium lymphocyte proliferation tests for the staff were not higher than controls.

  4. Beryllium contamination and exposure monitoring in an inhalation laboratory setting.

    PubMed

    Muller, Caroline; Audusseau, Séverine; Salehi, Fariba; Truchon, Ginette; Chevalier, Gaston; Mazer, Bruce; Kennedy, Greg; Zayed, Joseph

    2010-02-01

    Beryllium (Be) is used in several forms: pure metal, beryllium oxide, and as an alloy with copper, aluminum, or nickel. Beryllium oxide, beryllium metal, and beryllium alloys are the main forms present in the workplace, with inhalation being the primary route of exposure. Cases of workers with sensitization or chronic beryllium disease challenge the scientific community for a better understanding of Be toxicity. Therefore, a toxicological inhalation study using a murine model was performed in our laboratory in order to identify the toxic effects related to different particle sizes and chemical forms of Be. This article attempts to provide information regarding the relative effectiveness of the environmental monitoring and exposure protection program that was enacted to protect staff (students and researchers) in this controlled animal beryllium inhalation exposure experiment. This includes specific attention to particle migration control through intensive housekeeping and systematic airborne and surface monitoring. Results show that the protective measures applied during this research have been effective. The highest airborne Be concentration in the laboratory was less than one-tenth of the Quebec OEL (occupational exposure limit) of 0.15 microg/m(3). Considering the protection factor of 10(3) of the powered air-purifying respirator used in this research, the average exposure level would be 0.03 x 10(- 4) microg/m(3), which is extremely low. Moreover, with the exception of one value, all average Be concentrations on surfaces were below the Quebec Standard guideline level of 3 microg/100 cm(2) for Be contamination. Finally, all beryllium lymphocyte proliferation tests for the staff were not higher than controls. PMID:20056744

  5. Finding New Perovskite Halides via Machine learning

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  6. Methyl halide production associated with kelp

    NASA Technical Reports Server (NTRS)

    Dastoor, Minoo N.; Manley, Steven L.

    1985-01-01

    Methyl halides (MeX) are important trace constituents of the atmosphere because they, mostly MeCl, have a major impact on the atmospheric ozone layer. Also, MeCl may account for 5 pct. of the total Cl budget and MeI may have a central role in the biogeochemical cycling of iodine. High MeI concentrations were found in seawater from kelp beds and it has been suggested that MeI is produced by kelps and that MeI and MeBr along with numerous other halocarbons were released by non-kelp marine macroalgae. The objective was to determine if kelps (and other seaweeds) are sources of MeX and to assess their contribution to the estimated global source strength (EGSS) of MeX. Although the production of MeX appears to be associated with kelp, microbes involved with kelp degradation also produce MeX. Microbial MeX production may be of global significance. The microbial MeX production potential, assuming annual kelp production equals kelp degradation and 100 pct. conversion of kelp halides to MeX, is approx. 2 x the EGSS. This is not achieved but indicates that microbial production of MeX may be of global significance.

  7. Finding new perovskite halides via machine learning

    DOE PAGES

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.« less

  8. Significance of the blood beryllium lymphocyte proliferation test

    SciTech Connect

    Newman, L.S.

    1996-10-01

    The blood beryllium lymphocyte proliferation test (BeLPT) is an in vitro measure of the beryllium antigen-specific cell-mediated immune response. This response to beryllium is now understood to play a central role in the immunopathogenesis of chronic beryllium disease (CBD). Although there remain some unresolved methodologic issues with testing, the blood BeLPT has already undergone sufficient development and field assessment to lead to a number of important conclusions: (a) The BeLPT identifies beryllium sensitization and CBD earlier and better than any other clinical test presently available. (b) The CBD cases identified with the blood test are clinically significant. (c) A subset of the people identified by the BeLPT who do not yet have clinical disease will progress and require treatment with corticosteroids for impairing illness. (d) The BeLPT can be used to improve clinical diagnostic accuracy and to correct mistaken diagnoses. (e) The blood test can be used in screening large numbers of exposed workers because it is sensitive and specific and has high positive and negative predictive value for CBD. (f) In every workforce studied to date, the BeLPT has identified beryllium sensitization and CBD that had been missed by conventional screening efforts. (g) Worker populations that have been characterized using the BeLPT can help to elucidate the role of exposure genetics and dysregulated inflammation in the genesis of occupational lung disease. 28 refs., 1 tab.

  9. Beryllium pressure vessels for creep tests in magnetic fusion energy

    SciTech Connect

    Neef, W.S.

    1990-07-20

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

  10. Pulmonary function in beryllium workers: assessment of exposure.

    PubMed Central

    Kriebel, D; Sprince, N L; Eisen, E A; Greaves, I A

    1988-01-01

    The inhalation of beryllium causes a serious lung disease characterised by pronounced radiographic and functional impairments and occurs in workers engaged in the extraction and manufacture of the metal. This paper describes the beryllium exposure levels and refining processes in a large beryllium factory operating since the 1930s. Lifetime beryllium exposure histories were estimated for the 309 workers present at a health survey conducted in 1977. Beryllium exposure levels in the plant were high for many years, with some estimated exposure levels in excess of 100 micrograms/m3. As late as 1975, there were exposures to beryllium above 10 micrograms/m3 in some jobs. After about 1977, the plant was in compliance with the permissible exposure limit of 2.0 micrograms/m3. The median cumulative exposure in this cohort was 65 micrograms/m3-years and the median duration of exposure was 17 years. From these data a series of exposure parameters, functions of the exposure histories that characterise biologically important dimensions of exposure were calculated for each worker. PMID:3342199

  11. Significance of the blood beryllium lymphocyte proliferation test.

    PubMed Central

    Newman, L S

    1996-01-01

    The blood beryllium lymphocyte proliferation test (BeLPT) is an in vitro measure of the beryllium antigen-specific cell-mediated immune response. This response to beryllium is now understood to play a central role in the immunopathogenesis of chronic beryllium disease (CBD). Although there remain some unresolved methodologic issues with testing, the blood BeLPT has already undergone sufficient development and field assessment to lead to a number of important conclusions: a) The BeLPT identifies beryllium sensitization and CBD earlier and better than any other clinical test presently available. b) The CBD cases identified with the blood test are clinically significant. c) A subset of the people identified by the BeLPT who do not yet have clinical disease will progress and require treatment with corticosteroids for impairing illness. d) The BeLPT can be used to improve clinical diagnostic accuracy and to correct mistaken diagnoses. e) The blood test can be used in screening large numbers of exposed workers because it is sensitive and specific and has high positive and negative predictive value for CBD. f) In every workforce studied to date, the BeLPT has identified beryllium sensitization and CBD that had been missed by conventional screening efforts. g) Worker populations that have been characterized using the BeLPT can help to elucidate the role of exposure genetics and dysregulated inflammation in the genesis of occupational lung disease. PMID:8933041

  12. Determination of beryllium by using X-ray fluorescence spectrometry.

    PubMed

    Zawisza, Beata

    2008-03-01

    X-ray fluorescence spectrometry method is subject to certain difficulties and inconveniences for the elements having the atomic number 9 or less. These difficulties become progressively more severe as the atomic number decreases, and are quite serious for beryllium, which is practically indeterminable directly by XRF. Therefore, an indirect determination of beryllium that is based on the evaluation of cobalt in the precipitate is taken into consideration. In the thesis below, there is a description of a new, simple, and precise method by selective precipitation using hexamminecobalt(III) chloride and ammonium carbonate-EDTA solution as a complexing agent for the determining of a trace amount of beryllium using X-ray fluorescence spectrometry. The optimum conditions for [Co(NH(3))(6)][Be(2)(OH)(3)(CO(3))(2)(H(2)O)(2)].(3)H(2)O complex formation were studied. The complex was collected on the membrane filter, and the Co Kalpha line was measured by XRF. The method presents the advantages of the sample preparation and the elimination of the matrix effects due to the thin film obtained. The detection limit of the proposed method is 0.2 mg of beryllium. The method was successfully applied to beryllium determination in copper/ beryllium/cobalt alloys.

  13. Impurities effect on the swelling of neutron irradiated beryllium

    SciTech Connect

    Donne, M.D.; Scaffidi-Argentina, F.

    1995-09-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found.

  14. Nickel-Catalyzed Borylation of Halides and Pseudo-Halides with Tetrahydroxydiboron [B2(OH)4

    PubMed Central

    Molander, Gary A.; Cavalcanti, Livia N.; García-García, Carolina

    2013-01-01

    Arylboronic acids are gaining increased importance as reagents and target structures in a variety of useful applications. Recently, the palladium-catalyzed synthesis of arylboronic acids employing the atom economical tetrahydroxydiboron (BBA) reagent has been reported. The high cost associated with palladium, combined with several limitations of both palladium and copper-catalyzed processes, prompted us to develop an alternative method. Thus, the nickel-catalyzed borylation of aryl and heteroaryl halides and pseudo-halides using tetrahydroxydiboron (BBA) has been formulated. The reaction proved to be widely functional group tolerant and applicable to a number of heterocyclic systems. To the best of our knowledge, the examples presented here represent the only effective Ni-catalyzed Miyaura borylations conducted at room temperature. PMID:23777538

  15. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  16. Unraveling the Role of Monovalent Halides in Mixed-Halide Organic-Inorganic Perovskites.

    PubMed

    Deepa, Melepurath; Ramos, F Javier; Shivaprasad, S M; Ahmad, Shahzada

    2016-03-16

    The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount importance. Here, we investigated four different perovskites by using X-ray photoelectron spectroscopy, and found that among the three studied mixed-halide perovskites, CH3 NH3 Pb(I0.74 Br0.26 )3 and CH3 NH3 PbBr3-x Clx show peaks that unambiguously demonstrate the presence of iodide and bromide in the former, and bromide and chloride in the latter. The CH3 NH3 PbI3-x Clx perovskite shows anomalous behavior, the iodide content far outweighs that of the chloride; a small proportion of chloride, in all likelihood, resides deep within the TiO2 /absorber layer. Our study reveals that there are many distinguishable structural differences between these perovskites, and that these directly impact the photovoltaic performances. PMID:26717046

  17. Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies.

    PubMed

    Li, Chi; Wei, Jian; Sato, Mikio; Koike, Harunobu; Xie, Zhong-Zhi; Li, Yan-Qing; Kanai, Kaname; Kera, Satoshi; Ueno, Nobuo; Tang, Jian-Xin

    2016-05-11

    Solution-processed perovskite solar cells are attracting increasing interest due to their potential in next-generation hybrid photovoltaic devices. Despite the morphological control over the perovskite films, quantitative information on electronic structures and interface energetics is of paramount importance to the optimal photovoltaic performance. Here, direct and inverse photoemission spectroscopies are used to determine the electronic structures and chemical compositions of various methylammonium lead halide perovskite films (MAPbX3, X = Cl, Br, and I), revealing the strong influence of halide substitution on the electronic properties of perovskite films. Precise control over halide compositions in MAPbX3 films causes the manipulation of the electronic properties, with a qualitatively blue shift along the I → Br → Cl series and showing the increase in ionization potentials from 5.96 to 7.04 eV and the change of transport band gaps in the range from 1.70 to 3.09 eV. The resulting light absorption of MAPbX3 films can cover the entire visible region from 420 to 800 nm. The results presented here provide a quantitative guide for the analysis of perovskite-based solar cell performance and the selection of optimal carrier-extraction materials for photogenerated electrons and holes. PMID:27101940

  18. Beryllium disease screening in the ceramics industry. Blood lymphocyte test performance and exposure-disease relations.

    PubMed

    Kreiss, K; Wasserman, S; Mroz, M M; Newman, L S

    1993-03-01

    We identified nine new cases of biopsy-confirmed chronic beryllium disease among 505 employees and ex-employees in a company that had manufactured beryllia ceramics from 1958 through 1975. Of tests commonly used in medical surveillance, only a confirmed blood beryllium lymphocyte transformation test had a high positive predictive value for beryllium disease (100%). However, two beryllium disease cases had either a normal or inconsistently abnormal blood test and were identified for diagnostic workup by abnormal chest radiograph. The only risk factor for beryllium disease was beryllium exposure; smoking or allergic history did not affect risk. Degree of beryllium exposure was associated with disease rates, which ranged from 2.9% to 15.8% for beryllia-exposed subgroups. One case of beryllium disease occurred in a "dust-disturber" who did not report past beryllium exposure and who began employment 8 years after commercial beryllia production had stopped. Our data support efforts to prevent beryllium disease by lowering beryllium exposures and to identify subclinical and early disease by broad-based medical surveillance using the blood beryllium lymphocyte test and chest radiograph in beryllium-using industries.

  19. Complexation of thorium and beryllium with xylenol orange

    SciTech Connect

    Tikhonov, V.N.; Smirnova, S.N.

    1986-10-01

    The interaction of thorium and beryllium with Xylenol Orange, which was purified by gel filtration on Molselect G-10, has been studied. Thorium forms a complex with a component ratio M:R = 2:1, = (1.11 +/- 0.02).10/sup 5/, and K/sub st/ = (3.25 +/- 0.89)/sup ./ 10/sup 13/ at pH 2 and a complex with a 1:1 component ratio and = (6.9 +/- 0.1).10/sup 4/ at pH 4. Beryllium forms a complex with a component ratio M:R = 1:1, = (3.6 +/- 0.1)/sup ./ 10/sup 4/, and K/sub st/ = (1.65 + or - 0.06)/sup ./ 10/sup 13/. For both thorium complexes lambda/sub max/ = 565 NM, and for the beryllium complex lambda/sub max/ = 475 nm. The study of the reaction mechanism has shown that the thorium complex with M:R = 2:1 forms when thorium in the form of Th/sup 4 +/ and the reagent in the form of H/sub 5/R/sup -/ interact. In the case of beryllium, the complex forms between BeOH/sup +/ and H/sub 3/R/sup 3 -/. Acetates have little influence on the formation of the thorium complex and a strong influence on the formation of the beryllium complex. Beer's law holds up to thorium and beryllium concentrations equal to 5 x 10/sup -5/ M when the concentration of Xylenol Orange is equal to 6 x 10/sup -5/M. Fluorides, citrates, tartrates, and EDTA interfere with the formation of the complexes of thorium and beryllium with Xylenol Orange.

  20. Proton irradiation effects on beryllium - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  1. Modulating the strength of tetrel bonding through beryllium bonding.

    PubMed

    Liu, Mingxiu; Yang, Li; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo; Xiao, Bo; Yu, Xuefang

    2016-08-01

    Quantum chemical calculations were performed to investigate the stability of the ternary complexes BeH2···XMH3···NH3 (X = F, Cl, and Br; M = C, Si, and Ge) and the corresponding binary complexes at the atomic level. Our results reveal that the stability of the XMH3···BeH2 complexes is mainly due to both a strong beryllium bond and a weak tetrel-hydride interaction, while the XMH3···NH3 complexes are stabilized by a tetrel bond. The beryllium bond with a halogen atom as the electron donor has many features in common with a beryllium bond with an O or N atom as the electron donor, although they do exhibit some different characteristics. The stability of the XMH3···NH3 complex is dominated by the electrostatic interaction, while the orbital interaction also makes an important contribution. Interestingly, as the identities of the X and M atoms are varied, the strength of the tetrel bond fluctuates in an irregular manner, which can explained by changes in electrostatic potentials and orbital interactions. In the ternary systems, both the beryllium bond and the tetrel bond are enhanced, which is mainly ascribed to increased electrostatic potentials on the corresponding atoms and charge transfer. In particular, when compared to the strengths of the tetrel and beryllium bonds in the binary systems, in the ternary systems the tetrel bond is enhanced to a greater degree than the beryllium bond. Graphical Abstract A tetrel bond can be strengthened greatly by a beryllium bond. PMID:27464738

  2. Modulating the strength of tetrel bonding through beryllium bonding.

    PubMed

    Liu, Mingxiu; Yang, Li; Li, Qingzhong; Li, Wenzuo; Cheng, Jianbo; Xiao, Bo; Yu, Xuefang

    2016-08-01

    Quantum chemical calculations were performed to investigate the stability of the ternary complexes BeH2···XMH3···NH3 (X = F, Cl, and Br; M = C, Si, and Ge) and the corresponding binary complexes at the atomic level. Our results reveal that the stability of the XMH3···BeH2 complexes is mainly due to both a strong beryllium bond and a weak tetrel-hydride interaction, while the XMH3···NH3 complexes are stabilized by a tetrel bond. The beryllium bond with a halogen atom as the electron donor has many features in common with a beryllium bond with an O or N atom as the electron donor, although they do exhibit some different characteristics. The stability of the XMH3···NH3 complex is dominated by the electrostatic interaction, while the orbital interaction also makes an important contribution. Interestingly, as the identities of the X and M atoms are varied, the strength of the tetrel bond fluctuates in an irregular manner, which can explained by changes in electrostatic potentials and orbital interactions. In the ternary systems, both the beryllium bond and the tetrel bond are enhanced, which is mainly ascribed to increased electrostatic potentials on the corresponding atoms and charge transfer. In particular, when compared to the strengths of the tetrel and beryllium bonds in the binary systems, in the ternary systems the tetrel bond is enhanced to a greater degree than the beryllium bond. Graphical Abstract A tetrel bond can be strengthened greatly by a beryllium bond.

  3. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  4. Metal halide perovskites for energy applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  5. The unusual properties of beryllium surfaces

    SciTech Connect

    Stumpf, R. ||; Hannon, J.B. |; Plummer, E.W. |

    1994-12-31

    Be is a ``marginal metal.`` The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor`s. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ``phase`` of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11{bar 2}0), a very open surface without important surface states. Be(11{bar 2}0) is the only clean s-p metal surface known to reconstruct (1 {times} 3 missing row reconstruction).

  6. Validation of cleaning method for various parts fabricated at a Beryllium facility

    SciTech Connect

    Davis, Cynthia M.

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  7. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Elliott, K.E.

    1995-09-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  8. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  9. Beryllium processing technology review for applications in plasma-facing components

    SciTech Connect

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  10. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    PubMed

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  11. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease.

    PubMed

    Falta, Michael T; Pinilla, Clemencia; Mack, Douglas G; Tinega, Alex N; Crawford, Frances; Giulianotti, Marc; Santos, Radleigh; Clayton, Gina M; Wang, Yuxiao; Zhang, Xuewu; Maier, Lisa A; Marrack, Philippa; Kappler, John W; Fontenot, Andrew P

    2013-07-01

    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4⁺ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4⁺ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4⁺ T cells specific for these ligands in all HLADP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4⁺ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD.

  12. Behavior of carboxylic acids upon complexation with beryllium compounds.

    PubMed

    Mykolayivna-Lemishko, Kateryna; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel

    2014-07-31

    A significant acidity enhancement and changes on aromaticity were previously observed in squaric acid and its derivatives when beryllium bonds are present in those systems. In order to know if these changes on the chemical properties could be considered a general behavior of carboxylic acids upon complexation with beryllium compounds, complexes between a set of representative carboxylic acids RCOOH (formic acid, acetic acid, propanoic acid, benzoic acid, and oxalic acid) and beryllium compounds BeX2 (X = H, F, Cl) were studied by means of density functional theory calculations. Complexes that contain a dihydrogen bond or a OH···X interaction are the most stable in comparison with other possible BeX2 complexation patterns in which no other weak interactions are involved apart from the beryllium bond. Formic, acetic, propanoic, benzoic, and oxalic acid complexes with BeX2 are much stronger acids than their related free forms. The analysis of the topology of the electron density helps to clarify the reasons behind this acidity enhancement. Importantly, when the halogen atom is replaced by hydrogen in the beryllium compound, the dihydrogen bond complex spontaneously generates a new neutral complex [RCOO:BeH] in which a hydrogen molecule is lost. This seems to be a trend for carboxylic acids on complexing BeX2 compounds.

  13. Structure and mechanical properties of foils made of nanocrystalline beryllium

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Semenov, A. A.; Zabrodin, A. V.; Khmelenin, D. N.; Brylev, D. A.; Lizunov, A. V.; Nebera, A. L.; Morozov, I. A.; Anikin, A. S.; Orekhov, A. S.; Kuskova, A. N.; Mishin, V. V.; Seryogin, A. V.

    2016-07-01

    The phase composition and structural features of (45-90)-μm-thick foils obtained from nanocrystalline beryllium during multistep thermomechanical treatment have been established using electron microscopy, electron diffraction, electron backscattering diffraction, and energy-dispersive analysis. This treatment is shown to lead to the formation of a structure with micrometer- and submicrometer-sized grains. The minimum average size of beryllium grains is 352 nm. The inclusions of beryllium oxide (BeO) of different modifications with tetragonal (sp. gr. P42/ mnm) and hexagonal (sp. gr. P63/ mmc) lattices are partly ground during deformation to a size smaller than 100 nm and are located along beryllium grain boundaries in their volume, significantly hindering migration during treatment. The revealed structural features of foils with submicrometer-sized crystallites provide the thermal stability of their structural state. Beryllium with this structure is a promising material for X-ray instrument engineering and for the production of ultrathin (less than 10 μm) vacuum-dense foils with very high physicomechanical characteristics.

  14. Structure/property relationships in multipass GMA welding of beryllium.

    SciTech Connect

    Hochanadel, P. W.; Hults, W. L.; Thoma, D. J.; Dave, V. R.; Kelly, A. M.; Pappin, P. A.; Cola, M. J.; Burgardt, P.

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  15. Erosion of beryllium under ITER - Relevant transient plasma loads

    NASA Astrophysics Data System (ADS)

    Kupriyanov, I. B.; Nikolaev, G. N.; Kurbatova, L. A.; Porezanov, N. P.; Podkovyrov, V. L.; Muzichenko, A. D.; Zhitlukhin, A. M.; Gervash, A. A.; Safronov, V. M.

    2015-08-01

    Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2-0.5 MJ/m2 at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  16. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    SciTech Connect

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  17. Substrate inhibition competes with halide inhibition in polyphenol oxidase.

    PubMed

    Lim, Giselle Grace Fernando; Imura, Yuki; Yoshimura, Etsuro

    2012-10-01

    Polyphenol oxidase (PPO) is a ubiquitous enzyme important in the food industry. Although PPO activity followed Michaelis-Menten kinetics at catechol concentrations of up to 1 mM, it slowly decreased at catechol concentrations above 2 mM. This result indicated that in addition to the active site (site A), the enzyme possesses a second catechol-binding site (site B) that exerts an inhibitory effect on PPO activity. Halides inhibit PPO activity in such a way that substrate inhibition is lessened when halide concentration is increased. Furthermore, elevated concentrations of catechol diminished the degree of inhibition by halides. These findings suggest that halides also bind to site B to inhibit PPO activity. A steady-state kinetic analysis demonstrated that the dissociation constant between catechol and PPO depended on the binding of halides to site B. The dissociation constants were greatest when chloride bound to the site. Bromide and iodide yielded lower dissociation constants, in that order. These data indicate that the binding of halide to site B modulated the structure of site A, thereby exerting an inhibitory effect.

  18. Genetic control of methyl halide production in Arabidopsis.

    PubMed

    Rhew, Robert C; Østergaard, Lars; Saltzman, Eric S; Yanofsky, Martin F

    2003-10-14

    Methyl chloride (CH(3)Cl) and methyl bromide (CH(3)Br) are the primary carriers of natural chlorine and bromine, respectively, to the stratosphere, where they catalyze the destruction of ozone, whereas methyl iodide (CH(3)I) influences aerosol formation and ozone loss in the boundary layer. CH(3)Br is also an agricultural pesticide whose use is regulated by international agreement. Despite the economic and environmental importance of these methyl halides, their natural sources and biological production mechanisms are poorly understood. Besides CH(3)Br fumigation, important sources include oceans, biomass burning, tropical plants, salt marshes, and certain crops and fungi. Here, we demonstrate that the model plant Arabidopsis thaliana produces and emits methyl halides and that the enzyme primarily responsible for the production is encoded by the HARMLESS TO OZONE LAYER (HOL) gene. The encoded protein belongs to a group of methyltransferases capable of catalyzing the S-adenosyl-L-methionine (SAM)-dependent methylation of chloride (Cl(-)), bromide (Br(-)), and iodide (I(-)) to produce methyl halides. In mutant plants with the HOL gene disrupted, methyl halide production is largely eliminated. A phylogenetic analysis with the HOL gene suggests that the ability to produce methyl halides is widespread among vascular plants. This approach provides a genetic basis for understanding and predicting patterns of methyl halide production by plants.

  19. Synthesis of methyl halides from biomass using engineered microbes.

    PubMed

    Bayer, Travis S; Widmaier, Daniel M; Temme, Karsten; Mirsky, Ethan A; Santi, Daniel V; Voigt, Christopher A

    2009-05-13

    Methyl halides are used as agricultural fumigants and are precursor molecules that can be catalytically converted to chemicals and fuels. Plants and microorganisms naturally produce methyl halides, but these organisms produce very low yields or are not amenable to industrial production. A single methyl halide transferase (MHT) enzyme transfers the methyl group from the ubiquitous metabolite S-adenoyl methionine (SAM) to a halide ion. Using a synthetic metagenomic approach, we chemically synthesized all 89 putative MHT genes from plants, fungi, bacteria, and unidentified organisms present in the NCBI sequence database. The set was screened in Escherichia coli to identify the rates of CH(3)Cl, CH(3)Br, and CH(3)I production, with 56% of the library active on chloride, 85% on bromide, and 69% on iodide. Expression of the highest activity MHT and subsequent engineering in Saccharomyces cerevisiae results in productivity of 190 mg/L-h from glucose and sucrose. Using a symbiotic co-culture of the engineered yeast and the cellulolytic bacterium Actinotalea fermentans, we are able to achieve methyl halide production from unprocessed switchgrass (Panicum virgatum), corn stover, sugar cane bagasse, and poplar (Populus sp.). These results demonstrate the potential of producing methyl halides from non-food agricultural resources.

  20. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  1. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program...

  2. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program...

  3. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program...

  4. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program...

  5. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program...

  6. Extraction of beryllium from refractory beryllium oxide with dilute ammonium bifluoride and determination by fluorescence: a multiparameter performance evaluation.

    PubMed

    Goldcamp, Michael J; Goldcamp, Diane M; Ashley, Kevin; Fernback, Joseph E; Agrawal, Anoop; Millson, Mark; Marlow, David; Harrison, Kenneth

    2009-12-01

    Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from < 32 microm up to 212 microm) using dilute aqueous ammonium bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity

  7. Force-field parameters for beryllium complexes in amorphous layers.

    PubMed

    Emelyanova, Svetlana; Chashchikhin, Vladimir; Bagaturyants, Alexander

    2016-09-01

    Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data. Graphical Abstract Beryllium complexes in amorphous layersᅟ. PMID:27550375

  8. Estimation of beryllium ground state energy by Monte Carlo simulation

    SciTech Connect

    Kabir, K. M. Ariful; Halder, Amal

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  9. Surface binding energies of beryllium/tungsten alloys

    NASA Astrophysics Data System (ADS)

    Gyoeroek, Michael; Kaiser, Alexander; Sukuba, Ivan; Urban, Jan; Hermansson, Kersti; Probst, Michael

    2016-04-01

    Binding energies of beryllium and tungsten atoms on surfaces of the alloys Be2W and Be12W were obtained from density functional theory calculations. Values of 4.08-5.63 eV for beryllium and 6.81-10.04 eV for tungsten were obtained. An analytical force field agrees for beryllium, but its tungsten surface atoms are too strongly bound. The surface binding energies of Be and W on Be12W surfaces is slightly smaller than on the pure Be and W surfaces, respectively. For higher tungsten content, i.e. for Be2W, the situation is more complicated. For some surfaces of this alloy the surface binding energies are enhanced while for others they are diminished, compared to the pure metal surfaces. The dependency of the cohesive energy on the mole fraction follows a linear relationship.

  10. Corrosion of beryllium exposed to celotex and water

    SciTech Connect

    Hill, M.A.; Butt, D.P.; Lillard, R.S.

    1997-12-01

    Celotex is a commercial rigid cellulose fiberboard product primarily used in the building construction industry. Currently celotex is being used as a packing material in AL-R8 containers. Ion chromatography of celotex packing material at Lawrence Livermore National Laboratory (LLNL) has indicated that this material contains aggressive anions, including chloride, which may accelerate corrosion. It is well known that beryllium is susceptible to pitting corrosion when exposed to chloride containing environments. Levy noted pitting in beryllium at the open circuit potential when exposed to 0.1 M NaCl solution. This investigation attempts to evaluate the potential risk of accelerated beryllium corrosion from celotex and water which may occur naturally when celotex dust comes into contact with moisture from the atmosphere.

  11. RCRA designation of discarded americium/beryllium sealed sources

    SciTech Connect

    Kirner, N.P.

    1994-09-01

    Many sealed sources containing americium and beryllium are used throughout construction, industry, and research, and will eventually require disposal. For planning purposes it is necessary to determine whether these sources, when disposed, constitute a mixed waste, i.e., a waste containing hazardous constituents regulated under the Resource Conservation and Recovery Act and radioactive constituents regulated under the Atomic Energy Act. Waste designation criteria contained in 40 CFR 261 are evaluated in detail in this report. It is determined that discarded americium/beryllium sealed sources do not contain any wastes listed in Subpart D of 40 CFR 261, nor do the discarded sources exhibit any hazardous characteristics. Therefore, it is concluded that discarded americium/beryllium sealed sources are not a mixed waste under regulations established by the US Environmental Protection Agency. Hazardous waste regulatory programs delegated to States, however, may have regulations that differ from those of the Federal government.

  12. Photochemical Behavior of Beryllium Complexes with Subporphyrazines and Subphthalocyanines.

    PubMed

    Montero-Campillo, M Merced; Lamsabhi, Al Mokhtar; Mó, Otilia; Yáñez, Manuel

    2016-07-14

    Structures of beryllium subphthalocyanines and beryllium subporphyrazines complexes with different substituents are explored for the first time. Their photochemical properties are studied using time-dependent density functional theory calculations and compared to boron-related compounds for which their photochemical activity is already known. These beryllium compounds were found to be thermodynamically stable in a vacuum and present features similar to those of boron-containing analogues, although the nature of bonding between the cation and the macrocycle presents subtle differences. Most important contributions to the main peak in the Q-band region arise from HOMO to LUMO transitions in the case of subphthalocyanines and alkyl subporphyrazine complexes, whereas a mixture of that contribution and a HOMO-2 to LUMO contribution are present in the case of thioalkyl subporphyrazines. The absorption in the visible region could make these candidates suitable for photochemical devices if combined with appropriate donor groups.

  13. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  14. Photochemical Behavior of Beryllium Complexes with Subporphyrazines and Subphthalocyanines.

    PubMed

    Montero-Campillo, M Merced; Lamsabhi, Al Mokhtar; Mó, Otilia; Yáñez, Manuel

    2016-07-14

    Structures of beryllium subphthalocyanines and beryllium subporphyrazines complexes with different substituents are explored for the first time. Their photochemical properties are studied using time-dependent density functional theory calculations and compared to boron-related compounds for which their photochemical activity is already known. These beryllium compounds were found to be thermodynamically stable in a vacuum and present features similar to those of boron-containing analogues, although the nature of bonding between the cation and the macrocycle presents subtle differences. Most important contributions to the main peak in the Q-band region arise from HOMO to LUMO transitions in the case of subphthalocyanines and alkyl subporphyrazine complexes, whereas a mixture of that contribution and a HOMO-2 to LUMO contribution are present in the case of thioalkyl subporphyrazines. The absorption in the visible region could make these candidates suitable for photochemical devices if combined with appropriate donor groups. PMID:26812068

  15. Force-field parameters for beryllium complexes in amorphous layers.

    PubMed

    Emelyanova, Svetlana; Chashchikhin, Vladimir; Bagaturyants, Alexander

    2016-09-01

    Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data. Graphical Abstract Beryllium complexes in amorphous layersᅟ.

  16. Crack toughness evaluation of hot pressed and forged beryllium

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1971-01-01

    Beryllium fracture toughness test specimens were fatigue cracked using reversed cycling with a compression load two to three times the tension load. In worked beryllium, textures may be produced which result in fatigue cracks that are out of plane with the starter notch. Specimens of hot pressed stock exhibited load displacement records which were nonlinear throughout their course. Fracture specimens of both hot pressed and forged stock showed essentially no reduction of thickness and the fracture surfaces were flat and normal to the load axis. However, the stress intensity factor at maximum load increased with decreasing thickness. Load-displacement and electric potential records for the hot pressed beryllium specimens exhibited several anomalies such as negative residual crack mouth displacements and a decrease in electrical potential with increasing load.

  17. Tailoring material properties of sputtered beryllium

    SciTech Connect

    McEachern, R.M.

    1999-03-01

    Doped beryllium is a material of considerable interest to both the ICF and the weapons communities, as well as finding application in specialized industrial settings (e.g., x-ray windows and mirrors). Some of these uses require conformal coating of thin films on (possibly) irregularly-shaped surfaces. Physical vapor deposition (PVD) is often used to accomplish this, and sputtering is often the technique of choice. Among its advantages are that the depositing atoms are relatively energetic, leading to more compact films. Moreover, by simply applying a voltage bias to the substrate, ambient noble gas ions will bombard the growing film, which can cause further densification and other modifications to the microstructure. Sputtering is also well suited to the introduction of dopants, even those that are insoluble. Most applications of these novel materials will require fundamental knowledge of their properties. Because so many can be devised, such information is generally unavailable. The objective of the effort has been to systematically study the properties of films produced under different conditions, with an emphasis on surface finish and permeability. They have made extensive use of atomic force microscopy (AFM) and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. The studies can be roughly divided into three categories. First, there are those in which the properties of pure or Cu-doped Be films have been investigated, especially on randomly-agitated spherical capsules. Included are studies of the effects of a constant substrate bias ranging from 0 to 120 v and application of an intermittent bias during deposition. Second, there are experiments in which the structure of the depositing films has been modified via the incorporation of dopants, primarily boron. Finally, there have been numerous attempts to characterize the permeability of Be coatings at

  18. Method for removal of beryllium contamination from an article

    DOEpatents

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  19. Elemental composition in sealed plutonium-beryllium neutron sources.

    PubMed

    Xu, N; Kuhn, K; Gallimore, D; Martinez, A; Schappert, M; Montoya, D; Lujan, E; Garduno, K; Tandon, L

    2014-10-22

    Five sealed plutonium-beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed. PMID:25464182

  20. Elemental composition in sealed plutonium-beryllium neutron sources.

    PubMed

    Xu, N; Kuhn, K; Gallimore, D; Martinez, A; Schappert, M; Montoya, D; Lujan, E; Garduno, K; Tandon, L

    2014-10-22

    Five sealed plutonium-beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed.

  1. Comparison of Cleaning Methods for Analysis of Underground Beryllium Corrosion

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated beryllium metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates of the disposed beryllium to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. During the corrosion analysis, two cleaning methods were used. This paper describes the cleaning methods and presents a comparison of the results.

  2. Fluorometric study of the beryllium-morin system

    USGS Publications Warehouse

    Fletcher, M.H.

    1965-01-01

    Three principal beryllium-morin complexes, a (1 + 1) monomer, a (1 + 1) dimer, and a (1 + 2) complex are found and conditional equilibrium constants for their formation are evaluated. Approximate ionization constants, absorption spectra, and the relative fluorescence intensities for five ionic species of morin are also determined in a spectrophotometric and fluorometric study of morin. The following interrelationships are discussed: pH, ionization of morin, absorption spectra of the various ionic species of morin and of the berylliummorin complexes, equilibria for the reactions between beryllium and morin, the period of time between preparation of the solution and measurement of the fluorescence, and fluorescence intensity.

  3. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    SciTech Connect

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  4. Failure prediction of thin beryllium sheets used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Roschke, Paul N.; Papados, Photios; Mascorro, Edward

    1991-01-01

    In an attempt to predict failure for cross-rolled beryllium sheet structures, high order macroscopic failure criteria are used. These require the knowledge of in-plane uniaxial and shear strengths. Test results are included for in-plane biaxial tension, uniaxial compression for two different material orientations, and shear. All beryllium specimens have the same chemical composition. In addition, all experimental work was performed in a controlled laboratory environment. Numerical simulation complements these tests. A brief bibliography supplements references listed in a previous report.

  5. High Pressure Electrochemistry: Application to silver halides

    NASA Astrophysics Data System (ADS)

    Havens, K.; Kavner, A.

    2007-12-01

    Electron and ion charge transfer processes help govern electrical conductivity and diffusive mass and heat transport properties in deep Earth minerals. In an attempt to understand how pressure influences charge transfer behavior, the halide silver bromide (AgBr) was studied under the influence of an electric potential difference applied across two electrodes in a diamond anvil cell. This study follows our previous work on AgI, which was found to dissociate to molecular iodine and silver metal due to pressure and voltage influences. We performed two sets of experiments on AgBr at high pressure in a diamond anvil cell: electrochemical dissociation and electrical resistance measurements. In our study, we were able to electrochemically dissociate AgBr at pressures of 0.25-1.6 GPa by applying a voltage across the electrodes in the diamond cell sample chamber. Ag metal grew visibly on the negatively-charged electrode when voltages varying from 0.1 V to 5 V were applied. Additionally, a dark blue color appeared in low pressure areas of the diamond cell and grew darker from both voltage application and light exposure, indicating photochemical effects. We found that the reaction area and growth rate of both metal and dark blue color strongly increased as voltage increased, but tended to decrease with greater pressure. The resistance across the cell was observed to be influenced by both pressure and light exposure. As the AgBr sample was exposed to visible light, the resistance dropped instantaneously, and after the light was turned off, the resistance increased on a timescale of 10's of seconds to minutes. Notably, at higher pressures, the AgBr showed less photosensitivity. Exploration of these metal halide systems has many potential applications. First, these experiments explore the pressure-dependence of photochemical and photovoltaic processes, and may spur development of pressure-tuned microscale electronic devices. Second, these experimental results can be used to

  6. Research and development study for optimization of beryllium production operations. Task II report. Volume 1. Recommendations for subscale demonstration models

    SciTech Connect

    Zuehlke, J.R.

    1983-04-01

    The eleven evaluation reports in this Task II, Volume 1 report, are the results of a comprehensive literature search and study of new concepts or alternatives for beryllium metal production, currently available in industry today. Modifications to the current beryllium metal production process were also studied. Three processes were selected for in-depth evaluation and comparison to the current process with proposed improvements: sodium reduction of beryllium chloride to produce metallic beryllium; modified Hall process for beryllium flake; and electrowinning of beryllium chloride to produce metallic beryllium.

  7. Color silver halide hologram production and mastering

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.; Huang, Qiang

    1997-04-01

    Color reflection holograms recorded with the Denisyuk geometry have been demonstrated by the recently formed HOLOS Corporation in New Hampshire. The Slavich red-green-blue (RGB) sensitized ultra-high resolution silver halide emulsion was used for the hologram recording. The employed laser wavelengths were 647 nm, 532 nm, and 476 nm, generated by an argon ion, a frequency doubled Nd:YAG, and a krypton ion laser, respectively. A beam combination mechanism with dichroic filters enabled a simultaneous RGB exposure, which made the color balance and overall exposure energy easy to control as well as simplifying the recording procedure. HOLOS has been producing limited edition color holograms in various sizes from 4' X 5' to 12' X 16'. A 30 foot long optical table and high power lasers will enable HOLOS to record color holograms up to the size of one meter square in the near future. Various approaches have been investigated in generating color hologram masters which have sufficiently high diffraction efficiency to contact copy the color images onto photopolymer materials. A specially designed test object including the 1931 CIE chromaticity diagram, a rainbow ribbon cable, pure yellow dots, and a cloisonne elephant was used for color recording experiments. In addition, the Macbeth Color Checker chart was used. Both colorimetric evaluation and scattering noise measurements were performed using the PR-650 Photo Research SpectraScan SpectraCalorimeter.

  8. Charge carrier mobility in hybrid halide perovskites

    PubMed Central

    Motta, Carlo; El-Mellouhi, Fedwa; Sanvito, Stefano

    2015-01-01

    The charge transport properties of hybrid halide perovskites are investigated with a combination of density functional theory including van der Waals interaction and the Boltzmann theory for diffusive transport in the relaxation time approximation. We find the mobility of electrons to be in the range 5–10 cm2V−1s−1 and that for holes within 1–5 cm2V−1s−1, where the variations depend on the crystal structure investigated and the level of doping. Such results, in good agreement with recent experiments, set the relaxation time to about 1 ps, which is the time-scale for the molecular rotation at room temperature. For the room temperature tetragonal phase we explore two possible orientations of the organic cations and find that the mobility has a significant asymmetry depending on the direction of the current with respect to the molecular axis. This is due mostly to the way the PbI3 octahedral symmetry is broken. Interestingly we find that substituting I with Cl has minor effects on the mobilities. Our analysis suggests that the carrier mobility is probably not a key factor in determining the high solar-harvesting efficiency of this class of materials. PMID:26235910

  9. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    PubMed

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks.

  10. The effect of processing parameters on plasma sprayed beryllium for fusion applications

    SciTech Connect

    Castro, R.G.; Stanek, P.W.; Jacobson, L.A.; Cowgill, D.F.; Snead, L.L.

    1993-10-01

    Plasma spraying is being investigated as a potential coating technique for applying thin (0.1--5mm) layers of beryllium on plasma facing surfaces of blanket modules in ITER and also as an in-situ repair technique for repairing eroded beryllium surfaces in high heat flux divertor regions. High density spray deposits (>98% of theoretical density) of beryllium will be required in order to maximize the thermal conductivity of the beryllium coatings. A preliminary investigation was done to determine the effect of various processing parameters (particle size, particle morphology, secondary gas additions and reduced chamber pressure) on the as-deposited density of beryllium. The deposits were made using spherical beryllium feedstock powder which was produced by centrifugal atomization at Los Alamos National Laboratory (LANL). Improvements in the as-deposited densities and deposit efficiencies of the beryllium spray deposits will be discussed along with the corresponding thermal conductivity and outgassing behavior of these deposits.

  11. The development of beryllium plasma spray technology for the International Thermonuclear Experimental Reactor (ITER)

    SciTech Connect

    Castro, R.G.; Elliott, K.E.; Hollis, K.J.; Bartlett, A.H.; Watson, R.D.

    1999-02-01

    Over the past five years, four international parties, which include the European Communities, Japan, the Russian Federation and the United States, have been collaborating on the design and development of the International Thermonuclear Experimental Reactor (ITER), the next generation magnetic fusion energy device. During the ITER Engineering Design Activity (EDA), beryllium plasma spray technology was investigated by Los Alamos National Laboratory as a method for fabricating and repairing and the beryllium first wall surface of the ITER tokamak. Significant progress has been made in developing beryllium plasma spraying technology for this application. Information will be presented on the research performed to improve the thermal properties of plasma sprayed beryllium coatings and a method that was developed for cleaning and preparing the surface of beryllium prior to depositing plasma sprayed beryllium coatings. Results of high heat flux testing of the beryllium coatings using electron beam simulated ITER conditions will also be presented.

  12. Beryllium and titanium cost-adjustment report

    NASA Astrophysics Data System (ADS)

    Owen, John; Ulph, Eric, Sr.

    1991-09-01

    This report summarizes cost adjustment factors for beryllium (Be, S200) and titanium (Ti, 6Al-4V) that were derived relative to aluminum (Al, 7075-T6). Aluminum is traditionally the material upon which many of the Cost Analysis Office, Missile Division cost estimating relationships (CERs) are based. The adjustment factors address both research and development and production (Q > 100) quantities. In addition, the factors derived include optical elements, normal structure, and structure with special requirements for minimal microcreep, such as sensor assembly parts and supporting components. Since booster cost per payload pound is an even larger factor in total missile launch costs than was initially presumed, the primary cost driver for all materials compared was the missiles' booster cost per payload pound for both R&D and production quantities. Al and Ti are 1.5 and 2.4 times more dense, respectively, than Be, and the cost to lift the heavier materials results in greater booster expense. In addition, Al and Ti must be 2.1 and 2.8, respectively, times the weight of a Be component to provide equivalent stiffness, based on the example component addressed in the report. These factors also increase booster costs. After review of the relative factors cited above, especially the lower costs for Be when stiffness and booster costs are taken into consideration, affordability becomes an important issue. When this study was initiated, both government and contractor engineers said that Be was the material to be used as a last resort because of its prohibitive cost and extreme toxicity. Although the initial price of Be may lead one to believe that any Be product would be extremely expensive, the total cost of Be used for space applications is actually competitive with or less costly than either Al or Ti. Also, the Be toxicity problem has turned out to be a non-issue for purchasers of finished Be components since no machining or grinding operations are required on the finished

  13. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... is produced by radiation of metal halides and their products of dissociation, possibly in combination... electromagnetic ballast that starts a pulse-start metal halide lamp with high voltage pulses, where lamps shall...

  14. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature. PMID:27174223

  15. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors. PMID:27089497

  16. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  17. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  18. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature.

  19. The uses and adverse effects of beryllium on health

    PubMed Central

    Cooper, Ross G.; Harrison, Adrian P.

    2009-01-01

    Context: This review describes the health effects of beryllium exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to beryllium on physiological function and well being. Materials and Methods: The criteria used in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were tabulated. Years 2001–10 gave the greatest match (45.9%) for methodological parameters, followed by 27.71% for 1991–2000. Years 1971–80 and 1981–90 were not significantly different in the information published and available whereas years 1951–1960 showed a lack of suitable articles. Some articles were published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures need to be taken to prevent hazardous exposure to this element, making its biological monitoring in the workplace essential. PMID:20386622

  20. 9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF FOUNDRY FURNACE, DEPLETED URANIUM INGOTS, BERYLLIUM INGOTS, AND ALUMINUM SHAPES WERE PRODUCED IN THE FOUNDRY. (10/30/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  1. Beryllium Wipe Sampling (differing methods - differing exposure potentials)

    SciTech Connect

    Kerr, Kent

    2005-03-09

    This research compared three wipe sampling techniques currently used to test for beryllium contamination on room and equipment surfaces in Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling without a wetting agent, with water-moistened wipe materials, and by methanol-moistened wipes. Analysis indicated that methanol-moistened wipe sampling removed about twice as much beryllium/oil-film surface contamination as water-moistened wipes, which removed about twice as much residue as dry wipes. Criteria at 10 CFR 850.30 and .31 were established on unspecified wipe sampling method(s). The results of this study reveal a need to identify criteria-setting method and equivalency factors. As facilities change wipe sampling methods among the three compared in this study, these results may be useful for approximate correlations. Accurate decontamination decision-making depends on the selection of appropriate wetting agents for the types of residues and surfaces. Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced removal efficiency such as methanol when surface contamination includes oil mist residue.

  2. Anisotropic swelling behavior of hot-extruded beryllium

    NASA Astrophysics Data System (ADS)

    Kang, Suk Hoon; Jang, Jinsung; Kim, Tae Kyu; Jung, Myung Hwan; Lee, Jae Sang

    2016-04-01

    The lifetime of beryllium reflector assemblies is usually determined by neutron irradiation induced swelling, which results in mechanical interferences or fractures of the beryllium elements. Therefore, the dimensional stability and microstructure variations of beryllium during irradiation are important issues to study. In this paper, the microstructure characteristics of S-200-F and EHP-56 beryllium blocks, which were manufactured by using vacuum hot pressing (VHP) and hot extrusion (HE), respectively, were investigated. BeO distributions, grain shapes, and preferred orientations were investigated by using SEM-EPMA and SEM-EBSD systems. Dissimilarly to S-200-F, a strong fiber texture developed in the EHP-56 during the HE process; the basal planes in the majority of grains were arranged along the extrusion direction. To emulate the microstructure evolution during neutron irradiation, we irradiated the electro-polished surface of EHP-56 with protons at room temperature, where the acceleration voltage and the number of protons were 120 keV and 2.0 × 1018 ions/cm2, respectively. Irradiation-induced cavities were observed to be considerably longer along the basal plane in the EHP-56 specimen. Correspondingly, the amount of dimensional change was smaller along the direction parallel to the basal plane.

  3. REACTOR CORE SURROUNDED BY BERYLLIUM MODERATOR. CAMERA LOOKS DOWN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR CORE SURROUNDED BY BERYLLIUM MODERATOR. CAMERA LOOKS DOWN AND TOWARD NORTH INTO LOWER GRID CASTING. HOLES OF VARIOUS SIZES ACCOMMODATE COOLANT WATER AND EXPERIMENTAL POSITIONS. INL NEGATIVE NO. 4197. Unknown Photographer, 2/11/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Biological exposure metrics of beryllium-exposed dental technicians.

    PubMed

    Stark, Moshe; Lerman, Yehuda; Kapel, Arik; Pardo, Asher; Schwarz, Yehuda; Newman, Lee; Maier, Lisa; Fireman, Elizabeth

    2014-01-01

    Beryllium is commonly used in the dental industry. This study investigates the association between particle size and shape in induced sputum (IS) with beryllium exposure and oxidative stress in 83 dental technicians. Particle size and shape were defined by laser and video, whereas beryllium exposure data came from self-reports and beryllium lymphocyte proliferation test (BeLPT) results. Heme oxygenase-1 (HO1) gene expression in IS was evaluated by quantitative polymerase chain reaction. A high content of particles (92%) in IS >5 μ in size is correlated to a positive BeLPT risk (odds ratio [OR] = 3.4, 95% confidence interval [CI]: 0.9-13). Use of masks, hoods, and type of exposure yielded differences in the transparency of IS particles (gray level) and modulate HO1 levels. These results indicate that parameters of size and shape of particles in IS are sensitive to workplace hygiene, affect the level of oxidative stress, and may be potential markers for monitoring hazardous dust exposures.

  5. PREPARATION OF COMPACTS MADE FROM URANIUM AND BERYLLIUM BY SINTERING

    DOEpatents

    Angier, R.P.

    1961-04-11

    A powder metallurgical method for making high-density compacts of uranium and beryllium is reported. Powdered UBe/sub 9/ and powdered Be are blended, compacted, and then sintered by rapidly heating to a temperature of approximately 1220 to 1280 deg C in an inert atmosphere.

  6. Subscale Beryllium Mirrors Demonstrator (SBMD) Program Summary and Ball Modeling

    NASA Technical Reports Server (NTRS)

    Kendrick, Stephen; Brown, Robert; Stahl, Philip (Technical Monitor)

    2001-01-01

    The SBMD Program was to design, fabricate, and test a 0.5-m beryllium lightweighted mirror applicable to space deployable systems with demanding optical and areal density requirements. This presentation summarizes the program's objectives and the mirror's tested technical performance along with lessons learned. In addition, test results are compared to modeling predictions. The SBMD Program was funded by NASA MSFC.

  7. TEM study of impurity segregations in beryllium pebbles

    NASA Astrophysics Data System (ADS)

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.

    2014-12-01

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  8. Biological Exposure Metrics of Beryllium-Exposed Dental Technicians

    PubMed Central

    Stark, Moshe; Lerman, Yehuda; Kapel, Arik; Pardo, Asher; Schwarz, Yehuda; Newman, Lee; Maier, Lisa; Fireman, Elizabeth

    2015-01-01

    Beryllium is commonly used in the dental industry. This study investigates the association between particle size and shape in induced sputum (IS) with beryllium exposure and oxidative stress in 83 dental technicians. Particle size and shape were defined by laser and video, whereas beryllium exposure data came from self-reports and beryllium lymphocyte proliferation test (BeLPT) results. Heme oxygenase-1 (HO1) gene expression in IS was evaluated by quantitative polymerase chain reaction. A high content of particles (92%) in IS > 5 µ in size is correlated to a positive BeLPT risk (odds ratio [OR] = 3.4, 95% confidence interval [CI]: 0.9–13). Use of masks, hoods, and type of exposure yielded differences in the transparency of IS particles (gray level) and modulate HO1 levels. These results indicate that parameters of size and shape of particles in IS are sensitive to workplace hygiene, affect the level of oxidative stress, and may be potential markers for monitoring hazardous dust exposures. PMID:24205960

  9. Temporal variability of beryllium-7 fallout in southwest UK.

    PubMed

    Taylor, A; Keith-Roach, M J; Iurian, A R; Mabit, L; Blake, W H

    2016-08-01

    Cosmogenic beryllium-7 has been widely employed as a sediment tracing tool and continued development of its use as a soil erosion tracer requires knowledge of fallout temporal dynamics. Data regarding beryllium-7 fallout in the UK are scarce and here the authors provide a record of beryllium-7 fallout in southwest England spanning a two-year period. A monthly fallout record was developed for Plymouth, UK using regular rainfall sampling to determine beryllium-7 rainfall activity concentration (Bq L(-1)) and deposition flux (Bq m(-2)). Data showed a general tendency for higher activity during the spring/summer months and lower activity in the autumn/winter months. Comparison with data for other UK sites (Chilton and Aberporth) for the same period found significant differences in (7)Be activity in rainwater and lower variability in Plymouth than Chilton and Aberporth. Total deposition was largely controlled by rainfall in Plymouth although regression coefficients suggested greater importance of other atmospheric controls at the Chilton and Aberporth sites. Use of a deposition proportion to rainfall proportion ratio identified periods when deposition was influenced by varying (7)Be activity in rainfall. Broad ranges in ratios were found for Chilton and Aberporth and this has implications for sediment tracer studies requiring estimates of (7)Be deposition flux across months or seasons. PMID:27155526

  10. Temporal variability of beryllium-7 fallout in southwest UK.

    PubMed

    Taylor, A; Keith-Roach, M J; Iurian, A R; Mabit, L; Blake, W H

    2016-08-01

    Cosmogenic beryllium-7 has been widely employed as a sediment tracing tool and continued development of its use as a soil erosion tracer requires knowledge of fallout temporal dynamics. Data regarding beryllium-7 fallout in the UK are scarce and here the authors provide a record of beryllium-7 fallout in southwest England spanning a two-year period. A monthly fallout record was developed for Plymouth, UK using regular rainfall sampling to determine beryllium-7 rainfall activity concentration (Bq L(-1)) and deposition flux (Bq m(-2)). Data showed a general tendency for higher activity during the spring/summer months and lower activity in the autumn/winter months. Comparison with data for other UK sites (Chilton and Aberporth) for the same period found significant differences in (7)Be activity in rainwater and lower variability in Plymouth than Chilton and Aberporth. Total deposition was largely controlled by rainfall in Plymouth although regression coefficients suggested greater importance of other atmospheric controls at the Chilton and Aberporth sites. Use of a deposition proportion to rainfall proportion ratio identified periods when deposition was influenced by varying (7)Be activity in rainfall. Broad ranges in ratios were found for Chilton and Aberporth and this has implications for sediment tracer studies requiring estimates of (7)Be deposition flux across months or seasons.

  11. Beryllium deposits of the western Seward Peninsula, Alaska

    USGS Publications Warehouse

    Sainsbury, C.L.

    1963-01-01

    Deposits of beryllium ore in the Lost River area of the western Seward Peninsula, Alaska, consist of replacement veins, pipes, and stringer lodes is limestone in a zone about 7 miles long and 2 to 3 miles wide which is faulted and intruded by dikes and stocks. The ores are remarkably alike and typically consist of the following minerals, in percent: fluorite, 45-65; diaspore, 5-10; tourmaline, 0-10; chrysoberyl, 3-10; white mica, 0-5; small amounts of hematite, sulfide minerals, manganese oxide, other beryllium minerals; and traces of minerals not yet identified. The ores generally are cut by late veinlets which are of the same mineralogy as the groundmass ore, or which consist of fluorite, white mica, and euclase. The ores are fine grained, and many of the individual mineral grains, except fluorite, are less than 1 mm in size. The beryllium content of bulk samples of ore ranges from 0.11 to 0.54 percent (0.31 to 1.50 percent BeO). High-grade nodules, composed principally of chrysoberyl, diaspore, fluorite, and mica, contain as much as 6 percent BeO. Geochemical reconnaissance has disclosed other areas of anomalous beryllium in stream sediments elsewhere on the Seward Peninsula, generally around biotite granites that have them associated with tin deposits; additional exploration probably will disclose other deposits.

  12. 18. VIEW OF ENGINEERING CONTROLS USED IN THE BERYLLIUM SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF ENGINEERING CONTROLS USED IN THE BERYLLIUM SHOP TO REDUCE EMPLOYEE EXPOSURE. THE LATHE IS COVERED BY A HOOD WITH A SEPARATE AIR-HANDLING SYSTEM. PRECISION EQUIPMENT IS CONTROLLED DIGITALLY. (11/13/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  13. Identification of an abnormal beryllium lymphocyte proliferation test.

    PubMed

    Frome, Edward L; Newman, Lee S; Cragle, Donna L; Colyer, Shirley P; Wambach, Paul F

    2003-02-01

    The potential hazards from exposure to beryllium or beryllium compounds in the workplace were first reported in the 1930s. The tritiated thymidine beryllium lymphocyte proliferation test (BeLPT) is an in vitro blood test that is widely used to screen beryllium exposed workers in the nuclear industry for sensitivity to beryllium. The clinical significance of the BeLPT was described and a standard protocol was developed in the late 1980s. Cell proliferation is measured by the incorporation of tritiated thymidine into dividing cells on two culture dates and using three concentrations of beryllium sulfate. Results are expressed as a 'stimulation index' (SI) which is the ratio of the amount of tritiated thymidine (measured by beta counts) in the simulated cells divided by the counts for the unstimulated cells on the same culture day. Several statistical methods for use in the routine analysis of the BeLPT were proposed in the early 1990s. The least absolute values (LAV) method was recommended for routine analysis of the BeLPT. This report further evaluates the LAV method using new data, and proposes a new method for identification of an abnormal or borderline test. This new statistical-biological positive (SBP) method reflects the clinical judgment that: (i) at least two SIs show a 'positive' response to beryllium; and (ii) that the maximum of the six SIs must exceed a cut-point that is determined from a reference data set of normal individuals whose blood has been tested by the same method in the same serum. The new data is from the Y-12 National Security Complex in Oak Ridge (Y-12) and consists of 1080 workers and 33 non-exposed control BeLPTs (all tested in the same serum). Graphical results are presented to explain the statistical method, and the new SBP method is applied to the Y-12 group. The true positive rate and specificity of the new method were estimated to be 86% and 97%, respectively. An electronic notebook that is accessible via the Internet was used in

  14. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    SciTech Connect

    Fisher, Mark; Garcia, Pete; Goeckner, Julie; Millikin, Emily; Stoner, Mike

    2012-07-01

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism for

  15. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOEpatents

    Gorin, Everett

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  16. Unsuspected exposure to beryllium: potential implications for sarcoidosis diagnoses.

    PubMed

    Laczniak, Andrew N; Gross, Nathan A; Fuortes, Laurence J; Field, R William

    2014-07-21

    Exposure to Beryllium (Be) can cause sensitization (BeS) and chronic beryllium disease (CBD) in some individuals.  Even relatively low exposures may be sufficient to generate an asymptomatic, or in some cases a symptomatic, immune response. Since the clinical presentation of CBD is similar to that of sarcoidosis, it is helpful to have information on exposure to beryllium in order to reduce misdiagnosis. The purpose of this pilot study is to explore the occurrence of Be surface deposits at worksites with little or no previous reported use of commercially available Be products.  The workplaces chosen for this study represent a convenience sample of businesses in eastern Iowa. One hundred thirty-six surface dust samples were collected from 27 businesses for analysis of Be. The results were then divided into categories by the amount of detected Be according to U.S. Department of Energy guidelines as described in 10 CFR 850.30 and 10 CFR 850.31. Overall, at least one of the samples at 78% of the work sites tested contained deposited Be above the analytical limit of quantitation (0.035 µg beryllium per sample).  Beryllium was detected in 46% of the samples collected. Twelve percent of the samples exceeded 0.2 µg/100 cm² and 4% of the samples exceeded a Be concentration of 3 µg/100 cm². The findings from this study suggest that there may be a wider range and greater number of work environments that have the potential for Be exposure than has been documented previously.  These findings could have implications for the accurate diagnosis of sarcoidosis.

  17. High Biomass Specific Methyl Halide Production Rates of Selected Coastal Marsh Plants and its Relationship to Halide Content

    NASA Astrophysics Data System (ADS)

    Manley, S. L.; Wang, N.; Cicerone, R. J.

    2002-12-01

    Salt tolerant coastal marsh plants (halophytes) have previously been shown to be globally significant producers of methyl chloride (MeCl) and methyl bromide (MeBr). While halophytes are known for their high salt content, there are few reports of their halide content. Our studies have attempted to quantify biomass specific methyl halide (MeX) production from these plants and relate it to tissue halide levels. MeCl, MeBr and MeI production rates and tissue chloride, bromide and iodide concentrations from selected coastal marsh plants were measured for nearly a year. Certain halophyte species (i.e. Batis and Frankenia) have very high summer biomass specific production rates for MeX (e.g. Frankenia: 1 ug MeCl /gfwt/hr; 80 ng MeBr/gfwt/hr; 8 ng MeI/gfwt/hr). These rates of MeCl and MeBr production are much higher than those from other coastal marsh plants or seaweeds. Plant halide levels remain high throughout the year, while MeX production peaks at a high level in mid summer falling to low winter rates. This implies a linkage to plant growth. Higher levels of chloride and bromide were seen in the fleshy marsh plants such as Batis (saltwort, approximately 20 percent dry wt chloride, 0.4 percent dry wt bromide) and Salicornia (pickleweed) than in the others such as Frankenia (alkali heath) approx 7 percent dry wt chloride, 0.1 percent dry wt bromide) or Spartina (cordgrass). No such trend was seen for iodide, which ranged from 4 - 10 ppm. Calculations show the daily halide losses from MeX production are far less than the variability in tissue halide content. MeX production removes a small fraction of the total tissue halide from these plants suggesting that MeX production is not a mechanism used by these species to control internal halide levels. Saltwort cell-free extracts incubated with bromide or iodide in the presence of S-adenosyl-L-methionine (SAM) produced the corresponding MeX. MeBr production was inhibited by caffeic acid the substrate of lignin-specific O

  18. Cu-catalyzed Suzuki-Miyaura reactions of primary and secondary benzyl halides with arylboronates.

    PubMed

    Sun, Yan-Yan; Yi, Jun; Lu, Xi; Zhang, Zhen-Qi; Xiao, Bin; Fu, Yao

    2014-09-28

    A copper-catalyzed Suzuki-Miyaura coupling of benzyl halides with arylboronates is described. Varieties of primary benzyl halides as well as more challenging secondary benzyl halides with β hydrogens or steric hindrance could be successfully converted into the corresponding products. Thus it provides access to diarylmethanes, diarylethanes and triarylmethanes. PMID:25102380

  19. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  20. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  1. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  2. 40 CFR 721.10181 - Halide salt of an alkylamine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halide salt of an alkylamine (generic... Specific Chemical Substances § 721.10181 Halide salt of an alkylamine (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halide salt...

  3. Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory.

    PubMed

    Sutton, Mark; Bibby, Richard K; Eppich, Gary R; Lee, Steven; Lindvall, Rachel E; Wilson, Kent; Esser, Bradley K

    2012-10-15

    Beryllium has been historically machined, handled and stored in facilities at Lawrence Livermore National Laboratory (LLNL) since the 1950s. Additionally, outdoor testing of beryllium-containing components has been performed at LLNL's Site 300 facility. Beryllium levels in local soils and atmospheric particulates have been measured over three decades and are comparable to those found elsewhere in the natural environment. While localized areas of beryllium contamination have been identified, laboratory operations do not appear to have increased the concentration of beryllium in local air or water. Variation in airborne beryllium correlates to local weather patterns, PM10 levels, normal sources (such as resuspension of soil and emissions from coal power stations) but not to LLNL activities. Regional and national atmospheric beryllium levels have decreased since the implementation of the EPA's 1990 Clean-Air-Act. Multi-element analysis of local soil and air samples allowed for the determination of comparative ratios for beryllium with over 50 other metals to distinguish between natural beryllium and process-induced contamination. Ten comparative elemental markers (Al, Cs, Eu, Gd, La, Nd, Pr, Sm, Th and Tl) that were selected to ensure background variations in other metals did not collectively interfere with the determination of beryllium sources in work-place samples at LLNL. Multi-element analysis and comparative evaluation are recommended for all workplace and environmental samples suspected of beryllium contamination. The multi-element analyses of soils and surface dusts were helpful in differentiating between beryllium of environmental origin and beryllium from laboratory operations. Some surfaces can act as "sinks" for particulate matter, including carpet, which retains entrained insoluble material even after liquid based cleaning. At LLNL, most facility carpets had beryllium concentrations at or below the upper tolerance limit determined by sampling facilities

  4. Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory.

    PubMed

    Sutton, Mark; Bibby, Richard K; Eppich, Gary R; Lee, Steven; Lindvall, Rachel E; Wilson, Kent; Esser, Bradley K

    2012-10-15

    Beryllium has been historically machined, handled and stored in facilities at Lawrence Livermore National Laboratory (LLNL) since the 1950s. Additionally, outdoor testing of beryllium-containing components has been performed at LLNL's Site 300 facility. Beryllium levels in local soils and atmospheric particulates have been measured over three decades and are comparable to those found elsewhere in the natural environment. While localized areas of beryllium contamination have been identified, laboratory operations do not appear to have increased the concentration of beryllium in local air or water. Variation in airborne beryllium correlates to local weather patterns, PM10 levels, normal sources (such as resuspension of soil and emissions from coal power stations) but not to LLNL activities. Regional and national atmospheric beryllium levels have decreased since the implementation of the EPA's 1990 Clean-Air-Act. Multi-element analysis of local soil and air samples allowed for the determination of comparative ratios for beryllium with over 50 other metals to distinguish between natural beryllium and process-induced contamination. Ten comparative elemental markers (Al, Cs, Eu, Gd, La, Nd, Pr, Sm, Th and Tl) that were selected to ensure background variations in other metals did not collectively interfere with the determination of beryllium sources in work-place samples at LLNL. Multi-element analysis and comparative evaluation are recommended for all workplace and environmental samples suspected of beryllium contamination. The multi-element analyses of soils and surface dusts were helpful in differentiating between beryllium of environmental origin and beryllium from laboratory operations. Some surfaces can act as "sinks" for particulate matter, including carpet, which retains entrained insoluble material even after liquid based cleaning. At LLNL, most facility carpets had beryllium concentrations at or below the upper tolerance limit determined by sampling facilities

  5. Chronic beryllium disease and cancer risk estimates with uncertainty for beryllium released to the air from the Rocky Flats Plant.

    PubMed Central

    McGavran, P D; Rood, A S; Till, J E

    1999-01-01

    Beryllium was released into the air from routine operations and three accidental fires at the Rocky Flats Plant (RFP) in Colorado from 1958 to 1989. We evaluated environmental monitoring data and developed estimates of airborne concentrations and their uncertainties and calculated lifetime cancer risks and risks of chronic beryllium disease to hypothetical receptors. This article discusses exposure-response relationships for lung cancer and chronic beryllium disease. We assigned a distribution to cancer slope factor values based on the relative risk estimates from an occupational epidemiologic study used by the U.S. Environmental Protection Agency (EPA) to determine the slope factors. We used the regional atmospheric transport code for Hanford emission tracking atmospheric transport model for exposure calculations because it is particularly well suited for long-term annual-average dispersion estimates and it incorporates spatially varying meteorologic and environmental parameters. We accounted for model prediction uncertainty by using several multiplicative stochastic correction factors that accounted for uncertainty in the dispersion estimate, the meteorology, deposition, and plume depletion. We used Monte Carlo techniques to propagate model prediction uncertainty through to the final risk calculations. We developed nine exposure scenarios of hypothetical but typical residents of the RFP area to consider the lifestyle, time spent outdoors, location, age, and sex of people who may have been exposed. We determined geometric mean incremental lifetime cancer incidence risk estimates for beryllium inhalation for each scenario. The risk estimates were < 10(-6). Predicted air concentrations were well below the current reference concentration derived by the EPA for beryllium sensitization. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10464074

  6. Chronic beryllium disease and cancer risk estimates with uncertainty for beryllium released to the air from the Rocky Flats Plant.

    PubMed

    McGavran, P D; Rood, A S; Till, J E

    1999-09-01

    Beryllium was released into the air from routine operations and three accidental fires at the Rocky Flats Plant (RFP) in Colorado from 1958 to 1989. We evaluated environmental monitoring data and developed estimates of airborne concentrations and their uncertainties and calculated lifetime cancer risks and risks of chronic beryllium disease to hypothetical receptors. This article discusses exposure-response relationships for lung cancer and chronic beryllium disease. We assigned a distribution to cancer slope factor values based on the relative risk estimates from an occupational epidemiologic study used by the U.S. Environmental Protection Agency (EPA) to determine the slope factors. We used the regional atmospheric transport code for Hanford emission tracking atmospheric transport model for exposure calculations because it is particularly well suited for long-term annual-average dispersion estimates and it incorporates spatially varying meteorologic and environmental parameters. We accounted for model prediction uncertainty by using several multiplicative stochastic correction factors that accounted for uncertainty in the dispersion estimate, the meteorology, deposition, and plume depletion. We used Monte Carlo techniques to propagate model prediction uncertainty through to the final risk calculations. We developed nine exposure scenarios of hypothetical but typical residents of the RFP area to consider the lifestyle, time spent outdoors, location, age, and sex of people who may have been exposed. We determined geometric mean incremental lifetime cancer incidence risk estimates for beryllium inhalation for each scenario. The risk estimates were < 10(-6). Predicted air concentrations were well below the current reference concentration derived by the EPA for beryllium sensitization. PMID:10464074

  7. Metal induced gap states at alkali halide/metal interface

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-10-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide.

  8. Beryllium alters lipopolysaccharide-mediated intracellular phosphorylation and cytokine release in human peripheral blood mononuclear cells.

    PubMed

    Silva, Shannon; Ganguly, Kumkum; Fresquez, Theresa M; Gupta, Goutam; McCleskey, T Mark; Chaudhary, Anu

    2009-12-01

    Beryllium exposure in susceptible individuals leads to the development of chronic beryllium disease, a lung disorder marked by release of inflammatory cytokine and granuloma formation. We have previously reported that beryllium induces an immune response even in blood mononuclear cells from healthy individuals. In this study, we investigate the effects of beryllium on lipopolysaccharide-mediated cytokine release in blood mononuclear and dendritic cells from healthy individuals. We found that in vitro treatment of beryllium sulfate inhibits the secretion of lipopolysaccharide-mediated interleukin 10, while the release of interleukin 1beta is enhanced. In addition, not all lipopolysaccharide-mediated responses are altered, as interleukin 6 release in unaffected upon beryllium treatment. Beryllium sulfate-treated cells show altered phosphotyrosine levels upon lipopolysaccharide stimulation. Significantly, beryllium inhibits the phosphorylation of signal transducer and activator of transducer 3, induced by lipopolysaccharide. Finally, inhibitors of phosphoinositide-3 kinase mimic the effects of beryllium in inhibition of interleukin 10 release, while they have no effect on interleukin 1beta secretion. This study strongly suggests that prior exposures to beryllium could alter host immune responses to bacterial infections in healthy individuals, by altering intracellular signaling.

  9. Fallout beryllium-7 as a soil and sediment tracer in river basins: current status and needs

    NASA Astrophysics Data System (ADS)

    Taylor, Alex; Blake, Will H.; Smith, Hugh G.; Mabit, Lionel; Keith-Roach, Miranda J.

    2013-04-01

    Beryllium-7 is a cosmogenic radionuclide formed in the upper atmosphere by cosmic ray spallation of nitrogen and oxygen. Its constant natural production and fallout via precipitation coupled with its ability to bind to soil particles have underpinned its application as a sediment tracer. The short half-life of beryllium-7 (53.3 days) lends itself to tracing sediment dynamics over short time periods, thus, enabling assessment of the effect of land use change upon soil redistribution. Although beryllium-7 has been widely applied as a tracer to date, there remain crucial gaps in understanding relating to the assumptions for its use. To further support the application of beryllium-7 as a tracer across a range of environments requires consideration of both the current strengths and shortcomings of the technique to direct research needs. Here we review research surrounding the assumptions underpinning beryllium-7 use as a tracer and identify key knowledge gaps relating to i) the effects of rain shadowing and vegetation interception upon beryllium-7 fallout uniformity at the hillslope-scale; ii) the effect of preferential flow pathways upon beryllium-7 depth distribution in soil and overland flow upon beryllium-7 inventory uniformity and iii) the potential for beryllium-7 desorption in saline and reducing environments. To provide continued support for the use of beryllium-7 as a hillslope and catchment-scale tracer, there is an urgent need to undertake further research to quantify the effect of these factors upon tracer estimates.

  10. Application of beryllium antibodies in risk assessment and health surveillance: two case studies.

    PubMed

    Clarke, S M; Thurlow, S M; Hilmas, D E

    1995-01-01

    This paper demonstrates that current standards used by the Occupational Safety and Health Administration (OSHA) to establish an area free from potential beryllium contamination may be inadequate. Using the Beryllium Antibody Assay, it was shown that workers exposed to former beryllium work areas, thought to be sanitized and to meet OSHA standards, experienced statistically significant rises in blood beryllium antibody titers. This finding raises the question of whether the equipment currently required to protect workers in beryllium-laden environments is sufficient. The project mission of decommissioning/decontaminating the former nuclear weapons plant at Rocky Flats Environmental Technology Site (RFETS), instituted in 1992, has necessitated development of new technology directed toward safe and responsible cleanup. Challenges have been posed not only by the need to dispose of radioactive and chemical waste, but also by the problem of cleaning up hazardous metals such as the element beryllium. Beryllium was used extensively in research and the manufacture of nuclear weapons components at Rocky Flats for over 40 years. Since inhalation of this element can induce chronic beryllium disease (Eisenbud and Lisson, 1983), an antibody assay was developed to screen workers for internal exposure to beryllium. Exposure is indicated by a titer of antibodies greater than two standard deviations above a normal population control (defined as the mean titer of pooled samples from 51 individuals with no known exposure to beryllium) and a p-value of < 0.05. This paper describes two new applications for the assay: risk assessment and health surveillance. Case study 1 involves a team of three workers who cleaned a beryllium plenum and whose beryllium antibody titers provided a quantitative assessment of their exposure. Case study 2 describes the use of the antibody assay to determine the probable manner in which one worker was exposed to beryllium while performing his duties as an

  11. Application of beryllium antibodies in risk assessment and health surveillance: two case studies.

    PubMed

    Clarke, S M; Thurlow, S M; Hilmas, D E

    1995-01-01

    This paper demonstrates that current standards used by the Occupational Safety and Health Administration (OSHA) to establish an area free from potential beryllium contamination may be inadequate. Using the Beryllium Antibody Assay, it was shown that workers exposed to former beryllium work areas, thought to be sanitized and to meet OSHA standards, experienced statistically significant rises in blood beryllium antibody titers. This finding raises the question of whether the equipment currently required to protect workers in beryllium-laden environments is sufficient. The project mission of decommissioning/decontaminating the former nuclear weapons plant at Rocky Flats Environmental Technology Site (RFETS), instituted in 1992, has necessitated development of new technology directed toward safe and responsible cleanup. Challenges have been posed not only by the need to dispose of radioactive and chemical waste, but also by the problem of cleaning up hazardous metals such as the element beryllium. Beryllium was used extensively in research and the manufacture of nuclear weapons components at Rocky Flats for over 40 years. Since inhalation of this element can induce chronic beryllium disease (Eisenbud and Lisson, 1983), an antibody assay was developed to screen workers for internal exposure to beryllium. Exposure is indicated by a titer of antibodies greater than two standard deviations above a normal population control (defined as the mean titer of pooled samples from 51 individuals with no known exposure to beryllium) and a p-value of < 0.05. This paper describes two new applications for the assay: risk assessment and health surveillance. Case study 1 involves a team of three workers who cleaned a beryllium plenum and whose beryllium antibody titers provided a quantitative assessment of their exposure. Case study 2 describes the use of the antibody assay to determine the probable manner in which one worker was exposed to beryllium while performing his duties as an

  12. A mortality study of workers at seven beryllium processing plants

    SciTech Connect

    Ward, E.; Okun, A.; Ruder, A.; Fingerhut, M.; Steenland, K. )

    1992-01-01

    The International Agency for Research on Cancer (IARC) has found that the evidence for the carcinogenicity of beryllium is sufficient based on animal data but limited based on human data. This analysis reports on a retrospective cohort mortality study among 9,225 male workers employed at seven beryllium processing facilities for at least 2 days between January 1, 1940, and December 31, 1969. Vital status was ascertained through December 31, 1988. The standardized mortality ratio (SMR) for lung cancer in the total cohort was 1.26 (95% confidence interval [CI] = 1.12-1.42); significant SMRs for lung cancer were observed for two of the oldest plants located in Lorain, Ohio (SMR = 1.69; 95% CI = 1.28-2.19) and Reading, Pennsylvania (SMR = 1.24; 95% CI = 1.03-1.48). For the overall cohort, significantly elevated SMRs were found for all deaths (SMR = 1.05; 95% CI = 1.01-1.08), ischemic heart disease (SMR = 1.08; 95% CI = 1.01-1.14), pneumoconiosis and other respiratory diseases (SMR = 1.48; 95% CI = 1.21-1.80), and chronic and unspecified nephritis, renal failure, and other renal sclerosis (SMR = 1.49; 95% CI = 1.00-2.12). Lung cancer SMRs did not increase with longer duration of employment, but did increase with longer latency (time since first exposure). Lung cancer was particularly elevated (SMR = 3.33; 95% CI = 1.66-5.95) among workers at the Lorain plant with a history of (primarily) acute beryllium disease, which is associated with very high beryllium exposure. The lung cancer excess was not restricted to plants operating in the 1940s, when beryllium exposures were known to be extraordinarily high. Elevated lung cancer SMRs were also observed for four of the five plants operating in the 1950s for workers hired during that decade. Neither smoking nor geographic location fully explains the increased lung cancer risk. Occupational exposure to beryllium compounds is the most plausible explanation for the increased risk of lung cancer observed in this study.

  13. Removal of beryllium from drinking water by chemical coagulation and lime softening

    SciTech Connect

    Lytle, D.A.; Summers, R.S.; Sorg, T.J.

    1992-01-01

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. Jar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride) and lime softening performed in removing beryllium from spiked waters. Centrifugation was used to simulate filtration. The two source waters used were raw Ohio River water and groundwater from the Great Miami Aquifer. The impact of initial beryllium concentration, coagulant dose, turbidity and pH on beryllium removal was examined and optimum treatment conditions were determined. Jar tests using alum and ferric chloride coagulants were able to achieve 95% and 85% removal of beryllium respectively from surface water. Removal efficiency increased as the pH was increased. Based on the data collected in the study, coprecipitation and precipitation are the two likely mechanisms responsible for beryllium removal.

  14. A preliminary assessment of beryllium dust oxidation during a wet bypass accident in a fusion reactor

    SciTech Connect

    Brad J. Merrill; Richard L. Moore; J. Phillip Sharp

    2008-09-01

    A beryllium dust oxidation model has been developed at the Idaho National Laboratory (INL) by the Fusion Safety Program (FSP) for the MELCOR safety computer code. The purpose of this model is to investigate hydrogen production from beryllium dust layers on hot surfaces inside a fusion reactor vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). This beryllium dust oxidation model accounts for the diffusion of steam into a beryllium dust layer, the oxidation of the dust particles inside this layer based on the beryllium-steam oxidation equations developed at the INL, and the effective thermal conductivity of this beryllium dust layer. This paper details this oxidation model and presents the results of the application of this model to a wet bypass accident scenario in the ITER device.

  15. A novel enzyme-linked immunosorbent assay (ELISA) for the detection of beryllium antibodies.

    PubMed

    Clarke, S M

    1991-03-01

    A novel immunological method has been developed for detecting antibodies (IgG molecules) specific to beryllium, a light metal used in industry and capable of causing chronic beryllium disease. Beryllium metal was vacuum deposited onto commercially available immunological microsticks, which were then exposed to test plasma containing the putative antibodies. Antigen-antibody complexes were located using a biotin-avidin amplification method. One employee diagnosed with chronic beryllium disease and one diagnosed as "sensitized" (lymphocyte transformation positive) exhibited antibody titers graphically and statistically different and higher than a pooled baseline control population. Plasma from these two employees (former beryllium workers) was used in four different approaches to validate the presence of beryllium antibodies. The assay proved to be reproducible. PMID:2010619

  16. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    SciTech Connect

    Edmonds, P.H.

    1985-09-01

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10/sup 22/ atoms/cm/sup 2/) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project.

  17. Infrared Laser-Induced Breakdown Spectroscopy of Alkali Metal Halides

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2008-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. LIBS is a relatively simple technique and has been successfully employed in applications such as environmental monitoring, materials analysis, medical diagnostics, industrial process control, and homeland security. Most LIBS applications are limited to emission features in the ultraviolet-visible-near infrared (UV-VIS-NIR) region arising from atoms and simple molecular fragments. In the present work, we report on the observation of mid- infrared emission lines from alkali metal halides due to laser-induced breakdown processes. The studied alkali metal halides included LiCl, NaCl, NaBr, KCl, KBr, KF, RbCl, and RbBr. The laser-induced plasma was produced by focusing a 16 mJ pulsed Nd:YAG laser (1064 nm) on the target. The LIBS infrared emission from alkali halides showed intense and narrow bands located in the region from 2-8 μm. The observed emission features were assigned to atomic transitions between higher-lying Rydberg states of neutral alkali atoms. More detailed results of the performed IR LIBS studies on alkali metal halides will be discussed at the conference.

  18. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  19. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  20. Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides

    ERIC Educational Resources Information Center

    Waas, Jack R.

    2006-01-01

    Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree-Fock method, and two DFT methods. These calculated values were compared to experimental values where possible. All five methods agreed generally with the expected empirically known trends in the…

  1. Iron-catalysed Negishi coupling of benzyl halides and phosphates.

    PubMed

    Bedford, Robin B; Huwe, Michael; Wilkinson, Mark C

    2009-02-01

    Iron-based catalysts containing either 1,2-bis(diphenylphosphino)benzene or 1,3-bis(diphenylphosphino)propane give excellent activity and good selectivity in the Negishi coupling of aryl zinc reagents with a range of benzyl halides and phosphates.

  2. Kinetic Studies of the Solvolysis of Two Organic Halides

    ERIC Educational Resources Information Center

    Duncan, J. A.; Pasto, D. J.

    1975-01-01

    Describes an undergraduate organic chemistry laboratory experiment which utilizes the solvolysis of organic halides to demonstrate first and second order reaction kinetics. The experiment also investigates the effect of a change of solvent polarity on reaction rate, common-ion and noncommon-ion salt effects, and the activation parameters of a…

  3. Students' understanding of alkyl halide reactions in undergraduate organic chemistry

    NASA Astrophysics Data System (ADS)

    Cruz-Ramirez de Arellano, Daniel

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is studied in undergraduate organic chemistry courses, establishing a robust understanding of the concepts and reactions related to them can be beneficial in assuring students' success in organic chemistry courses. Therefore, the purpose of this study was to elucidate and describe students' understanding of alkyl halide reactions in an undergraduate organic chemistry course. Participants were interviewed using a think-aloud protocol in which they were given a set of exercises dealing with reactions and mechanisms of alkyl halide molecules in order to shed light on the students' understanding of these reactions and elucidate any gaps in understanding and incorrect warrants that may be present. These interviews were transcribed and analyzed using qualitative inquiry approaches. In general, the findings from this study show that the students exhibited gaps in understanding and incorrect warrants dealing with: (1) classifying substances as bases and/or nucleophiles, (2) assessing the basic or nucleophilic strength of substances, (3) accurately describing the electron movement of the steps that take place during alkyl halide reaction mechanisms, and (4) assessing the viability of their proposed reactive intermediates and breakage of covalent bonds. In addition, implications for teaching and future research are proposed.

  4. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  5. Beryllium and Boron Evolution in the Galaxy

    NASA Astrophysics Data System (ADS)

    Casuso, E.; Beckman, J. E.

    1997-01-01

    We present a model for the evolution of the light-nuclide abundances in the Galaxy, aimed especially at interpreting the observed beryllium and boron abundances as a function of that of iron. We present two models, one for the Galactic halo and the other for the Galactic disk. The main characteristics of the halo model are (1) the relatively rapid change in the physical conditions, on a timescale of less than 2 Gyr, because of the exponentially increasing flow of gas from the halo to form the Galactic bulge--after this period, less than 30% of the initial gas remains in the halo, and star formation there is brought to a halt; (2) the low inferior mass limit for the initial mass function (ml = 0.01), implying that ~60% of the mass that condenses into massive bodies takes the form of substellar objects (masses <=0.1 M⊙). With these assumptions, we can explain the abrupt increase in the observed metallicity distribution of halo stars near [Fe/H] = -1.7, the evolution of [O/Fe], 4He/H, [N/Fe], and 12C/13C versus [Fe/H], and that of [C/O] versus [O/H], and give an account of [Fe/H] as a function of time, during the halo phase. The main characteristics of the disk model are (1) a timescale of order 15 Gyr and (2) an exponentially increasing infall of gas with very low metallicity. With these assumptions, we can explain the prominent peak in the observed metallicity distribution of disk stars near [Fe/H] = -0.4, the evolution of [O/Fe], 4He/H, [N/Fe], and 12C/13C versus [Fe/H], and that of [C/O] versus [O/H] and also give a good fit to observed [Fe/H] as a function of time. The production of light elements (D, 3He, 6Li, 7Li, 9Be, 10B, and 11B) occurs principally via Galactic cosmic ray (GCR) reactions for all nuclides except deuterium and 3He. Differences between the halo and the disk are (1) a flatter GCR energy flux spectrum and (2) more GCR flux at early epochs (halo) than more recently (disk), as a result of better GCR confinement, both conditions first suggested by

  6. Risk of Chronic Beryllium Disease by HLA-DPB1 E69 Genotype and Beryllium Exposure in Nuclear Workers

    PubMed Central

    Van Dyke, Mike V.; Martyny, John W.; Mroz, Margaret M.; Silveira, Lori J.; Strand, Matt; Fingerlin, Tasha E.; Sato, Hiroe; Newman, Lee S.; Maier, Lisa A.

    2011-01-01

    Rationale: Beryllium sensitization (BeS) and chronic beryllium disease (CBD) are determined by at least one genetic factor, a glutamic acid at position 69 (E69) of the HLA-DPB1 gene, and by exposure to beryllium. The relationship between exposure and the E69 genotype has not been well characterized. Objectives: The study goal was to define the relationship between beryllium exposure and E69 for CBD and BeS. Methods: Workers (n = 386) from a U.S. nuclear weapons facility were enrolled into a case–control study (70 BeS, 61 CBD, and 255 control subjects). HLA-DPB1 genotypes were determined by sequence-specific primer-polymerase chain reaction. Beryllium exposures were reconstructed on the basis of worker interviews and historical exposure measurements. Measurements and Main Results: Any E69 carriage increased odds for CBD (odds ratio [OR], 7.61; 95% confidence interval [CI], 3.66–15.84) and each unit increase in lifetime weighted average exposure increased the odds for CBD (OR, 2.27; 95% CI, 1.26–4.09). Compared with E69-negative genotypes, a single E69-positive *02 allele increased the odds for BeS (OR, 12.01; 95% CI, 4.28–33.71) and CBD (OR, 3.46; 95% CI, 1.42–8.43). A single non-*02 E69 allele further increased the odds for BeS (OR, 29.54; 95% CI, 10.33–84.53) and CBD (OR, 11.97; 95% CI, 5.12–28.00) and two E69 allele copies conferred the highest odds for BeS (OR, 55.68; 95% CI, 14.80–209.40) and CBD (OR, 22.54; 95% CI, 7.00–72.62). Conclusions: E69 and beryllium exposure both contribute to the odds of CBD. The increased odds for CBD and BeS due to E69 appear to be differentially distributed by genotype, with non-*02 E69 carriers and E69 homozygotes at higher odds than those with *02 genotypes. PMID:21471109

  7. RADIATION DOSIMETRY OF A GRAPHITE MODERATED RADIUM BERYLLIUM SOURCE.

    SciTech Connect

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    The Brookhaven National Laboratory Sigma Pile a Radium-Beryllium neutron source imbedded in a cube of graphite blocks. The pile is approximately 2.13 m on four sides and is 3.07 m high. Absolute and relative thermal neutron flux measurements have been made using gold and indium foils, which were both bare and cadmium covered. Thermo-luminescent dosimeters were used to determine the neutron and gamma-ray dose rates in the pile. Gamma-ray dose rate measurements have also been made in the air outside of the pile, while the Radium-Beryllium neutron source was being withdrawn from the pile. The Monte Carlo MCNP code has been used to calculate the coupled neutron-photon transport. Measured dose rates at various locations agreed with the calculated values within 5% to 15%.

  8. Elastic scattering of Beryllium isotopes near the Coulomb barrier

    SciTech Connect

    Di Pietro, A.; Figuera, P.; Amorini, F.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Papa, M.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.

    2011-10-28

    In this contribution, results of experiments performed with the three Beryllium isotopes {sup 9,10,11}Be on a medium mass {sup 64}Zn target, at a center of mass energy of {approx_equal}1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the {sup 9,10}Be reactions. In the {sup 11}Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the {sup 11}Be case could be attributed to transfer and/or break-up events.

  9. Beryllium dimer: a bond based on non-dynamical correlation.

    PubMed

    El Khatib, Muammar; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Helal, Wissam; Leininger, Thierry; Tenti, Lorenzo; Angeli, Celestino

    2014-08-21

    The bond nature in beryllium dimer has been theoretically investigated using high-level ab initio methods. A series of ANO basis sets of increasing quality, going from sp to spdf ghi contractions, has been employed, combined with HF, CAS-SCF, CISD, and MRCI calculations with several different active spaces. The quality of these calculations has been checked by comparing the results with valence Full-CI calculations, performed with the same basis sets. It is shown that two quasi-degenerated partly occupied orbitals play a crucial role to give a qualitatively correct description of the bond. Their nature is similar to that of the edge orbitals that give rise to the quasi-degenerated singlet-triplet states in longer beryllium chains.

  10. On temperature bifurcation of beryllium and lithium plasma facing components

    SciTech Connect

    Smirnov, R. D.; Krasheninnikov, S. I.; Pigarov, A. Yu.

    2009-12-15

    The mechanism of temperature bifurcation of plasma contacting surfaces due to recycling of the ionized surface material vapor is considered. It is shown that this mechanism can lead to overheating of beryllium and lithium plasma facing components (in particular, in fusion devices) prior to the thermionic electron emission mechanism. The surface temperatures and the plasma parameters, at which the considered mechanism triggers the local overheating of beryllium and lithium components, are evaluated. The increase in the surface heat load due to secondary electron emission is also considered. It is shown that the combined effects of energy and impact angle distributions of the plasma electrons can increase the averaged secondary electron emission yield to values higher than unity and can lower the average electron energy, at which such yields are achieved.

  11. Beryllium and boron in metal-poor stars

    NASA Astrophysics Data System (ADS)

    Primas, Francesca

    2010-04-01

    Knowledge of lithium, beryllium, and boron abundances in stars of the Galactic halo and disk plays a major role in our understanding of Big Bang nucleosynthesis, cosmic-ray physics, and stellar interiors. 9Be and 10B are believed to originate entirely from spallation reactions in the interstellar medium (ISM) between α-particles and protons and heavy nuclei like carbon, nitrogen, and oxygen (CNO), whereas 11B may have an extra production channel via neutrino-spallation. Beryllium and boron are both observationally challenging, with their main resonant doublets falling respectively at 313 nm and at 250 nm. The advent of 8-10m class telescopes equipped with highly sensitive (in the near-UV/blue) spectrographs has opened up a new era of Be abundance studies. Here, I will review and discuss the most interesting results of recent observational campaigns in terms of formation and evolution of these two light elements.

  12. Machining of beryllium with the LLNL Precision Engineering Research Lathe

    SciTech Connect

    Foley, R.J.

    1985-04-01

    In August 1984, six flat samples of beryllium, which were prepared by Brush-Wellmen Corp. using various pressing and sintering processes, were machined at LLNL on the recently completed Precision Engineering Research Lathe (PERL). The purpose of this study, which was conducted in cooperation with the Hughes Aircraft Corporation and partially funded by that organization, was to determine the optical properties of machined beryllium surfaces when prepared under highly controlled conditions using high quality machine tools and CBN (cubic boron nitrite) cutting tools. This report will summarize the materials properties, the machining conditions used on the PERL and a comparison of the completed samples using optical measuring techniques and scanning electron microscopy (SEM). The mirror surface reflecting measurements in the IR region are to be made by the group at Hughes Aircraft and will be exchanged with LLNL as a part of this joint technical effort. 3 refs., 14 figs.

  13. Final Results of the Ball AMSD Beryllium Mirror

    NASA Technical Reports Server (NTRS)

    Chaney, David M.

    2004-01-01

    The 1.4-meter semi-rigid, beryllium Advanced Mirror System Demonstrator (AMSD) mirror completed initial cryogenic testing at Marshall's X-ray Calibration Facility (XRCF) in August of 2003. Results of this testing show the mirror to have very low cryogenic surface deformation and possess exceptional figure stability. Subsequent to this cryogenic testing beryllium was selected as the material of choice for the James Webb Space Telescope (JWST) multi-segment primary mirror. Therefore, the AMSD mirror was sent back to SSG-Tinsley for additional ambient polishing to JWST requirements. The mirror was successfully polished to less than 22nm rms of low frequency error. Those additional results are presented with comparisons to the JWST requirements.

  14. Purfication kinetics of beryllium during vacuum induction melting

    NASA Technical Reports Server (NTRS)

    Mukherjee, J. L.; Gupta, K. P.; Li, C. H.

    1972-01-01

    The kinetics of evaporation in binary alloys were quantitatively treated. The formalism so developed works well for several systems studied. The kinetics of purification of beryllium was studied through evaporation data actually acquired during vacuum induction melting. Normal evaporation equations are shown to be generally valid and useful for understanding the kinetics of beryllium purification. The normal evaporation analysis has been extended to cover cases of limited liquid diffusion. It was shown that under steady-state evaporation, the solute concentration near the surface may be up to six orders of magnitude different from the bulk concentration. Corrections for limited liquid diffusion are definitely needed for the highly evaporative solute elements, such as Zn, Mg, and Na, for which the computed evaporation times are improved by five orders of magnitude. The commonly observed logarithmic relation between evaporation time and final concentration further supports the validity of the normal evaporation equations.

  15. Beryllium reflected cavity reactor for UF6 critical experiments

    NASA Technical Reports Server (NTRS)

    Jarvis, G. A.; Bernard, W.; Helmick, H. H.; White, R.

    1975-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with one-meter diam by one-meter long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diam beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF6 container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials are available. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  16. A joint fracture toughness evaluation of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Conrad, H.; Sargent, G. A.; Brown, W. F., Jr.

    1977-01-01

    Fracture toughness tests at room temperature were made on three-point bend specimens cut from hot-pressed beryllium obtained from two suppliers. The test specimens had dimensions conforming to ASTM fracture toughness standard E399-72. A total of 42 specimens were machined from each batch of material. Six specimens from each batch were then distributed to seven independent laboratories for testing. The test data from the laboratories were collected and analyzed for differences between the laboratories and the two batches of material. It is concluded that ASTM 399-72 can be used as a valid test procedure for determining the fracture toughness of beryllium, providing that Kf(max) in fatigue cracking could be up to 80 percent of the K(0) value.

  17. Deuterium accumulation in beryllium oxide layer exposed to deuterium atoms

    NASA Astrophysics Data System (ADS)

    Sharapov, V. M.; Alimov, V. Kh.; Gavrilov, L. E.

    1998-10-01

    The interaction of deuterium atoms with beryllium TIP-30 was studied at temperatures of 340, 500 and 740 K. After D atom exposure, the depth distributions of deuterium atoms and molecules in Be were measured using combined Secondary Ion Mass Spectrometry (SIMS) and Residual Gas Analysis (RGA) methods. It was shown that deuterium is mainly accumulated in the oxide layer although long tails are also observed. Deuterium is retained in two states - atomic and molecular forms. The amount of trapped deuterium in samples decreases during the sample storage in vacuum or air at room temperature. The results were explained by the chemical bonding of D atoms in BeO oxide with beryllium hydroxide formation and the trapping of deuterium molecules in bubbles which are formed at growth defects in the oxide layer.

  18. Determination of beryllium in ores and rocks by a dilution-fluorometric method with morin

    USGS Publications Warehouse

    May, R.; Grimaldi, F.S.

    1961-01-01

    Beryllium in concentrations as little as a few parts per million is determined fluorometrically with morin in low grade ores by a dilution method without separations. A high sensitivity is obtained by the adoption of instrumental and reaction conditions that give a satisfactory ratio of beryllium to blank fluorescence and at the same time minimize iron interference. Data on the behavior of 47 ions are given. The method is applied to ores containing bertrandite and beryl as the beryllium minerals.

  19. Beryllium uptake and related biological effects studied in THP-1 differentiated macrophages.

    PubMed

    Ding, Jian; Lin, Lin; Hang, Wei; Yan, Xiaomei

    2009-11-01

    Investigation of cellular uptake of metal compounds is important in understanding metal-related toxicity and diseases. Inhalation of beryllium aerosols can cause chronic beryllium disease, a progressive, granulomatous fibrosis of the lung. Studies in laboratory animals and cultured animal cells indicate that alveolar macrophages take up beryllium compounds and participate in a hypersensitivity immune response to a beryllium-containing antigen. In the present work, human monocyte cell line THP-1 was induced with phorbol myristate acetate to differentiate into a macrophage. This cell with characteristics of human alveolar macrophages was employed to study cellular beryllium uptake and related biological effects. Morphological changes, phagocytosis of fluorescent latex beads, and cell surface CD14 expression were used to verify the successful differentiation of THP-1 monocytes into macrophages. An improved mass spectrometry method for quantitative analysis of intracellular beryllium as opposed to the traditional radioisotopic approach was developed using ICP-MS. The influence of the solubility of beryllium compounds, exposure duration, and beryllium concentration on the incorporation of beryllium was studied. Our data indicated that the uptake of particulate BeO was much more significant than that of soluble BeSO(4), suggesting the major cellular uptake pathway is phagocytosis. Nevertheless, subsequent DAPI nuclear staining and PARP cleavage study indicated that beryllium uptake had a negligible effect on the apoptosis of THP-1 macrophages compared to the unstimulated macrophage control. Meanwhile, no substantial variation of tumour necrosis factor-alpha production was observed for THP-1 macrophages upon beryllium exposure. These data imply alveolar macrophages could have some level of tolerance to beryllium and this may explain why most Be-exposed individuals remain healthy throughout life.

  20. Creating σ-holes through the formation of beryllium bonds.

    PubMed

    Brea, Oriana; Mó, Otilia; Yáñez, Manuel; Alkorta, Ibon; Elguero, José

    2015-09-01

    Through the use of ab initio theoretical models based on MP2/aug-cc-pVDZ-optimized geometries and CCSD(T)/aug-cc-pVTZ and CCSD(T)/aug-c-pVDZ total energies, it has been shown that the significant electron density rearrangements that follow the formation of a beryllium bond may lead to the appearance of a σ-hole in systems that previously do not exhibit this feature, such as CH3 OF, NO2 F, NO3 F, and other fluorine-containing systems. The creation of the σ-hole is another manifestation of the bond activation-reinforcement (BAR) rule. The appearance of a σ-hole on the F atoms of CH3 OF is due to the enhancement of the electronegativity of the O atom that participates in the beryllium bond. This atom recovers part of the charge transferred to Be by polarizing the valence density of the F into the bonding region. An analysis of the electron density shows that indeed this bond becomes reinforced, but the F atom becomes more electron deficient with the appearance of the σ-hole. Importantly, similar effects are also observed even when the atom participating in the beryllium bond is not directly attached to the F atom, as in NO2 F, NO3 F, or NCF. Hence, whereas the isolated CH3 OF, NO2 F, and NO3 F are unable to yield F⋅⋅⋅Base halogen bonds, their complexes with BeX2 derivatives are able to yield such bonds. Significant cooperative effects between the new halogen bond and the beryllium bond reinforce the strength of both noncovalent interactions.

  1. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  2. Aging of beryllium bronze under programmed loading conditions

    SciTech Connect

    Duraev, P.P.; Kaplun, Yu.A.

    1987-07-01

    Results are provided from a study of different aging methods for beryllium bronze BrBNT1.9Mg under tensile stress conditions created by an applied load. Aging, both in the original hardened condition and after low-temperature treatment, is found to lead to an increase in yield strength and elastic limit. Ultimate breaking strength, hardness, and ductility do not change. An increase in deformation resistance after aging is connected with oriented precipitation of gamma-phase particles.

  3. Fracture in hexagonal closed packed metals, zinc and beryllium

    NASA Technical Reports Server (NTRS)

    Kamdar, M. H.

    1973-01-01

    It is shown that fracture in zinc and beryllium is nucleation controlled and is independent of the nature of the barrier from which fracture nucleates. The double cantilever cleavage technique was used to determine the energy required to propagate a crack on the basal plane (0001) in single crystals. Tensile fracture data from single and asymmetric bicrystals were used to calculate the energy needed to initiate a cleavage crack on the (0001) plane.

  4. Cleaning and activation of beryllium-copper electron multiplier dynodes.

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1972-01-01

    Description of a cleaning and activation procedure followed in preparing beryllium-copper dynodes for electron multipliers used in sounding-rocket experiments to detect auroral electrons. The initial degreasing step involved a 5-min bath in trichloroethylene in an ultrasonic cleaner. This was followed by an ultrasonic rinse in methanol and by a two-step acid pickling treatment to remove the oxides. Additional rinsing in water and methanol was followed by activation in a stainless-steel RF induction oven.

  5. Beryllium and Boron abundances in population II stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The scientific focus of this program was to undertake UV spectroscopic abundance analyses of extremely metal poor stars with attention to determining abundances of light elements such as beryllium and boron. The abundances are likely to reflect primordial abundances within the early galaxy and help to constrain models for early galactic nucleosynthesis. The general metal abundances of these stars are also important for understanding stellar evolution.

  6. Hydrogen retention in beryllium: concentration effect and nanocrystalline growth.

    PubMed

    Pardanaud, C; Rusu, M I; Martin, C; Giacometti, G; Roubin, P; Ferro, Y; Allouche, A; Oberkofler, M; Köppen, M; Dittmar, T; Linsmeier, Ch

    2015-12-01

    We herein report on the formation of BeD2 nanocrystalline domes on the surface of a beryllium sample exposed to energetic deuterium ions. A polycrystalline beryllium sample was exposed to D ions at 2 keV/atom leading to laterally averaged deuterium areal densities up to 3.5 10(17) D cm(-2), and studied using nuclear reaction analysis, Raman microscopy, atomic force microscopy, optical microscopy and quantum calculations. Incorporating D in beryllium generates a tensile stress that reaches a plateau at  ≈1.5 10(17) D cm(-2). For values higher than 2.0 10(17) cm(-2), we observed the growth of  ≈90 nm high dendrites, covering up to 10% of the surface in some zones of the sample when the deuterium concentration was 3  ×  10(17) D cm(-2). These dendrites are composed of crystalline BeD2, as evidenced by Raman microscopy and quantum calculations. They are candidates to explain low temperature thermal desorption spectroscopy peaks observed when bombarding Be samples with D ions with fluencies higher than 1.2 10(17) D cm(-2).

  7. Hydrogen retention in beryllium: concentration effect and nanocrystalline growth.

    PubMed

    Pardanaud, C; Rusu, M I; Martin, C; Giacometti, G; Roubin, P; Ferro, Y; Allouche, A; Oberkofler, M; Köppen, M; Dittmar, T; Linsmeier, Ch

    2015-12-01

    We herein report on the formation of BeD2 nanocrystalline domes on the surface of a beryllium sample exposed to energetic deuterium ions. A polycrystalline beryllium sample was exposed to D ions at 2 keV/atom leading to laterally averaged deuterium areal densities up to 3.5 10(17) D cm(-2), and studied using nuclear reaction analysis, Raman microscopy, atomic force microscopy, optical microscopy and quantum calculations. Incorporating D in beryllium generates a tensile stress that reaches a plateau at  ≈1.5 10(17) D cm(-2). For values higher than 2.0 10(17) cm(-2), we observed the growth of  ≈90 nm high dendrites, covering up to 10% of the surface in some zones of the sample when the deuterium concentration was 3  ×  10(17) D cm(-2). These dendrites are composed of crystalline BeD2, as evidenced by Raman microscopy and quantum calculations. They are candidates to explain low temperature thermal desorption spectroscopy peaks observed when bombarding Be samples with D ions with fluencies higher than 1.2 10(17) D cm(-2). PMID:26558478

  8. Elastic, micro- and macroplastic properties of polycrystalline beryllium

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Kupriyanov, I. B.

    2011-12-01

    The Young's modulus and the internal friction of beryllium polycrystals (size grain from 6 to 60 μm) prepared by the powder metallurgy method have been studied as functions of the amplitude and temperature in the range from 100 to 873 K. The measurements have been performed using the composite piezoelectric vibrator method for longitudinal vibrations at frequencies about 100 kHz. Based on the acoustic measurements, the data have been obtained on the elastic and inelastic (microplastic) properties as functions of vibration stress amplitudes within the limits from 0.2 to 30-60 MPa. The microplastic deformation diagram is shown to become nonlinear at the amplitudes higher than 5 MPa. The beryllium mechanical characteristics (the yield strength σ 0.2, the ultimate strength σ u , and the conventional microscopic yield strength σ y ) obtained with various grain sizes are compared. At room temperature, all the parameters satisfactorily obey the Hall-Petch relationship, although there is no complete similarity. The temperature dependences are quite different, namely: σ 0.2( T) and σ u ( T) decrease monotonically during heating from room temperature to higher temperatures; however, σ y ( T) behaves unusually, and it has a minimum near 400 K. The different levels of stresses and the absence of similarity indicate that the scattering of the ultrasound energy and the formation of a level of the macroscopic flow stresses in beryllium occur on dislocation motion obstacles of different origins.

  9. Lung injury in mice and rats acutely exposed to beryllium

    SciTech Connect

    Sendelbach, L.E. Jr.

    1985-01-01

    The effect of lung injury, in rats and mice, exposed to an aerosol of beryllium sulfate (BE) for one hour, through nose-only inhalation, was evaluated by the methods of bronchoalveolar lavage (BAL) and lung cell kinetics. The BAL in rats, sacrificed over a 21 day period following exposure, showed lactate dehydrogenase (LDH) and alkaline phosphatase (Alk Pase) activities as the most sensitive indicators of lung damage. LDH activity peaked at day 8 while Alk Pase activity peaked at day 5, both being 30 times greater than comparable control values. Acid phosphatase activity and albumin levels were also increased, but not to the same extent as LDH and Alk Pase. The BAL of mice showed LDH activity as the most sensitive indicator of lung damage, with a maximum response 3 times greater than controls at day 5. In another series of experiments, animals were treated with three agents capable of inducing fibrosis: beryllium sulfate, bleomycin, and butylated hydroxytoluene (BHT). Cy A completely inhibited the fibrogenic effects of BHT in mice, as measured through total lung hydroxyproline content. Bleomycin-induced fibrosis was significantly reduced by Cy A treatment in rats, but showed no effect in mice. Additionally, the effect of iron salt administration to rats decreased the intravenous LD/sub 50/ dose, and significantly reduced the inhalation toxicity, of beryllium sulfate. The protective mechanism of iron salt administration, through the induction of ferritin synthesis, is postulated.

  10. Proteomic analysis of beryllium-induced genotoxicity in an Escherichia coli mutant model system.

    PubMed

    Taylor-McCabe, Kirsten J; Wang, Zaolin; Sauer, Nancy N; Marrone, Babetta L

    2006-03-01

    Beryllium is the second lightest metal, has a high melting point and high strength-to-weight ratio, and is chemically stable. These unique chemical characteristics make beryllium metal an ideal choice as a component material for a wide variety of applications in aerospace, defense, nuclear weapons, and industry. However, inhalation of beryllium dust or fumes induces significant health effects, including chronic beryllium disease and lung cancer. In this study, the mutagenicity of beryllium sulfate (BeSO(4)) and the comutagenicity of beryllium with a known mutagen 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) were evaluated using a forward mutant detection system developed in Escherichia coli. In this system, BeSO(4) was shown to be weakly mutagenic alone and significantly enhanced the mutagenicity of MNNG up to 3.5-fold over MNNG alone. Based on these results a proteomic study was conducted to identify the proteins regulated by BeSO(4). Using the techniques of 2-DE and oMALDI-TOF MS, we successfully identified 32 proteins being differentially regulated by beryllium and/or MNNG in the E. coli test system. This is the first study to describe the proteins regulated by beryllium in vitro, and the results suggest several potential pathways for the focus of further research into the mechanisms underlying beryllium-induced genotoxicity. PMID:16447159

  11. Determining beryllium in drinking water by graphite furnace atomic absorption spectroscopy

    SciTech Connect

    Lytle, D.A.; Schock, M.R.; Dues, N.R.; Doerger, J.U.

    1993-01-01

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers successfully eliminated common chemical interferences in drinking water samples analyzed for beryllium content, as well as interferences encountered during jar testing of beryllium removal by alum coagulation. The method proved to be a simple, accurate, and precise alternative to the method of standard additions. Method detection limit was 0.09 microgram/l, with a linear calibration range of 0 to 6 microgram/l.

  12. The beryllium quandary: will the lower exposure limits spur new developments in sampling and analysis?

    SciTech Connect

    Brisson, Michael

    2013-06-03

    At the time this article was written, new rulemakings were under consideration at OSHA and the U.S. Department of Energy (DOE) that would propose changes to occupational exposure limits for beryllium. Given these developments, it’s a good time to review the tools and methods available to IHs for assessing beryllium air and surface contamination in the workplace—what’s new and different, and what’s tried and true. The article discusses limit values and action levels for beryllium, problematic aspects of beryllium air sampling, sample preparation, sample analysis, and data evaluation.

  13. Chest wall shrapnel-induced beryllium-sensitization and associated pulmonary disease.

    PubMed

    Fireman, E; Shai, A Bar; Lerman, Y; Topilsky, M; Blanc, P D; Maier, L; Li, L; Chandra, S; Abraham, J M; Fomin, I; Aviram, G; Abraham, J L

    2012-10-01

    Chronic beryllium disease (CBD) is an exposure-related granulomatous disease mimicking sarcoidosis. Beryllium exposure-associated disease occurs mainly via inhalation, but skin may also be a source of sensitization. A 65-year-old male with a history of war-related shrapnel wounds was initially diagnosed with pulmonary sarcoidosis. Twenty years later, the possibility of a metal-related etiology for the lung disease was raised. A beryllium lymphocyte proliferation test, elemental analysis of removed shrapnel, and genetic studies were consistent with a diagnosis of CBD. This case demonstrates that retained beryllium-containing foreign bodies can be linked to a pathophysiologic response in the lung consistent with CBD.

  14. Studies on the effects of dietary beryllium at two different calcium concentrations in Achatina fulica (Pulmonata).

    PubMed

    Ireland, M P

    1986-01-01

    The mortality was highest in snails fed beryllium in the diet containing the sub-optimal concentration of calcium. There was no increase in weight over an 8 week period. Snails fed the diet containing the optimal concentration of calcium without added beryllium showed maximum weight increase but calcium alone may not be responsible for elevated growth rate. Dietary calcium enhancement appears to be responsible for the reduced concentration of zinc, magnesium, phosphate and beryllium in the tissues. Beryllium treatment did not affect the calcium concentration in the digestive gland tissue but increased zinc and magnesium in the shell. The results are discussed in relation to uptake studies and possible enzyme systems involved.

  15. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    SciTech Connect

    Hanafee, J.E.

    1988-02-19

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers. (DLC)

  16. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  17. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  18. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    PubMed

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  19. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    PubMed

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.

  20. Beryllium Metal I. Experimental Results on Acute Oral Toxicity, Local Skin and Eye Effects, and Genotoxicity

    PubMed Central

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  1. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    PubMed

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts. PMID:21866318

  2. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles

    PubMed Central

    2016-01-01

    Conspectus Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C–H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, the mechanistic studies that illuminated the underlying principles of these reactions, and the use of these fundamental principles in the rational design of new cross-electrophile coupling reactions. Although the coupling of two different electrophiles under reducing conditions often leads primarily to symmetric dimers, the subtle differences in reactivity of aryl halides and alkyl halides with nickel catalysts allowed for generally cross-selective coupling reactions. These conditions could also be extended to the coupling of acyl halides with alkyl halides. These reactions are exceptionally functional group tolerant and can be assembled on the benchtop. A combination of stoichiometric and catalytic studies on the mechanism of these reactions revealed an unusual radical-chain mechanism and suggests that selectivity arises from (1) the preference of nickel(0) for oxidative addition to aryl halides and acyl halides over alkyl halides and (2) the greater propensity of alkyl halides to form free radicals. Bipyridine-ligated arylnickel intermediates react with alkyl radicals to efficiently form, after reductive elimination, new C–C bonds. Finally, the resulting nickel(I) species is proposed to regenerate an alkyl radical to carry the chain. Examples of new reactions designed using these principles include carbonylative coupling of aryl halides with alkyl halides to form ketones, arylation of epoxides to form β-aryl alcohols, and coupling of benzyl sulfonate esters with aryl

  3. Methods and Mechanisms for Cross-Electrophile Coupling of Csp(2) Halides with Alkyl Electrophiles.

    PubMed

    Weix, Daniel J

    2015-06-16

    Cross-electrophile coupling, the cross-coupling of two different electrophiles, avoids the need for preformed carbon nucleophiles, but development of general methods has lagged behind cross-coupling and C-H functionalization. A central reason for this slow development is the challenge of selectively coupling two substrates that are alike in reactivity. This Account describes the discovery of generally cross-selective reactions of aryl halides and acyl halides with alkyl halides, the mechanistic studies that illuminated the underlying principles of these reactions, and the use of these fundamental principles in the rational design of new cross-electrophile coupling reactions. Although the coupling of two different electrophiles under reducing conditions often leads primarily to symmetric dimers, the subtle differences in reactivity of aryl halides and alkyl halides with nickel catalysts allowed for generally cross-selective coupling reactions. These conditions could also be extended to the coupling of acyl halides with alkyl halides. These reactions are exceptionally functional group tolerant and can be assembled on the benchtop. A combination of stoichiometric and catalytic studies on the mechanism of these reactions revealed an unusual radical-chain mechanism and suggests that selectivity arises from (1) the preference of nickel(0) for oxidative addition to aryl halides and acyl halides over alkyl halides and (2) the greater propensity of alkyl halides to form free radicals. Bipyridine-ligated arylnickel intermediates react with alkyl radicals to efficiently form, after reductive elimination, new C-C bonds. Finally, the resulting nickel(I) species is proposed to regenerate an alkyl radical to carry the chain. Examples of new reactions designed using these principles include carbonylative coupling of aryl halides with alkyl halides to form ketones, arylation of epoxides to form β-aryl alcohols, and coupling of benzyl sulfonate esters with aryl halides to form

  4. Exposure assessment for epidemiologic study of nuclear workers potentially exposed to beryllium

    SciTech Connect

    Tankersley, W.G.; Cragle, D.L.; Hicks, N.V.; Googin, J.M.; Bean, G.L.

    1992-10-01

    In response to increased concern about possible exposure of Department of Energy workers to beryllium in the past, a pilot study was initiated to determine if an exposed population at Y-12 could be defined and to test the sensitivity of experimental clinical methods for diagnosing beryllium hypersensitivity.

  5. 10 CFR 71.23 - General license: Plutonium-beryllium special form material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements of 49 CFR 173.417(a). (b) The general license applies only to a licensee who has a quality... 10 Energy 2 2012-01-01 2012-01-01 false General license: Plutonium-beryllium special form material... RADIOACTIVE MATERIAL General Licenses § 71.23 General license: Plutonium-beryllium special form material....

  6. 10 CFR 71.23 - General license: Plutonium-beryllium special form material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements of 49 CFR 173.417(a). (b) The general license applies only to a licensee who has a quality... 10 Energy 2 2011-01-01 2011-01-01 false General license: Plutonium-beryllium special form material... RADIOACTIVE MATERIAL General Licenses § 71.23 General license: Plutonium-beryllium special form material....

  7. 10 CFR 71.23 - General license: Plutonium-beryllium special form material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements of 49 CFR 173.417(a). (b) The general license applies only to a licensee who has a quality... 10 Energy 2 2013-01-01 2013-01-01 false General license: Plutonium-beryllium special form material... RADIOACTIVE MATERIAL General Licenses § 71.23 General license: Plutonium-beryllium special form material....

  8. 10 CFR 71.23 - General license: Plutonium-beryllium special form material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements of 49 CFR 173.417(a). (b) The general license applies only to a licensee who has a quality... 10 Energy 2 2014-01-01 2014-01-01 false General license: Plutonium-beryllium special form material... RADIOACTIVE MATERIAL General Licenses § 71.23 General license: Plutonium-beryllium special form material....

  9. Summary of beryllium electrorefining technology developed by KBI Division of Cabot Berylco Inc

    SciTech Connect

    Pistole, C.O.

    1983-05-27

    Proprietary beryllium electrorefining technology has been purchased from the KBI Division of Cabot Berylco Inc. by Rockwell International, Rocky Flats Plant, as part of a DOE beryllium option study. This technology has been reviewed and is summarized. 12 figures, 7 tables.

  10. Protection of beryllium metal against microbial influenced corrosion using silane self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Vaidya, Rajendra U.; Deshpande, Alina; Hersman, Larry; Brozik, Susan M.; Butt, Darryl

    1999-08-01

    The effectiveness of a self-assembled silane monolayer as protection for beryllium against microbiologically influenced corrosion (MIC) was demonstrated. Four-point bend tests on coated and uncoated beryllium samples were conducted after microbiological exposures, and the effectiveness of these coatings as MIC protection was reported through mechanical property evaluations. Application of the silane monolayer to the beryllium surfaces was found to prevent degradation of the failure strength and displacement-to-failure of beryllium in bending. In contrast, the uncoated beryllium samples exhibited a severe reduction in these mechanical properties in the presence of the marine Pseudomonas bacteria. The potentiodynamic measurements showed that both the uncoated and coated samples pitted at the open-circuit potential. However, the size and distribution of the corrosion pits formed on the surface of the beryllium samples were significantly different for the various cases (coated vs uncoated samples exposed to control vs inoculated medium). This study demonstrates the following: (1) the deleterious effects of MIC on the mechanical properties of beryllium and (2) the potential for developing fast, easy, and cost-effective MIC protection for beryllium metal using silane self-assemblies.

  11. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  12. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  13. Electrolytic systems and methods for making metal halides and refining metals

    SciTech Connect

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  14. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may...

  15. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may...

  16. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may...

  17. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may...

  18. 20 CFR 30.507 - What compensation will be provided to covered Part B employees who only establish beryllium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? 30.507 Section 30... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? The establishment of beryllium sensitivity does not entitle a covered Part B employee, or the eligible surviving beneficiary...

  19. 20 CFR 30.507 - What compensation will be provided to covered Part B employees who only establish beryllium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? 30.507 Section 30... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? The establishment of beryllium sensitivity does not entitle a covered Part B employee, or the eligible surviving beneficiary...

  20. 20 CFR 30.507 - What compensation will be provided to covered Part B employees who only establish beryllium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? 30.507 Section 30... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? The establishment of beryllium sensitivity does not entitle a covered Part B employee, or the eligible surviving beneficiary...

  1. 20 CFR 30.507 - What compensation will be provided to covered Part B employees who only establish beryllium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? 30.507 Section 30... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? The establishment of beryllium sensitivity does not entitle a covered Part B employee, or the eligible surviving beneficiary...

  2. 20 CFR 30.507 - What compensation will be provided to covered Part B employees who only establish beryllium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? 30.507 Section 30... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? The establishment of beryllium sensitivity does not entitle a covered Part B employee, or the eligible surviving beneficiary...

  3. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may...

  4. Phase holograms formed by silver halide /sensitized/ gelatin processing

    NASA Astrophysics Data System (ADS)

    Graver, W. R.; Gladden, J. W.; Eastes, J. W.

    1980-05-01

    A novel recording process for the formation of phase volume holograms at up to 1500 cycles/mm is described. The term silver halide (sensitized) gelatin or SHG denotes an all-gelatin phase material, which records the initial image information through photon absorption by the silver halide. Our process uses a reversal bleach that dissolves the developed silver image and cross-links the gelatin molecules in the vicinity of the developed image. Experiments have determined the stored image as refractive-index differences within the remaining gelatin. The major attributes of SHG holograms are (1) panchromatic response, (2) 100:1 greater light sensitivity than dichromate (sensitized) gelatin, and (3) elimination of darkening (printout) effects.

  5. Large methyl halide emissions from south Texas salt marshes

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Whelan, M. E.; Min, D.-H.

    2014-06-01

    Coastal salt marshes are natural sources of methyl chloride (CH3Cl) and methyl bromide (CH3Br) to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  6. Large methyl halide emissions from south Texas salt marshes

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Whelan, M. E.; Min, D.-H.

    2014-11-01

    Coastal salt marshes are natural sources of methyl chloride (CH3Cl) and methyl bromide (CH3Br) to the atmosphere, but measured emission rates vary widely by geography. Here we report large methyl halide fluxes from subtropical salt marshes of south Texas. Sites with the halophytic plant, Batis maritima, emitted methyl halides at rates that are orders of magnitude greater than sites containing other vascular plants or macroalgae. B. maritima emissions were generally highest at midday; however, diurnal variability was more pronounced for CH3Br than CH3Cl, and surprisingly high nighttime CH3Cl fluxes were observed in July. Seasonal and intra-site variability were large, even taking into account biomass differences. Overall, these subtropical salt marsh sites show much higher emission rates than temperate salt marshes at similar times of the year, supporting the contention that low-latitude salt marshes are significant sources of CH3Cl and CH3Br.

  7. Chemical Reactivity Perspective into the Group 2B Metals Halides.

    PubMed

    Özen, Alimet Sema; Akdeniz, Zehra

    2016-06-30

    Chemical reactivity descriptors within the conceptual density functional theory can be used to understand the nature of the interactions between two monomers of the Group 2B metal halides. This information might be valuable in the development of adequate force law parameters for simulations in the liquid state. In this study, MX2 monomers and dimers, where M = Zn, Cd, Hg and X = F, Cl, Br, I, were investigated in terms of chemical reactivity descriptors. Relativistic effects were taken into account using the effective core potential (ECP) approach. Correlations were produced between global and local reactivity descriptors and dimerization energies. Results presented in this work represent the first systematic investigation of Group 2B metal halides in the literature from a combined point of view of both relativistic effects and chemical reactivity descriptors. Steric effects were found to be responsible for the deviation from the chemical reactivity principles. They were introduced into the chemical reactivity descriptors such as local softness.

  8. Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides

    PubMed Central

    Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei

    2016-01-01

    Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F−, Cl−, Br−). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs. PMID:27184228

  9. Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides

    NASA Astrophysics Data System (ADS)

    Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei

    2016-05-01

    Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F‑, Cl‑, Br‑). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs.

  10. Enhanced Born Charge and Proximity to Ferroelectricity in Thallium Halides

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2010-01-01

    Electronic structure and lattice dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tl-p and halogen-p states. The large Born charges cause giant splitting between longitudinal and transverse optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show spontaneous lattice polarization upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can be very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.

  11. Na+ and Rb+ tracer diffusion in alkali halides

    NASA Astrophysics Data System (ADS)

    Beniere, F.; Sen, S. K.

    1991-11-01

    We have undertaken a fundamental study of heterodiffusion of foreign ions in pure single crystals. The present work describes the measurements of the diffusion coefficient of monovalent cations in some alkali halides, namely Na+ and Rb+ into KCl, KBr, NaI and KI. The priority is given to the super-accuracy of the experimental data. The target is to test the validity of the existing theories for calculating the enthalpy and entropy of migration.

  12. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  13. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    NASA Astrophysics Data System (ADS)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31Р-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  14. Oxidative alkoxylation of phosphine in alcohol solutions of copper halides

    NASA Astrophysics Data System (ADS)

    Polimbetova, G. S.; Borangazieva, A. K.; Ibraimova, Zh. U.; Bugubaeva, G. O.; Keynbay, S.

    2016-08-01

    The phosphine oxidation reaction with oxygen in alcohol solutions of copper (I, II) halides is studied. Kinetic parameters, intermediates, and by-products are studied by means of NMR 31P-, IR-, UV-, and ESR- spectroscopy; and by magnetic susceptibility, redox potentiometry, gas chromatography, and elemental analysis. A reaction mechanism is proposed, and the optimum conditions are found for the reaction of oxidative alkoxylation phosphine.

  15. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents.

    PubMed

    Shrestha, Bijay; Giri, Ramesh

    2015-01-01

    We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N',N'-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  16. Tumor necrosis factor alpha gene expression in human monocytic THP-1 cells exposed to beryllium.

    PubMed

    Galbraith, G M; Pandey, J P; Schmidt, M G; Arnaud, P; Goust, J M

    1996-01-01

    Chronic beryllium disease, which results from occupational exposure to particulate beryllium, is characterized by the development of lung granulomas and progressive pulmonary fibrosis. Increased production of proinflammatory cytokines (e.g., tumor necrosis factor alpha and interleukin-1 beta) by pulmonary alveolar macrophages occurs in many chronic fibrotic lung diseases and is thought to contribute to the disease process. The purpose of the present study was to investigate cytokine production by human monocytic cells exposed to beryllium in vitro. The results indicated that such cells respond to beryllium ions in the presence of fluoride by accumulation of messenger ribonucleic acid for both tumor necrosis factor alpha and interleukin-1 beta. These findings suggest that inhaled beryllium may directly stimulate the production of these cytokines by alveolar macrophages in vitro. PMID:8629860

  17. Recent advances in understanding the biomolecular basis of chronic beryllium disease: a review.

    PubMed

    McCleskey, T Mark; Buchner, Virginia; Field, R William; Scott, Brian L

    2009-01-01

    In this review we summarize the work conducted over the past decade that has advanced our knowledge of pulmonary diseases associated with exposure to beryllium that has provided a molecular-based understanding of the chemistry, immunopathology, and immunogenetics of beryllium toxicity. Beryllium is a strong and lightweight metal that generates and reflects neutrons, resists corrosion, is transparent to X-rays, and conducts electricity. Beryllium is one of the most toxic elements on the periodic table, eliciting in susceptible humans (a) an allergic immune response known as beryllium sensitization (BeS); (b) acute beryllium disease, an acutely toxic, pneumonitis-like lung condition resulting from exposure to high beryllium concentrations that are rarely seen in modern industry; and (c) chronic beryllium disease (CBD) following either high or very low levels of exposure. Because of its exceptional strength, stability, and heat-absorbing capability, beryllium is used in many important technologies in the modern world. In the early 1940s, beryllium was recognized as posing an occupational hazard in manufacturing and production settings. Although acute beryllium disease is now rare, beryllium is an insidious poison with a latent toxicity and the risk of developing CBD persists. Chronic beryllium disease-a systemic granulomatous lung disorder caused by a specific delayed immune response to beryllium within a few months to several decades after exposure-has been called the "unrecognized epidemic". Although not a disease in itself, BeS, the innate immune response to beryllium identified by an abnormal beryllium lymphocyte proliferation test result, is a population-based predictor of CBD. Genetic susceptibility to CBD is associated with alleles of the major histocompatibility gene, human leukocyte antigen DP (HLA-DP) containing glutamic acid at the 69th position of the beta chain (HLA-DPbeta-E69). Other genes are likely to be involved in the disease process, and research on

  18. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    PubMed

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  19. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGES

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  20. Lasing in robust cesium lead halide perovskite nanowires

    PubMed Central

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  1. Iodomethane-Mediated Organometal Halide Perovskite with Record Photoluminescence Lifetime.

    PubMed

    Xu, Weidong; McLeod, John A; Yang, Yingguo; Wang, Yimeng; Wu, Zhongwei; Bai, Sai; Yuan, Zhongcheng; Song, Tao; Wang, Yusheng; Si, Junjie; Wang, Rongbin; Gao, Xingyu; Zhang, Xinping; Liu, Lijia; Sun, Baoquan

    2016-09-01

    Organometallic lead halide perovskites are excellent light harvesters for high-efficiency photovoltaic devices. However, as the key component in these devices, a perovskite thin film with good morphology and minimal trap states is still difficult to obtain. Herein we show that by incorporating a low boiling point alkyl halide such as iodomethane (CH3I) into the precursor solution, a perovskite (CH3NH3PbI3-xClx) film with improved grain size and orientation can be easily achieved. More importantly, these films exhibit a significantly reduced amount of trap states. Record photoluminescence lifetimes of more than 4 μs are achieved; these lifetimes are significantly longer than that of pristine CH3NH3PbI3-xClx films. Planar heterojunction solar cells incorporating these CH3I-mediated perovskites have demonstrated a dramatically increased power conversion efficiency compared to the ones using pristine CH3NH3PbI3-xClx. Photoluminescence, transient absorption, and microwave detected photoconductivity measurements all provide consistent evidence that CH3I addition increases the number of excitons generated and their diffusion length, both of which assist efficient carrier transport in the photovoltaic device. The simple incorporation of alkyl halide to enhance perovskite surface passivation introduces an important direction for future progress on high efficiency perovskite optoelectronic devices. PMID:27529636

  2. Methyl halide emissions from greenhouse-grown mangroves

    NASA Astrophysics Data System (ADS)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  3. A canine model of beryllium-induced granulomatous lung disease

    SciTech Connect

    Haley, P.J.; Finch, G.L.; Mewhinney, J.A.; Harmsen, A.G.; Hahn, F.F.; Hoover, M.D.; Muggenburg, B.A.; Bice, D.E. )

    1989-08-01

    Groups of beagle dogs were exposed by inhalation to attain either low or high initial lung burdens (ILB) of BeO calcined at 500 degrees or 1000 degrees C. Dogs were killed at 8, 32, 64, 180, and 365 days after exposure for evaluation of beryllium tissue burdens and histopathologic examination. Histologic lesions were characterized by perivascular and peribronchiolar infiltrates of lymphocytes and macrophages 8 days after exposure. These lesions progressed to distinct microgranulomas accompanied by patchy granulomatous pneumonia. Lesions were more severe in dogs exposed to 500 degrees C BeO. Additional dogs were sampled by bronchoalveolar lavage at 3, 6, 7, 11, 15, 18, and 22 months after exposure for characterization of lung cytology and lung immune responses. Lymphocyte percentages and numbers were increased in lavage samples 3 months after exposure in dogs with both the high and low ILB of 500 degrees C. Values for both parameters decreased rapidly thereafter. Dogs with either low or high ILB of 1000 degrees C-treated BeO displayed negligible to low and variable changes in both lymphocyte percentages and numbers. In vitro lymphocyte stimulation by beryllium was increased 180 and 210 days after exposure in dogs with the high ILB 500 degrees C BeO only. A marked degree of individual variation in both histologic lesions and lymphocyte responses among dogs was noted. Less soluble 1000 degrees C-treated BeO was retained in the lung longer than the more soluble 500 degrees C-treated material that was cleared almost entirely by 1 year after exposure. Because these changes are similar to those reported in humans with chronic beryllium disease, these data suggest that the beagle represents a good model to study histologic and immunologic aspects of this disease syndrome.

  4. Detection of beryllium treatment of natural sapphires by NRA

    NASA Astrophysics Data System (ADS)

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.

    2010-06-01

    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  5. Animal models of beryllium-induced lung disease

    SciTech Connect

    Finch, G.L.; Hoover, M.D.; Hahn, F.F.

    1996-10-01

    The Inhalation Toxicology Research Institute (ITRI) is conducting research to improve the understanding of chronic beryllium disease (CBD) and beryllium-induced lung cancer. Initial animal studies examined beagle dogs that inhaled BeO calcined at either 500 or 1000{degrees}C. At similar lung burdens, the 500{degrees}C BeO induced more severe and extensive granulomatous pneumonia, lymphocytic infiltration into the lung, and positive Be-specific lymphocyte proliferative responses in vitro than the 1000{degrees}C BeO. However, the progressive nature of human CBD was not duplicated. More recently, Strains A/J and C3H/HeJ mice were exposed to Be metal by inhalation. This produced a marked granulomatous pneumonia, diffuse infiltrates, and multifocal aggregates of interstitial lymphocytes with a pronounced T helper component and pulmonary in situ lymphocyte proliferation. With respect to lung cancer, at a mean lung burden as low as 17 pg Be/g lung, inhaled Be metal induced benign and/or malignant lung tumors in over 50% of male and female F344 rats surviving {ge}1 year on study. Substantial tumor multiplicity was found, but K-ras and p53 gene mutations were virtually absent. In mice, however, a lung burden of approximately 60 {mu}g ({approximately}300 {mu}g Be/g lung) caused only a slight increase in crude lung tumor incidence and multiplicity over controls in strain A/J mice and no elevated incidence in strain C3H mice. Taken together, this research program constitutes a coordinated effort to understand beryllium-induced lung disease in experimental animal models. 47 refs., 1 fig., 3 tabs.

  6. Beryllium resources of the tin-spodumene belt, North Carolina

    USGS Publications Warehouse

    Griffitts, Wallace R.

    1954-01-01

    Pegmatite dikes in the tin-spodumene belt of North and South Carolina uniformly contain about 0.05 percent BeO. The most abundant minerals in the pegmatite contain from 0. 0001 to 0.01 percent BeO. Beryl, having 12.0 to 12.3 percent BeO, is the only beryllium-rich mineral and contains more than 80 percent of the total beryllium in the rock. Beryl-bearing pegmatite crops out on hillsides near streams that flow through the pegmatite belt. Much of the pegmatite contains spodumene, feldspar, mica, cassiterite, and columbite, as well as beryl, but separating these minerals will require milling. The minable spodumene ore in the Kings Mountain area, above a depth of 300 feet contains about 40,000 tons of beryl, equivalent to 6, 000 tons of BeO, if 80 percent of the BeO is assumed to be in beryl. Other pegmatite in that area contains an additional 238,000 tons of beryl, or 35, 900 tons of BeO. On the basis of the same assumptions the spodumene ore above a depth of 300 feet 1 in the Beaverdam Creek area contains 6, 000 tons of beryl, or 800 tons of BeO, and all other pegmatite in that area contains an additional 13, 000 tons of beryl, or 1, 700 tons of BeO. The entire tin-spodumene belt contains 823, 000 tons of beryl, equivalent to 122,800 tons of BeO. Little beryllium was found in the Piedmont province outside of the tin-spodumene belt.

  7. Tritium analyses of COBRA-1A2 beryllium pebbles

    SciTech Connect

    Baldwin, D.L.

    1998-03-01

    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  8. Excited S-symmetry states of positronic lithium and beryllium

    NASA Astrophysics Data System (ADS)

    Strasburger, Krzysztof

    2016-04-01

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection.

  9. Beryllium ignition target design for indirect drive NIF experiments

    NASA Astrophysics Data System (ADS)

    Simakov, A. N.; Wilson, D. C.; Yi, S. A.; Kline, J. L.; Salmonson, J. D.; Clark, D. S.; Milovich, J. L.; Marinak, M. M.

    2016-03-01

    Beryllium (Be) ablator offers multiple advantages over carbon based ablators for indirectly driven NIF ICF ignition targets. These are higher mass ablation rate, ablation pressure and ablation velocity, lower capsule albedo, and higher thermal conductivity at cryogenic temperatures. Such advantages can be used to improve the target robustness and performance. While previous NIF Be target designs exist, they were obtained a long time ago and do not incorporate the latest improved physical understanding and models based upon NIF experiments. Herein, we propose a new NIF Be ignition target design at 1.45 MJ, 430 TW that takes all this knowledge into account.

  10. Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium

    SciTech Connect

    Goldberg, A

    2006-02-01

    This report is part of a series of documents that provide a background to those involved in the construction of beryllium components and their applications. This report is divided into five sub-sections: Atomic/Crystal Structure, Elastic Properties, Thermal Properties, Nuclear Properties, and Miscellaneous Properties. In searching through different sources for the various properties to be included in this report, inconsistencies were at times observed between these sources. In such cases, the values reported by the Handbook of Chemistry and Physics was usually used. In equations, except where indicated otherwise, temperature (T) is in degrees Kelvin.

  11. Residual stress measurement and microstructural characterization of thick beryllium films

    SciTech Connect

    Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A

    2008-02-11

    Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.

  12. Excited S-symmetry states of positronic lithium and beryllium.

    PubMed

    Strasburger, Krzysztof

    2016-04-14

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection. PMID:27083730

  13. Use of notched beams to establish fracture criteria for beryllium

    SciTech Connect

    Mayville, R.A.

    1980-01-04

    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained.

  14. Cryogenic optical tests of a lightweight HIP beryllium mirror

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Miller, Jacob H.; Young, J. A.; Howard, Steven D.; Pryor, G. Mark

    1989-01-01

    Five interferometric tests were conducted at cryogenic temperatures on a lightweight, 50 cm diameter, hot isostatic pressed (HIP) beryllium mirror in the Ames Research Center (ARC) Cryogenic Optics Test Facility. The purpose of the tests was to determine the stability of the mirror's figure when cooled to cryogenic temperatures. Test temperatures ranged from room ambient to 8 K. One cycle to 8 K and five cycles to 80 K were performed. Optical and thermal test methods are described. Data is presented to show the amount of cryogenic distortion and hysteresis present in the mirror when measured with an earlier, Shack interferometer, and with a newly-acquired, phase-measuring interferometer.

  15. Double K-shell photoionization of atomic beryllium

    SciTech Connect

    Yip, F. L.; Martin, F.; McCurdy, C. W.; Rescigno, T. N.

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  16. Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions.

    PubMed

    Rudolph, Alena; Lautens, Mark

    2009-01-01

    Enormous effort has gone into the development of metal-catalyzed cross-coupling reactions with alkyl halides as electrophilic coupling partners. Whereas a wide array of primary alkyl halides can now be used effectively in cross-coupling reactions, the synthetic potential of secondary alkyl halides is just beginning to be revealed. This Minireview summarizes selected examples of the use of secondary alkyl halides as electrophiles in cross-coupling reactions. Emphasis is placed on the transition metals employed, the mechanistic pathways involved, and implications in terms of the stereochemical outcome of reactions.

  17. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition. PMID:26791587

  18. Absorption of inorganic halides produced from Freon 12 by calcium carbonate containing iron(III) oxide

    SciTech Connect

    Imamura, Seiichiro; Matsuba, Yoichi; Yamada, Etsu; Takai, Kenji; Utani, Kazunori

    1997-09-01

    Inorganic halides produced by the catalytic decomposition of Freon 12 were fixed by calcium carbonate, which is the main component of limestone. Iron(III) oxide, which is present as a contaminant in limestone, promoted the absorption of the halides by calcium carbonate at low temperatures. The supposed action of iron(III) oxide was to first react with inorganic halides, forming iron halides, and, then, transfer them to calcium carbonate to replace carbonate ion in a catalytic way. Thus, calcium carbonate containing iron oxides (limestone) can be used as an effective absorbent for the inorganic halogens produced during the decomposition of Freons.

  19. Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

  20. Chronic beryllium disease in a precious metal refinery. Clinical epidemiologic and immunologic evidence for continuing risk from exposure to low level beryllium fumes

    SciTech Connect

    Cullen, M.R.; Kominsky, J.R.; Rossman, M.D.; Cherniack, M.G.; Rankin, J.A.; Balmes, J.R.; Kern, J.A.; Daniele, R.P.; Palmer, L.; Naegel, G.P.

    1987-01-01

    Five workers at a precious metal refinery developed granulomatous lung disease between 1972 and 1985. The original diagnosis was sarcoidosis, but 4 of the workers were subsequently proved to have hypersensitivity to beryllium by in vitro proliferative responses of lymphocytes obtained by bronchoalveolar lavage. Review of medical records of coworkers and extensive industrial hygiene surveillance of the plant demonstrated that 4 cases occurred in the furnace area where air concentrations of beryllium fume were consistently below the permissible exposure limit of 2 micrograms/M3. A single case has been recognized from parts of the refinery where exposures to cold beryllium dust often exceeded the standard by as much as 20-fold. These data demonstrate that chronic beryllium disease still occurs and confirm the importance of specific immunologic testing in patients suspected of having sarcoidosis but with potential exposure to beryllium. The data raise concern about the adequacy of modern industrial controls, especially in the setting of exposure to highly respirable beryllium fumes.

  1. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  2. Physical and electrochemical study of halide-modified activated carbons

    NASA Astrophysics Data System (ADS)

    Barpanda, Prabeer

    The current thesis aims to improve the electrochemical capacity of activated carbon electrodes, which enjoy prominent position in commercial electrochemical capacitors. Our approach was to develop electrochemical capacity by developing faradaic pseudocapacitance in carbon through a novel mechanochemical modification using iodine and bromine. Various commercial carbons were mechanochemically modified via solid-state iodation and vapour phase iodine-incorporation. The halidation-induced changes in the structure, composition, morphology, electrical and electrochemical properties of carbon materials were studied using different characterization techniques encompassing XRD, XRF, XPS, Raman spectroscopy, BET study, TEM, SAXS and electrochemical testing followed by an intensive battery of physical and electrochemical characterization. The introduction of iodine into carbon system led to the formation of polyiodide species that were preferentially reacted within the micropore voids within the carbon leading to the development of a faradaic reaction at 3.1V. In spite of the lower surface area of modified carbon, we observed manyfold increase in its electrochemical capacity. Parallel inception of non-faradaic development and faradaic pseudocapacitive reaction led to promising gravimetric, surface area normalized and volumetric capacity in iodated carbons. With promising electrochemical improvement post halidation process, the chemical halidation method was extended to different class of carbons and halides. Carbons ranging from amorphous (activated) carbons to crystalline carbons (graphites, fluorographites) were iodine-modified to gain further insight on the local graphite-iodine chemical interaction. In addition, the effect of pore size distribution on chemical iodation process was studied by using in-house fabricated microporous carbon. A comparative study of commercial mesoporous carbons and in-house fabricated microporous carbons showed higher iodine-uptake ability and

  3. SELDI-TOF derived serum biomarkers failed to differentiate between patients with beryllium sensitisation and patients with chronic beryllium disease

    PubMed Central

    Tooker, B C; Bowler, R P; Orcutt, J M; Maier, L A; Christensen, H M; Newman, L S

    2015-01-01

    Background People exposed to beryllium may develop beryllium sensitisation (BeS) and, in some cases, progress to chronic beryllium disease (CBD). Objectives The objective of this study was to test the ability of proteomic technology to identify patterns of serum protein biomarkers that allow differentiation between BeS and CBD and thus remove the need for invasive bronchoscopic procedures. Methods Initially, SELDI-TOF methodology and analysis was performed on serum samples from 30 CBD and 31 BeS patients. Results This ‘starter set’ yielded two distinct biomarker pattern sets with eight candidate proteins. The first set differentiated between BeS and CBD with 83.3% sensitivity and 82.3% specificity, with 10-fold cross-validation of 75% and 79%, respectively. The second set of biomarkers yielded higher sensitivity (90.0%) and higher specificity (90.3%), with 10-fold cross-validation of 71.7% and 82.3%, respectively. Due to its greater sensitivity and specificity, the second set of biomarkers was used as the framework for differentiating between CBD and BeS in a second set of serum samples from 450 patients with BeS and CBD. When this larger set of samples was subjected to the biomarker framework in a blinded fashion, it yielded a sensitivity of 43.53% and a specificity of 38.93%. Conclusions Due to these low sensitivity and specificity values, we have concluded that, currently, the unique set of SELDI-TOF derived biomarkers does not possess the qualities that would allow it to differentiate between a CBD patient and a BeS patient using serum protein biomarkers. Future refinements in sample collection or proteomic technology may be needed to improve biomarker discovery. PMID:21278142

  4. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... Criteria Eligibility Criteria for Claims Relating to Covered Beryllium Illness Under Part B of Eeoicpa § 30.206 How does a claimant prove that the employee was a “covered beryllium employee” exposed...

  5. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... Criteria Eligibility Criteria for Claims Relating to Covered Beryllium Illness Under Part B of Eeoicpa § 30.206 How does a claimant prove that the employee was a “covered beryllium employee” exposed...

  6. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... Criteria Eligibility Criteria for Claims Relating to Covered Beryllium Illness Under Part B of Eeoicpa § 30.206 How does a claimant prove that the employee was a “covered beryllium employee” exposed...

  7. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... Criteria Eligibility Criteria for Claims Relating to Covered Beryllium Illness Under Part B of Eeoicpa § 30.206 How does a claimant prove that the employee was a “covered beryllium employee” exposed...

  8. 20 CFR 30.206 - How does a claimant prove that the employee was a “covered beryllium employee” exposed to...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... was a âcovered beryllium employeeâ exposed to beryllium dust, particles or vapor in the performance of... Criteria Eligibility Criteria for Claims Relating to Covered Beryllium Illness Under Part B of Eeoicpa § 30.206 How does a claimant prove that the employee was a “covered beryllium employee” exposed...

  9. SOURCE AND PATHWAY DETERMINATION FOR BERYLLIUM FOUND IN BECHTEL NEVADA NORTH LAS VEGAS FACILITIES

    SciTech Connect

    BECHTEL NEVADA

    2004-07-01

    In response to the report ''Investigation of Beryllium Exposure Cases Discovered at the North Las Vegas Facility of the National Nuclear Security Administration'', published by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) in August 2003, Bechtel Nevada (BN) President and General Manager Dr. F. A. Tarantino appointed the Beryllium Investigation & Assessment Team (BIAT) to identify both the source and pathway for the beryllium found in the North Las Vegas (NLV) B-Complex. From September 8 to December 18, 2003, the BIAT investigated the pathway for beryllium and determined that a number of locations existed at the Nevada Test Site (NTS) which could have contained sufficient quantities of beryllium to result in contamination if transported. Operations performed in the B-1 Building as a result of characterization activities at the Engine Maintenance, Assembly, and Disassembly (EMAD); Reactor Maintenance, Assembly, and Disassembly (RMAD); Test Cells A and C; and the Central Support Facility in Area 25 had the greatest opportunity for transport of beryllium. Investigative monitoring and sampling was performed at these sites with subsequent transport of sample materials, equipment, and personnel from the NTS to the B-1 Building. The timeline established by the BIAT for potential transport of the beryllium contamination into the B-1 Building was from September 1997 through November 2002. Based on results of recently completed swipe sampling, no evidence of transport of beryllium from test areas has been confirmed. Results less than the DOE beryllium action level of 0.2 ???g/100 cm2 were noted for work support facilities located in Area 25. All of the identified sites in Area 25 worked within the B-1 tenant's residency timeline have been remediated. Legacy contaminants have either been disposed of or capped with clean borrow material. As such, no current opportunity exists for release or spread of beryllium contamination. Historical

  10. The mechanism for production of beryllium fluoride from the product of ammonium fluoride processing of beryllium- containing raw material

    NASA Astrophysics Data System (ADS)

    Kraydenko, R. I.; Dyachenko, A. N.; Malyutin, L. N.; Petlin, I. V.

    2016-06-01

    The technique of fluorite-phenacite-bertrandite ores from Russian Ermakovskoe deposit processing by ammonium bifluoride is described. To determine the temperature mode and the thermal dissociation mechanism of ammonium tetrafluoroberyllate (the product of ammonium-fluoride leaching of the ore) the TG/DTA have been carried out. By IR spectroscopy and XRD the semi-products of ammonium tetrafluoroberyllate thermal dissociation have been identified. The hygroscopic low-temperature beryllium fluoride forms higher than 380°C. The less hydroscopic form of BeF2 have been produced at 600°C.

  11. An improved multiphase equation of state for beryllium

    NASA Astrophysics Data System (ADS)

    Robert, Gregory; Sollier, Arnaud; Legrand, Philippe

    2008-03-01

    In our previous articles on beryllium (1)(2), a new theoretical phase diagram with three phases (hcp+bcc+liquid) of beryllium has been proposed : - Melting curve is obtained from quantum molecular dynamics (QMD) calculations along isochors. - Using phonon densities of states and a quasi-harmonic model, solid-solid transition is modeled. Our attempt to construct a three phases equation of state (EOS) failed due to our representation of the liquid phase based on Wallace's approach with the bcc phase, instable at low pressure, as reference. Here, we propose to deal with the instability of bcc phase at low pressure and the discontinuity of physical properties at melting. We also present an improved three phases (hcp+cc+liquid) EOS using simple analytic model constrained by the QMD calculations for the liquid. (1) G. Robert and A. Sollier, J. Phys IV 134, 257 - 2006. (2) G. Robert, A. Sollier and Ph. Legrand, to be published in APS-SCCM, June 2007.

  12. Geochemistry of beryllium isotopes: Applications in geochronometry. Doctoral thesis

    SciTech Connect

    Brown, E.T.

    1990-01-01

    The cosmogenic radioisotope beryllium-10 (half-life= 1.5 Myr) has been determined in suites of samples from tropical river systems and from areas of the oceans influenced by input from the continents, and also within the mineral lattices of quartz grains from Antarctic moraines. These data have been used to investigate the geochemistry of 10Be and apply that knowledge to development of geochronometric techniques. Beryllium-10 is primarily produced by neutron-induced spallation of 14N and 16O in the atmosphere; its flux to the Earth's surface at low latitude was examined through measurements in tropical rainfall. Distributions of 10Be and 9Be (the stable isotope) in dissolved and particulate phases in tropical rivers were used, in conjunction with major ion data, to delineate the geochemical cycle of Be in these river systems. The present work applies in situ cosmogenic production to the examination of the deposition history of moraines of varying ages in Antarctica. It also yields estimates of 10Be and 26Al production rates: 6.4(+5.9-1.5) at/g yr and 42(+20-6) at/g yr at sea level and high geomagnetic latitude.

  13. Enhancement of Superconductivity of Beryllium at High Pressure

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsuya; Kubota, Kazuhisa; Katsuoka, Takahiro; Miyake, Atsushi; Sakata, Masafumi; Nakamoto, Yuki; Ohishi, Yasuo

    2013-06-01

    Among elements shows superconductivity at high pressure, some elements show the large enhancement of the transition temperature (Tc) at higher pressures. In the case of lithium, the Tc at ambient pressure is 0.4 mK which is the lowest observed value in whole elements, however, is enhanced by pressure up to near 20 K. And calcium, which is on the same group II and not superconductive at ambient pressure, shows the highest Tc of elements at 29 K under pressure. Then we focused on beryllium which is near to them on the periodic table. At ambient pressure, Tc of beryllium is 24 mK. We measured the electrical resistance at high pressure (P < 50 GPa) and low temperature (T > 100 mK) and found that the Tc rose up to few Kelvin at pressure above 20 GPa and reached up to 3.7 K at 30 GPa. In this pressure range the hcp crystal structure is stable at room temperature. We performed a powder X-ray diffraction measurement at room temperature and low temperature in BL10XU at SPring-8 and found a discontinuous change in c/a ratio at around 25 GPa.

  14. Steam chemical reactivity of plasma-sprayed beryllium

    SciTech Connect

    Anderl, R.A.; Pawelko, R.J.; Smolik, G.R.; Castro, R.G.

    1998-07-01

    Plasma-spraying with the potential for in-situ repair makes beryllium a primary candidate for plasma facing and structural components in experimental magnetic fusion machines. Deposits with good thermal conductivity and resistance to thermal cycling have been produced with low pressure plasma-spraying (LPPS). A concern during a potential accident with steam ingress is the amount of hydrogen produced by the reactions of steam with hot components. In this study the authors measure the reaction rates of various deposits produced by LPPS with steam from 350 C to above 1,000 C. They correlate these reaction rates with measurements of density, open porosity and BET surface areas. They find the reactivity to be largely dependent upon effective surface area. Promising results were obtained below 600 C from a 94% theoretical dense (TD) deposit with a BET specific surface area of 0.085 m{sup 2}/g. Although reaction rates were higher than those for dense consolidated beryllium they were substantially lower, i.e., about two orders of magnitude, than those obtained from previously tested lower density plasma-sprayed deposits.

  15. United Kingdom Beryllium Registry: mortality and autopsy study.

    PubMed Central

    Williams, W J

    1996-01-01

    This report is based on 30 deaths from chronic beryllium disease (CBD) in the United Kingdom with details of 19 autopsies. The majority were fluorescent lamp workers and machinists who died from respiratory failure. There were no cases of lung cancer. The survival times ranged from less than 1 to 29 years and was longest in machinists. All of the workers showed interstitial pulmonary fibrosis with varying degrees of cystic change. The majority showed hyalinized, and a few active sarcoid-type, granulomas. Extrathoracic granulomas, as in a U.K. sarcoid autopsy series, were rare. A notable difference was the absence of myocardial involvement in CBD compared to an incidence of 20% in the sarcoid autopsies. The detection of beryllium in the criteria for diagnosis is emphasized and the cases classified as definite include 12 of 19 positive analysis, 6 of 19, negative or unavailable analysis. The remaining case was classified as dubious because, despite a positive analysis, granulomas were absent. The main differential diagnosis is sarcoidosis. Images Figure 1. Figure 2. Figure 3. PMID:8933040

  16. Elastic constants of beryllium: a first-principles investigation.

    PubMed

    Dal Corso, Andrea

    2016-02-24

    We apply several recently introduced projector-augmented wave, ultrasoft, and norm-conserving pseudopotentials (PPs) to the calculation of the elastic constants of beryllium and compare the results with previous theory and experiments. We discuss how the elastic constants depend on the Brillouin zone integration, the PP type, and the exchange and correlation functional. We find that although in percentage terms the elastic constants of beryllium depend on the PPs more than the crystal parameters or the bulk moduli, the differences between the local density approximation (LDA) and the Perdew, Burke, and Ernzerhof (PBE) generalized-gradient approximation are larger than the PP differences. The LDA overestimates compared to experiments, while the PBE values are higher than those of experiments but show a much better agreement. The PBEsol functional gives values that are slightly higher than those from PBE, with differences comparable to the PP uncertainty. We propose a simple formula to rationalize the internal relaxations in hexagonal close-packed crystals and show that Be relaxations are in reasonable agreement with this formula. The effects of internal relaxations on the values of C11 and C12 amount to a few per cent of C11, but up to 50% of C12. PMID:26809146

  17. High-resolution Compton line shapes: Fermi break of beryllium

    SciTech Connect

    Huotari, S.; Monaco, G.; Sternemann, C.; Volmer, M.; Schuelke, W.

    2007-12-15

    The Be[110] Compton profile was measured with high resolution utilizing x rays with energy of 16-18 keV. The momentum resolution due to the experimental factors was set to 0.018 atomic units of momentum (a.u.). Electron final-state effects were estimated to have an approximate broadening effect of the spectral features equivalent to 0.028 a.u., resulting in a total momentum resolution of 0.033 a.u., i.e., more than a factor of 2 better than in previous Compton scattering studies. In this way, it was possible to study the ground-state momentum density of the electrons in metallic beryllium with a very high accuracy. As a result, the Fermi-surface-related fine structure is well observed in the experimental Compton profile and its derivative. However, the observed features are broader and less pronounced than anticipated by theoretical estimates. The remaining difference may be due to a non-negligible ground-state correlation and its effects on the momentum density and the Fermi surface of beryllium metal.

  18. Hypervelocity-impact studies on titanium, titanium alloys, and beryllium

    SciTech Connect

    Lundberg, L.B.; Bless, S.J.; Girrens, S.P.; Green, J.E.

    1982-08-01

    The hypervelocity-impact behavior of commercial-pure, Grade 2 Ti, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo-0.25Si, and pure beryllium was studied by impacting targets of these materials with millimeter-sized spheres of glass, copper, aluminum, and cadmium propelled from a light-gas gun at velocities ranging from 4.5 to 7.6 km/s. Target temperatures ranged from 295 to 775/sup 0/K when impacted. Semi-infinite targets were impacted to determine cratering behavior, and some correlations were made to thin-target perforation. Thin titanium targets with a variety of surface coatings and finishes were also impacted. Titanium and the titanium alloys were found to behave in a ductile manner when impacted, but beryllium was found to be brittle even at 775/sup 0/K. An extrapolation equation was used to optimize a titanium heat pipe radiator mass for a space nuclear power application.

  19. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    SciTech Connect

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  20. Development of radiation resistant grades of beryllium for nuclear and fusion facilities

    SciTech Connect

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N.

    1995-09-01

    R&D results on beryllium with high radiation resistance obtained recently are described in this report. The data are presented on nine different grades of isotropic beryllium manufactured by VNIINM and distinguished by both initial powder characteristics and properties of billets, made of these powders. The average grain size of the investigated beryllium grades varied from 8 to 26 {mu}m, the content of beryllium oxide was 0.9 - 3.9 wt.%, the dispersity of beryllium oxide - 0.04 - 0.5 {mu}m, tensile strength -- 250 - 650 MPa. All materials were irradiated in SM - 2 reactor over the temperature range 550 - 780{degrees}C. The results of the investigation showed, that HIP beryllium grades are less susceptible to swelling at higher temperatures in comparison with hot pressed and extruded grades. Beryllium samples, having the smallest grain size, demonstrated minimal swelling, which was less than 0.8 % at 750{degrees}C and Fs = 3.7 {center_dot}10{sup 21} cm{sup -2} (E>0.1 MeV). The mechanical properties, creep and microstructure parameters, measured before and after irradiation, are presented.