Direct integrin alphavbeta6-ERK binding: implications for tumour growth.
Ahmed, Nuzhat; Niu, Jun; Dorahy, Douglas J; Gu, Xinhua; Andrews, Sarah; Meldrum, Cliff J; Scott, Rodney J; Baker, Mark S; Macreadie, Ian G; Agrez, Michael V
2002-02-21
Blockade of the mitogen-activated protein (MAP) kinase pathway suppresses growth of colon cancer in vivo. Here we demonstrate a direct link between the extracellular signal-regulated kinase ERK2 and the growth-promoting cell adhesion molecule, integrin alphavbeta6, in colon cancer cells. Down-regulation of beta6 integrin subunit expression inhibits tumour growth in vivo and MAP kinase activity in response to serum stimulation. In alphavbeta6-expressing cells ERK2 is bound only to the beta6 subunit. The increase in cytosolic MAP kinase activity upon epidermal growth factor stimulation is all accounted for by beta6-bound ERK. Deletion of the ERK2 binding site on the beta6 cytoplasmic domain inhibits tumour growth and leads to an association between ERK and the beta5 subunit. The physical interaction between integrin alphavbeta6 and ERK2 defines a novel paradigm of integrin-mediated signalling and provides a therapeutic target for cancer treatment.
Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu
2010-01-01
Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yoon Pyo; Kim, Baek Gil; Department of Pathology, Yonsei University College of Medicine, Seoul
Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expressionmore » of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.« less
Shimoyama, S; Gansauge, F; Gansauge, S; Oohara, T; Beger, H G
1995-12-01
The aim of this study was to elucidate the expression and distribution patterns of both integrins and extracellular matrix (ECM) molecules in chronic pancreatitis (CP) and pancreatic adenocarcinoma (PC) compared with normal pancreas (NP). Expression of nine alpha-subunits (alpha 2-alpha 6, alpha V, alpha L, alpha M, and alpha X), four beta-subunits (beta 1, beta 3-beta 5), and four ECM molecules (type IV collagen, laminin, fibronectin, and vitronectin) was investigated immunohistochemically. In CP, all integrins except alpha V showed nearly the same staining patterns compared with NP. Some acinar cells in CP expressed alpha V. Whereas alpha 2, alpha 3, and alpha 6 expression was stronger and diffuse, no alpha 5 expression was seen in PC. Basement membrane (BM) showed continuous staining in CP, whereas it showed discontinuous/absent staining in PC with antitype IV collagen, laminin, and vitronectin antibodies. Some carcinoma cells showed reverse correlation between alpha 2, alpha 3, and alpha 6 expression and type IV collagen and laminin expression. Fibronectin showed diffuse stromal expression in CP and PC. Some acinar cells or duct cells in CP carcinoma cells in PC showed intracellular VN expression. These results suggest that these integrins and ECM molecules are involved in inflammatory and malignant processes in pancreas.
Phorbol esters alter alpha4 and alphad integrin usage during eosinophil adhesion to VCAM-1.
Kikuchi, Matsuo; Tachimoto, Hiroshi; Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S
2003-01-01
We examined the effect of the protein kinase C activator phorbol-12-myristate-13-acetate (PMA) on the human eosinophil adhesion molecule phenotype and attachment to VCAM-1 via alpha4 and alphad integrins under static and flow conditions. PMA increased surface expression of alphad integrins and decreased alpha4 integrin expression. Under static conditions, eosinophils bound well to VCAM-1, primarily via alpha4beta1 integrins, with a minor alphadbeta2 integrin component. Unexpectedly, PMA-stimulated eosinophils bound equally well to VCAM-1 and albumin in a temperature- and divalent cation-dependent manner, yet adhesion was independent of beta1 and beta2 integrins. Under flow conditions, eosinophils readily attached to VCAM-1, and adhesion was inhibited by both alpha4 and alphad mAbs (95 and 50% inhibition, respectively). Many fewer PMA-stimulated eosinophils bound to VCAM-1 under flow conditions, but both alpha4 and alphad mAbs inhibited adhesion equally. Thus, PMA alters eosinophil integrin expression and the relative contributions of alpha4 and alphad integrins during attachment to VCAM-1.
Meyer, Stefanie; Orsó, Evelyn; Schmitz, Gerd; Landthaler, Michael; Vogt, Thomas
2007-07-01
Ephrins control cell motility and matrix adhesion. These functions play a pivotal role in cancer progression, for example, in malignant melanomas. We have previously shown that the ephrin-B2-tumor-promoting action is partly mediated by integrin-beta1 interaction. However, the subcellular prerequisites for molecular interaction like molecular proximity and co-compartmentalization have not been elucidated yet. Specific cholesterol-rich microdomains, termed lipid rafts (RAFTs), are known to be essential for functional ephrin-B2 signalling and integrin-mediated effects. Therefore, we addressed the question whether RAFT co-compartmentalization of both molecules could provide the molecular platform for their tumor-promoting interaction. In this study, we show that overexpressed ephrin-B2 is not only compartmentalized to classical Triton X-100 RAFTs in B16 melanoma cells, but also to the recently defined Lubrol-RAFTs. Interestingly, in the melanoma cells investigated, integrin-beta1 is also preferentially detected in such Lubrol-RAFTs. Accordingly, the presence of ephrin-B2 and integrin-beta1 in RAFTs and their function in cell migration and matrix attachment are highly sensitive to RAFT disruption by cholesterol depletion. Confocal fluorescence microscopy analyses also support the concept of a close molecular proximity and functional interplay of ephrin-B2 and integrin-beta1 in the plasma membrane. We conclude that Lubrol-RAFTs probably represent the platform for tumor-promoting ephrin-B2-integrin-beta1 interaction, which could become an interesting target for future antitumoral therapies.
Vachon, P H; Xu, H; Liu, L; Loechel, F; Hayashi, Y; Arahata, K; Reed, J C; Wewer, U M; Engvall, E
1997-01-01
Mutations in genes coding for dystrophin, for alpha, beta, gamma, and delta-sarcoglycans, or for the alpha2 chain of the basement membrane component merosin (laminin-2/4) cause various forms of muscular dystrophy. Analyses of integrins showed an abnormal expression and localization of alpha7beta1 isoforms in myofibers of merosin-deficient human patients and mice, but not in dystrophin-deficient or sarcoglycan-deficient humans and animals. It was shown previously that skeletal muscle fibers require merosin for survival and function (Vachon, P.H., F. Loechel, H. Xu, U.M. Wewer, and E. Engvall. 1996. J. Cell Biol. 134:1483-1497). Correction of merosin deficiency in vitro through cell transfection with the merosin alpha2 chain restored the normal localization of alpha7beta1D integrins as well as myotube survival. Overexpression of the apoptosis-suppressing molecule Bcl-2 also promoted the survival of merosin-deficient myotubes, but did not restore a normal expression of alpha7beta1D integrins. Blocking of beta1 integrins in normal myotubes induced apoptosis and severely reduced their survival. These findings (a) identify alpha7beta1D integrins as the de facto receptors for merosin in skeletal muscle; (b) indicate a merosin dependence for the accurate expression and membrane localization of alpha7beta1D integrins in myofibers; (c) provide a molecular basis for the critical role of merosin in myofiber survival; and (d) add new insights to the pathogenesis of neuromuscular disorders. PMID:9312189
Knox, J. D.; Cress, A. E.; Clark, V.; Manriquez, L.; Affinito, K. S.; Dalkin, B. L.; Nagle, R. B.
1994-01-01
The epithelial basal lamina composition and integrin expression profile of normal and neoplastic human prostate was characterized using immunohistochemical analysis of frozen samples. The major components of the basal lamina surrounding normal acini were laminin, type IV collagen, entactin, and type VII collagen with variable amounts of tenascin. The basal lamina of neoplastic acini had a similar composition, except for the loss of type VII collagen, which was observed in all grades of carcinoma. The basal cells of the normal prostate express the alpha 6-, beta 1-, and beta 4-integrin subunits, suggesting that both the alpha 6 beta 1- and alpha 6 beta 4-integrin complexes are formed. In prostate carcinoma there is a complete loss of beta 4 expression and the alpha 6- and beta 1-integrin subunits, which are restricted to the basal and basal lateral surfaces of basal cells, are distributed diffusely throughout the cytoplasmic membrane. The differential expression of type VII collagen and beta 4 are discussed in relationship to their possible role in tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8030747
Coopman, P J; Thomas, D M; Gehlsen, K R; Mueller, S C
1996-11-01
The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3 antibodies and the laminin peptide HGD-6 activate the alpha 3 beta 1 integrin, which results in a downstream signaling cascade stimulating phagocytosis.
Jagels, M A; Daffern, P J; Zuraw, B L; Hugli, T E
1999-09-01
Polymorphonuclear leukocytes (PMN) and eosinophils (Eos) are important cellular participants in a variety of acute and chronic inflammatory reactions in the airway. Histologic evidence has implicated direct interactions between these two subsets of leukocytes and airway epithelial cells during inflammation. A comprehensive characterization and comparison of physiologic stimuli and adhesion molecule involvement in granulocyte-epithelial-cell interactions done with nontransformed human airway epithelial cells has not been reported. We therefore examined the regulation and biochemical mechanisms governing granulocyte-epithelial-cell adhesion, using either purified PMN or Eos and primary cultures of human bronchial epithelial cells (HBECs). We investigated the involvement of a number of proinflammatory signals associated with allergic and nonallergic airway inflammation, as well as the contribution of several epithelial and leukocyte adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and members of the beta(1), beta(2), and beta(7) integrin families. ICAM-1 was expressed at low levels on cultured HBECs and was markedly upregulated after stimulation with interferon (IFN)-gamma or, to a lesser extent, with tumor necrosis factor (TNF)-alpha or interleukin (IL)-1. VCAM-1 was not present on resting HBECs, and was not upregulated after stimulation with IFN-gamma, IL-1, IL-4, or TNF-alpha. PMN adhesion to HBECs could be induced either through activation of PMN with IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), or C5a, but not with IL-5 or by preactivation of HBECs with TNF-alpha or IFN-gamma. Blocking antibody studies indicated that PMN-HBEC adherence depended on beta(2) integrins, primarily alpha(M)beta(2) (Mac-1). Adherence of Eos to HBECs could be induced through activation of Eos with IL-5, GM-CSF, or C5a, but not with IL-8 or by prior activation of HBECs with TNF-alpha of IFN-gamma. Maximal adhesion of Eos and PMN required pretreatment of HBECs with either TNF-alpha or IFN-gamma in addition to leukocyte activation. Adherence of Eos to unstimulated HBECs was mediated through both beta(1) and beta(2) integrins, whereas adhesion of Eos to activated HBECs was dominated by beta(2) integrins. Adhesion of both Eos and PMN was inhibited by treatment of HBECs with blocking antibodies to ICAM-1. Differential utilization of beta(1) and beta(2) integrins by Eos, depending on the activation state of the epithelium, is a novel finding and may affect activation and/or recruitment of Eos in airway tissue. Mechanisms of adhesion of HBECs to Eos and PMN, as evidenced by the different responsiveness of the two latter types of cells to IL-8 and IL-5, may account for a prevalence of Eos over PMN in certain airway diseases.
Method of increasing radiation sensitivity by inhibition of beta one integrin
Park, Catherine [San Francisco, CA; Bissell, Mina J [Berkeley, CA
2009-11-17
A method for increasing or monitoring apoptosis in tumor cells by the co-administration of ionizing radiation and an anti-integrin antibody. Increasing apoptosis reduces tumor growth in vivo and in a cell culture model. The antibody is directed against the beta-1 integrin subunit and is inhibitory of beta-1 integrin signaling. Other molecules having an inhibitory effect on beta-1 integrin, either in signaling or in binding to its cognate extracellular receptors may also be used. The present method is particularly of interest in treatment of tumor cells associated with breast cancer, wherein radiation is currently used alone. The present method further contemplates a monoclonal antibody suitable for human administration that may further comprise a radioisotope attached thereto.
Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.
Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M
2010-03-01
beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.
Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.
Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia
2017-03-01
Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm 2 , compared with the observed value of 3431.8μm 2 in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm 2 (vitiligo) and 8966.7μm 2 (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H
2000-01-01
To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.
1995-01-01
To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947
Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.
Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L
1996-07-01
Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu
2010-01-01
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less
Diverse roles of integrin receptors in articular cartilage.
Shakibaei, M; Csaki, C; Mobasheri, A
2008-01-01
Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.
Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.
Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V
2007-09-14
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.
Semon, Julie A; Nagy, Lauren H; Llamas, Claire B; Tucker, H Alan; Lee, Ryang Hwa; Prockop, Darwin J
2010-07-01
Multipotent mesenchymal stromal cells (MSCs) home to damaged tissue by processes partly regulated by integrins. Integrin subunits expressed by MSCs were identified by flow cytometry (FC), immunocytochemistry (IC), and a panel of integrin-binding antibodies. In subconfluent cultures, over 80% of MSCs expressed integrin subunits beta1, beta2, and alpha3, 20%-55% expressed alpha1, alpha2, alpha4, alpha5, alpha6, and alphaV, and about 10% expressed beta3 when assayed by FC. None of the cells expressed significant levels of 13 other integrins as assayed by FC, but seven of the 13 integrins were detected by IC: beta5, alpha7, alpha8, alpha9, alpha11, alphaX, and alphaD. Expression of some integrins changed with MSC confluency: integrins beta3, alpha1, alpha3, alpha5, and alphaV increased, and alpha6 decreased. Furthermore, alpha4 was the only integrin to vary among preparations of MSCs from different donors. The results resolved some discrepancies in the literature concerning integrin expression by MSCs. We also investigated the role of specific integrins in MSC adhesion to endothelial cells (ECs) from the pulmonary artery (HPAEC), cardiac-derived microvasculature (HMVEC-C), and umbilical veins (HUVEC). In experiments with blocking antibodies to beta integrins, anti-beta5 reduced MSC adhesion to all types of ECs, anti-beta1 to both HUVEC and HPAEC, anti-beta3 to HUVEC, and anti-beta2 to HMVEC-C. With blocking antibodies to alpha integrins, anti-alphaX reduced adhesion to HPAEC and HMVEC-C, anti-alphaV to HPAEC, and both anti-alpha7 and anti-alphaD to HMVEC-C. Thus, MSCs use diverse integrins to adhere to EC from various blood vessels in vitro.
Neelamegham, S; Taylor, A D; Burns, A R; Smith, C W; Simon, S I
1998-09-01
The binding of neutrophil beta2 integrin to intercellular adhesion molecule-1 (ICAM-1) expressed on the inflamed endothelium is critical for neutrophil arrest at sites of tissue inflammation. To quantify the strength and kinetics of this interaction, we measured the adhesion between chemotactically stimulated neutrophils and ICAM-1-transfected mouse cells (E3-ICAM) in suspension in a cone-plate viscometer at shear rates typical of venular blood flow (100 s-1 to 500 s-1). The kinetics of aggregation were fit with a mathematical model based on two-body collision theory. This enabled estimation of adhesion efficiency, defined as the probability with which collisions between cells resulted in firm adhesion. The efficiency of beta2-integrin-dependent adhesion was highest ( approximately 0.2) at 100 s-1 and it decreased to approximately zero at 400 s-1. Both LFA-1 and Mac-1 contributed equally to adhesion efficiency over the initial 30 seconds of stimulation, but adhesion was entirely Mac-1-dependent by 120 seconds. Two hydrodynamic parameters were observed to influence integrin-dependent adhesion efficiency: the level of shear stress and the intercellular contact duration. Below a critical shear stress (<2 dyn/cm2), contact duration predominantly limited adhesion efficiency. The estimated minimum contact duration for beta2-integrin binding was approximately 6.5 ms. Above the critical shear stress (>2 dyn/cm2), the efficiency of neutrophil adhesion to E3-ICAM was limited by both the contact duration and the tensile stress. We conclude that at low shear, neutrophil adhesion is modulated independently through either LFA-1 or Mac-1, which initially contribute with equal efficiency, but differ over the duration of chemotactic stimulation. Copyright 1998 by The American Society of Hematology.
Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening
NASA Technical Reports Server (NTRS)
Lammerding, Jan; Kazarov, Alexander R.; Huang, Hayden; Lee, Richard T.; Hemler, Martin E.
2003-01-01
The tetraspanin CD151 molecule associates specifically with laminin-binding integrins, including alpha6beta1. To probe strength of alpha6beta1-dependent adhesion to laminin-1, defined forces (0-1.5 nN) were applied to magnetic laminin-coated microbeads bound to NIH 3T3 cells. For NIH 3T3 cells bearing wild-type CD151, adhesion strengthening was observed, as bead detachment became more difficult over time. In contrast, mutant CD151 (with the C-terminal region replaced) showed impaired adhesion strengthening. Static cell adhesion to laminin-1, and detachment of beads coated with fibronectin or anti-alpha6 antibody were all unaffected by CD151 mutation. Hence, CD151 plays a key role in selectively strengthening alpha6beta1 integrin-mediated adhesion to laminin-1.
Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio
The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of themore » {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.« less
NASA Technical Reports Server (NTRS)
Lynch, T. M.; Lintilhac, P. M.; Domozych, D.
1998-01-01
It has been hypothesized that the sedimentation of amyloplasts within root cap cells is the primary event in the plant gravisensory-signal transduction cascade. Statolith sedimentation, with its ability to generate weighty mechanical signals, is a legitimate means for organisms to discriminate the direction of the gravity vector. However, it has been demonstrated that starchless mutants with reduced statolith densities maintain some ability to sense gravity, calling into question the statolith sedimentation hypothesis. Here we report on the presence of a beta 1 integrin-like protein localized inside amyloplasts of tobacco NT-1 suspension culture, callus cells, and whole-root caps. Two different antibodies to the beta 1 integrin, one to the cytoplasmic domain and one to the extracellular domain, localize in the vicinity of the starch grains within amyloplasts of NT-1. Biochemical data reveals a 110-kDa protein immunoprecipitated from membrane fractions of NT-1 suspension culture indicating size homology to known beta 1 integrin in animals. This study provides the first direct evidence for the possibility of integrin-mediated signal transduction in the perception of gravity by higher plants. An integrin-mediated pathway, initiated by starch grain sedimentation within the amyloplast, may provide the signal amplification necessary to explain the gravitropic response in starch-depleted cultivars.
Nisato, Riccardo E; Hosseini, Ghamartaj; Sirrenberg, Christian; Butler, Georgina S; Crabbe, Thomas; Docherty, Andrew J P; Wiesner, Matthias; Murphy, Gillian; Overall, Christopher M; Goodman, Simon L; Pepper, Michael S
2005-10-15
Matrix metalloproteinase (MMP)-2 and its hemopexin C domain autolytic fragment (also called PEX) have been proposed to be crucial for angiogenesis. Here, we have investigated the dependency of in vitro angiogenesis on MMP-mediated extracellular proteolysis and integrin alpha(v)beta3-mediated cell adhesion in a three-dimensional collagen I model. The hydroxamate-based synthetic inhibitors BB94, CT1399, and CT1847 inhibited endothelial cell invasion, as did neutralizing anti-membrane-type 1-MMP (MT1-MMP) antibodies and tissue inhibitor of MMP (TIMP)-2 and TIMP-3 but not TIMP-1. This confirmed the pivotal importance of MT1-MMP over other MMPs in this model. Invasion was also inhibited by a nonpeptidic antagonist of integrin alpha(v)beta3, EMD 361276. Although PEX strongly inhibited pro-MMP-2 activation, when contaminating lipopolysaccharide was neutralized, PEX neither affected angiogenesis nor bound integrin alpha(v)beta(3). Moreover, no specific binding of pro-MMP-2 to integrin alpha(v)beta3 was found, whereas only one out of four independently prepared enzymatically active MMP-2 preparations could bind integrin alpha(v)beta3 , and this in a PEX-independent manner. Likewise, integrin alpha(v)beta3 -expressing cells did not bind MMP-2-coated surfaces. Hence, these findings show that endothelial cell invasion of collagen I gels is MT1-MMP and alpha(v)beta3 - dependent but MMP-2 independent and does not support a role for PEX in alpha(v)beta3 integrin binding or in modulating angiogenesis in this system.
Integrins in bone metastasis formation and potential therapeutic implications.
Clëzardin, P
2009-11-01
Integrins constitute a family of cell surface receptors that are heterodimers composed of noncovalently associated alpha and beta subunits. Integrins bind to extracellular matrix proteins and immunogobulin superfamily molecules. They exert a stringent control on cell migration, survival and proliferation. However, their expression and functions are often deregulated in cancer, and many lines of evidence implicate them as key regulators during progression from primary tumor growth to metastasis. Here, we review the role of integrins in bone metastasis formation and present evidence that the use of integrin-targeted therapeutic agents may be an efficient strategy to block tumor metastasis.
Li, Yingzhu; Clough, Nancy; Sun, Xiaolin; Yu, Weidong; Abbott, Brian L; Hogan, Christopher J; Dai, Zonghan
2007-04-15
Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.
Proteolytic processing of endogenous and recombinant beta 4 integrin subunit
1992-01-01
The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432
Role of Jumonji c-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease virus (FMDV) can utilize as many as three distinct groups of receptor molecules to attach and enter a susceptible host cell. Four integrin heterodimers (alphavBeta1, alphavBeta3, alphavBeta6, and alphavBeta8) can function as the primary receptor for FMDV field strains. FMDV ...
Nelson, Katja; Helmstaedter, Victor; Moreau, Cynthia; Lage, Hermann
2008-01-01
Adhesion molecules such as integrins and extracellular matrix proteins like laminins have been identified to play an important role in cell proliferation, migration and invasion by regulating cell-extracellular matrix interaction in various cancers including oral squamous cell carcinoma (OSCC). In this study, the effect of estradiol (E2), and the E2 antagonists tamoxifen (TAM) and ICI 182,780 (ICI) on the expression of integrins and adhesion to laminin-1 in different OSCC in vitro models was analyzed. TAM and ICI inhibited growth in all OSCC cell lines. Dependent on estrogen receptor (ER) status E2 displayed a significant influence on growth after long-term administration. ICI reduced laminin-1 adhesion in all cell lines. beta1 Integrin transcription is reduced with TAM and E2 and alpha3 cell surface expression with TAM. This study shows that OSCC is estrogen and SERM sensitive and that these compounds can modulate cell-matrix interaction in part by modulating integrin expression and translation. The investigation also confirms that growth is significantly influenced by these adjuvant therapeutics. These data suggest that a greater understanding of basic biology and mechanisms of the ER and its ligands in oral squamous cells is needed to elucidate the use of specific pharmacological agents as therapeutics of anti-tumorigenic pathways.
Streptococcal modulation of cellular invasion via TGF-beta1 signaling.
Wang, Beinan; Li, Shaoying; Southern, Peter J; Cleary, Patrick P
2006-02-14
Group A Streptococcus (GAS) and other bacterial pathogens are known to interact with integrins as an initial step in a complex pathway of bacterial ingestion by host cells. Efficient GAS invasion depends on the interaction of bound fibronectin (Fn) with integrins and activation of integrin signaling. TGF-beta1 regulates expression of integrins, Fn, and other extracellular matrix proteins, and positively controls the integrin signaling pathway. Therefore, we postulated that TGF-beta1 levels could influence streptococcal invasion of mammalian cells. Pretreatment of HEp-2 cells with TGF-beta1 increased their capacity to ingest GAS when the bacteria expressed fibronectin-binding proteins (M1 or PrtF1). Western blots revealed significant induction of alpha5 integrin and Fn expression by HEp-2 cells in response to TGF-beta1. Increased ingestion of streptococci by these cells was blocked by a specific inhibitor of the TGF-beta1 receptor I and antibodies directed against alpha5 integrin and Fn, indicating that increased invasion depends on TGF-beta1 up-regulation of both the alpha5 integrin and Fn. The capacity of TGF-beta1 to up-regulate integrin expression and intracellular invasion by GAS was reproduced in primary human tonsil fibroblasts, which could be a source of TGF-beta1 in chronically infected tonsils. The relationship between TGF-beta1 and GAS invasion was strengthened by the observation that TGF-beta1 production was stimulated in GAS-infected primary human tonsil fibroblasts. These findings suggest a mechanism by which GAS induce a cascade of changes in mammalian tissue leading to elevated expression of the alpha5beta1 receptor, enhanced invasion, and increased opportunity for survival and persistence in their human host.
Expression and in vitro regulation of integrins by normal human urothelial cells.
Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K
1995-08-01
Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.
A peptide affinity column for the identification of integrin alpha IIb-binding proteins.
Daxecker, Heide; Raab, Markus; Bernard, Elise; Devocelle, Marc; Treumann, Achim; Moran, Niamh
2008-03-01
To understand the regulation of integrin alpha(IIb)beta(3), a critical platelet adhesion molecule, we have developed a peptide affinity chromatography method using the known integrin regulatory motif, LAMWKVGFFKR. Using standard Fmoc chemistry, this peptide was synthesized onto a Toyopearl AF-Amino-650 M resin on a 6-aminohexanoic acid (Ahx) linker. Peptide density was controlled by acetylation of 83% of the Ahx amino groups. Four recombinant human proteins (CIB1, PP1, ICln and RN181), previously identified as binding to this integrin regulatory motif, were specifically retained by the column containing the integrin peptide but not by a column presenting an irrelevant peptide. Hemoglobin, creatine kinase, bovine serum albumin, fibrinogen and alpha-tubulin failed to bind under the chosen conditions. Immunodetection methods confirmed the binding of endogenous platelet proteins, including CIB1, PP1, ICln RN181, AUP-1 and beta3-integrin, from a detergent-free platelet lysate. Thus, we describe a reproducible method that facilitates the reliable extraction of specific integrin-binding proteins from complex biological matrices. This methodology may enable the sensitive and specific identification of proteins that interact with linear, membrane-proximal peptide motifs such as the integrin regulatory motif LAMWKVGFFKR.
Rich, R L; Deivanayagam, C C; Owens, R T; Carson, M; Höök, A; Moore, D; Symersky, J; Yang, V W; Narayana, S V; Höök, M
1999-08-27
Most mammalian cells and some pathogenic bacteria are capable of adhering to collagenous substrates in processes mediated by specific cell surface adherence molecules. Crystal structures of collagen-binding regions of the human integrin alpha(2)beta(1) and a Staphylococcus aureus adhesin reveal a "trench" on the surface of both of these proteins. This trench can accommodate a collagen triple-helical structure and presumably represents the ligand-binding site (Emsley, J., King, S. L., Bergelson, J. M., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517; Symersky, J., Patti, J. M., Carson, M., House-Pompeo, K., Teale, M., Moore, D., Jin, L., Schneider, A., DeLucas, L. J., Höök, M., and Narayana, S. V. L. (1997) Nat. Struct. Biol. 4, 833-838). We report here the crystal structure of the alpha subunit I domain from the alpha(1)beta(1) integrin. This collagen-binding protein also contains a trench on one face in which the collagen triple helix may be docked. Furthermore, we compare the collagen-binding mechanisms of the human alpha(1) integrin I domain and the A domain from the S. aureus collagen adhesin, Cna. Although the S. aureus and human proteins have unrelated amino acid sequences, secondary structure composition, and cation requirements for effective ligand binding, both proteins bind at multiple sites within one collagen molecule, with the sites in collagen varying in their affinity for the adherence molecule. We propose that (i) these evolutionarily dissimilar adherence proteins recognize collagen via similar mechanisms, (ii) the multisite, multiclass protein/ligand interactions observed in these two systems result from a binding-site trench, and (iii) this unusual binding mechanism may be thematic for proteins binding extended, rigid ligands that contain repeating structural motifs.
Burtea, Carmen; Laurent, Sophie; Murariu, Oltea; Rattat, Dirk; Toubeau, Gérard; Verbruggen, Alfons; Vansthertem, David; Vander Elst, Luce; Muller, Robert N
2008-04-01
The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal-to-noise ratio, and the low immunogenicity of the mimetic molecule highlight its potential for an industrial and clinical implementation.
The influence of surface integrin binding patterns on specific biomaterial-cell interactions
NASA Astrophysics Data System (ADS)
Beranek, Maggi Marie
As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second aim, the response of surface-bound integrins to flow-related shear stress was examined. Based on fluorescent analysis, total alphavbeta 3, alpha1beta1, and alpha5beta 1 appeared to increase on stainless steel after 90-minute low shear stress exposure, whereas only alpha5beta1 appeared to increase when exposed to high shear. 65/35 poly(D, L-lactide-co-glycolide) exhibited increased total binding of alpha5beta1 and alphaMbeta2, when exposed to either shear stress level. Exposure to either shear stress regimen appeared to increase binding of all integrins on the combinational surface. These responses to shear stress suggest differential integrin binding affinity compared to stainless steel. Using antibodies specific to the integrin subunits, the apparent increase in surface-bound integrins was found to be related to a surface disassociation of alpha and beta subunits. The third aim evaluated human aortic endothelial cells and acute monocytic leukemia cells (THP-1) cell binding to the tested biomaterial surfaces under both static and flow conditions. Both stainless steel and the combinational surface had increased endothelial cell binding compared to monocyte attachment. Pre-incubation of the surface with the specific integrins significantly inhibited human aortic endothelial cell binding. Aim four was designed to investigate the influence of surface bound integrins on human aortic endothelial cell migration under shear stress. If biomaterial surface integrin binding patterns are specific, then pre-bound surface integrins should competitively inhibit binding of cellular integrins to the surface. Cell migration distance on to alphavbeta3, alpha 1beta1, and alpha5beta1 pre-incubated stainless steel was decreased ten-fold, and decreased by three-fold on both 65/35 poly(D, L-lactide-coglycolide) and combinational surfaces compared to the respective bare surfaces. In contrast, migration distance on to alphaMbeta2 pre-coated stainless steel and combinational surface was decreased by only sixty percent and only fifty percent on alphaMbeta2 precoated 65/35 poly(D, L -lactide-co-glycolide). These results suggested that surface binding sites are selective and critical in governing endothelial cell migration. In conclusion, these results support the hypothesis that a surface that encourages specific integrin binding would promote differential cell binding. The novel integrin binding model used in this investigation may be a methodology that can be employed to evaluate potential vascular biomaterials.
Cohn, R D; Mayer, U; Saher, G; Herrmann, R; van der Flier, A; Sonnenberg, A; Sorokin, L; Voit, T
1999-03-01
The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even in young boys (age <2 years). The expression of the beta1D integrin subunit was not altered in any of our patients with different types of muscular dystrophy. In contrast, sarcolemmal expression of beta1D integrin was significantly reduced in the alpha7 integrin knock-out mice, whereas the expression of the components of the DGC was not altered. The secondary loss of alpha7B in laminin alpha2 chain deficiency defines a biochemical change in the composition of the plasma membrane resulting from a primary protein deficiency in the basal lamina. These findings, in addition to the occurrence of a muscular dystrophy in alpha7 deficient mice, implies that the alpha7B integrin is an important laminin receptor within the plasma membrane which plays a significant role in skeletal muscle function and stability.
NASA Astrophysics Data System (ADS)
Ross, Michael H.
Breast cancer is the most common cancer for women worldwide, representing approximately 25% of all new cancer cases in this population. While early detection and removal of breast cancer still confined to the primary site results in a good prognosis, approximately one- third of patients will develop distant metastases. In these patients, overall survival is markedly reduced. Of the common sites for breast cancer metastasis, the skeletal system is the most frequent. Treating breast cancer bone metastases has proven particularly difficult for several reasons, such as dissemination of metastases throughout the skeleton, poor drug localization to sites of interest, a lack of tumor-specific targets expressed across breast cancer subtypes, and the chemo-protective nature of the bone microenvironment. This dissertation is focused on investigating a potential tumor-target expressed on breast cancer bone metastases, and to improve drug treatment efficacy against tumor cells in the bone microenvironment. Integrins are heterodimeric cell surface receptors, composed of an alpha and beta subunit from a large family of selectively-compatible integrin subunits. As a heterodimeric complex, integrins can bind to components of the extracellular matrix or to other cells. One particular integrin complex, integrin alphavbeta3, is composed of the tightly regulated integrin subunit beta3 and the more widely expressed alphav subunit. I examined the expression of integrin beta3 on primary breast cancer as compared to metastases in murine cancer models, and observed that integrin expression is significantly elevated on bone metastases as compared to the primary tumors or visceral metastases. In addition, I evaluated tumor-associated integrin beta3 expression on a tissue microarray (TMA) composed of primary breast cancer and patient-matched bone metastatic tissue from 42 patients. Across nearly all patients, tumor-associated integrin beta3 expression was significantly elevated on bone metastases as compared to the primary tumor. For the first time, I demonstrate that tumor-associated integrin beta3 is elevated on bone metastases across all breast cancer subtypes, supporting the translational potential of targeting integrin beta3 in breast cancer patients with bone metastases. Integrin beta3 was weakly expressed on tumor cells in vitro and on tumor cells in the primary mammary fat pad (MFP). Additional analysis demonstrated that integrin beta3 on circulating tumor cells is dispensable for strong expression of integrin beta3 on subsequent bone metastases, suggested that integrin beta3 may be induced within the bone microenvironment. I identified transforming growth factor beta (TGF-beta) to be a potent inducer of integrin beta3 in vitro, and further demonstrate canonical TGF-beta signaling through the SMAD2 and SMAD3 (SMAD2/3) pathway is responsible for breast cancer upregulation of integrin beta3 induction on bone metastases, both in vitro and in vivo. Utilizing this information, I sought to evaluate the targeting potential of nanotherapy coated with a targeting ligand specific for integrin alphavbeta3. Nanotherapy has the potential to increase therapeutic efficacy and reduce toxicity versus traditional chemotherapies by enhancing drug delivery to specific targets of interest. I explored the localization potential of two nanoparticles with significantly different sizes: polysorbate (tween) 80 micelle nanoparticles (MPs, 12.5 nm) or perfluorocarbon (PFC) nanoparticles ( 250 nm). The smaller integrin alphavbeta3- targeted micelle nanoparticle (alphavbeta3-MP) could more effectively penetrate breast cancer bone metastases than larger integrin alphavbeta3-targeted PFC nanoparticles (alphavbeta3-PFCs). With these observations, I evaluated whether alphavbeta3-MP-mediated drug delivery could more effectively attenuate bone metastatic tumor burden and bone destruction than free drug delivery. Using the chemotherapeutic agent docetaxel (DTX), a potent microtubule inhibitor that is a first-line therapy for metastatic breast cancer, I observe that DTX is only weakly tumor- suppressive in our mouse model of breast cancer metastases. However, treating mice bearing breast cancer metastases with alphavbeta3-MP-delivery of a docetaxel-prodrug (DTX-PD) significantly reduced bone tumor burden and bone destruction, and with less hepatotoxicity. I observed a significant decrease in bone-residing tumor cell proliferation in mice treated with alphavbeta3-MP- delivery of DTX-PD, without overt osteoclast killing or inhibition of osteoclast formation. Together, these results provide support that nanotherapy-mediated attenuation of bone metastases and bone destruction occurs through enhanced drug efficacy against breast cancer cells within the bone. In this Dissertation, Chapter 1 will provide an overview of breast cancer, bone metastases, integrins, and the therapeutic potential of nanotherapy. In Chapter 2, my work on the expression and physiologic regulation of integrin beta3 on breast cancer during metastases will be explored. In Chapter 3, the role of the cytokine TGF-beta in regulating tumoral expression of integrin beta3 will be discussed. And in Chapter 4, I discuss the use of integrin alphavbeta3-targeted nanotherapy directed against breast cancer metastases. Collectively, I provide evidence that chemotherapeutic efficacy against breast cancer cells within bone can be enhanced by exploiting the expression of tumoral integrin beta3 at that metastatic site.
NASA Astrophysics Data System (ADS)
Hsieh, Chia-Fen; Chang, Bo-Jui; Pai, Chyi-Huey; Chen, Hsuan-Yi; Chi, Sien; Hsu, Long; Tsai, Jin-Wu; Lin, Chi-Hung
2004-10-01
Integrin receptors serve as both mechanical links and signal transduction mediators between the cell and its environment. Experimental evidence demonstrates that conformational changes and lateral clustering of the integrin proteins may affect their binding to ligands and regulate downstream cellular responses; however, experimental links between the structural and functional correlations of the ligand-receptor interactions are not yet elucidated. In the present report, we utilized optical tweezers to measure the dynamic binding between the snake venom rhodostomin, coated on a microparticle and functioned as a ligand, and the membrane receptor integrin alpha(IIb)beta(3) expressed on a Chinese Hamster Ovary (CHO) cell. A progressive increase of total binding affinity was found between the bead and CHO cell in the first 300 sec following optical tweezers-guided contact. Further analysis of the cumulative data revealed the presence of "unit binding force" presumably exerted by a single rhodostomin-integrin pair. Interestingly, two such units were found. Among the measurements of less total binding forces, presumably taken at the early stage of ligand-receptor interactions, a unit of 4.15 pN per molecule pair was derived. This unit force dropped to 2.54 pN per molecule pair toward the later stage of interactions when the total binding forces were relatively large. This stepped change of single molecule pair binding affinity was not found when mutant rhodostomin proteins were used as ligands (a single unit of 1.81 pN per pair was found). These results were interpreted along with the current knowledge about the conformational changes of integrins during the "molecule activation" process.
Adhesion to the extracellular matrix is positively regulated by retinoic acid in HepG2 cells.
Massimi, Mara; Devirgiliis, Laura Conti
2007-02-01
In this work, we aimed to investigate the possible modulation of cell-matrix interactions by retinoic acid (RA), in view of the well-known role of the extracellular matrix (ECM) and integrins in hepatocyte differentiation and proliferation. For this purpose, we analysed the adhesion ability of HepG2 cells on different substrates in the presence and absence of RA evaluating both the expression and cellular localisation of major proteins involved in focal contacts, using Western blot and confocal microscopy. A positive and substrate-dependent effect of RA on cell-matrix adhesion was observed after long-term culture. The increased adhesiveness in the treated cells was accompanied by an enhanced expression of beta1 and alpha3 integrin subunits, together with a redistribution of beta1 receptors clustered at the basal surface. In contrast, the levels of focal adhesion kinase (FAK), paxillin and alpha-actinin were unchanged, as was the phosphorylation state of FAK. Nonetheless, a stronger association between beta1 integrin and intracytoplasmatic proteins of focal contacts was observed in coimmunoprecipitation experiments after RA treatment, suggesting improved connection with the actin cytoskeleton. These results are consistent with previously described antiproliferative and differentiative effects of RA on transformed hepatocytes, and confirm the hypothesis of a direct influence of RA on specific adhesion molecules.
Salter, D M; Godolphin, J L; Gourlay, M S
1995-04-01
During development and at maturity different forms of cartilage vary in morphology and macromolecular content. This reflects heterogeneity of chondrocyte activity, in part involving differential interactions with the adjacent extracellular matrix via specialized cell surface receptors such as integrins. We undertook an immunohistological study on a series of human fetal knee joints to assess variation in the expression of integrins by chondrocytes and potential matrix ligands in articular, epiphyseal, growth plate, and meniscal cartilage. The results show that articular chondrocytes (beta 1+, beta 5 alpha V+, alpha 1+, alpha 2+/-, alpha 5+, weakly alpha 6+, alpha V+) differed from epiphyseal (beta 1+, beta 5 alpha V+, alpha 1+/-, alpha 2+/-, alpha 5+, alpha 6+, alpha V+) growth plate (beta 1+, beta 5 alpha V+, alpha 1-, alpha 2-, alpha 5+, alpha 6+, alpha V+), and meniscal cells (beta 1+, beta 5 alpha V+, alpha 1+, strongly alpha 2+, alpha 5+, alpha 6+, alpha V+ in expression of integrin subunits. There was no expression of beta 3, beta 4, beta 6, or alpha 3 by chondrocytes. These results differ from previous reports on the expression of integrins by adult articular cartilage, where alpha 2 and alpha 6 are not seen. Variation in distribution of matrix ligands was also seen. Fibronectin, laminin and Type VI collagen were expressed in all cartilages but there was restricted expression of tenascin, ED-A and ED-B fibronectin isoforms (articular cartilage and meniscus), and vitronectin (absent from growth plate cartilage). Regulated expression of integrins by chondrocytes, associated with changes in the pericellular matrix composition, is of potential importance in control of cartilage differentiation and function in health and disease.
Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.
1996-01-01
Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226
Keszthelyi, E; Karlik, S; Hyduk, S; Rice, G P; Gordon, G; Yednock, T; Horner, H
1996-10-01
The leukocyte integrin receptor, alpha 4 beta 1, and its endothelial cell ligand, vascular cell adhesion molecule 1, appear to be of critical importance in the leukocyte trafficking that accompanies CNS damage in experimental allergic encephalomyelitis (EAE). In this study, the persistence of the role for alpha 4 beta 1/VCAM-1 in EAE was established by observing antibody-mediated disease reversal up to 1 month following disease onset. Limited treatment with a monoclonal antibody against alpha 4 integrin, GG5/3, resulted in a significant decrease in both clinical and histopathologic signs. This was not observed in isotype control experiments. In the latter phase of progressive disease, widespread demyelination occurred in the animals that did not respond to 6 days of anti-alpha 4 treatment. These results demonstrate an essential role for alpha 4 beta 1 interactions throughout active EAE and illustrate the difference between reversible clinical deficits caused by edema and irreversible deficits associated with demyelination.
Kibler, C; Schermutzki, F; Waller, H D; Timpl, R; Müller, C A; Klein, G
1998-06-01
Multiple myeloma represents a human B cell malignancy which is characterized by a predominant localization of the malignant cell clone within the bone marrow. With the exception of the terminal stage of the disease the myeloma tumor cells do not circulate in the peripheral blood. The bone marrow microenvironment is believed to play an important role in homing, proliferation and terminal differentiation of myeloma cells. Here we have studied the expression of several extracellular matrix (ECM) molecules in the bone marrow of multiple myeloma patients and analyzed their adhesive capacities with four different human myeloma-derived cell lines. All ECM molecules analyzed (tenascin, laminin, fibronectin, collagen types I, III, V and VI) could be detected in bone marrow cryostat sections of multiple myeloma patients. Adhesion assays showed that only laminin, the microfibrillar collagen type VI and fibronectin were strong adhesive components for the myeloma cell lines U266, IM-9, OPM-2 and NCI-H929. Tenascin and collagen type I were only weak adhesive substrates for these myeloma cells. Adhesion to laminin and fibronectin was beta 1-integrin-mediated since addition of anti-beta 1-integrin antibodies could inhibit the binding of the four different cell types to both matrix molecules. In contrast, integrins do not seem to be involved in binding of the myeloma cells to collagen type VI. Instead, inhibition of binding by heparin suggested that membrane-bound heparan sulfate proteoglycans are responsible ligands for binding to collagen type VI. Adhesion assays with several B-cell lines resembling earlier differentiation stages revealed only weak interactions with tenascin and no interactions with collagen type VI, laminin or fibronectin. In summary, the interactions of human myeloma cells with the extracellular matrix may explain the specific retention of the plasma cells within the bone marrow.
Kanasaki, Keizo; Kanda, Yoshiko; Palmsten, Kristin; Tanjore, Harikrishna; Lee, Soo Bong; Lebleu, Valerie S; Gattone, Vincent H; Kalluri, Raghu
2008-01-15
The human kidneys filter 180 l of blood every day via about 2.5 million glomeruli. The three layers of the glomerular filtration apparatus consist of fenestrated endothelium, specialized extracellular matrix known as the glomerular basement membrane (GBM) and the podocyte foot processes with their modified adherens junctions known as the slit diaphragm (SD). In this study we explored the contribution of podocyte beta1 integrin signaling for normal glomerular function. Mice with podocyte specific deletion of integrin beta1 (podocin-Cre beta1-fl/fl mice) are born normal but cannot complete postnatal renal development. They exhibit detectable proteinuria on day 1 and die within a week. The kidneys of podocin-Cre beta1-fl/fl mice exhibit normal glomerular endothelium but show severe GBM defects with multilaminations and splitting including podocyte foot process effacement. The integrin linked kinase (ILK) is a downstream mediator of integrin beta1 activity in epithelial cells. To further explore whether integrin beta1-mediated signaling facilitates proper glomerular filtration, we generated mice deficient of ILK in the podocytes (podocin-Cre ILK-fl/fl mice). These mice develop normally but exhibit postnatal proteinuria at birth and die within 15 weeks of age due to renal failure. Collectively, our studies demonstrate that podocyte beta1 integrin and ILK signaling is critical for postnatal development and function of the glomerular filtration apparatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, W.-J.
2008-05-02
Agglucetin, a platelet glycoprotein (GP)Ib binding protein from Formosan Agkistrodon acutus (A. acutus) venom, could sustain human umbilical vein endothelial cell (HUVEC) proliferation and HUVEC adhering to immobilized agglucetin showed extensive spreading, which was strongly abrogated by integrin antagonists 7E3 and triflavin. Flow cytometric analyses confirmed the expression of GPIb complex on HUVEC is absent and fluorescein isothiocyanate (FITC)-agglucetin binds to HUVEC in a dose-dependent and saturable manner. Furthermore, native agglucetin specifically and dose-dependently inhibited the binding of FITC-23C6, an anti-{alpha}v{beta}3 monoclonal antibody (mAb), but not antibodies against {alpha}2 and {alpha}5, toward HUVEC and purified {alpha}v{beta}3 also bound to immobilizedmore » agglucetin-{beta} in a dose-dependent manner. Moreover, agglucetin exhibited a pro-angiogenic effect in vitro, as well as the focal adhesion kinase (FAK)-associated signaling molecules responsible for HUVEC activation were initiated by agglucetin. In conclusion, agglucetin, acting as a survival factor, promotes endothelial adhesion and angiogenesis by triggering {alpha}v{beta}3 signaling through FAK/phosphatidylinositol 3-kinase (PI3K)/Akt pathway.« less
Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro
NASA Technical Reports Server (NTRS)
Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.
1995-01-01
The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.
Tóth, Beáta; Garabuczi, Eva; Sarang, Zsolt; Vereb, György; Vámosi, György; Aeschlimann, Daniel; Blaskó, Bernadett; Bécsi, Bálint; Erdõdi, Ferenc; Lacy-Hulbert, Adam; Zhang, Ailiang; Falasca, Laura; Birge, Raymond B; Balajthy, Zoltán; Melino, Gerry; Fésüs, László; Szondy, Zsuzsa
2009-02-15
Transglutaminase 2 (TG2), a protein cross-linking enzyme with many additional biological functions, acts as coreceptor for integrin beta(3). We have previously shown that TG2(-/-) mice develop an age-dependent autoimmunity due to defective in vivo clearance of apoptotic cells. Here we report that TG2 on the cell surface and in guanine nucleotide-bound form promotes phagocytosis. Besides being a binding partner for integrin beta(3), a receptor known to mediate the uptake of apoptotic cells via activating Rac1, we also show that TG2 binds MFG-E8 (milk fat globulin EGF factor 8), a protein known to bridge integrin beta(3) to apoptotic cells. Finally, we report that in wild-type macrophages one or two engulfing portals are formed during phagocytosis of apoptotic cells that are characterized by accumulation of integrin beta(3) and Rac1. In the absence of TG2, integrin beta(3) cannot properly recognize the apoptotic cells, is not accumulated in the phagocytic cup, and its signaling is impaired. As a result, the formation of the engulfing portals, as well as the portals formed, is much less efficient. We propose that TG2 has a novel function to stabilize efficient phagocytic portals.
Regional localization of the human integrin {beta}{sub 6} gene (ITGB6) to chromosome 2q24-q31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Ruiz, E.; Sanchez-Madrid, F.
The heterodimer {alpha}{sub v}{beta}{sub 6} acts as a fibronectin receptor for human carcinoma cells. The authors report here the regional localization of the {beta}{sub 6} gene to 2q24-q31 by fluorescence in situ hybridization coupled with GTG-banding. This gene is located close to the region to which genes coding for the {alpha} subunits of the integrins VLA-4 and vitronectin receptor (ITGA4 and ITGAV, respectively) have been previously mapped (2q31-q32). These data suggest a proximal position of the integrin {beta}{sub 6} locus (ITGB6) on this integrin gene cluster. Futhermore, double-labeling in situ hybridization experiments performed with {alpha}{sub 4} and {alpha}{sub v} probesmore » indicated a telomeric position of ITGAV with respect to ITGA4. 22 refs., 2 figs.« less
Modulation of lens cell adhesion molecules by particle beams
NASA Technical Reports Server (NTRS)
McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.
2001-01-01
Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast, there was a dose-dependent increase in ICAM-1 immunofluorescence in confluent, but not exponentially-growing cells. These results suggest that proton irradiation downregulates beta 1-integrin and upregulates ICAM-1, potentially contributing to cell death or to aberrant differentiation via modulation of anchorage and/or signal transduction functions. Quantification of the expression levels of the CAMs by Western analysis is in progress.
Belkin, A M; Zhidkova, N I; Balzac, F; Altruda, F; Tomatis, D; Maier, A; Tarone, G; Koteliansky, V E; Burridge, K
1996-01-01
The cytoplasmic domains of integrins provide attachment of these extracellular matrix receptors to the cytoskeleton and play a critical role in integrin-mediated signal transduction. In this report we describe the identification, expression, localization, and initial functional characterization of a novel form of beta 1 integrin, termed beta 1D. This isoform contains a unique alternatively spliced cytoplasmic domain of 50 amino acids, with the last 24 amino acids encoded by an additional exon. Of these 24 amino acids, 11 are conserved when compared to the beta 1A isoform, but 13 are unique (Zhidkova, N. I., A. M. Belkin, and R. Mayne. 1995. Biochem. Biophys. Res. Commun. 214:279-285; van der Flier, A., I. Kuikman, C. Baudoin, R, van der Neuf, and A. Sonnenberg. 1995. FEBS Lett. 369:340-344). Using an anti-peptide antibody against the beta 1D integrin subunit, we demonstrated that the beta 1D isoform is synthesized only in skeletal and cardiac muscles, while very low amounts of beta 1A were detected by immunoblot in striated muscles. Whereas beta 1A could not be detected in adult skeletal muscle fibers and cardiomyocytes by immunofluorescence, beta 1D was localized to the sarcolemma of both cell types. In skeletal muscle, beta 1D was concentrated in costameres, myotendinous, and neuromuscular junctions. In cardiac muscle this beta 1 isoform was found in costamers and intercalated discs. beta 1D was associated with alpha 7A and alpha 7B in adult skeletal muscle. In cardiomyocytes of adult heart, alpha 7B was the major partner for the beta 1D isoform. beta 1D could not be detected in proliferating C2C12 myoblasts, but it appeared immediately after myoblast fusion and its amount continued to rise during myotube growth and maturation. In contrast, expression of the beta 1A isoform was downregulated during myodifferentiation in culture and it was completely displaced by beta 1D in mature differentiated myotubes. We also analyzed some functional properties of the beta 1D integrin subunit. Expression of human beta 1D in CHO cells led to its localization at focal adhesions. Clustering of this integrin isoform on the cell surface stimulated tyrosine phosphorylation of pp125FAK (focal adhesion kinase) and caused transient activation of mitogen-activated protein (MAP) kinases. These data indicate that beta 1D and beta 1A integrin isoforms are functionally similar with regard to integrin-mediated signaling.
Liu, Zhaofei; Yan, Yongjun; Chin, Frederic T; Wang, Fan; Chen, Xiaoyuan
2009-01-22
Radiolabeled RGD and bombesin peptides have been extensively investigated for tumor integrin alpha(v)beta(3) and GRPR imaging, respectively. Due to the fact that many tumors are both integrin and GRPR positive, we designed and synthesized a heterodimeric peptide Glu-RGD-BBN, which is expected to be advantageous over the monomeric peptides for dual-receptor targeting. A PEG(3) spacer was attached to the glutamate alpha-amino group of Glu-RGD-BBN to enhance the (18)F labeling yield and to improve the in vivo kinetics. PEG(3)-Glu-RGD-BBN possesses the comparable GRPR and integrin alpha(v)beta(3) receptor-binding affinities as the corresponding monomers, respectively. The dual-receptor targeting properties of (18)F-FB-PEG(3)-Glu-RGD-BBN were observed in PC-3 tumor model. (18)F-FB-PEG(3)-Glu-RGD-BBN with high tumor contrast and favorable pharmacokinetics is a promising PET tracer for dual integrin and GRPR positive tumor imaging. This heterodimer strategy may also be an applicable method to develop other molecules with improved in vitro and in vivo characterizations for tumor diagnosis and therapy.
Joly, Sandrine; Samardzija, Marijana; Wenzel, Andreas; Thiersch, Markus; Grimm, Christian
2009-03-01
During light-induced photoreceptor degeneration, large amounts of cellular debris are formed that must be cleared from the subretinal space. The integrins alphavbeta5 and alphavbeta3 are involved in the normal physiological process of phagocytosis in the retina. This study was conducted to investigate the question of whether the lack of beta5 and/or beta3 integrin subunits might influence the course of retinal degeneration and/or clearance of photoreceptor debris induced by acute exposure to light. Wild-type, beta5(-/-) and beta3(-/-) single-knockout, and beta3(-/-)/beta5(-/-) Ccl2(-/-)/beta5(-/-) double-knockout mice were exposed to 13,000 lux of white light for 2 hours to induce severe photoreceptor degeneration. Real-time PCR and Western blot analysis were used to analyze gene and protein expression, light- and electron microscopy to judge retinal morphology, and immunofluorescence to study retinal distribution of proteins. Individual or combined deletion of beta3 and beta5 integrin subunits did not affect the pattern of photoreceptor cell loss or the clearance of photoreceptor debris in mice compared with that in wild-type mice. Invading macrophages may contribute to efficient phagocytosis. However, ablation of the MCP-1 gene did not prevent macrophage recruitment. Several chemokines in addition to MCP-1 were induced after light-induced damage that may have compensated for the deletion of MCP-1. Acute clearance of a large amount of cellular debris from the subretinal space involves invading macrophages and does not depend on beta3 and beta5 integrins.
Wright, M O; Nishida, K; Bavington, C; Godolphin, J L; Dunne, E; Walmsley, S; Jobanputra, P; Nuki, G; Salter, D M
1997-09-01
Mechanical stimuli influence chondrocyte metabolism, inducing changes in intracellular cyclic adenosine monophosphate and proteoglycan production. We have previously demonstrated that primary monolayer cultures of human chondrocytes have an electrophysiological response after intermittent pressure-induced strain characterised by a membrane hyperpolarisation of approximately 40%. The mechanisms responsible for these changes are not fully understood but potentially involve signalling molecules such as integrins that link extracellular matrix with cytoplasmic components. The results reported in this paper demonstrate that the transduction pathways involved in the hyperpolarisation response of human articular chondrocytes in vitro after cyclical pressure-induced strain involve alpha 5 beta 1 integrin. We have demonstrated, using pharmacological inhibitors of a variety of intracellular signalling pathways, that the actin cytoskeleton, the phospholipase C calmodulin pathway, and both tyrosine protein kinase and protein kinase C activities are important in the transduction of the electrophysiological response. These results suggest that alpha 5 beta 1 is an important chondrocyte mechanoreceptor and a potential regulator of chondrocyte function.
Tumor suppression function of the Big-h3 gene in radiation carcinogenesis
NASA Astrophysics Data System (ADS)
Zhao, Y.; Piao, C.; Hei, T.
Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.
NASA Technical Reports Server (NTRS)
Miyamoto, Yuko J.; Mitchell, Jason S.; McIntyre, Bradley W.
2003-01-01
CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.
Yamodo, Innocent H; Blystone, Scott D
2004-01-01
Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.
Sen, Triparna; Moulik, Shuvojit; Dutta, Anindita; Choudhury, Paromita Roy; Banerji, Aniruddha; Das, Shamik; Roy, Madhumita; Chatterjee, Amitava
2009-02-13
The tumor inhibiting property of green tea polyphenol epigallocatechin-3-gallate (EGCG) is well documented. Studies reveal that matrix-metalloproteinases (MMPs) play pivotal roles in tumor invasion through degradation of basement membranes and extracellular matrix (ECM). We studied the effect of EGCG on matrixmetalloproteinases-2 (MMP-2), the factors involved in activation, secretion and signaling molecules that might be involved in the regulation of MMP-2 in human breast cancer cell line, MCF-7. MCF-7 was treated with EGCG (20 muM, 24 h), the effect of EGCG on MMP-2 expression, activity and its regulatory molecules were studied by gelatin zymography, Western blot, quantitative and semi-quantitative real time RT-PCR, immunoflourescence and cell adhesion assay. EGCG treatment reduced the activity, protein expression and mRNA expression level of MMP-2. EGCG treatment reduced the expression of focal adhesion kinase (FAK), membrane type-1-matrix metalloproteinase (MT1-MMP), nuclear factor-kappa B (NF-kB), vascular endothelial growth factor (VEGF) and reduced the adhesion of MCF-7 cells to ECM, fibronectin and vitronectin. Real time RT-PCR revealed a reduced expression of integrin receptors alpha5, beta1, alphav and beta3 due to EGCG treatment. Down regulation of expression of MT1-MMP, NF-kB, VEGF and disruption of functional status of integrin receptors may indicate decreased MMP-2 activation; low levels of FAK expression might indicate disruption in FAK-induced MMP-2 secretion and decrease in activation of phosphatidyl-inositol-3-kinase (PI-3K), extracellular regulated kinase (ERK) indicates probable hindrance in MMP-2 regulation and induction. We propose EGCG as potential inhibitor of expression and activity of pro-MMP-2 by a process involving multiple regulatory molecules in MCF-7.
Yago, Tadayuki; Shao, Bojing; Miner, Jonathan J; Yao, Longbiao; Klopocki, Arkadiusz G; Maeda, Kenichiro; Coggeshall, K Mark; McEver, Rodger P
2010-07-22
In inflamed venules, neutrophils rolling on E-selectin induce integrin alpha(L)beta(2)-dependent slow rolling on intercellular adhesion molecule-1 by activating Src family kinases (SFKs), DAP12 and Fc receptor-gamma (FcRgamma), spleen tyrosine kinase (Syk), and p38. E-selectin signaling cooperates with chemokine signaling to recruit neutrophils into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) as the essential E-selectin ligand and Fgr as the only SFK that initiate signaling to slow rolling. In contrast, we found that E-selectin engagement of PSGL-1 or CD44 triggered slow rolling through a common, lipid raft-dependent pathway that used the SFKs Hck and Lyn as well as Fgr. We identified the Tec kinase Bruton tyrosine kinase as a key signaling intermediate between Syk and p38. E-selectin engagement of PSGL-1 was dependent on its cytoplasmic domain to activate SFKs and slow rolling. Although recruiting phosphoinositide-3-kinase to the PSGL-1 cytoplasmic domain was reported to activate integrins, E-selectin-mediated slow rolling did not require phosphoinositide-3-kinase. Studies in mice confirmed the physiologic significance of these events for neutrophil slow rolling and recruitment during inflammation. Thus, E-selectin triggers common signals through distinct neutrophil glycoproteins to induce alpha(L)beta(2)-dependent slow rolling.
Campbell, Shirley; Otis, Melissa; Côté, Mylène; Gallo-Payet, Nicole; Payet, Marcel Daniel
2003-04-01
Integrins are responsible for adhesion and activation of several intracellular cascades. The present study was aimed at determining whether the interaction between fibronectin and integrins could generate pathways involved in physiological functions of rat adrenal glomerulosa cells. Immunofluorescence studies and adhesion assays showed that fibronectin was the best matrix in promoting the formation of focal adhesion. Binding of glomerulosa cells to fibronectin, but not to collagen I or poly-L-lysine, involved the integrin-binding sequence Arg-Gly-Asp (RGD). Activation of glomerulosa cells with Arg-Gly-Asp-Ser (RGDS) induced an increase in [Ca(2+)](i), whereas fibronectin triggered a release of Ca(2+) from InsP(3)-sensitive Ca(2+) stores. Aldosterone secretion induced by ACTH, angiotensin II, and RGDS and proliferation were improved on fibronectin, compared with poly-L-lysine. The RGDS peptide induced a transient increase in the activity of the p42/p44(mapk), independent of phosphatidylinositol-3 kinase and protein kinase C. Integrins alpha(5) and alpha(V) as well as their fibronectin receptor partners beta(1) and beta(3), were identified. These results suggest that in rat adrenal glomerulosa cells, binding of the alpha(5)beta(1), alpha(v)beta(1), or alpha(v)beta(3) integrins to fibronectin is involved in the generation of two important signaling events, increase in intracellular calcium, and activation of the p42/p44(mapk) cascade, leading to cell proliferation and aldosterone secretion.
Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice.
Zong, Haihong; Bastie, Claire C; Xu, Jun; Fassler, Reinhard; Campbell, Kevin P; Kurland, Irwin J; Pessin, Jeffrey E
2009-02-13
Integrin receptor plays key roles in mediating both inside-out and outside-in signaling between cells and the extracellular matrix. We have observed that the tissue-specific loss of the integrin beta1 subunit in striated muscle results in a near complete loss of integrin beta1 subunit protein expression concomitant with a loss of talin and to a lesser extent, a reduction in F-actin content. Muscle-specific integrin beta1-deficient mice had no significant difference in food intake, weight gain, fasting glucose, and insulin levels with their littermate controls. However, dynamic analysis of glucose homeostasis using euglycemichyperinsulinemic clamps demonstrated a 44 and 48% reduction of insulin-stimulated glucose infusion rate and glucose clearance, respectively. The whole body insulin resistance resulted from a specific inhibition of skeletal muscle glucose uptake and glycogen synthesis without any significant effect on the insulin suppression of hepatic glucose output or insulin-stimulated glucose uptake in adipose tissue. The reduction in skeletal muscle insulin responsiveness occurred without any change in GLUT4 protein expression levels but was associated with an impairment of the insulin-stimulated protein kinase B/Akt serine 473 phosphorylation but not threonine 308. The inhibition of insulin-stimulated serine 473 phosphorylation occurred concomitantly with a decrease in integrin-linked kinase expression but with no change in the mTOR.Rictor.LST8 complex (mTORC2). These data demonstrate an in vivo crucial role of integrin beta1 signaling events in mediating cross-talk to that of insulin action.
Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry
NASA Technical Reports Server (NTRS)
Wang, N.; Ingber, D. E.
1995-01-01
We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.
2011-01-01
Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-/-, integrin-beta1-/-, focal adhesion kinase (FAK)-/- and Src/Yes/Fyn-/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1/2-/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker molecule between Cdc42 and activated EGFR/PDGFR/PI3-kinase. Using C. jejuni mutant strains we further demonstrated that the fibronectin-binding protein CadF and intact flagella are involved in Cdc42-GTP induction, indicating that the bacteria may directly target the fibronectin/integrin complex for inducing signaling leading to its host cell entry. Conclusion Collectively, our findings led us propose that C. jejuni infection triggers a novel fibronectin→integrin-beta1→FAK/Src→EGFR/PDGFR→PI3-kinase→Vav2 signaling cascade, which plays a crucial role for Cdc42 GTPase activity associated with filopodia formation and enhances bacterial invasion. PMID:22204307
Immunolocalization of integrin-like proteins in Arabidopsis and Chara
NASA Technical Reports Server (NTRS)
Katembe, W. J.; Swatzell, L. J.; Makaroff, C. A.; Kiss, J. Z.
1997-01-01
Integrins are a large family of integral plasma membrane proteins that link the extracellular matrix to the cytoskeleton in animal cells. As a first step in determining if integrin-like proteins are involved in gravitropic signal transduction pathways, we have used a polyclonal antibody against the chicken beta1 integrin subunit in western blot analyses and immunofluorescence microscopy to gain information on the size and location of these proteins in plants. Several different polypeptides are recognized by the anti-integrin antibody in roots and shoots of Arabidopsis and in the internodal cells and rhizoids of Chara. These cross-reactive polypeptides are associated with cellular membranes, a feature which is consistent with the known location of integrins in animal systems. In immunofluorescence studies of Arabidopsis roots, a strong signal was obtained from labeling integrin-like proteins in root cap cells, and there was little or no immunolabel in other regions of the root tip. While the antibody stained throughout Chara rhizoids, the highest density of immunolabel was at the tip. Thus, in both Arabidopsis roots and Chara rhizoids, the sites of gravity perception/transduction appear to be enriched in integrin-like molecules.
Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.
Saher, G; Hildt, E
1999-09-24
Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.
Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J
1999-09-15
We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.
Chen, JianFeng; Takagi, Junichi; Xie, Can; Xiao, Tsan; Luo, Bing-Hao; Springer, Timothy A
2004-12-31
We examined the effect of conformational change at the beta(7) I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin alpha(4)beta(7). An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the alpha(4) beta(7) headpiece. Wild-type alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+)/Mg(2+) but firm adhesion in Mg(2+) and Mn(2+). Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn(2+), confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn(2+). Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion.
Bolduc, Gilles R; Madoff, Lawrence C
2007-12-01
Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.
deHart, Gregory W; Healy, Kevin E; Jones, Jonathan C R
2003-02-01
Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the incorporation of laminin-5 into its proper higher-order structure within the extracellular matrix of keratinocytes and (2) that the organizational state of laminin-5 has an influence on laminin-5 matrix function. Copyright 2003 Elsevier Science (USA)
Zhang, Kai; Ding, Wei; Sun, Wei; Sun, Xiao-jiang; Xie, You-zhuan; Zhao, Chang-qing; Zhao, Jie
2016-01-01
Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear. The present study was to look for how AF cells sense mechanical changes. In vivo experiments, the involvement of mechanoreceptors in apoptosis was examined by RT-PCR and/or immunoblotting in the lumbar spine of rats subjected to unbalanced dynamic and static forces. In vitro experiments, we investigated apoptotic signaling pathways in untransfected and transfected AF cells with the lentivirus vector for rat β1 integrin overexpression after cyclic stretch. Apoptosis in AF cells was assessed using flow cytometry, Hoechst 33258 nuclear staining. Western blotting was used to analyze expression of β1 integrin and caspase-3 and ERK1/2 MAPK signaling molecules. In the rat IVDD model, unbalanced dynamic and static forces induced apoptosis of disc cells, which corresponded to decreased expression of β1 integrin. Cyclic stretch-induced apoptosis in rat AF cells correlated with the activation of caspase-3 and with decreased levels of β1 integrin and the phosphorylation levels of ERK1/2 activation level. However, the overexpression of β1 integrin in AF cells ameliorated cyclic stretch-induced apoptosis and decreased caspase-3 activation. Furthermore, ERK1/2-specific inhibitor promotes apoptosis in vector β1-infected AF cells. These results suggest that the disruption of β1 integrin signaling may underlie disc cell apoptosis induced by mechanical stress. Further work is necessary to fully elucidate the pathophysiological mechanisms that underlie IVDD caused by unbalanced dynamic and static forces.
NASA Technical Reports Server (NTRS)
Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)
1997-01-01
Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.
Quinn, Jeffrey A; Graeber, C Thomas; Frackelton, A Raymond; Kim, Minsoo; Schwarzbauer, Jean E; Filardo, Edward J
2009-07-01
Estrogen promotes changes in cytoskeletal architecture not easily attributed to the biological action of estrogen receptors, ERalpha and ERbeta. The Gs protein-coupled transmembrane receptor, GPR30, is linked to specific estrogen binding and rapid estrogen-mediated release of heparin-bound epidermal growth factor. Using marker rescue and dominant interfering mutant strategies, we show that estrogen action via GPR30 promotes fibronectin (FN) matrix assembly by human breast cancer cells. Stimulation with 17beta-estradiol or the ER antagonist, ICI 182, 780, results in the recruitment of FN-engaged integrin alpha5beta1 conformers to fibrillar adhesions and the synthesis of FN fibrils. Concurrent with this cellular response, GPR30 promotes the formation of Src-dependent, Shc-integrin alpha5beta1 complexes. Function-blocking antibodies directed against integrin alpha5beta1 or soluble Arg-Gly-Asp peptide fragments derived from FN specifically inhibited GPR30-mediated epidermal growth factor receptor transactivation. Estrogen-mediated FN matrix assembly and epidermal growth factor receptor transactivation were similarly disrupted in integrin beta1-deficient GE11 cells, whereas reintroduction of integrin beta1 into GE11 cells restored these responses. Mutant Shc (317Y/F) blocked GPR30-induced FN matrix assembly and tyrosyl phosphorylation of erbB1. Interestingly, relative to recombinant wild-type Shc, 317Y/F Shc was more readily retained in GPR30-induced integrin alpha5beta1 complexes, yet this mutant did not prevent endogenous Shc-integrin alpha5beta1 complex formation. Our results suggest that GPR30 coordinates estrogen-mediated FN matrix assembly and growth factor release in human breast cancer cells via a Shc-dependent signaling mechanism that activates integrin alpha5beta1.
Potin, Dominique; Launay, Michele; Monatlik, Francoise; Malabre, Patrice; Fabreguettes, Maud; Fouquet, Andre; Maillet, Magali; Nicolai, Eric; Dorgeret, Loïc; Chevallier, François; Besse, Dominique; Dufort, Monique; Caussade, François; Ahmad, Syed Z; Stetsko, Dawn K; Skala, Stacey; Davis, Patricia M; Balimane, Praveen; Patel, Karishma; Yang, Zheng; Marathe, Punit; Postelneck, Jennifer; Townsend, Robert M; Goldfarb, Valentina; Sheriff, Steven; Einspahr, Howard; Kish, Kevin; Malley, Mary F; DiMarco, John D; Gougoutas, Jack Z; Kadiyala, Pathanjali; Cheney, Daniel L; Tejwani, Ravindra W; Murphy, Denette K; Mcintyre, Kim W; Yang, Xiaoxia; Chao, Sam; Leith, Leslie; Xiao, Zili; Mathur, Arvind; Chen, Bang-Chi; Wu, Daugh-Rurng; Traeger, Sarah C; McKinnon, Murray; Barrish, Joel C; Robl, Jeffrey A; Iwanowicz, Edwin J; Suchard, Suzanne J; Dhar, T G Murali
2006-11-30
LFA-1 (leukocyte function-associated antigen-1), is a member of the beta2-integrin family and is expressed on all leukocytes. This letter describes the discovery and preliminary SAR of spirocyclic hydantoin based LFA-1 antagonists that culminated in the identification of analog 8 as a clinical candidate. We also report the first example of the efficacy of a small molecule LFA-1 antagonist in combination with CTLA-4Ig in an animal model of transplant rejection.
JAM-C regulates tight junctions and integrin-mediated cell adhesion and migration.
Mandicourt, Guillaume; Iden, Sandra; Ebnet, Klaus; Aurrand-Lions, Michel; Imhof, Beat A
2007-01-19
Junctional Adhesion Molecules (JAMs) have been described as major components of tight junctions in endothelial and epithelial cells. Tight junctions are crucial for the establishment and maintenance of cell polarity. During tumor development, they are remodeled, enabling neoplastic cells to escape from constraints imposed by intercellular junctions and to adopt a migratory behavior. Using a carcinoma cell line we tested whether JAM-C could affect tight junctions and migratory properties of tumor cells. We show that transfection of JAM-C improves the tight junctional barrier in tumor cells devoid of JAM-C expression. This is dependent on serine 281 in the cytoplasmic tail of JAM-C because serine mutation into alanine abolishes the specific localization of JAM-C in tight junctions and establishment of cell polarity. More importantly, the same mutation stimulates integrin-mediated cell migration and adhesion via the modulation of beta1 and beta3 integrin activation. These results highlight an unexpected function for JAM-C in controlling epithelial cell conversion from a static, polarized state to a pro-migratory phenotype.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Amblard, D.; Nishimura, Y.; Iwaniec, U. T.; Kim, J-B; Almeida, E. A. C.; Damsky, C. D.; Wronski, T. J.; van der Meulen, M. C. H.
2005-01-01
Skeletal modeling entails the deposition of large amounts of extracellular matrix (ECM) to form structures tailored to withstand increasing mechanical loads during rapid growth. Specific ECM molecules bind to integrin receptors on the cell surface, thereby triggering a cascade of signaling events that affect critical cell functions. To evaluate the role of integrins during skeletal growth, transgenic mice were engineered to express a function-perturbing fragment of beta1 integrin consisting of the transmembrane domain and cytoplasmic tail under the control of the osteocalcin promoter (TG mice). Thus, transgene expression was targeted to mature cells of the osteoblast lineage, and herein we show that cultured cells resembling osteocytes from 90-day-old TG mice display impaired adhesion to collagen I, a ligand for beta1 integrin. To determine the influence of beta1 integrin on bones that are responsible for providing structural support during periods of rapid growth, we examined the phenotype of the appendicular skeleton in TG mice compared to wild type (WT) mice. According to radiographs, bones from mice of both genotypes between 14 and 90 days of age appeared similar in gross structure and density, although proximal tibiae from 35-90 days old TG mice were less curved than those of WT mice (72-92% TG/WT). Although there were only mild and transient differences in absolute bone mass and strength, once normalized to body mass, the tibial dry mass (79.1% TG/WT females), ash mass (78.5% TG/WT females), and femoral strength in torsion (71.6% TG/WT females) were reduced in TG mice compared to WT mice at 90 days of age. Similar effects of genotype on bone mass and curvature were observed in 1-year-old retired breeders, indicating that these phenotypic differences between TG and WT mice were stable well into adulthood. Effects of genotype on histomorphometric indices of cancellous bone turnover were minimal and evident only transiently during growth, but when present they demonstrated differences in osteoblast rather than osteoclast parameters. Together, these results suggest that integrin signals generated during growth enhance the acquisition of a skeletal mass, structure, and strength to withstand the mechanical loads generated by weight-bearing.
Surrey, Eric S; Lietz, Annette K; Gustofson, Robert L; Minjarez, Debra A; Schoolcraft, William B
2010-02-01
To determine whether endometrial expression of the integrin alpha(v)beta(3) vitronectin can predict which endometriosis patient subgroup will benefit from pre-IVF cycle prolonged GnRH agonist (GnRHa) therapy. Prospective randomized institutional review board approved pilot trial. Private assisted reproductive technology program. IVF candidates with regular menses, surgically confirmed endometriosis, and normal ovarian reserve. All patients underwent endometrial biopsy 9 to 11 days post-LH surge to evaluate alpha(v)beta(3) integrin expression. Patients were randomized either to receive depot leuprolide acetate 3.75 mg every 28 days for three doses before controlled ovarian hyperstimulation (COH) or to proceed directly to COH and IVF. Group 1: integrin-positive controls (N = 12); group 2: integrin-positive administered prolonged GnRHa (N = 8). Group A: integrin-negative controls (N = 7); group B: integrin-negative administered prolonged GnRHa (N = 9). COH responses, ongoing pregnancy and implantation rates. There were no significant effects of GnRH agonist treatment in either of the integrin expression strata regarding ongoing pregnancy or implantation rates, although these outcomes were more frequent in group 2 vs. 1 (62.5% vs. 41.6% and 35% vs. 20.6%, respectively). This effect may have because of limited sample size. The value of a negative integrin biopsy in predicting an ongoing pregnancy after prolonged GnRH agonist therapy was only 44.4%. Endometrial alpha(v)beta(3) integrin expression did not predict which endometriosis patients would benefit from prolonged GnRHa therapy before IVF. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C
1994-04-15
Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.
RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells.
Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani
2003-10-24
The enzyme p70S6 kinase (S6K1) is critical for cell growth, and we have reported its activation during cardiac hypertrophy. Because cardiac hypertrophy also involves integrin activation, we analyzed whether integrins could contribute to S6K1 activation. Using adult feline cardiomyocytes, here we report that integrin-interacting Arg-Gly-Asp (RGD) peptides activate S6K1 as observed by band shifting, kinase activity and phosphorylation at Thr-389 and Thr-421/Ser-424 of S6K1, and S6 protein phosphorylation. Perturbation of specific integrin function with blocking antibodies and by overexpressing the beta1A cytoplasmic tail revealed that beta3 but not beta1 integrin mediates the RGD-induced S6K1 activation. This activation is focal adhesion complex-independent and is accompanied by the activation of extracellular signal-regulated kinases 1/2 (ERK) and mammalian target of rapamycin (mTOR). Studies using specific inhibitors and dominant negative c-Raf expression in cardiomyocytes indicate that the S6K1 activation involves mTOR, MEK/ERK, and phosphatidylinositol 3-kinase pathways and is independent of protein kinase C and c-Raf. Finally, addition of fluorescent-labeled RGD peptide to cardiomyocytes exhibits its internalization and localization to the endocytic vesicles, and pretreatment of cardiomyocytes with endocytic inhibitors reduced the S6K1 activation. These data suggest that RGD interaction with beta3 integrin and its subsequent endocytosis trigger specific signaling pathway(s) for S6K1 activation in cardiomyocytes and that this process may contribute to hypertrophic growth and remodeling of myocardium.
Koyama, T; Hughes, R C
1992-12-25
We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.
Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieken, Stefan, E-mail: Stefan.Rieken@med.uni-heidelberg.de; Habermehl, Daniel; Wuerth, Lena
2012-05-01
Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration onmore » both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansing, Hope A.; Sarkeshik, Ali; Yates, John R.
2011-03-11
Research highlights: {yields} Proteomics of clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta}, {alpha}{sub 6}{beta} receptors in oral carcinoma. {yields} p130Cas, Dek, Src and talin regulate oral carcinoma invasion. {yields} p130Cas, talin, Src and zyxin regulate oral carcinoma resistance to cisplatin. -- Abstract: Ligand engagement by integrins induces receptor clustering and formation of complexes at the integrin cytoplasmic face that controls cell signaling and cytoskeletal dynamics critical for adhesion-dependent processes. This study searches for a subset of integrin effectors that coordinates both tumor cell invasion and resistance to the chemotherapeutic drug cisplatin in oral carcinomas. Candidate integrin effectors were identified in a proteomicsmore » screen of proteins recruited to clustered integrin {alpha}{beta}1, {alpha}{sub v}{beta} or {alpha}{sub 6}{beta} receptors in oral carcinomas. Proteins with diverse functions including microtubule and actin binding proteins, and factors involved in trafficking, transcription and translation were identified in oral carcinoma integrin complexes. Knockdown of effectors in the oral carcinoma HN12 cells revealed that p130Cas, Dek, Src and talin were required for invasion through Matrigel. Disruption of talin or p130Cas by RNA interference increased resistance to cisplatin, whereas targeting Dek, Src or zyxin reduced HN12 resistance to cisplatin. Analysis of the spreading of HN12 cells on collagen I and laminin I revealed that a decrease in p130Cas or talin expression inhibited spreading on both matrices. Interestingly, a reduction in zyxin expression enhanced spreading on laminin I and inhibited spreading on collagen I. Reduction of Dek, Src, talin or zyxin expression reduced HN12 proliferation by 30%. Proliferation was not affected by a reduction in p130Cas expression. We conclude that p130Cas, Src and talin function in both oral carcinoma invasion and resistance to cisplatin.« less
Jenkins, G; Redwood, K L; Meadows, L; Green, M R
1999-07-01
Mechanical forces are known to play an important role in regulating cell function in a wide range of biological systems. This is of particular relevance to dermal fibroblast function, given that the skin is known to be held under an intrinsic natural tension. To understand more about the generation of force by dermal fibroblasts and their ability to respond to changes in it, we have studied the role of the beta1 integrin receptors expressed by dermal fibroblasts in their ability to generate tensional forces within a collagen type I matrix and the effect of altered tensional force on integrin expression by dermal fibroblasts. Using a purpose-built culture force monitor, function-blocking antibodies directed towards the beta1 receptors dramatically reduced the tensional forces generated by dermal fibroblasts in a 3D collagen I matrix. However, the specific involvement of alpha1 or alpha2 subunits could not be demonstrated. Analysis of cellular response demonstrated that cells isolated from contracting collagen gels expressed fourfold higher levels of alpha2 mRNA than cells isolated from fully restrained gels. The levels of beta1 messenger RNA were relatively unaffected by reductions in force. Cells exposed to single reductions in force, however, did not exhibit alterations in either alpha1 or beta1 mRNA levels. We propose, therefore that alpha2beta1 integrin receptor levels in dermal fibroblasts are not altered in response to single reductions of gel tension, but do change following a continual change in force and associated matrix re-organization
Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco
2009-08-15
To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.
Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A
2005-01-01
Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133
Willey, Christopher D; Balasubramanian, Sundaravadivel; Rodríguez Rosas, María C; Ross, Robert S; Kuppuswamy, Dhandapani
2003-06-01
In pressure-overloaded myocardium, our recent study demonstrated cytoskeletal assembly of c-Src and other signaling proteins which was partially mimicked in vitro using adult feline cardiomyocytes embedded in three-dimensional (3D) collagen matrix and stimulated with an integrin-binding Arg-Gly-Asp (RGD) peptide. In the present study, we improved this model further to activate c-Src and obtain a full assembly of the focal adhesion complex (FAC), and characterized c-Src localization and integrin subtype(s) involved. RGD dose response experiments revealed that c-Src activation occurs subsequent to its cytoskeletal recruitment and is accompanied by p130Cas cytoskeletal binding and focal adhesion kinase (FAK) Tyr925 phosphorylation. When cardiomyocytes expressing hexahistidine-tagged c-Src via adenoviral gene delivery were used for RGD stimulation, the expressed c-Src exhibited relocation: (i) biochemical analysis revealed c-Src movement from the detergent-soluble to the -insoluble cytoskeletal fraction and (ii) confocal microscopic analysis showed c-Src movement from a nuclear/perinuclear to a sarcolemmal region. RGD treatment also caused sarcolemmal co-localization of FAK and vinculin. Characterization of integrin subtypes revealed that beta3, but not beta1, integrin plays a predominant role: (i) expression of cytoplasmic domain of beta1A integrin did not affect the RGD-stimulated FAC formation and (ii) both pressure-overloaded myocardium and RGD-stimulated cardiomyocytes exhibited phosphorylation of beta3 integrin at Tyr773/785 sites but not beta1 integrin at Thr788/789 sites. Together these data indicate that RGD treatment in cardiomyocytes causes beta3 integrin activation and c-Src sarcolemmal localization, that subsequent c-Src activation is accompanied by p130Cas binding and FAK Tyr925 phosphorylation, and that these events might be crucial for growth and remodeling of hypertrophying adult cardiomyocytes.
Burleson, Kathryn M; Casey, Rachael C; Skubitz, Keith M; Pambuccian, Stephan E; Oegema, Theodore R; Skubitz, Amy P N
2004-04-01
Ovarian carcinoma cells form multicellular aggregates, or spheroids, in the peritoneal cavity of patients with advanced disease. The current paradigm that ascites spheroids are non-adhesive leaves their contribution to ovarian carcinoma dissemination undefined. Here, spheroids obtained from ovarian carcinoma patients' ascites were characterized for their ability to adhere to molecules encountered in the peritoneal cavity, with the goal of establishing their potential to contribute to ovarian cancer spread. Spheroids were recovered from the ascites fluid of 11 patients with stage III or stage IV ovarian carcinoma. Adhesion assays to extracellular matrix (ECM) proteins and human mesothelial cell monolayers were performed for each of the ascites spheroid samples. Subsequently, inhibition assays were performed to identify the cell receptors involved. Most ascites samples adhered moderately to fibronectin and type I collagen, with reduced adhesion to type IV collagen and laminin. Monoclonal antibodies against the beta1 integrin subunit partially inhibited this adhesion. Ascites spheroids also adhered to hyaluronan. Additionally, spheroids adhered to live, but not fixed, human mesothelial cell monolayers, and this adhesion was partially mediated by beta1 integrins. The cellular content of the ascites fluid has often been considered non-adhesive, but our findings are the first to suggest that patient-derived ascites spheroids can adhere to mesothelial extracellular matrix via beta1 integrins, indicating that spheroids should not be ignored in the dissemination of ovarian cancer.
Osterreicher, Jan; Skopek, Jirí; Jahns, Juta; Hildebrandt, Guido; Psutka, Jan; Vilasová, Zdenka; Tanner, Judith Maria; Vogt, Jürgen; Butz, Tilman
2003-01-01
Bystander effects have been proposed as a third action pathway of ionising radiation besides direct and indirect effects. The purpose of the study was to investigate whether expression of interleukin-1alpha (IL-1alpha) and beta1-integrin is elevated in bystander cells as a marker for bystander effects in comparison with classical markers such as the clonogenic assay, apoptosis and the presence of micronuclei. The hybrid cell line E.A. hy.926 obtained by fusion of HUVEC cells with the epithelial cell line A 459 was irradiated with 0-5 Gy. Bystander effects were established via medium transfer at 45 min and 4 h after irradiation from irradiated to nonirradiated cell populations. In order to exclude effects of the irradiated medium itself, irradiated medium only was also used for transfer to nonirradiated cells. Then, cells were fixed at 1, 2, 6, and 24 h after irradiation or medium transport and IL-1alpha and beta1-integrin were detected and evaluated. A higher number of beta1-integrin-positive cells was observed in both irradiated and bystander cell populations than in the control group at 1 and 24 h after irradiation with 1 Gy or medium transfer. Significantly higher numbers of IL-1alpha-positive cells were found at 1, 2, and 6 h after irradiation with 1 Gy or medium transfer as well as at 2 and 6 h after irradiation with 5 Gy or medium transfer. Clonogenic survival decreased dependently on the dose in irradiated cells but did not show any significant difference between the bystander cell populations and sham-irradiated cells. The irradiated medium itself did not have any effect. It is concluded that beta1-integrin and IL-1alpha expression may serve as more sensitive markers of post-irradiation responses in bystander cell populations than the classical radiobiological markers. Moreover, overexpression of beta1-integrin and IL-1alpha may induce increased susceptibility to inflammation of bystander cells.
Cioci, Gianluca; Mitchell, Edward P; Chazalet, Valerie; Debray, Henri; Oscarson, Stefan; Lahmann, Martina; Gautier, Catherine; Breton, Christelle; Perez, Serge; Imberty, Anne
2006-04-14
The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.
Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul
2008-11-21
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.
El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria
2005-01-01
This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.
Nho, Richard Seonghun; Xia, Hong; Kahm, Judy; Kleidon, Jill; Diebold, Deanna; Henke, Craig A
2005-07-15
A beta1 integrin phosphatidylinositol 3-kinase/Akt pathway regulates fibroblast survival in collagen matrices. When fibroblasts attach to collagen, Akt becomes phosphorylated, providing a survival signal. In contrast, in response to mechanical forces generated during collagen contraction, Akt is dephosphorylated and fibroblasts undergo apoptosis. The kinase(s) responsible for regulating Akt phosphorylation in response to matrix-derived mechanical signals are unclear. Integrin-linked kinase (ILK) is associated with the beta1 integrin in the focal adhesion complex and as such is a candidate kinase that may regulate Akt phosphorylation and fibroblast viability. Nevertheless, there is no direct evidence that matrix-derived mechanical forces regulate cell viability by modulating ILK activity. Here, we show that ILK activity decreased in response to collagen matrix contraction, which correlated with Akt dephosphorylation and induction of fibroblast apoptosis. In contrast, enforced activation of beta1 integrin by activating antibody preserved ILK and Akt activity during collagen matrix contraction, and this is associated with protection from collagen contraction-induced apoptosis. Knock-down of ILK by small, interfering RNA (siRNA) attenuated Akt phosphorylation in response to ligation of beta1 integrin by collagen or activating antibody and enhanced fibroblast apoptosis in response to collagen contraction. Kinase dead ILK attenuated Akt phosphorylation and enhanced fibroblast apoptosis, whereas hyperactive and wild type ILK augmented Akt phosphorylation and protected fibroblasts from apoptosis. Constitutively active Akt preserved Akt activity and rescued ILK siRNA-treated fibroblasts from collagen contraction-induced apoptosis. These data establish that matrix-derived mechanical forces sensed by beta1 integrin are capable of modulating ILK activity which regulates fibroblast viability via an Akt-dependent mechanism.
Genetic ablation of the alpha 6-integrin subunit in Tie1Cre mice enhances tumour angiogenesis.
Germain, Mitchel; De Arcangelis, Adèle; Robinson, Stephen D; Baker, Marianne; Tavora, Bernardo; D'Amico, Gabriela; Silva, Rita; Kostourou, Vassiliki; Reynolds, Louise E; Watson, Alan; Jones, J Louise; Georges-Labouesse, Elisabeth; Hodivala-Dilke, Kairbaan
2010-02-01
Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo. Copyright 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Festuccia, Claudio; Angelucci, Adriano; Gravina, Giovanni; Eleuterio, Enrica; Vicentini, Carlo; Bologna, Mauro
2002-10-15
Bombesin-like peptides, including the mammalian homologue gastrin-releasing peptide, are highly expressed and secreted by neuroendocrine cells in prostate carcinoma tissues and are likely to be related to the progression of this neoplastic disease. Previously, we demonstrated that bombesin increased migration and protease expression in androgen-independent cells. In this work we show that bombesin is able to activate pro-MMP-9 through a mechanism involving the beta1 integrin subunit. In fact, MMP-9 processing was evident only when beta1 integrin was engaged with specific adhesive substrates, such as type I collagen, or when cells were seeded on dishes coated with antibodies against beta1 integrin, resulting in activation of the surface ligand. When exogenous pro-MMP-9 was added to PC3 cells, MMP-9 active forms were produced within 30 min by bombesin-treated cultures while control cultures expressed activated forms only after a longer time and at lower levels. MMP-9 activation required cytoskeleton integrity since this effect was abolished by cytochalasin D. Engagement of beta1 integrin caused an increased membrane-linked uPA activity which was required for MMP-9 activation. The cross talk between bombesin- and beta1-integrin-engaged signals seems to be crucial for the modulation of both membrane-linked uPA activity and MMP-9 activation and triggers complex intracellular signaling pathways requiring activation of tyrosine kinase activity, including that of src and PI3K. The beta1 integrin may be considered an important mechanism by which bombesin induces MMP-9 activation. This finding supports the idea that cellular responses to growth factors may be driven by cell-matrix interactions and stresses the role of neuroendocrine factors in prostate carcinoma progression.
Simpson, D G; Terracio, L; Terracio, M; Price, R L; Turner, D C; Borg, T K
1994-10-01
Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.
Characterisation of a novel, high affinity and selective αvβ6 integrin RGD-mimetic radioligand.
Hall, Eleanor R; Bibby, Lloyd I; Slack, Robert J
2016-10-01
The alpha-v beta-6 (αvβ6) integrin has been identified as playing a key role in the activation of transforming growth factor-β (TGFβ) that is hypothesised to be pivotal in the development of cancer and fibrotic diseases. Therefore, the αvβ6 integrin is an attractive therapeutic target for these debilitating diseases and a drug discovery programme to identify small molecule αvβ6 selective arginyl-glycinyl-aspartic acid (RGD)-mimetics was initiated within GlaxoSmithKline. The primary aim of this study was to pharmacologically characterise the binding to αvβ6 of a novel clinical candidate, compound 1, using a radiolabelled form. Radioligand binding studies were completed with [(3)H]compound 1 against the human and mouse soluble protein forms of αvβ6 to determine accurate affinity estimates and binding kinetics. The selectivity of compound 1 for the RGD integrin family was also determined using saturation binding studies (αvβ1, αvβ3, αvβ5, αvβ8, α5β1 and α8β1 integrins) and fibrinogen-induced platelet aggregation (αIIbβ3 integrin). In addition, the relationship between divalent metal cation type and concentration and αvβ6 RGD site binding was also investigated. Compound 1 has been demonstrated to bind with extremely high affinity and selectivity for the αvβ6 integrin and has the potential as a clinical tool and therapeutic for investigating the role of αvβ6 in a range of disease states both pre-clinically and clinically. In addition, this is the first study that has successfully applied radioligand binding to the RGD integrin field to accurately determine the affinity and selectivity profile of a small molecule RGD-mimetic. Copyright © 2016 Elsevier Inc. All rights reserved.
Rotavirus RRV associates with lipid membrane microdomains during cell entry.
Isa, Pavel; Realpe, Mauricio; Romero, Pedro; López, Susana; Arias, Carlos F
2004-05-01
Rotavirus cell entry is a multistep process, not completely understood, which requires at least four interactions between the virus and cell surface molecules. In this work, we investigated the role of the sphingolipid- and cholesterol-enriched lipid microdomains (rafts) in the entry of rotavirus strain RRV to MA104 cells. We found that ganglioside GM1, integrin subunits alpha2 and beta3, and the heat shock cognate protein 70 (hsc70), all of which have been implicated as rotavirus receptors, are associated with TX-100 and Lubrol WX detergent-resistant membranes (DRMs). Integrin subunits alpha2 and beta3 were found to be particularly enriched in DRMs resistant to lysis by Lubrol WX. When purified RRV particles were incubated with cells at 4 degrees C, about 10% of the total infectious virus was found associated with DRMs, and the DRM-associated virus increased to 37% in Lubrol-resistant membrane domains after 60-min incubation at 37 degrees C. The virus was excluded from DRMs if the cells were treated with methyl-beta-cyclodextrin (MbetaCD). Immunoblot analysis of the viral proteins showed that the virus surface proteins became enriched in DRMs upon incubation at 37 degrees C, being almost exclusively localized in Lubrol-resistant DRMs after 60 min. These data suggest that detergent-resistant membrane domains play an important role in the cell entry of rotaviruses, which could provide a platform to facilitate the efficient interaction of the rotavirus receptors with the virus particle.
Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration.
Rahman, Arshad; Fazal, Fabeha
2009-04-01
Stable adhesion of leukocytes to endothelium is crucial for transendothelial migration (TEM) of leukocytes evoked during inflammatory responses, immune surveillance, and homing and mobilization of hematopoietic progenitor cells. The basis of stable adhesion involves expression of intercellular adhesion molecule-1 (ICAM-1), an inducible endothelial adhesive protein that serves as a counter-receptor for beta(2)-integrins on leukocytes. Interaction of ICAM-1 with beta(2)-integrins enables leukocytes to adhere firmly to the vascular endothelium and subsequently, to migrate across the endothelial barrier. The emerging paradigm is that ICAM-1, in addition to firmly capturing leukocytes, triggers intracellular signaling events that may contribute to active participation of the endothelium in facilitating the TEM of adherent leukocytes. The nature, duration, and intensity of ICAM-1-dependent signaling events may contribute to the determination of the route (paracellular vs. transcellular) of leukocyte passage; these aspects of ICAM-1 signaling may in turn be influenced by density and distribution of ICAM-1 on the endothelial cell surface, the source of endothelial cells it is present on, and the type of leukocytes with which it is engaged. This review summarizes our current understanding of the "ICAM-1 paradigm" of TEM with an emphasis on the signaling events mediating ICAM-1 expression and activated by ICAM-1 engagement in endothelial cells.
Riemenschneider, Markus J; Mueller, Wolf; Betensky, Rebecca A; Mohapatra, Gayatry; Louis, David N
2005-11-01
Deregulated integrin signaling is common in cancers, including glioblastoma. Integrin binding and growth factor receptor signaling activate focal adhesion kinase (FAK) and subsequently up-regulate extracellular regulated kinases (ERK-1/2), leading to cell-cycle progression and cell migration. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We examined these pathways primarily in situ using a panel of 30 glioblastomas and gene expression arrays, immunohistochemistry, and fluorescence in situ hybridization, emphasizing the histological distribution of molecular changes. Within individual tumors, increased expression of FAK, p-FAK, paxillin, ERK-1/2, and p-ERK-1/2 occurred in regions of elevated EGFR and/or PDGFRA expression. Moreover, FAK activation levels correlated with EGFR and PDGFRA expression, and p-FAK and EGFR expression co-localized at the single-cell level. In addition, integrin expression was enriched in EGFR/PDGFRA-overexpressing areas but was more regionally confined than FAK, p-FAK, and paxillin. Integrins beta8 and alpha5beta1 were most commonly expressed, often in a perinecrotic or perivascular pattern. Taken together, our data suggest that growth factor receptor overexpression facilitates alterations in the integrin signaling pathway. Thus, FAK may act in glioblastoma as a downstream target of growth factor signaling, with integrins enhancing the impact of such signaling in the tumor microenvironment.
Parmo-Cabañas, Marisa; García-Bernal, David; García-Verdugo, Rosa; Kremer, Leonor; Márquez, Gabriel; Teixidó, Joaquin
2007-08-01
The alpha4beta1 integrin is expressed on thymocytes and mediates cell attachment to its ligands CS-1/fibronectin (CS-1/FN) and VCAM-1 in the thymus. The chemokine CCL25 is highly expressed in the thymus, where it binds to its receptor CCR9 on thymocytes promoting migration and activation. We show here that alpha4beta1 and CCR9 are coexpressed mainly on double- and single-positive thymocytes and that CCL25 strongly stimulates CD4(+)CD8(+) and CD4(+)CD8(-) adhesion to CS-1/FN and VCAM-1. CCL25 rapidly activated the GTPases Rac and Rap1 on thymocytes, and this activation was required for stimulation of adhesion, as detected using the CCR9(+)/alpha4beta1(+) human T cell line Molt-4. To study the role on CCL25-stimulated adhesion of the Rac downstream effector Wiskott-Aldrich syndrome protein family verproline-homologous protein 2 (WAVE2) as well as of Rap1-GTP-interacting proteins, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP-interacting adapter molecule (RIAM), we knocked down their expression and tested transfectant attachment to alpha4beta1 ligands. We found that WAVE2 and RAPL but not RIAM were required for efficient triggering by CCL25 of T cell adhesion to CS-1/FN and VCAM-1. Although Rac and Rap1 activation was required during early steps of T cell adhesion stimulated by CCL25, WAVE2 was needed for the development of actin-dependent T cell spreading subsequent to adhesion strengthening but not during initial alpha4beta1-ligand interactions. These results suggest that regulation by CCL25 of adhesion of thymocyte subpopulations mediated by alpha4beta1 could contribute to control their trafficking in the thymus during maturation, and identify Rac-WAVE2 and Rap1-RAPL as pathways whose activation is required in inside-out signaling, leading to stimulated adhesion.
El-Amin, Saadiq F; Attawia, Mohamed; Lu, Helen H; Shah, Asist K; Chang, Richard; Hickok, Noreen J; Tuan, Rocky S; Laurencin, Cato T
2002-01-01
The use of biodegradable polymers in the field of orthopaedic surgery has gained increased popularity, as surgical pins and screws, and as potential biological scaffolds for repairing cartilage and bone defects. One such group of polymers that has gained considerable attention are the polyesters, poly(lactide-co-glycolide) (PLAGA) and polylactic acid (PLA), because of their minimal tissue inflammatory response, favorable biocompatibility and degradation characteristics. The objective of this study was to evaluate human osteoblastic cell adherence and growth on PLAGA and PLA scaffolds by examining integrin receptor (alpha2, alpha3, alpha4, alpha5, alpha6 and beta1) expression. Primary human osteoblastic cells isolated from trabecular bone adhered efficiently to both PLAGA and PLA, with the rate of adherence on PLAGA comparable to that of control tissue culture polystyrene (TCPS), and significantly higher than on PLA polymers at 3, 6 and 12 h. Human osteoblastic phenotypic expression, alkaline phosphatase (ALP) activity was positive on both degradable matrices, whereas osteocalcin levels were significantly higher on cells grown on PLAGA than on PLA composites. Interestingly, the integrin subunits, alpha2, alpha3, alpha4, alpha5, alpha6 and beta1 were all expressed at higher levels by osteoblasts cultured on PLAGA than those on PLA as analyzed by westerns blots and by flow cytometry. Among the integrins, alpha2, beta5 and beta1 showed the greatest difference in levels between the two surfaces. Thus, both PLA and PLAGA support osteoblastic adhesion and its accompanying engagement of integrin receptor and expression of osteocalcin and ALP. However PLAGA consistently appeared to be a better substrate for osteoblastic cells based on these parameters. This study is one of the first to investigate the ability of primary human osteoblastic cells isolated from trabecular bone to adhere to the biodegradable polymers PLAGA and PLA, and to examine the expression of their key adhesion receptors (integrins) on these substrates.
Liu, Liang; Liu, Chang; Zhang, Xiao-qi; Ming, Jia; Liu, Xu-sheng; Xu, Hui; Cheng, Tian-min
2005-06-01
To investigate the influence of macrophages on the expression of the vascular endothelial growth factor (VEGF) receptor (KDR) mRNA, homeobox B2 (HOXB2) mRNA, and integrin alpha nu beta3 in vitro in vascular endothelial strain. Human umbilical vein cells (ECV304) were cultured in vitro and divided into 4 groups, i.e. (1) ECV304 group, (2) ECV304 + conA group [with conA (25 microg/ml in culture) added to ECV304], (3) ECV304 + U937 group (with 1 x 10(5)/ml of U937 cells added to 1 x 10(5)/ml ECV 304), (4) ECV304 + U937 + conA group [with 1 x 10(5)/ml of U937 cells and conA (25 microg/ml in culture)] groups. Forty-eight hours after culturing, the expression of integrin receptor alpha nu beta3 and the changes in the expression of KDR mRNA and HOXB2 mRNA in each group were determined by immunofluorescent technique and RT-PCR, respectively. The expression of integrin receptor alpha nu beta3, KDR mRNA, and HOXB2 mRNA in ECV304 group were 6.7 +/- 1.5, 0.633 +/- 0.012, and 0.674 +/- 0.004, respectively, while those in ECV304 + U937 + conA group (10.2 +/- 1.7, 0.879 +/- 0.003, 0.947 +/- 0.003) were obviously more upregulated when compared with those in ECV304 group (P < 0.01). No difference in the above indices was found between ECV304 and ECV304 + conA, ECV304 + U937 groups (P > 0.05). Macrophages activated by ConA can accelerate the proliferation, migration and adhesion to the basement membrane matrix of vascular endothelial cells through the influence on the expression of KDR mRNA, HOXB2 mRNA and integrin alpha nu beta3, and through this pathway the angiogenesis is modulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamoto, Eiji; Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu 514-8507; Okamoto, Takayuki, E-mail: okamotot@doc.medic.mie-u.ac.jp
LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins regulate leukocyte trafficking in health and disease by binding primarily to IgSF ligand ICAM-1 and ICAM-2 on endothelial cells. Here we have shown that the anti-coagulant molecule thrombomodulin (TM), found on the surface of endothelial cells, functions as a potentially new ligand for leukocyte integrins. We generated a recombinant extracellular domain of human TM and Fc fusion protein (TM-domains 123-Fc), and showed that pheripheral blood mononuclear cells (PBMCs) bind to TM-domains 123-Fc dependent upon integrin activation. We then demonstrated that αL integrin-blocking mAb, αM integrin-blocking mAb, and β2 integrin-blocking mAb inhibited the binding ofmore » PBMCs to TM-domains 123-Fc. Furthermore, we show that the serine/threonine-rich domain (domain 3) of TM is required for the interaction with the LFA-1 (αLβ2) and Mac-1 (αMβ2) integrins to occur on PBMCs. These results demonstrate that the LFA-1 and Mac-1 integrins on leukocytes bind to TM, thereby establishing the molecular and structural basis underlying LFA-1 and Mac-1 integrin interaction with TM on endothelial cells. In fact, integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells. - Highlights: • LFA-1 and Mac-1 integrins bind to the anti-coagulant molecule thrombomodulin. • The serine/threonine-rich domain of thrombomodulin is essential to interact with the LFA-1 and Mac-1 integrins on PBMCs. • Integrin-TM interactions might be involved in the dynamic regulation of leukocyte adhesion with endothelial cells.« less
Peng, Zhen-Wei; Ikenaga, Naoki; Liu, Susan B; Sverdlov, Deanna Y; Vaid, Kahini A; Dixit, Richa; Weinreb, Paul H; Violette, Shelia; Sheppard, Dean; Schuppan, Detlef; Popov, Yury
2016-01-01
Integrin αvβ6 is rapidly up-regulated on cells of epithelial lineage during tissue injury, where one of its primary functions is activation of latent transforming growth factor beta 1 (TGFβ1). In human liver cirrhosis, αvβ6 is overexpressed by cells comprising the ductular reaction, and its inhibition suppresses experimental biliary fibrosis in rodents. Here, we show that αvβ6 is expressed on the actively proliferating subset of hepatic progenitor cells and is required for their progenitor function in vivo and in vitro through integrin αvβ6-dependent TGFβ1 activation. Freshly isolated αvβ6(+) liver cells demonstrate clonogenic potential and differentiate into cholangiocytes and functional hepatocytes in vitro, whereas colony formation by epithelial cell adhesion molecule-positive progenitor cells is blocked by αvβ6-neutralizing antibody and in integrin beta 6-deficient cells. Inhibition of progenitors by anti-αvβ6 antibody is recapitulated by TGFβ1 neutralization and rescued by addition of bioactive TGFβ1. Genetic disruption or selective targeting of αvβ6 with 3G9 antibody potently inhibits progenitor cell responses in mouse models of chronic biliary injury and protects from liver fibrosis and tumorigenesis, two conditions clinically associated with exacerbated ductular reaction. These results suggest that αvβ6 is a promising target for chronic fibrotic liver diseases and associated cancers. © 2015 by the American Association for the Study of Liver Diseases.
Protein expression and purification of integrin I domains and IgSF ligands for crystallography.
Zhang, Hongmin; Wang, Jia-Huai
2012-01-01
Cell adhesion depends on combinational expression and interactions of a large number of adhesion molecules at cell-to-cell or cell-to-matrix contact sites. Integrins and their immunoglobulin superfamily (IgSF) ligands represent foremost classes of cell adhesion molecules in immune system. Structural study is critical for a better understanding of the interactions between integrins and their IgSF ligands. Here we describe protocols for protein expression of integrin αL I domain and its IgSF ligand ICAM-5 D1D2 fragment for crystallography.
Merlino, Francesco; Daniele, Simona; La Pietra, Valeria; Di Maro, Salvatore; Di Leva, Francesco Saverio; Brancaccio, Diego; Tomassi, Stefano; Giuntini, Stefano; Cerofolini, Linda; Fragai, Marco; Luchinat, Claudio; Reichart, Florian; Cavallini, Chiara; Costa, Barbara; Piccarducci, Rebecca; Taliani, Sabrina; Da Settimo, Federico; Martini, Claudia; Kessler, Horst; Novellino, Ettore; Marinelli, Luciana
2018-05-18
In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4, and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.
NASA Technical Reports Server (NTRS)
Gens, J. S.; Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)
1996-01-01
Using higher-resolution wide-field computational optical-sectioning fluorescence microscopy, the distribution of antigens recognized by antibodies against animal beta 1 integrin, fibronectin, and vitronectin has been visualized at the outer surface of enzymatically protoplasted onion epidermis cells and in depectinated cell wall fragments. On the protoplast all three antigens are colocalized in an array of small spots, as seen in raw images, in Gaussian filtered images, and in images restored by two different algorithms. Fibronectin and vitronectin but not beta 1 integrin antigenicities colocalize as puncta in comparably prepared and processed images of the wall fragments. Several control visualizations suggest considerable specifity of antibody recognition. Affinity purification of onion cell extract with the same anti-integrin used for visualization has yielded protein that separates in SDS-PAGE into two bands of about 105-110 and 115-125 kDa. These bands are again recognized by the visualization antibody, which was raised against the extracellular domain of chicken beta 1 integrin, and are also recognized by an antibody against the intracellular domain of chicken beta 1 integrin. Because beta 1 integrin is a key protein in numerous animal adhesion sites, it appears that the punctate distribution of this protein in the cell membranes of onion epidermis represents the adhesion sites long known to occur in cells of this tissue. Because vitronectin and fibronection are matrix proteins that bind to integrin in animals, the punctate occurrence of antigenically similar proteins both in the wall (matrix) and on enzymatically prepared protoplasts reinforces the concept that onion cells have adhesion sites with some similarity to certain kinds of adhesion sites in animals.
Physical and functional interaction between integrins and hERG potassium channels.
Arcangeli, A; Becchetti, A; Cherubini, A; Crociani, O; Defilippi, P; Guasti, L; Hofmann, G; Pillozzi, S; Olivotto, M; Wanke, E
2004-11-01
Integrins are adhesion receptors capable of transmitting intracellular signals that regulate many different cellular functions. Among integrin-mediated signals, the activation of ion channels can be included. We demonstrated that a long-lasting activation of hERG (human ether-a-go-go-related gene) potassium channels occurs in both human neuroblastoma and leukaemia cells after the activation of the beta1 integrin subunit. This activation is apparently a determining factor inducing neurite extension and osteoclastic differentiation in both the cell types. More recently, we provided evidences that beta1 integrins and hERG channels co-precipitate in both the cell types. Preliminary results suggest that a macromolecular signalling complex indeed occurs between integrins and the hERG1 protein and that hERG channel activity can modulate integrin downstream signalling.
Sun, Chunhui; Wang, Nan; Huang, Jie; Xin, Jie; Peng, Fen; Ren, Yinshi; Zhang, Shangli; Miao, Junying
2009-10-01
Bone marrow stromal cells (BMSCs) can proliferate in vitro and can be transplanted for treating many kinds of diseases. However, BMSCs become senescent with long-term culture, which inhibits their application. To understand the mechanism underlying the senescence, we investigated the activity of phosphatidylcholine-specific phospholipase C (PC-PLC) and levels of integrin beta4, caveolin-1 and ROS with BMSC senescence. The activity of PC-PLC and levels of integrin beta4, caveolin-1 and ROS increased greatly during cell senescence. Selective inhibition of increased PC-PLC activity with D609 significantly decreased the number of senescence-associated beta galactosidase positive cells in BMSCs. Furthermore, D609 restored proliferation of BMSCs and their differentiation into adipocytes. Moreover, D609 suppressed the elevated levels of integrin beta4, caveolin-1 and ROS. The data suggest that PC-PLC is involved in senescence of BMSCs, and its function is associated with integrin beta4, caveolin-1 and ROS. (c) 2009 Wiley-Liss, Inc.
Dual roles for hepatic lectin receptors in the clearance of chilled platelets.
Rumjantseva, Viktoria; Grewal, Prabhjit K; Wandall, Hans H; Josefsson, Emma C; Sørensen, Anne Louise; Larson, Göran; Marth, Jamey D; Hartwig, John H; Hoffmeister, Karin M
2009-11-01
Rapid chilling causes glycoprotein-Ib (GPIb) receptors to cluster on blood platelets. Hepatic macrophage beta(2) integrin binding to beta-N-acetylglucosamine (beta-GlcNAc) residues in the clusters leads to rapid clearance of acutely chilled platelets after transfusion. Although capping the beta-GlcNAc moieties by galactosylation prevents clearance of short-term-cooled platelets, this strategy is ineffective after prolonged refrigeration. We report here that prolonged refrigeration increased the density and concentration of exposed galactose residues on platelets such that hepatocytes, through Ashwell-Morell receptor binding, become increasingly involved in platelet removal. Macrophages rapidly removed a large fraction of transfused platelets independent of their storage conditions. With prolonged platelet chilling, hepatocyte-dependent clearance further diminishes platelet recovery and survival after transfusion. Inhibition of chilled platelet clearance by both beta(2) integrin and Ashwell-Morell receptors may afford a potentially simple method for storing platelets in the cold.
Caswell, Patrick T; Chan, May; Lindsay, Andrew J; McCaffrey, Mary W; Boettiger, David; Norman, Jim C
2008-10-06
Here we show that blocking the adhesive function of alphavbeta3 integrin with soluble RGD ligands, such as osteopontin or cilengitide, promoted association of Rab-coupling protein (RCP) with alpha5beta1 integrin and drove RCP-dependent recycling of alpha5beta1 to the plasma membrane and its mobilization to dynamic ruffling protrusions at the cell front. These RCP-driven changes in alpha5beta1 trafficking led to acquisition of rapid/random movement on two-dimensional substrates and to a marked increase in fibronectin-dependent migration of tumor cells into three-dimensional matrices. Recycling of alpha5beta1 integrin did not affect its regulation or ability to form adhesive bonds with substrate fibronectin. Instead, alpha5beta1 controlled the association of EGFR1 with RCP to promote the coordinate recycling of these two receptors. This modified signaling downstream of EGFR1 to increase its autophosphorylation and activation of the proinvasive kinase PKB/Akt. We conclude that RCP provides a scaffold that promotes the physical association and coordinate trafficking of alpha5beta1 and EGFR1 and that this drives migration of tumor cells into three-dimensional matrices.
Su, Zi-Fen; He, Jiang; Rusckowski, Mary; Hnatowich, Donald J
2003-02-01
The level of alpha(V)beta(3) integrins on endothelial cells is elevated in angiogenesis. The high binding specificity to alpha(V)beta(3) integrins of peptides containing Arg-Gly-Asp (RGD) residues suggests that the radiolabeled RGD peptides may be useful as tumor specific imaging agents. In this research, cyclised peptides containing Arg-Gly-Asp (RGD) and Arg-Gly-Glu (RGE, as control) residues were conjugated with HYNIC and labeled with (99m)Tc. The goal was to evaluate the influence of co-ligand, either tricine or ethylenediamine-N,N'-diacetic acid (EDDA) on protein and integrin binding and on cellular uptake in culture. The n-octanol/water partition coefficient, binding to bovine serum albumin (BSA) and human umbilical vein endothelial (HUVE) cells, and cell lysate distributions of the radiolabeled peptides were evaluated. The co-ligands had a significant effect on the labeling efficiency of the HYNIC conjugates and on certain properties of the (99m)Tc complexes. The labeling efficiency with tricine was 10 fold higher and BSA binding was over 8 fold greater compared to EDDA. Both RGD labels showed higher (6 to 28 fold) binding to HUVE cells than that of the RGE labels, indicating binding specificity. After cell-lysis, only a small percentage of the total RGD label that accumulated in the cells was found bound to cellular proteins (9% of RGD/tricine and 5% of RGD/EDDA), implying that over 90% of the radiolabeled peptides were internalized for both radiolabeled RGDs. The number of the RGD molecules bound to proteins was estimated to be approximately three per cell, suggesting that only a small number of alpha(V)beta(3) integrin proteins are expressed on the cells. Apart from the differences in radiolabeling, the only important effect of substituting EDDA for tricine as co-ligand on the HYNIC-peptides was the lower degree of serum protein binding. In spite of the lower serum protein binding potential, in vivo tumor accumulation of the RGD/EDDA may not be improved compared to RGD/tricine since quantitation of the cell binding results suggests that the number of alpha(V)beta(3) integrin proteins per cell might be limited.
Murakami, S; Saho, T; Shimabukuro, Y; Isoda, R; Miki, Y; Okada, H
1993-01-01
To date, it is still unclear how the trafficking and retention of activated lymphocytes in periodontal lesions are regulated. In this study, we investigated the molecular basis for the adhesive interactions between lymphocytes and human gingival fibroblasts (HGF). Peripheral blood T lymphocytes (PBT) exhibited binding ability, but only when the calls were activated with phorbol 12-myristate 13-acetate (PMA). Among several human cell lines tested, PMA-stimulated Molt-4, a human T-cell leukaemia line, also displayed significant binding ability to HGF. In order to clarify the molecule(s) involved in this cell-cell interaction, a panel of monoclonal antibodies (mAb) was prepared to PMA-activated Molt-4 and one clone, 4-145, was selected on the basis of its ability to block the binding of PMA-activated Molt-4 to HGF. Moreover, 4-145 inhibited the binding of not only activated Molt-4 but also activated PBT and other cell types to HGF. Biochemical and flow cytometric analyses revealed that 4-145 probably recognizes the beta 1 chain of very late antigen (VLA) integrins. Blocking experiments using mAb specific for the alpha-chain of VLA integrins demonstrated the involvement of alpha 4 (VLA-4) and, to a lesser extent, alpha 5 (VLA-5) chains in the adhesive interactions between T cells and HGF. Despite the significant involvement of VLA integrins in the adhesive interaction between PBT and HGF, the binding of PBT to human dermal fibroblasts (HDF) was not abrogated by 4-145, suggesting that HGF and HDF differ in their requirement of VLA integrins for adhesion to activated PBT. Furthermore, the fact that vascular cell adhesion molecule-1 (VCAM-1), one of the ligands of VLA-4, was not detected on HGF by flow cytometry and anti-fibronectin (FN) Ab did not block the adhesive interaction to HGF suggests that not-yet-identified ligand(s) for VLA-4 might be present on HGF. Images Figure 4 PMID:8406571
Kubo, Miyoko; Clark, Richard A F; Katz, Anne B; Taichman, Lorne B; Jin, Zaishun; Zhao, Ying; Moriguchi, Takahiko
2007-04-01
alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.
Desu, Hari R; Wood, George C; Thoma, Laura A
2016-01-01
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI.
Type I Collagen and Collagen Mimetics as Angiogenesis Promoting Superpolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twardowski, T.; Fertala, A.; Orgel, J.P.R.O.
Angiogenesis, the development of blood vessels from the pre-existing vasculature, is a key component of embryogenesis and tissue regeneration. Angiogenesis also drives pathologies such as tumor growth and metastasis, and hemangioma development in newborns. On the other hand, promotion of angiogenesis is needed in tissues with vascular insufficiencies, and in bioengineering, to endow tissue substitutes with appropriate microvasculatures. Therefore, much research has focused on defining mechanisms of angiogenesis, and identifying pro- and anti-angiogenic molecules. Type I collagen, the most abundant protein in humans, potently stimulates angiogenesis in vitro and in vivo. Crucial to its angiogenic activity appears to be ligationmore » and possibly clustering of endothelial cell (EC) surface {alpha}1{beta}1/{alpha}2{beta}1 integrin receptors by the GFPGER502-507 sequence of the collagen fibril. However, additional aspects of collagen structure and function that may modulate its angiogenic properties are discussed. Moreover, type I collagen and fibrin, another angiogenic polymer, share several structural features. These observations suggest strategies for creating 'angiogenic superpolymers', including: modifying type I collagen to influence its biological half-life, immunogenicity, and integrin binding capacity; genetically engineering fibrillar collagens to include additional integrin binding sites or angiogenic determinants, and remove unnecessary or deleterious sequences without compromising fibril integrity; and exploring the suitability of poly(ortho ester), PEG-lysine copolymer, tubulin, and cholesteric cuticle as collagen mimetics, and suggesting means of modifying them to display ideal angiogenic properties. The collagenous and collagen mimetic angiogenic superpolymers described here may someday prove useful for many applications in tissue engineering and human medicine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, J.-P.; Stehle, T.; Zhang, R.
The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less
Parekh, T; Saxena, B; Reibman, J; Cronstein, B N; Gold, L I
1994-03-01
TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta is no longer chemotactic, suggesting that PMNs only use Fn that is constitutively expressed for migration. At higher concentrations of TGF-beta, the Fn released may accumulate basal to the cell, ultimately retarding cellular migration and modulating the chemotactic response.
Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation
Wei, Xiaofan; Wang, Xiang; Zhan, Jun; Chen, Yuhan; Fang, Weigang; Zhang, Lingqiang
2017-01-01
Integrin activation is an indispensable step for various integrin-mediated biological functions. Kindlin-2 is known to coactivate integrins with Talin; however, molecules that restrict integrin activation are elusive. Here, we demonstrate that the E3 ubiquitin ligase Smurf1 controls the amount of Kindlin-2 protein in cells and hinders integrin activation. Smurf1 interacts with and promotes Kindlin-2 ubiquitination and degradation. Smurf1 selectively mediates degradation of Kindlin-2 but not Talin, leading to inhibition of αIIbβ3 integrin activation in Chinese hamster ovary cells and β1 integrin activation in fibroblasts. Enhanced activation of β1 integrin was found in Smurf1-knockout mouse embryonic fibroblasts, which correlates with an increase in Kindlin-2 protein levels. Similarly, a reciprocal relationship between Smurf1 and Kindlin-2 protein levels is found in tissues from colon cancer patients, suggesting that Smurf1 mediates Kindlin-2 degradation in vivo. Collectively, we demonstrate that Smurf1 acts as a brake for integrin activation by controlling Kindlin-2 protein levels, a new mechanism that permits precise modulation of integrin-mediated cellular functions. PMID:28408404
Exercise promotes alpha7 integrin gene transcription and protection of skeletal muscle.
Boppart, Marni D; Volker, Sonja E; Alexander, Nicole; Burkin, Dean J; Kaufman, Stephen J
2008-11-01
The alpha7beta1 integrin is increased in skeletal muscle in response to injury-producing exercise, and transgenic overexpression of this integrin in mice protects against exercise-induced muscle damage. The present study investigates whether the increase in the alpha7beta1 integrin observed in wild-type mice in response to exercise is due to transcriptional regulation and examines whether mobilization of the integrin at the myotendinous junction (MTJ) is a key determinant in its protection against damage. A single bout of downhill running exercise selectively increased transcription of the alpha7 integrin gene in 5-wk-old wild-type mice 3 h postexercise, and an increased alpha7 chain was detected in muscle sarcolemma adjacent to tendinous tissue immediately following exercise. The alpha7B, but not alpha7A isoform, was found concentrated and colocalized with tenascin-C in muscle fibers lining the MTJ. To further validate the importance of the integrin in the protection against muscle damage following exercise, muscle injury was quantified in alpha7(-/-) mice. Muscle damage was extensive in alpha7(-/-) mice in response to both a single and repeated bouts of exercise and was largely restricted to areas of high MTJ concentration and high mechanical force near the Achilles tendon. These results suggest that exercise-induced muscle injury selectively increases transcription of the alpha7 integrin gene and promotes a rapid change in the alpha7beta integrin at the MTJ. These combined molecular and cellular alterations are likely responsible for integrin-mediated attenuation of exercise-induced muscle damage.
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-01-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of possible 18 α-chains and one of possible 8 β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalised by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalisation by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with AP2 C-µ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions. PMID:26779610
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-02-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.
Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke
2008-01-01
Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737
Hyland, R H; Douglass, W A; Tan, S M; Law, S K
2001-01-01
A central region of the beta2 integrin subunit, RN (residues D300 to C459), was replaced by the equivalent sequences from beta1 and beta7 to give the chimeras beta2RN1 and beta2RN7. Whilst the former construct failed to form heterodimer at the cell surface with alphaL, the later of these could be expressed together with the alphaL subunit to form a variant LFA-1. Based on recent modelling work, the RN region consists of two parts, one is the C-terminal end of the putative A-domain (RB, residues D300 to A359), and the other the mid-region (BN, residues Y360 to C459). Chimeras exchanging the two component regions were made. Of the four resultant chimeras, only the beta2RB1 chimera failed to support LFA-1 expression. Thus the beta1 specific residues of this region affect the interaction with the alphaL subunit. Whereas the alphaL/beta2RB7 LFA-1 variant is wildtype like with respect to ICAM-1 adhesion, the alphaLbeta2BN1 and alphaLbeta2BN7, as well as the alphaLbeta2RN7, variants are more adhesive than the wildtype. These results suggest that an authentic beta2 mid-region is, in part, required for maintaining the LFA-1 in a resting state.
Absence of integrin alpha 7 causes a novel form of muscular dystrophy.
Mayer, U; Saher, G; Fässler, R; Bornemann, A; Echtermeyer, F; von der Mark, H; Miosge, N; Pöschl, E; von der Mark, K
1997-11-01
Integrin alpha 7 beta 1 is a specific cellular receptor for the basement membrane protein laminin-1 (refs 1,2), as well as for the laminin isoforms -2 and -4 (ref. 3). The alpha 7 subunit is expressed mainly in skeletal and cardiac muscle and has been suggested to be involved in differentiation and migration processes during myogenesis. Three cytoplasmic and two extracellular splice variants that have been described are developmentally regulated and expressed in different sites in the muscle. In adult muscle, the alpha 7A and alpha 7B subunits are concentrated in myotendinous junctions but can also be detected in neuromuscular junctions and along the sarcolemmal membrane. To study the potential involvement of alpha 7 integrin, during myogenesis and its role in muscle integrity and function, we generated a null allele of the alpha 7 gene (Itga7) in the germline of mice by homologous recombination in embryonic stem (ES) cells. Surprisingly, mice homozygous for the mutation are viable and fertile, indicating that the alpha 7 beta 1 integrin is not essential for myogenesis. However, histological analysis of skeletal muscle revealed typical symptoms of a progressive muscular dystrophy starting soon after birth, but with a distinct variability in different muscle types. The observed histopathological changes strongly indicate an impairment of function of the myotendinous junctions. These findings demonstrate that alpha 7 beta 1 integrin represents an indispensable linkage between the muscle fibre and the extracellular matrix that is independent of the dystrophin-dystroglycan complex-mediated interaction of the cytoskeleton with the muscle basement membrane.
Melchior, Aurélie; Denys, Agnès; Deligny, Audrey; Mazurier, Joël; Allain, Fabrice
2008-02-01
Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.
hnRNP L regulates differences in expression of mouse integrin alpha2beta1.
Cheli, Yann; Kunicki, Thomas J
2006-06-01
There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.
Nagle, R. B.; Hao, J.; Knox, J. D.; Dalkin, B. L.; Clark, V.; Cress, A. E.
1995-01-01
The progression of prostate carcinoma may be influenced by the biochemical nature of the basal lamina surrounding the primary carcinoma cells. As a first step toward understanding this process, the composition and structure of the basal lamina in normal prostate, prostatic intraepithelial neoplasia, and human carcinoma were determined. In addition, a comparison was made between the attachments of the normal basal cell to its underlying basal lamina and those made by primary prostate carcinoma. The normal basal cells form both focal adhesions and hemidesmosomal-like structures as observed by transmission electron microscopy. The normal basal cells exhibited a polarized distribution of hemidesmosomal associated proteins including BP180, BP230, HD1, plectin, laminin-gamma 2(B2t), collagen VII, and the corresponding integrin laminin receptors alpha 6 beta 1 and alpha 6 beta 4. The expression and distribution pattern of these proteins were retained in the prostate intraepithelial neoplasia lesions. In contrast, the carcinoma cells uniformly lacked hemidesmosomal structures, the integrin alpha 6 beta 4, BP180, laminin-gamma 2 (B2t), and collagen VII but did express BP230 (30%), plectin, HD1 (15%), and the integrin laminin receptors alpha 3 beta 1 and alpha 6 beta 1. These results suggest that, although a detectable basal lamina structure is present in carcinoma, its composition and cellular attachments are abnormal. The loss of critical cellular attachments may play a role in influencing the progression potential of prostate carcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7778688
Yosef, Nejla; Ubogu, Eroboghene E.
2012-01-01
The mechanisms of hematogenous leukocyte trafficking at the human blood-nerve barrier (BNB) are largely unknown. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the pathogenesis of Guillain-Barré syndrome (GBS). We developed a cytokine-activated human in vitro BNB model using primary endoneurial endothelial cells. Endothelial treatment with 10 U/mL tissue necrosis factor-α and 20 U/mL interferon-γ resulted in de novo expression of proinflammatory chemokines CCL2, CXCL9, CXCL11 and CCL20, with increased expression of CXCL2-3, CXCL8 and CXCL10 relative to basal levels. Cytokine treatment induced/ enhanced ICAM-1, E- and P-selectin, vascular cell adhesion molecule-1 and the alternatively spliced pro-adhesive fibronectin variant, fibronectin connecting segment-1 expression in a time-dependent manner, without alterations in junctional adhesion molecule-A expression. Lymphocytes and monocytes from untreated GBS patients express ICAM-1 counterligands, αM- and αL-integrin, with differential regulation of αM-integrin expression compared to healthy controls. Under flow conditions that mimic capillary hemodynamics in vivo, there was a >3-fold increase in total GBS patient and healthy control mononuclear leukocyte adhesion/ migration at the BNB following cytokine treatment relative to the untreated state. Function neutralizing monoclonal antibodies against human αM-integrin (CD11b) and ICAM-1 reduced untreated GBS patient mononuclear leukocyte trafficking at the BNB by 59% and 64.2% respectively. Monoclonal antibodies against αL-integrin (CD11a) and human intravenous immunoglobulin reduced total leukocyte adhesion/migration by 22.8% and 17.6% respectively. This study demonstrates differential regulation of αM-integrin on circulating mononuclear cells in GBS, as well as an important role for αM-integrin-ICAM-1 interactions in pathogenic GBS patient leukocyte trafficking at the human BNB in vitro. PMID:22552879
Long residence time of ultrasound microbubbles targeted to integrin in murine tumor model.
Jun, Hong Young; Park, Seong Hoon; Kim, Hun Soo; Yoon, Kwon-Ha
2010-01-01
The aim of this study was to evaluate the intratumoral residence time of microbubbles (MBs) targeted to alpha(v)beta(3) integrin expressed in the endothelial cells of mice during the process of tumor angiogenesis. For the preparation of MBs, decafluorobutane gas was sonically dispersed in phosphate buffer saline containing L-A-phosphatidylcholine-distearoyl, polyethylene glycol 40 stearate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)2000] in a 77:15:8 molar ratio. Avidin-fluorescein isothiocyanate and biotin-cyclic arginine-glycine-aspartate-D-tyrosine-lysine (cRGD) or biotin-alanine-glycine-aspartate (AGD) conjugates were added to the reaction mixture. Adhesion testing of the targeting MBs was performed for the MS-1 cell line expressing alpha(v)beta(3) integrin in vitro. The in vivo acoustic properties of the MBs were assessed by clinical ultrasound on the HT1080 fibrosarcoma model (n = 8) for 1 hour. Cryosections were stained with hematoxylin and eosin and by immunohistochemical staining to identify expression of alpha(v)beta(3) integrin in the HT1080 tumor. The adherence of the MBs conjugated to cRGD was significantly greater than the adherence of the MBs conjugated to biotin-AGD (P < .01) for the MS-1 endothelial cell line. The acoustic enhancement on ultrasound was observed as a stable imaging window until 1 hour after injection of the MB conjugates in the mice. The MBs targeted via cRGD preferentially adhered to the vascular endothelium of the HT-1080 tumors. The findings of ultrasound imaging were correlated with immunohistochemical findings for the expression of alpha(v)beta(3) integrin on the vascular endothelium of the tumors. The prepared MBs conjugated with cRGD demonstrated a sufficient residence time to attach to the target integrin of tumor tissues. This finding suggests that the MBs are a potential molecular contrast agent that enables characterization of tumor angiogenesis and the monitoring of antitumor and antiangiogenic therapy.
Modulation of adhesion-dependent cAMP signaling by echistatin and alendronate
NASA Technical Reports Server (NTRS)
Fong, J. H.; Ingber, D. E.
1996-01-01
We measured intracellular cAMP levels in cells during attachment and spreading on different extracellular matrix (ECM) proteins. Increases in cAMP were observed within minutes when cells attached to fibronectin, vitronectin, and a synthetic RGD-containing fibronectin peptide (Petite 2000), but not when they adhered to another integrin alpha nu beta 3 ligand, echistatin. Because echistatin also inhibits bone resorption, we measured the effects of adding another osteoporosis inhibitor, alendronate, in this system. Alendronate inhibited the cAMP increase induced by ligands that primarily utilize integrin alpha nu beta 3 (vitronectin, Peptite 2000), but not by fibronectin which can also use integrin alpha 5 beta 1. These results show that cell adhesion to ECM can increase intracellular cAPM levels and raise the possibility that inhibitors of osteoporosis may act, in part, by preventing activation of this pathway by integrins.
Takahashi, Y; Bigler, D; Ito, Y; White, J M
2001-04-01
ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.
PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions.
Woods, Alison J; White, Dominic P; Caswell, Patrick T; Norman, Jim C
2004-07-07
To identify kinases that regulate integrin recycling, we have immunoprecipitated alphavbeta3 integrin from NIH 3T3 fibroblasts in the presence and absence of primaquine (a drug that inhibits receptor recycling and leads to accumulation of integrins in endosomes) and screened for co-precipitating kinases. Primaquine strongly promoted association of alphavbeta3 integrin with PKD1, and fluorescence microscopy indicated that integrin and PKD1 associate at a vesicular compartment that is downstream of a Rab4-dependent transport step. PKD1 association was mediated by the C-terminal region of the beta3 integrin cytodomain, and mutants of beta3 that were unable to recruit PKD1 did not recycle in a PDGF-dependent fashion. Furthermore, suppression of endogenous PKD1 levels by RNAi, or overexpression of catalytically inactive PKD1 inhibited PDGF-dependent recycling of alphavbeta3 from early endosomes to the plasma membrane and blocked recruitment of alphavbeta3 to newly formed focal adhesions during cell spreading. These data indicate that PKD1 influences cell migration by directing vesicular transport of the alphavbeta3 integrin heterodimer.
HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity.
Trusolino, L; Cavassa, S; Angelini, P; Andó, M; Bertotti, A; Comoglio, P M; Boccaccio, C
2000-08-01
Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Moursi, A.; Zimmerman, D.; Lull, J.; Damsky, C.
1995-01-01
The differentiaton of bone cells is a complex multistep process. Bone is somewhat unusual in that it is very actively and continually remodeled in the adult and that maintenance of its mass in the mature organism is exquisitely sensitive to mechanical as well as chemical signals. Bone is also unique because it consists of a very large amount of extracellular matrix (ECM) that is mineralized. The integrin family of ECM receptors has been shown to play an important role in tissue morphogenesis in several systems. Our studies on the regulation of matrix remodeling enzymes by integrins in rabbit synovial fibroblasts show that two b1 integrin fibronectin (FN) receptor complexes (alpha 5 beta 1 and alpha 4 beta 1) cooperate in detecting subtle changes in the composition of the ECM. As a result of signal transduction by these integrins, the levels of mRNA and protein for several members of the metalloproteinase family are regulated in these cells. We have also used antibody and RGD peptide perturbation studies to determine the significance of cell/ECM interactions to normal osteogenesis. We found that interactions between the cell binding domain of FN and integrins are required for both normal morphogenesis and gene expression in cultured osteoblasts that differentiate to form bone-like tissue in culture. These data lead us to propose that beta 1 integrins play an important role in osteoblast differentiation as well as in bone remodeling.
Evidence that a functional fertilin-like ADAM plays a role in human sperm-oolemmal interactions.
Bronson, R A; Fusi, F M; Calzi, F; Doldi, N; Ferrari, A
1999-05-01
Fertilin is a protein initially identified in guinea pig spermatozoa; it is the prototype of a larger family of conserved, proteins designated as a disintegrin and a metalloproteinase (ADAM). These heterodimers which consist of alpha and beta subunits, containing metalloproteinase-like and disintegrin-like domains, appear to play a role in mammalian fertilization. Peptides derived from the disintegrin domains of two ADAMs, fertilin and cyritestin, interfere with gamete adhesion and sperm-egg membrane fusion in non-human species. It has been suggested that fertilin-beta binds to an oolemmal integrin, and it is proposed that the tripeptide FEE (Phe-Glu-Glu) is the integrin recognition sequence in human fertilin-beta. We evaluated whether fertilin beta plays a role in human fertilization by studying the effects of a linear octapeptide containing the FEE sequence, SFEECDLP, and a scrambled octapeptide with the same amino acids, SFPCEDEL, on the incorporation of human spermatozoa by human zona-free eggs. The effects of G4120, a potent RGD-containing (Arg-Gly-Asp) thioether-bridged cyclic peptide which blocks both fibronectin and vitronectin receptors, and the relationship between FEE- and RGD-receptor interactions on sperm-egg interactions were also studied. The FEE-containing peptide, but not the scrampled peptide, inhibited sperm adhesion to oocytes and their penetration, over the range 1-5 microM. The inhibition induced by SFEECDLP was reversible and occurred only in the presence of peptide itself. The G4120 peptide exhibited 10-fold less inhibitory effects on sperm adhesion and penetration than did SFEECDLP. When combined, SFEECDLP and G4120 exhibited strong inhibition of both adhesion and penetration at concentrations that individually had been ineffective, suggesting co-operation between the two receptor-ligand interactions during fertilization. We propose that a fertilin-like molecule is functionally active on human spermatozoa and that its interaction with an oolemmal integrin receptor plays a role in fertilization in humans.
Peuhu, Emilia; Salomaa, Siiri I; De Franceschi, Nicola; Potter, Christopher S; Sundberg, John P; Pouwels, Jeroen
2017-01-01
SHARPIN (Shank-Associated RH Domain-Interacting Protein) is a component of the linear ubiquitin chain assembly complex (LUBAC), which enhances TNF-induced NF-κB activity. SHARPIN-deficient (Sharpincpdm/cpdm) mice display multi-organ inflammation and chronic proliferative dermatitis (cpdm) due to TNF-induced keratinocyte apoptosis. In cells, SHARPIN also inhibits integrins independently of LUBAC, but it has remained enigmatic whether elevated integrin activity levels in the dermis of Sharpincpdm/cpdm mice is due to increased integrin activity or is secondary to inflammation. In addition, the functional contribution of increased integrin activation to the Sharpincpdm/cpdm phenotype has not been investigated. Here, we find increased integrin activity in keratinocytes from Tnfr1-/- Sharpincpdm/cpdm double knockout mice, which do not display chronic inflammation or proliferative dermatitis, thus suggesting that SHARPIN indeed acts as an integrin inhibitor in vivo. In addition, we present evidence for a functional contribution of integrin activity to the Sharpincpdm/cpdm skin phenotype. Treatment with an integrin beta 1 function blocking antibody reduced epidermal hyperproliferation and epidermal thickness in Sharpincpdm/cpdm mice. Our data indicate that, while TNF-induced cell death triggers the chronic inflammation and proliferative dermatitis, absence of SHARPIN-dependent integrin inhibition exacerbates the epidermal hyperproliferation in Sharpincpdm/cpdm mice.
1996-01-01
In neutrophils, binding and phagocytosis facilitate subsequent intracellular killing of microorganisms. Activity of Na+/H+ exchangers (NHEs) participates in these events, especially in regulation of intracellular pH (pHi) by compensating for the H+ load generated by the respiratory burst. Despite the importance of these functions, comparatively little is known regarding the nature and regulation of NHE(s) in neutrophils. The purpose of this study was to identify which NHE(s) are expressed in neutrophils and to elucidate the mechanisms regulating their activity during phagocytosis. Exposure of cells to the phagocytic stimulus opsonized zymosan (OpZ) induced a transient cytosolic acidification followed by a prolonged alkalinization. The latter was inhibited in Na+-free medium and by amiloride analogues and therefore was due to activation of Na+/H+ exchange. Reverse transcriptase PCR and cDNA sequencing demonstrated that mRNA for the NHE-1 but not for NHE-2, 3, or 4 isoforms of the exchanger was expressed. Immunoblotting of purified plasma membranes with isoform- specific antibodies confirmed the presence of NHE-1 protein in neutrophils. Since phagocytosis involves Fcgamma (FcgammaR) and complement receptors such as CR3 (a beta2 integrin) which are linked to pathways involving alterations in intracellular [Ca2+]i and tyrosine phosphorylation, we studied these pathways in relation to activation of NHE-1. Cross-linking of surface bound antibodies (mAb) directed against FcgammaRs (FcgammaRII > FcgammaRIII) but not beta2 integrins induced an amiloride-sensitive cytosolic alkalinization. However, anti-beta2 integrin mAb diminished OpZ-induced alkalinization suggesting that NHE- 1 activation involved cooperation between integrins and FcgammaRs. The tyrosine kinase inhibitors genistein and herbimycin blocked cytosolic alkalinization after OpZ or FcgammaR cross-linking suggesting that tyrosine phosphorylation was involved in NHE-I activation. An increase in [Ca2+]i was not required for NHE-1 activation because neither removal of extracellular Ca2+ nor buffering of changes in [Ca2+]i inhibited alkalinization after OpZ or Fc-gammaR cross-linking. In summary, Fc-gammaRs and beta2 integrins cooperate in activation of NHE- 1 in neutrophils during phagocytosis by a signaling pathway involving tyrosine phosphorylation. PMID:8601583
Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L
2006-08-01
Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.
Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J
2001-09-18
It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.
Thapa, Narendra; Sun, Yue; Schramp, Mark; Choi, Suyoung; Ling, Kun; Anderson, Richard A
2011-01-01
Summary Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP2 synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration PIPKIγi2 via PIP2 generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment(s) that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP2 requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP2 binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration. PMID:22264730
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to determine the role of keratocytes and leukocyte beta(2) (CD18) integrins in neutrophil (PMN) migration through the corneal stroma after epithelial scrape injury. Using C57BL/6 wild-type and CD18(-/-) mice, corneas were excised at 6 hours (wild-type) or 24 hours (CD18...
Lee, JeHoon; Banu, Sakhila K; Burghardt, Robert C; Starzinski-Powitz, Anna; Arosh, Joe A
2013-03-01
Endometriosis is a chronic gynecological disease of reproductive age women characterized by the presence of functional endometrial tissues outside the uterine cavity. Interactions between the endometriotic cells and the peritoneal extracellular matrix proteins (ECM) are crucial mechanisms that allow adhesion of the endometriotic cells into peritoneal mesothelia. Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. In previous studies, we have reported that selective inhibition of PGE2 receptors PTGER2 and PTGER4 decreases survival and invasion of human endometriotic epithelial and stromal cells through multiple mechanisms. Results of the present study indicates that selective inhibition of PTGER2- and PTGER4-mediated PGE2 signaling 1) decreases the expression and/or activity of specific integrin receptor subunits Itgb1 (beta1) and Itgb3 (beta3) but not Itgb5 (beta5), Itga1 (alpha1), Itga2 (alpha2), Itga5 (alpha5), and Itgav (alphav); 2) decreases integrin-signaling components focal adhesion kinase or protein kinase 2 (PTK2) and talin proteins; 3) inhibits interactions between Itgb1/Itgb3 subunits, PTK2, and talin and PTGER2/PTGER4 proteins through beta-arrestin-1 and Src kinase protein complex in human endometriotic epithelial cells 12Z and stromal cells 22B; and 4) decreases adhesion of 12Z and 22B cells to ECM collagen I, collagen IV, fibronectin, and vitronectin in a substrate-specific manner. These novel findings provide an important molecular framework for further evaluation of selective inhibition of PTGER2 and PTGER4 as potential nonsteroidal therapy to expand the spectrum of currently available treatment options for endometriosis in child-bearing age women.
Kang, Young Sun; Li, Yingjian; Dai, Chunsun; Kiss, Lawrence P; Wu, Chuanyue; Liu, Youhua
2010-08-01
Proteinuria is a primary clinical symptom of a large number of glomerular diseases that progress to end-stage renal failure. Podocyte dysfunctions play a fundamental role in defective glomerular filtration in many common forms of proteinuric kidney disorders. Since binding of these cells to the basement membrane is mediated by integrins, we determined the role of integrin-linked kinase (ILK) in podocyte dysfunction and proteinuria. ILK expression was induced in mouse podocytes by various injurious stimuli known to cause proteinuria including TGF-beta1, adriamycin, puromycin, and high ambient glucose. Podocyte ILK was also found to be upregulated in human proteinuric glomerular diseases. Ectopic expression of ILK in podocytes decreased levels of the epithelial markers nephrin and ZO-1, induced mesenchymal markers such as desmin, fibronectin, matrix metalloproteinase-9 (MMP-9), and alpha-smooth muscle actin (alpha-SMA), promoted cell migration, and increased the paracellular albumin flux across podocyte monolayers. ILK also induced Snail, a key transcription factor mediating epithelial-mesenchymal transition (EMT). Blockade of ILK activity with a highly selective small molecule inhibitor reduced Snail induction and preserved podocyte phenotypes following TGF-beta1 or adriamycin stimulation. In vivo, this ILK inhibitor ameliorated albuminuria, repressed glomerular induction of MMP-9 and alpha-SMA, and preserved nephrin expression in murine adriamycin nephropathy. Our results show that upregulation of ILK is a convergent pathway leading to podocyte EMT, migration, and dysfunction. ILK may be an attractive target for therapeutic intervention of proteinuric kidney diseases.
Marcinkiewicz, C; Rosenthal, L A; Mosser, D M; Kunicki, T J; Niewiarowski, S
1996-01-01
Two disintegrins with a high degree of amino acid sequence similarity, echistatin and eristostatin, showed a low level of interaction with Chinese hamster ovary (CHO) cells, but they bound to CHO cells transfected with alpha IIb beta 3 genes (A5 cells) and to CHO cells transfected with alpha v beta 3 genes (VNRC3 cells) in a reversible and saturable manner. Scatchard analysis revealed that eristostatin bound to 816000 sites per A5 cell (Kd 28 nM) and to 200000 sites (Kd 14 nM) per VNRC3 cell respectively. However, VNRC3 cells did not bind to immobilized eristostatin. Echistatin bound to 495000 sites (Kd 53 nM) per A5 cell and to 443000 sites (Kd 20 nM) per VNRC3 cell. As determined by flow cytometry, radiobinding assay and adhesion studies, binding of both disintegrins to A5 cells and resting platelets and binding of echistatin to VNRC3 cells resulted in the expression of ligand-induced binding sites (LIBS) on the beta 3 subunit. Eristostatin inhibited, more strongly than echistatin, the binding of three monoclonal antibodies: OPG2 (RGD motif dependent), A2A9 (alpha IIb beta 3 complex dependent) and 7E3 (alpha IIb beta 3 and alpha v beta 3 complex dependent) to A5 cells, to resting and to activated platelets and to purified alpha IIb beta 3. Experiments in which echistatin and eristostatin were used alone or in combination to inhibit the binding of 7E3 and OPG2 antibodies to resting platelets suggested that these two disintegrins bind to different but overlapping sites on alpha IIb beta 3 integrin. Monoclonal antibody LM 609 and echistatin seemed to bind to different sites on alpha v beta 3 integrin. However, echistatin inhibited binding of 7E3 antibody to VNRC3 cells and to purified alpha v beta 3 suggesting that alpha v beta 3 and alpha IIb beta 3 might share the same epitope to which both echistatin and 7E3 bind. Eristostatin had no effect in these systems, providing further evidence that it binds to a different epitope on alpha v beta 3. PMID:8760368
A Milieu Molecule for TGF-β Required for Microglia Function in the Nervous System.
Qin, Yan; Garrison, Brian S; Ma, Wenjiang; Wang, Rui; Jiang, Aiping; Li, Jing; Mistry, Meeta; Bronson, Roderick T; Santoro, Daria; Franco, Charlotte; Robinton, Daisy A; Stevens, Beth; Rossi, Derrick J; Lu, Chafen; Springer, Timothy A
2018-06-12
Extracellular proTGF-β is covalently linked to "milieu" molecules in the matrix or on cell surfaces and is latent until TGF-β is released by integrins. Here, we show that LRRC33 on the surface of microglia functions as a milieu molecule and enables highly localized, integrin-αVβ8-dependent TGF-β activation. Lrrc33 -/- mice lack CNS vascular abnormalities associated with deficiency in TGF-β-activating integrins but have microglia with a reactive phenotype and after 2 months develop ascending paraparesis with loss of myelinated axons and death by 5 months. Whole bone marrow transplantation results in selective repopulation of Lrrc33 -/- brains with WT microglia and halts disease progression. The phenotypes of WT and Lrrc33 -/- microglia in the same brain suggest that there is little spreading of TGF-β activated from one microglial cell to neighboring microglia. Our results suggest that interactions between integrin-bearing cells and cells bearing milieu molecule-associated TGF-β provide localized and selective activation of TGF-β. Copyright © 2018 Elsevier Inc. All rights reserved.
Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis
Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus
2016-01-01
Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E+) and acquire a high-affinity conformation with an ‘open' headpiece (H+). The canonical switchblade model of integrin activation proposes that the E+ conformation precedes H+, and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E−H+ conformation. E−H+ β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation. PMID:27578049
Laforest, Sullivan; Milanini, Julie; Parat, Fabrice; Thimonier, Jean; Lehmann, Maxime
2005-11-01
During neurite elongation, migrating growth cones encounter both permissive and inhibitory substrates, such as laminin and MAG (myelin-associated glycoprotein), respectively. Here, we demonstrated on two neuronal cell lines (PC12 and N1E-115), that laminin and collagen hampered, in a dose-dependent manner, MAG inhibitory activity on several integrin functions, i.e., neurite growth, cell adhesion and cell spreading. Using a function blocking antibody, in PC12 cells, we showed that alpha1beta1 integrin is required in these phenomena. In parallel, we observed that MAG perturbs actin dynamics and lamellipodia formation during early steps of cell spreading. This seemed to be independent of RhoA activation, but dependent of Rac-1 inhibition by MAG. Laminin overrode MAG activity on actin and prevented MAG inhibition NGF-induced Rac1 activation. In conclusion, we evidenced antagonistic signaling between MAG receptors and beta1 integrins, in which Rac-1 may have a central function.
A novel role for integrin-linked kinase in epithelial sheet morphogenesis.
Vespa, Alisa; D'Souza, Sudhir J A; Dagnino, Lina
2005-09-01
Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca(2+) triggers formation of cell-cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca(2+) treatment of keratinocytes induces rapid (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R D; Natarajan, A; Lau, E Y
2010-02-08
The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin is an attractive yet poorly understood target for selective diagnosis and treatment of T- and B-cell lymphomas. This report focuses on the rapid microwave preparation of medicinally pertinent benzimidazole heterocycles, structure-activity relationships (SAR) of novel halobenzimidazole carboxamide antagonists 3-6, and preliminary biological evaluation of radioiodinated agents 7, 8, and 18. The I-125 derivative 18 had good tumor uptake (12 {+-} 1% ID/g at 24 h; 4.5 {+-} 1% ID/g at 48 h) and tumor:kidney ratio ({approx}4:1 at 24 h; 2.5:1 at 48 h) in xenograft murine models of B-cell lymphoma. Molecular homologymore » models of {alpha}{sub 4}{beta}{sub 1} integrin have predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. These high affinity ({approx} pM binding) halogenated ligands are attractive tools for medicinal and biological use; the fluoro and iodo derivatives are potential radiodiagnostic ({sup 18}F) or radiotherapeutic ({sup 131}I) agents, whereas the chloro and bromo analogues could provide structural insight into integrin-ligand interactions through photoaffinity cross-linking/mass spectroscopy experiments, as well as co-crystallization X-ray studies.« less
Antonow, Michelli B.; Franco, Camila; Prado, Willian; Beckenkamp, Aline; Silveira, Gustavo P.; Buffon, Andréia; Guterres, Sílvia S.
2017-01-01
Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing αvβ3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of αvβ3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg·mL−1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 ± 6 nm, polydispersity index of 0.11 ± 0.04, zeta potential of +13.2 ± 1.9 mV and (6.2 ± 1.1) × 1011 particles mL−1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 ± 20 and 215 ± 25 nm, 0.10 ± 0.01 and 0.09 ± 0.03, +13.8 ± 2.3 and +16.4 ± 1.5 mV and (6.9 ± 0.6) × 1011 and (6.1 ± 1.0) × 1011 particles mL−1. RGD complexation was 7.73 × 104 molecules per nanocapsule and Dox loading were 1.51 × 104 and 7.64 × 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG. PMID:29271920
Lai-Cheong, Joey E; Parsons, Maddy; Tanaka, Akio; Ussar, Siegfried; South, Andrew P; Gomathy, Sethuraman; Mee, John B; Barbaroux, Jean-Baptiste; Techanukul, Tanasit; Almaani, Noor; Clements, Suzanne E; Hart, Ian R; McGrath, John A
2009-10-01
Kindler syndrome is an autosomal recessive disorder characterized by skin atrophy and blistering. It results from loss-of-function mutations in the FERMT1 gene encoding the focal adhesion protein, fermitin family homolog-1. How and why deficiency of fermitin family homolog-1 results in skin atrophy and blistering are unclear. In this study, we investigated the epidermal basement membrane and keratinocyte biology abnormalities in Kindler syndrome. We identified altered distribution of several basement membrane proteins, including types IV, VII, and XVII collagens and laminin-332 in Kindler syndrome skin. In addition, reduced immunolabeling intensity of epidermal cell markers such as beta1 and alpha6 integrins and cytokeratin 15 was noted. At the cellular level, there was loss of beta4 integrin immunolocalization and random distribution of laminin-332 in Kindler syndrome keratinocytes. Of note, active beta1 integrin was reduced but overexpression of fermitin family homolog-1 restored integrin activation and partially rescued the Kindler syndrome cellular phenotype. This study provides evidence that fermitin family homolog-1 is implicated in integrin activation and demonstrates that lack of this protein leads to pathological changes beyond focal adhesions, with disruption of several hemidesmosomal components and reduced expression of keratinocyte stem cell markers. These findings collectively provide novel data on the role of fermitin family homolog-1 in skin and further insight into the pathophysiology of Kindler syndrome.
Bondu, Virginie; Wu, Chenyu; Cao, Wenpeng; Simons, Peter C.; Gillette, Jennifer; Zhu, Jieqing; Erb, Laurie; Zhang, X. Frank; Buranda, Tione
2017-01-01
Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation. PMID:28835374
Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions.
Spiess, Matthias; Hernandez-Varas, Pablo; Oddone, Anna; Olofsson, Helene; Blom, Hans; Waithe, Dominic; Lock, John G; Lakadamyali, Melike; Strömblad, Staffan
2018-06-04
Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive β1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive β1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation. © 2018 Spiess et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seomun, Young; Joo, Choun-Ki
Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence thatmore » lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.« less
Sancey, Lucie; Ardisson, Valérie; Riou, Laurent M; Ahmadi, Mitra; Marti-Batlle, Danièle; Boturyn, Didier; Dumy, Pascal; Fagret, Daniel; Ghezzi, Catherine; Vuillez, Jean-Philippe
2007-12-01
The molecular imaging of tumour neoangiogenesis currently represents a major field of research for the diagnostic and treatment strategy of solid tumours. Endothelial cells from tumour neovessels overexpress the alpha(v)beta(3) integrin, which selectively binds to Arg-Gly-Asp (RGD)-containing peptides. We evaluated the potential of the novel radiotracer (99m)Tc-RAFT-RGD for the non-invasive molecular imaging of alpha(v)beta(3) integrin expression in mice models of tumour development. (99m)Tc-RAFT-RGD, (99m)Tc-cRGD (specific control) and (99m)Tc-RAFT-RAD (non-specific control) were injected intravenously to mice bearing B16F0 or TS/A-pc tumours. In vivo whole-body tomographic imaging and post-mortem biodistribution studies were performed 60 min following tracer injection. Adjacent tumour slices were used to compare the localisation of neovessels from immunostaining and the pattern of (99m)Tc-RAFT-RGD uptake from autoradiographic ex vivo imaging. Biodistribution studies indicated that (99m)Tc-RAFT-RGD tumour uptake was significantly higher than that of (99m)Tc-RAFT-RAD in B16F0 (2.4+/-0.5 vs 1.0+/-0.1%ID/g, respectively) and in TS/A-pc tumours (2.7+/-0.8 vs 0.7+/-0.1%ID/g, respectively). Immunohistochemical and autoradiographic studies indicated that (99m)Tc-RAFT-RGD intratumoural uptake preferentially occurred in angiogenic areas. Tomographic imaging allowed tumour visualisation following injection of (99m)Tc-RAFT-RGD and (99m)Tc-cRGD with similar tumour-to-contralateral muscle (T/CM) ratios in B16F0 and in TS/A-pc tumours whereas (99m)Tc-RAFT-RAD T/CM ratios did not allow tumour imaging. In accordance with the higher level of alpha(v)beta(3) integrin expression on TS/A-pc tumours than on B16F0 tumours as determined from western blot and immunoprecipitation analyses, the (99m)Tc-RAFT-RGD T/CM ratio was significantly higher in TS/A-pc than in B16F0 tumours. (99m)Tc-RAFT-RGD allowed the in vivo imaging of alpha(v)beta(3) integrin tumour expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Priyadarshini; Mosleh, Tariq A.; Aust, Ann E.
Crocidolite, containing 27% iron by weight, is the most carcinogenic form of asbestos. Crocidolite fibers are endocytized by {alpha}{sub v}{beta}{sub 5} integrin receptors in rabbit pleural mesothelial cells. We show here that crocidolite fibers are endocytized in human lung epithelial (A549) cells and in primary small airway epithelial (SAEC) cells. Presence of the integrin {alpha}{sub v}{beta}{sub 5} blocking antibody, P1F6, significantly reduced the uptake of crocidolite fibers in A549 cells. Thus, the integrin {alpha}{sub v}{beta}{sub 5} receptor is involved in endocytosis of crocidolite fibers in A549 cells as well. Previously, it has been observed that asbestos fibers lead to changesmore » in the intracellular redox environment, i.e. a marked decrease in intracellular glutathione concentrations and an increase in the extracellular glutathione in A549 cells. In addition, the decrease in intracellular glutathione was found to be largely independent of iron present on the surface of the fiber. A549 cells were treated with crocidolite in the presence of endocytosis inhibitor cytochalasin D. Our data indicate that, upon preventing endocytosis, we were able to reverse the decrease in total intracellular glutathione. The decrease in total intracellular glutathione could also be prevented in the presence of the monoclonal antibody P1F6. Thus, we observed that endocytosis of crocidolite fibers via integrin {alpha}{sub v}{beta}{sub 5} receptor is linked to the marked decrease in total intracellular glutathione in A549 cells.« less
Integrin distributions in renal cell carcinomas of various grades of malignancy.
Korhonen, M.; Laitinen, L.; Ylänne, J.; Koukoulis, G. K.; Quaranta, V.; Juusela, H.; Gould, V. E.; Virtanen, I.
1992-01-01
We studied 41 renal cell carcinomas, classified according to histologic grades G1 through G3, by indirect immunofluorescence microscopy using a panel of monoclonal antibodies (MAb) against various integrin subunits, and the basement membrane (BM) components laminin and collagen type IV. Selected cases also were immunostained using the avidin-biotin-complex method. The alpha 3 and beta 1 integrin subunits were detected in tumor cells of all the carcinomas. All G1 carcinomas, like normal tubular epithelial cells, expressed the alpha 6 subunit, whereas it was lacking in 20% and 40% of G2 and G3 carcinomas, respectively. Furthermore, when alpha 6 was expressed, a lack of basally polarized organization of the subunit, coupled with disorganization of the BM components, correlated with histologic grade. Another feature that appeared to characterize the more anaplastic tumors was their high level (80%) of the alpha v subunit expression as compared with its absence in the G1 carcinomas. Stromal myofibroblasts, identified by double-labeling with anti-myosin, were often characterized by the expression of the alpha 1, alpha 3, alpha 5 and beta 1 subunits. These results indicate that changes in integrin expression in renal cell carcinomas may be correlated with their degree of histologic malignancy. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1443050
De Nichilo, M O; Burns, G F
1993-03-15
The colony-stimulating factors (CSFs) greatly influence mature macrophage function in vitro: macrophage (M)-CSF induces maturation of monocytes and enhances differentiated cell function; granulocyte-macrophage (GM)-CSF stimulates a variety of antimicrobial functions. In vivo M-CSF is thought to promote differentiation, and GM-CSF is thought to potentiate the inflammatory response. One mechanism by which these differential effects may be achieved is through the receptor-mediated interaction of macrophages with their extracellular matrix. Here we show that M-CSF induces specifically the expression of the alpha v beta 5 integrin receptor, whereas GM-CSF rapidly induces mRNA and surface expression of the alpha v beta 3 integrin. The M-CSF-treated cells acquire a flattened epitheloid phenotype, and on vitronectin the alpha v beta 5 is located in adhesion plaques. These cells do not bind collagen or laminin. In contrast, cells treated with GM-CSF adopt an elongated phenotype on a number of substrates, including collagen and laminin, and express alpha v beta 3 at the leading edge of cells on vitronectin. These results suggest that a primary means by which the CSFs exert their individual effects on mature cells may be through regulating integrin expression.
Olivares-Navarrete, Rene; Rodil, Sandra E.; Hyzy, Sharon L.; Dunn, Ginger R.; Almaguer-Flores, Argelia; Schwartz, Zvi; Boyan, Barbara D.
2015-01-01
Surface roughness, topography, chemistry, and energy promote osteoblast differentiation and increase osteogenic local factor production in vitro and bone-to-implant contact in vivo, but the mechanisms involved are not well understood. Knockdown of integrin heterodimer alpha2beta1 (α2β1) blocks the osteogenic effects of the surface, suggesting signaling by this integrin homodimer is required. The purpose of the present study was to separate effects of surface chemistry and surface structure on integrin expression by coating smooth or rough titanium (Ti) substrates with graphitic carbon, retaining surface morphology but altering surface chemistry. Ti surfaces (smooth [Ra<0.4μm], rough [Ra≥3.4μm]) were sputter-coated using a magnetron sputtering system with an ultrapure graphite target, producing a graphitic carbon thin film. Human mesenchymal stem cells and MG63 osteoblast-like cells had higher mRNA for integrin subunits α1, α2, αv, and β1 on rough surfaces in comparison to smooth, and integrin αv on graphitic-carbon-coated rough surfaces in comparison to Ti. Osteogenic differentiation was greater on rough surfaces in comparison to smooth, regardless of chemistry. Silencing integrins β1, α1, or α2 decreased osteoblast maturation on rough surfaces independent of surface chemistry. Silencing integrin αv decreased maturation only on graphitic carbon-coated surfaces, not on Ti. These results suggest a major role of the integrin β1 subunit in roughness recognition, and that integrin alpha subunits play a major role in surface chemistry recognition. PMID:25770999
Cellular Mechanisms Underlying Bone-Forming Cell Proliferative Response to Hypergravity
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; DaCosta, M.; Wing, A.; Roden, C.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.
2004-01-01
Life on Earth has evolved under the continuous influence of gravity (1-g). As humans explore and develop space, however, we must learn to adapt to an environment with little or no gravity. Studies indicate that lack of weightbearing for vertebrates occurring with immobilization, paralysis, or in a microgravity environment may cause muscle and bone atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) (consisting of molecules such as collagen, fibronectin, and laminin) in mechanosensitive tissues. We test for the presence of gravity-sensitive pathways in bone-forming cells (osteoblasts) using hypergravity applied by a cell culture centrifuge. Stimulation of 50 times gravity (50-g) increased proliferation in primary rat osteoblasts for cells grown on collagen Type I and fibronectin, but not on laminin or uncoated surfaces. Survival was also enhanced during hypergravity stimulation by the presence of ECM. Bromodeoxyuridine incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. Reverse transcription-polymerase chain reaction was used to test for all possible integrins. Our combined results indicate that beta1 and/or beta3 integrin subunits may be involved. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signalling pathways which are sensitive to g-level. Further research to define the mechanisms involved will provide direction so that we may better adapt and counteract bone atrophy caused by the lack of weightbearing.
Thys, Mirjan; Nauwynck, Hans; Maes, Dominiek; Hoogewijs, Maarten; Vercauteren, Dries; Rijsselaere, Tom; Favoreel, Herman; Van Soom, Ann
2009-09-01
Fibronectin (Fn) is a 440 kDa glycoprotein assumed to participate in sperm-egg interaction in human. Recently, it has been demonstrated that Fn--when present during bovine IVF--strongly inhibits sperm penetration. The present study was conducted firstly to evaluate the expression of Fn and its integrin receptor (alpha(5)beta(1)) on male and female bovine gametes using indirect immunofluorescence and secondly, to determine the function of Fn during bovine IVF. Endogenous Fn was detected underneath the zona pellucida (ZP) and integrin alpha(5) on the oolemma of cumulus-denuded oocytes. Bovine spermatozoa displayed integrin alpha(5) at their equatorial segment after acrosome reaction. We established that the main inhibitory effect of exogenously supplemented Fn was located at the sperm-oolemma binding, with a (concurrent) effect on fusion, and this can probably be attributed to the binding of Fn to spermatozoa at the equatorial segment, as shown by means of Alexa Fluor 488-conjugated Fn. Combining these results, the inhibitory effect of exogenously supplemented Fn seemed to be exerted on the male gamete by binding to the exposed integrin alpha(5)beta(1) receptor after acrosome reaction. The presence of endogenous Fn underneath the ZP together with integrin alpha(5) expression on oolemma and acrosome-reacted (AR) sperm cell surface suggests a 'velcro' interaction between the endogenous Fn ligand and corresponding receptors on both (AR) sperm cell and oolemma, initiating sperm-egg binding.
Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion
Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng
2016-01-01
Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950
Hogg, Nancy; Stewart, Mairi P.; Scarth, Sarah L.; Newton, Rebecca; Shaw, Jacqueline M.; Law, S.K. Alex; Klein, Nigel
1999-01-01
In the leukocyte adhesion deficiency (LAD)-1 syndrome, there is diminished expression of β2(CD18) integrins. This is caused by lesions in the β2-subunit gene and gives rise to recurrent bacterial infections, impaired pus formation, and poor wound healing. We describe a patient with clinical features compatible with a moderately severe phenotype of LAD-1 but who expresses the β2 integrins lymphocyte function– associated molecule (LFA)-1 and Mac-1 at 40%–60% of normal levels. This level of expression should be adequate for normal integrin function, but both the patient's Mac-1 on neutrophils and LFA-1 on T cells failed to bind ligands such as fibrinogen and intercellular adhesion molecule (ICAM)-1, respectively, or to display a β2-integrin activation epitope after adhesion-inducing stimuli. Unexpectedly, divalent cation treatment induced the patient's T cells to bind to ICAM-2 and ICAM-3. Sequencing of the patient's two CD18 alleles revealed the mutations S138P and G273R. Both mutations are in the β2-subunit conserved domain, with S138P a putative divalent cation coordinating residue in the metal ion–dependent adhesion site (MIDAS) motif. After K562 cell transfection with α subunits, the mutated S138P β subunit was coexpressed but did not support function, whereas the G273R mutant was not expressed. In summary, the patient described here exhibits failure of the β2 integrins to function despite adequate levels of cell-surface expression. PMID:9884339
NASA Technical Reports Server (NTRS)
Meyers, Valerie E.; Zayzafoon, Majd; Gonda, Steven R.; Gathings, William E.; McDonald, Jay M.
2004-01-01
Spaceflight leads to reduced bone mineral density in weight bearing bones that is primarily attributed to a reduction in bone formation. We have previously demonstrated severely reduced osteoblastogenesis of human mesenchymal stem cells (hMSC) following seven days culture in modeled microgravity. One potential mechanism for reduced osteoblastic differentiation is disruption of type I collagen-integrin interactions and reduced integrin signaling. Integrins are heterodimeric transmembrane receptors that bind extracellular matrix proteins and produce signals essential for proper cellular function, survival, and differentiation. Therefore, we investigated the effects of modeled microgravity on integrin expression and function in hMSC. We demonstrate that seven days of culture in modeled microgravity leads to reduced expression of the extracellular matrix protein, type I collagen (Col I). Conversely, modeled microgravity consistently increases Col I-specific alpha2 and beta1 integrin protein expression. Despite this increase in integrin sub-unit expression, autophosphorylation of adhesion-dependent kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), is significantly reduced. Activation of Akt is unaffected by the reduction in FAK activation. However, reduced downstream signaling via the Ras-MAPK pathway is evidenced by a reduction in Ras and ERK activation. Taken together, our findings indicate that modeled microgravity decreases integrin/MAPK signaling, which likely contributes to the observed reduction in osteoblastogenesis.
A novel role for the integrin-binding III-10 module in fibronectin matrix assembly.
Hocking, D C; Smith, R K; McKeown-Longo, P J
1996-04-01
Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183-19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red-conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.
Tsuda, Kayoko; Furuta, Nobumichi; Inaba, Hiroaki; Kawai, Shinji; Hanada, Kentaro; Yoshimori, Tamotsu; Amano, Atsuo
2008-01-01
Porphyromonas gingivalis, a periodontal pathogen, was previously suggested to exploit alpha5beta1 integrin and lipid rafts to invade host cells. However, it is unknown if the functional roles of these host components are distinct from one another during bacterial invasion. In the present study, we analyzed the mechanisms underlying P. gingivalis invasion, using fluorescent beads coated with bacterial membrane vesicles (MV beads). Cholesterol depletion reagents including methyl-beta-cyclodextrin (MbetaCD) drastically inhibited the entry of MV beads into epithelial cells, while they were less effective on bead adhesion to the cells. Bead entry was also abolished in CHO cells deficient in sphingolipids, components of lipid rafts, whereas adhesion was negligibly influenced. Following MbetaCD treatment, downstream events leading to actin polymerization were abolished; however, alpha5beta1 integrin was recruited to beads attached to the cell surface. Dominant-negative Rho GTPase Rac1 abolished cellular engulfment of the beads, whereas dominant-negative Cdc42 did not. Following cellular interaction with the beads, Rac1 was found to be translocated to the lipid rafts fraction, which was inhibited by MbetaCD. These results suggest that alpha5beta1 integrin, independent of lipid rafts, promotes P. gingivalis adhesion to epithelial cells, while the subsequent uptake process requires lipid raft components for actin organization, with Rho GTPase Rac1.
Colorectal Cancer Metastases Settle in the Hepatic Microenvironment Through α5β1 Integrin.
Pelillo, Chiara; Bergamo, Alberta; Mollica, Hilaria; Bestagno, Marco; Sava, Gianni
2015-10-01
Colorectal cancer (CRC) metastasis dissemination to secondary sites represents the critical point for the patient's survival. The microenvironment is crucial to cancer progression, influencing tumour cell behaviour by modulating the expression and activation of molecules such as integrins, the cell-extracellular matrix interacting proteins participating in different steps of the tumour metastatic process. In this work, we investigated the role of α5β1 integrin and how the microenvironment influences this adhesion molecule, in a model of colon cancer progression to the liver. The culture medium conditioned by the IHH hepatic cell line, and the extracellular matrix (ECM) proteins, modulate the activation of α5β1 integrin in the colon cancer cell line HCT-116, and drives FAK phosphorylation during the process of cell adhesion to fibronectin, one of the main components of liver ECM. In these conditions, α5β1 modulates the expression/activity of another integrin, α2β1, involved in the cell adhesion to collagen I. These results suggest that α5β1 integrin holds a leading role in HCT-116 colorectal cancer cells adhesion to the ECM through the modulation of the intracellular focal adhesion kinase FAK and the α2β1 integrin activity. The driving role of the tumour microenvironment on CRC dissemination, here detected, and described, strengthens and adds new value to the concept that α5β1 integrin can be an appropriate and relevant therapeutic target for the control of CRC metastases. © 2015 Wiley Periodicals, Inc.
Integrin-like proteins are localized to plasma membrane fractions, not plastids, in Arabidopsis
NASA Technical Reports Server (NTRS)
Swatzell, L. J.; Edelmann, R. E.; Makaroff, C. A.; Kiss, J. Z.
1999-01-01
Integrins are a large family of integral membrane proteins that function in signal transduction in animal systems. These proteins are conserved in vertebrates, invertebrates, and fungi. Evidence from previous research suggests that integrin-like proteins may be present in plants as well, and that these proteins may function in signal transduction during gravitropism. In past studies, researchers have used monoclonal and polyclonal antibodies to localize beta 1 integrin-like proteins in plants. However, there is a disparity between data collected from these studies, especially since molecular weights obtained from these investigations range from 55-120 kDa for integrin-like proteins. To date, a complete investigation which employs all three basic immunolabeling procedures, immunoblotting, immunofluorescence microscopy, and immunogold labeling, in addition to extensive fractionation and exhaustive controls, has been lacking. In this paper, we demonstrate that use of a polyclonal antibody against the cytoplasmic domain of avian beta 1-integrin can produce potential artifacts in immunolocalization studies. However, these problems can be eliminated through use of starchless mutants or proper specimen preparation prior to electrophoresis. We also show that this antibody, when applied within the described parameters and with careful controls, identifies a large (100 kDa) integrin-like protein that is localized to plasma membrane fractions in Arabidopsis.
Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.
2003-01-01
Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eke, Iris; Storch, Katja; Kaestner, Ina
Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg,more » {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.« less
Shekaran, Asha; Shoemaker, James T.; Kavanaugh, Taylor E.; Lin, Angela S.; LaPlaca, Michelle C.; Fan, Yuhong; Guldberg, Robert E.; García, Andrés J.
2014-01-01
Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and Osteocalcin-Cre lines to generate conditional β1 integrin deletions, where cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic chondryocyte- lineage cells regulate incisor eruption and perinatal bone formation in both intramembranously and endochondrally formed bones in young, rapidly growing mice. In contrast, the Osteocalcin-specific β1 integrin deletion had only minor effects on skeletal phenotype. PMID:25183373
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampaio, S.O.; Mei, C.; Butcher, E.C.
The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less
Redox-Relevant Aspects of the Extracellular Matrix and Its Cellular Contacts via Integrins
de Rezende, Flávia Figueiredo
2014-01-01
Abstract Significance: The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. Recent Advances: ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. Critical Issues: In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. Future Directions: Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders. Antioxid. Redox Signal. 20, 1977–1993. PMID:24040997
2015-11-01
increased PhScN potency as a result of preventing endoproteolytic degradation. Finally, the in vivo lung extravasation and colonization data, as well as...successful colonization are late stages in breast cancer progression that are ultimately fatal. Hence, prevention of extravasation which leads to colony...Award Number: TITLE: “Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma
Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.
Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C
1997-01-01
Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P < .001) before but not after delivery. Expression of the integrin counter receptors on leukocytes was similarly increased in preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum factor which increases endothelial cell [Ca2+]i and enhances adhesion molecule expression.
Natalizumab in the treatment of Crohn’s disease
Guagnozzi, Danila; Caprilli, Renzo
2008-01-01
The pathogenesis of Crohn’s disease (CD) is multifactorial and the activation of specific pathways of immunological system is important. In particular, the adhesion molecules (integrins) mediate the selective binding between the leukocytes and the endothelial cells regulating the migration of leukocytes into the normal and inflamed intestine. Selective adhesion molecule inhibitors interfere with the migration of leukocytes to the sites of inflammation by targeting adhesion molecules (α4-integrin or α4β7-integrin). Natalizumab is a humanized IgG4 anti-α4-integrin monoclonal antibody that inhibits both α4β7-integrin/mucosal addressin-cell adhesion molecule-1 (MadCAM-1) interaction and α4β1/vascular-cell adhesion molecule-1 (VCAM-1) binding. Pooled data from the four studies, analyzed in a Cochrane review, suggest that natalizumab is effective for induction of clinical response and remission in patients with moderately to severely active CD. In particular, natalizumab may be beneficial for patients with active inflammation or chronically active disease despite the use of conventional therapies with high level of C-reactive protein values at baseline time. Nevertheless, many problems about the utilization of natalizumab in CD remain unsolved (such as the high placebo response, the final definition of dosage and timing schedule, the definition of outcomes and the development of adverse events). PMID:19707360
Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A
1995-04-01
1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the heterogeneous distribution of membrane proteins in T-tubules is also presented.
De, Pradip; Carlson, Jennifer H; Wu, Hui; Marcus, Adam; Leyland-Jones, Brian; Dey, Nandini
2016-07-12
Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronectin-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship between WP activation and MA-phenotypes, our data mechanistically explains (1) why different components of WP are upregulated in TNBC, (2) how WP activation is associated with metastasis and (3) how integrin-dependent MA-phenotypes can be regulated by mitigating the WP.
De, Pradip; Carlson, Jennifer H.; Wu, Hui; Marcus, Adam; Leyland-Jones, Brian; Dey, Nandini
2016-01-01
Tumor cells acquire metastasis-associated (MA) phenotypes following genetic alterations in them which cause deregulation of different signaling pathways. Earlier, we reported that an upregulation of the Wnt-beta-catenin pathway (WP) is one of the genetic salient features of triple-negative breast cancer (TNBC), and WP signaling is associated with metastasis in TNBC. Using cBioPortal, here we found that collective % of alteration(s) in WP genes, CTNNB1, APC and DVL1 among breast-invasive-carcinomas was 21% as compared to 56% in PAM50 Basal. To understand the functional relevance of WP in the biology of heterogeneous/metastasizing TNBC cells, we undertook this comprehensive study using 15 cell lines in which we examined the role of WP in the context of integrin-dependent MA-phenotypes. Directional movement of tumor cells was observed by confocal immunofluorescence microscopy and quantitative confocal-video-microscopy while matrigel-invasion was studied by MMP7-specific casein-zymography. WntC59, XAV939, sulindac sulfide and beta-catenin siRNA (1) inhibited fibronectin-directed migration, (2) decreased podia-parameters and motility-descriptors, (3) altered filamentous-actin, (4) decreased matrigel-invasion and (5) inhibited cell proliferation as well as 3D clonogenic growth. Sulindac sulfide and beta-catenin siRNA decreased beta-catenin/active-beta-catenin and MMP7. LWnt3ACM-stimulated proliferation, clonogenicity, fibronection-directed migration and matrigel-invasion were perturbed by WP-modulators, sulindac sulfide and GDC-0941. We studied a direct involvement of WP in metastasis by stimulating brain-metastasis-specific MDA-MB231BR cells to demonstrate that LWnt3ACM-stimulated proliferation, clonogenicity and migration were blocked following sulindac sulfide, GDC-0941 and beta-catenin knockdown. We present the first evidence showing a direct functional relationship between WP activation and integrin-dependent MA-phenotypes. By proving the functional relationship between WP activation and MA-phenotypes, our data mechanistically explains (1) why different components of WP are upregulated in TNBC, (2) how WP activation is associated with metastasis and (3) how integrin-dependent MA-phenotypes can be regulated by mitigating the WP. PMID:27281609
Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression.
Cowden Dahl, Karen D; Robertson, Sarah E; Weaver, Valerie M; Simon, M Celeste
2005-04-01
Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of alpha and beta aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt(-/-) and Hifalpha(-/-) TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin alphavbeta3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O(2)). Culturing B16F0 melanoma cells at 1.5% O(2) resulted in increased alphavbeta3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O(2) tension influence placental invasion and tumor migration by increasing cell surface expression of alphavbeta3 integrin.
Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica D; Sari, Duygu; Torres-Gomez, Alvaro; Li, Lequn; Strauss, Laura; Lafuente, Esther M; Boussiotis, Vassiliki A
2017-08-22
Lymphocyte activation requires adhesion to antigen-presenting cells. This is a critical event linking innate and adaptive immunity. Lymphocyte adhesion is accomplished through LFA-1, which must be activated by a process referred to as inside-out integrin signaling. Among the few signaling molecules that have been implicated in inside-out integrin activation in hematopoietic cells are the small guanosine triphosphatase (GTPase) Rap1 and its downstream effector Rap1-interacting molecule (RIAM), a multidomain protein that defined the Mig10-RIAM-lamellipodin (MRL) class of adaptor molecules. Through its various domains, RIAM is a critical node of signal integration for activation of T cells, recruits monomeric and polymerized actin to drive actin remodeling and cytoskeletal reorganization, and promotes inside-out integrin signaling in T cells. As a regulator of inside-out integrin activation, RIAM affects multiple functions of innate and adaptive immunity. The effects of RIAM on cytoskeletal reorganization and integrin activation have implications in cell migration and trafficking of cancer cells. We provide an overview of the structure and interactions of RIAM, and we discuss the implications of RIAM functions in innate and adaptive immunity and cancer. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Sangboonruang, S; Thammasit, P; Intasai, N; Kasinrerk, W; Tayapiwatana, C; Tragoolpua, K
2014-06-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) exhibits overexpression in various cancers and promotes cancer progression and metastasis via the interaction with its associated molecules. The scFv-M6-1B9 intrabody has a potential ability to reduce EMMPRIN cell surface expression. However, the subsequent effect of scFv-M6-1B9 intrabody-mediated EMMPRIN abatement on its related molecules, α3β1-integrin, MCT1, MMP-2 and MMP-9, is undefined. Our results demonstrated that the scFv-M6-1B9 intrabody efficiently decreased α3β1-integrin cell surface expression levels. In addition, intracellular accumulation of MCT1 and lactate were increased. These results lead to suppression of features characteristic for tumor progression, including cell migration, proliferation and invasion, in a colorectal cancer cell line (Caco-2) although there was no difference in MMP expression. Thus, EMMPRIN represents an attractive target molecule for the disruption of cancer proliferation and metastasis. An scFv-M6-1B9 intrabody-based approach could be relevant for cancer gene therapy.
Current Anti-Integrin Therapy for Ocular Disease.
Gonzalez-Salinas, Roberto; Hernández-Zimbrón, Luis F; Gulias-Cañizo, Rosario; Sánchez-Vela, Mario Alberto; Ochoa-De La Paz, Lenin; Zamora, Ruben; Quiroz-Mercado, Hugo
2017-10-31
The integrin family of cell adhesion molecules mediates homeostasis, signal transduction, and various other interactions between the cell and the extracellular matrix. Integrins are type-1 transmembrane glycoproteins located on the cell surface, widely expressed in leukocytes, which play an important role in the inflammatory pathway. The purpose of this review is to summarize the current state of anti-integrin therapy and to assess ongoing clinical trials in ocular disease. We performed a search on PubMed, CINAHL, and Embase for the published literature available using the MeSH terms: "integrin therapy" and "αLβ2," "α4β1" and "α4β7," "αvβ3," "αvβ5," and "αvβ1" and/or "ophthalmology," and "clinical trials." We used no language restrictions. We generated searches to account for synonyms of these keywords and MESH headings as follows: (1) "integrin," "therapy," or "treatment"; (2) "clinical trials," "ophthalmology," or "ocular." In addition, the analysis included phase 2 and phase 3 clinical trials with a minimal follow-up of six months. Integrin antagonists have shown their capacity to improve signs and symptoms of patients with dry eye disease, age-related macular degeneration, diabetic macular edema, and vitreomacular traction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schürpf, Thomas; Chen, Qiang; Liu, Jin-huan
Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin {alpha}{sub V}{beta}{sub 3}. Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II' {beta} turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2more » and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8. The RGD finger of Del-1 is a unique structural feature critical for integrin binding.« less
Cardiac integrins the ties that bind.
Simpson, D G; Reaves, T A; Shih, D T; Burgess, W; Borg, T K; Terracio, L
1998-01-01
An elaborate series of morphogenetic events must be precisely coordinated during development to promote the formation of the elaborate three-dimensional structure of the normal heart. In this study we focus on discussing how interconnections between the cardiac myocyte and its surrounding environment regulate cardiac form and function. In vitro experiments from our laboratories provide direct evidence that cardiac cell shape is regulated by a dynamic interaction between constituents of the extracellular matrix (ECM) and by specific members of the integrin family of matrix receptors. Our data indicates that phenotypic information is stored in the tertiary structure and chemical identity of the ECM. This information appears to be actively communicated and transduced by the α1β1 integrin molecule into an intracellular signal that regulates cardiac cell shape and myofibrillar organization. In this study we have assessed the phenotypic consequences of suppressing the expression and accumulation of the α1 integrin molecule in aligned cultures of cardiac myocytes. In related experiments we have examined how the overexpression of α2 and α5 integrin, integrins normally not present or present at very low copy number on the cell surface of neonatal cardiac myocytes, affect cardiac protein metabolism. We also consider how biochemical signals and the mechanical signals mediated by the integrins may converge on common intracellular signaling pathways in the heart. Experiments with the whole embryo culture system indicate that angiotensin II, a peptide that carries information concerning cardiac load, plays a role in controling cardiac looping and the proliferation of myofibrils during development.
2015-11-01
systemic therapy to prevent breast cancer bone colony progression. Figure 6. Colocalization of Ac-PhscNGGK-Bio with DiI in lung– extravasated SUM149PT cells...breast cancer progression that are ultimately fatal. Hence, prevention of extravasation which leads to colony formation would increase life...1 Award Number: W81XWH-12-1-0097 TITLE: “Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site
Mahalingam, Bhuvaneshwari; Ajroud, Kaouther; Alonso, Jose Luis; Anand, Saurabh; Adair, Brian; Horenstein, Alberto L; Malavasi, Fabio; Xiong, Jian-Ping; Arnaout, M. Amin
2011-01-01
A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal-ion-dependent-adhesion site (MIDAS) in the integrin A-domain. This interaction stabilizes the A-domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A-domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking monoclonal antibody (mAb) 107 binds MIDAS of integrin CD11b/CD18 A-domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over Mg2+ at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of Ca2+ at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+. Binding of Fab 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that denticity of the ligand Asp/Glu can modify divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists. PMID:22095715
Grote, Karsten; Salguero, Gustavo; Ballmaier, Matthias; Dangers, Marc; Drexler, Helmut; Schieffer, Bernhard
2007-08-01
Tissue regeneration involves the formation of new blood vessels regulated by angiogenic factors. We reported recently that the expression of the angiogenic factor CCN1 is up-regulated under various pathophysiologic conditions within the cardiovascular system. Because CD34+ progenitor cells participate in cardiovascular tissue regeneration, we investigated whether CCN1-detected for the first time in human plasma-promotes the recruitment of CD34+ progenitor cells to endothelial cells, thereby enhancing endothelial proliferation and neovascularization. In this study, we demonstrated that CCN1 and supernatants from CCN1-stimulated human CD34+ progenitor cells promoted proliferation of endothelial cells and angiogenesis in vitro and in vivo. In addition, CCN1 induced migration and transendothelial migration of CD34+ cells and the release of multiple growth factors, chemokines, and matrix metalloproteinase-9 (MMP-9) from these cells. Moreover, the CCN1-specific integrins alpha(M)beta(2) and alpha(V)beta(3) are expressed on CD34+ cells and CCN1 stimulated integrin-dependent signaling. Furthermore, integrin antagonists (RGD-peptides) suppressed both binding of CCN1 to CD34+ cells and CCN1-induced adhesion of CD34+ cells to endothelial cells. These data suggest that CCN1 promotes integrin-dependent recruitment of CD34+ progenitor cells to endothelial cells, which may contribute to paracrine effects on angiogenesis and tissue regeneration.
Conservation of the Human Integrin-Type Beta-Propeller Domain in Bacteria
Chouhan, Bhanupratap; Denesyuk, Alexander; Heino, Jyrki; Johnson, Mark S.; Denessiouk, Konstantin
2011-01-01
Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca2+-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca2+-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and sometimes two tandem copies are found. PMID:22022374
Targeted drug delivery and enhanced intracellular release using functionalized liposomes
NASA Astrophysics Data System (ADS)
Garg, Ashish
The ability to target cancer cells using an appropriate drug delivery system can significantly reduce the associated side effects from cancer therapies and can help in improving the overall quality of life, post cancer survival. Integrin alpha5beta1 is expressed on several types of cancer cells, including colon cancer and plays an important role in tumor growth and metastasis. Thus, the ability to target the integrin alpha 5beta1 using an appropriate drug delivery nano-vector can significantly help in inhibiting tumor growth and reducing tumor metastasis. The work in this thesis focuses on designing and optimizing, functionalized stealth liposomes (liposomes covered with polyethylene glycol (PEG)) that specifically target the integrin alpha5beta1. The PEG provides a steric barrier allowing the liposomes to circulate in the blood for longer duration and the functionalizing moiety, PR_b peptide specifically recognizes and binds to integrin alpha5beta1 expressing cells. The work demonstrates that by optimizing the amount of PEG and PR_b on the liposomal interface, nano-vectors can be engineered that bind to CT26.WT colon cancer cells in a specific manner and internalize through alpha 5beta1-mediated endocytosis. To further improve the efficacy of the system, PR_b functionalized pH-sensitive stealth liposomes that exhibit triggered release under mild acidic conditions present in endocytotic vesicles were designed. The study showed that PR_b functionalized pH-sensitive stealth liposomes, undergo destabilization under mildly acidic conditions and incorporation of the PR_b peptide does not significantly affect the pH-sensitivity of the liposomes. PR_b functionalized pH-sensitive stealth liposomes bind to CT26.WT colon carcinoma cells that express integrin alpha5beta 1, undergo cellular internalization, and release their load intracellularly in a short period of time as compared to other formulations. PR_b-targeted pH-sensitive stealth liposomes encapsulating 5-fluorouracil (5-FU) show significantly higher cytotoxicity than the PR_b-targeted inert stealth liposomes and the non-targeted stealth liposomes (both pH-sensitive and inert). The studies demonstrated that optimized PR_b functionalized pH sensitive liposomes have the potential to deliver a payload, such as chemotherapeutic agents, directly to colon cancer cells in an efficient and specific manner.
The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.
Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada
2011-05-27
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.
The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*
Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada
2011-01-01
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153
Faridi, Mohd Hafeez; Maiguel, Dony; Brown, Brock T.; Suyama, Eigo; Barth, Constantinos J.; Hedrick, Michael; Vasile, Stefan; Sergienko, Eduard; Schürer, Stephan; Gupta, Vineet
2010-01-01
Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique. PMID:20188705
Imamaki, Rie; Ogawa, Kazuko; Kizuka, Yasuhiko; Komi, Yusuke; Kojima, Soichi; Kotani, Norihiro; Honke, Koichi; Honda, Takashi; Taniguchi, Naoyuki; Kitazume, Shinobu
2018-05-02
Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 -/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 -/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 -/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin-β3, indicating that the reduction of cell surface integrin-β3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.
Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping
2016-11-07
Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.
Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping
2016-01-01
Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993
Parfenov, A I; Boldyreva, O N; Ruchkina, I N; Knyazev, O V; Sagynbaeva, V E; Shcherbakov, P L; Khomeriki, S G; Lazebnik, L B; Konoplyannikov, A G
2014-01-01
To define the value of adhesion molecules (sVCAM-1 integrin, P-selectin, E-selectin, and L-selectin) for the prediction and evaluation of the efficiency of treatment in patients with ulcerative colitis (UC) and Crohn's disease. Twenty-six patients with UC and 14 patients with CD were examined. Of them, 16 patients took infliximab (INF) in a dose of 5 mg/kg of body weight according to the standard scheme; 14 patients received cultured mesenchymal stem stromal cells (MSSCs) in a quantity of 150 x 10(8) cells, and 10 had azathioprine (AZA) 2 mg/kg and glucocorticosteroids (GCS) 1 mg/kg of body weight. Enzyme immunoassay was used to determine the serum concentration of the adhesion molecules (L-selectin, E-selectin, P-selectin, and sVCAM-1 integrin) before and 2 months after treatment. The signs of bowel inflammatory disease activity and the elevated levels of adhesion molecules whose synthesis did not occur under normal conditions remained in the patients receiving GCS and AZA. INF treatment caused a decrease in P-selectin, E-selectin, and sVCAM-1 levels to 8.9 +/- 1.0, 5.5 +/- 1.7, and 9.5 +/- 4.4 ng/ml, respectively (p < 0.001). Incorporation of MSSCs was followed by a reduction of the concentrations of P-selectin and E-selectin to 6.9 +/- 1.1 and 5.7 +/- 1.3 ng/ml, respectively (p < 0.001). The level of integrin (cVCAM-1) fell to 12.2 +/- 2.2 ng/ml (p > 0.1); that of L-selectin did not drop after MSSC administration and INF induction therapy. P-selectin, E-selectin, L-selectin, and sVCAM-1 integrin are current inflammatory markers and may be used to evaluate the efficiency of standard and biological therapies for inflammatory bowel diseases and to predict disease course.
Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R
2008-01-01
The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.
Sarathy, Apurva; Wuebbles, Ryan D; Fontelonga, Tatiana M; Tarchione, Ashley R; Mathews Griner, Lesley A; Heredia, Dante J; Nunes, Andreia M; Duan, Suzann; Brewer, Paul D; Van Ry, Tyler; Hennig, Grant W; Gould, Thomas W; Dulcey, Andrés E; Wang, Amy; Xu, Xin; Chen, Catherine Z; Hu, Xin; Zheng, Wei; Southall, Noel; Ferrer, Marc; Marugan, Juan; Burkin, Dean J
2017-06-07
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7β1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7β1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7β1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.
Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G
2001-01-01
Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.
Expression of Selected Integrins and Selectins in Bullous Pemphigoid
Żebrowska, Agnieszka; Sysa-Jędrzejowska, Anna; Wągrowska-Danilewicz, Małgorzata; Joss-Wichman, Ewa; Erkiert-Polguj, Anna; Waszczykowska, Elżbieta
2007-01-01
Blister development in bullous pemphigoid (BP) results from destruction of hemidesmosomes and basement membrane components within the dermoepidermal junction by autoantibodies. Adhesion molecules can take part in pathogenesis of this disease. The aim of the study was to determine the localization and expression of L- and E-selectins and β1, β3, and β4 integrins by immunohistochemistry in skin lesions of 21 patients with BP, compared with 10 healthy subjects. Expression of L and E selectins and β1, β3 integrins was detected mainly in basal keratinocytes and in inflammatory infiltrates in the dermis, expression of β4 integrin was irregular and was detected mainly in dermal part of the blister, while in the control group only weak and single expression of the examined molecules was detected in basal keratinocytes and endothelium cells. The obtained results reveal the important role of selected selectins and integrins in development of skin lesions in BP. PMID:17515951
Figueira, Cláudio Pereira; Carvalhal, Djalma Gomes Ferrão; Almeida, Rafaela Andrade; Hermida, Micely d' El-Rei; Touchard, Dominique; Robert, Phillipe; Pierres, Anne; Bongrand, Pierre; dos-Santos, Washington L C
2015-08-07
Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55-89] μm(2) for uninfected and 41 [34-51] μm(2) for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm(2) s(-1) ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm(2) s(-1) ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis.
The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis.
Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas
2008-07-16
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.
Grober, J S; Bowen, B L; Ebling, H; Athey, B; Thompson, C B; Fox, D A; Stoolman, L M
1993-01-01
Blood monocytes are the principal reservoir for tissue macrophages in rheumatoid synovitis. Receptor-mediated adhesive interactions between circulating cells and the synovial venules initiate recruitment. These interactions have been studied primarily in cultured endothelial cells. Thus the functional activities of specific adhesion receptors, such as the endothelial selectins and the leukocytic integrins, have not been evaluated directly in diseased tissues. We therefore examined monocyte-microvascular interactions in rheumatoid synovitis by modifying the Stamper-Woodruff frozen section binding assay initially developed to study lymphocyte homing. Specific binding of monocytes to venules lined by low or high endothelium occurred at concentrations as low as 5 x 10(5) cells/ml. mAbs specific for P-selectin (CD62, GMP-140/PADGEM) blocked adhesion by > 90% in all synovitis specimens examined. In contrast, P-selectin-mediated adhesion to the microvasculature was either lower or absent in frozen sections of normal foreskin and placenta. mAbs specific for E-selectin (ELAM-1) blocked 20-50% of monocyte attachment in several RA synovial specimens but had no effect in others. mAbs specific for LFA-1, Mo1/Mac 1, the integrin beta 2-chain, and L-selectin individually inhibited 30-40% of adhesion. An mAb specific for the integrin beta 1-chain inhibited the attachment of elutriated monocytes up to 20%. We conclude that P-selectin associated with the synovial microvasculature initiates shear-resistant adhesion of monocytes in the Stamper-Woodruff assay and stabilizes bonds formed by other selectins and the integrins. Thus the frozen section binding assay permits direct evaluation of leukocyte-microvascular adhesive interactions in inflamed tissues and suggests a prominent role for P-selectin in monocyte recruitment in vivo. Images PMID:7685772
Kashimata, M; Gresik, E W
1997-02-01
Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) regulate branching morphogenesis of fetal mouse submandibular gland (SMG) rudiments in vitro. The EGF system (EGF, TGF-alpha, and their shared receptor, EGFR) also regulates expression of integrins and their ligands in the extracellular matrix. We show here that inhibition of EGFR tyrosine-kinase activity by a tyrphostin retards in vitro development of SMGs. Using total RNA isolated from pooled SMGs taken from intact mouse fetuses, mRNA transcripts for EGF, TGF-alpha, and EGFR were detected by reverse transcription-polymerase chain reaction (RT-PCR), and age-dependent variations in the levels of these mRNA were quantitatively determined by nuclease protection assays. These findings suggest that the EGF system is operative in the in vivo development of this gland. alpha6-Integrin subunit was localized by immunofluorescence at the basal surface of epithelial cells. Branching morphogenesis of cultured SMG rudiments was inhibited by anti-alpha6 antibodies. Synthesis of alpha6-subunit in cultured SMGs, detected by metabolic labeling and immunoprecipitation, was increased by EGF and drastically reduced by tyrphostin. RT-PCR revealed that mRNAs for alpha6- and beta1- and beta4-integrin subunits are expressed at all ages between embryonic day 13 and postnatal day 7. These findings suggest that 1) the EGF system is a physiologic regulator of development of fetal mouse SMG, and 2) one mechanism by which it acts may be by regulating expression of integrins, which in turn control interaction of epithelial cells with the extracellular matrix.
Nakano, A; Pulkkinen, L; Murrell, D; Rico, J; Lucky, A W; Garzon, M; Stevens, C A; Robertson, S; Pfendner, E; Uitto, J
2001-05-01
Epidermolysis bullosa with pyloric atresia (EB-PA: OMIM 226730), also known as Carmi syndrome, is a rare autosomal recessive genodermatosis that manifests with neonatal mucocutaneous fragility associated with congenital pyloric atresia. The disease is frequently lethal within the first year, but nonlethal cases have been reported. Mutations in the genes encoding subunit polypeptides of the alpha 6 beta 4 integrin (ITGA6 and ITGB4) have been demonstrated in EB-PA patients. To extend the repertoire of mutations and to identify genotype-phenotype correlations, we examined seven new EB-PA families, four with lethal and three with nonlethal disease variants. DNA from patients was screened for mutations using heteroduplex analysis followed by nucleotide sequencing of PCR products spanning all beta 4 integrin-coding sequences. Mutation analysis disclosed 12 distinct mutations, 11 of them novel. Four mutations predicted a premature termination codon as a result of nonsense mutations or small out-of-frame insertions or deletions, whereas seven were missense mutations. This brings the total number of distinct ITGB4 mutations to 33. The mutation database indicates that premature termination codons are associated predominantly with the lethal EB-PA variants, whereas missense mutations are more prevalent in nonlethal forms. However, the consequences of the missense mutations are position dependent, and substitutions of highly conserved amino acids may have lethal consequences. In general, indirect immunofluorescence studies of affected skin revealed negative staining for beta 4 integrin in lethal cases and positive, but attenuated, staining in nonlethal cases and correlated with clinical phenotype. The data on specific mutations in EB-PA patients allows prenatal testing and preimplantation genetic diagnosis in families at risk.
Zu, Yan; Liang, Xudong; Du, Jing; Zhou, Shuai; Yang, Chun
2015-11-05
Here, we observed that integrin α1β1 and bone morphogenetic protein receptor (BMPR) IA formed a complex and co-localised in several cell types. However, the molecular interaction between these two molecules was not studied in detail to date and the role of the interaction in BMPR signalling remains unknown; thus, these were investigated here. In a steered molecular dynamics (SMD) simulation, the observed development of the rupture force related to the displacement between the A-domain of integrin α1 and the extracellular domain of BMPR IA indicated a strong molecular interaction within the integrin-BMPR complex. Analysis of the intermolecular forces revealed that hydrogen bonds, rather than salt bridges, are the major contributors to these intermolecular interactions. By using Enzyme-linked immunosorbent assay (ELISA) and co-immunoprecipitation (co-IP) experiments with site-directed mutants, we found that residues 85-89 in BMPR IA play the most important role for BMPR IA binding to integrin α1β1. These residues are the same as those responsible for bone morphogenetic protein 2 (BMP-2)/BMPR IA binding. In our experiments, we also found that the interference of integrin α1β1 up regulated the level of phosphorylated Smad1, 5, 8, which is the downstream of BMP/BMPR signalling. Therefore, our results suggest that integrin α1β1/BMPR IA may block BMP-2/BMPR IA complex information and interfere with the BMP-2 signalling pathway in cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integrin Targeted Therapeutics
Millard, Melissa; Odde, Srinivas; Neamati, Nouri
2011-01-01
Integrins are heterodimeric, transmembrane receptors that function as mechanosensors, adhesion molecules and signal transduction platforms in a multitude of biological processes. As such, integrins are central to the etiology and pathology of many disease states. Therefore, pharmacological inhibition of integrins is of great interest for the treatment and prevention of disease. In the last two decades several integrin-targeted drugs have made their way into clinical use, many others are in clinical trials and still more are showing promise as they advance through preclinical development. Herein, this review examines and evaluates the various drugs and compounds targeting integrins and the disease states in which they are implicated. PMID:21547158
Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.
Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K
2016-09-01
Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. ©2016 American Association for Cancer Research.
Local force induced conical protrusions of phagocytic cells.
Vonna, Laurent; Wiedemann, Agnès; Aepfelbacher, Martin; Sackmann, Erich
2003-03-01
Magnetic tweezers were used to study the passive and active response of macrophages to local centripetal nanonewton forces on beta1 integrins. Superparamagnetic beads coated with the beta1-integrin-binding protein invasin were attached to J774 murine macrophages to mimic phagocytosis of bacterial pathogens. Forces exceeding approximately 0.5 nN induce the active formation of trumpet-like protrusions resembling pseudopodia after an initial elastic deflection and a response time of approximately 30 seconds. The speed of advancement of the protrusion is
NASA Astrophysics Data System (ADS)
Pellegrini, Paul
This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted with MAT BIII rat mammary adenocarcinoma cells. Animals were imaged on a SPECT camera at various time points and compared to normal tissue to yield tumour/non-tumour uptake ratios.
Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS
Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.
2015-01-01
Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348
Braun, Klaus; Wiessler, Manfred; Pipkorn, Rüdiger; Ehemann, Volker; Bäuerle, Tobias; Fleischhacker, Heinz; Müller, Gabriele; Lorenz, Peter; Waldeck, Waldemar
2010-01-01
Clinical experiences often document, that a successful tumor control requires high doses of drug applications. It is widely believed that unavoidable adverse reactions could be minimized by using gene-therapeutic strategies protecting the tumor-surrounding healthy tissue as well as the bone-marrow. One new approach in this direction is the use of “Targeted Therapies” realizing a selective drug targeting to gain effectual amounts at the target site, even with drastically reduced application doses. MCF-7 breast cancer cells expressing the αvβ3 [alpha(v)beta(3)] integrin receptor are considered as appropriate candidates for such a targeted therapy. The modularly composed BioShuttle carrier consisting of different units designed to facilitate the passage across the cell membranes and for subcellular addressing of diagnostic and/or therapeutic molecules could be considered as an eligible delivery platform. Here we used the cyclic RGD-BioShuttle as a carrier for temozolomide (TMZ) at the αvβ3 integrin receptor realizing local TMZ concentrations sufficient for cell killing. The IC50 values are 12 µMol/L in the case of cRGD-BioShuttle-TMZ and 100 µMol/L for underivatized TMZ, which confirms the advantage of TMZ reformulation to realize local concentrations sufficient for cell killing. Our paper focuses on the design, synthesis and application of the cRGD-BioShuttle conjugate composed of the cyclic RGD, a αvβ3 integrin-ligand, ligated to the cytotoxic drug TMZ. The ligation was carried out by the Diels Alder Reaction with inverse electron demand (DARinv). PMID:20922134
Skeletal Phenotype of Transgenic Mice Expressing the Beta1 Integrin Cytoplasmic Tail In Osteoblasts
NASA Technical Reports Server (NTRS)
Globus, R. K.; vanderMeulen, M. C. H.; Damsky, D.; Kim, J.-B.; Amblard, D.; Amblard, D.; Nishimura, Y.; Almeida, E.; Iwaniec, U. T.; Wronski, T. J.;
2002-01-01
To define the physiologic role of beta1 integrin in bone formation and mechanical loading, transgenic mice were generated by expressing the cytoplasmic tall and transmembrane domain of Beta1 integrin under the control of the osteocalcin promoter. In cultured cells, this truncated fragment of Beta1 can act as a dominant negative. Previously, the matrix of calvariae was shown to be abnormal in transgenic (TG) compared to wildtype (WT) mice. In this study, we analyzed appendicular bone in TG and WT, male and female mice at 14, 35, 63, 90 and 365 days old (n=8-12/gp). To assess beta1 integrin function in mechanical loading, a pilot study using hindlimb unloading by tail suspension was performed. 35d old TG and WT females were hindlimb unloaded for 4 wks (n=3-5). Body mass, bone mineral content, histomorphometric (distal femur) and biomechanical parameters were analyzed. Statistical significance (P less than.05) was defined by ANOVA using the Tukey-Kramer post-hoc test. We confirmed transgene expression by immunoprecipitating then immunoblotting bone lysates using an antibody against the beta1 tail. Body masses of TG mice at 63, 90 and 365d old were greater (16-25%) than WT. Some TG female mice at 365d appeared obese; mean abdominal fat mass was 415% greater in TG than WT mice. Tibiae were longer (5-7%) in TG than WT mice at 63 and 90d. Tibial mineral mass of 35d males was 7% lower in TG than WT mice, but at 63d was 21% higher. The % osteoblast surface in 35d TG mice was 20% higher than WT, and at 63d was 17% lower, while % osteoclast surface did not differ. In 365d mice, cancellous bone volume (125%) and endocortical mineral apposition rate (40%) were greater in TG than WT males but not females. In WT mice, hindlimb unloading caused a reduction in mineral mass of tibiae (-20%) and lumbar vertebrae (-22%) relative to normally loaded controls. Surprisingly, hindlimb unloading also caused a relative reduction (-13%) in humerus mass. The effects of hindlimb unloading on tibia and humerus mass were less obvious in TG than in WT mice. Since hindlimb unloading caused skeletal changes in both loaded and unloaded bones, systemic changes may contribute to bone responses observed using this animal model. In conclusion, transgene expression resulted in marked metabolic changes during growth and in the aged female. Our results demonstrate that expression of the Beta1 integrin cytoplasmic tail in vivo causes gender- and age-specific changes in select morphometric parameters, bone length, and bone mass.
Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuang Liu
2012-10-24
This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition ofmore » G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.« less
Jones, Neil P; Katan, Matilda
2007-08-01
The significance of multiprotein signaling complexes in cell motility is becoming increasingly important. We have previously shown that phospholipase Cgamma1 (PLCgamma1) is critical for integrin-mediated cell spreading and motility (N. Jones et al., J. Cell Sci. 118:2695-2706, 2005). In the current study we show that, on a basement membrane-type matrix, PLCgamma1 associates with the adaptor protein GIT1 and the Rac1/Cdc42 guanine exchange factor beta-Pix; GIT1 and beta-Pix form tight complexes independently of PLCgamma1. The association of PLCgamma1 with the complex requires both GIT1 and beta-Pix and the specific array region (gammaSA) of PLCgamma1. Mutations of PLCgamma1 within the gammaSA region reveal that association with this complex is essential for the phosphorylation of PLCgamma1 and the progression to an elongated morphology after integrin engagement. Short interfering RNA (siRNA) depletion of either beta-Pix or GIT1 inhibited cell spreading in a fashion similar to that seen with siRNA against PLCgamma1. Furthermore, siRNA depletion of PLCgamma1, beta-Pix, or GIT1 inhibited Cdc42 and Rac1 activation, while constitutively active forms of Cdc42 or Rac1, but not RhoA, were able to rescue the elongation of these cells. Signaling of the PLCgamma1/GIT1/beta-Pix complex to Cdc42/Rac1 was found to involve the activation of calpains, calcium-dependent proteases. Therefore, we propose that the association of PLCgamma1 with complexes containing GIT1 and beta-Pix is essential for its role in integrin-mediated cell spreading and motility. As a component of this complex, PLCgamma1 is also involved in the activation of Cdc42 and Rac1.
Morikis, Vasilios A; Chase, Shannon; Wun, Ted; Chaikof, Elliot L; Magnani, John L; Simon, Scott I
2017-11-09
E-selectin extends from the plasma membrane of inflamed endothelium and serves to capture leukocytes from flowing blood via long-lived catch-bonds that support slow leukocyte rolling under shear stress. Its ligands are glycosylated with the tetrasaccharide sialyl Lewis x (sLe x ), which contributes to bond affinity and specificity. E-selectin-mediated rolling transmits signals into neutrophils that trigger activation of high-affinity β 2 -integrins necessary for transition to shear-resistant adhesion and transendothelial migration. Rivipansel is a glycomimetic drug that inhibits E-selectin-mediated vaso-occlusion induced by integrin-dependent sickle-red blood cell-leukocyte adhesion. How Rivipansel antagonizes ligand recognition by E-selectin and blocks outside-in signaling of integrin-mediated neutrophil arrest while maintaining rolling immune-surveillance is unknown. Here, we demonstrate that sLe x expressed on human L-selectin is preferentially bound by E-selectin and, on ligation, initiates secretion of MRP8/14 that binds TLR4 to elicit the extension of β 2 -integrin to an intermediate affinity state. Neutrophil rolling over E-selectin at precise shear stress transmits tension and catch-bond formation with L-selectin via sLe x , resulting in focal clusters that deliver a distinct signal to upshift β 2 -integrins to a high-affinity state. Rivipansel effectively blocked formation of selectin catch-bonds, revealing a novel mechanotransduction circuit that rapidly converts extended β 2 -integrins to high-affinity shear-resistant bond clusters with intracellular adhesion molecule 1 on inflamed endothelium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, B.; Laouar, A.; Huberman, E.
1998-05-08
Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-betamore » -deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor {alpha}5{beta}1 integrin. HL-525 cells, which constitutively display high levels of surface {alpha}5{beta}1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that {alpha}5{beta}1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.« less
Eniola, A Omolola; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel A
2005-11-01
In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.
Adenoviral receptor expression of normal bladder and transitional cell carcinoma of the bladder.
Buscarini, Maurizio; Quek, Marcus L; Gilliam-Hegarich, Susan; Kasahara, Nori; Bochner, Bernard
2007-01-01
The insertion of absent or underexpressed genes into cancer cells to alter their malignant phenotype is an important potential application of available gene therapy technology. One of the more common viral vector systems that has been extensively studied for this purpose are the replication-deficient adenoviruses (Ad). Adenoviral infection of cells is mediated through a complex pathway, initiated following viral-cell attachment. Adenoviral-cell attachment occurs following interactions with a 46-kDa transmembrane protein with high affinity for both the Coxsackie and adenovirus, designated the CAR (Coxsackie and adenoviral receptor). Additional important cell-viral interactions that occur involve the alpha(v)-based integrins, specifically alpha(v)beta3 and alpha(v)beta5. The purpose of the present study was to determine the extent of expression and localization of the known Ad receptor proteins (CAR, alpha(v)beta3, and alpha(v)beta5) in normal and cancerous human bladders. Frozen tissue samples of normal bladder and invasive transitional cell cancers of the bladder were evaluated. Tissue blocks containing muscle-invasive transitional cell carcinoma (TCC) were obtained following radical cystectomy, which were performed at our institution. Thirty-two invasive transitional cell bladder tumors were evaluated, each with a matched sample of histologically normal-appearing bladder used as a control. Four additional samples of normal bladder were obtained from patients with no evidence of disease of the bladder and served as further controls. Three additional cases of invasive bladder cancer with no matching normal tissue were also evaluated. Identification of the CAR receptor was performed using the anti-CAR mouse monoclonal antibody designated RmBC. The integrins alpha(v)beta3 and alpha(v)beta5 were identified using the mouse monoclonal antibodies designated LM609 and P1F6 respectively. All slides were evaluated by two of the authors (M.B., B.B.) without knowledge of the clinical and pathological data. Normal bladder: Normal bladder mucosa demonstrated a marked positivity for CAR in 29/35 (82.8%) cases. In contrast, normal transitional epithelial cells were uniformly negative when tested for the integrins alpha(v)beta3 and alpha(v)beta5. Subepithelial tissues, specifically the connective tissue components of the lamina propria and deep muscle wall of the bladder, were positive for alpha(v)beta3 and for alpha(v)beta5 in 61 and 75% of samples, respectively. Endothelial cells associated with the various layers throughout the bladder uniformly expressed both integrins and served as a consistent internal control for both antibodies. An almost identical staining pattern of the endothelium was observed using LM609 and P1F6 in all samples tested. Bladder transitional cell carcinoma: CAR immunoreactivity against TCC cells was uniformly decreased compared to normal transitional cells. Nine tumors exhibited a weak positivity for CAR while the remaining samples were negative. In some cases, the absence of CAR positivity was associated with histological evidence of carcinoma in situ. In 6 cases, it led to the identification of small regions of carcinoma in situ that were not noted on primary pathological evaluation. Peritumoral connective tissue expressed both integrins in the majority of cases, similar to the pattern described above for normal bladder. Transitional cell cancers demonstrated a similar pattern of expression of alpha(v)beta5, in which all tumor cells exhibited minimal or no staining. The success of all viral-mediated gene therapy strategies relies on the ability of the vector to efficiently deliver its genetic material to a target cell population. In the current study, we demonstrate that the bladder epithelial layer consistently expresses high levels of CAR. Deeper layers of the epithelium also express CAR, including the basal layer cells. A decrease in the expression of CAR appears as an early event in bladder carcinogenesis. We observed that both alpha(v)beta3 and alpha(v)beta5 are strongly expressed in muscle cells surrounding the neoplastic cells, as well as within the peritumoral connective tissue. In cases of invasive bladder cancer that have lost CAR expression, an adenoviral vector may still be utilized through the less efficient interactions with the integrins. Bladder tumor tissue may be less susceptible to an adenoviral-mediated gene therapy approach in which a significant percentage of tumor cells require transduction. Adenoviral uptake by tumor or peritumoral cells with subsequent gene transfer could be predicted by the level of CAR and alpha(v)-based integrin expression. This would enhance our ability to identify those patients whose tumors would be more susceptible to Ad-mediated gene delivery as part of an antitumor treatment. 2007 S. Karger AG, Basel
Li, X; Velleman, S G
2009-02-01
During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic and posthatch development. Furthermore, TGF-beta1 also reduced the expression of the cell adhesion receptor beta1 integrin subunit during embryonic and posthatch muscle growth in normal and LSN chickens. Therefore, the reduction of beta1 integrin in response to TGF-beta1 is also associated with decreased posthatch muscle growth. The results from this study indicate that TGF-beta1 inhibits skeletal muscle growth by regulating MyoD and myogenin expression. These data also suggest that a beta1 integrin-mediated alternative pathway is likely involved in the TGF-beta1-induced reduction of muscle growth.
Figueira, Cláudio Pereira; Carvalhal, Djalma Gomes Ferrão; Almeida, Rafaela Andrade; Hermida, Micely d’ El-Rei; Touchard, Dominique; Robert, Phillipe; Pierres, Anne; Bongrand, Pierre; dos-Santos, Washington LC
2015-01-01
Contact with Leishmania leads to a decreases in mononuclear phagocyte adherence to connective tissue. In this work, we studied the early stages of bond formation between VLA4 and fibronectin, measured the kinetics of membrane alignment and the monocyte cytoplasm spreading area over a fibronectin-coated surface, and studied the expression of high affinity integrin epitope in uninfected and Leishmania-infected human monocytes. Our results show that the initial VLA4-mediated interaction of Leishmania-infected monocyte with a fibronectin-coated surface is preserved, however, the later stage, leukocyte spreading over the substrate is abrogated in Leishmania-infected cells. The median of spreading area was 72 [55–89] μm2 for uninfected and 41 [34–51] μm2 for Leishmania-infected monocyte. This cytoplasm spread was inhibited using an anti-VLA4 blocking antibody. After the initial contact with the fibronectrin-coated surface, uninfected monocyte quickly spread the cytoplasm at a 15 μm2 s−1 ratio whilst Leishmania-infected monocytes only made small contacts at a 5.5 μm2 s−1 ratio. The expression of high affinity epitope by VLA4 (from 39 ± 21% to 14 ± 3%); and LFA1 (from 37 ± 32% to 18 ± 16%) molecules was reduced in Leishmania-infected monocytes. These changes in phagocyte function may be important for parasite dissemination and distribution of lesions in leishmaniasis. PMID:26249106
Strategies that target leukocyte traffic in inflammatory bowel diseases: recent developments.
Rivera-Nieves, Jesús
2015-11-01
We review the most recent developments regarding the targeting of molecules involved in the traffic of leukocytes for the treatment of inflammatory bowel diseases (IBD). We discuss the most important findings of one published phase II trial that targeted the β7 integrin (etrolizumab), two phase II trials that targeted the α4β7 integrin ligand: mucosal addressin cell adhesion molecule 1 (MAdCAM-1, PF-00547659), a phase II trial targeting the chemokine IP-10 (CXCL10) in Crohn's, and a phase II trial that targeted the sphingosine-1-phosphate receptor-1: ozanimod in patients with ulcerative colitis. Targeting molecules involved in leukocyte traffic has recently become an effective and well tolerated strategy for the treatment of IBD. Novel approaches now not only target the integrins on the lymphocyte surface, but also its endothelial ligand: MAdCAM-1. As with vedolizumab, antibodies against MAdCAM-1 appear most effective in ulcerative colitis rather than in Crohn's. Targeting chemokines or their receptors does not appear to have the same efficacy as those that target the most stable integrin: immunoglobulin superfamily interactions between the lymphocyte and endothelium. Preliminary results also suggest that the sphingosine-1-phosphate pathway might also be targeted therapeutically in IBD, no longer with parenterally administered antibodies but with orally administered small molecules.
Function of fusion regulatory proteins (FRPs) in immune cells and virus-infected cells.
Tsurudome, M; Ito, Y
2000-01-01
Two molecules that regulate cell fusion have been identified and designated fusion regulatory protein-1 (FRP-1) and FRP-2. FRP-1 is a complex composed of a glycosylated heavy chain and a nonglycosylated light chain that are disulfide linked. FRP-1 heavy chain is identical to 4F2/CD98 heavy chain, whereas FRP-2 is identical to integrin alpha3 subunit. The FRP-1 heavy chain is a multifunctional molecule: that is, fusion regulator, amino acid transporter, integrin regulator, comitogenic factor, Na+-Ca2+ exchanger, oncogenic protein, and so on. Several aspects of the structure and function of the FRP-1 system are reviewed: fusion regulatory molecular mechanisms, cross-talk between the FRP-1 and integrin, the FRP-1 system as amino acid transporter, and FRP-1-mediated T-cell activation. The FRP-1 system is involved in virus-mediated cell fusion and multinucleated giant cell formation of blood monocytes. Monoclonal antibodies against human FRP-1 heavy chain induce polykaryocytes that have properties as osteoclasts. Multiple steps participate in molecular mechanisms regulating cell fusion. The FRP-1 heavy chain supports amino acid transport activity and the FRP-1 light chains have recently been cloned as amino acid transporters that require association with the heavy chain to exhibit their activity. Novel pathways for monocyte-dependent regulation of T-cell activation have recently been found that are mediated by the FRP-1 system. In conclusion, the FRP-1 molecules are essential factors for basic cellular functions.
De, Pradip; Carlson, Jennifer H; Jepperson, Tyler; Willis, Scooter; Leyland-Jones, Brian; Dey, Nandini
2017-01-10
The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by RAC1 inhibition in MDA-MB231BR cells. In the light of our previous report that WP upregulation causes ID-MA phenotypes in TNBC tumor cells, here we provide the first mechanism based evidence to demonstrate that WP upregulation signals ID-MA tumor cell phenotypes in a RAC1-GTPase dependent manner involving exchange-factors like TIAM1 and VAV2. Our study demonstrates for the first time that beta-catenin-RAC1 cascade signals integrin-directed metastasis-associated tumor cell phenotypes in TNBC.
Chen, P; Melchior, C; Brons, N H; Schlegel, N; Caen, J; Kieffer, N
2001-10-19
We have investigated receptor function and epitope expression of recombinant alpha(IIb)beta(3) mutated at Cys(177) or Cys(273) in the I-like domain as well as Cys(598), located in the fourth repeat of the membrane-proximal cysteine-rich region and mutated in a Glanzmann's thrombasthenia type II patient. The beta(3) mutants beta(3)C177A, beta(3)C273A, and beta(3)C598Y exhibited a decreased electrophoretic mobility in SDS-polyacrylamide gel electrophoresis under nonreducing conditions, confirming the disruption of the respective disulfide loops. Despite reduced surface expression, the alpha(IIb)beta(3)C177A, alpha(IIb)beta(3)C273A, and alpha(IIb)beta(3)C598Y receptors mediated cell adhesion to immobilized fibrinogen and translocated into focal adhesion plaques. The beta(3)C598Y mutation, but not the beta(3)C177A or beta(3)C273A mutations, induced spontaneous binding of the ligand mimetic monoclonal antibody PAC-1, while the beta(3)C177A and beta(3)C273A mutants exhibited reduced complex stability in the absence of Ca(2+). Epitope mapping of function-blocking monoclonal antibodies (mAbs) allowed the identification of two distinct subgroups; mAbs A2A9, pl2-46, 10E5, and P256 did not interact with alpha(IIb)beta(3)C273A and bound only weakly to alpha(IIb)beta(3)C177A, while mAbs AP2, LM609 and 7E3 bound normally to mutant alpha(IIb)beta(3)C273A, but interacted only weakly with mutant alpha(IIb)beta(3)C177A. Furthermore, a cryptic epitope recognized by mAb 4D10G3 and not exposed on wild type alpha(IIb)beta(3) became accessible only on mutant alpha(IIb)beta(3)C177A and was mapped to the 60-kDa chymotrypsin fragment of beta(3). Finally, the ligand-induced binding site (LIBS) epitopes AP5, D3, LIBS1, and LIBS2 were spontaneously expressed on all three mutants independent of RGDS or dithiothreitol treatment. Our results provide evidence that disruption of a single cysteine disulfide bond in the cysteine-rich repeat domain, but not in the I-like domain, activates integrin alpha(IIb)beta(3). In contrast, disruption of each of the disulfide bonds in the two long insertions of the I-like domain predicted to be in close contact with the alpha subunit beta-propeller domain affect the stability of the alpha(IIb)beta(3) heterodimer and inhibit complex-specific mAb binding without affecting the RGD binding capacity of the metal ion-dependent adhesion site-like domain.
Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H
2013-10-25
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.
Inhibition of HIF-2.alpha. heterodimerization with HIF1.beta. (ARNT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruick, Richard K.; Caldwell, Charles G.; Frantz, Doug E.
2017-09-12
Provided is a method of inhibiting heterodimerization of HIF-2.alpha. to HIF1.beta. (ARNT) comprising binding certain small molecules to the HIF-2.alpha. PAS-B domain cavity but not to HIF1.alpha. and inhibiting HIF-2.alpha. heterodimerization to HIF1.beta. (ARNT) but not inhibiting HIF1.alpha. heterodimerization to HIF1.beta. (ARNT). Those certain small molecules are also referenced synonymously as HIF2-HDI and HIF2.alpha. heterodimerization inhibitors and also simply as certain small molecules.
Garçon, Fabien; Okkenhaug, Klaus
2016-05-01
Activation of T lymphocytes by peptide/major histocompatibility complex on antigen-presenting cells (APCs) involves dynamic contacts between the two cells, during which T cells undergo marked morphological changes. These interactions are facilitated by integrins. Activation of the T cells increases the binding of the integrin lymphocyte function-associated antigen 1 (LFA-1) expressed by T cells to intercellular adhesion molecule (ICAM)-1 and ICAM-2 expressed by APCs. The signalling pathways that control integrin affinities are incompletely defined. The phosphoinositide 3-kinases (PI3Ks) generate second-messenger signalling molecules that control cell growth, proliferation, differentiation and trafficking. Here we show that in T cells, PI3Kδ attenuates the activation of Rac1, but sustains the activation of Rap1. Consequently, PI3Kδ increases LFA-1-dependent adhesion to form stable conjugates with APCs. Increased Rap1 activity and LFA-1 adhesion were only in part mediated by the downstream kinase Akt, suggesting the involvement of additional phosphatidylinositol(3,4,5)P3-binding proteins. These results establish a link between PI3K activity, cytoskeletal changes and integrin binding and help explain the impaired T-cell-dependent immune responses in PI3Kδ-deficient mice.
Presta, Marco; Oreste, Pasqua; Zoppetti, Giorgio; Belleri, Mirella; Tanghetti, Elena; Leali, Daria; Urbinati, Chiara; Bugatti, Antonella; Ronca, Roberto; Nicoli, Stefania; Moroni, Emanuela; Stabile, Helena; Camozzi, Maura; Hernandez, German Andrés; Mitola, Stefania; Dell'Era, Patrizia; Rusnati, Marco; Ribatti, Domenico
2005-01-01
Low-molecular-weight heparin (LMWH) exerts antitumor activity in clinical trials. The K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor. Chemical and enzymatic modifications of K5 polysaccharide lead to the production of biotechnological heparin-like compounds. We investigated the fibroblast growth factor-2 (FGF2) antagonist and antiangiogenic activity of a series of LMW N,O-sulfated K5 derivatives. Surface plasmon resonance analysis showed that LMW-K5 derivatives bind FGF2, thus inhibiting its interaction with heparin immobilized to a BIAcore sensor chip. Interaction of FGF2 with tyrosine-kinase receptors (FGFRs), heparan sulfate proteoglycans (HSPGs), and alpha(v)beta3 integrin is required for biological response in endothelial cells. Similar to LMWH, LMW-K5 derivatives abrogate the formation of HSPG/FGF2/FGFR ternary complexes by preventing FGF2-mediated attachment of FGFR1-overexpressing cells to HSPG-bearing cells and inhibit FGF2-mediated endothelial cell proliferation. However, LMW-K5 derivatives, but not LMWH, also inhibit FGF2/alpha(v)beta3 integrin interaction and consequent FGF2-mediated endothelial cell sprouting in vitro and angiogenesis in vivo in the chick embryo chorioallantoic membrane. LMW N,O-sulfated K5 derivatives affect both HSPG/FGF2/FGFR and FGF2/alpha(v)beta3 interactions and are endowed with FGF2 antagonist and antiangiogenic activity. These compounds may provide the basis for the design of novel LMW heparin-like angiostatic compounds.
Zamilpa, Rogelio; Rupaimoole, Rajesha; Phelix, Clyde F.; Somaraki-Cormier, Maria; Haskins, William; Asmis, Reto; LeBaron, Richard G.
2009-01-01
Transforming growth factor beta induced protein (TGFBIp), is secreted into the extracellular space. When fragmentation of C-terminal portions is blocked, apoptosis is low, even when the protein is overexpressed. If fragmentation occurs, apoptosis is observed. Whether full-length TGFBIp or integrin-binding fragments released from its C-terminus is necessary for apoptosis remains equivocal. More importantly, the exact portion of the C-terminus that conveys the pro-apoptotic property of TGFBIp is uncertain. It is reportedly within the final 166 amino acids. We sought to determine if this property is dependent upon the final 69 amino acids containing the integrin-binding, EPDIM and RGD, sequences. With MG-63 osteosarcoma cells, transforming growth factor (TGF)-β1 treatment increased expression of TGFBIp over 72 hours (p<0.001). At this time point, apoptosis was significantly increased (p<0.001) and was prevented by an anti-TGFBIp, polyclonal antibody (p<0.05). Overexpression of TGFBIp by transient transfection produced a 2-fold increase in apoptosis (p<0.01). Exogenous purified TGFBIp at concentrations of 37 to 150 nM produced a dose dependent increase in apoptosis (p<0.001). Mass spectrometry analysis of TGFBIp isolated from conditioned medium of cells treated with TGF-β1 revealed truncated forms of TGFBIp that lacked integrin-binding sequences in the C-terminus. Recombinant TGFBIp truncated, similarly, at amino acid 614 failed to induce apoptosis. A recombinant fragment encoding the final 69 amino acids of the TGFBIp C-terminus produced significant apoptosis. This apoptosis level was comparable to that induced by TGF-β1 upregulation of endogenous TGFBIp. Mutation of the integrin-binding sequence EPDIM, but not RGD, blocked apoptosis (p<0.001). These pro-apoptotic actions are dependent on the C-terminus most likely to interact with integrins. PMID:19505574
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalski, Michael; Coppolino, Marc G.
2005-10-07
In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cellmore » spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of {alpha}{sub 5}{beta}{sub 1} integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading.« less
IL-2 Enhances Gut Homing Potential of Human Naive Regulatory T Cells Early in Life.
Hsu, Peter S; Lai, Catherine L; Hu, Mingjing; Santner-Nanan, Brigitte; Dahlstrom, Jane E; Lee, Cheng Hiang; Ajmal, Ayesha; Bullman, Amanda; Arbuckle, Susan; Al Saedi, Ahmed; Gacis, Lou; Nambiar, Reta; Williams, Andrew; Wong, Melanie; Campbell, Dianne E; Nanan, Ralph
2018-06-15
Recent evidence suggests early environmental factors are important for gut immune tolerance. Although the role of regulatory T (Treg) cells for gut immune homeostasis is well established, the development and tissue homing characteristics of Treg cells in children have not been studied in detail. In this article, we studied the development and homing characteristics of human peripheral blood Treg cell subsets and potential mechanisms inducing homing molecule expression in healthy children. We found contrasting patterns of circulating Treg cell gut and skin tropism, with abundant β7 integrin + Treg cells at birth and increasing cutaneous lymphocyte Ag (CLA + ) Treg cells later in life. β7 integrin + Treg cells were predominantly naive, suggesting acquisition of Treg cell gut tropism early in development. In vitro, IL-7 enhanced gut homing but reduced skin homing molecule expression in conventional T cells, whereas IL-2 induced a similar effect only in Treg cells. This effect was more pronounced in cord compared with adult blood. Our results suggest that early in life, naive Treg cells may be driven for gut tropism by their increased sensitivity to IL-2-induced β7 integrin upregulation, implicating a potential role of IL-2 in gut immune tolerance during this critical period of development. Copyright © 2018 by The American Association of Immunologists, Inc.
Kang, Jian; Kahner, Bryan; Ye, Feng; Ginsberg, Mark H.; Shattil, Sanford J.
2014-01-01
ADAP is a hematopoietic-restricted adapter protein that promotes integrin activation and is a carrier for other adapter proteins, Src kinase–associated phosphoprotein 1 (SKAP1) and SKAP2. In T lymphocytes, SKAP1 is the ADAP-associated molecule that activates integrins through direct linkages with Rap1 effectors (regulator of cell adhesion and polarization enriched in lymphoid tissues; Rap1-interacting adapter molecule). ADAP also promotes integrin αIIbβ3 activation in platelets, which lack SKAP1, suggesting an ADAP integrin–regulatory pathway different from those in lymphocytes. Here we characterized a novel association between ADAP and 2 essential integrin-β cytoplasmic tail-binding proteins involved in αIIbβ3 activation, talin and kindlin-3. Glutathione S-transferase pull-downs identified distinct regions in ADAP necessary for association with kindlin or talin. ADAP was physically proximal to talin and kindlin-3 in human platelets, as assessed biochemically, and by immunofluorescence microscopy and proximity ligation. Relative to wild-type mouse platelets, ADAP-deficient platelets exhibited reduced co-localization of talin with αIIbβ3, and reduced irreversible fibrinogen binding in response to a protease activated receptor 4 (PAR4) thrombin receptor agonist. When ADAP was heterologously expressed in Chinese hamster ovary cells co-expressing αIIbβ3, talin, PAR1, and kindlin-3, it associated with an αIIbβ3/talin complex and enabled kindlin-3 to promote agonist-dependent ligand binding to αIIbβ3. Thus, ADAP uniquely promotes activation of and irreversible fibrinogen binding to platelet αIIbβ3 through interactions with talin and kindlin-3. PMID:24523237
Mechanotransduction through Integrins
NASA Technical Reports Server (NTRS)
Ingber, Donald
2004-01-01
The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses through cell surface integrin receptors and through their interconnections with the underlying cytoskeleton. Work completed and published in past funding period had provided direct support for this hypothesis. In particular, we demonstrated that application of mechanical stresses to activated integrin receptors (but not inactive integrins or other control transmembrane receptors) resulted in stress-dependent activation of the CAMP signaling pathway leading to gene transcription. We also showed that this form of mechanotransduction requires activation of heterotrimeric G proteins. In this grant, our specific aims included: 1) to characterize the signal processing capabilities of different integrins and other cell surface receptors, 2) to identify heterotrimeric G proteins that mediate CAMP signaling by stresses applied to integrins, 3) to identify molecules that mediate transmembrane mechanochemical coupling between integrins and G proteins, and 4) to use genome-wide gene expression profiling techniques to identify other genes and signaling pathways that are activated by mechanical forces transmitted over specific cell surface receptors. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation.
Ruiz-Torres, M P; Perez-Rivero, G; Diez-Marques, M L; Griera, M; Ortega, R; Rodriguez-Puyol, M; Rodríguez-Puyol, D
2007-01-01
While arginine-glycine-aspartic acid-based peptidomimetics have been employed for the treatment of cardiovascular disorders and cancer, their use in other contexts remains to be explored. Arginine-glycine-aspartic acid-serine induces Transforming growth factor-beta1 transcription in human mesangial cells, but the molecular mechanisms involved have not been studied extensively. We explored whether this effect could be due to Activator protein-1 activation and studied the potential pathways involved. Addition of arginine-glycine-aspartic acid-serine promoted Activator protein-1 binding to its cognate sequence within the Transforming growth factor-beta1 promoter as well as c-jun and c-fos protein abundance. Moreover, this effect was suppressed by curcumin, a c-Jun N terminal kinase inhibitor, and was absent when the Activator protein-1 cis-regulatory element was deleted. Activator protein-1 binding was dependent on the activity of integrin linked kinase, as transfection with a dominant negative mutant suppressed both Activator protein-1 binding and c-jun and c-fos protein increment. Integrin linked kinase was, in turn, dependent on Phosphoinositol-3 kinase activity. Arginine-glycine-aspartic acid-serine stimulated Phosphoinositol-3 kinase activity, and Transforming growth factor-beta1 promoter activation was abrogated by the use of Phosphoinositol-3 kinase specific inhibitors. In summary, we propose that arginine-glycine-aspartic acid-serine activates Integrin linked kinase via the Phosphoinositol-3 kinase pathway and this leads to activation of c-jun and c-fos and increased Activator protein-1 binding and Transforming growth factor-beta1 promoter activity. These data may contribute to understand the molecular mechanisms involved in the cellular actions of arginine-glycine-aspartic acid-related peptides and enhance their relevance as these products evolve into clinical therapeutic use.
Murgia, C; Blaikie, P; Kim, N; Dans, M; Petrie, H T; Giancotti, F G
1998-01-01
The cytoplasmic domain of the integrin beta4 subunit mediates both association with the hemidesmosomal cytoskeleton and recruitment of the signaling adaptor protein Shc. To examine the significance of these interactions during development, we have generated mice carrying a targeted deletion of the beta4 cytoplasmic domain. Analysis of homozygous mutant mice indicates that the tail-less alpha6beta4 binds efficiently to laminin 5, but is unable to integrate with the cytoskeleton. Accordingly, these mice display extensive epidermal detachment at birth and die immmediately thereafter from a syndrome resembling the human disease junctional epidermolysis bullosa with pyloric atresia (PA-JEB). In addition, we find a significant proliferative defect. Specifically, the number of precursor cells in the intestinal epithelium, which remains adherent to the basement membrane, and in intact areas of the skin is reduced, and post-mitotic enterocytes display increased levels of the cyclin-dependent kinase inhibitor p27(Kip). These findings indicate that the interactions mediated by the beta4 tail are crucial for stable adhesion of stratified epithelia to the basement membrane and for proper cell-cycle control in the proliferative compartments of both stratified and simple epithelia. PMID:9670011
Strategies that Target Leukocyte Traffic in IBD: Recent Developments
Rivera-Nieves, Jesús
2015-01-01
Purpose of review We review the most recent developments regarding the targeting of molecules involved in the traffic of leukocytes for the treatment of IBD. Recent Findings We discuss the most important findings of one published phase II trial that targeted the β7 integrin (Etrolizumab), two phase II trials that targeted the α4β7 integrin ligand: Mucosal Addressin Cell Adhesion Molecule-1 (MAdCAM-1, PF-00547659), a phase II targeting the chemokine IP-10 (CXCL10) in Crohn’s and a phase II trial that targeted the sphingosine-1-phosphate receptor-1 (S1P1): ozanimod in patients with ulcerative colitis (UC). Summary Targeting molecules involved in leukocyte traffic has recently become an effective and safe strategy for the treatment of IBD. Novel approaches now not only target the integrins on the lymphocyte surface, but also its endothelial ligand: MAdCAM-1. As with vedolizumab, antibodies against MAdCAM-1 appear most effective in ulcerative colitis rather than in Crohn’s. Targeting chemokines or their receptors does not appear to have the same efficacy as those that target the most stable integrin:immunoglobulin superfamily interactions between the lymphocyte and endothelium. Preliminary results also suggest that the sphingosine-1-phosphate pathway might also be targeted therapeutically in IBD, no longer with parenterally administered antibodies but with orally administered small molecules. PMID:26398681
Mitchell, Jason S.; Brown, Wells S.; Woodside, Darren G.; Vanderslice, Peter; McIntyre, Bradley W.
2008-01-01
Lipid rafts are small laterally mobile microdomains that are highly enriched in lymphocyte signaling molecules. GM1 gangliosides are a common lipid raft component and have been shown to be important in many T cell functions. The aggregation of specific GM1 lipid rafts can control many T cell activation events, including their novel association with T cell integrins. We found that clustering GM1 lipid rafts can regulate β1 integrin function. This was apparent through increased resistance to shear flow dependent detachment of T cells adherent to the α4β1 and α5β1 integrin ligand fibronectin (FN). Adhesion strengthening as a result of clustering GM1 enriched lipid rafts correlated with increased cellular rigidity and morphology through the localization of cortical F-actin, the resistance to shear induced cell stretching, and an increase in the surface area and symmetry of the contact area between the cell surface and adhesive substrate. Furthermore, clustering GM1 lipid rafts could initiate integrin “inside-out” signaling mechanisms. This was seen through increased integrin-cytoskeleton associations and enhanced soluble binding of FN and VCAM-1 suggesting the induction of high affinity integrin conformations. The activation of these adhesion strengthening characteristics appear to be specific for the aggregation of GM1 lipid rafts as the aggregation of the heterogeneous raft associated molecule CD59 failed to activate these functions. These findings indicate a novel mechanism to signal to β1 integrins and to activate adhesion strengthening processes. PMID:19139760
Myers, Jennifer S; Vallega, Karin A; White, Jason; Yu, Kaixian; Yates, Clayton C; Sang, Qing-Xiang Amy
2017-07-11
While many factors may contribute to the higher prostate cancer incidence and mortality experienced by African-American men compared to their counterparts, the contribution of tumor biology is underexplored due to inadequate availability of African-American patient-derived cell lines and specimens. Here, we characterize the proteomes of non-malignant RC-77 N/E and malignant RC-77 T/E prostate epithelial cell lines previously established from prostate specimens from the same African-American patient with early stage primary prostate cancer. In this comparative proteomic analysis of RC-77 N/E and RC-77 T/E cells, differentially expressed proteins were identified and analyzed for overrepresentation of PANTHER protein classes, Gene Ontology annotations, and pathways. The enrichment of gene sets and pathway significance were assessed using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis, respectively. The gene and protein expression data of age- and stage-matched prostate cancer specimens from The Cancer Genome Atlas were analyzed. Structural and cytoskeletal proteins were differentially expressed and statistically overrepresented between RC-77 N/E and RC-77 T/E cells. Beta-catenin, alpha-actinin-1, and filamin-A were upregulated in the tumorigenic RC-77 T/E cells, while integrin beta-1, integrin alpha-6, caveolin-1, laminin subunit gamma-2, and CD44 antigen were downregulated. The increased protein level of beta-catenin and the reduction of caveolin-1 protein level in the tumorigenic RC-77 T/E cells mirrored the upregulation of beta-catenin mRNA and downregulation of caveolin-1 mRNA in African-American prostate cancer specimens compared to non-malignant controls. After subtracting race-specific non-malignant RNA expression, beta-catenin and caveolin-1 mRNA expression levels were higher in African-American prostate cancer specimens than in Caucasian-American specimens. The "ECM-Receptor Interaction" and "Cell Adhesion Molecules", and the "Tight Junction" and "Adherens Junction" pathways contained proteins are associated with RC-77 N/E and RC-77 T/E cells, respectively. Our results suggest RC-77 T/E and RC-77 N/E cell lines can be distinguished by differentially expressed structural and cytoskeletal proteins, which appeared in several pathways across multiple analyses. Our results indicate that the expression of beta-catenin and caveolin-1 may be prostate cancer- and race-specific. Although the RC-77 cell model may not be representative of all African-American prostate cancer due to tumor heterogeneity, it is a unique resource for studying prostate cancer initiation and progression.
Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.
Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf
2018-05-10
Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.
Costamere remodeling with muscle loading and unloading in healthy young men
Li, Ruowei; Narici, Marco V; Erskine, Robert M; Seynnes, Olivier R; Rittweger, Jörn; Pišot, Rado; Šimunič, Boštjan; Flück, Martin
2013-01-01
Costameres are mechano-sensory sites of focal adhesion in the sarcolemma that provide a structural anchor for myofibrils. Their turnover is regulated by integrin-associated focal adhesion kinase (FAK). We hypothesized that changes in content of costamere components (beta 1 integrin, FAK, meta-vinculin, gamma-vinculin) with increased and reduced loading of human anti-gravity muscle would: (i) relate to changes in muscle size and molecular parameters of muscle size regulation [p70S6K, myosin heavy chain (MHC)1 and MHCIIA]; (ii) correspond to adjustments in activity and expression of FAK, and its negative regulator, FRNK; and (iii) reflect the temporal response to reduced and increased loading. Unloading induced a progressive decline in thickness of human vastus lateralis muscle after 8 and 34 days of bedrest (−4% and −14%, respectively; n = 9), contrasting the increase in muscle thickness after 10 and 27 days of resistance training (+5% and +13%; n = 6). Changes in muscle thickness were correlated with changes in cross-sectional area of type I muscle fibers (r = 0.66) and beta 1 integrin content (r = 0.76) at the mid-point of altered loading. Changes in meta-vinculin and FAK-pY397 content were correlated (r = 0.85) and differed, together with the changes of beta 1 integrin, MHCI, MHCII and p70S6K, between the mid- and end-point of resistance training. By contrast, costamere protein level changes did not differ between time points of bedrest. The findings emphasize the role of FAK-regulated costamere turnover in the load-dependent addition and removal of myofibrils, and argue for two phases of muscle remodeling with resistance training, which do not manifest at the macroscopic level. PMID:24010829
Van Bergen, Tine; Zahn, Grit; Caldirola, Patrizia; Fsadni, Mario; Caram-Lelham, Ninus; Vandewalle, Evelien; Moons, Lieve; Stalmans, Ingeborg
2016-11-01
To evaluate the therapeutic potential of the small molecule integrin α5β1 inhibitor, CLT-28643, to improve the filtering surgery outcome in a mouse model. Different dose regimens and administration routes of the inhibitor were compared with mitomycin C (MMC), the gold standard in clin ical practice. The efficacy of CLT-28643 on surgical outcome was studied in a mouse model for filtering surgery (n = 40 eyes from 20 mice per group). Single and repeated subconjunctival (SCJ) injections (1 or 2 μg) and topical eye drops (10 μg) of the integrin inhibitor were compared with 2-minute administration of MMC 0.02%. Bleb size, survival, and signs of toxicity were examined until 28 days after surgery. Immunohistochemical analysis of angiogenesis, inflammation, collagen deposition, and integrin α5β1 expression were performed on postoperative days 3, 8, 14, and 28. A masked observer performed all the assessments. Immunostaining showed that integrin α5β1 was highly expressed in the bleb at early time-points after surgery and that CLT-28643 inhibited this upregulation. Efficacy was shown to be dose-dependent for the integrin inhibitor CLT-28643 for bleb area and survival, and the wound healing process. While 2-μg single injection of CLT-28643 improved bleb characteristics in a similar way as 10-μg administered by eye drops and MMC, repeated injections of 2 μg showed superior efficacy compared to MMC, with no corneal toxicity. Administration of the integrin α5β1 inhibitor CLT-28643 has therapeutic potential as an adjunct to glaucoma surgery, possibly with a superior efficacy and tolerability compared with MMC when used at the optimal dose.
Anderson, Hannah J; Galileo, Deni S
2016-06-01
The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.
Gelmedin, Verena; Morel, Marion; Hahnel, Steffen; Cailliau, Katia; Dissous, Colette; Grevelding, Christoph G
2017-01-01
In metazoan integrin signaling is an important process of mediating extracellular and intracellular communication processes. This can be achieved by cooperation of integrins with growth factor receptors (GFRs). Schistosoma mansoni is a helminth parasite inducing schistosomiasis, an infectious disease of worldwide significance for humans and animals. First studies on schistosome integrins revealed their role in reproductive processes, being involved in spermatogenesis and oogenesis. With respect to the roles of eggs for maintaining the parasite´s life cycle and for inducing the pathology of schistosomiasis, elucidating reproductive processes is of high importance. Here we studied the interaction of the integrin receptor Smβ-Int1 with the venus kinase receptor SmVKR1 in S. mansoni. To this end we cloned and characterized SmILK, SmPINCH, and SmNck2, three putative bridging molecules for their role in mediating Smβ-Int1/SmVKR1 cooperation. Phylogenetic analyses showed that these molecules form clusters that are specific for parasitic platyhelminths as it was shown for integrins before. Transcripts of all genes colocalized in the ovary. In Xenopus oocytes germinal vesicle breakdown (GVBD) was only induced if all members were simultaneously expressed. Coimmunoprecipitation results suggest that a Smβ-Int1-SmILK-SmPINCH-SmNck2-SmVKR1 complex can be formed leading to the phosphorylation and activation of SmVKR1. These results indicate that SmVKR1 can be activated in a ligand-independent manner by receptor-complex interaction. RNAi and inhibitor studies to knock-down SmILK as a representative complex member concurrently revealed effects on the extracellular matrix surrounding the ovary and oocyte localization within the ovary, oocyte survival, and egg production. By TUNEL assays, confocal laser scanning microscopy (CLSM), Caspase-3 assay, and transcript profiling of the pro-apoptotic BCL-2 family members BAK/BAX we obtained first evidence for roles of this signaling complex in mediating cell death in immature and primary oocytes. These results suggest that the Smβ-Int1/SmVKR1 signaling complex is important for differentiation and survival in oocytes of paired schistosomes.
Lecoanet-Henchoz, S; Plater-Zyberk, C; Graber, P; Gretener, D; Aubry, J P; Conrad, D H; Bonnefoy, J Y
1997-09-01
CD23 is expressed on a variety of hemopoietic cells. Recently, we have reported that blocking CD23 interactions in a murine model of arthritis resulted in a marked improvement of disease severity. Here, we demonstrate that CD11b, the alpha chain of the beta 2 integrin adhesion molecule complex CD11b/CD18 expressed on monocytes interacts with CD23. Using a recombinant fusion protein (ZZ-CD23), murine CD23 was shown to bind to peritoneal macrophages and peripheral blood cells isolated from mice as well as the murine macrophage cell line, RAW. The interactions between mouse ZZ-CD23 and CD11b/CD18-expressing cells were significantly inhibited by anti-CD11b monoclonal antibodies. A functional consequence was then demonstrated by inducing an up-regulation of interleukin-6 (IL-6) production following ZZ-CD23 incubation with monocytes. The addition of Fab fragments generated from the monoclonal antibody CD11b impaired this cytokine production by 50%. Interestingly, a positive autocrine loop was identified as IL-6 was shown to increase CD23 binding to macrophages. These results demonstrate that similar to findings using human cells, murine CD23 binds to the surface adhesion molecule, CD11b, and these interactions regulate biological activities of murine myeloid cells.
Characterization of primary cilia in human airway smooth muscle cells.
Wu, Jun; Du, Hui; Wang, Xiangling; Mei, Changlin; Sieck, Gary C; Qian, Qi
2009-08-01
Considerable evidence indicates a key role for primary cilia of mammalian cells in mechanochemical sensing. Dysfunctions of primary cilia have been linked to the pathogenesis of several human diseases. However, cilia-related research has been limited to a few cell and tissue types; to our knowledge, no literature exists on primary cilia in airway smooth muscle (ASM). The aim of this study was to characterize primary cilia in human ASM. Primary cilia of human bronchial smooth muscle cells (HBSMCs) were examined using immunofluorescence confocal microscopy, and scanning and transmission electron microscopy. HBSMC migration and injury repair were examined by scratch-wound and epidermal growth factor (EGF)-induced migration assays. Cross-sectional images of normal human bronchi revealed that primary cilia of HBSMCs within each ASM bundle aggregated at the same horizontal level, forming a "cilium layer." Individual cilia of HBSMCs projected into extracellular matrix and exhibited varying degrees of deflection. Mechanochemical sensing molecules, polycystins, and alpha2-, alpha5-, and beta1-integrins were enriched in cilia, as was EGF receptor, known to activate jointly with integrins during cell migration. Migration assays demonstrated a ciliary contribution to HBSMC migration and wound repair. The primary cilia of ASM cells exert a role in sensing and transducing extracellular mechanochemical signals and in ASM injury repair. Defects in ASM ciliary function could potentially affect airway wall maintenance and/or remodeling, possibly relating to the genesis of bronchiectasis in autosomal dominant polycystic kidney disease, a disease of ciliopathy.
NASA Technical Reports Server (NTRS)
Pavalko, F. M.; Chen, N. X.; Turner, C. H.; Burr, D. B.; Atkinson, S.; Hsieh, Y. F.; Qiu, J.; Duncan, R. L.
1998-01-01
Mechanical stimulation of bone induces new bone formation in vivo and increases the metabolic activity and gene expression of osteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission of mechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts caused reorganization of actin filaments into contractile stress fibers and involved recruitment of beta1-integrins and alpha-actinin to focal adhesions. Fluid shear also increased expression of two proteins linked to mechanotransduction in vivo, cyclooxygenase-2 (COX-2) and the early response gene product c-fos. Inhibition of actin stress fiber development by treatment of cells with cytochalasin D, by expression of a dominant negative form of the small GTPase Rho, or by microinjection into cells of a proteolytic fragment of alpha-actinin that inhibits alpha-actinin-mediated anchoring of actin filaments to integrins at the plasma membrane each blocked fluid-shear-induced gene expression in osteoblasts. We conclude that fluid shear-induced mechanical signaling in osteoblasts leads to increased expression of COX-2 and c-Fos through a mechanism that involves reorganization of the actin cytoskeleton. Thus Rho-mediated stress fiber formation and the alpha-actinin-dependent anchorage of stress fibers to integrins in focal adhesions may promote fluid shear-induced metabolic changes in bone cells.
2007-08-01
He L, Neamati N, Chen X. Evaluation of Biodistribution and Anti-tumor Effect of a Dimeric RGD Peptide-paclitaxel Conjugate in Mice with Breast...Chemistry-Anti-Cancer Agents (CMC-ACA). 2006;6:407-428. 11. Dayam R, Aiello F, Wu Y, Garofalo A, Chen X, Neamati N. Discovery of Small Molecule...Tumor Integrin αvβ3 Expression with [18F]FRGD2. J Nucl Med. 2006;47:113-121. 18 16. Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and
Qi, JunPeng; Zhang, Kun; Zhang, Qiao; Sun, Yi; Fu, Ting; Li, GuoHui; Chen, JianFeng
2012-01-01
Integrin α4β7 is a lymphocyte homing receptor that mediates both rolling and firm adhesion of lymphocytes on vascular endothelium, two of the critical steps in lymphocyte migration and tissue-specific homing. The rolling and firm adhesions of lymphocytes rely on the dynamic shift between the inactive and active states of integrin α4β7, which is associated with the conformational rearrangement of integrin molecules. Activation-specific antibodies, which specifically recognize the activated integrins, have been used as powerful tools in integrin studies, whereas there is no well characterized activation-specific antibody to integrin α4β7. Here, we report the identification, characterization, and epitope mapping of an activation-specific human mAb J19 against integrin α4β7. J19 was discovered by screening a human single-chain variable fragment phage library using an activated α4β7 mutant as target. J19 IgG specifically bound to the high affinity α4β7 induced by Mn2+, DTT, ADP, or CXCL12, but not to the low affinity integrin. Moreover, J19 IgG did not interfere with α4β7-MAdCAM-1 interaction. The epitope of J19 IgG was mapped to Ser-331, Ala-332, and Ala-333 of β7 I domain and a seven-residue segment from 184 to 190 of α4 β-propeller domain, which are buried in low affinity integrin with bent conformation and only exposed in the high affinity extended conformation. Taken together, J19 is a potentially powerful tool for both studies on α4β7 activation mechanism and development of novel therapeutics targeting the activated lymphocyte expressing high affinity α4β7. PMID:22418441
Tenascin-C in peripheral nerve morphogenesis.
Chiquet, M; Wehrle-Haller, B
1994-01-01
The extracellular matrix (ECM) molecule tenascin/cytotactin (TN-C) is expressed at a high level by satellite (glial precursor) cells in developing peripheral nerves of the chick embryo; synthesis of its mRNA peaks at the time period when axonal growth is maximal. When offered as a substrate in vitro, TN-C mediates neurite outgrowth by both motor and sensory neurons. The ability to grow neurites on TN-C is developmentally regulated: sensory neurons from 4-day chick embryos (the stage at which peripheral nerves start to develop) grow immediately and rapidly, whereas neurons from older embryos respond with a long delay. A TN-C domain responsible for this activity is located within the C-terminal (distal) portion of TN-C subunits. Integrin receptors seem to be involved on peripheral neurites because their growth on TN-C is completely blocked by antibodies to beta 1 integrins. In striking contrast to neuronal processes, nerve satellite cells can attach to a TN-C substrate but are completely inhibited in their migratory activity. Artificial substrate borders between tenascin and fibronectin or laminin act as selective barriers that allow neurites to pass while holding up satellite cells. The repulsive action of TN-C on satellite cells is similar to that observed for other cell types and is likely to be mediated by additional TN-C domains. In view of these data, it is surprising that mice seem to develop normally without a functional TN-C gene. TN-C is likely to be redundant, that is, its dual action on cell adhesion is shared by other molecules.(ABSTRACT TRUNCATED AT 250 WORDS)
Characterization of Bufo arenarum oocyte plasma membrane proteins that interact with sperm.
Coux, Gabriela; Cabada, Marcelo O
2006-04-28
Sperm-oocyte plasma membrane interaction is an essential step in fertilization. In amphibians, the molecules involved have not been identified. Our aim was to detect and characterize oocyte molecules with binding affinity for sperm. We isolated plasma membranes free from vitelline envelope and yolk proteins from surface-biotinylated Bufo arenarum oocytes. Using binding assays we detected a biotinylated 100 kDa plasma membrane protein that consistently bound to sperm. Chromatographic studies confirmed the 100 kDa protein and detected two additional oocyte molecules of 30 and 70 kDa with affinity for sperm. Competition studies with an integrin-interacting peptide and cross-reaction with an anti-HSP70 antibody suggested that the 100 and 70 kDa proteins are members of the integrin family and HSP70, respectively. MS/MS analysis suggested extra candidates for a role in this step of fertilization. In conclusion, we provide evidence for the involvement of several proteins, including integrins and HSP70, in B. arenarum sperm-oocyte plasma membrane interactions.
Usage of heparan sulfate, integrins, and FAK in HPV16 infection
Abban, Cynthia Y.; Meneses, Patricio I.
2010-01-01
Human Papillomavirus Type 16 (HPV16) is the major causative agent of cervical cancer. Studies regarding the early binding and signaling molecules that play a significant role in infection are still lacking. The current study analyses the role of heparan sulfate, integrins, and the signaling molecule FAK in HPV16 infection of human adult keratinocytes cell line (HaCaTs). Our data demonstrate that infection requires the binding of viral particles to heparan sulfate followed by activation of focal adhesion kinase through an integrin. Infections were reduced in the presence of the FAK inhibitor, TAE226. TAE226 was observed to inhibit viral entry to the early endosome a known infectious route. These findings suggest that FAK can serve as a novel target for antiviral therapy. PMID:20441998
Dearth, Christopher L; Goh, Qingnian; Marino, Joseph S; Cicinelli, Peter A; Torres-Palsa, Maria J; Pierre, Philippe; Worth, Randall G; Pizza, Francis X
2013-01-01
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.
Dearth, Christopher L.; Goh, Qingnian; Marino, Joseph S.; Cicinelli, Peter A.; Torres-Palsa, Maria J.; Pierre, Philippe; Worth, Randall G.; Pizza, Francis X.
2013-01-01
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells. PMID:23505517
Role of Integrin-Beta 1 in Polycystic Kidney Disease
2011-04-01
characterized a novel cell line from human loop of Henle epithelium that can serve as a unique model to study medullary cystic kidney disease-2 (MCKD2) and...Therefore, we further characterized the TIRE131 clone to confirm their loop of Henle origin. Similarly to the loop of Henle epithelium , the...TIRE131 cells: 1) possessed a significant resistance to hyperosmotic growth conditions; 2) formed a functional epithelium with tight junction and
Assessment of myeloperoxidase activity in renal tissue after ischemia/reperfusion.
Laight, D W; Lad, N; Woodward, B; Waterfall, J F
1994-11-01
We have shown that a photometric assay of myeloperoxidase derived from rat blood polymorphonucleocytes employing 3,3',5,5'-tetramethylbenzidine as substrate is more sensitive than an established assay employing o-dianisidine. We went on to demonstrate that rat renal tissue is capable of inhibiting peroxidase activity. This activity approached 100% when the rat renal supernate was incubated at 60 degree C for 2 h and the assay was conducted in the presence of a 10-fold higher concentration of hydrogen peroxide (H2O2). Rat kidneys undergoing 45 min ischaemia and 1,3 and 6 h reperfusion in vivo, exhibited significant increases in myeloperoxidase activity, indicating tissue polymorphonucleocyte accumulation. Monoclonal antibodies against rat intercellular adhesion molecule 1 (ICAM-1) and CD18 of beta 2-integrins administered both 5 min before a period of 45 min renal ischaemia (20 micrograms/kg i.v.) and at the commencement of 1 h reperfusion (20 micrograms/kg i.v.) reduced renal tissue polymorphonucleocyte accumulation. However, similar treatment with the parent murine antibody immunoglobulin G1 (IgG1) and an unrelated murine antibody, IgG2a, also significantly reduced renal tissue polymorphonucleocyte accumulation. In conclusion, we demonstrate that the rat renal suppression of peroxidase activity can be overcome by a combination of heat inactivation and the provision of excess assay H2O2. In addition, the available evidence suggests that murine monoclonal antibodies against rat adhesion molecules may exert non-specific actions in our model of renal ischaemia/reperfusion in vivo.
Acerbi, Irene; Luque, Tomás; Giménez, Alícia; Puig, Marta; Reguart, Noemi; Farré, Ramon; Navajas, Daniel; Alcaraz, Jordi
2012-01-01
Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ~1 µm(2) cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca(2+) signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis.
Beyond the Matrix: The Many Non-ECM Ligands for Integrins
LaFoya, Bryce; Munroe, Jordan A.; Miyamoto, Alison; Detweiler, Michael A.; Crow, Jacob J.; Gazdik, Tana
2018-01-01
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins. PMID:29393909
Integrin traffic - the update.
De Franceschi, Nicola; Hamidi, Hellyeh; Alanko, Jonna; Sahgal, Pranshu; Ivaska, Johanna
2015-03-01
Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin-extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin-ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled 'Integrin traffic'. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update. © 2015. Published by The Company of Biologists Ltd.
Allain, Fabrice; Vanpouille, Christophe; Carpentier, Mathieu; Slomianny, Marie-Christine; Durieux, Sandrine; Spik, Geneviève
2002-03-05
Cyclophilins A and B (CyPA and CyPB) are cyclosporin A-binding proteins that are involved in inflammatory events. We have reported that CyPB interacts with two types of cell-surface-binding sites. The first site corresponds to a functional receptor and requires interaction with the central core of CyPB. This region is highly conserved in cyclophilins, suggesting that CyPA and CyPB might share biological activities mediated by interaction with this receptor. The second site is identified with glycosaminoglycans (GAGs), the binding region located in the N terminus of CyPB. The difference in the N-terminal extensions of CyPA and CyPB suggests that a unique interaction with GAGs might account for selective activity of CyPB. To explore this hypothesis, we analyzed the lymphocyte responses triggered by CyPA, CyPB, and CyPB(KKK-), a mutant unable to interact with GAGs. The three ligands seemed capable enough to elicit calcium signal and chemotaxis by binding to the same signaling receptor. In contrast, only CyPB enhanced firm adhesion of T cells to the extracellular matrix. This activity depended on the interactions with GAGs and signaling receptor. CyPB-mediated adhesion required CD147 presumably because it was a costimulatory molecule and was related to an activation of alpha4beta1 and alpha4beta7 integrins. Finally, we showed that CyPB was capable mainly to enhance T cell adhesion of the CD4+CD45RO+ subset. The present data indicate that CyPB rather than CyPA is a proinflammatory factor for T lymphocytes and highlight the crucial role of CyPB-GAG interaction in the chemokine-like activity of this protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.-J.; Chen, W.-K.; Wang, C.-J.
2008-01-15
Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration andmore » anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of {beta}4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin {beta}4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By histological and gross examination of mouse lung and real-time PCR analysis of human alu in host tissues, it showed that apigenin, wortmannin, as well as anti-{beta}4 antibody all inhibit HGF-promoted metastasis. These data support the inhibitory effect of apigenin on HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and integrin {beta}4 function.« less
Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.
Iwabuchi, Kazuhisa
2015-01-01
Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.
Tumbarello, David A; Temple, Jillian; Brenton, James D
2012-05-28
The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.
Functions of Tenascin-C and Integrin alpha9beta1 in Mediating Prostate Cancer Bone Metastasis
2017-10-01
additional engineered cell lines for verification and we plan to also generate stable knockout cell lines using CRISPR /Cas 9 gene editing technology...addition to the proposed study, we plan to also produce VCaP cells that are null (knockout) for alpha 9 integrin using CRISPR /Cas9 gene editing protocols...We are experienced with CRISPR -Cas knockdown and have successfully engineered cells previously. We do not expect any particular difficulty in
Stephens, P; Genever, P G; Wood, E J; Raxworthy, M J
1997-01-01
Actin cables have been reported to act in vivo as contractile 'purse strings' capable of closing embryonic wounds through generation of circumferential tension. Furthermore, their involvement in wounds within in vitro model systems suggests that actin cable contraction may be an important mechanism involved in the process of wound closure. The aim of this study therefore, was to investigate the appearance of actin cables in a contracting fibroblast populated collagen lattice, an in vitro model of events associated with wound contraction. Utilising this in vitro model, the time-course of actin cable production was investigated and the involvement of integrin receptors analysed using immunofluorescent labelling techniques. Over a period of hours distinct cellular cable-like structures developed at the edges of collagen lattices coinciding with the onset of contraction. Cellular organisation within the cable was evident as was polymerisation of actin microfilaments into elongated stress fibres forming a continuous cell-cell 'actin cable' around the circumference of the lattice. Immunolocalisation demonstrated that integrin receptor subunits beta 1 and alpha 2 but not alpha 5 were involved in apparent intimate cell-cell contact between juxtaposed fibroblasts within this actin cable. This study demonstrates the involvement of integrin receptors in actin cable formation within collagen lattice systems undergoing reorganisation. Such integrin involvement may enable participating cells to respond to the tensional status of their surrounding environment and via cell-cell communication, to permit a co-ordinated contraction of the cable. It is concluded that integrin receptor involvement in active actin cable contraction may be involved in the process of wound contraction.
Eniola, A. Omolola; Willcox, P. Jeanene; Hammer, Daniel A.
2003-01-01
The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl LewisX (sLeX), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLeX/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLeX/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLeX/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLeX mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLeX/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β2-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology. PMID:14507735
Leukocyte Anti-Trafficking Strategies: Current Status and Future Directions.
Sands, Bruce E
2017-01-01
In inflammatory bowel diseases (IBD), a pivotal step in the initiation and perpetuation of mucosal inflammation entails the recruitment of inflammatory leukocytes to the gut. Understanding the carefully coordinated series of molecular events that culminate in the recruitment of leukocytes to the gut has resulted in novel interventions with new capabilities in treating both Crohn's disease and ulcerative colitis. Key Messages: Natalizumab, an anti-α4 integrin antibody, was the first agent to demonstrate the efficacy of this approach for the induction and maintenance of response and remission in Crohn's disease. Widespread adoption was mitigated by the previously unknown risk of progressive multifocal leukoencephalopathy (PML) with this approach. Current approaches employ a more selective inhibition of adhesion molecules targeting the gut to avoid broad suppression of surveillance for JC virus, the causal pathogen of PML. Subsequently, vedolizumab, a humanized anti-α4β7 integrin antibody, has demonstrated efficacy in patients with IBD and has an excellent safety profile. To date, there have been no cases of PML in patients treated with vedolizumab, suggesting that this more selective agent does not have the same risk for PML as natalizumab. Other agents target β7 integrin (etrolizumab) and mucosal addressin cellular adhesion molecule-1, the endothelial ligand of α4β7 integrin. Efforts to inhibit the chemokine receptor CCR9 using the agent CCX282-B in Crohn's disease were not successful. An orally administered anti-α4 integrin compound showed some promise in a phase 2 trial but raises concern for PML. Finally, the S1P1 receptor agonist ozanimod showed promise in early trials in ulcerative colitis. In summary, anti-trafficking agents have the potential to provide safe and effective therapy for IBD, and are a burgeoning class of novel agents. © 2017 S. Karger AG, Basel.
Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A
2011-05-17
Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non-desensitizing receptor mutant. This suggests a fundamental role of this pathway in de-activation of integrin-dependent cell adhesion.
Seipel, Daniele; Ribeiro-Gomes, Flavia Lima; Barcelos, Michelle Willmen; Ramalho, André Villaça; Kanashiro, Milton M; Kipnis, Thereza Liberman; Arnholdt, Andrea Cristina Veto
2009-09-01
Toxoplasma gondii is an obligate intracellular parasite that is able to disseminate into deep tissues and cross biological barriers, reaching immunoprivileged sites such as the brain and retina. The parasite is able to infect macrophages and dendritic cells and use them for dispersal throughout the body, but the activation state of those cells is unknown. We investigated the ability of human and murine cells from monocytic/macrophage lineages that had not previously been exposed to inflammatory cytokines to up-regulate co-stimulatory and adhesion molecules upon infection. Toxoplasma gondii-infected human monocytes (freshly isolated and THP1 lineage) were unable to up-regulate CD86, CD83, CD40 or CD1a. CD80 expression increased in infected cells but expression of l-selectin and beta2 integrin was unaltered. We evaluated the ability of infected macrophages from wild type C57/BL/6 or CD14(-/-) mice to migrate in 8 mum transwells. Infected cells from CD14(-/-) mice were more likely to de-adhere than infected cells from wild type mice but they did not show any increase in migratory ability. The non-stimulatory profile of these infected cells may contribute to parasite spread throughout the lymphatic circulation in the initial phases of infection.
Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G
1997-09-03
Neuroblastoma, a childhood tumor originating from cells of the embryonic neural crest, retains the ability to differentiate, yielding cells with epithelial-Schwann-like, neuronal, or melanocytic characteristics. Since nm23 gene family members have been proposed to play a role in cellular differentiation, as well as in metastasis suppression, we investigated whether and how DR-nm23, a recently identified third member of the human nm23 gene family, might be involved in neuroblastoma differentiation. Three neuroblastoma cell lines (human LAN-5, human SK-N-SH, and murine N1E-115) were used in these experiments; cells from two of the lines (SK-N-SH and N1E-115) were also studied after being stably transfected with a plasmid containing a full-length DR-nm23 complementary DNA. Cellular expression of specific messenger RNAs and proteins was assessed by use of standard techniques. Cellular adhesion to a variety of protein substrates was also evaluated. DR-nm23 messenger RNA levels in nontransfected LAN-5 and SK-N-SH cells generally increased with time after exposure to differentiation-inducing conditions; levels of the other two human nm23 messenger RNAs (nm23-H1 and nm23-H2) remained essentially constant. Transfected SK-N-SH cells overexpressing DR-nm23 exhibited some characteristics of differentiated cells (increased vimentin and collagen type IV expression) even in the absence of differentiation-inducing conditions. Compared with control cells, DR-nm23-transfected cells exposed to differentiation-inducing conditions showed a greater degree of growth arrest (SK-N-SH cells) and greater increases in integrin protein expression, especially of integrin beta1 (N1E-115 cells). DR-nm23-transfected N1E-115 cells also showed a marked increase in adhesion to collagen type I-coated tissue culture plates that was inhibited by preincubation with an anti-integrin beta1 antibody. DR-nm23 gene expression appears to be associated with differentiation in neuroblastoma cells and may affect cellular adhesion through regulation of integrin protein expression.
Peixoto da-Silva, Janaína; Lourenço, Silvia; Nico, Marcello; Silva, Filomena H; Martins, Marília Trierveiler; Costa-Neves, Adriana
2012-10-15
The progression of carcinogenesis entails the detachment of cells, invasion and migration of neoplastic cells. Alterations in epithelial adhesion and basement membrane proteins might mediate the early stages of carcinogenesis. This study investigated the expression of adhesion molecules and the basement membrane protein laminin-5 in actinic cheilitis (AC) and incipient squamous cell carcinoma of the lower lip to understand early photocarcinogenesis. Ln-5γ2 chain as well as α3, β1 subunits of α3β1 heterodimer and β4 subunit of integrin α6β4 were evaluated by immunohistochemistry in 16 cases of AC and 16 cases of superficially invasive squamous cell carcinoma (SISCC). Most AC cases showed reduced expression of β1, β4 and α3 integrins, and SISCCs lacked β1, β4 and α3 integrins in the invasive front. AC cases were negative for the Ln-5γ2 chain. Five cases of SISCC (31%) showed heterogeneous Ln-5γ2 chain expression in the invasive front of the tumor. Integrin β1, β4 and α3 expression is lost during the early stages of lip carcinogenesis. Expression of Ln-5γ2 in the invasive front in cases and its correlation with tumor progression suggest that it mediates the acquisition of the migrating and invading epithelial cell phenotype. Copyright © 2012 Elsevier GmbH. All rights reserved.
Miller, Peter G.; Al-Shahrour, Fatima; Hartwell, Kimberly A.; Chu, Lisa P.; Järås, Marcus; Puram, Rishi V.; Puissant, Alexandre; Callahan, Kevin P.; Ashton, John; McConkey, Marie E.; Poveromo, Luke P.; Cowley, Glenn S.; Kharas, Michael G.; Labelle, Myriam; Shterental, Sebastian; Fujisaki, Joji; Silberstein, Lev; Alexe, Gabriela; Al-Hajj, Muhammad A.; Shelton, Christopher A.; Armstrong, Scott A.; Root, David E.; Scadden, David T.; Hynes, Richard O.; Mukherjee, Siddhartha; Stegmaier, Kimberly; Jordan, Craig T.; Ebert, Benjamin L.
2013-01-01
SUMMARY We used an in vivo short hairpin RNA (shRNA) screening approach to identify genes that are essential for MLL-AF9 acute myeloid leukemia (AML). We found that Integrin Beta 3 (Itgb3) is essential for murine leukemia cells in vivo, and for human leukemia cells in xenotransplantation studies. In leukemia cells, Itgb3 knockdown impaired homing, downregulated LSC transcriptional programs, and induced differentiation via the intracellular kinase, Syk. In contrast, loss of Itgb3 in normal HSPCs did not affect engraftment, reconstitution, or differentiation. Finally, we confirmed that Itgb3 is dispensable for normal hematopoiesis and required for leukemogenesis using an Itgb3 knockout mouse model. Our results establish the significance of the Itgb3 signaling pathway as a potential therapeutic target in AML. PMID:23770013
Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.
Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit
2006-06-01
Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.
Nguyen, Ken; Sylvain, Nicholas R; Bunnell, Stephen C
2008-06-01
Antigen-dependent T cell activation drives the formation of signaling microclusters containing the adaptor SLP-76. Costimulatory integrins regulate SLP-76 phosphorylation and could influence SLP-76 microclusters in the integrin-rich periphery of the immune synapse. We report that costimulation by the integrin VLA-4 (alpha4beta1) required SLP-76 domains implicated in microcluster assembly. Pro-adhesive ligands enlarged the contact and increased the number of SLP-76 microclusters regardless of their costimulatory potential. Costimulatory VLA-4 ligands also prevented the centralization of SLP-76, promoted microcluster persistence, prolonged lateral interactions between SLP-76 and its upstream kinase, ZAP-70, and retained SLP-76 in tyrosine-phosphorylated peripheral structures. SLP-76 centralization was driven by dynamic actin polymerization and was correlated with inward actin flows. VLA-4 ligation retarded these flows, even in the absence of SLP-76. These data suggest a widely applicable model of costimulation, in which integrins promote sustained signaling by attenuating cytoskeletal movements that drive the centralization and inactivation of SLP-76 microclusters.
Expression Profile of the Integrin Receptor Subunits in the Guinea Pig Sclera.
Wang, Kevin K; Metlapally, Ravikanth; Wildsoet, Christine F
2017-06-01
The ocular dimensional changes in myopia reflect increased scleral remodeling, and in high myopia, loss of scleral integrity leads to biomechanical weakening and continued scleral creep. As integrins, a type of cell surface receptors, have been linked to scleral remodeling, they represent potential targets for myopia therapies. As a first step, this study aimed to characterize the integrin subunits at the messenger RNA level in the sclera of the guinea pig, a more recently added but increasingly used animal model for myopia research. Primers for α and β integrin subunits were designed using NCBI/UCSC Genome Browser and Primer3 software tools. Total RNA was extracted from normal scleral tissue and isolated cultured scleral fibroblasts, as well as liver and lung, as reference tissues, all from guinea pig. cDNA was produced by reverse transcription, PCR was used to amplify products of predetermined sizes, and products were sequenced using standard methods. Guinea pig scleral tissue expressed all known integrin alpha subunits except αD and αE. The latter integrin subunits were also not expressed by cultured guinea pig scleral fibroblasts; however, their expression was confirmed in guinea pig liver. In addition, isolated cultured fibroblasts did not express integrin subunits αL, αM, and αX. This difference between results for cultured cells and intact sclera presumably reflects the presence in the latter of additional cell types. Both guinea pig scleral tissue and isolated scleral fibroblasts expressed all known integrin beta subunits. All results were verified through sequencing. The possible contributions of integrins to scleral remodeling make them plausible targets for myopia prevention. Data from this study will help guide future ex vivo and in vitro studies directed at understanding the relationship between scleral integrins and ocular growth regulation in the guinea pig model for myopia.
Maldonado, H; Calderon, C; Burgos-Bravo, F; Kobler, O; Zuschratter, W; Ramirez, O; Härtel, S; Schneider, P; Quest, A F G; Herrera-Molina, R; Leyton, L
2017-02-01
Two key proteins for cellular communication between astrocytes and neurons are αvβ3 integrin and the receptor Thy-1. Binding of these molecules in the same (cis) or on adjacent (trans) cellular membranes induces Thy-1 clustering, triggering actin cytoskeleton remodeling. Molecular events that could explain how the Thy-1-αvβ3 integrin interaction signals have only been studied separately in different cell types, and the detailed transcellular communication and signal transduction pathways involved in neuronal cytoskeleton remodeling remain unresolved. Using biochemical and genetic approaches, single-molecule tracking, and high-resolution nanoscopy, we provide evidence that upon binding to αvβ3 integrin, Thy-1 mobility decreased while Thy-1 nanocluster size increased. This occurred concomitantly with inactivation and exclusion of the non-receptor tyrosine kinase Src from the Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk complex. The Src inactivation decreased the p190Rho GTPase activating protein phosphorylation, promoting RhoA activation, cofilin, and myosin light chain II phosphorylation and, consequently, neurite shortening. Finally, silencing the adaptor CBP demonstrated that this protein was a key transducer in the Thy-1 signaling cascade. In conclusion, these data support the hypothesis that the Thy-1-CBP-Csk-Src-RhoA-ROCK axis transmitted signals from astrocytic integrin-engaged Thy-1 (trans) to the neuronal actin cytoskeleton. Importantly, the β3 integrin in neurons (cis) was not found to be crucial for neurite shortening. This is the first study to detail the signaling pathway triggered by αvβ3, the endogenous Thy-1 ligand, highlighting the role of membrane-bound integrins as trans acting ligands in astrocyte-neuron communication. Copyright © 2016 Elsevier B.V. All rights reserved.
Denesyuk, Alexander; Denessiouk, Konstantin; Johnson, Mark S
2018-02-01
An integrin-like β-propeller domain contains seven repeats of a four-stranded antiparallel β-sheet motif (blades). Previously we described a 3D structural motif within each blade of the integrin-type β-propeller. Here, we show unique structural links that join different blades of the β-propeller structure, which together with the structural motif for a single blade are repeated in a β-propeller to provide the functional top face of the barrel, found to be involved in protein-protein interactions and substrate recognition. We compare functional top face diagrams of the integrin-type β-propeller domain and two non-integrin type β-propeller domains of virginiamycin B lyase and WD Repeat-Containing Protein 5. Copyright © 2017 Elsevier Inc. All rights reserved.
Costamere remodeling with muscle loading and unloading in healthy young men.
Li, Ruowei; Narici, Marco V; Erskine, Robert M; Seynnes, Olivier R; Rittweger, Jörn; Pišot, Rado; Šimunič, Boštjan; Flück, Martin
2013-11-01
Costameres are mechano-sensory sites of focal adhesion in the sarcolemma that provide a structural anchor for myofibrils. Their turnover is regulated by integrin-associated focal adhesion kinase (FAK). We hypothesized that changes in content of costamere components (beta 1 integrin, FAK, meta-vinculin, gamma-vinculin) with increased and reduced loading of human anti-gravity muscle would: (i) relate to changes in muscle size and molecular parameters of muscle size regulation [p70S6K, myosin heavy chain (MHC)1 and MHCIIA]; (ii) correspond to adjustments in activity and expression of FAK, and its negative regulator, FRNK; and (iii) reflect the temporal response to reduced and increased loading. Unloading induced a progressive decline in thickness of human vastus lateralis muscle after 8 and 34 days of bedrest (-4% and -14%, respectively; n = 9), contrasting the increase in muscle thickness after 10 and 27 days of resistance training (+5% and +13%; n = 6). Changes in muscle thickness were correlated with changes in cross-sectional area of type I muscle fibers (r = 0.66) and beta 1 integrin content (r = 0.76) at the mid-point of altered loading. Changes in meta-vinculin and FAK-pY397 content were correlated (r = 0.85) and differed, together with the changes of beta 1 integrin, MHCI, MHCII and p70S6K, between the mid- and end-point of resistance training. By contrast, costamere protein level changes did not differ between time points of bedrest. The findings emphasize the role of FAK-regulated costamere turnover in the load-dependent addition and removal of myofibrils, and argue for two phases of muscle remodeling with resistance training, which do not manifest at the macroscopic level. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Naik, Meghna U.; Stalker, Timothy J.; Brass, Lawrence F.
2012-01-01
Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin αIIbβ3. Once platelet activation has occurred, integrin αIIbβ3 stabilizes thrombus formation by providing agonist-independent “outside-in” signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A–deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation. PMID:22271446
Cell Membrane-formed Nanovesicles for Disease-Targeted Delivery
Gao, Jin; Chu, Dafeng; Wang, Zhenjia
2016-01-01
Vascular inflammation is underlying components of most diseases. To target inflamed vasculature, nanoparticles are commonly engineered by conjugating antibody to the nanoparticle surface, but this bottom-up approach could affect nanoparticle targeting and therapeutic efficacy in complex, physiologically related systems. During vascular inflammation endothelium via the NF-κB pathway instantly upregulates intercellular adhesion molecule 1 (ICAM-1) which binds integrin β2 on neutrophil membrane. Inspired by this interaction, we created a nanovesicle-based drug delivery system using nitrogen cavitation which rapidly disrupts activated neutrophils to make cell membrane nanovesicles. Studies using intravital microscopy of live mouse cremaster venules showed that these vesicles can selectively bind inflamed vasculature because they possess intact targeting molecules of integrin β2. Administering of nanovesicles loaded with TPCA-1 (a NF-κB inhibitor) markedly mitigated mouse acute lung inflammation. Our studies reveal a new top-down strategy for directly employing a diseased tissue to produce biofunctional nanovesicle-based drug delivery systems potentially applied to treat various diseases. PMID:26778696
Structural basis of substrate discrimination and integrin binding by autotaxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos
2013-09-25
Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates.more » We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.« less
Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M
1999-01-05
The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.
Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus; Zarbock, Alexander
2010-04-15
Selectins mediate leukocyte rolling, trigger beta(2)-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) gamma2- and phosphoinositide 3-kinase (PI3K) gamma-dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP(3)), and inducing E-selectin-mediated slow rolling. Inhibition of this signal-transduction pathway diminished Galpha(i)-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Galpha(i)-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk(-/-) and Plcg2(-/-) mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement.
Poimenidi, Evangelia; Theodoropoulou, Christina; Koutsioumpa, Marina; Skondra, Lamprini; Droggiti, Eirini; van den Broek, Marloes; Koolwijk, Pieter; Papadimitriou, Evangelia
2016-05-01
Vascular endothelial growth factor A (VEGF-A) is a key molecule in angiogenesis acting through VEGF receptors (VEGFRs), ανβ3 integrin, receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and cell surface nucleolin (NCL). Pleiotrophin (PTN) stimulates endothelial cell migration and limits the angiogenic effects of VEGF-A165 to the levels of its own effect, possibly acting as a VEGF-A165 modifier. Since PTN and VEGF-A165 share receptors and actions on endothelial cells, in the present work we studied whether and how VEGF-A165 affects PTN expression or secretion. VEGF-A165 decreased PTN mRNA and protein levels acting at the transcriptional level. Bevacizumab, a selective VEGFR2 tyrosine kinase inhibitor and down-regulation of VEGFR2 expression by siRNA did not affect this decrease, suggesting that it is VEGFR-independent. VEGF-A121 also decreased PTN mRNA and protein levels, suggesting that heparin binding of VEGF-A165 is not involved. Blockage of cell surface NCL, lack of expression or mutation of β3 integrin and down-regulation of RPTPβ/ζ abolished the inhibitory effect of VEGF-A165 on PTN expression and secretion. Down-regulation of endogenous PTN in endothelial cells enhanced VEGF-A165-induced increase in migration and tube formation on matrigel. Collectively, these data suggest that VEGF-A down-regulates PTN expression and secretion through the RPTPβ/ζ-ανβ3-NCL axis to enhance its own effect on cell migration and further highlight the role of RPTPβ/ζ in VEGF-A actions. Copyright © 2016 Elsevier Inc. All rights reserved.
Lokar, Marusa; Urbanija, Jasna; Frank, Mojca; Hägerstrand, Henry; Rozman, Blaz; Bobrowska-Hägerstrand, Malgorzata; Iglic, Ales; Kralj-Iglic, Veronika
2008-08-01
Plasma protein-mediated attractive interaction between membranes of red blood cells (RBCs) and phospholipid vesicles was studied. It is shown that beta(2)-glycoprotein I (beta(2)-GPI) may induce RBC discocyte-echinocyte-spherocyte shape transformation and subsequent agglutination of RBCs. Based on the observed beta(2)-GPI-induced RBC cell shape transformation it is proposed that the hydrophobic portion of beta(2)-GPI molecule protrudes into the outer lipid layer of the RBC membrane and increases the area of this layer. It is also suggested that the observed agglutination of RBCs is at least partially driven by an attractive force which is of electrostatic origin and depends on the specific molecular shape and internal charge distribution of membrane-bound beta(2)-GPI molecules. The suggested beta(2)-GPI-induced attractive electrostatic interaction between like-charged RBC membrane surfaces is qualitatively explained by using a simple mathematical model within the functional density theory of the electric double layer, where the electrostatic attraction between the positively charged part of the first domains of bound beta(2)-GPI molecules and negatively charged glycocalyx of the adjacent RBC membrane is taken into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Gay, M.A.; Zanelli, E.; Krco, C.J.
1995-05-01
Collagen-induced arthritis (CIA) is an animal model of auto immune polyarthritis, sharing similarities with rheumatoid arthritis (RA). Paradoxally, susceptibility to mouse CIA is controlled by the H2A loci (DQ homologous) while RA is linked to HLA.DR genes (H2E homologous). We recently showed that the E{beta}{sup d} molecule prevents CIA development in susceptible H2{sup q} mice. We addressed the question of whether H2Eb polymorphism will influence CIA incidence as HLA.DRB1 polymorphism does in RA. In F{sub 1} mice, only H2Eb{sup d} and H2Eb{sup s} molecules showed protection. Using recombinant B10.RDD (Eb{sup d/b}) mice, we found that CIA protection was mediated bymore » the first domain of the E{beta}{sup d} molecule. Using peptides covering the third hypervariable region of the E{beta} chain, we found a perfect correlation between presentation of E{beta} peptides by the H2A{sup q} molecule and protection on CIA. Therefore, the mechanism by which H2Eb protects against CIA seems to rely on the affinity of E{beta} peptides for the H2A{sup q} molecule. 35 refs., 2 figs., 3 tabs.« less
Yuferov, Vadim; Zhang, Yong; Liang, Yupu; Zhao, Connie; Randesi, Matthew; Kreek, Mary J
2018-01-01
Oxycodone is one a commonly used medication for pain, and is also a widely abused prescription opioid, like other short-acting MOPr agonists. Neurochemical and structural adaptations in brain following chronic MOPr-agonist administration are thought to underlie pathogenesis and persistence of opiate addiction. Many axon guidance molecules, such as integrins, semaphorins, and ephrins may contribute to oxycodone-induced neuroadaptations through alterations in axon-target connections and synaptogenesis, that may be implicated in the behaviors associated with opiate addiction. However, little is known about this important area. The aim of this study is to investigate alterations in expression of selected integrin, semaphorin, ephrins, netrin, and slit genes in the nucleus accumbens (NAc) and caudate putamen (CPu) of mice following extended 14-day oxycodone self-administration (SA), using RNAseq. Methods: Total RNA from the NAc and CPu were isolated from adult male C57BL/6J mice within 1 h after the last session of oxycodone in a 14-day self-administration paradigm (4h/day, 0.25 mg/kg/infusion, FR1) or from yoked saline controls. Gene expressions were examined using RNA sequencing (RNA-Seq) technology. RNA-Seq libraries were prepared using Illumina's TruSeq® Stranded Total RNA LT kit. The reads were aligned to the mouse reference genome (version mm10) using STAR. DESeq2 was applied to the counts of protein coding genes to estimate the fold change between the treatment groups. False Discovery Rate (FDR) q < 0.1 were used to select genes that have a significant expression change. For selection of a subset of genes related to axon guidance pathway, REACTOME was used. Results: Among 38 known genes of the integrin, semaphorin, and ephrin gene families, RNA-seq data revealed up-regulation of six genes in the NAc: heterodimer receptor, integrins Itgal, Itgb2 , and Itgam , and its ligand semaphorin Sema7a , two semaphorin receptors, plexins Plxnd1 and Plxdc1 . There was down-regulation of eight genes in this region: two integrin genes Itga3 and Itgb8 , semaphorins Sema3c, Sema4g, Sema6a, Sema6d , semaphorin receptor neuropilin Nrp2 , and ephrin receptor Epha3 . In the CPu, there were five differentially expressed axon guidance genes: up-regulation of three integrin genes, Itgal, Itgb2, Itga1 , and down-regulation of Itga9 and ephrin Efna3 were thus observed. No significant alterations in expression of Netrin-1 or Slit were observed. Conclusion: We provide evidence for alterations in the expression of selective axon guidance genes in adult mouse brain following chronic self-administration of oxycodone. Further examination of oxycodone-induced changes in the expression of these specific axon guidance molecules and integrin genes in relation to behavior may provide new insights into development of addiction to oxycodone.
Phenotypic changes in neutrophils related to anti-inflammatory therapy.
Barton, A E; Bayley, D L; Mikami, M; Llewellyn-Jones, C G; Stockley, R A
2000-01-03
Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.
Pradip, De; Bouzyk, Mark; Dey, Nandini; Leyland-Jones, Brian
2013-01-01
Amplification of human Her2 and its aberrant signaling in 20-30% of early breast cancer patients is responsible for highly aggressive tumors with poor outcome. Grb7 is reported to be co-amplified with Her2. We report a concurrent high expression of mRNA (from FFPE tumor samples; mRNA correlation, Pearson r(2)= 0.806), and high levels of GRB7 protein (immunoblot) in HER2+ breast cancer cell lines. We demonstrated the signaling mechanism of HER2 and downstream effectors that contributes to proliferation and migration. Using HER2+ and trastuzumab-resistant breast cancer cell lines, we identified the interaction between GRB7 and HER2 in the control of HER2+ cell proliferation. Our co-IP data show that GRB7 recruits SHC into the HER2-GRB7 signaling complex. This complex formation leads to activation of RAS-GTP. We also observed that following integrin engagement, GRB7 is phosphorylated at tyrosine in a p-FAK (Y397) dependent manner. This FAK-GRB7 complex leads to downstream activation of RAC1-GTP (responsible for migration) probably through the recruitment of VAV2. Our CO-IP data demonstrate that GRB7 directly binds with VAV2 following fibronectin engagement in HER2+ cells. To address whether GRB7 could serve as a pathway specific therapeutic target, we used siRNA to suppress GRB7 expression. Knockdown of GRB7 expression in the HER2+ breast cancer cell lines decreases RAS activation, cell proliferation, 2D and 3D colony formation and also blocked integrin-mediated RAC1 activation along with integrin-directed cell migration. These findings dissected the HER2-mediated signaling cascade into (1) HER2+ cell proliferation (HER2-GRB7-SHC-RAS) and (2) HER2+ cell migration (alpha5 beta1/alpha4 beta1-FAK-GRB7-VAV2-RAC1). Our data clearly demonstrate that a coupling of GRB7 with HER2 is required for the proliferative and migratory signals in HER2+ breast tumor cells.
NASA Astrophysics Data System (ADS)
Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.
2013-08-01
We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.
Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin
NASA Astrophysics Data System (ADS)
Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan
1992-03-01
EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.
The influence of Pyk2 on the mechanical properties in fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemm, Anna H.; Kienle, Sandra; Rheinlaender, Johannes
2010-03-19
The cell surface receptor integrin is involved in signaling mechanical stresses via the focal adhesion complex (FAC) into the cell. Within FAC, the focal adhesion kinase (FAK) and Pyk2 are believed to act as important scaffolding proteins. Based on the knowledge that many signal transducing molecules are transiently immobilized within FAC connecting the cytoskeleton with integrins, we applied magnetic tweezer and atomic force microscopic measurements to determine the influence of FAK and Pyk2 in cells mechanically. Using mouse embryonic fibroblasts (MEF; FAK{sup +/+}, FAK{sup -/-}, and siRNA-Pyk2 treated FAK{sup -/-} cells) provided a unique opportunity to describe the function ofmore » FAK and Pyk2 in more detail and to define their influence on FAC and actin distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Zhang, , Xianzhong; Xiong, , Zhengming
2005-10-01
Integrins ?v?3 and ?v?5 play a critical role in tumor-induced angiogenesis and metastasis, and have become promising diagnostic indicators and therapeutic targets of tumors. Radiolabeled RGD peptides that are integrin-specific may be used for non-invasive imaging of integrin expression level as well as for integrin-targeted radionuclide therapy. We previously conjugated a series of mono- and dimeric RGD peptides with 1,4,7,10-tetraazacyclododecane-N, N?,N??,N???-tetraacetic acid (DOTA) and labeled these with copper-64 for microPET imaging in various mouse xenograft models. The copper-64 tracers showed ?v?3-selective tumor uptake, but the magnitude of tumor uptake was relatively low, the tumor washout was rapid, and non-target organ/tissuemore » retention was high. In this study we developed a tetrameric RGD peptide tracer 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 for positron emission tomography (PET) imaging of integrin ?v?3 expression in a subcutaneous U87MG glioma xenograft model in female athymic nude mice. The RGD tetramer showed significantly higher integrin binding affinity than the corresponding mono- and dimeric RGD analogs, most likely due to polyvalency effect. The radiolabeled peptide showed rapid blood clearance (0.61 ? 0.01%ID/g at 30 min and 0.21 ? 0.01 %ID/g at 4 h postinjection (p.i.), respectively) and predominantly renal excretion. Tumor uptake was rapid and high and the tumor washout was slow (9.93 ? 1.05 %ID/g at 30 min p.i. and 4.56 ? 0.51 %ID/g at 24 h post-injection). The metabolic stability of 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 was determined in mouse blood, urine, and liver and kidney homogenates at different times after tracer injection. The average fractions of intact tracer in these organs at 1 h were approximately 70, 58, 51 and 26 percent, respectively. Non-invasive microPET imaging studies showed significant tumor uptake and good contrast in the subcutaneous tumor-bearing mice, which agreed well with the biodistribution results. Integrin ?v?3 specificity was demonstrated by successful blocking of tumor uptake of 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 in the presence of excess amount of c(RGDyK) at 1 h postinjection. The highest absorbed radiation doses determined for the human reference adult were received by the urinary bladder wall (0.263 mGy/MBq), kidneys (0.0298 mGy/MBq), and liver (0.0244 mGy/MBq). Assuming 0.5-g U87MG glioma tumors in man, we calculated an absorbed dose of 65.3 mGy/MBq (242 rad/mCi) following a single injection of 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2. In conclusion, the high integrin avidity and favorable biokinetics make 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 a promising agent for peptide receptor radionuclide imaging therapy of integrin-positive tumors.« less
Platelets in thrombosis and hemostasis: old topic with new mechanisms.
Wang, Yiming; Andrews, Marc; Yang, Yan; Lang, Sean; Jin, Joseph W; Cameron-Vendrig, Alison; Zhu, Guangheng; Reheman, Adili; Ni, Heyu
2012-12-01
Platelets are small anucleate cells generated from megakaryocytes in the bone marrow. After being released into the circulation, platelets play key roles in the surveillance of vascular injury, and can quickly adhere and aggregate at the site of injury, which are critical events for vascular repair and hemostasis. However, the same biological processes of platelet adhesion and aggregation may also cause thrombotic disorders. The formation of a platelet plug at sites of atherosclerotic lesion rupture is the most common mechanism leading to myocardial or cerebral infarction. Platelet-related deep vein thrombosis is also one of the leading causes of mortality worldwide. The contribution of several platelet receptors and their ligands has been highlighted in these processes. In platelet adhesion, particularly at high shear stress, GPIbα-von Willebrand factor (VWF) interaction may initiate this event, which is followed by GPVI signalling and firm platelet adhesion mediated by members of the integrin family, such as β3 (αIIbβ3) and β1 (α2β1, α5β1) integrins. In platelet aggregation, although GPIbα-VWF, P selectin-sulfatides, and other molecules, may be involved, the process is mainly mediated by β3 (αIIbβ3) integrin and its ligands, such as fibrinogen and VWF. It is intriguing that platelet adhesion and aggregation still occur in mice lacking both fibrinogen and VWF, suggesting that other unforeseen molecule(s) may also be important in these processes. Identification and characterization of these molecules will enrich our knowledge in the basic science of hemostasis and thrombosis, and may lead to the development of new therapies against bleeding disorders and thrombotic diseases.
Rieti, S; Manni, V; Lisi, A; Giuliani, L; Sacco, D; D'Emilia, E; Cricenti, A; Generosi, R; Luce, M; Grimaldi, S
2004-01-01
In this study we have employed atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) techniques to study the effect of the interaction between human keratinocytes (HaCaT) and electromagnetic fields at low frequency. HaCaT cells were exposed to a sinusoidal magnetic field at a density of 50 Hz, 1 mT. AFM analysis revealed modification in shape and morphology in exposed cells with an increase in the areas of adhesion between cells. This latter finding was confirmed by SNOM indirect immunofluorescence analysis performed with a fluorescent antibody against the adhesion marker beta4 integrin, which revealed an increase of beta4 integrin segregation in the cell membrane of 50-Hz exposed cells, suggesting that a higher percentage of these cells shows a modified pattern of this adhesion marker.
Rheostat regulation of integrin-mediated leukocyte adhesion
Douglas, Ivor S.; Dassopoulos, Themistocles
2007-01-01
The homing of activated T lymphocytes to the gut in inflammatory bowel diseases is dependent on their coordinated, integrin-mediated adhesion and de-adhesion to substrates and blood vessel walls. In this issue of the JCI, Park and colleagues reveal a key modulatory role of a binding site within β integrins, known as the ADMIDAS domain, in controlling integrin de-adhesion in mice (see the related article beginning on page 2526). These observations add to our growing understanding of how integrin adhesiveness is regulated and raise the notion of the existence of a biological rheostat for lymphocyte homing. Disturbed migratory rheostat tone could account for variations in interindividual immune responses observed in patients with inflammatory bowel disease or other lymphocyte-mediated inflammatory disorders. These findings will inform future strategies to design small molecules for the treatment of a spectrum of chronic inflammatory conditions. PMID:17786236
Fibronectins containing extradomain A or B enhance osteoblast differentiation via distinct integrins
Sens, Carla; Huck, Katrin; Pettera, Stefan; Uebel, Stephan; Wabnitz, Guido; Moser, Markus; Nakchbandi, Inaam A.
2017-01-01
Fibronectin is a multidomain protein secreted by various cell types. It forms a network of fibers within the extracellular matrix and impacts intracellular processes by binding to various molecules, primarily integrin receptors on the cells. Both the presence of several isoforms and the ability of the various domains and isoforms to bind to a variety of integrins result in a wide range of effects. In vivo findings suggest that fibronectin isoforms produced by the osteoblasts enhance their differentiation. Here we report that the isoform characterized by the presence of extradomain A activates α4β1 integrin and augments osteoblast differentiation. In addition, the isoform containing extradomain B enhances the binding of fibronectin through the RGD sequence to β3-containing integrin, resulting in increased mineralization by and differentiation of osteoblasts. Our study thus reveals novel functions for two fibronectin isoforms and the mediating receptors in osteoblast differentiation. PMID:28325836
Recombination and mutation of class II histocompatibility genes in wild mice.
Wakeland, E K; Darby, B R
1983-12-01
We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.
Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M
2007-01-01
Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.
Csaki, C; Matis, U; Mobasheri, A; Ye, H; Shakibaei, M
2007-12-01
Musculoskeletal diseases with osteochondrotic articular cartilage defects, such as osteoarthritis, are an increasing problem for humans and companion animals which necessitates the development of novel and improved therapeutic strategies. Canine mesenchymal stem cells (cMSCs) offer significant promise as a multipotent source for cell-based therapies and could form the basis for the differentiation and cultivation of tissue grafts to replace damaged tissue. However, no comprehensive analysis has been undertaken to characterize the ultrastructure of in vitro differentiated cMSCs. The main goal of this paper was to focus on cMSCs and to analyse their differentiation capacity. To achieve this aim, bone marrow cMSCs from three canine patients were isolated, expanded in monolayer culture and characterized with respect to their ability for osteogenic, adipogenic and chondrogenic differentiation capacities. cMSCs showed proliferative potential and were capable of osteogenic, adipogenic and chondrogenic differentiation. cMSCs treated with the osteogenic induction medium differentiated into osteoblasts, produced typical bone matrix components, beta1-integrins and upregulated the osteogenic specific transcription factor Cbfa-1. cMSCs treated with the adipogenic induction medium showed typical adipocyte morphology, produced adiponectin, collagen type I and beta1-integrins, and upregulated the adipogenic specific transcription factor PPAR-gamma. cMSCs treated with the chondrogenic induction medium exhibited a round to oval shape, produced a cartilage-specific extracellular matrix, beta1-integrins and upregulated the chondrogenic specific transcription factor Sox9. These results demonstrate, at the biochemical, morphological and ultrastructural levels, the multipotency of cMSCs and thus highlight their potential therapeutic value for cell-based tissue engineering.
Bilgrami, Sameeta; Yadav, Savita; Kaur, Punit; Sharma, Sujata; Perbandt, Markus; Betzel, Christian; Singh, Tej P
2005-08-23
Disintegrins constitute a family of potent polypeptide inhibitors of integrins. Integrins are transmembrane heterodimeric molecules involved in cell-cell and cell-extracellular matrix interactions. They are involved in many diseases such as cancer and thrombosis. Thus, disintegrins have a great potential as anticancer and antithrombotic agents. A novel heterodimeric disintegrin was isolated from the venom of saw-scaled viper (Echis carinatus) and was crystallized. The crystals diffracted to 1.9 A resolution and belonged to space group P4(3)2(1)2. The data indicated the presence of a pseudosymmetry. The structure was solved by applying origin shifts to the disintegrin homodimer schistatin solved in space group I4(1)22 with similar cell dimensions. The structure refined to the final R(cryst)/R(free) factors of 0.213/0.253. The notable differences are observed between the loops, (Gln39-Asp48) containing the important Arg42-Gly43-Asp44, of the present heterodimer and schistatin. These differences are presumably due to the presence of two glycines at positions 43 and 46 that allow the molecule to adopt variable conformations. A comparative analysis of the surface-charge distributions of various disintegrins showed that the charge distribution on monomeric disintegrins occurred uniformly over the whole surface of the molecule, while in the dimeric disintegrins, the charge is distributed only on one face. Such a feature may be important in the binding of two integrins to a single dimeric disintegrin. The phylogenetic analysis developed on the basis of amino acid sequence and three-dimensional structures indicates that the protein diversification and evolution presumably took place from the medium disintegrins and both the dimeric and short disintegrins evolved from them.
Kariya, Taro; Ueta, Hisashi; Xu, Xue-Dong; Koga, Daisuke; Ezaki, Taichi; Yu, Enqiao; Kusumi, Satoshi; Kitazawa, Yusuke; Sawanobori, Yasushi; Ushiki, Tatsuo; Issekutz, Thomas; Matsuno, Kenjiro
2016-10-01
Lymphocyte recruitment into the portal tract is crucial not only for homeostatic immune surveillance but also for many liver diseases. However, the exact route of entry for lymphocytes into portal tract is still obscure. We investigated this question using a rat hepatic allograft rejection model. A migration route was analyzed by immunohistological methods including a recently developed scanning electron microscopy method. Transmigration-associated molecules such as selectins, integrins, and chemokines and their receptors expressed by hepatic vessels and recruited T-cells were analyzed by immunohistochemistry and flow cytometry. The immunoelectron microscopic analysis clearly showed CD8β(+) cells passing through the portal vein (PV) endothelia. Furthermore, the migrating pathway seemed to pass through the endothelial cell body. Local vascular cell adhesion molecule-1 (VCAM-1) expression was induced in PV endothelial cells from day 2 after liver transplantation. Although intercellular adhesion molecule-1 (ICAM-1) expression was also upregulated, it was restricted to sinusoidal endothelia. Recipient T-cells in the graft perfusate were CD25(+)CD44(+)ICAM-1(+)CXCR3(+)CCR5(-) and upregulated α4β1 or αLβ2 integrins. Immunohistochemistry showed the expression of CXCL10 in donor MHCII(high) cells in the portal tract as well as endothelial walls of PV. We show for the first time direct evidence of T-cell transmigration across PV endothelial cells during hepatic allograft rejection. Interactions between VCAM-1 on endothelia and α4β1 integrin on recipient effector T-cells putatively play critical roles in adhesion and transmigration through endothelia. A chemokine axis of CXCL10 and CXCR3 also may be involved.
Rough titanium alloys regulate osteoblast production of angiogenic factors.
Olivares-Navarrete, Rene; Hyzy, Sharon L; Gittens, Rolando A; Schneider, Jennifer M; Haithcock, David A; Ullrich, Peter F; Slosar, Paul J; Schwartz, Zvi; Boyan, Barbara D
2013-11-01
Polyether-ether-ketone (PEEK) and titanium-aluminum-vanadium (titanium alloy) are used frequently in lumbar spine interbody fusion. Osteoblasts cultured on microstructured titanium generate an environment characterized by increased angiogenic factors and factors that inhibit osteoclast activity mediated by integrin α2β1 signaling. It is not known if this is also true of osteoblasts on titanium alloy or PEEK. The purpose of this study was to determine if osteoblasts generate an environment that supports angiogenesis and reduces osteoclastic activity when grown on smooth titanium alloy, rough titanium alloy, or PEEK. This in vitro study compared angiogenic factor production and integrin gene expression of human osteoblast-like MG63 cells cultured on PEEK or titanium-aluminum-vanadium (titanium alloy). MG63 cells were grown on PEEK, smooth titanium alloy, or rough titanium alloy. Osteogenic microenvironment was characterized by secretion of osteoprotegerin and transforming growth factor beta-1 (TGF-β1), which inhibit osteoclast activity and angiogenic factors including vascular endothelial growth factor A (VEGF-A), fibroblast growth factor 2 (FGF-2), and angiopoietin-1 (ANG-1). Expression of integrins, transmembrane extracellular matrix recognition proteins, was measured by real-time polymerase chain reaction. Culture on titanium alloy stimulated osteoprotegerin, TGF-β1, VEGF-A, FGF-2, and angiopoietin-1 production, and levels were greater on rough titanium alloy than on smooth titanium alloy. All factors measured were significantly lower on PEEK than on smooth or rough titanium alloy. Culture on titanium alloy stimulated expression of messenger RNA for integrins that recognize Type I collagen in comparison with PEEK. Rough titanium alloy stimulated cells to create an osteogenic-angiogenic microenvironment. The osteogenic-angiogenic responses to titanium alloy were greater than PEEK and greater on rough titanium alloy than on smooth titanium alloy. Surface features regulated expression of integrins important in collagen recognition. These factors may increase bone formation, enhance integration, and improve implant stability in interbody spinal fusions. Copyright © 2013 Elsevier Inc. All rights reserved.
Characterization of hepatic progenitors from human fetal liver during second trimester.
Rao, Mekala-Subba; Khan, Aleem-Ahmed; Parveen, Nyamath; Habeeb, Mohammed-Aejaz; Habibullah, Chittoor-Mohammed; Pande, Gopal
2008-10-07
To enrich hepatic progenitors using epithelial cell adhesion molecule (EpCAM) as a marker from human fetal liver and investigate the expression of human leukocyte antigen (HLA) and their markers associated with hepatic progenitor cells. EpCAM +ve cells were isolated using magnetic cell sorting (MACS) from human fetuses (n = 10) at 15-25 wk gestation. Expression of markers for hepatic progenitors such as albumin, alpha-fetoprotein (AFP), CD29 (integrin beta1), CD49f (integrin alpha6) and CD90 (Thy 1) was studied by using flow cytometry, immunocytochemistry and RT-PCR; HLA class I (A, B, C) and class II (DR) expression was studied by flow cytometry only. FACS analysis indicated that EpCAM +ve cells were positive for CD29, CD49f, CD90, CD34, HLA class I, albumin and AFP but negative for HLA class II (DR) and CD45. RT PCR showed that EpCAM +ve cells expressed liver epithelial markers (CK18), biliary specific marker (CK19) and hepatic markers (albumin, AFP). On immunocytochemical staining, EpCAM +ve cells were shown positive signals for CK18 and albumin. Our study suggests that these EpCAM +ve cells can be used as hepatic progenitors for cell transplantation with a minimum risk of alloreactivity and these cells may serve as a potential source for enrichment of hepatic progenitor.
Influence of Snail on Integrin Beta l Expression/Activity in Breast Carcinoma
2008-09-01
sensitive for this purpose (data not shown). Next, we tested the ability of a monoclonal Snail-1 antibody from our collaborator, Dr. Antonio Garcia de...monoclonal antibody from our collaborator, Dr. Antonio Garcia de Herreros (commercially- available antibodies were not of sufficient sensitivity...expression/function in breast tumor cells. Breast Cancer Res. Treat. In Press. 2. Wanami, L.S., Chen, H., Peiro, S., Garcia de Herreros, A., and
Influence of Snail on Integrin Beta 1 Expression/Activity in Breast Carcinoma
2008-09-01
sensitive for this purpose (data not shown). Next, we tested the ability of a monoclonal Snail-1 antibody from our collaborator, Dr. Antonio Garcia de...monoclonal antibody from our collaborator, Dr. Antonio Garcia de Herreros (commercially- available antibodies were not of sufficient sensitivity...expression/function in breast tumor cells. Breast Cancer Res. Treat. In Press. 2. Wanami, L.S., Chen, H., Peiro, S., Garcia de Herreros, A., and
Reprogramming of the Ovarian Tumor Stroma by Activation of a Biomechanical ECM Switch
2016-09-01
Denatured collagen was detec- ted with anticollagen antibody (1:1000). For integrin-blocking enzyme -linked immunosorbent assay, wells were coated with...migration on denatured collagen; it failed to reduce cell adhesion. Moreover a peptide antagonist of alpha 10 beta 1 may inhibit ovarian tumor growth in...stromal cell adhesion, migration and proliferation on distinct ECM substrates including native and denatured collagen. 4 D). As outlined in aim 2
Cytoskeleton changes following differentiation of N1E-115 neuroblastoma cell line.
Oh, J-E; Karlmark Raja, K; Shin, J-H; Pollak, A; Hengstschläger, M; Lubec, G
2006-10-01
No systematic approach to detect expression of differentiation-related elements was published so far. The undifferentiated N1E-115 neuroblastoma cell line was switched into a neuronal phenotype by DMSO treatment and used for proteomic experiments. We used two-dimensional gel electrophoresis followed by unambiguous mass spectrometrical identification of proteins to generate a map of cytoskeleton proteins (CPs), i.e., to search for differentiation-related structures. Alpha-actin, actin-like protein 6A, gamma-tubulin complex component 2, tubulin alpha 3/alpha 7, CLIP associating protein 2, B4 integrin interactor homolog were detectable in the undifferentiated cell line exclusively and neuron-specific CPs drebrin and presynaptic density protein 95, actin-related protein 2/3, alpha and beta-centractin, PDZ-domain actin binding protein, actinin alpha 1, profilin II, ezrin, coactosin-like protein, transgelin 2, myosin light polypeptide 6, tubulin alpha 2, 6 and 7, beta tubulin (94% similar with tubulin beta-2), tubulin beta 3, tubulin tyrosine ligase-like protein 1, lamin B1 and keratin 20 were observed in the differentiated cell line only. We herein identified differentiation-related expressional patterns thus providing new evidence for the role of CPs in the process of neuronal differentiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Madhumathy G.; Desai, Krisha; Prabhu, Jyothi S.
Resistance to anthracycline based chemotherapy is a major limitation in the treatment of breast cancer, particularly of the triple negative sub-type that lacks targeted therapies. Resistance that arises from tumor-stromal interaction facilitated by integrins provides the possibility of targeted disruption. In the present study, we demonstrate that integrin β3 signaling inhibits apoptosis induced by a DNA-damaging chemotherapeutic agent, epirubicin, in MDA-MB-231 breast cancer cells. Drug efflux based mechanisms do not contribute to this effect. We show that integrin β3 employs the PI3K-Akt and the MAPK pathway for enabling cell survival and proliferation. Further, our results indicate that integrin β3 helpsmore » inhibit epirubicin induced cytotoxicity by repression of the pro-apoptotic protein BAD, thus promoting an anti-apoptotic response. Myristoylated RGT peptide and a monoclonal antibody against integrin β3 brought about a reversal of this effect and chemosensitized the cells. These results identify β3 integrin signaling via repression of BAD as an important survival pathway used by breast cancer cells to evade chemotherapy induced stress. - Highlights: • Integrin β3 signaling promotes chemoresistance to epirubicin in breast cancer cells. • Integrin β3 promotes cell survival and proliferation in drug treated cells through the PI3K and MAPK pathways. • Integrin signaling helps evade drug induced cytotoxicity by repression of pro-apoptotic molecule; BAD.« less
NASA Technical Reports Server (NTRS)
Chen, B. M.; Grinnell, A. D.
1997-01-01
Neurotransmitter release from frog motor nerve terminals is strongly modulated by change in muscle length. Over the physiological range, there is an approximately 10% increase in spontaneous and evoked release per 1% muscle stretch. Because many muscle fibers do not receive suprathreshold synaptic inputs at rest length, this stretch-induced enhancement of release constitutes a strong peripheral amplifier of the spinal stretch reflex. The stretch modulation of release is inhibited by peptides that block integrin binding of natural ligands. The modulation varies linearly with length, with a delay of no more than approximately 1-2 msec and is maintained constant at the new length. Moreover, the stretch modulation persists in a zero Ca2+ Ringer and, hence, is not dependent on Ca2+ influx through stretch activated channels. Eliminating transmembrane Ca2+ gradients and buffering intraterminal Ca2+ to approximately normal resting levels does not eliminate the modulation, suggesting that it is not the result of release of Ca2+ from internal stores. Finally, changes in temperature have no detectable effect on the kinetics of stretch-induced changes in endplate potential (EPP) amplitude or miniature EPP (mEPP) frequency. We conclude, therefore, that stretch does not act via second messenger pathways or a chemical modification of molecules involved in the release pathway. Instead, there is direct mechanical modulation of release. We postulate that tension on integrins in the presynaptic membrane is transduced mechanically into changes in the position or conformation of one or more molecules involved in neurotransmitter release, altering sensitivity to Ca2+ or the equilibrium for a critical reaction leading to vesicle fusion.
The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms
Ophir, Michael J.; Liu, Beiyun C.
2013-01-01
The T cell receptor (TCR) triggers the assembly of “SLP-76 microclusters,” which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase–associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require the dimerization of SKAP55 and its interaction with the adaptor adhesion and degranulation-promoting adaptor protein (ADAP). A “tandem dimer” containing two ADAP-binding SKAP55 Src homology 3 (SH3) domains stabilized SLP-76 microclusters and promoted T cell adhesion via the TCR, but could not support adhesion to integrin ligands. Finally, the SKAP55 dimerization motif (DM) enabled the coimmunoprecipitation of the Rap1-dependent integrin regulator Rap1-GTP–interacting adaptor molecule (RIAM), the recruitment of talin into TCR-induced adhesive junctions, and “inside-out” signaling to β1 integrins. Our data indicate that SKAP55 dimers stabilize SLP-76 microclusters, couple SLP-76 to the force-generating systems responsible for microcluster movement, and enable adhesion via the TCR by mechanisms independent of RIAM, talin, and β1 integrins. PMID:24368808
Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions
NASA Technical Reports Server (NTRS)
Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.
1998-01-01
The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.
NASA Technical Reports Server (NTRS)
Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki
2002-01-01
The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkawa, Yuki; Miyazaki, Sayaka; Miyata, Maiko
2008-08-15
We reported that ganglioside GD3 enhances cell proliferation and invasion of melanomas causing stronger tyrosine-phosphorylation of p130Cas and paxillin after stimulation with fetal calf serum. Besides signals via growth factor/receptor, adhesion signals via integrin might be also enhanced by GD3. Here, roles of integrin-mediated signaling in the cell proliferation and invasion, and in the activation of adaptor molecules were examined, showing that integrin was also important for the cell growth and invasion. p130Cas and paxillin underwent stronger tyrosine-phosphorylation in GD3+ cells than in GD3- cells during the adhesion in the absence of serum. On the other hand, no proteins underwentmore » tyrosine phosphorylation in GD3+ and GD3- cells in a suspension state when stimulated with fetal calf serum. These results suggested that integrin-mediated signaling is essential in the effects of GD3 on the malignant properties of melanomas. Co-localization of GD3 and integrin at the focal adhesion supported these results.« less
The opposing roles of laminin-binding integrins in cancer.
Ramovs, Veronika; Te Molder, Lisa; Sonnenberg, Arnoud
2017-01-01
Integrins play an important role in cell adhesion by linking the cytoskeleton of cells to components in the extracellular matrix. In this capacity, integrins cooperate with different cell surface receptors, including growth factor receptors and G-protein coupled receptors, to regulate intracellular signaling pathways that control cell polarization, spreading, migration, survival, and gene expression. A distinct subfamily of molecules in the integrin family of adhesion receptors is formed by receptors that mediate cell adhesion to laminins, major components of the basement membrane that lie under clusters of cells or surround them, separating them from other cells and/or adjacent connective tissue. During the past decades, many studies have provided evidence for a role of laminin-binding integrins in tumorigenesis, and both tumor-promoting and suppressive activities have been identified. In this review we discuss the dual role of the laminin-binding integrins α3β1 and α6β4 in tumor development and progression, and examine the factors and mechanisms involved in these opposing effects. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.
2008-06-01
Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.
Goldsmith, H L; Quinn, T A; Drury, G; Spanos, C; McIntosh, F A; Simon, S I
2001-01-01
During inflammation, neutrophil capture by vascular endothelial cells is dependent on L-selectin and beta(2)-integrin adhesion receptors. One of us (S.I.S.) previously demonstrated that homotypic neutrophil aggregation is analogous to this process in that it is also mediated by these receptors, thus providing a model for studying the dynamics of neutrophil adhesion. In the present work, we set out to confirm the hypothesis that cell-cell adhesion via selectins serves to increase the lifetimes of neutrophil doublets formed through shear-induced two-body collisions. In turn, this would facilitate the engagement of more stable beta(2)-integrin bonds and thus increase the two-body collision efficiency (fraction of collisions resulting in the formation of nonseparating doublets). To this end, suspensions of unstimulated neutrophils were subjected to a uniform shear field in a transparent counter-rotating cone and plate rheoscope, and the formation of doublets and growth of aggregates recorded using high-speed videomicroscopy. The dependence of neutrophil doublet lifetime and two-body collision-capture efficiency on shear rate, G, from 14 to 220 s(-1) was investigated. Bond formation during a two-body collision was indicated by doublets rotating well past the orientation predicted for break-up of doublets of inert spheres. A striking dependence of doublet lifetime on shear rate was observed. At low shear (G = 14 s(-1)), no collision capture occurred, and doublet lifetimes were no different from those of neutrophils pretreated with a blocking antibody to L-selectin, or in Ca(++)-depleted EDTA buffers. At G > or = 66 s(-1), doublet lifetimes increased, with increasing G reaching values twice those for the L-selectin-blocked controls. This correlated with capture efficiencies in excess of 20%, and, at G > or = 110 s(-1), led to the rapid formation of large aggregates, and this in the absence of exogenous chemotactic stimuli. Moreover, the aggregates almost completely broke up when the shear rate was reduced below 66 s(-1). Partial inhibition of aggregate formation was achieved by blocking beta(2)-integrin receptors with antibody. By direct observation of the shear-induced interactions between neutrophils, these data reveal that steady application of a threshold level of shear rate is sufficient to support homotypic neutrophil aggregation. PMID:11566775
Pi, Liya; Robinson, Paulette M; Jorgensen, Marda; Oh, Seh-Hoon; Brown, Alicia R; Weinreb, Paul H; Trinh, Thu Le; Yianni, Protopapadakis; Liu, Chen; Leask, Andrew; Violette, Shelia M; Scott, Edward W; Schultz, Gregory S; Petersen, Bryon E
2015-02-01
Connective tissue growth factor (CTGF) is a matricellular protein that mediates cell-matrix interaction through various subtypes of integrin receptors. This study investigated the role of CTGF and integrin αvβ6 in hepatic progenitor/oval cell activation, which often occurs in the form of ductular reactions (DRs) when hepatocyte proliferation is inhibited during severe liver injury. CTGF and integrin αvβ6 proteins were highly expressed in DRs of human cirrhotic livers and cholangiocarcinoma. Confocal microscopy analysis of livers from Ctgf promoter-driven green fluorescent protein reporter mice suggested that oval cells and cholangiocytes were the main sources of CTGF and integrin αvβ6 during liver injury induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Deletion of exon 4 of the Ctgf gene using tamoxifen-inducible Cre-loxP system down-regulated integrin αvβ6 in DDC-damaged livers of knockout mice. Ctgf deficiency or inhibition of integrin αvβ6, by administrating the neutralizing antibody, 6.3G9 (10 mg/kg body weight), caused low levels of epithelial cell adhesion molecule and cytokeratin 19 gene messenger RNAs. Also, there were smaller oval cell areas, fewer proliferating ductular epithelial cells, and lower cholestasis serum markers within 2 weeks after DDC treatment. Associated fibrosis was attenuated, as indicated by reduced expression of fibrosis-related genes, smaller areas of alpha-smooth muscle actin staining, and low collagen production based on hydroxyproline content and Sirius Red staining. Finally, integrin αvβ6 could bind to CTGF mediating oval cell adhesion to CTGF and fibronection substrata and promoting transforming growth factor (TGF)-β1 activation in vitro. CTGF and integrin αvβ6 regulate oval cell activation and fibrosis, probably through interacting with their common matrix and signal partners, fibronectin and TGF-β1. CTGF and integrin αvβ6 are potential therapeutic targets to control DRs and fibrosis in related liver disease. © 2014 by the American Association for the Study of Liver Diseases.
hCG, the wonder of today's science
2012-01-01
Background hCG is a wonder. Firstly, because hCG is such an extreme molecule. hCG is the most acidic glycoprotein containing the highest proportion of sugars. Secondly, hCG exists in 5 common forms. Finally, it has so many functions ranging from control of human pregnancy to human cancer. This review examines these molecules in detail. Content These 5 molecules, hCG, sulfated hCG, hyperglycosylated hCG, hCG free beta and hyperglycosylated free beta are produced by placental syncytiotrophoblast cells and pituitary gonadotrope cells (group 1), and by placental cytotrophoblast cells and human malignancies (group 2). Group 1 molecules are both hormones that act on the hCG/LH receptor. These molecules are central to human menstrual cycle and human pregnancy. Group 2 molecules are autocrines, that act by antagonizing a TGF beta receptor. These molecules are critical to all advanced malignancies. Conclusions The hCG groups are molecules critical to both the molecules of pregnancy or human life, and to the advancement of cancer, or human death. PMID:22455390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossier, Olivier; Giannone, Grégory; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements andmore » interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.« less
Rossier, Olivier; Giannone, Grégory
2016-04-10
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells. Copyright © 2015. Published by Elsevier Inc.
Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-01
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration. PMID:25563751
Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo
2017-06-01
Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.
Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-07
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.
Behzad, F; Jones, C J; Ball, S; Alvares, T; Aplin, J D
1995-01-01
A method is described for the sequential detergent and high ionic strength extraction of human amnion with the progressive enrichment of the intermediate filament (IF) cytoskeleton and its associated structures including hemidesmosomes (HD). TEM of the extracted epithelium in situ reveals IF bundles beneath the apical cell surface, around the nucleus and at the lateral edges of the cells where association with desmosomes occurs. IF bundles are also very prominent within basal cell processes where they loop through the cytoplasm adjacent to the HDs. A novel connecting filament network is observed running between the IFs and the hemidesmosomal dense plaque. The adjacent IF network contains both cytokeratin and vimentin, the latter revealed much more fully as a result of the extraction protocol. The hemidesmosomal plasma membrane contains integrin subunits alpha 6 and beta 4 and these are quantitatively retained as the basal cell surface during extraction, while nonjunctional plasma membrane is solubilised. Integrin beta 1 is found at the basolateral cell surface but, like actin, is extracted quantitatively and is not present in HDs. The extracted epithelial cells may be recovered by scraping and the IF network depolymerised to produce a particulate fraction containing short residual IFs, associated thin filaments and plaque material. This fraction contains immunoreactive cytokeratin and vimentin. Integrin alpha 6 beta 4 has been used as a biochemical criterion of the presence of HD material in the fraction. Both subunits are highly enriched. The fraction also contains the hemidesmosomal components HD1, BP230 and BP180. This method is likely to be useful in further characterisation of the HD.
Zhang, J Q; Elzey, B; Williams, G; Lu, S; Law, D J; Horowits, R
2001-12-11
N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.
Identification of the promoter of the myelomonocytic leukocyte integrin CD11b.
Hickstein, D D; Baker, D M; Gollahon, K A; Back, A L
1992-01-01
The CD11b (or macrophage-1 antigen; MAC-1) subunit of the leukocyte integrin family forms a noncovalently associated heterodimeric structure with the CD18 (beta) subunit on the surface of human granulocytes and monocyte/macrophages, where it enables these myeloid cells to participate in a variety of adherence-related activities. Expression of the CD11b subunit is restricted to cells of the myelomonocytic lineage and depends upon the stage of differentiation with the most mature myeloid cells expressing the highest levels of CD11b. To study the regulation of CD11b expression, a genomic clone corresponding to the 5' region of the CD11b gene was isolated from a human chromosome 16 library. Primer extension and RNase protection assays identified two major transcriptional start sites, located 90 base pairs and 54 base pairs upstream from the initiation methionine. DNA sequence analysis of 1.7 kilobases of the 5' flanking sequence of the CD11b gene indicated the absence of a "CAAT" or "TATA" box; however, potential binding sites for the transcription activators Sp1, PU.1, ets, and AP-2 are present, as well as retinoic acid response elements. The 1.7-kilobase CD11b promoter sequence displayed functional activity in transient transfection assays in the monocytic cell line THP-1 and the myeloid cell line HL-60. In contrast, this 1.7-kilobase promoter sequence did not display functional activity in the Jurkat T-lymphoid cell line. Detailed characterization of the CD11b promoter sequence should provide insight into the molecular events regulating the tissue-specific and developmental stage-specific expression of the CD11b molecule in myelomonocytic cells. Images PMID:1347945
Missirlis, Dimitris; Haraszti, Tamás; Scheele, Catharina v. C.; Wiegand, Tina; Diaz, Carolina; Neubauer, Stefanie; Rechenmacher, Florian; Kessler, Horst; Spatz, Joachim P.
2016-01-01
The interplay between specific integrin-mediated matrix adhesion and directional persistence in cell migration is not well understood. Here, we characterized fibroblast adhesion and migration on the extracellular matrix glycoproteins fibronectin and vitronectin, focusing on the role of α5β1 and αvβ3 integrins. Fibroblasts manifested high directional persistence in migration on fibronectin-, but not vitronectin-coated substrates, in a ligand density-dependent manner. Fibronectin stimulated α5β1-dependent organization of the actin cytoskeleton into oriented, ventral stress fibers, and assembly of dynamic, polarized protrusions, characterized as regions free of stress fibers and rich in nascent adhesions at their edge. Such protrusions correlated with persistent, local leading edge advancement, but were not sufficient, nor necessary for directional migration over longer times. Selective blocking of αvβ3 or α5β1 integrins using small molecule integrin antagonists reduced directional persistence on fibronectin, indicating integrin cooperativity in maintaining directionality. On the other hand, patterned substrates, designed to selectively engage either integrin, or their combination, were not sufficient to establish directional migration. Overall, our study demonstrates adhesive coating-dependent regulation of directional persistence in fibroblast migration and challenges the generality of the previously suggested role of β1 and β3 integrins in directional migration. PMID:26987342
Gordon, Jonathan A R; Sodek, Jaro; Hunter, Graeme K; Goldberg, Harvey A
2009-08-15
Bone sialoprotein (BSP) is a secreted glycoprotein found in mineralized tissues however, BSP is aberrantly expressed in a variety of osteotropic tumors. Elevated BSP expression in breast and prostate primary carcinomas is directly correlated with increased bone metastases and tumor progression. In this study, the intracellular signaling pathways responsible for BSP-induced migration and tumor survival were examined in breast and prostate cancer cells (MDA-MB-231, Hs578T and PC3). Additionally, the effects of exogenous TGF-beta1 and EGF, cytokines associated with tumor metastasis and present in high-levels in the bone microenvironment, were examined in BSP-expressing cancer cells. Expression of BSP but not an integrin-binding mutant (BSP-KAE) in tumor cell lines resulted in increased levels of alpha(v)-containing integrins and number of mature focal adhesions. Adhesion of cells to recombinant BSP or the expression of BSP stimulated focal adhesion kinase and ERK phosphorylation, as well as activated AP-1-family proteins. Activation of these pathways by BSP expression increased the expression of the matrix metalloproteinases MMP-2, MMP-9, and MMP-14. The BSP-mediated activation of the FAK-associated pathway resulted in increased cancer cell invasion in a Matrigel-coated Boyden-chamber assay and increased cell survival upon withdrawal of serum. Addition of EGF or TGF-beta1 to the BSP-expressing cell lines significantly increased ERK phosphorylation, AP-1 activation, MMP-2 expression, cell migration and survival compared to untreated cells expressing BSP. This study thus defines the cooperative mechanisms by which BSP can enhance specific factors associated with a metastatic phenotype in tumor cell lines, an effect that is increased by circulating TGF-beta1 and EGF. (c) 2009 Wiley-Liss, Inc.
β1-integrin controls cell fate specification in early lens development
Pathania, Mallika; Wang, Yan; Simirskii, Vladimir N.; Duncan, Melinda K.
2016-01-01
Integrins are heterodimeric cell surface molecules that mediate cell-extracellular matrix (ECM) adhesion, ECM assembly, and regulation of both ECM and growth factor induced signaling. However, the developmental context of these diverse functions is not clear. Loss of β1-integrin from the lens vesicle (mouse E10.5) results in abnormal exit of anterior lens epithelial cells (LECs) from the cell cycle and their aberrant elongation toward the presumptive cornea by E12.5. These cells lose expression of LEC markers and initiate expression of the Maf (also known as c-Maf) and Prox1 transcription factors as well as other lens fiber cell markers, β1-integrin null LECs also upregulate the ERK, AKT and Smad1/5/8 phosphorylation indicative of BMP and FGF signaling. By E14.5, β1-integrin null lenses have undergone a complete conversion of all lens epithelial cells into fiber cells. These data suggest that shortly after lens vesicle closure, β1-integrin blocks inappropriate differentiation of the lens epithelium into fibers, potentially by inhibiting BMP and/or FGF receptor activation. Thus, β1-integrin has an important role in fine-tuning the response of the early lens to the gradient of growth factors that regulate lens fiber cell differentiation. PMID:27596755
Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium
Chen, Jichao; Krasnow, Mark A.
2012-01-01
Epithelia are classified as either simple, a single cell layer thick, or stratified (multilayered). Stratified epithelia arise from simple epithelia during development, and transcription factor p63 functions as a key positive regulator of epidermal stratification. Here we show that deletion of integrin beta 1 (Itgb1) in the developing mouse airway epithelium abrogates airway branching and converts this monolayer epithelium into a multilayer epithelium with more than 10 extra layers. Mutant lung epithelial cells change mitotic spindle orientation to seed outer layers, and cells in different layers become molecularly and functionally distinct, hallmarks of normal stratification. However, mutant lung epithelial cells do not activate p63 and do not switch to the stratified keratin profile of epidermal cells. These data, together with previous data implicating Itgb1 in regulation of epidermal stratification, suggest that the simple-versus-stratified developmental decision may involve not only stratification inducers like p63 but suppressors like Itgb1 that prevent simple epithelia from inappropriately activating key steps in the stratification program. PMID:23285215
Conacci-Sorrell, Maralice; Kaplan, Anna; Raveh, Shani; Gavert, Nancy; Sakurai, Takeshi; Ben-Ze'ev, Avri
2005-12-15
Nr-CAM, a cell-cell adhesion molecule of the immunoglobulin-like cell adhesion molecule family, known for its function in neuronal outgrowth and guidance, was recently identified as a target gene of beta-catenin signaling in human melanoma and colon carcinoma cells and tissue. Retrovirally mediated transduction of Nr-CAM into fibroblasts induces cell motility and tumorigenesis. We investigated the mechanisms by which Nr-CAM can confer properties related to tumor cell behavior and found that Nr-CAM expression in NIH3T3 cells protects cells from apoptosis in the absence of serum by constitutively activating the extracellular signal-regulated kinase and AKT signaling pathways. We detected a metalloprotease-mediated shedding of Nr-CAM into the culture medium of cells transfected with Nr-CAM, and of endogenous Nr-CAM in B16 melanoma cells. Conditioned medium and purified Nr-CAM-Fc fusion protein both enhanced cell motility, proliferation, and extracellular signal-regulated kinase and AKT activation. Moreover, Nr-CAM was found in complex with alpha4beta1 integrins in melanoma cells, indicating that it can mediate, in addition to homophilic cell-cell adhesion, heterophilic adhesion with extracellular matrix receptors. Suppression of Nr-CAM levels by small interfering RNA in B16 melanoma inhibited the adhesive and tumorigenic capacities of these cells. Stable expression of the Nr-CAM ectodomain in NIH3T3 cells conferred cell transformation and tumorigenesis in mice, suggesting that the metalloprotease-mediated shedding of Nr-CAM is a principal route for promoting oncogenesis by Nr-CAM.
Giastas, Petros; Yannakopoulou, Konstantina; Mavridis, Irene M
2003-04-01
The present investigation is part of an ongoing study on the influence of the long end-functonalized guest molecules DBA and BNZ in the crystal packing of beta-cyclodextrin (betaCD) dimeric complexes. The title compounds are 2:2 host:guest complexes showing limited host-guest hydrogen bonding at the primary faces of the betaCD dimers. Within the betaCD cavity the guests exhibit mutual pi...pi interactions and between betaCD dimers perpendicular NH...pi interactions. The DBA guest molecule exhibits one extended and two bent conformations in the complex. The BNZ guest molecule is not planar inside betaCD, in contrast to the structure of BNZ itself, which indicates that the cavity isolates the molecules and forbids the pi...pi stacking of the aromatic rings. NMR spectroscopy studies show that in aqueous solution both DBA and BNZ form strong complexes that have 1:1 stoichiometry and structures similar to the solid state ones. The relative packing of the dimers is the same in both complexes. The axes of two adjacent dimers form an angle close to 20 degrees and have a lateral displacement approximately 2.45 A, both of which characterize the screw-channel mode of packing. Although the betaCD/BNZ complex indeed crystallizes in a space group characterizing the latter mode, the betaCD/DBA complex crystallizes in a space group with novel dimensions not resembling any of the packing modes reported so far. The new lattice is attributed to the three conformations exhibited by the guest in the crystals. However, this lattice can be transformed into another, which is isostructural to that of the betaCD/BNZ inclusion complex, if the conformation of the guest is not taken into account.
1996-01-01
Detachment of basal keratinocytes from basement membrane signals a differentiation cascade. Two integrin receptors alpha6beta4 and alpha3beta1 mediate adhesion to laminin 5 (epiligrin), a major extracellular matrix protein in the basement membrane of epidermis. By establishing a low temperature adhesion system at 4 degrees C, we were able to examine the exclusive role of alpha6beta4 in adhesion of human foreskin keratinocyte (HFK) and the colon carcinoma cell LS123. We identified a novel 80-kD membrane-associated protein (p80) that is tyrosine phosphorylated in response to dissociation of alpha6beta4 from laminin 5. The specificity of p80 phosphorylation for laminin 5 and alpha6beta4 was illustrated by the lack of regulation of p80 phosphorylation on collagen, fibronectin, or poly-L-lysine surfaces. We showed that blocking of alpha3beta1 function using inhibitory mAbs, low temperature, or cytochalasin D diminished tyrosine phosphorylation of focal adhesion kinase but not p80 phosphorylation. Therefore, under our assay conditions, p80 phosphorylation is regulated by alpha6beta4, while motility via alpha3beta1 causes phosphorylation of focal adhesion kinase. Consistent with a linkage between p80 dephosphorylation and alpha6beta4 anchorage to laminin 5, we found that phosphatase inhibitor sodium vanadate, which blocked the p80 dephosphorylation, prevented the alpha6beta4-dependent cell anchorage to laminin 5 at 4degreesC. In contrast, adhesion at 37 degrees C via alpha3beta1 was unaffected. Furthermore, by in vitro kinase assay, we identified a kinase activity for p80 phosphorylation in suspended HFKs but not in attached cells. The kinase activity, alpha6beta4, and its associated adhesion structure stable anchoring contacts were all cofractionated in the Triton- insoluble cell fraction that lacks alpha3beta1. Thus, regulation of p80 phosphorylation, through the activities of p80 kinase and phosphatase, correlates with alpha6beta4-SAC anchorage to laminin 5 at 4 degrees C in epithelial cells of the skin and intestine. Transmembrane signaling through p80 is an early tyrosine phosphorylation event responsive to and possibly required for anchorage to laminin 5 by HFK and LS123 epithelial cells. PMID:8647901
Promotion of neurite and filopodium formation by CD47: roles of integrins, Rac, and Cdc42.
Miyashita, Motoaki; Ohnishi, Hiroshi; Okazawa, Hideki; Tomonaga, Hiroyasu; Hayashi, Akiko; Fujimoto, Tetsuro-Takahiro; Furuya, Nobuhiko; Matozaki, Takashi
2004-08-01
Axon extension during development is guided by many factors, but the signaling mechanisms responsible for its regulation remain largely unknown. We have now investigated the role of the transmembrane protein CD47 in this process in N1E-115 neuroblastoma cells. Forced expression of CD47 induced the formation of neurites and filopodia. Furthermore, an Fc fusion protein containing the extracellular region of the CD47 ligand SHPS-1 induced filopodium formation, and this effect was enhanced by CD47 overexpression. SHPS-1-Fc also promoted neurite and filopodium formation triggered by serum deprivation. Inhibition of Rac or Cdc42 preferentially blocked CD47-induced formation of neurites and filopodia, respectively. Overexpression of CD47 resulted in the activation of both Rac and Cdc42. The extracellular region of CD47 was sufficient for the induction of neurite formation by forced expression, but the entire structure of CD47 was required for enhancement of filopodium formation by SHPS-1-Fc. Neurite formation induced by CD47 was also inhibited by a mAb to the integrin beta3 subunit. These results indicate that the interaction of SHPS-1 with CD47 promotes neurite and filopodium formation through the activation of Rac and Cdc42, and that integrins containing the beta3 subunit participate in the effect of CD47 on neurite formation.
Therapeutic Targeting of Eosinophil Adhesion and Accumulation in Allergic Conjunctivitis
Baiula, Monica; Bedini, Andrea; Carbonari, Gioia; Dattoli, Samantha Deianira; Spampinato, Santi
2012-01-01
Considerable evidence indicates that eosinophils are important effectors of ocular allergy. Increased worldwide prevalence of allergic eye pathologies has stimulated the identification of novel drug targets, including eosinophils and adhesion molecules. Accumulation of eosinophils in the eye is a key event in the onset and maintenance of allergic inflammation and is mediated by different adhesion molecules. Antihistamines with multiple mechanisms of action can be effective during the early and late phases of allergic conjunctivitis by blocking the interaction between β1 integrins and vascular cell adhesion molecule (VCAM)-1. Small molecule antagonists that target key elements in the process of eosinophil recruitment have been identified and reinforce the validity of α4β1 integrin as a therapeutic target. Glucocorticoids are among the most effective drugs for ocular allergy, but their use is limited by adverse effects. Novel dissociated glucocorticoids can prevent eosinophil accumulation and induce apoptosis of eosinophils, making them promising candidates for ophthalmic drugs. This article reviews recent understanding of the role of adhesion molecules in eosinophil recruitment in the inflamed conjunctiva along with effective treatments for allergic conjunctivitis. PMID:23271999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Zhengliang; Deblis, Ryan; Glenn, Honor
2007-11-15
Hic-5 is a LIM-Only member of the paxillin superfamily of focal adhesion proteins. It has been shown to regulate a range of biological processes including: senescence, tumorigenesis, steroid hormone action, integrin signaling, differentiation, and apoptosis. To better understand the roles of Hic-5 during development, we initiated a detailed analysis of Hic-5 expression and function in C{sub 2}C{sub 12} myoblasts, a well-established model for myogenesis. We have found that: (1) myoblasts express at least 6 distinct Hic-5 isoforms; (2) the two predominant isoforms, Hic-5{alpha} and Hic-5{beta}, are differentially expressed during myogenesis; (3) any experimentally induced change in Hic-5 expression results inmore » a substantial increase in apoptosis during differentiation; (4) ectopic expression of Hic-5{alpha} is permissive to differentiation while expression of either Hic-5{beta} or antisense Hic-5 blocks myoblast fusion but not chemodifferentiation; (5) Hic-5 localizes to focal adhesions in C{sub 2}C{sub 12} myoblasts and perturbation of Hic-5 leads to defects in cell spreading; (6) alterations in Hic-5 expression interfere with the normal dynamics of laminin expression; and (7) ectopic laminin, but not fibronectin, can rescue the Hic-5-induced blockade of myoblast survival and differentiation. Our data demonstrate differential roles for individual Hic-5 isoforms during myogenesis and support the hypothesis that Hic-5 mediates these effects via integrin signaling.« less
VEGF-Iron Oxide Conjugate for Dual MR and PET Imaging of Breast Cancer Angiogenesis
2007-09-01
with both VEGF121 and PET isotope 64Cu (t1/2 = 12.7 h) and test the dual probe in vitro. Aim 2: To test the PET and mMRI efficacy of the dual...iron oxide nanoparticles conjugated with macrocyclic chelating agent DOTA for 64Cu -labeling and cyclic RGD peptide for integrin alpha(v)beta(3...radionuclide 64Cu without loss of receptor affinity and functional activity of the protein. 64Cu -VEGF is also able to delineate small tumors that are
Russell-Puleri, Sparkle; Dela Paz, Nathaniel G; Adams, Diana; Chattopadhyay, Mitali; Cancel, Limary; Ebong, Eno; Orr, A Wayne; Frangos, John A; Tarbell, John M
2017-03-01
Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I 2 (PGI 2 ) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI 2 have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm 2 for 5 h to examine shear stress-induced induction of COX-2/PGI 2 Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI 2 release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of α 5 β 1 -integrin, upregulation of COX-2, and release of PGI 2 in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of α 5 β 1 -integrin, upregulation of COX-2 gene and protein expression, and release of PGI 2 in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1 -/- mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI 2 levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI 2 release compared with wild-type animals. NEW & NOTEWORTHY In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I 2 (PGI 2 ) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI 2 mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1). Copyright © 2017 the American Physiological Society.
Russell-Puleri, Sparkle; dela Paz, Nathaniel G.; Adams, Diana; Chattopadhyay, Mitali; Cancel, Limary; Ebong, Eno; Orr, A. Wayne; Frangos, John A.
2017-01-01
Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I2 (PGI2) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI2 have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm2 for 5 h to examine shear stress-induced induction of COX-2/PGI2. Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI2 release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of α5β1-integrin, upregulation of COX-2, and release of PGI2 in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of α5β1-integrin, upregulation of COX-2 gene and protein expression, and release of PGI2 in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1−/− mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI2 levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI2 release compared with wild-type animals. NEW & NOTEWORTHY In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I2 (PGI2) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI2 mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1). PMID:28011582
Horiguchi, Kotaro; Fujiwara, Ken; Ilmiawati, Cimi; Kikuchi, Motoshi; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi
2011-07-01
Folliculostellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture exhibited marked proliferation in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In a process referred to as matricrine action, FS cells receive ECM as a signal through their receptors, which results in morphological and functional changes. In this study, we investigated matricrine signaling in FS cells and observed that the proliferation of FS cells is mediated by integrin β1, which is involved in various signaling pathways for cell migration and proliferation in response to ECM. Then, we analyzed downstream events of the integrin β1 signaling pathway in the proliferation of FS cells and identified caveolin 3 as a potential candidate molecule. Caveolin 3 is a membrane protein that binds cholesterol and a number of signaling molecules that interact with integrin β1. Using specific small interfering RNA of caveolin 3, the proliferation of FS cells was inhibited. Furthermore, caveolin 3 drove activation of the mitogen-activated protein kinase (MAPK) signaling cascades, which resulted in upregulation of cyclin D1 in FS cells. These findings suggest that matricrine signaling in the proliferation of FS cells was transduced by a caveolin 3-mediated integrin β1 signaling pathway and subsequent activation of the MAPK pathway. © 2011 Society for Endocrinology
1989-01-01
The structures of Ia molecules expressed by two BALB/c B cell lymphoma lines, A20-1.11 (A20) and 2PK3, were analyzed in an effort to explain the differences in antigen-presenting capacity displayed by these cells. Alloreactive T cell hybridomas specific for I-Ad and antigen- specific, I-Ad-restricted T cells responded well to A20 as the APC. The same alloreactive T cell hybridomas responded weakly or not at all to 2PK3 and the responses of the antigen-specific, I-Ad-restricted T cells were consistently lower to antigen presented by 2PK3 as compared with A20. T cells restricted to I-Ed responded equally well to either A20 or 2PK3 as APC. Additionally 2PK3, but not A20, stimulated a strong syngeneic mixed lymphocyte response. Structural analyses of the Ia antigens revealed that I-A and I-E molecules were expressed by A20, whereas an I-E and a novel I-A-like molecule were expressed by 2PK3. The novel class II molecule was affinity purified from 2PK3 cells using an mAb specific for Ad beta (MK-D6), and this molecule was subsequently shown by an RIA to react with an E alpha-specific mAb (14-4-4S) as well. Chain-specific polyclonal antisera raised against I-A and I-E alpha and beta chains indicated that the 2PK3 "I-A" alpha chain reacted in immunoblot with E alpha-specific and not A alpha-specific antisera, whereas the beta chain reacted with A beta- and not E beta-specific antisera. Peptide map and partial amino acid sequence analyses indicated that the "I-A" molecule expressed by 2PK3 represented a mixed isotype structure resulting from the pairing of Ed alpha with Ad beta. By immunofluorescence staining analysis, 2PK3 did not react with an mAb specific for Ad alpha. 2PK3 was capable of limited antigen presentation through the mixed isotype molecule to I-Ad-restricted OVA-specific T cell hybridomas, although the responses induced were low compared with presentation through I-A on A20. Previous descriptions of the expression of mixed isotype class II molecules in the mouse have resulted primarily from DNA-mediated gene transfer experiments. The results presented indicate that a mixed isotype class II molecule can be expressed naturally. PMID:2647893
21 CFR 866.5630 - Beta-2-microglobulin immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... beta-2-microglobulin (a protein molecule) in serum, urine, and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Beta-2-microglobulin immunological test system. 866.5630 Section 866.5630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5630 - Beta-2-microglobulin immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... beta-2-microglobulin (a protein molecule) in serum, urine, and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Beta-2-microglobulin immunological test system. 866.5630 Section 866.5630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5630 - Beta-2-microglobulin immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... beta-2-microglobulin (a protein molecule) in serum, urine, and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Beta-2-microglobulin immunological test system. 866.5630 Section 866.5630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
21 CFR 866.5630 - Beta-2-microglobulin immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... beta-2-microglobulin (a protein molecule) in serum, urine, and other body fluids. Measurement of beta-2... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Beta-2-microglobulin immunological test system. 866.5630 Section 866.5630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...
Renal myofibroblasts contract collagen I matrix lattices in vitro.
Kelynack, K J; Hewitson, T D; Pedagogos, E; Nicholls, K M; Becker, G J
1999-01-01
Myofibroblasts, cells with both fibroblastic and smooth muscle cell features, have been implicated in renal scarring. In addition to synthetic properties, contractile features and integrin expression may allow myofibroblasts to rearrange and contract interstitial collagenous proteins. Myofibroblasts from normal rat kidneys were grown in cell-populated collagen lattices to measure cell generated contraction. Following detachment of cell populated collagen lattices, myofibroblasts progressively contracted collagen lattices, reducing lattice diameter by 42% at 24 h. Alignment of myofibroblasts, rearrangement of fibrils and beta(1) integrin expression were observed within lattices. We postulate that interstitial myofibroblasts contribute to renal scarring through manipulation of collagenous proteins. Copyright 1999 S. Karger AG, Basel
Structure and spectra of H/sub 2/O in hydrated. beta. -alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.B.; Dudney, N.J.; Brown, G.M.
1982-11-15
The structure and spectra of hydrated Li and Na ..beta..-alumina were investigated using neutron diffraction, infrared absorption, and Raman scattering. The dimensions of the hexagonal unit cell of a hydrated Li ..beta..-alumina crystal containing 1.55 H/sub 2/O molecules per unit cell are a = 5.591 A and c = 22.715 A. The oxygen atoms of the water molecules are located in the conduction plane between the mO, and the aBR sites; the protons, located above the below the plane, form bent hydrogen bonds with the O(4) oxygen ions. The HOH bond angle of water in Li ..beta..-alumina is 114/sup 0/more » and the Vertical BarO--HVertical Bar bond distance is 0.992 A. Based on polarized infrared spectra, H/sub 2/O adopts a similar structure and orientation in Na ..beta..-alumina. Spectra of absorbed H/sub 2/O, D/sub 2/O, and HDO species show that water molecules dissociate in Li ..beta..-alumina to form OH/sup -/ and H(H/sub 2/O)/sup +//sub n/ species. No evidence was found for the dissociation of water in Na ..beta..-alumina. The absorption coefficients determined for OH/sup -/ and H/sub 2/O in Li ..beta..-alumina include local field corrections. A large local field anisotropy at the protons of H/sub 2/O is responsible for the large ratio of the intensities of ..nu../sub 3/ and ..nu../sub 1/ observed for water in Li and Na ..beta..-alumina.« less
Mouguelar, Valeria S; Cabada, Marcelo O; Coux, Gabriela
2011-05-01
Integrins are cell adhesion molecules that are thought to be involved in sperm-oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported by Xenopus laevis studies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibian Bufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest that B. arenarum fertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors in B. arenarum oocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.
Seebeck, Florian; März, Martin; Meyer, Anna-Wiebke; Reuter, Hanna; Vogg, Matthias C.; Stehling, Martin; Mildner, Karina; Zeuschner, Dagmar; Rabert, Franziska
2017-01-01
Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating β1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration. PMID:28137894
Molecular printboards: monolayers of beta-cyclodextrins on silicon oxide surfaces.
Onclin, Steffen; Mulder, Alart; Huskens, Jurriaan; Ravoo, Bart Jan; Reinhoudt, David N
2004-06-22
Monolayers of beta-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second, 1,4-phenylene diisothiocyanate was used to react with the amine monolayer where it acts as a linking molecule, exposing isothiocyanates that can be derivatized further. Finally, per-6-amino beta-cyclodextrin was reacted with these isothiocyanate functions to yield a monolayer exposing beta-cyclodextrin. All monolayers were characterized by contact angle measurements, ellipsometric thickness measurements, Brewster angle Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry, which indicate the formation of a densely packed cyclodextrin surface. It was demonstrated that the beta-cyclodextrin monolayer could bind suitable guest molecules in a reversible manner. A fluorescent molecule (1), equipped with two adamantyl groups for complexation, was adsorbed onto the host monolayer from solution to form a monolayer of guest molecules. Subsequently, the guest molecules were desorbed from the surface by competition with increasing beta-cyclodextrin concentration in solution. The data were fitted using a model. An intrinsic binding constant of 3.3 +/- 1 x 10(5) M(-1) was obtained, which corresponds well to previously obtained results with a divalent guest molecule on beta-cyclodextrin monolayers on gold. In addition, the number of guest molecules bound to the host surface was determined, and a surface coverage of ca. 30% was found.
Multiphoton imaging the disruptive nature of sulfur mustard lesions
NASA Astrophysics Data System (ADS)
Werrlein, Robert J.; Braue, Catherine R.; Dillman, James F.
2005-03-01
Sulfur mustard [bis-2-chloroethyl sulfide] is a vesicating agent first used as a weapon of war in WWI. It causes debilitating blisters at the epidermal-dermal junction and involves molecules that are also disrupted by junctional epidermolysis bullosa (JEB) and other blistering skin diseases. Despite its recurring use in global conflicts, there is still no completely effective treatment. We have shown by imaging human keratinocytes in cell culture and in intact epidermal tissues that the basal cells of skin contain well-organized molecules (keratins K5/K14, α6β4 integrin, laminin 5 and α3β1 integrin) that are early targets of sulfur mustard. Disruption and collapse of these molecules is coincident with nuclear displacement, loss of functional asymmetry, and loss of polarized mobility. The progression of this pathology precedes basal cell detachment by 8-24 h, a time equivalent to the "clinical latent phase" that defines the extant period between agent exposure and vesication. Our images indicate that disruption of adhesion-complex molecules also impairs cytoskeletal proteins and the integration of structures required for signal transduction and tissue repair. We have recently developed an optical system to test this hypothesis, i.e., to determine whether and how the early disruption of target molecules alters signal transduction. This environmentally controlled on-line system provides a nexus for real-time correlation of imaged lesions with DNA microarray analysis, and for using multiphoton microscopy to facilitate development of more effective treatment strategies.
Genes Critical for Developing Periodontitis: Lessons from Mouse Models.
de Vries, Teun J; Andreotta, Stefano; Loos, Bruno G; Nicu, Elena A
2017-01-01
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell-cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18 ), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2 ), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf- α receptor, IL-17 receptor, Socs3, Foxo1 ), and proteolytic enzymes (e.g., Mmp8, Plasmin ) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4 , the Ccr1/Ccr5 , the Tnf- α receptor p55 , and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response.
Self assembling bioactive materials for cell adhesion in tissue repair
NASA Astrophysics Data System (ADS)
Hwang, Julia J.
This work involved the study of biodegradable and biocompatible materials that have the potential to modify tissue engineering scaffolds through self assembly, generating multiple layers that deliver bioactivity. Diblock biomaterials containing cholesteryl moieties and oligomers of lactic acid units were found to form single crystals when precipitated from hot ethanol and smectic liquid crystalline phases when cast as a film. Cell culture experiments on these films with 3T3 and 3T6 fibroblasts indicated that these ordered materials form surfaces with specific chemistries that favored cell adhesion, spreading, and proliferation suggesting the potential of mediating human tissue repair. The author believes the cholesteryl moieties found on the surface play a key role in determining cell behavior. Cholesteryl-(L-lactic acid) diblock molecules were then functionalized with moieties including vitamin Bx, cholesterol, and the anti-inflammatory drug indomethacin. An unstable activated ester between indomethacin and the diblock molecule resulted in the release of indomethacin into the culture medium which inhibited the proliferation of 3T3 fibroblasts. Finally, a series of molecules were designed to incorporate dendrons based on amino acids at the termini of the diblock structures. It was determined that lysine, a basic amino acid, covalently coupled to cholesteryl-(L-lactic acid) can promote cell adhesion and spreading while negatively charged and zwitterionic 2nd generation dendrons based on aspartic acid do not. Incorporation of the well known arginine-glycine-aspartic acid (RGD) sequence, which is found in many adhesive proteins, to the dendrons imparted integrin-mediated cell adhesion as evidenced by the formation of stress fibers. We also explored the capacity of integrin receptors to bind to ligands that are not the linear form of RGD, but have R, G, and D spatially positioned to mimic the linear RGD environments. For this purpose, the arms of the 2 nd generation lysine dendrons were functionalized with R, G, and D to yield an 'R,G,D library' of molecules. These materials were found to promote adhesion of 3T3 fibroblasts through integrin receptors. A dendron is multifunctional and allows a large degree of functionality in chemical design.
Shintani, Seikou; Kamakura, Naofumi; Kobata, Mitsuhiko; Toyosawa, Satoru; Onishi, Tomoyuki; Sato, Akie; Kawasaki, Kazuhiko; Weiss, Kenneth M; Ooshima, Takashi
2008-11-15
Integrin-binding sialoprotein (IBSP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family; and the whole SIBLING family is further included in a larger secretory calcium-binding phosphoprotein (SCPP) family. SIBLING proteins are known to construct a part of the non-collagenous extracellular matrices of calcified tissues, and considered to have arisen by duplication and subsequent divergent evolution of a single ancient gene. To understand the alterations of SIBLING molecules associated with the evolution of calcified tissues in vertebrates, we initiated a search for lower vertebrate orthologs of SIBLING genes. In the present study, an IBSP ortholog from a reptile (caiman) and two distinct orthologs from an amphibian (African clawed toad) were identified and characterized. As expected, the toad IBSP genes were transcribed only in calcified tissue (jaw and tibia), as also seen in mammals. The caiman, toad, avian, and mammalian IBSPs share several unique features specific for IBSP and apparently have similar properties. Furthermore, analysis of the sequences suggested that the IBSP molecule might have gradually intensified its functions related to calcification during its evolutionary process through tetrapods.
Ghazalli, Nadiah; Wu, Xiaoxing; Walker, Stephanie; Trieu, Nancy; Hsin, Li-Yu; Choe, Justin; Chen, Chialin; Hsu, Jasper; LeBon, Jeanne; Kozlowski, Mark T; Rawson, Jeffrey; Tirrell, David A; Yip, M L Richard; Ku, Hsun Teresa
2018-06-06
Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GR flox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
Restoration of normal phenotype in cancer cells
Bissell, M.J.; Weaver, V.M.
1998-12-08
A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying {beta}{sub 1} integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive. 14 figs.
Method for restoration of normal phenotype in cancer cells
Bissell, Mina J.; Weaver, Valerie M.
2000-01-01
A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.
Restoration of normal phenotype in cancer cells
Bissell, Mina J.; Weaver, Valerie M.
1998-01-01
A method for reversing expression of malignant phenotype in cancer cells is described. The method comprises applying .beta..sub.1 integrin function-blocking antibody to the cells. The method can be used to assess the progress of cancer therapy. Human breast epithelial cells were shown to be particularly responsive.
Role of Integrin-Beta1 in Polycystic Kidney Disease
2012-04-01
inheritance of the transgene, as paternal transmission would lead to gene recombination not only in the kidneys, but also in sperm and the resulting...Yanagisawa M, Miller L, Nelson RD, Kohan DE: Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention . J Clin Invest
NASA Astrophysics Data System (ADS)
Werrlein, Robert; Madren-Whalley, Janna S.
2002-06-01
Topical exposure to sulfur mustard (HD), a known theat agent, produces persistent and debilitating cutaneous blisters. The blisters occur at the dermal-epidermal junction following a dose-dependent latent period of 8-24 h, however, the primary lesions causing vesication remain uncertain. Immunofluorescent images reveal that a 5-min exposure to 400 (mu) M HD disrupts molecules that are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Using keratinocyte cultures and fluorochomes conjugated to two different keratin-14 (K14) antibodies (clones CKB1 and LL002), results have shown a statistically significant (p<0.1) 1-h decrease of 29.2% in expression of the CKB1 epitope, a nearly complete loss of CKB1 expression within 2 h, and progressive cytoskeletal (K14) collapse without loss in expression of the LL002 epitope. With human epidermal tissues, multi-photon images of (alpha) 6 integrin and laminin 5 showed disruptive changes in the cell-surface organization and integrity of these adhesion molecules. At 1 H postexposure, analyses showed a statistically significant (p<0.1) decrease of 27.3% in (alpha) 6 integrin emissions, and a 32% decrease in laminin 5 volume. Multi-photon imaging indicates that molecules essential for epidermal-dermal attachment are early targets in the alkylating events leading to HD-induced vesication.
Ohara, Hiroshi; Isomoto, Hajime; Wen, Chun-Yang; Ejima, Chieko; Murata, Masahiro; Miyazaki, Masanobu; Takeshima, Fuminao; Mizuta, Yohei; Murata, Ikuo; Koji, Takehiko; Nagura, Hiroshi; Kohno, Shigeru
2003-01-01
AIM: The interaction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) with integrin α4β7 mediates lymphocyte recruitment into mucosa-associated lymphoid tissue (MALT). Nodular gastritis is characterized by a unique military pattern on endoscopy representing increased numbers of lymphoid follicles with germinal center, strongly associated with H pylori infection. The purpose of this study was to address the implication of the MAdCAM-1/integrin β7 pathway in NG. METHODS: We studied 17 patients with NG and H pylori infection and 19 H pylori-positive and 14 H pylori-negative controls. A biopsy sample was taken from the antrum and snap-frozen for immunohistochemical analysis of MAdCAM-1 and integrin β7. In simultaneous viewing of serial sections, the percentage of MAdCAM-1-positive to von Willebrand factor-positive vessels was calculated. We also performed immunostaining with anti-CD20, CD4, CD8 and CD68 antibodies to determine the lymphocyte subsets co-expressing integrin β7. RESULTS: Vascular endothelial MAdCAM-1 expression was more enhanced in gastric mucosa with than without H pylori infection. Of note, the percentages of MAdCAM-1-positive vessels were significantly higher in the lamina propria of NG patients than in H pylori-positive controls. Strong expression of MAdCAM-1 was identified adjacent to lymphoid follicles and dense lymphoid aggregates. Integrin β7-expressing mononuclear cells, mainly composed of CD20 and CD4 lymphocytes, were associated with vessels lined with MAdCAM-1-expressing endothelium. CONCLUSION: Our results suggest that the MAdCAM-1/ integrin α4β7 homing system may participate in gastric inflammation in response to H pylori-infection and contributes to MALT formation, typically leading to the development of NG. PMID:14669317
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkawa, Yuki, E-mail: tomilbio@med.nagoya-u.ac.jp; Ohmi, Yuhsuke, E-mail: ooumi82@med.nagoya-u.ac.jp; Tajima, Orie, E-mail: oriet@isc.chubu.ac.jp
Highlights: {yields} Wisp2/CCN5 was up-regulated in nervous tissues of GM3-only mutant mice. {yields} Wisp2/CCN5 was found in neurons more strongly in the mutant mice. {yields} Wisp2/CCN5 induces Akt phosphorylation via integrins and facilitates neurite formation. {yields} Wisp2/CCN5 conferred resistance to H{sub 2}O{sub 2}-induced apoptosis. {yields} Up-regulation of Wisp2/CCN5 in GM3-only mice seemed for protection of brains from neurodegeneration. -- Abstract: Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function ofmore » Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin {beta}1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H{sub 2}O{sub 2}. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.« less
Zhao, Xue-Ke; Cheng, Yiju; Liang Cheng, Ming; Yu, Lei; Mu, Mao; Li, Hong; Liu, Yang; Zhang, Baofang; Yao, Yumei; Guo, Hui; Wang, Rong; Zhang, Quan
2016-01-01
Lung fibrosis is a major medical problem for the aging population worldwide. Fibroblast migration plays an important role in fibrosis. Focal Adhesion Kinase (FAK) senses the extracellular stimuli and initiates signaling cascades that promote cell migration. This study first examined the dose and time responses of FAK activation in human lung fibroblasts treated with platelet derived growth factor BB (PDGF-BB). The data indicate that FAK is directly recruited by integrin β1 and the subsequent FAK activation is required for fibroblast migration on fibronectin. In addition, the study has identified that α5β1 and α4β1 are the major integrins for FAK-mediated fibroblast migration on fibronect. In contrast, integrins αvβ3, αvβ6, and αvβ8 play a minor but distinct role in fibroblast migration on fibronectin. FAK inhibitor significantly reduces PDGF-BB stimulated fibroblast migration. Importantly, FAK inhibitor protects bleomycin-induced lung fibrosis in mice. FAK inhibitor blocks FAK activation and significantly reduces signaling cascade of fibroblast migration in bleomycin-challenged mice. Furthermore, FAK inhibitor decreases lung fibrotic score, collagen accumulation, fibronectin production, and myofibroblast differentiation in in bleomycin-challenged mice. These data demonstrate that FAK mediates fibroblast migration mainly via integrin β1. Furthermore, the findings suggest that targeting FAK signaling is an effective therapeutic strategy against fibrosis. PMID:26763945
Structural Studies of Human Pyruvate Dehydrogenase
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.
Chang, An-Chen; Chen, Po-Chun; Lin, Yu-Feng; Su, Chen-Ming; Liu, Ju-Fang; Lin, Tien-Huang; Chuang, Show-Mei; Tang, Chih-Hsin
2018-07-10
Bone metastasis is a frequent occurrence in prostate cancer (PCa) that is associated with severe complications such as fracture, bone pain and hypercalcemia. The cross-talk between metastatic cancer cells and bone is critical to the development and progression of bone metastases. In our previous data, we have described how the involvement of the Wnt-induced secreted protein-1/vascular cell adhesion molecule-1 (WISP-1/VCAM-1) system in this tumor-bone interaction contributes to human PCa cell motility. In this study, we found that WISP-1 regulates bone mineralization by inducing bone morphogenetic protein-2 (BMP2), BMP4 and osteopontin (OPN) expression in osteoblasts. We also found that WISP-1 inhibited RANKL-dependent osteoclastogenesis. Moreover, osteoblast-derived WISP-1 enhanced VCAM-1 expression in PCa cells and subsequently promoted the adherence of cancer cells to osteoblasts. Furthermore, endothelin-1 (ET-1) expression in PCa cells was regulated by osteoblast-derived WISP-1, which promoted integrin α4β1 expression in osteoblasts via the MAPK pathway. Pretreatment of PCa cells with VCAM-1 antibody or osteoblasts with integrin α4β1 antibody attenuated the adherence of PCa cells to osteoblasts, suggesting that integrin α4β1 serves as a ligand that captures VCAM-1 + metastatic tumor cells adhering to osteoblasts. Our findings reveal that osteoblast-derived WISP-1 plays a key role in regulating the adhesion of PCa cells to osteoblasts via the VCAM-1/integrin α4β1 system. Osteoblast-derived WISP-1 is a promising target for the prevention and inhibition of PCa-bone interaction. Copyright © 2018 Elsevier B.V. All rights reserved.
Gall, Andrew; Gardiner, Alastair T; Cogdell, Richard J; Robert, Bruno
2006-07-10
In this work we have investigated the carotenoid-protein interactions in LH2 complexes of Rhodopseudomonas acidophila both in "free in solution" mixed-micelles and in three-dimensional crystals by Raman spectroscopy in resonance with the carotenoid (Car) molecules. We show that the Car molecules when bound to their binding pockets show no significant differences when the complexes are "free in solution" or packed in crystalline arrays. Furthermore, there is no significant wavelength dependence in the Raman spectrum of the Car molecules of LH2. This indicates that there is only one Car configuration in LH2 and thus only one molecule per alpha/beta-heterodimer.
Eberwein, Philipp; Laird, Dougal; Schulz, Simon; Reinhard, Thomas; Steinberg, Thorsten; Tomakidi, Pascal
2015-10-01
Within the concept of integrin growth factor receptor (GFR) cross-talk, little is known about the effects of GFRs on focal adhesions (FAs). Therefore, we tested the hypothesis whether EGF can modulate constituents of FAs and subsequent down-stream events. To this end, EGF-treated keratinocytes were subjected to combined fluorescence imaging and western blotting, to quantify expression and/or activation of molecules, involved in integrin GFR cross-talk, and receptor proximal and distal signaling events. Generally, EGF response revealed an amplified redistribution or activation of molecules under study, which will be explained in detail from the plasma membrane to the cell interior. In addition to significant activation of EGF receptor (EGFR) at tyrosine Tyr845, a remarkable redistribution was detectable for the focal adhesion constituents, integrin ß1 and ß3, and zyxin. Increased activation also applied to focal adhesion kinase (FAK) by phosphorylation at Tyr397, Tyr576, and Src at Tyr418, while total FAK remained unchanged. Risen activity was seen as well for the analyzed distal down-stream events, p190RhoGAP and MAP kinases p42/44. Intriguingly, Src-specific inhibitor Herbimycin A abrogated the entire EGF response except FAK Tyr397 phosphorylation, independent of EGF presence. Mechanistically, our results show that EGF modulates adhesion in a dual fashion, by firstly redistributing focal adhesion constituents to adhesion sites, but also by amplifying levels of activated RhoA antagonist p190RhoGAP, important for cell motility. Further, the findings suggest that the observed EGF response underlies an EGFR integrin cross-talk under recruitment of receptor proximal FAK and Src, and MAP kinase and p190RhoGAP as receptor distal events. Copyright © 2015 Elsevier B.V. All rights reserved.
Cao, Benjamin; Zhang, Zhen; Grassinger, Jochen; Williams, Brenda; Heazlewood, Chad K.; Churches, Quentin I.; James, Simon A.; Li, Songhui; Papayannopoulou, Thalia; Nilsson, Susan K.
2016-01-01
The inherent disadvantages of using granulocyte colony-stimulating factor (G-CSF) for hematopoietic stem cell (HSC) mobilization have driven efforts to identify alternate strategies based on single doses of small molecules. Here, we show targeting α9β1/α4β1 integrins with a single dose of a small molecule antagonist (BOP (N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine)) rapidly mobilizes long-term multi-lineage reconstituting HSC. Synergistic engraftment augmentation is observed when BOP is co-administered with AMD3100. Impressively, HSC in equal volumes of peripheral blood (PB) mobilized with this combination effectively out-competes PB mobilized with G-CSF. The enhanced mobilization observed using BOP and AMD3100 is recapitulated in a humanized NODSCIDIL2Rγ−/− model, demonstrated by a significant increase in PB CD34+ cells. Using a related fluorescent analogue of BOP (R-BC154), we show that this class of antagonists preferentially bind human and mouse HSC and progenitors via endogenously primed/activated α9β1/α4β1 within the endosteal niche. These results support using dual α9β1/α4β1 inhibitors as effective, rapid and transient mobilization agents with promising clinical applications. PMID:26975966
Murakami, Jodi L; Xu, Baohui; Franco, Christopher B; Hu, Xingbin; Galli, Stephen J; Weissman, Irving L; Chen, Ching-Cheng
2016-01-01
α4β7 integrin is a cell adhesion receptor that is crucial for the migration of hematopoietic progenitors and mature effector cells in the periphery, but its role in adult hematopoiesis is controversial. We identified a subset of hematopoietic stem cells (HSCs) in the bone marrow (BM) that expressed β7 integrin. These β7(+) HSCs were capable of multilineage, long-term reconstitution and had an inherent competitive advantage over β7(-) HSCs. On the other hand, HSCs that lacked β7 integrin (β7KO) had reduced engraftment potential. Interestingly, quantitative RT-PCR and flow cytometry revealed that β7KO HSCs expressed lower levels of the chemokine receptor CXCR4. Accordingly, β7KO HSCs exhibited impaired migration abilities in vitro and BM homing capabilities in vivo. Lethal irradiation induced expression of the α4β7 integrin ligand-mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on BM endothelial cells. Moreover, blocking MAdCAM-1 reduced the homing of HSCs and impaired the survival of recipient mice. Altogether, these data indicate that β7 integrin, when expressed by HSCs, interacted with its endothelial ligand MAdCAM-1 in the BM microenvironment, thereby promoting HSC homing and engraftment.
He, Kai; Gao, Jian-Li
2014-01-01
A Chinese herb Corydalis yanhusuo W.T. Wang that showed anticancer and anti-angiogenesis effects in our previous studies was presented for further studies. In the present study, we studied the anticancer proliferation and adhesion effects of five alkaloids which were isolated from Corydalis yanhusuo. MTT dose response curves, cell migration assay, cell invasion assay, as well as three types of cell adhesive assay were performed on MDA-MB-231 human breast cancer cells. The mechanism of the compounds on inhibiting heterotypic cell adhesion were further explored by determining the expression of epidermal growth factor receptor (EGFR), Intercellular adhesion molecule 1 (ICAM-1), αv-integrin, β1-integrin and β5-integrin by western blotting assay. In five tested alkaloids, only protopine exhibited anti-adhesive and anti-invasion effects in MDA-MB-231 cells, which contributed to the anti-metastasis effect of Corydalis yanhusuo. The results showed that after treatment with protopine for 90 min, the expression of EGFR, ICAM-1, αv-integrin, β1-integrin and β5-integrin were remarkably reduced. The present results suggest that protopine seems to inhibit the heterotypic cell adhesion between MDA-MB-231 cells, and human umbilical vein endothelial cells by changing the expression of adhesive factors.
Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins
NASA Technical Reports Server (NTRS)
Alenghat, Francis J.; Ingber, Donald E.
2002-01-01
Mechanical stresses modulate cell function by either activating or tuning signal transduction pathways. Mechanotransduction, the process by which cells convert mechanical stimuli into a chemical response, occurs both in cells specialized for sensing mechanical cues and in parenchymal cells whose primary function is not mechanosensory. However, common among the various responses to mechanical stress is the importance of direct or indirect connections between the internal cytoskeleton, the extracellular matrix (ECM), and traditional signal transducing molecules. In many instances, these elements converge at focal adhesions, sites of structural attachment between the cytoskeleton and ECM that are anchored by cell surface integrin receptors. Alenghat and Ingber discuss the accumulating evidence for the central role of cytoskeleton, ECM, and integrin-anchored focal adhesions in several mechanotransduction pathways.
Shin, In Soo; Maeng, Jin Soo; Jang, Beom-Su; You, Eric; Cheng, Kenneth; Li, King C P; Wood, Bradford; Carrasquillo, Jorge A; Danthi, S Narasimhan; Paik, Chang H
2010-01-01
OBJECTIVES: The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonist with (99m)Tc for rapid targeting of integrin alpha(v)beta(3) receptors in tumor to produce a high tumor to background ratio. METHODS: The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-beta-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with (99m)Tc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. The products, (99m)Tc EDDA(2)/HYNIC-IAC (P1) and (99m)Tc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. RESULTS: P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 degrees C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 +/- 13.48 vs 51.05 +/- 14.05%) when incubated with alpha(v)beta(3) at a molar excess (0.8 muM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17+/-0.52 and 2.13+/-0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 +/- 3.67% ID at 4 h whereas 54.04 +/- 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by imaging studies showing higher tumor-to-abdominal contrast for P1 than for P2 at 3 h postinjection. CONCLUSIONS: P1 showed good tumor targeting properties with a rapid tumor uptake, prolonged tumor retention and fast whole-body clearance kinetics. These findings warrant further investigation of the HYNIC method of (99m)Tc labeling of other peptidomimetic antagonists using EDDA as a coligand.
Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity
NASA Technical Reports Server (NTRS)
Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)
2000-01-01
Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.
Extracellular matrix biomimicry for the creation of investigational and therapeutic devices.
Pellowe, Amanda S; Gonzalez, Anjelica L
2016-01-01
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics. © 2015 Wiley Periodicals, Inc.
Donnet-Hughes, A; Duc, N; Serrant, P; Vidal, K; Schiffrin, E J
2000-02-01
Human breast milk is rich in nutrients, hormones, growth factors and immunoactive molecules, which influence the growth, development and immune status of the newborn infant. Although several of these factors are also present in bovine milk, the greater susceptibility of the formula-fed infant to infection and disease and the development of allergy is often attributed to the reduced level of protective factors in milk formulas. Nevertheless, modifying manufacturing processes may preserve the biological activity of some bioactive molecules in end products. Transforming growth factor (TGF)-beta is one such molecule. TGF-beta is a polypeptide, which has been described in both human and bovine milk. It is implicated in many processes, including epithelial cell growth and differentiation, development, carcinogenesis and immune regulation. The present article discusses the biological activity of TGF-beta2 that has been preserved and activated in a cow's milk-based product. More specifically, it addresses possible mechanisms of action in the intestinal lumen and speculates on how milk products containing naturally occurring TGF-beta2 could be exploited in functional foods for the infant or as therapies for specific intestinal diseases.
Blood-derived small Dot cells reduce scar in wound healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Wuyi; Li Shaowei; Longaker, Michael T.
2008-04-15
Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin {beta}1, CD184, CD34, CD13{sup low} and Sca1{sup low}, but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 {mu}m diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherinmore » and integrin {beta}1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells.« less
Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma
Meads, MB; Fang, B; Mathews, L; Gemmer, J; Nong, L; Rosado-Lopez, I; Nguyen, T; Ring, JE; Matsui, W; MacLeod, AR; Pachter, JA; Hazlehurst, LA; Koomen, JM; Shain, KH
2015-01-01
Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting. PMID:26387544
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, P.J.; Seligsohn, U.; Lyman, S.
1991-04-15
Glanzmann thrombasthenia is an autosomal recessive bleeding disorder characterized by a decrease or absence of functional platelet glycoprotein (GP) IIb-IIIa ({alpha}{sub IIb}{beta}{sub 3}) integrin receptors. Although thrombasthenia is a rare disorder, its occurrence is increased in some regions of the world where intracommunity marriage and consanguinity are commonplace, resulting in increased expression of autosomal recessive traits. The authors have been studying two populations having an unusually high frequency of Glanzmann disease, Iraqi Jews and Arabs living in Israel, and were able to distinguish the populations on the basis of immunodetectable GPIIIa and populations on the basis of immunodetectable GPIIIa andmore » platelet surface vitronectin receptor ({alpha}{sub v}{beta}{sub 3}) expression. In this article, they describe molecular genetic studies based on use of the PCR that have allowed us to characterize platelet mRNA sequences encoding GPIIb and GPIIIa from patients in these populations. These studies demonstrate the heterogeneity of Glanzmann thrombasthenia in different populations, and its homogeneity within geographically restricted populations, and offer insight into the requirements for integrin surface expression.« less
Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura
2015-12-10
Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.
Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing
2016-01-01
Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis. PMID:26848618
Lin, Liang; Yan, Fan; Zhao, Dandan; Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing
2016-03-01
Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis.
Androgen-Induced Cell Migration: Role of Androgen Receptor/Filamin A Association
Castoria, Gabriella; D'Amato, Loredana; Ciociola, Alessandra; Giovannelli, Pia; Giraldi, Tiziana; Sepe, Leandra; Paolella, Giovanni; Barone, Maria Vittoria; Migliaccio, Antimo; Auricchio, Ferdinando
2011-01-01
Background Androgen receptor (AR) controls male morphogenesis, gametogenesis and prostate growth as well as development of prostate cancer. These findings support a role for AR in cell migration and invasiveness. However, the molecular mechanism involved in AR-mediated cell migration still remains elusive. Methodology/Principal Findings Mouse embryo NIH3T3 fibroblasts and highly metastatic human fibrosarcoma HT1080 cells harbor low levels of transcriptionally incompetent AR. We now report that, through extra nuclear action, AR triggers migration of both cell types upon stimulation with physiological concentrations of the androgen R1881. We analyzed the initial events leading to androgen-induced cell migration and observed that challenging NIH3T3 cells with 10 nM R1881 rapidly induces interaction of AR with filamin A (FlnA) at cytoskeleton. AR/FlnA complex recruits integrin beta 1, thus activating its dependent cascade. Silencing of AR, FlnA and integrin beta 1 shows that this ternary complex controls focal adhesion kinase (FAK), paxillin and Rac, thereby driving cell migration. FAK-null fibroblasts migrate poorly and Rac inhibition by EHT impairs motility of androgen-treated NIH3T3 cells. Interestingly, FAK and Rac activation by androgens are independent of each other. Findings in human fibrosarcoma HT1080 cells strengthen the role of Rac in androgen signaling. The Rac inhibitor significantly impairs androgen-induced migration in these cells. A mutant AR, deleted of the sequence interacting with FlnA, fails to mediate FAK activation and paxillin tyrosine phosphorylation in androgen-stimulated cells, further reinforcing the role of AR/FlnA interaction in androgen-mediated motility. Conclusions/Significance The present report, for the first time, indicates that the extra nuclear AR/FlnA/integrin beta 1 complex is the key by which androgen activates signaling leading to cell migration. Assembly of this ternary complex may control organ development and prostate cancer metastasis. PMID:21359179
Activation states of blood eosinophils in asthma
Johansson, Mats W.
2014-01-01
Asthma is characterized by airway inflammation rich in eosinophils. Airway eosinophilia is associated with exacerbations and has been suggested to play a role in airway remodeling. Recruitment of eosinophils from the circulation requires that blood eosinophils become activated, leading to their arrest on the endothelium and extravasation. Circulating eosinophils can be envisioned as potentially being in different activation states, including non-activated, pre-activated or “primed”, or fully activated. In addition, the circulation can potentially be deficient of pre-activated or activated eosinophils, because such cells have marginated on activated endothelium or extravasated into the tissue. A number of eosinophil-surface proteins, including CD69, L-selectin, intercellular adhesion molecule-1 (ICAM-1, CD54), CD44, P-selectin glycoprotein ligand-1 (PSGL-1, CD162), cytokine receptors, Fc receptors, integrins including αM integrin (CD11b), and activated conformations of Fc receptors and integrins have been proposed to report cell activation. Variation in eosinophil activation states may be associated with asthma activity. Eosinophil-surface proteins proposed to be activation markers, with a particular focus on integrins, and evidence for associations between activation states of blood eosinophils and features of asthma are reviewed here. Partial activation of β1 and β2 integrins on blood eosinophils, reported by monoclonal antibodies (mAb) N29 and KIM-127, is associated with impaired pulmonary function and airway eosinophilia, respectively, in non-severe asthma. The association with lung function does not occur in severe asthma, presumably due to greater eosinophil extravasation, specifically of activated or pre-activated cells, in severe disease. PMID:24552191
Bhandari, Poonam; Kendler, Kenneth S; Bettinger, Jill C; Davies, Andrew G; Grotewiel, Mike
2009-10-01
Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the function of alpha and beta integrins in flies.
Method and system for measurement of mechanical properties of molecules and cells
NASA Technical Reports Server (NTRS)
Fredberg, Jeffrey J. (Inventor); Butler, James P. (Inventor); Ingber, Donald E. (Inventor); Wang, Ning (Inventor)
1996-01-01
Mechanical stresses and deformations are applied directly to cell surface receptors or molecules and measured using a system including a magnetic twisting device in combination with ferromagnetic microbeads coated with ligands for integrins or any other surface receptors. The system can be used diagnostically to characterize cells and molecules and to determine the effect of transformation and compounds, including drugs, on the cells and molecules. The system can also be used to induce cells to grow or alter production of molecules by the cells.
Chen, Yue; Zhang, Hui; Han, Fang; Yue, Lei; Qiao, Chunxiao; Zhang, Yao; Dou, Peng; Liu, Weizhe; Li, Yu
2018-03-01
The placenta is a remarkable organ, it serves as the interface between the mother and the fetus. Proper invasion of trophoblast cells is required for a successful pregnancy. Previous studies have found that the adhesion molecule integrin β4 plays important roles during trophoblast cell invasion. Here, we found that the overall birth rate of the MARVELD1 knockout mouse is much lower than that of the wild-type mouse (p < 0.001). In E18.5 MARVELD1 knockout mice, we observed an over-invasion of trophoblast cells, and indeed, the pregnant mice had a partial placenta accreta phenotype. The HTR8/SVneo cell line was used as an in vitro model to elucidate the underlying mechanisms of MARVELD1-mediated trophoblast invasion. We detected a diminished expression of integrin β4 upon the downregulation of MARVELD1 and enhanced migrate and invasive abilities of trophoblast cells both in vivo and in vitro. The integrin β4 rescue assay also supported the results. In conclusion, this study found that MARVELD1 mediated the invasion of trophoblast cells via regulating the expression of integrin β4 during placenta development. © 2017 Wiley Periodicals, Inc.
Role of the growth arrest-specific gene 6 (gas6) product in thrombus stabilization.
Saller, François; Burnier, Laurent; Schapira, Marc; Angelillo-Scherrer, Anne
2006-01-01
Growth arrest-specific gene 6 (gas6) product enhances the formation of stable platelet macroaggregates in response to various agonists. To determine whether Gas6 amplifies the response to known platelet agonists through one or more of its receptor tyrosine kinases of the Tyro3 family, mice deficient in any one of the Gas6 receptors (Gas6-Rs: Tyro3, Axl, or Mer) were submitted to thrombosis challenge and their platelet function. The loss of any one of the Gas6-Rs protects mice against thromboembolism induced by collagen-epinephrine and stasis-induced thrombosis. Importantly, these mice do not suffer spontaneous bleeding and have a normal bleeding time but a tendency to repetitively re-bleed after transient hemostasis. Re-bleeding in mice lacking any one of the Gas6-Rs is not due to thrombocytopenia or coagulopathy but to a platelet dysfunction characterized by a lack of the second wave of platelet aggregation and an impaired clot retraction, at least in part by reducing outside-in alpha(IIb)beta(3) signaling and platelet granule secretion. The early release of Gas6 by agonists perpetuates platelet activation through its three receptors, reinforcing outside-in alpha(IIb)beta(3) signaling by activation of PI3K and Akt signaling and stimulation of tyrosine phosphorylation of the beta(3) integrin. Furthermore, "trapping" Gas6 prevents pathological thrombosis, which indicates that blocking this novel cross-talk between the Gas6-Rs and alpha(IIb)beta(3) integrin may constitute a novel target for antithrombotic therapy.
Synthetic alleles at position 121 define a functional domain of human interleukin-1 beta.
Ambrosetti, D C; Palla, E; Mirtella, A; Galeotti, C; Solito, E; Navarra, P; Parente, L; Melli, M
1996-06-01
The non-conservative substitution of the tyrosine residue at position 121 of human interleukin-1 beta (IL-1 beta) generates protein mutants showing strong reduction of the capacity to induce (a) prostaglandin E2 (PGE2) release from fibroblasts and smooth muscle cells, (b) murine T-cells proliferation and (c) activation of interleukin-6 (IL-6) gene expression. It is generally accepted that these functions are mediated by the type-I interleukin-1 receptor (IL-1RI). However, the mutant proteins maintain the binding affinity to the types-I and II IL-1 receptors, which is the same as the control IL-1 beta, suggesting that this amino acid substitution does not alter the structure of the molecule, except locally. Thus we have identified a new functional site of IL-1 beta different from the known receptor binding region, responsible for fundamental IL-1 beta functions. Moreover, we show that the same mutants maintain at least two hypothalamic functions, that is, the in vitro short-term PGE2 release from rat hypothalamus and the induction of fever in rabbits. This result suggests that there is yet another site of the molecule responsible for the hypothalamic functions, implying that multiple active sites on the IL-1 beta molecule, possibly binding to more than one receptor chain, trigger different signals.
The effect of ligand affinity on integrins' lateral diffusion in cultured cells.
Mainali, Dipak; Smith, Emily A
2013-04-01
The role of ligand affinity in altering αPS2CβPS integrins' lateral mobility was studied using single particle tracking (SPT) with ligand-functionalized quantum dots (QDs) and fluorescence recovery after photobleaching (FRAP) with fluorescent protein tagged integrins. Integrins are ubiquitous transmembrane proteins that are vital for numerous cellular functions, including bidirectional signaling and cell anchorage. Wild-type and high ligand affinity mutant (αPS2CβPS-V409D) integrins were studied in S2 cells. As measured by SPT, the integrin mobile fraction decreased by 22% and had a 4× slower diffusion coefficient for αPS2CβPS-V409D compared to wild-type integrins. These differences are partially the result of αPS2CβPS-V409D integrins' increased clustering. For the wild-type integrins, the average of all diffusion coefficients measured by SPT was statistically similar to the ensemble FRAP results. A 75% slower average diffusion coefficient was measured by SPT compared to FRAP for αPS2CβPS-V409D integrins, and this may be the result of SPT measuring only ligand-bound integrins, in contrast all ligand-bound and ligand-unbound integrins are averaged in FRAP measurements. Specific binding of the ligand-functionalized QDs was 99% for integrin expressing cells. The results prove that the ligand binding affinity affects the lateral dynamics of a subset of integrins based on the complementary SPT and FRAP data.
Clemens, Regina A; Lenox, Laurie E; Kambayashi, Taku; Bezman, Natalie; Maltzman, Jonathan S; Nichols, Kim E; Koretzky, Gary A
2007-04-01
The Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is an adaptor molecule critical for immunoreceptor and integrin signaling in multiple hemopoietic lineages. We showed previously that SLP-76 is required for neutrophil function in vitro, including integrin-induced adhesion and production of reactive oxygen intermediates, and to a lesser extent, FcgammaR-induced calcium flux and reactive oxygen intermediate production. It has been difficult to determine whether SLP-76 regulates neutrophil responses in vivo, because Slp-76(-/-) mice exhibit marked defects in thymocyte and vascular development, as well as platelet and mast cell function. To circumvent these issues, we generated mice with targeted loss of SLP-76 expression within myeloid cells. Neutrophils obtained from these animals failed to respond to integrin activation in vitro, similar to Slp-76(-/-) cells. Despite these abnormalities, SLP-76-deficient neutrophils migrated normally in vivo in response to Staphylococcus aureus infection and efficiently cleared micro-organisms. Interestingly, SLP-76-deficient neutrophils did not induce a robust inflammatory response in the localized Shwartzman reaction. Collectively, these data suggest that disruption of integrin signaling via loss of SLP-76 expression differentially impairs neutrophil functions in vivo, with preservation of migration and killing of S. aureus but reduction in LPS-induced tissue damage and vascular injury.
Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari
2014-12-26
The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Insulin promotes cell migration by regulating PSA-NCAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monzo, Hector J.; Coppieters, Natacha; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland
Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cellmore » migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.« less
The Role of Osteopontin in the Malignancy of Human Breast Carcinoma
1999-07-01
specific tumors [e.g., CA 125 in the case of ovarian carcinoma (17-19), HCG and ct- fetoprotein in the Fig. 4 Western blot analysis of plasma OPN and...EGF also induced the epithelium may contribute to the invasive properties of their breast decreased expression of integrin alpha 5 beta I in 8305c
2014-09-01
Staszewski, et al., The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation...the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung colony formation. Clin Exp Metastasis, 2010. 27(3
Mechanotransduction across the cell surface and through the cytoskeleton
NASA Technical Reports Server (NTRS)
Wang, N.; Butler, J. P.; Ingber, D. E.
1993-01-01
Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.
Schabacker, D S; Kirschbaum, K S; Segre, M
2000-05-01
Conventional vaccination with the cocaine molecule conjugated to a protein carrier is a new approach in the treatment of addiction. Experimentally, this strategy has been shown to alter the pharmacokinetics as well as the psychostimulant effect of a cocaine challenge. The purpose of this study was to investigate whether a more stable and less controversial molecule, an anti-idiotypic antibody, which mimics the configuration of the cocaine molecule (Ab2beta), could be successfully used instead of cocaine. Two cocaine conjugates that presented different areas of the cocaine molecule to the immune system were used to produce monoclonal antibodies specific for cocaine (Ab1). Several anti-idiotypic antibodies were then produced. Four were identified as Ab2beta, or internal images of the antigen; when injected into BALB/c mice, they elicited an anticocaine response. The anticocaine response elicited by one of the four Ab2beta (K1-4c) was sufficient to significantly reduce the level of cocaine that targeted the brain following cocaine challenge, compared with the level of cocaine found in the brain of control animals immunized with irrelevant antibody. In conclusion, the possibility of an anti-idiotypic vaccine seems to be worth pursuing.
Genes Critical for Developing Periodontitis: Lessons from Mouse Models
de Vries, Teun J.; Andreotta, Stefano; Loos, Bruno G.; Nicu, Elena A.
2017-01-01
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response. PMID:29163477
Sun, Chi-Chin; Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung
2016-06-01
This study reports, for the first time, the regulation of corneal keratocyte adhesion, spreading, morphology, and integrin gene expression on chitosan coating due to the effects of deacetylation. The degree of deacetylation (DD) in chitosan materials was confirmed by elemental analysis, gel permeation chromatography, and Fourier transform infrared spectroscopy. In this study, chitosan samples with the same molecular weight level but varying DD (74.1 ± 0.5%, 84.4 ± 0.7%, and 94.2 ± 0.5%) were obtained by heat-alkaline treatment under a nitrogen atmosphere. For higher DD groups, the biopolymer carried abundant amino groups since the deacetylation process removed larger amount of acetyl groups from the chitosan molecules. Results showed that the mechanical stability and crystallinity of the chitosan coatings significantly increased with increasing DD value. Fibronectin adsorption, keratocyte adhesion, and cell spreading exhibited a positive correlation with DD due to the chemical functionality of polysaccharides (bearing acetyl and amino groups) and increase of substrate stiffness and crystallinity. In particular, when adhered to chitosan coatings with a DD value of 74.1%, the keratocytes appeared to be fibroblastic, elongated, and spindle shape, indicating a loss of their characteristic dendritic morphology. Furthermore, the gene expression of integrin β1 (i.e., a cell-matrix adhesion molecule) was significantly up-regulated on the chitosan coatings with higher DD, which supports favorable attachment of corneal keratocytes. Our findings suggest that DD-mediated physicochemical properties of chitosan coatings greatly affect cell-substrate crosstalk during corneal keratocyte cultivation. Copyright © 2016 Elsevier B.V. All rights reserved.
The role of β2 integrin associated heparin-binding protein release in ARDS.
Liu, Yang; Ma, Shaolin; Wang, Xuebin; Feng, Yajing; Zhang, Shouqin; Wang, Sheng; Zhang, Xiangyu
2018-06-15
PMNs (polymorphonuclear neutrophil) play important roles in early stage of inflammation induced ARDS (Acute Respiratory Distress Syndrome). Both HBP (Heparin-Binding Protein) released from active PMNs and β2 integrins on the surface of PMNs are involved in vascular leakage. The role and relationship of HBP and β2 integrins on ARDS still requires study. We established ARDS model using C57BL/6 mice with cecal ligation and puncture and eliminating HBP and β2 integrin with respective antibodies. The mice were also challenged with HBP endotracheal instillation. Histopathology score, lung wet/dry ratio, bronchoalveolar lavage fluid protein, plasma HBP and β2 integrin on PMNs from all groups were measured. β2 integrin and HBP were analyzed after incubated PMNs with streptococcal and pretreat with anti-CD18, anti-HBP, 1-phosphatidylinositol 3-kinase (PI3K) inhibitor and p38 mitogen-activated protein kinase (MAPK) inhibitor. All lung injury indicatrix accompanied with HBP and β2 integrin elevated in CLP group, and HBP and β2 integrin were in correlation with each other and both were in correlation with the severity of lung injury. Endotracheal instillation HBP induced lung injury in CLP mice. Inhibiting both HBP and integrin ameliorated lung injury. HBP release was suppressed by inhibiting integrin and PI3K pathway, while integrin level did not decrease after eliminating HBP. Both HBP and β2 integrin play important roles in ARDS. HBP released from PMNs is β2 integrin-PI3K signaling pathway dependent process revealing potential novel therapeutic targets for ARDS treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Talin does not associate exclusively with alpha 2b beta 3 integrin in activated human platelets.
Escolar, G; Diaz-Ricart, M; White, J G
1995-05-01
Talin is a high-molecular-weight protein that may stabilize connections between cytoplasmic actin and the submembrane portion of glycoprotein IIb-IIIa (GPIIb-IIIa) (alpha 2b beta 3 integrin) in thrombin-stimulated human platelets. Using morphologic and electrophoretic techniques, we have examined the association of talin with the cytoskeleton of platelets activated by thrombin in the presence of fibrinogen-coated gold particles (Fgn/Au). Ultrastructural studies confirmed the presence of Fgn/Au firmly bound to the outside membranes of detergent-extracted platelets. Immunoblots of protein bands showed GPIIIa, but not talin, associated with cytoskeletons of activated platelets. Immunogold cytochemical techniques were performed on ultrathin cryosections of whole platelets to localize talin at the ultrastructural level. Studies were performed on normal platelets and platelets defective in GPIIb-IIIa (Glanzmann's thrombasthenia) and GPIb (Bernard-Soulier syndrome). Talin was randomly distributed in the cytoplasm of resting platelets. Activation resulted in binding of Fgn/Au to the surface membrane and redistribution of talin to the submembrane region. However, no definitive colocalization between the two markers was noted. Activated thrombasthenic platelets failed to bind Fgn/Au, but talin was localized to the submembrane location. After activation, talin was confined to the submembrane zone of Bernard-Soulier syndrome platelets. No definitive colocalization was observed between large clusters of Fgn/Au-occupied receptors and talin distributed in the submembrane region. GPIb and GPIIb-IIIa are not necessary for talin to localize in the submembrane region of activated cells. Talin does not redistribute exclusively with GPIIb-IIIa, and it may stabilize connections with other glycoproteins.
Jaworski, Diane M.; Pérez-Martínez, Leonor
2010-01-01
Neuronal differentiation requires exquisitely timed cell cycle arrest for progenitors to acquire an appropriate neuronal cell fate and is achieved by communication between soluble signals, such as growth factors and extracellular matrix molecules. Here we report that the expression of TIMP-2, a matrix metalloproteinase inhibitor, is up-regulated by signals that control proliferation (bFGF and EGF) and differentiation (retinoic acid and NGF) in neural progenitor and neuroblastoma cell lines. TIMP-2 expression coincides with the appearance of neurofilament-positive neurons, indicating that TIMP-2 may play a role in neurogenesis. The up-regulation of TIMP-2 expression by proliferative signals suggests a role in the transition from proliferation to neuronal differentiation. Live labeling experiments demonstrate TIMP-2 expression only on α3 integrin-positive cells. Thus, TIMP-2 function may be mediated via interaction with integrin receptor(s). We propose that TIMP-2 represents a component of the neurogenic signaling cascade induced by mitogenic stimuli that may withdraw progenitor cells from the cell cycle permitting their terminal neuronal differentiation. PMID:16805810
Fibronectin regulates the activation of THP-1 cells by TGF-beta1.
Wang, A C; Fu, L
2001-03-01
To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.
Kim, Yong-Bae; Lee, Sung-Yul; Ye, Sang-Kyu; Lee, Jung Weon
2007-02-01
Cell adhesion to the extracellular matrix (ECM) regulates gene expressions in diverse dynamic environments. However, the manner in which gene expressions are regulated by extracellular cues is largely unknown. In this study, suspended gastric carcinoma cells showed higher basal and transforming growth factor-beta1 (TGFbeta1)-mediated acetylations of histone 3 (H3) and Lys(9) of H3 and levels of integrin-linked kinase (ILK) mRNA and protein than did fibronectin-adherent cells did. Moreover, the insignificant acetylation and ILK expression in adherent cells were recovered by alterations of integrin signaling and actin organization, indicating a connection between cytoplasmic and nuclear changes. Higher acetylations in suspended cells were correlated with associations between Smad4, p300/CBP, and Lys(9)-acetylated H3. Meanwhile, adherent cells showed more associations between HDAC3, Ski, and MeCP2. Chromatin immunoprecipitations with anti-acetylated H3, Lys(9)-acetylated H3, or p300/CBP antibody resulted in more coprecipitated ILK promoter, correlated with enhanced ILK mRNA and protein levels, in suspended cells. Moreover, ILK expression inversely regulated cell adhesion to ECM proteins, and its overexpression enhanced cell growth in soft agar. These observations indicate that cell adhesion and/or its related molecular basis regulate epigenetic mechanisms leading to a loss of ILK transcription, which in turn regulates cell adhesion property in a feedback linkage.
Evidence of bone marrow downregulation in brain-dead rats.
Menegat, Laura; Simas, Rafael; Caliman, Julia M; Zanoni, Fernando L; Jacysyn, Jacqueline F; da Silva, Luiz Fernando F; Borelli, Primavera; Moreira, Luiz Felipe P; Sannomiya, Paulina
2017-06-01
Experimental findings support the evidence of a persistent leucopenia triggered by brain death (BD). This study aimed to investigate leucocyte behaviour in bone marrow and blood after BD in rats. BD was induced using intracranial balloon catheter inflation. Sham-operated (SH) rats were trepanned only. Thereafter bone marrow cells were harvested every six hours from the femoral cavity and used for total and differential counts. They were analysed further by flow cytometry to characterize lymphocyte subsets, granulocyte adhesion molecules expression and apoptosis/necrosis [annexin V/propidium iodide (PI) protocol]. BD rats exhibited a reduction in bone marrow cells due to a reduction in lymphocytes (40%) and segmented cells (45%). Bone marrow lymphocyte subsets were similar in BD and SH rats (CD3, P = 0.1; CD4, P = 0.4; CD3/CD4, P = 0.4; CD5, P = 0.4, CD3/CD5, P = 0.2; CD8, P = 0.8). Expression of L-selectin and beta 2 -integrins on granulocytes did not differ (CD11a, P = 0.9; CD11b/c, P = 0.7; CD62L, P = 0.1). There were no differences in the percentage of apoptosis and necrosis (Annexin V, P = 0.73; PI, P = 0.21; Annexin V/PI, P = 0.29). In conclusion, data presented suggest that the downregulation of the bone marrow is triggered by brain death itself, and it is not related to changes in lymphocyte subsets, granulocyte adhesion molecules expression or apoptosis and necrosis. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.
Yamashiro, D; Ferrara, P; Li, C H
1980-07-01
Four analogs of human beta-endorphin (beta h-EP) have been synthesized: [Gly31]-Beta h-EP-Gly-NH2, [CH3(CH2)4NH231]-beta h-EP, [Gly31]-beta h-EP-Gly-Gly-NH2, and [Gln8, Gly31]-betah-EP-Gly-Gly-NH2. All are more active than beta h-EP in an opiate receptor binding assay. Stepwise extension at the COOH-terminus shows a progressive increase in binding activity. The last analog, which combines extension at the COOH-terminus with elimination of the remaining anionic charge in beta h-EP, is nine times more active than the parent molecule.
NAD+ Biosynthesis Ameliorates a Zebrafish Model of Muscular Dystrophy
Goody, Michelle F.; Kelly, Meghan W.; Reynolds, Christine J.; Khalil, Andre; Crawford, Bryan D.; Henry, Clarissa A.
2012-01-01
Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. PMID:23109907
Garlick, David S; Li, Jing; Sansoucy, Brian; Wang, Tao; Griffith, Leeanne; FitzGerald, TJ; Butterfield, Julie; Charbonneau, Bridget; Violette, Shelia M; Weinreb, Paul H; Ratliff, Timothy L; Liao, Chun-Peng; Roy-Burman, Pradip; Vietri, Michele; Lian, Jane B; Stein, Gary S; Altieri, Dario C; Languino, Lucia R
2012-01-01
Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The αvβ6 integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of αvβ6 in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, αvβ6 expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of αvβ6 in two in vivo mouse models; the Ptenpc-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the αvβ6 integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. αvβ6 is expressed in all the mice with cancer in the Ptenpc-/- model but not in age-matched wild-type mice. In the POET inflammation model, αvβ6 is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFβ1), a factor in inflammation that is activated by αvβ6. In conclusion, through in vivo evidence, we conclude that αvβ6 integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma. PMID:22611469
Garlick, David S; Li, Jing; Sansoucy, Brian; Wang, Tao; Griffith, Leeanne; Fitzgerald, Tj; Butterfield, Julie; Charbonneau, Bridget; Violette, Shelia M; Weinreb, Paul H; Ratliff, Timothy L; Liao, Chun-Peng; Roy-Burman, Pradip; Vietri, Michele; Lian, Jane B; Stein, Gary S; Altieri, Dario C; Languino, Lucia R
2012-01-01
Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The α(v)β(6) integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of α(v)β(6) in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, α(v)β(6) expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of α(v)β(6) in two in vivo mouse models; the Pten(pc)-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the α(v)β(6) integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. α(v)β(6) is expressed in all the mice with cancer in the Pten(pc-/-) model but not in age-matched wild-type mice. In the POET inflammation model, α(v)β(6) is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFβ1), a factor in inflammation that is activated by α(v)β(6). In conclusion, through in vivo evidence, we conclude that α(v)β(6) integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma.
Pereira, L E; Onlamoon, N; Wang, X; Wang, R; Li, J; Reimann, K A; Villinger, F; Pattanapanyasat, K; Mori, K; Ansari, A A
2009-01-01
Recent findings established that primary targets of HIV/SIV are lymphoid cells within the gastrointestinal (GI) tract. Focus has therefore shifted to T-cells expressing alpha(4)beta(7) integrin which facilitates trafficking to the GI tract via binding to MAdCAM-1. Approaches to better understand the role of alpha(4)beta(7)+ T-cells in HIV/SIV pathogenesis include their depletion or blockade of their synthesis, binding and/or homing capabilities in vivo. Such studies can ideally be conducted in rhesus macaques (RM), the non-human primate model of AIDS. Characterization of alpha(4)beta(7) expression on cell lineages in RM blood and GI tissues reveal low densities of expression by NK cells, B-cells, naïve and TEM (effector memory) T-cells. High densities were observed on TCM (central memory) T-cells. Intravenous administration of a single 50mg/kg dose of recombinant rhesus alpha(4)beta(7) antibody resulted in significant initial decline of alpha(4)beta(7)+ lymphocytes and sustained coating of the alpha(4)beta(7) receptor in both the periphery and GI tissues.
Elucidating the role of select cytoplasmic proteins in altering diffusion of integrin receptors.
Sander, Suzanne; Arora, Neha; Smith, Emily A
2012-06-01
Cytoplasmic proteins that affect integrin diffusion in the cell membrane are identified using a combination of fluorescence recovery after photobleaching (FRAP) and RNA interference. Integrin receptors are essential for many cellular events, and alterations in lateral diffusion are one mechanism for modulating their function. In cells expressing native cytoplasmic protein concentrations and spread on a slide containing integrin extracellular ligand, 45 ± 2% of the integrin is mobile with a time-dependent 5.2 ± 0.9 × 10(-9) cm(2)/s diffusion coefficient at 1 s. The time exponent is 0.90 ± 0.07, indicating integrin diffusion moderately slows at longer times. The role of a specific cytoplasmic protein in altering integrin diffusion is revealed through changes in the FRAP curve after reducing the cytoplasmic protein's expression. Decreased expression of cytoplasmic proteins rhea, focal adhesion kinase (FAK), or steamer duck decreases the integrin mobile fraction. For rhea and FAK, there is a concomitant shift to Brownian (i.e., time-independent) diffusion at reduced concentrations of these proteins. In contrast, when the expression of actin 42A, dreadlocks, paxillin, integrin-linked kinase (ILK), or vinculin is reduced, integrin diffusion generally becomes more constrained with an increase in the integrin mobile fraction. This same change in integrin diffusion is measured in the absence of integrin extracellular ligand. The results indicate breaking the extracellular ligand-integrin-cytoskeletal linkage alters integrin diffusion properties, and, in most cases, there is no correlation between integrin and lipid diffusion properties.
Omura, Yoshiaki; Chen, Yemeng; Lermand, Olivia; Jones, Marilyn; Duvvi, Harsha; Shimotsuura, Yasuhiro
2010-01-01
Our previous study indicated that when extremely reduced normal cell (NC) telomeres in various cancer patients are increased over 500 ng BDORT units, abnormally high cancer cell telomeres and cancer-related markers such as Oncogen C-fosAb2 (Onco.)& Integrin alpha5beta1 (Integ.), & 8-OH-dG as well as bacterial & viral infections, mercury, asbestos, chromium, & beta-amyloid (1-42) markedly reduced due to improved circulation & excretion of these substances in urine. Since 1995, we have been using press-needle stimulation of Omura's ST36 with 200x press-release procedure 4x a day, with significant improvements in various cancer patients. In this study, Transcutaneous Electrical Stimulation (TES) at 60 pulses/min, which is close to patient's heart rate, was given between Omura's ST36 of both legs of the breast cancer & Alzheimer's patients. After about 10 minutes of TES, NC telomeres increased from 1 yg (= 10-24 g) to 500-525 ng; Integ. reduced from 85-75 ng to 0.5 ng & Chlamydia trachomatis (CT) reduced from 4500-3500 ng to 0.5 ng. An additional 10 minutes TES increased NC telomeres to 800-875 ng, while Integ. reduced to 0.5 yg & CT became less than 0.1 yg. After a total 30 minutes of TES, NC telomeres increased to 1000-1200ng BDORT units, with decreases in Integ. and Onco. to less than 0.1 yg. CT reduced to < 0.1 yg. About 24 hours later, NC telomeres were still 300 ng & both Integ. and Onco. were 2.5 ng. CT was approximately 20 ng. In Alzheimer patient, abnormally high beta-Amyloid (1-42) of 7-12 ng markedly reduced to within normal value of less than 1.5 ng by 20-30 min TES. Stimulation beyond 30 minutes gradually reduced NC telomeres. TES pulse rate of 4 pulses/sec for the same patient initially increased NC telomere up to 750-950 ng BDORT units within 20 minutes, but when stimulation continued more than 20 min, NC telomeres rapidly reduced to -150 ng in less than 10 min of TES with reduced beneficial effects.
α5β1-Integrin inhibitor (CLT-28643) effective in rabbit trabeculectomy model.
Schultheiss, Maximilian; Schnichels, Sven; Konrad, Eva-Maria; Bartz-Schmidt, Karl U; Zahn, Grit; Caldirola, Patrizia; Fsadni, Mario G; Caram-Lelham, Ninus; Spitzer, Martin S
2017-02-01
Glaucoma filtration surgery (GFS) fails due to fibrosis. The α5β1-integrin plays a pivotal role in fibrosis, angiogenesis and inflammation. This is the first experiment evaluating the prevention of fibrosis after GFS by a specific small molecule α5β1-integrin inhibitor (CLT-28643). Twenty-four rabbits received trabeculectomy on their right eyes. The rabbits were randomized into three groups of eight eyes each. CLT-28643 was given as a single subconjunctival injection intraoperatively to two of the right eye groups followed by postoperative vehicle eye drops (CLT+ group) or CLT-28643 eye drops 4 times daily (CLT++ group). A third group received mitomycin-C (MMC) intraoperatively (sponge application, 0.04%, 2 min) followed by vehicle eye drops postoperatively. The control-surgery group consisted of 12 left eyes having trabeculectomy with no adjunctive therapy. The remaining 12 left eyes formed the untreated group. Clinical assessment included intraocular pressure (IOP) measurement, slit-lamp examination (including bleb survival and morphology) and bleb photography. The rabbits were killed after four weeks for histology. Both CLT-28643-treated groups showed significantly prolonged bleb survival, and better bleb score compared to the control-surgery group. At end of the study, most functioning blebs were found in the MMC group (MMC group 75%; CLT+ group 12.5%, CLT++ group 25%; CLT+ group 12.5%, control-surgery group 0%). CLT-28643 was non-toxic and well tolerated. This rabbit GFS study indicates that inhibition of α5β1-integrin by the novel α5β1-integrin antagonist CLT-28643 significantly improved the outcome. The effect of a single intro-operative application of CLT-28643 seems to be inferior to 0.04% MMC. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Wang, Z; Gleichmann, H
1998-01-01
In mice, diabetes can be induced by multiple low doses of streptozotocin (MLD-STZ), i.e., 40 mg/kg body wt on each of 5 consecutive days. In this model, diabetes develops only when STZ induces both beta-cell toxicity and T-cell-dependent immune reactions. The target molecule(s) of MLD-STZ-induced beta-cell toxicity are not known, however. In this study, we report that GLUT2 is a target molecule for MLD-STZ toxicity. Ex vivo, a gradual decrement of both GLUT2 protein and mRNA expression was found in pancreatic islets isolated from MLD-STZ-treated C57BL/6 male mice, whereas mRNA expression of beta-actin, glucokinase, and proinsulin remained unaffected. Significant reduction of both GLUT2 protein and mRNA expression was first noted 1 day after the third STZ injection, clearly preceding the onset of hyperglycemia. The extent of reduction increased with the number of STZ injections administered and increased over time, after the last, i.e., fifth, STZ injection. The STZ-induced reduction of GLUT2 protein and mRNA was not due to an essential loss of beta-cells, because ex vivo, not only the total RNA yield and protein content in isolated islets, but also proinsulin mRNA expression, failed to differ significantly in the differently treated groups. Furthermore, islets isolated from MLD-STZ-treated donors responded to the nonglucose secretagogue arginine in a pattern similar to that of solvent-treated donors. Interestingly, the MLD-STZ-induced reduction of both GLUT2 protein and mRNA was prevented by preinjecting mice with 5-thio-D-glucose before each STZ injection. Apparently, GLUT2 is a crucial target molecule of MLD-STZ toxicity, and this toxicity seems to precede the immune reactions against beta-cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko
We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blotmore » and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.« less
Control of T lymphocyte morphology by the GTPase Rho
NASA Technical Reports Server (NTRS)
Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.
2003-01-01
BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.
Wooten, D K; Teague, T K; McIntyre, B W
1999-01-01
In normal lymphocytes an inside-out signal up-regulating integrin adhesion is followed by a ligand-mediated outside-in cell spreading signal. Protein kinase C (PKC) inhibition blocks lymphocyte adherence to and spreading on fibronectin. In contrast, putative PLC inhibitors yield distinct differences with respect to adhesion and morphology. The phosphatidylinositol-specific phospholipase C (PLC) inhibitor neomycin blocked spreading of CD3/CD28-activated T cells on fibronectin by disrupting adhesion. Furthermore, when an additional inside-out signal for fibronectin adhesion is unnecessary such as with HPB-ALL T leukemic or phorbol-myristate-acetate-treated normal T cells, neomycin treatment does not alter adhesion or morphology. However, the phosphatidylcholine-specific PLC inhibitor D609 abrogates cell spreading without affecting adhesion to fibronectin in these cells as well as the CD3/CD28-activated T cells. These results strongly suggest that inside-out signaling for the integrin alpha4beta1 in lymphocytes proceeds through phosphatidylinositol-specific PLC and PKC, whereas the outside-in signal utilizes phosphatidylcholine-specific PLC and PKC.
Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A.
Huber, A H; Wang, Y M; Bieber, A J; Bjorkman, P J
1994-04-01
We report the crystal structure of two adjacent fibronectin type III repeats from the Drosophila neural cell adhesion molecule neuroglian. Each domain consists of two antiparallel beta sheets and is folded topologically identically to single fibronectin type III domains from the extracellular matrix proteins tenascin and fibronectin. beta bulges and left-handed polyproline II helices disrupt the regular beta sheet structure of both neuroglian domains. The hydrophobic interdomain interface includes a metal-binding site, presumably involved in stabilizing the relative orientation between domains and predicted by sequence comparision to be present in the vertebrate homolog molecule L1. The neuroglian domains are related by a near perfect 2-fold screw axis along the longest molecular dimension. Using this relationship, a model for arrays of tandem fibronectin type III repeats in neuroglian and other molecules is proposed.
Integrins protect cardiomyocytes from ischemia/reperfusion injury
Okada, Hideshi; Lai, N. Chin; Kawaraguchi, Yoshitaka; Liao, Peter; Copps, Jeffrey; Sugano, Yasuo; Okada-Maeda, Sunaho; Banerjee, Indroneal; Schilling, Jan M.; Gingras, Alexandre R.; Asfaw, Elizabeth K.; Suarez, Jorge; Kang, Seok-Min; Perkins, Guy A.; Au, Carol G.; Israeli-Rosenberg, Sharon; Manso, Ana Maria; Liu, Zheng; Milner, Derek J.; Kaufman, Stephen J.; Patel, Hemal H.; Roth, David M.; Hammond, H. Kirk; Taylor, Susan S.; Dillmann, Wolfgang H.; Goldhaber, Joshua I.; Ross, Robert S.
2013-01-01
Ischemic damage is recognized to cause cardiomyocyte (CM) death and myocardial dysfunction, but the role of cell-matrix interactions and integrins in this process has not been extensively studied. Expression of α7β1D integrin, the dominant integrin in normal adult CMs, increases during ischemia/reperfusion (I/R), while deficiency of β1 integrins increases ischemic damage. We hypothesized that the forced overexpression of integrins on the CM would offer protection from I/R injury. Tg mice with CM-specific overexpression of integrin α7β1D exposed to I/R had a substantial reduction in infarct size compared with that of α5β1D-overexpressing mice and WT littermate controls. Using isolated CMs, we found that α7β1D preserved mitochondrial membrane potential during hypoxia/reoxygenation (H/R) injury via inhibition of mitochondrial Ca2+ overload but did not alter H/R effects on oxidative stress. Therefore, we assessed Ca2+ handling proteins in the CM and found that β1D integrin colocalized with ryanodine receptor 2 (RyR2) in CM T-tubules, complexed with RyR2 in human and rat heart, and specifically bound to RyR2 amino acids 165–175. Integrins stabilized the RyR2 interdomain interaction, and this stabilization required integrin receptor binding to its ECM ligand. These data suggest that α7β1D integrin modifies Ca2+ regulatory pathways and offers a means to protect the myocardium from ischemic injury. PMID:24091324
In vitro assessment of the effects of vedolizumab binding on peripheral blood lymphocytes
Wyant, Tim; Yang, Lili; Fedyk, Eric
2013-01-01
Vedolizumab (VDZ) is a humanized monoclonal antibody in development for the treatment of inflammatory bowel disease. VDZ binds to the α4β7 integrin complex and inhibits its binding to mucosal addressin cell adhesion molecule-1 (MAdCAM-1), thus preventing lymphocyte extravasation to gut mucosal tissues. To understand whether VDZ has additional effects that may affect its overall safety as a therapeutic molecule, we examined other potential actions of VDZ. In vitro assays with human peripheral blood lymphocytes demonstrated that VDZ fails to elicit cytotoxicity, lymphocyte activation, and cytokine production from memory T lymphocytes and does not interfere with the suppressive ability of regulatory T cells. Furthermore, we demonstrated that VDZ induces internalization of α4β7 and that the integrin is rapidly re-expressed and fully functional after VDZ withdrawal. These studies provide insight into the mechanisms underlying the observed safety profile of VDZ in clinical trials. PMID:24492340
Potin, Dominique; Launay, Michele; Nicolai, Eric; Fabreguette, Maud; Malabre, Patrice; Caussade, François; Besse, Dominique; Skala, Stacey; Stetsko, Dawn K; Todderud, Gordon; Beno, Brett R; Cheney, Daniel L; Chang, Chiehying J; Sheriff, Steven; Hollenbaugh, Diane L; Barrish, Joel C; Iwanowicz, Edwin J; Suchard, Suzanne J; Dhar, T G Murali
2005-02-15
LFA-1 (leukocyte function-associated antigen-1), is a member of the beta(2)-integrin family and is expressed on all leukocytes. The LFA-1/ICAM interaction promotes tight adhesion between activated leukocytes and the endothelium, as well as between T cells and antigen-presenting cells. Evidence from both animal models and clinical trials provides support for LFA-1 as a target in several different inflammatory diseases. This paper describes the de novo design, synthesis and in vitro activity of LFA-1 antagonists based on a bicyclic[5.5]hydantoin scaffold.
MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin
Shi, Feng; Sottile, Jane
2011-01-01
The extracellular matrix (ECM) is dynamically remodeled by cells during development, normal tissue homeostasis and in a variety of disease processes. We previously showed that fibronectin is an important regulator of ECM remodeling. The deposition and/or polymerization of fibronectin into the ECM controls the deposition and stability of other ECM molecules. In addition, agents that inhibit fibronectin polymerization promote the turnover of fibronectin fibrils and enhance ECM fibronectin endocytosis and intracellular degradation. Endocytosis of ECM fibronectin is regulated by β1 integrins, including α5β1 integrin. We have examined the role of extracellular proteases in regulating ECM fibronectin turnover. Our data show that membrane type matrix metalloproteinase 1 (MT1-MMP; also known as MMP14) is a crucial regulator of fibronectin turnover. Cells lacking MT1-MMP show reduced turnover and endocytosis of ECM fibronectin. MT1-MMP regulates ECM fibronectin remodeling by promoting extracellular cleavage of fibronectin and by regulating α5β1-integrin endocytosis. Our data also show that fibronectin polymerization stabilizes fibronectin fibrils and inhibits ECM fibronectin endocytosis by inhibiting α5β1-integrin endocytosis. These data are the first to show that an ECM protein and its modifying enzyme can regulate integrin endocytosis. These data also show that integrin trafficking plays a major role in modulating ECM fibronectin remodeling. The dual dependence of ECM fibronectin turnover on extracellular proteolysis and endocytosis highlights the complex regulatory mechanisms that control ECM remodeling to ensure maintenance of proper tissue function. PMID:22159414
Insulin promotes cell migration by regulating PSA-NCAM.
Monzo, Hector J; Coppieters, Natacha; Park, Thomas I H; Dieriks, Birger V; Faull, Richard L M; Dragunow, Mike; Curtis, Maurice A
2017-06-01
Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.
Vasquez, Kristine O.; Casavant, Chelsea; Peterson, Jeffrey D.
2011-01-01
When small molecules or proteins are injected into live animals, their physical and chemical properties will significantly affect pharmacokinetics, tissue penetration, and the ultimate routes of metabolism and clearance. Fluorescence molecular tomography (FMT) offers the ability to non-invasively image and quantify temporal changes in fluorescence throughout the major organ systems of living animals, in a manner analogous to traditional approaches with radiolabeled agents. This approach is best used with biotherapeutics (therapeutic antibodies, or other large proteins) or large-scaffold drug-delivery vectors, that are minimally affected by low-level fluorophore conjugation. Application to small molecule drugs should take into account the significant impact of fluorophore labeling on size and physicochemical properties, however, the presents studies show that this technique is readily applied to small molecule agents developed for far-red (FR) or near infrared (NIR) imaging. Quantification by non-invasive FMT correlated well with both fluorescence from tissue homogenates as well as with planar (2D) fluorescence reflectance imaging of excised intact organs (r2 = 0.996 and 0.969, respectively). Dynamic FMT imaging (multiple times from 0 to 24 h) performed in live mice after the injection of four different FR/NIR-labeled agents, including immunoglobulin, 20–50 nm nanoparticles, a large vascular imaging agent, and a small molecule integrin antagonist, showed clear differences in the percentage of injected dose per gram of tissue (%ID/g) in liver, kidney, and bladder signal. Nanoparticles and IgG1 favored liver over kidney signal, the small molecule integrin-binding agent favored rapid kidney and bladder clearance, and the vascular agent, showed both liver and kidney clearance. Further assessment of the volume of distribution of these agents by fluorescent volume added information regarding their biodistribution and highlighted the relatively poor extravasation into tissue by IgG1. These studies demonstrate the ability of quantitative FMT imaging of FR/NIR agents to non-invasively visualize and quantify the biodistribution of different agents over time. PMID:21731618
Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo
Zhi, Huiying; Rauova, Lubica; Hayes, Vincent; Gao, Cunji; Boylan, Brian; Newman, Debra K.; McKenzie, Steven E.; Cooley, Brian C.; Poncz, Mortimer; Newman, Peter J.
2013-01-01
The integrin family is composed of a series of 24 αβ heterodimer transmembrane adhesion receptors that mediate cell-cell and cell-extracellular matrix interactions. Adaptor molecules bearing immunoreceptor tyrosine-based activation motifs (ITAMs) have recently been shown to cooperate with specific integrins to increase the efficiency of transmitting ligand-binding–induced signals into cells. In human platelets, Fc receptor γ-chain IIa (FcγRIIa) has been identified as an ITAM-bearing transmembrane receptor responsible for mediating “outside-in” signaling through αIIbβ3, the major adhesion receptor on the platelet surface. To explore the importance of FcγRIIa in thrombosis and hemostasis, we subjected FcγRIIa-negative and FcγRIIa-positive murine platelets to a number of well-accepted models of platelet function. Compared with their FcγRIIa-negative counterparts, FcγRIIa-positive platelets exhibited increased tyrosine phosphorylation of Syk and phospholipase Cγ2 and increased spreading upon interaction with immobilized fibrinogen, retracted a fibrin clot faster, and showed markedly enhanced thrombus formation when perfused over a collagen-coated flow chamber under conditions of arterial and venous shear. They also displayed increased thrombus formation and fibrin deposition in in vivo models of vascular injury. Taken together, these data establish FcγRIIa as a physiologically important functional conduit for αIIbβ3-mediated outside-in signaling, and suggest that modulating the activity of this novel integrin/ITAM pair might be effective in controlling thrombosis. PMID:23264598
Alteration of medial-edge epithelium cell adhesion in two Tgf-β3 null mouse strains
Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Álvaro; Trinidad, Eva; Rabadán, M Ángeles; López, Yamila; Martínez, M Luisa; Martínez-Álvarez, Concepción
2008-01-01
Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice. PMID:18431835
Regulation of radial glial survival by signals from the meninges.
Radakovits, Randor; Barros, Claudia S; Belvindrah, Richard; Patton, Bruce; Müller, Ulrich
2009-06-17
Radial glial cells (RGCs) in the developing cerebral cortex are progenitors for neurons and glia, and their processes serve as guideposts for migrating neurons. So far, it has remained unclear whether RGC processes also control the function of RGCs more directly. Here, we show that RGC numbers and cortical size are reduced in mice lacking beta1 integrins in RGCs. TUNEL stainings and time-lapse video recordings demonstrate that beta1-deficient RGCs processes detach from the meningeal basement membrane (BM) followed by apoptotic death of RGCs. Apoptosis is also induced by surgical removal of the meninges. Finally, mice lacking the BM components laminin alpha2 and alpha4 show defects in the attachment of RGC processes at the meninges, a reduction in cortical size, and enhanced apoptosis of RGC cells. Our findings demonstrate that attachment of RGC processes at the meninges is important for RGC survival and the control of cortical size.
Prichard, David O; Byrne, Anne Marie; Murphy, James O; Reynolds, John V; O'Sullivan, Jacintha; Feighery, Ronan; Doyle, Brendan; Eldin, Osama Sharaf; Finn, Stephen P; Maguire, Aoife; Duff, Deirdre; Kelleher, Dermot P; Long, Aideen
2017-12-01
The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus (BO) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium (HET-1A) and BO (QH) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α 3 , α 4, α 5 , α 6 and α ν ). Experimental findings were validated in human explant oesophageal biopsies, a rat model of gastroesophageal reflux disease (GORD) and in patient tissue microarrays. The bile acid deoxycholic acid (DCA) specifically reduced adhesion of HET-1A cells to vitronectin and reduced cell-surface expression of integrin-α ν via effects on endocytic recycling processes. Increased expression of integrin-α v was observed in ulcerated tissue in a rat model of GORD and in oesophagitis and Barrett's intestinal metaplasia patient tissue compared to normal squamous epithelium. Increased expression of integrin-α ν was observed in QH BO cells compared to HET-1A cells. QH cells were resistant to DCA-mediated loss of adhesion and reduction in cell-surface expression of integrin-α ν . We demonstrated that a specific component of the gastric refluxate, DCA, affects the epithelial barrier through modulation of integrin α ν expression, providing a novel mechanism for bile acid-mediated erosion of oesophageal squamous epithelium and promotion of BO. Strategies aimed at preventing bile acid-mediated erosion should be considered in the clinical management of patients with GORD. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Chen, Hao; Kshirsagar, Sarika; Jensen, Ingvill; Lau, Kevin; Simonson, Caitlin; Schluter, Samuel F
2010-02-01
Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.
Pijls, Philippe A R R; Gilissen, Lennard P L
2016-11-01
The treatment of patients with inflammatory bowel diseases has been revolutionized by the introduction of biological therapy with TNF-alpha blockers. However, TNF-alpha blockers are also associated with a wide variety of dermatological side effects, such as local skin infections, psoriasis and eczema. A new biological therapy, targeting the gut-specific adhesion molecule alpha4beta7 integrin, is the humanized monoclonal IgG1 antibody vedolizumab. Vedolizumab prevents leukocyte migration to the gastrointestinal tract, thereby reducing inflammation. This gut-specific therapy has the potential to reduce systemic side effects, including dermatological ones. We describe 3 inflammatory bowel disease patients who experience anti-TNF-alpha therapy-induced dermatological side effects, consisting of hidradenitis suppurativa, a folliculitis, scalp psoriasis and a dissecting folliculitis. In all patients, anti-TNF-alpha therapy-induced dermatological side effects diminished after switching to vedolizumab. Vedolizumab may be a viable alternative biological therapy in inflammatory bowel disease patients who experience anti-TNF-alpha therapy-induced dermatological side effects. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawawi, M.S.F.; Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005; Dharmapatni, A.A.S.S.K.
2012-10-19
Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway inmore » osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p < 0.05) reduced the expression of NFATc1, CathK, OSCAR, FcR{gamma}, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p < 0.05) decreased CathK, OSCAR, FcR{gamma}, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the calcineurin-NFAT signalling cascade to suppress key mediators of the ITAM pathway during late stage osteoclast differentiation and this is associated with a reduction in both osteoclast differentiation and activity.« less
Dutta, Dipanjan; Chakraborty, Sayan; Bandyopadhyay, Chirosree; Valiya Veettil, Mohanan; Ansari, Mairaj Ahmed; Singh, Vivek Vikram; Chandran, Bala
2013-01-01
Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with human dermal endothelial cell surface tyrosine kinase EphrinA2 (EphA2) and integrins (α3β1 and αVβ3) in the lipid raft (LR) region, and EphA2 regulates macropinocytic virus entry by coordinating integrin-c-Cbl associated signaling. In contrast, KSHV enters human foreskin fibroblast (HFF) cells by LR-independent clathrin mediated endocytosis. The present studies conducted to identify the key molecules regulating KSHV entry in HFF cells showed that KSHV induces association with integrins (αVβ5, αVβ3 and α3β1) and EphA2 in non-LR regions early during infection and activates EphA2, which in turn associates with phosphorylated c-Cbl, myosin IIA, FAK, Src, and PI3-K, as well as clathrin and its adaptor AP2 and effector Epsin-15 proteins. EphA2 knockdown significantly reduced these signal inductions, virus internalization and gene expression. c-Cbl knockdown ablated the c-Cbl mediated K63 type polyubiquitination of EphA2 and clathrin association with EphA2 and KSHV. Mutations in EphA2's tyrosine kinase domain (TKD) or sterile alpha motif (SAM) abolished its interaction with c-Cbl. Mutations in tyrosine kinase binding (TKB) or RING finger (RF) domains of c-Cbl resulted in very poor association of c-Cbl with EphA2 and decreased EphA2 polyubiquitination. These studies demonstrated the contributions of these domains in EphA2 and c-Cbl association, EphA2 polyubiquitination and virus-EphA2 internalization. Collectively, these results revealed for the first time that EphA2 influences the tyrosine phosphorylation of clathrin, the role of EphA2 in clathrin mediated endocytosis of a virus, and c-Cbl mediated EphA2 polyubiquitination directing KSHV entry in HFF cells via coordinated signal induction and progression of endocytic events, all of which suggest that targeting EphA2 and c-Cbl could block KSHV entry and infection. PMID:23874206
Bethea, Cynthia L; Reddy, Arubala P
2012-07-01
Dendritic spines are the elementary structural units of neural plasticity. In a model of hormone replacement therapy (HT), we sought to determine the effect of estradiol (E) and progesterone (P) on gene expression related to synapse assembly in a laser-captured preparation enriched for serotonin neurons from rhesus macaques. Microarray analysis was conducted (n = 2 animals/treatment), and the results were confirmed for pivotal genes with qRT-PCR on additional laser-captured material (n = 3 animals/treatment). Ovariectomized rhesus macaques were treated with placebo, E, or E + P via Silastic implants for 1 month. The midbrain was obtained, sectioned, and immunostained for tryptophan hydroxylase (TPH). TPH-positive neurons were laser captured using an arcturus laser dissection microscope (Pixel II). RNA from laser-captured serotonin neurons was hybridized to Rhesus Affymetrix GeneChips for screening purposes. There was a twofold or greater change in the expression of 63 probe sets in the cell adhesion molecule (CAM) category, and 31 probe sets in the synapse assembly category were similarly altered in E- and E + P-treated animals. qRT-PCR assays showed that E treatment induced a significant increase in ephrin receptor A4 (EPHA4) and in integrin A8 (ITGA8) but not in ephrin receptor B4 (EPHB4) or integrin B8 (ITGB8) expression. E also increased expression of cadherin 11 (CDH11), neuroligin 3 (NLGN3), neurexin 3 (NRXN3), syndecan 2 (SCD2), and neural cell adhesion molecule (NCAM) compared with placebo. Supplemental P treatment suppressed E-induced gene expression. In summary, ovarian steroids target gene expression of adhesion molecules in serotonin neurons that are important for synapse assembly. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tarnok, Attila; Pipek, Michal; Valet, Guenter; Richter, Jacqueline; Hambsch, Joerg; Schneider, Peter
1999-04-01
Our initial studies indicate that children who develop post- operative capillary leak syndrome (CLS) following cardiac surgery with cardiopulmonary bypass (CPB) can be distinguished based on their pre-operative level of circulating cytokines an adhesion molecules. We tested flow cytometric analysis of surface antigen expression as a potential assay for risk assessment of CLS. 24th preoperative blood samples were stained with monoclonal antibodies for the adhesion molecules ICAM-1, LFA1, MAC1, (beta) -integrin, activation markers CD25, CD54, CD69, HLA- DR, CD14 or CD4. Cells were measured on a dual-laser flow cytometer calibrated with microbeads. Antigen expression was detected as mean fluorescence intensity. The data indicate, that neutrophils of CLS patients express preoperatively higher levels of LFA1 and monocytes higher levels of HLA-DR and activation markers thus are in a state of activation. This could in combination with surgical trauma and CPB lead to their additional stimulation and migration into sites of inflammation and induce postoperative CLS. It is planned to set up a Flow-Classification program for individual risk assessment. By discriminate analysis over 80 percent of the patients were correctly classified. Our preliminary study indicates that flow cytometry with its low samples requirements and rapid access of the results could be a powerful tool to perform risk assessment prior to pediatric open heart surgery.
Graham, Kate L.; Halasz, Peter; Tan, Yan; Hewish, Marilyn J.; Takada, Yoshikazu; Mackow, Erich R.; Robinson, Martyn K.; Coulson, Barbara S.
2003-01-01
Integrins α2β1, αXβ2, and αVβ3 have been implicated in rotavirus cell attachment and entry. The virus spike protein VP4 contains the α2β1 ligand sequence DGE at amino acid positions 308 to 310, and the outer capsid protein VP7 contains the αXβ2 ligand sequence GPR. To determine the viral proteins and sequences involved and to define the roles of α2β1, αXβ2, and αVβ3, we analyzed the ability of rotaviruses and their reassortants to use these integrins for cell binding and infection and the effect of peptides DGEA and GPRP on these events. Many laboratory-adapted human, monkey, and bovine viruses used integrins, whereas all porcine viruses were integrin independent. The integrin-using rotavirus strains each interacted with all three integrins. Integrin usage related to VP4 serotype independently of sialic acid usage. Analysis of rotavirus reassortants and assays of virus binding and infectivity in integrin-transfected cells showed that VP4 bound α2β1, and VP7 interacted with αXβ2 and αVβ3 at a postbinding stage. DGEA inhibited rotavirus binding to α2β1 and infectivity, whereas GPRP binding to αXβ2 inhibited infectivity but not binding. The truncated VP5* subunit of VP4, expressed as a glutathione S-transferase fusion protein, bound the expressed α2 I domain. Alanine mutagenesis of D308 and G309 in VP5* eliminated VP5* binding to the α2 I domain. In a novel process, integrin-using viruses bind the α2 I domain of α2β1 via DGE in VP4 and interact with αXβ2 (via GPR) and αVβ3 by using VP7 to facilitate cell entry and infection. PMID:12941907
Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.
Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A
2014-12-01
Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.
2013-09-01
12192595 12. Yao, H., D. Veine, K. Fay, E. Staszewski, et al., The PHSCN dendrimer as a more potent inhibitor of human breast cancer cell...Z.Z. Zeng, K.S. Fay, et al., Increased potency of the PHSCN dendrimer as an inhibitor of human prostate cancer cell invasion, extravasation, and lung
2014-09-01
dendrimer as a more potent inhibitor of human breast cancer cell invasion, extravasation, and lung colony formation. Breast Cancer Research and Treatment...2011. 125: p. 363-375. PMID: 20300829 13. Yao, H., D.M. Veine, Z.Z. Zeng, K.S. Fay, et al., Increased potency of the PHSCN dendrimer as an inhibitor of
Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils
Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S.
2018-01-01
Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)–dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. PMID:29592875
Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils.
Yago, Tadayuki; Zhang, Nan; Zhao, Liang; Abrams, Charles S; McEver, Rodger P
2018-04-10
Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates β2 integrins to slow rolling velocities. Chemokine signaling activates β2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)-dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated β2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate β2 integrins. © 2018 by The American Society of Hematology.
Radil controls neutrophil adhesion and motility through β2-integrin activation
Liu, Lunhua; Aerbajinai, Wulin; Ahmed, Syed M.; Rodgers, Griffin P.; Angers, Stephane; Parent, Carole A.
2012-01-01
Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP–dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation. PMID:23097489
Radil controls neutrophil adhesion and motility through β2-integrin activation.
Liu, Lunhua; Aerbajinai, Wulin; Ahmed, Syed M; Rodgers, Griffin P; Angers, Stephane; Parent, Carole A
2012-12-01
Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP-dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation.
NASA Astrophysics Data System (ADS)
Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A.; Ghosh, Partha Pratim; Mitra, Prasenjit
2016-06-01
Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation.
Asalla, Suman; Girada, Shravan Babu; Kuna, Ramya S.; Chowdhury, Debabrata; Kandagatla, Bhaskar; Oruganti, Srinivas; Bhadra, Utpal; Bhadra, Manika Pal; Kalivendi, Shasi Vardhan; Rao, Swetha Pavani; Row, Anupama; Ibrahim, A; Ghosh, Partha Pratim; Mitra, Prasenjit
2016-01-01
Dyslipidemia, particularly the elevated serum cholesterol levels, aggravate the pathophysiology of type 2 diabetes. In the present study we explored the relationship between fasting blood sugar and serum lipid parameters in human volunteers which revealed a significant linear effect of serum cholesterol on fasting blood glucose. Short term feeding of cholesterol enriched diet to rodent model resulted in elevated serum cholesterol levels, cholesterol accumulation in pancreatic islets and hyperinsulinemia with modest increase in plasma glucose level. To explore the mechanism, we treated cultured BRIN-BD11 pancreatic beta cells with soluble cholesterol. Our data shows that cholesterol treatment of cultured pancreatic beta cells enhances total cellular cholesterol. While one hour cholesterol exposure enhances insulin exocytosis, overnight cholesterol accumulation in cultured pancreatic beta cells affects cellular respiration, and inhibits Glucose stimulated insulin secretion. We further report that (E)-4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl) hydrazono) ethyl) phenol (small molecule M1) prevents the cholesterol mediated blunting of cellular respiration and potentiates Glucose stimulated insulin secretion which was abolished in pancreatic beta cells on cholesterol accumulation. PMID:27282931
Gajewska, Małgorzata; Motyl, Tomasz
2004-10-01
TGF-beta 1 is an antiproliferative and apoptogenic factor for mammary epithelial cells (MEC) acting in an auto/paracrine manner and thus considered an important local regulator of mammary tissue involution. However, the apoptogenic signaling pathway induced by this cytokine in bovine MEC remains obscure. The present study was focused on identification of molecules involved in apoptogenic signaling of transforming growth factor-beta 1 (TGF-beta 1) in the model of bovine mammary epithelial cell line (BME-UV1). Laser scanning cytometry (LSC), Western blot and electrophoretic mobility shift assay (EMSA) were used for analysis of expression and activity of TGF-beta 1-related signaling molecules. The earliest response occurring within 1-2 h after TGF-beta 1 administration was an induction and activation of R-Smads (Smad2 and Smad3) and Co-Smad (Smad4). An evident formation of Smad-DNA complexes began from 2nd hour after MEC exposure to TGF-beta 1. Similarly to Smads, proteins of AP1 complex: phosphorylated c-Jun and JunD appeared to be early reactive molecules; however, an increase in their expression was detected only in cytosolic fraction. In the next step, an increase of IGF binding protein-3 (IGFBP-3) and IGFBP-4 expression was observed from 6th hour followed by a decrease in the activity of protein kinase B (PKB/Akt), which occurred after 24 h of MEC exposure to TGF-beta 1. The decrease in PKB/Akt activity coincided in time with the decline of phosphorylated Bad expression (inactive form). Present study supported additional evidence that stimulation of insulin-like growth factor I (IGF-I) was associated with complete abrogation of TGF-beta 1-induced activation of Bad and Bax and in the consequence protection against apoptosis. In conclusion, apoptotic effect of TGF-beta 1 in bovine MEC is mediated by IGFBPs and occurs through IGF-I sequestration, resulting in inhibition of PKB/Akt-dependent survival pathway.
NASA Technical Reports Server (NTRS)
Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.;
1998-01-01
BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.
Konstantopoulos, K; Neelamegham, S; Burns, A R; Hentzen, E; Kansas, G S; Snapp, K R; Berg, E L; Hellums, J D; Smith, C W; McIntire, L V; Simon, S I
1998-09-01
After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.
Blocking neutrophil integrin activation prevents ischemia-reperfusion injury.
Yago, Tadayuki; Petrich, Brian G; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H; McEver, Rodger P
2015-07-27
Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia-reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin's capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia-reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin-mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin-mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia-reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. © 2015 Yago et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Masashi; Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501; Fukushima, Takahiro
Highlights: • We developed a radioiodinated peptide probe targeting αvβ6 integrin ({sup 123}I-IFMDV2). • {sup 123}I-IFMDV2 had a high affinity and selectivity for αvβ6 integrin. • {sup 123}I-IFMDV2 showed a specific binding to αvβ6 integrin in vivo. • {sup 123}I-IFMDV2 enabled clear visualization of the αvβ6-integrin-positive tumor. - Abstract: Introduction: Pancreatic ductal adenocarcinoma (PDAC) remains a major cause of cancer-related death. Since significant upregulation of αvβ6 integrin has been reported in PDAC, this integrin is a promising target for PDAC detection. In this study, we aimed to develop a radioiodinated probe for the imaging of αvβ6 integrin-positive PDAC with single-photonmore » emission computed tomography (SPECT). Methods: Four peptide probes were synthesized and screened by competitive and saturation binding assays using 2 PDAC cell lines (AsPC-1, αvβ6 integrin-positive; MIA PaCa-2, αvβ6 integrin-negative). The probe showing the best affinity was used to study the biodistribution assay, an in vivo blocking study, and SPECT imaging using tumor bearing mice. Autoradiography and immunohistochemical analysis were also performed. Results: Among the 4 probes examined in this study, {sup 125}I-IFMDV2 showed the highest affinity for αvβ6 integrin expressed in AsPC-1 cells and no affinity for MIA PaCa-2 cells. The accumulation of {sup 125}I-IFMDV2 in the AsPC-1 xenograft was 3–5 times greater than that in the MIA PaCa-2 xenograft, consistent with the expression of αvβ6 integrin in each xenograft, and confirmed by immunohistochemistry. Pretreatment with excess amounts of A20FMDV2 significantly blocked the accumulation of {sup 125}I-IFMDV2 in the AsPC-1 xenograft, but not in the MIA PaCa-2 xenograft. Furthermore, {sup 123}I-IFMDV2 enabled clear visualization of the AsPC-1 xenograft. Conclusion: {sup 123}I-IFMDV2 is a potential SPECT probe for the imaging of αvβ6 integrin in PDAC.« less
Computer-aided design of peptide near infrared fluorescent probe for tumor diagnosis
NASA Astrophysics Data System (ADS)
Zhang, Congying; Gu, Yueqing
2014-09-01
Integrin αvβ3 receptors are expressed on activated endothelial cells during neovascularization to maintain tumor growth, so they become hot research tagets in cancer diagnosis. Peptides possess several attractive features when compared to protein and small molecule, such as small size and high structural compatibility with target proteins. Efficient design of high-affinity peptide ligands to Integrin αvβ3 receptors has been an important problem. Designed peptides in silico provide a valuable and high-selectivity peptide, meanwhile decrease the time of drug screening. In this study, we design peptide which can bind with integrin αvβ3 via computer, and then synthesis near infrared fluorescent probe. The characterization of this near infrared fluorescent probe was detected by UV. To investigate the tumor cell targeting of this probe, it was labeled with visible fluorescent dye Rhodamine B (RhB) for microscopy. To evaluate the targeting capability of this near infrared fluorescent probe, mice bearing integrin αvβ3 positive tumor xenografts were used. In vitro cellular experiments indicated that this probe have a clear binding affinity to αvβ3-positive tumor cells. In vivo experiments confirmed the receptor binding specificity of this probe. The peptide of computational design can bind with integrin αvβ3. Combined peptide near-infrared fluorescent probe with imaging technology use for clinical and tumor diagnosis have a greater development in future.
Mekhdjian, Armen H.; Kai, FuiBoon; Rubashkin, Matthew G.; Prahl, Louis S.; Przybyla, Laralynne M.; McGregor, Alexandra L.; Bell, Emily S.; Barnes, J. Matthew; DuFort, Christopher C.; Ou, Guanqing; Chang, Alice C.; Cassereau, Luke; Tan, Steven J.; Pickup, Michael W.; Lakins, Jonathan N.; Ye, Xin; Davidson, Michael W.; Lammerding, Jan; Odde, David J.; Dunn, Alexander R.; Weaver, Valerie M.
2017-01-01
Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome. PMID:28381423
Majka, Susan M.; Kohrt, Wendy M.; Miller, Heidi L.; Sullivan, Timothy M.; Klemm, Dwight J.
2017-01-01
ABSTRACT Some bona fide adult adipocytes arise de novo from a bone marrow-derived myeloid lineage. These studies further demonstrate that adipose tissue stroma contains a resident population of myeloid cells capable of adipocyte and multilineage mesenchymal differentiation. These resident myeloid cells lack hematopoietic markers and express mesenchymal and progenitor cell markers. Because bone marrow mesenchymal progenitor cells have not been shown to enter the circulation, we hypothesized that myeloid cells acquire mesenchymal differentiation capacity in adipose tissue. We fabricated a 3-dimensional fibrin matrix culture system to define the adipose differentiation potential of adipose tissue-resident myeloid subpopulations, including macrophages, granulocytes and dendritic cells. Our data show that multilineage mesenchymal potential was limited to adipose tissue macrophages, characterized by the acquisition of adipocyte, osteoblast, chondrocyte and skeletal muscle myocyte phenotypes. Fibrin hydrogel matrices stimulated macrophage loss of hematopoietic cell lineage determinants and the expression of mesenchymal and progenitor cell markers, including integrin β1. Ablation of integrin β1 in macrophages inhibited adipocyte specification. Therefore, some bona fide adipocytes are specifically derived from adipose tissue-resident macrophages via an integrin β1-dependent hematopoietic-to-mesenchymal transition, whereby they become capable of multipotent mesenchymal differentiation. The requirement for integrin β1 highlights this molecule as a potential target for controlling the production of marrow-derived adipocytes and their contribution to adipose tissue development and function. PMID:28441086
Li, Longxuan; Liu, Fudong; Welser-Alves, Jennifer V.; McCullough, Louise D.; Milner, Richard
2012-01-01
Following focal cerebral ischemia, blood vessels in the ischemic border, or penumbra, launch an angiogenic response. In light of the critical role for fibronectin in angiogenesis, and the observation that fibronectin and its integrin receptors are strongly upregulated on angiogenic vessels in the hypoxic CNS, the aim of this study was to establish whether angiogenic vessels in the ischemic CNS also show this response. Focal cerebral ischemia was established in C57/Bl6 mice by middle cerebral artery occlusion (MCA:O), and brain tissue analyzed seven days following re-perfusion, a time at which angiogenesis is ongoing. Within the ischemic core, immunofluorescent (IF) studies demonstrated vascular expression of MECA-32, a marker of leaky cerebral vessels, and vascular breakdown, defined by loss of staining for the endothelial marker, CD31, and the vascular adhesion molecules, laminin, dystroglycan and α6 integrin. Within the ischemic penumbra, dual-IF with CD31 and Ki67 revealed the presence of proliferating endothelial cells, indicating ongoing angiogenesis. Significantly, vessels in the ischemic penumbra showed strong upregulation of fibronectin and the fibronectin receptors, α5β1 and αvβ3 integrins. Taken together with our recent finding that the α5β1 integrin plays an important role in promoting cerebral angiogenesis in response to hypoxia, these results suggest that stimulation of the fibronectin-α5β1 integrin signalling pathway may provide a novel approach to amplifying the intrinsic angiogenic response to cerebral ischemia. PMID:22056225
Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro
2012-01-01
CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.
The role of a conserved membrane proximal cysteine in altering αPS2CβPS integrin diffusion.
Syed, Aleem; Arora, Neha; Bunch, Thomas A; Smith, Emily A
2016-11-15
Cysteine residues (Cys) in the membrane proximal region are common post-translational modification (PTM) sites in transmembrane proteins. Herein, the effects of a highly conserved membrane proximal α-subunit Cys 1368 on the diffusion properties of αPS2CβPS integrins are reported. Sequence alignment shows that this cysteine is palmitoylated in human α3 and α6 integrin subunits. Replacing Cys 1368 in wild-type integrins with valine (Val 1368 ) putatively blocks a PTM site and alters integrins' ligand binding and diffusion characteristics. Both fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) diffusion measurements show Val 1368 integrins are more mobile compared to wild-type integrins. Approximately 33% and 8% more Val 1368 integrins are mobile as measured by FRAP and SPT, respectively. The mobile Val 1368 integrins also exhibit less time-dependent diffusion, as measured by FRAP. Tandem mass spectrometry data suggest that Cys 1368 contains a redox or palmitoylation PTM in αPS2CβPS integrins. This membrane proximal Cys may play an important role in the diffusion of other alpha subunits that contain this conserved residue.
Kalli, Antreas C; Rog, Tomasz; Vattulainen, Ilpo; Campbell, Iain D; Sansom, Mark S P
2017-08-01
Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2-F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2-F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes.
Di Stefano, Paola; Cabodi, Sara; Erba, Elisabetta Boeri; Margaria, Valentina; Bergatto, Elena; Giuffrida, Maria Gabriella; Silengo, Lorenzo; Tarone, Guido; Turco, Emilia; Defilippi, Paola
2004-01-01
Integrin-mediated cell adhesion stimulates a cascade of signaling pathways that control cell proliferation, migration, and survival, mostly through tyrosine phosphorylation of signaling molecules. p130Cas, originally identified as a major substrate of v-Src, is a scaffold molecule that interacts with several proteins and mediates multiple cellular events after cell adhesion and mitogen treatment. Here, we describe a novel p130Cas-associated protein named p140Cap (Cas-associated protein) as a new tyrosine phosphorylated molecule involved in integrin- and epidermal growth factor (EGF)-dependent signaling. By affinity chromatography of human ECV304 cell extracts on a MBP-p130Cas column followed by mass spectrometry matrix-assisted laser desorption ionization/time of flight analysis, we identified p140Cap as a protein migrating at 140 kDa. We detected its expression in human, mouse, and rat cells and in different mouse tissues. Endogenous and transfected p140Cap proteins coimmunoprecipitate with p130Cas in ECV304 and in human embryonic kidney 293 cells and associate with p130Cas through their carboxy-terminal region. By immunofluorescence analysis, we demonstrated that in ECV304 cells plated on fibronectin, the endogenous p140Cap colocalizes with p130Cas in the perinuclear region as well as in lamellipodia. In addition p140Cap codistributes with cortical actin and actin stress fibers but not with focal adhesions. We also show that p140Cap is tyrosine phosphorylated within 15 min of cell adhesion to integrin ligands. p140Cap tyrosine phosphorylation is also induced in response to EGF through an EGF receptor dependent-mechanism. Interestingly expression of p140Cap in NIH3T3 and in ECV304 cells delays the onset of cell spreading in the early phases of cell adhesion to fibronectin. Therefore, p140Cap is a novel protein associated with p130Cas and actin cytoskeletal structures. Its tyrosine phosphorylation by integrin-mediated adhesion and EGF stimulation and its involvement in cell spreading on matrix proteins suggest that p140Cap plays a role in controlling actin cytoskeleton organization in response to adhesive and growth factor signaling. PMID:14657239
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2013-01-01
The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock-down cells and αvβ3low cells was not altered. In summary, these results suggest that the αvβ3 integrin enhances cancer cell invasion through increased cellular stiffness and enhanced cytoskeletal remodeling dynamics, which enables the cells to generate and transmit contractile forces to overcome the steric hindrance of 3D ECMs.
Amino acid sequence of the human fibronectin receptor
1987-01-01
The amino acid sequence deduced from cDNA of the human placental fibronectin receptor is reported. The receptor is composed of two subunits: an alpha subunit of 1,008 amino acids which is processed into two polypeptides disulfide bonded to one another, and a beta subunit of 778 amino acids. Each subunit has near its COOH terminus a hydrophobic segment. This and other sequence features suggest a structure for the receptor in which the hydrophobic segments serve as transmembrane domains anchoring each subunit to the membrane and dividing each into a large ectodomain and a short cytoplasmic domain. The alpha subunit ectodomain has five sequence elements homologous to consensus Ca2+- binding sites of several calcium-binding proteins, and the beta subunit contains a fourfold repeat strikingly rich in cysteine. The alpha subunit sequence is 46% homologous to the alpha subunit of the vitronectin receptor. The beta subunit is 44% homologous to the human platelet adhesion receptor subunit IIIa and 47% homologous to a leukocyte adhesion receptor beta subunit. The high degree of homology (85%) of the beta subunit with one of the polypeptides of a chicken adhesion receptor complex referred to as integrin complex strongly suggests that the latter polypeptide is the chicken homologue of the fibronectin receptor beta subunit. These receptor subunit homologies define a superfamily of adhesion receptors. The availability of the entire protein sequence for the fibronectin receptor will facilitate studies on the functions of these receptors. PMID:2958481
Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction
Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela
2014-01-01
Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660
El Fakhry, Youssef; Alturaihi, Haydar; Yacoub, Daniel; Liu, Lihui; Guo, Wenyan; Leveillé, Claire; Jung, Daniel; Khzam, Lara Bou; Merhi, Yahye; Wilkins, John A.; Li, Hongmin; Mourad, Walid
2012-01-01
In addition to its classical CD40 receptor, CD154 also binds to αIIbβ3, α5β1, and αMβ2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbβ3, and α5β1 receptors. We found that the binding affinity of CD154 for αIIbβ3 is ∼4-fold higher than for α5β1. We also describe the generation of sCD154 mutants that lost their ability to bind CD40 or αIIbβ3 and show that CD154 residues involved in its binding to CD40 or αIIbβ3 are distinct from those implicated in its interaction to α5β1, suggesting that sCD154 may bind simultaneously to different receptors. Indeed, sCD154 can bind simultaneously to CD40 and α5β1 and biologically activate human monocytic U937 cells expressing both receptors. The simultaneous engagement of CD40 and α5β1 activates the mitogen-activated protein kinases, p38, and extracellular signal-related kinases 1/2 and synergizes in the release of inflammatory mediators MMP-2 and -9, suggesting a cross-talk between these receptors. PMID:22461623
Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells.
Das, Lipsa; Anderson, Todd A; Gard, Jaime M C; Sroka, Isis C; Strautman, Stephanie R; Nagle, Raymond B; Morrissey, Colm; Knudsen, Beatrice S; Cress, Anne E
2017-05-01
Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modeling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (k actual ) of 3.25 min -1 , threefold faster than α3 integrin (1.0 min -1 ), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min -1 ), and significantly slower than the unrelated transferrin receptor (CD71) (15 min -1 ). Silencing of α3 integrin protein expression in DU145, PC3, and PC3B1 cells resulted in up to a 1.71-fold increase in k actual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8-fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the k actual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. J. Cell. Biochem. 118: 1038-1049, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells†
Das, Lipsa; Anderson, Todd A.; Gard, Jaime M.C.; Sroka, Isis C.; Strautman, Stephanie R.; Nagle, Raymond B.; Morrissey, Colm; Knudsen, Beatrice S.; Cress, Anne E.
2017-01-01
Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modelling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (kactual) of 3.25min−1, 3-fold faster than α3 integrin (1.0 min−1), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min−1), and significantly slower than the unrelated transferrin receptor (CD71) (15 min−1). Silencing of α3 integrin protein expression in DU145, PC3 and PC3B1 cells resulted in up to a 1.71-fold increase in kactual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8 fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the kactual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. This article is protected by copyright. All rights reserved PMID:27509031
Kim, Hwan D.; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni
2015-01-01
Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634
An Overview of the Mechanism of Action of the Monoclonal Antibody Vedolizumab.
Wyant, Tim; Fedyk, Eric; Abhyankar, Brihad
2016-12-01
Vedolizumab is a novel therapeutic monoclonal antibody recently approved for the treatment of moderately to severely active ulcerative colitis and Crohn's disease in adults who have failed at least one conventional therapy. An integrin antagonist, vedolizumab binds to the α 4 β 7 integrin which is expressed specifically by a subset of gastrointestinal-homing T lymphocytes. The binding of α 4 β 7 integrin to mucosal addressin cell adhesion molecule-1 expressed on the surface of mucosal endothelial cells is a crucial component of the gut-selective homing mechanism for lymphocytes.In contrast, other monoclonal antibodies approved for the treatment of inflammatory bowel diseases, such as tumour necrosis factor α antagonists and the integrin antagonist natalizumab, act systemically or on multiple targets to reduce inflammation.The unique gut selectivity of vedolizumab may contribute to the favourable benefit-risk profile observed in vedolizumab clinical trials. In this review, we summarise data from the preclinical development of vedolizumab and describe the current understanding of the mechanism of action as it relates to other biological therapies for inflammatory bowel disease. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Pinto, Rui M A; Salvador, Jorge A R; Paixão, José A
2008-05-01
In the title compounds, C(21)H(30)O(4), (I), and C(23)H(34)O(4), (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis-(5beta,10beta)-fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5beta,6beta-epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree-Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.
1996-01-01
Thymic selection of natural killer-1+ natural T cells that express alpha beta T cell receptors requires a conserved beta 2-microglobulin- associated molecule, presumably CD1d, displayed by CD4+8+ thymocytes. Here we demonstrate that positive selection of natural T cells occurs independent of transporters associated with antigen presentation-1 (TAP- 1) function. Moreover, natural T cells in TAP-1o/o mice are numerically expanded. Several H-2 class Ib molecules function in a TAP-independent manner, suggesting that if expressed in TAP-1o/o thymocytes, they could play a role in natural T cell development. Of these class Ib molecules, H-2TL is expressed by TAP-1o/o thymocytes. Moreover, we find that thymi of TL+ mice congenic or transgenic for H-2T18 also have a numerically expanded natural T cell repertoire compared with TL- mice. This expansion, as in TAP-1o/o thymi, is evident in each of the limited T cell receptor V beta chains expressed by natural T cells, suggesting that TL and CD1d impact similar repertoires. Thus TL, in addition to CD1d, plays a role in natural T cell development. PMID:8879233
Simulation of TGF-Beta Activation by Low-Dose HZE Radiation in a Cell Culture
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2009-01-01
High charge (Z) and energy (E) (HZE) nuclei comprised in the galactic cosmic rays are main contributors to space radiation risk. They induce many lesions in living matter such as non-specific oxidative damage and the double-strand breaks (DSBs), which are considered key precursors of early and late effects of radiation. There is increasing evidence that cells respond collectively rather than individually to radiation, suggesting the importance of cell signaling1. The transforming growth factor (TGF ) is a signaling peptide that is expressed in nearly all cell type and regulates a large array of cellular processes2. TGF have been shown to mediate cellular response to DNA damage3 and to induce apoptosis in non-irradiated cells cocultured with irradiated cells4. TFG molecules are secreted by cells in an inactive complex known as the latency-associated peptide (LAP). TGF is released from the LAP by a conformational change triggered by proteases, thrombospondin-1, integrins, acidic conditions and .OH radical5. TGF then binds to cells receptors and activates a cascade of events mediated by Smad proteins6, which might interfere with the repair of DNA. Meanwhile, increasingly sophisticated Brownian Dynamics (BD) algorithms have appeared recently in the literature7 and can be applied to study the interaction of molecules with receptors. These BD computer models have contributed to the elucidation of signal transduction, ligand accumulation and autocrine loops in the epidermal growth factor (EGF) and its receptor (EFGR) system8. To investigate the possible roles of TGF in an irradiated cell culture, our Monte-Carlo simulation codes of the radiation track structure9 will be used to calculate the activation of TFG triggered by .OH produced by low doses of HZE ions. The TGF molecules will then be followed by a BD algorithm in a medium representative of a cell culture to estimate the number of activated receptors.
Nurisso, Alessandra; Blanchard, Bertrand; Audfray, Aymeric; Rydner, Lina; Oscarson, Stefan; Varrot, Annabelle; Imberty, Anne
2010-06-25
Calcium-dependent lectin I from Pseudomonas aeruginosa (PA-IL) binds specifically to oligosaccharides presenting an alpha-galactose residue at their nonreducing end, such as the disaccharides alphaGal1-2betaGalOMe, alphaGal1-3betaGalOMe, and alphaGal1-4betaGalOMe. This provides a unique model for studying the effect of the glycosidic linkage of the ligands on structure and thermodynamics of the complexes by means of experimental and theoretical tools. The structural features of PA-IL in complex with the three disaccharides were established by docking and molecular dynamics simulations and compared with those observed in available crystal structures, including PA-IL.alphaGal1-2betaGalOMe complex, which was solved at 2.4 A resolution and reported herein. The role of a structural bridge water molecule in the binding site of PA-IL was also elucidated through molecular dynamics simulations and free energy calculations. This water molecule establishes three very stable hydrogen bonds with O6 of nonreducing galactose, oxygen from Pro-51 main chain, and nitrogen from Gln-53 main chain of the lectin binding site. Binding free energies for PA-IL in complex with the three disaccharides were investigated, and the results were compared with the experimental data determined by titration microcalorimetry. When the bridge water molecule was included in the free energy calculations, the simulations predicted the correct binding affinity trends with the 1-2-linked disaccharide presenting three times stronger affinity ligand than the other two. These results highlight the role of the water molecule in the binding site of PA-IL and indicate that it should be taken into account when designing glycoderivatives active against P. aeruginosa adhesion.
Tensin stabilizes integrin adhesive contacts in Drosophila.
Torgler, Catherine N; Narasimha, Maithreyi; Knox, Andrea L; Zervas, Christos G; Vernon, Matthew C; Brown, Nicholas H
2004-03-01
We report the functional characterization of the Drosophila ortholog of tensin, a protein implicated in linking integrins to the cytoskeleton and signaling pathways. A tensin null was generated and is viable with wing blisters, a phenotype characteristic of loss of integrin adhesion. In tensin mutants, mechanical abrasion is required during wing expansion to cause wing blisters, suggesting that tensin strengthens integrin adhesion. The localization of tensin requires integrins, talin, and integrin-linked kinase. The N-terminal domain and C-terminal PTB domain of tensin provide essential recruitment signals. The intervening SH2 domain is not localized on its own. We suggest a model where tensin is recruited to sites of integrin adhesion via its PTB and N-terminal domains, localizing the SH2 domain so that it can interact with phosphotyrosine-containing proteins, which stabilize the integrin link to the cytoskeleton.
Waters, Emily A; Chen, Junjie; Allen, John S; Zhang, Huiying; Lanza, Gregory M; Wickline, Samuel A
2008-01-01
Background Angiogenesis is a critical early feature of atherosclerotic plaque development and may also feature prominently in the pathogenesis of aortic valve stenosis. It has been shown that MRI can detect and quantify specific molecules of interest expressed in cardiovascular disease and cancer by measuring the unique fluorine signature of appropriately targeted perfluorocarbon (PFC) nanoparticles. In this study, we demonstrated specific binding of ανβ3 integrin targeted nanoparticles to neovasculature in a rabbit model of aortic valve disease. We also showed that fluorine MRI could be used to detect and quantify the development of neovasculature in the excised aortic valve leaflets. Methods New Zealand White rabbits consumed a cholesterol diet for ~180 days and developed aortic valve thickening, inflammation, and angiogenesis mimicking early human aortic valve disease. Rabbits (n = 7) were treated with ανβ3 integrin targeted PFC nanoparticles or control untargeted PFC nanoparticles (n = 6). Competitive inhibition in vivo of nanoparticle binding (n = 4) was tested by pretreatment with targeted nonfluorinated nanoparticles followed 2 hours later by targeted PFC nanoparticles. 2 hours after treatment, aortic valves were excised and 19F MRS was performed at 11.7T. Integrated 19F spectral peaks were compared using a one-way ANOVA and Hsu's MCB (multiple comparisons with the best) post hoc t test. In 3 additional rabbits treated with ανβ3 integrin targeted PFC nanoparticles, 19F spectroscopy was performed on a 3.0T clinical scanner. The presence of angiogenesis was confirmed by immunohistochemistry. Results Valves of rabbits treated with targeted PFC nanoparticles had 220% more fluorine signal than valves of rabbits treated with untargeted PFC nanoparticles (p < 0.001). Pretreatment of rabbits with targeted oil-based nonsignaling nanoparticles reduced the fluorine signal by 42% due to competitive inhibition, to a level not significantly different from control animals. Nanoparticles were successfully detected in all samples scanned at 3.0T. PECAM endothelial staining and ανβ3 integrin staining revealed the presence of neovasculature within the valve leaflets. Conclusion Integrin-targeted PFC nanoparticles specifically detect early angiogenesis in sclerotic aortic valves of cholesterol fed rabbits. These techniques may be useful for assessing atherosclerotic components of preclinical aortic valve disease in patients and could assist in defining efficacy of medical therapies. PMID:18817557
Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches
Bellin, Robert M.; Kubicek, James D.; Frigault, Matthew J.; Kamien, Andrew J.; Steward, Robert L.; Barnes, Hillary M.; DiGiacomo, Michael B.; Duncan, Luke J.; Edgerly, Christina K.; Morse, Elizabeth M.; Park, Chan Young; Fredberg, Jeffrey J.; Cheng, Chao-Min; LeDuc, Philip R.
2009-01-01
The ability of cells to respond to external mechanical stimulation is a complex and robust process involving a diversity of molecular interactions. Although mechanotransduction has been heavily studied, many questions remain regarding the link between physical stimulation and biochemical response. Of significant interest has been the contribution of the transmembrane proteins involved, and integrins in particular, because of their connectivity to both the extracellular matrix and the cytoskeleton. Here, we demonstrate the existence of a mechanically based initiation molecule, syndecan-4. We first demonstrate the ability of syndecan-4 molecules to support cell attachment and spreading without the direct extracellular binding of integrins. We also examine the distribution of focal adhesion-associated proteins through controlling surface interactions of beads with molecular specificity in binding to living cells. Furthermore, after adhering cells to elastomeric membranes via syndecan-4-specific attachments we mechanically strained the cells via our mechanical stimulation and polymer surface chemical modification approach. We found ERK phosphorylation similar to that shown for mechanotransductive response for integrin-based cell attachments through our elastomeric membrane-based approach and optical magnetic twisting cytometry for syndecan-4. Finally, through the use of cytoskeletal disruption agents, this mechanical signaling was shown to be actin cytoskeleton dependent. We believe that these results will be of interest to a wide range of fields, including mechanotransduction, syndecan biology, and cell–material interactions. PMID:20080785
Chen, Shulian; Peng, Chuandu; Wei, Xin; Luo, Deyi; Lin, Yifei; Yang, Tongxin; Jin, Xi; Gong, Lina; Li, Hong; Wang, Kunjie
2017-08-01
To investigate the effect of simulated physiological stretch on the expression of extracellular matrix (ECM) proteins and the role of integrin α4/αv, focal adhesion kinase (FAK), extracellular regulated protein kinases 1/2 (ERK1/2) in the stretch-induced ECM protein expression of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to simulated physiological stretch at the range of 5, 10, and 15% elongation. Expression of primary ECM proteins in HBSMCs was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the FAK and ERK1/2 was determined by Western blot with FAK inhibitor and ERK1/2 inhibitor (PD98059). Specificity of integrin α4 and integrin αv was determined with small interfering ribonucleic acid (siRNA) transfection. The expression of collagen I (Col1), collagen III (Col3), and fibronectin (Fn) was increased significantly under the simulated physiological stretch of 10 and 15%. Integrin α4 and αv, FAK, ERK1/2 were activated by 10% simulated physiological stretch compared with the static condition. Pretreatment of ERK1/2 inhibitor, FAK inhibitor, integrin α4 siRNA, or integrin αv siRNA reduced the stretch-induced expression of ECM proteins. And FAK inhibitor decreased the stretch-induced ERK1/2 activity and ECM protein expression. Integrin α4 siRNA or integrin αv siRNA inhibited the stretch-induced activity of FAK. Simulated physiological stretch increases the expression of ECM proteins in HBSMCs, and integrin α4/αv-FAK-ERK1/2 signaling pathway partly modulates the mechano-transducing process.
2013-09-01
carcinoma. Neoplasia, 2002. 4(5): p. 373-9. PMID: 12192595 12. Yao, H., D. Veine, K. Fay, E. Staszewski, et al., The PHSCN dendrimer as a more...375. PMID: 20300829 13. Yao, H., D.M. Veine, Z.Z. Zeng, K.S. Fay, et al., Increased potency of the PHSCN dendrimer as an inhibitor of human
Properties of an entropy-based signal receiver with an application to ultrasonic molecular imaging.
Hughes, M S; McCarthy, J E; Marsh, J N; Arbeit, J M; Neumann, R G; Fuhrhop, R W; Wallace, K D; Znidersic, D R; Maurizi, B N; Baldwin, S L; Lanza, G M; Wickline, S A
2007-06-01
Qualitative and quantitative properties of the finite part, H(f), of the Shannon entropy of a continuous waveform f(t) in the continuum limit are derived in order to illuminate its use for waveform characterization. Simple upper and lower bounds on H(f), based on features of f(t), are defined. Quantitative criteria for a priori estimation of the average-case variation of H(f) and log E(f), where E(f) is the signal energy of f(t) are also derived. These provide relative sensitivity estimates that could be used to prospectively choose optimal imaging strategies in real-time ultrasonic imaging machines, where system bandwidth is often pushed to its limits. To demonstrate the utility of these sensitivity relations for this application, a study designed to assess the feasibility of identification of angiogenic neovasculature targeted with perfluorocarbon nanoparticles that specifically bind to alpha(v)beta3-integrin expression in tumors was performed. The outcome of this study agrees with the prospective sensitivity estimates that were used for the two receivers. Moreover, these data demonstrate the ability of entropy-based signal receivers when used in conjunction with targeted nanoparticles to elucidate the presence of alpha(v)beta3 integrins in primordial neovasculature, particularly in acoustically unfavorable environments.
Direct Force Measurements of Receptor-Ligand Interactions on Living Cells
NASA Astrophysics Data System (ADS)
Eibl, Robert H.
The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.
The regulation of integrin function by divalent cations
Zhang, Kun; Chen, JianFeng
2012-01-01
Integrins are a family of α/β heterodimeric adhesion metalloprotein receptors and their functions are highly dependent on and regulated by different divalent cations. Recently advanced studies have revolutionized our perception of integrin metal ion-binding sites and their specific functions. Ligand binding to integrins is bridged by a divalent cation bound at the MIDAS motif on top of either α I domain in I domain-containing integrins or β I domain in α I domain-less integrins. The MIDAS motif in β I domain is flanked by ADMIDAS and SyMBS, the other two crucial metal ion binding sites playing pivotal roles in the regulation of integrin affinity and bidirectional signaling across the plasma membrane. The β-propeller domain of α subunit contains three or four β-hairpin loop-like Ca2+-binding motifs that have essential roles in integrin biogenesis. The function of another Ca2+-binding motif located at the genu of α subunit remains elusive. Here, we provide an overview of the integrin metal ion-binding sites and discuss their roles in the regulation of integrin functions. PMID:22647937
Zhang, Zhi-Sheng; Yang, Dong-Yan; Fu, Yan-Bo; Zhang, Lei; Zhao, Qian-Ping; Li, Gang
2015-03-01
Integrin β1 subunit and its downstream molecule integrin-linked kinase and focal adhesion kinase have been confirmed to be essential to cell survival and inhibition of apoptosis and hypoxia/reoxygenation (H/R)-induced injuries in cardiomyocytes. However, it is still unclear whether CrkL [v-crk avian sarcoma virus CT-10 oncogene homolog (Crk)-like], which acts also as a component of the integrin pathway, could also affect H/R-induced injuries in the cardiomyocytes. The rat-derived H9C2 cardiomyocytes were infected with a CrkL small hairpin RNA interference recombinant lentivirus, which knockdowns the endogenous CrkL expression in the cardiomyocytes. Apoptosis, cell proliferation and survival were examined in the H9C2 cardiomyocytes treated with either H/R or not. Results showed that knockdown of CrkL could significantly increase apoptosis and inhibition of the cell proliferation and survival and deteriorate the previously mentioned injuries induced by H/R. In contrast, overexpression of human CrkL could relieve the exacerbation of the previously mentioned injuries induced by CrkL knockdown in the H9C2 cardiomyocytes via regulation of Bax and extracellular signal-regulated kinase1/2 (p-ERK1/2). In conclusion, these results confirmed that knockdown of CrkL could deteriorate H/R-induced apoptosis and cell survival inhibition in rat-derived H9C2 cardiomyocytes via Bax and downregulation of p-ERK1/2. It implies that CrkL could mitigate H/R-induced injuries in the cardiomyocytes. Copyright © 2015 John Wiley & Sons, Ltd.
Kochi, Shinsuke; Yamashiro, Keisuke; Hongo, Shoichi; Yamamoto, Tadashi; Ugawa, Yuki; Shimoe, Masayuki; Kawamura, Mari; Hirata-Yoshihara, Chiaki; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo
2017-12-01
Gingival epithelial cells form a physiological barrier against bacterial invasion. Excessive bacterial invasion destroys the attachment between the tooth surface and the epithelium, resulting in periodontitis. Integrins play a significant role in cell attachment; therefore, we hypothesized that bacterial infection might decrease the expressions of these integrins in gingival epithelial cells, resulting in reduced cell adhesion. Immortalized human gingival epithelial cells were co-cultured with Aggregatibacter actinomycetemcomitans Y4 (Aa Y4), and the gene expression levels of IL-8, proliferating cell nuclear antigen (PCNA), and integrins (α2, α3, α5, β4, and β6) were measured using quantitative reverse transcription polymerase chain reaction. Expression of PCNA and integrins, except integrin α5, was significantly downregulated, while expression of IL-8 and integrin α5 was significantly upregulated in the cells co-cultured with Aa Y4. The number of adherent cells significantly decreased when co-cultured with Aa Y4, as determined using cell adhesion assays. In the cells co-cultured with Aa Y4 and an integrin α5 neutralizing antibody, there was no effect on the expression of IL-8 and PCNA, while the expressions of integrins α2, α3, β4, and β6, and the number of adherent cells did not decrease. The number of invading bacteria in the cells was reduced in the presence of the antibody and increased in the presence of TLR2/4 inhibitor. Therefore, integrin α5 might be involved in Aa Y4 invasion into gingival epithelial cells, and the resulting signal transduction cascade reduces cell adhesion by decreasing the expression of integrins, while the TLR2/4 signaling cascade regulates IL-8 expression.
Case, Lindsay B.; Waterman, Clare M.
2011-01-01
At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in “ventral F-actin waves” that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These “adhesive F-actin waves” require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization. PMID:22069459
Significance of Epidermal Growth Factor Receptor in the Radiation Resistance of Glioblastoma Tumors
NASA Astrophysics Data System (ADS)
Petrás, Miklós; Lajtos, Tamás; Pintye, Éva; Feuerstein, Burt G.; Szöllősi, János; Vereb, György
2008-12-01
In the United States, a dramatically increased incidence and mortality of brain tumors have been observed over the past decades. Of the ˜44 thousand new cases of primary malignant and benign brain tumors diagnosed per year, high grade astrocytomas or multiform glioblastomas show particularly bad prognosis in spite of therapeutic developments. Current management of multiform glioblastoma includes the most extensive surgical resection possible, followed by adjuvant radio- and chemotherapy. However, treatment is frequently hampered by decreased radiosensitivity of the tumor. Recent studies revealed that subpopulations of glioblastoma cells show amplified checkpoint activation of the cell cycle upon ionizing radiation, which induces overactivation of DNA repair processes and leads to maintained proliferation rate as well as clinically observed radioresistance and recurrence of the tumor over time. In addition, overexpression of some transmembrane receptors has also been implicated in radioresistance. However, the role of the overexpressed proteins can only be interpreted reliably if their multi-faceted molecular interactions are properly characterized. Thus, based on recent evidence for the functional crosstalk between certain cell adhesion molecules and receptor tyrosine kinases, we have examined the molecular interactions of the receptor tyrosine kinase EGFR and the cell adhesion molecule β1-integrin using flow cytometric and microscopic fluorescence resosnance energy transfer (FRET) measurements on two cellular model systems showing similar expression patterns to low and high grade astrocytomas. On the one hand, U251 glioblastoma clones established by introducing varying amounts of extra chromosome 7 into the cells, and on the other hand stable, high and low EGFR expressing transfenctant U251 NCI sublines were investigated. The results revealed that increased EGFR and β1-integrin expression levels correlate with stronger EGFR—β1-integrin heteroassociation, while concurrently the EGFR homoassociation is decreased, suggesting that β1-integrins may dynamically modulate the homoassociation state of EGFR receptors. This functional relationship may play an important role in decreasing radiosensitivity and tumor progression, especially since the EGFR—β1-integrin molecular interaction appears to promote radioresistance via the Akt pathway.
Reticker-Flynn, Nathan E.; Braga Malta, David F.; Winslow, Monte M.; Lamar, John M.; Xu, Mary J.; Underhill, Gregory H.; Hynes, Richard O.; Jacks, Tyler E.; Bhatia, Sangeeta N.
2013-01-01
Extracellular matrix interactions play essential roles in normal physiology and many pathological processes. While the importance of ECM interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel screening platform capable of measuring phenotypic responses to combinations of ECM molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the ECM-dependent adhesion of tumor-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumor lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8, or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified ECM and integrin interactions that could serve as therapeutic targets. PMID:23047680
Soderberg, Kelly A; Linehan, Melissa M; Ruddle, Nancy H; Iwasaki, Akiko
2004-08-01
The members of the lymphotoxin (LT) family of molecules play a critical role in lymphoid organogenesis. Whereas LT alpha-deficient mice lack all lymph nodes and Peyer's patches, mice deficient in LT beta retain mesenteric lymph nodes and cervical lymph nodes, suggesting that an LT beta-independent pathway exists for the generation of mucosal lymph nodes. In this study, we describe the presence of a lymph node in LT beta-deficient mice responsible for draining the genital mucosa. In the majority of LT beta-deficient mice, a lymph node was found near the iliac artery, slightly misplaced from the site of the sacral lymph node in wild-type mice. The sacral lymph node of the LT beta-deficient mice, as well as that of the wild-type mice, expressed the mucosal addressin cell adhesion molecule-1 similar to the mesenteric lymph node. Following intravaginal infection with HSV type 2, activated dendritic cells capable of stimulating a Th1 response were found in this sacral lymph node. Furthermore, normal HSV-2-specific IgG responses were generated in the LT beta-deficient mice following intravaginal HSV-2 infection even in the absence of the spleen. Therefore, an LT beta-independent pathway exists for the development of a lymph node associated with the genital mucosa, and such a lymph node serves to generate potent immune responses against viral challenge.
McDonald, A D; Jones, B J P; Nygren, D R; Adams, C; Álvarez, V; Azevedo, C D R; Benlloch-Rodríguez, J M; Borges, F I G M; Botas, A; Cárcel, S; Carrión, J V; Cebrián, S; Conde, C A N; Díaz, J; Diesburg, M; Escada, J; Esteve, R; Felkai, R; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Goldschmidt, A; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Guenette, R; Hafidi, K; Hauptman, J; Henriques, C A O; Hernandez, A I; Hernando Morata, J A; Herrero, V; Johnston, S; Labarga, L; Laing, A; Lebrun, P; Liubarsky, I; López-March, N; Losada, M; Martín-Albo, J; Martínez-Lema, G; Martínez, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Muñoz Vidal, J; Musti, M; Nebot-Guinot, M; Novella, P; Palmeiro, B; Para, A; Pérez, J; Querol, M; Repond, J; Renner, J; Riordan, S; Ripoll, L; Rodríguez, J; Rogers, L; Santos, F P; Dos Santos, J M F; Simón, A; Sofka, C; Sorel, M; Stiegler, T; Toledo, J F; Torrent, J; Tsamalaidze, Z; Veloso, J F C A; Webb, R; White, J T; Yahlali, N
2018-03-30
A new method to tag the barium daughter in the double-beta decay of ^{136}Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba^{++}) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (∼2 nm), and detected with a statistical significance of 12.9σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.
NASA Astrophysics Data System (ADS)
McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration
2018-03-01
A new method to tag the barium daughter in the double-beta decay of
Nonaka, Motohiro; Ma, Bruce Yong; Imaeda, Hirotsugu; Kawabe, Keiko; Kawasaki, Nobuko; Hodohara, Keiko; Kawasaki, Nana; Andoh, Akira; Fujiyama, Yoshihide; Kawasaki, Toshisuke
2011-01-01
Dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II transmembrane C-type lectin expressed on DCs such as myeloid DCs and monocyte-derived DCs (MoDCs). Recently, we have reported that DC-SIGN interacts with carcinoembryonic antigen (CEA) expressed on colorectal carcinoma cells. CEA is one of the most widely used tumor markers for gastrointestinal cancers such as colorectal cancer. On the other hand, other groups have reported that the level of Mac-2-binding protein (Mac-2BP) increases in patients with pancreatic, breast, and lung cancers, virus infections such as human immunodeficiency virus and hepatitis C virus, and autoimmune diseases. Here, we first identified Mac-2BP expressed on several colorectal carcinoma cell lines as a novel DC-SIGN ligand through affinity chromatography and mass spectrometry. Interestingly, we found that DC-SIGN selectively recognizes Mac-2BP derived from some colorectal carcinomas but not from the other ones. Furthermore, we found that the α1-3,4-fucose moieties of Le glycans expressed on DC-SIGN-binding Mac-2BP were important for recognition. DC-SIGN-dependent cellular interactions between immature MoDCs and colorectal carcinoma cells significantly inhibited MoDC functional maturation, suggesting that Mac-2BP may provide a tolerogenic microenvironment for colorectal carcinoma cells through DC-SIGN-dependent recognition. Importantly, Mac-2BP was detected as a predominant DC-SIGN ligand expressed on some primary colorectal cancer tissues from certain parts of patients in comparison with CEA from other parts, suggesting that DC-SIGN-binding Mac-2BP bearing tumor-associated Le glycans may become a novel potential colorectal cancer biomarker for some patients instead of CEA. PMID:21515679
The role of a conserved membrane proximal cysteine in altering αPS2CβPS integrin diffusion
NASA Astrophysics Data System (ADS)
Syed, Aleem; Arora, Neha; Bunch, Thomas A.; Smith, Emily A.
2016-12-01
Cysteine residues (Cys) in the membrane proximal region are common post-translational modification (PTM) sites in transmembrane proteins. Herein, the effects of a highly conserved membrane proximal α-subunit Cys1368 on the diffusion properties of αPS2CβPS integrins are reported. Sequence alignment shows that this cysteine is palmitoylated in human α3 and α6 integrin subunits. Replacing Cys1368 in wild-type integrins with valine (Val1368) putatively blocks a PTM site and alters integrins’ ligand binding and diffusion characteristics. Both fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) diffusion measurements show Val1368 integrins are more mobile compared to wild-type integrins. Approximately 33% and 8% more Val1368 integrins are mobile as measured by FRAP and SPT, respectively. The mobile Val1368 integrins also exhibit less time-dependent diffusion, as measured by FRAP. Tandem mass spectrometry data suggest that Cys1368 contains a redox or palmitoylation PTM in αPS2CβPS integrins. This membrane proximal Cys may play an important role in the diffusion of other alpha subunits that contain this conserved residue.
Duan, Qianglin; Wang, Lemin; Yang, Fan; Li, Jue; Song, Yanli; Gong, Zhu; Li, Guiyuan; Song, Haoming; Zhang, Xiaoyu; Shen, Zugang; Dart, Anthony
2015-01-01
Background: To compare different expression of core proteins among venous thromboembolism (VTE) and those with risk factor groups and analyze the relative risk for VTE after integrating integrin β1, β2 and β3 expression. Methods: A total of 1006 subjects were recruited and divided into VTE group, risk factor groups and control (non- risk factor) group. Flow cytometry was performed to detect the expression of integrin β1, β2 and β3. The relative risk for VTE was evaluated with independent, parallel and serial methods. Results: The expression of integrin β1 increased markedly in VTE patients, and those with risk factors (acute infection, malignancy, and autoimmune diseases), respectively (P < 0.001 or 0.01). The expression of integrin β1 in trauma/surgery group was not significantly different with control group (P > 0.05). The expression of integrin β2 or β3 significantly increased in VTE group, but that in risk factor groups was not significantly increased (P > 0.05). Multivariate analysis revealed the trauma/surgery groups had no significantly increased risk for VTE. Conclusions: VTE group patients have significantly increased expression of integrin β1, β2 and β3, and risk factor groups (acute infection, malignancy and autoimmune disease) have significantly increased expression of integrin β1. The significant increase in integrin β2, β3 expression is a marker differentiating of VTE group patients with other risk factor groups. Trauma/surgery group has no increased expression of integrin β1, β2 and β3 as other risk factors. Thus, that trauma/surgery may be not the “true” risk factor for VTE. PMID:26045901
Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.
2001-01-01
Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188
Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A
2014-01-01
Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.
Structural modifications of human beta 2 microglobulin treated with oxygen-derived radicals.
Capeillere-Blandin, C; Delaveau, T; Descamps-Latscha, B
1991-01-01
Treatment of human beta 2 microglobulin (beta 2m) with defined oxygen-derived species generated by treatment with gamma-radiation was studied. As assessed by SDS/PAGE, the hydroxyl radicals (.OH) caused the disappearance of the protein band at 12 kDa that represents beta 2m, and cross-linked the protein into protein bands stable to both SDS and reducing conditions. However, when .OH was generated under oxygen in equimolar combination with the superoxide anion radical (O2.-), the high-molecular-mass protein products were less represented, and fragmented derivatives were not obviously detectable. Exposure to .OH alone, or to .OH + O2.- in the presence of O2, induced the formation of beta 2m protein derivatives with a more acidic net electrical charge than the parent molecule. In contrast, O2.- alone had virtually no effect on molecular mass or pI. Changes in u.v. fluorescence during .OH attack indicated changes in conformation, as confirmed by c.d. spectrometry. A high concentration of radicals caused the disappearance of the beta-pleated sheet structure and the formation of a random coil structure. Loss of tryptophan and significant production of dityrosine (2,2'-biphenol type) were noted, exhibiting a clear dose-dependence with .OH alone or with .OH + O2.-. The combination of .OH + O2.- induced a pattern of changes similar to that with .OH alone, but more extensive for c.d. and tryptophan oxidation (2 Trp/beta 2m molecule), and more limited for dityrosine formation. Lower levels of these oxidative agents caused the reproducible formation of species at 18 and 25 kDa which were recognized by antibodies against native beta 2m. These findings provide a model for the protein pattern observed in beta 2m amyloidosis described in the literature. Images Fig. 4. Fig. 5. PMID:1649598
Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik
2005-01-01
To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.
The C2'- and C3'-endo equilibrium for AMP molecules bound in the cystathionine-beta-synthase domain.
Feng, Na; Qi, Chao; Hou, Yan-Jie; Zhang, Ying; Wang, Da-Cheng; Li, De-Feng
2018-03-04
The equilibrium between C2'- and C3'-endo conformations of nucleotides in solution, as well as their polymers DNA and RNA, has been well studied in previous work. However, this equilibrium of nucleotides in their binding state remains unclear. We observed two AMP molecules, in C3'- and C2'-endo conformations respectively, simultaneously bound to a cystathionine-beta-synthase (CBS) domain dimer of the magnesium and cobalt efflux protein CorC in the crystallographic study. The C2'-endo AMP molecule assumes the higher sugar pucker energy and one more hydrogen bond with the protein than the C3'-endo molecule does. The balance between the high sugar pucker energy and the low binding energy suggests an equilibrium or switch between C2'- and C3'-endo conformations of the bound nucleotides. Our work challenge the previous hypothesis that the ribose of the bound nucleotides would be locked in a fixed conformation. Copyright © 2018 Elsevier Inc. All rights reserved.
Yakubenko, Valentin P; Bhattacharjee, Ashish; Pluskota, Elzbieta; Cathcart, Martha K
2011-03-04
The alternative activation of monocytes by interleukin (IL)-13 and IL-4 is a significant component of the inflammatory response. The consequences of alternative activation in inflammatory diseases remain to be determined. In this report, we explored how integrins, receptors important for monocyte migration to inflammatory sites, regulate IL-13-mediated monocyte activation. We focused on the analysis of 2 proteins, which are upregulated during the alternative activation and are important for the development of atherosclerosis, an oxidative enzyme 15-lipoxygenase (15-LO) and a scavenger receptor CD36. We found that adhesion of resting monocytes through β(2) integrins and inside-out activation of β(2) integrins by monocyte chemoattractant protein-1 did not change IL-13-stimulated 15-LO upregulation; however, preincubation of monocytes with the antibody MEM48, which generates full activation of β(2) integrins, significantly inhibited 15-LO mRNA and protein expression. In contrast, activation of β(1) integrins had no effect on 15-LO expression. Analysis of integrin clustering through α(M), α(L), α(X), and α(D) subunits demonstrated the pivotal role for integrin α(M)β(2) in inhibiting 15-LO expression. IL-13 treatment upregulates 15-LO-dependent CD36 expression on human monocytes; our studies showed that β(2) integrin activation and α(M) integrin clustering significantly inhibited IL-13-dependent CD36 mRNA and protein expression, as well as CD36-related foam cell formation. Moreover, IL-13 stimulation of α(M)-deficient peritoneal macrophages demonstrated an upregulated level of 15-LO induction, CD36 expression, and lipid accumulation as compared with wild-type controls. The adhesion of monocytes/macrophages through activated integrin α(M)β(2) has a regulatory and potential atheroprotective function during the alternative activation of macrophages.
Yakubenko, Valentin P.; Bhattacharjee, Ashish; Pluskota, Elzbieta; Cathcart, Martha K.
2011-01-01
Rationale The alternative activation of monocytes by IL-13 and IL-4 is a significant component of the inflammatory response. The consequences of alternative activation in inflammatory diseases remain to be determined. Objective In this paper we explored how integrins, receptors important for monocyte migration to inflammatory sites, regulate IL-13-mediated monocyte activation. We focused on the analysis of two proteins, which are upregulated during the alternative activation and are important for the development of atherosclerosis - an oxidative enzyme 15-lipoxygenase (15-LO) and a scavenger receptor CD36. Methods and Results We found that adhesion of resting monocytes through β2 integrins and inside-out activation of β2 integrins by MCP-1 did not change IL-13-stimulated 15-LO upregulation; however, preincubation of monocytes with the antibody MEM48, which generates full activation of β2 integrins, significantly inhibited 15-LO mRNA and protein expression. In contrast, activation of β1 integrins had no effect on 15-LO expression. Analysis of integrin clustering through αM, αL, αX and αD subunits demonstrated the pivotal role for integrin αMβ2 in inhibiting 15-LO expression. IL-13 treatment upregulates 15-LO-dependent CD36 expression on human monocytes, our studies showed that β2 integrin activation and αM integrin clustering significantly inhibited IL-13-dependent CD36 mRNA and protein expression as well as CD36-related foam cell formation. Moreover, IL-13 stimulation of αM-deficient peritoneal macrophages demonstrated an upregulated level of 15-LO induction, CD36 expression and lipid accumulation as compared to wild type controls. Conclusions The adhesion of monocytes/macrophages through activated integrin αMβ2 has a regulatory and potential athero-protective function during the alternative activation of macrophages. PMID:21252155
Nolz, Jeffrey C; Nacusi, Lucas P; Segovis, Colin M; Medeiros, Ricardo B; Mitchell, Jason S; Shimizu, Yoji; Billadeau, Daniel D
2008-09-22
WAVE2 regulates T cell receptor (TCR)-stimulated actin cytoskeletal dynamics leading to both integrin clustering and affinity maturation. Although WAVE2 mediates integrin affinity maturation by recruiting vinculin and talin to the immunological synapse in an Arp2/3-dependent manner, the mechanism by which it regulates integrin clustering is unclear. We show that the Abl tyrosine kinase associates with the WAVE2 complex and TCR ligation induces WAVE2-dependent membrane recruitment of Abl. Furthermore, we show that WAVE2 regulates TCR-mediated activation of the integrin regulatory guanosine triphosphatase Rap1 via the recruitment and activation of the CrkL-C3G exchange complex. Moreover, we demonstrate that although Abl does not regulate the recruitment of CrkL-C3G into the membrane, it does affect the tyrosine phosphorylation of C3G, which is required for its guanine nucleotide exchange factor activity toward Rap1. This signaling node regulates not only TCR-stimulated integrin clustering but also affinity maturation. These findings identify a previously unknown mechanism by which the WAVE2 complex regulates TCR signaling to Rap1 and integrin activation.
Nolz, Jeffrey C.; Nacusi, Lucas P.; Segovis, Colin M.; Medeiros, Ricardo B.; Mitchell, Jason S.; Shimizu, Yoji; Billadeau, Daniel D.
2008-01-01
WAVE2 regulates T cell receptor (TCR)–stimulated actin cytoskeletal dynamics leading to both integrin clustering and affinity maturation. Although WAVE2 mediates integrin affinity maturation by recruiting vinculin and talin to the immunological synapse in an Arp2/3-dependent manner, the mechanism by which it regulates integrin clustering is unclear. We show that the Abl tyrosine kinase associates with the WAVE2 complex and TCR ligation induces WAVE2-dependent membrane recruitment of Abl. Furthermore, we show that WAVE2 regulates TCR-mediated activation of the integrin regulatory guanosine triphosphatase Rap1 via the recruitment and activation of the CrkL–C3G exchange complex. Moreover, we demonstrate that although Abl does not regulate the recruitment of CrkL–C3G into the membrane, it does affect the tyrosine phosphorylation of C3G, which is required for its guanine nucleotide exchange factor activity toward Rap1. This signaling node regulates not only TCR-stimulated integrin clustering but also affinity maturation. These findings identify a previously unknown mechanism by which the WAVE2 complex regulates TCR signaling to Rap1 and integrin activation. PMID:18809728
Chen, Chiung-Nien; Chang, Cheng-Chi; Lai, Hong-Shiee; Jeng, Yung-Ming; Chen, Chia-I; Chang, King-Jeng; Lee, Po-Huang; Lee, Hsinyu
2015-07-01
Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.
Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng
2018-06-25
Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.