Sample records for beta cell death

  1. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    PubMed

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  2. Novel function of STAT1beta in B cells: induction of cell death by a mechanism different from that of STAT1alpha.

    PubMed

    Najjar, Imen; Schischmanoff, Pierre Olivier; Baran-Marszak, Fanny; Deglesne, Pierre-Antoine; Youlyouz-Marfak, Ibtissam; Pampin, Mathieu; Feuillard, Jean; Bornkamm, Georg W; Chelbi-Alix, Mounira K; Fagard, Remi

    2008-12-01

    Alternate splicing of STAT1 produces two isoforms: alpha, known as the active form, and beta, previously shown to act as a dominant-negative factor. Most studies have dealt with STAT1alpha, showing its involvement in cell growth control and cell death. To examine the specific function of either isoform in cell death, a naturally STAT1-deficient human B cell line was transfected to express STAT1alpha or STAT1beta. STAT1alpha, expressed alone, enhanced cell death, potentiated the fludarabine-induced apoptosis, and enhanced the nuclear location, the phosphorylation, and the transcriptional activity of p53. Unexpectedly, STAT1beta, expressed alone, induced cell death through a mechanism that was independent of the nuclear function of p53. Indeed, in STAT1beta-expressing B cells, p53 was strictly cytoplasmic where it formed clusters, and there was no induction of the transcriptional activity of p53. These data reveal a novel role of STAT1beta in programmed cell death, which is independent of p53.

  3. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway.

    PubMed

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-01-01

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  4. The mechanism of cell death in human cultured colon adenocarcinoma cell line COLO 201 induced by beta-D-N-acetylglucosaminyl-p-nitrophenol.

    PubMed

    Kukidome, J; Kakizaki, I; Takagaki, K; Matsuki, A; Munakata, A; Endo, M

    2001-05-01

    COLO 201, human colon adenocarcinoma cells were incubated with artificial primers, p-nitrophenyl-glycoside derivatives at 1.0 mmol (mM) in the medium containing 10% fetal bovine serum to detect sugar chain elongation. However, when p-nitrophenyl-beta-N-acetylglucosamine (beta-GlcNAc-PNP) was added, the medium changed color to yellow and the cells were dead. To explain this finding, the cells were incubated with 1.0 mM each of beta-GlcNAc-PNP and 4-methylumbelliferyl-beta-N-acetylglucosamine, then the number of living cells was measured in a time course. In beta-GlcNAc-PNP, the living cells were decreased at 24 hours. The cells were survived with N-acetylglucosamine, whereas in the presence of p-nitrophenol (PNP) the living cells were decreased. It was suggested that PNP released from beta-GlcNAc-PNP induced the cell death. Activity of beta-D-N-acetylglucosaminidase was detected in fetal bovine serum. It was shown that PNP induced the cell death in time-and-dose dependent manner. Genomic DNA from COLO 201 analyzed by agarose gel electrophoresis was fragmentated. PNP analogues were tested for toxicity, and the results suggested that the phenolic OH-group linked to benzene ring and nitro-group linked to the structure in para-form (PNP) was the most effective.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawal, Nina; Corti, Olga; CNRS, UMR 7225, Paris

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neuronsmore » in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.« less

  6. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes.

    PubMed

    Ardestani, Amin; Paroni, Federico; Azizi, Zahra; Kaur, Supreet; Khobragade, Vrushali; Yuan, Ting; Frogne, Thomas; Tao, Wufan; Oberholzer, Jose; Pattou, Francois; Conte, Julie Kerr; Maedler, Kathrin

    2014-04-01

    Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20-like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter's ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes.

  7. The effect of TRAIL molecule on cell viability in in vitro beta cell culture.

    PubMed

    Tekmen, I; Ozyurt, D; Pekçetin, C; Buldan, Z

    2007-06-01

    Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system.

  8. Cell signaling pathways in the mechanisms of neuroprotection afforded by bergamot essential oil against NMDA-induced cell death in vitro.

    PubMed

    Corasaniti, M T; Maiuolo, J; Maida, S; Fratto, V; Navarra, M; Russo, R; Amantea, D; Morrone, L A; Bagetta, G

    2007-06-01

    The effects of bergamot essential oil (BEO; Citrus bergamia, Risso) on excitotoxic neuronal damage was investigated in vitro. The study was performed in human SH-SY5Y neuroblastoma cells exposed to N-methyl-D-aspartate (NMDA). Cell viability was measured by dye exclusion. Reactive oxygen species (ROS) and caspase-3 activity were measured fluorimetrically. Calpain I activity and the activation (phosphorylation) of Akt and glycogen synthase kinase-3beta (GSK-3beta) were assayed by Western blotting. NMDA induced concentration-dependent, receptor-mediated, death of SH-SY5Y cells, ranging from 11 to 25% (0.25-5 mM). Cell death induced by 1 mM NMDA (21%) was preceded by a significant accumulation of intracellular ROS and by a rapid activation of the calcium-activated protease calpain I. In addition, NMDA caused a rapid deactivation of Akt kinase and this preceded the detrimental activation of the downstream kinase, GSK-3beta. BEO (0.0005-0.01%) concentration dependently reduced death of SH-SY5Y cells caused by 1 mM NMDA. In addition to preventing ROS accumulation and activation of calpain, BEO (0.01%) counteracted the deactivation of Akt and the consequent activation of GSK-3beta, induced by NMDA. Results obtained by using specific fractions of BEO, suggested that monoterpene hydrocarbons were responsible for neuroprotection afforded by BEO against NMDA-induced cell death. Our data demonstrate that BEO reduces neuronal damage caused in vitro by excitotoxic stimuli and that this neuroprotection was associated with prevention of injury-induced engagement of critical death pathways.

  9. [Exploration of relationship between the expression level of DNA polymerase beta and 60Co gamma-ray radiosensitivity].

    PubMed

    Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen

    2011-11-01

    To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.

  10. Role of astrocytes in reproduction and neuroprotection.

    PubMed

    Mahesh, Virendra B; Dhandapani, Krishnan M; Brann, Darrell W

    2006-02-26

    Hypothalamic astrocytes secrete TGF-beta and 3 alpha,5 alpha-tetrahydro progesterone (3 alpha,5 alpha-THP) in culture. When the astrocyte-conditioned medium (ACM) was incubated with the hypothalamic cell line GT1-7, it resulted in the secretion of GnRH. Immunoneutralization with TGF-beta antibody or ultra-filteration with a 10 kDa cut off filter resulted in attenuation of the GnRH releasing ability of ACM, indicating that TGF-beta was a major factor involved with GnRH release. Treatment with estrogens increases TGF-beta secretion. These observations indicate a significant role of astrocytes in GnRH secretion. Serum-deprivation results in the death of GT1-7 neurons in culture and addition of ACM or TGF-beta to the culture, attenuates cell death. The mechanism of protection from cell death appears to involve phosphorylation of MKK4, JNK, c-Jun(Ser63), and enhancement of AP-1 binding. Co-administration of JNK inhibitors, but not MEK inhibitors attenuated ACM or TGF-beta-induced c-Jun(Ser63) phosphorylation and their neuroprotective effects. These studies suggest that astrocytes can protect neurons, at least in part, by the release of TGF-beta and activation of a c-Jun/AP-1 protective pathway.

  11. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death.

    PubMed

    Chen, Junqin; Fontes, Ghislaine; Saxena, Geetu; Poitout, Vincent; Shalev, Anath

    2010-02-01

    We have previously shown that lack of thioredoxin-interacting protein (TXNIP) protects against diabetes and glucotoxicity-induced beta-cell apoptosis. Because the role of TXNIP in lipotoxicity is unknown, the goal of the present study was to determine whether TXNIP expression is regulated by fatty acids and whether TXNIP deficiency also protects beta-cells against lipoapoptosis. RESARCH DESIGN AND METHODS: To determine the effects of fatty acids on beta-cell TXNIP expression, INS-1 cells and isolated islets were incubated with/without palmitate and rats underwent cyclic infusions of glucose and/or Intralipid prior to islet isolation and analysis by quantitative real-time RT-PCR and immunoblotting. Using primary wild-type and TXNIP-deficient islets, we then assessed the effects of palmitate on apoptosis (transferase-mediated dUTP nick-end labeling [TUNEL]), mitochondrial death pathway (cytochrome c release), and endoplasmic reticulum (ER) stress (binding protein [BiP], C/EBP homologous protein [CHOP]). Effects of TXNIP deficiency were also tested in the context of staurosporine (mitochondrial damage) or thapsigargin (ER stress). Glucose elicited a dramatic increase in islet TXNIP expression both in vitro and in vivo, whereas fatty acids had no such effect and, when combined with glucose, even abolished the glucose effect. We also found that TXNIP deficiency does not effectively protect against palmitate or thapsigargin-induced beta-cell apoptosis, but specifically prevents staurosporine- or glucose-induced toxicity. Our results demonstrate that unlike glucose, fatty acids do not induce beta-cell expression of proapoptotic TXNIP. They further reveal that TXNIP deficiency specifically inhibits the mitochondrial death pathway underlying beta-cell glucotoxicity, whereas it has very few protective effects against ER stress-mediated lipoapoptosis.

  12. Antidiabetic and Beta Cell-Protection Activities of Purple Corn Anthocyanins

    PubMed Central

    Hong, Su Hee; Heo, Jee-In; Kim, Jeong-Hyeon; Kwon, Sang-Oh; Yeo, Kyung-Mok; Bakowska-Barczak, Anna M.; Kolodziejczyk, Paul; Ryu, Ok-Hyun; Choi, Moon-Ki; Kang, Young-Hee; Lim, Soon Sung; Suh, Hong-Won; Huh, Sung-Oh; Lee, Jae-Yong

    2013-01-01

    Antidiabetic and beta cell-protection activities of purple corn anthocyanins (PCA) were examined in pancreatic beta cell culture and db/db mice. Only PCA among several plant anthocyanins and polyphenols showed insulin secretion activity in culture of HIT-T15 cells. PCA had excellent antihyperglycemic activity (in terms of blood glucose level and OGTT) and HbA1c-decreasing activity when compared with glimepiride, a sulfonylurea in db/db mice. In addition, PCA showed efficient protection activity of pancreatic beta cell from cell death in HIT-T15 cell culture and db/db mice. The result showed that PCA had antidiabetic and beta cell-protection activities in pancreatic beta cell culture and db/db mice. PMID:24244813

  13. Zinc as a paracrine effector in pancreatic islet cell death.

    PubMed

    Kim, B J; Kim, Y H; Kim, S; Kim, J W; Koh, J Y; Oh, S H; Lee, M K; Kim, K W; Lee, M S

    2000-03-01

    Because of a huge amount of Zn2+ in secretory granules of pancreatic islet beta-cells, Zn2+ released in certain conditions might affect the function or survival of islet cells. We studied potential paracrine effects of endogenous Zn2+ on beta-cell death. Zn2+ induced insulinoma/islet cell death in a dose-dependent manner. Chelation of released endogenous Zn2+ by CaEDTA significantly decreased streptozotocin (STZ)-induced islet cell death in an in vitro culture system simulating in vivo circumstances but not in the conventional culture system. Zn2+ chelation in vivo by continuous CaEDTA infusion significantly decreased the incidence of diabetes after STZ administration. N-(6-methoxy-quinolyl)-para-toluene-sulfonamide staining revealed that Zn2+ was densely deposited in degenerating islet cells 24 h after STZ treatment, which was decreased by CaEDTA infusion. We show here that Zn2+ is not a passive element for insulin storage but an active participant in islet cell death in certain conditions, which in time might contribute to the development of diabetes in aged people.

  14. L-beta-ODAP alters mitochondrial Ca2+ handling as an early event in excitotoxicity.

    PubMed

    Van Moorhem, Marijke; Decrock, Elke; Coussee, Evelyne; Faes, Liesbeth; De Vuyst, Elke; Vranckx, Katleen; De Bock, Marijke; Wang, Nan; D'Herde, Katharina; Lambein, Fernand; Callewaert, Geert; Leybaert, Luc

    2010-03-01

    The neurotoxin beta-N-oxalyl-L-alpha,beta-diaminopropionic acid (L-beta-ODAP) is an L-glutamate analogue at alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptors in neurons and therefore acts as an excitotoxic substance. Chronic exposure to L-beta-ODAP present in Lathyrus sativus L. (L. sativus) seeds is proposed as the cause of the neurodegenerative disease neurolathyrism, but the mechanism of its action has not been conclusively identified. A key factor in excitotoxic neuronal cell death is a disturbance of the intracellular Ca2+ homeostasis, including changes in the capacity of intracellular Ca2+ stores like the endoplasmic reticulum (ER) or mitochondria. In this study, aequorin and other Ca2+ indicators were used in N2a neuroblastoma cells to investigate alterations of cellular Ca2+ handling after 24 h exposure to L-beta-ODAP. Our data demonstrate increased mitochondrial Ca2+ loading and hyperpolarization of the mitochondrial membrane potential (Psi(m)), which was specific for L-beta-ODAP and not observed with L-glutamate. We conclude that L-beta-ODAP disturbs the ER-mitochondrial Ca2+ signaling axis and thereby renders the cells more vulnerable to its excitotoxic effects that ultimately will lead to cell death. 2010 Elsevier Ltd. All rights reserved.

  15. Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy

    PubMed Central

    Palmar, Jim; Nava, Manuel; Tomey, Daniel; Garicano, Carlos

    2018-01-01

    Purpose of Review Describing the diverse molecular mechanisms (particularly immunological) involved in the death of the pancreatic beta cell in type 1 and type 2 diabetes mellitus. Recent Findings Beta cell death is the final event in a series of mechanisms that, up to date, have not been entirely clarified; it represents the pathophysiological mechanism in the natural history of diabetes mellitus. These mechanisms are not limited to an apoptotic process only, which is characteristic of the immune-mediated insulitis in type 1 diabetes mellitus. They also include the action of proinflammatory cytokines, the production of reactive oxygen species, DNA fragmentation (typical of necroptosis in type 1 diabetic patients), excessive production of islet amyloid polypeptide with the consequent endoplasmic reticulum stress, disruption in autophagy mechanisms, and protein complex formation, such as the inflammasome, capable of increasing oxidative stress produced by mitochondrial damage. Summary Necroptosis, autophagy, and pyroptosis are molecular mechanisms that modulate the survival of the pancreatic beta cell, demonstrating the importance of the immune system in glucolipotoxicity processes and the potential role for immunometabolism as another component of what once known as the “ominous octet.” PMID:29670917

  16. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhavsar, Shefalee K.; Merches, Katja; Bobbala, Diwakar

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Akt/SGK dependent phosphorylation of GSK3{alpha},{beta} regulates T lymphocytes. Black-Right-Pointing-Pointer T cells from mice expressing Akt/SGK insensitive GSK3{alpha},{beta} (gsk3{sup KI}) release less IL-2. Black-Right-Pointing-Pointer CD4{sup +} cells from gsk3{sup KI} mice express less CD62L. Black-Right-Pointing-Pointer CD8{sup +} cells from gsk3{sup KI} mice are relatively resistant to activation induced cell death. Black-Right-Pointing-Pointer Perforin expression is enhanced in gsk3{sup KI} T cells. -- Abstract: Survival and function of T-lymphocytes critically depends on phosphoinositide (PI) 3 kinase. PI3 kinase signaling includes the PKB/Akt and SGK dependent phosphorylation and thus inhibition of glycogen synthase kinase GSK3{alpha},{beta}. Lithium, a known unspecific GSK3 inhibitor protectsmore » against experimental autoimmune encephalomyelitis. The present study explored, whether Akt/SGK-dependent regulation of GSK3 activity is a determinant of T cell survival and function. Experiments were performed in mutant mice in which Akt/SGK-dependent GSK3{alpha},{beta} inhibition was disrupted by replacement of the serine residue in the respective SGK/Akt-phosphorylation consensus sequence by alanine (gsk3{sup KI}). T cells from gsk3{sup KI} mice were compared to T cells from corresponding wild type mice (gsk3{sup WT}). As a result, in gsk3{sup KI} CD4{sup +} cells surface CD62L (L-selectin) was significantly less abundant than in gsk3{sup WT} CD4{sup +} cells. Upon activation in vitro T cells from gsk3{sup KI} mice reacted with enhanced perforin production and reduced activation induced cell death. Cytokine production was rather reduced in gsk3{sup KI} T cells, suggesting that GSK3 induces effector function in CD8{sup +} T cells. In conclusion, PKB/Akt and SGK sensitive phosphorylation of GSK3{alpha},{beta} is a potent regulator of perforin expression and activation induced cell death in T lymphocytes.« less

  17. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells

    PubMed Central

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834

  18. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells.

    PubMed

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.

  19. Lysosome-mediated Cell Death and Autophagy-Dependent Multidrug Resistance in Breast Cancer

    DTIC Science & Technology

    2008-10-01

    gene links mitochondria and cell death, the data suggests that Bcl2 may be involved in autophagic cell death and AD-MDR. GeneGo analysis also...GSK3 beta GSK3 beta E2A p53 p21 p21 E2F1 PPAR -gamma JNK1(MA PK8) JNK1(M APK8) ESR1 (nuclear) RARalpha Androgen receptor Androge n receptor p53...RelA (p65 NF-kB subunit) Erk (MAPK1/3 ) Erk (MAPK1/ 3) PPAR - gamma SOX9 Bcl-2 Bcl-2 RARalpha SP1 EGFR EGFR RelA (p65 NF- kB subunit) RARalpha RelA

  20. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome

    PubMed Central

    Griffiths, Lisa A.; Persaud, Shanta J.; Jones, Peter M.; Howell, Simon L.; Welsh, Nils

    2016-01-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome. PMID:26953716

  1. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome.

    PubMed

    King, Aileen J F; Griffiths, Lisa A; Persaud, Shanta J; Jones, Peter M; Howell, Simon L; Welsh, Nils

    2016-05-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.

  2. Nitrosative stress mediated misfolded protein aggregation mitigated by Na-D-{beta}-hydroxybutyrate intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Rotenone is a model for inducing apoptosis and synphilin-1 accumulation in Parkinson Prime s studies. Black-Right-Pointing-Pointer The metabolite sodium betahydroxybutryate mitigates these effects in SHSY5Y cell lines. Black-Right-Pointing-Pointer Results reveal a novel and innate mechanism to prevent neurodegeneration/cell death. -- Abstract: Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-taggedmore » synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-{beta}-hydroxybutyrate (Na{beta}HB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that Na{beta}HB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.« less

  3. Novel porphyrin conjugates with a potent photodynamic antitumor effect: differential efficacy of mono- and bis-beta-cyclodextrin derivatives in vitro and in vivo.

    PubMed

    Kralova, Jarmila; Synytsya, Alla; Pouckova, Pavla; Koc, Michal; Dvorak, Michal; Kral, Vladimir

    2006-01-01

    In the present study we investigated the photosensitizing properties of two novel mono- and bis-cyclodextrin tetrakis (pentafluorophenyl) porphyrin derivatives in several tumor cell lines and in BALB/c mice bearing subcutaneously transplanted syngeneic mouse mammary carcinoma 4T1. Both studied sensitizers were localized mainly in lysosomes and were found to induce cell death by triggering apoptosis in human leukemic cells HL-60. In 4T1 and other cell lines both apoptotic and necrotic modes of cell death occurred depending on drug and light doses. Mono-cyclodextrin porphyrin derivative P(beta-CD)1 exhibited stronger in vitro phototoxic effect than bis-cyclodextrin derivative P(beta-CD)2. However, in vivo P(beta-CD)2 displayed faster tumor uptake with maximal accumulation 6 h after application, leading to complete and prolonged elimination of subcutaneous tumors within 3 days after irradiation (100 J cm(-2)). In contrast, P(beta-CD)1 uptake was slower (48 h) and the reduction of tumor mass was only transient, reaching the maximum at the 12 h interval when a favorable tumor-to-skin ratio appeared. Thus, P(beta-CD)2 represents a new photosensitizing drug displaying fast and selective tumor uptake, strong antitumor activity and fast elimination from the body.

  4. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway

    USGS Publications Warehouse

    Jung, T.W.; Lee, M.W.; Lee, Y.-J.; Kim, S.M.

    2012-01-01

    Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.

  5. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    PubMed

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yawen; Huang Chunfa; Yang Chingyao

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} alsomore » displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.« less

  7. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    PubMed

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  8. Respective effects of oxygen and energy substrate deprivation on beta cell viability.

    PubMed

    Lablanche, Sandrine; Cottet-Rousselle, Cécile; Argaud, Laurent; Laporte, Camille; Lamarche, Frédéric; Richard, Marie-Jeanne; Berney, Thierry; Benhamou, Pierre-Yves; Fontaine, Eric

    2015-01-01

    Deficit in oxygen and energetic substrates delivery is a key factor in islet loss during islet transplantation. Permeability transition pore (PTP) is a mitochondrial channel involved in cell death. We have studied the respective effects of oxygen and energy substrate deprivation on beta cell viability as well as the involvement of oxidative stress and PTP opening. Energy substrate deprivation for 1h followed by incubation in normal conditions led to a cyclosporin A (CsA)-sensitive-PTP-opening in INS-1 cells and human islets. Such a procedure dramatically decreased INS-1 cells viability except when transient removal of energy substrates was performed in anoxia, in the presence of antioxidant N-acetylcysteine (NAC) or when CsA or metformin inhibited PTP opening. Superoxide production increased during removal of energy substrates and increased again when normal energy substrates were restored. NAC, anoxia or metformin prevented the two phases of oxidative stress while CsA prevented the second one only. Hypoxia or anoxia alone did not induce oxidative stress, PTP opening or cell death. In conclusion, energy substrate deprivation leads to an oxidative stress followed by PTP opening, triggering beta cell death. Pharmacological prevention of PTP opening during islet transplantation may be a suitable option to improve islet survival and graft success. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    PubMed

    Plaisance, Valérie; Brajkovic, Saška; Tenenbaum, Mathie; Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment.

  10. Density-dependent induction of apoptosis by transforming growth factor-beta 1 in a human ovarian carcinoma cell line.

    PubMed

    Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A

    1995-01-01

    Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.

  11. p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex.

    PubMed

    Pardossi-Piquard, Raphaëlle; Dunys, Julie; Giaime, Emilie; Guillot-Sestier, Marie-Victoire; St George-Hyslop, Peter; Checler, Frédéric; Alves da Costa, Cristine

    2009-04-01

    Nicastrin (NCT) is a component of the presenilin (PS)-dependent gamma-secretase complexes that liberate amyloid beta-peptides from the beta-Amyloid Precursor Protein. Several lines of evidence indicate that the members of these complexes could also contribute to the control of cell death. Here we show that over-expression of NCT increases the viability of human embryonic kidney (HEK293) cells and decreases staurosporine (STS)- and thapsigargin (TPS)-induced caspase-3 activation in various cell lines from human and neuronal origins by Akt-dependent pathway. NCT lowers p53 expression, transcriptional activity and promoter transactivation and reduces p53 phosphorylation. NCT-associated protection against STS-stimulated cell death was completely abolished by p53 deficiency. Conversely, the depletion of NCT drastically enhances STS-induced caspase-3 activation and p53 pathway and favored p53 nuclear translocation. We examined whether NCT protective function depends on PS-dependent gamma-secretase activity. First, a 29-amino acid deletion known to reduce NCT-dependent amyloid beta-peptide production did not affect NCT-associated protective phenotype. Second, NCT still reduces STS-induced caspase-3 activation in fibroblasts lacking PS1 and PS2. Third, the gamma-secretase inhibitor DFK167 did not affect NCT-mediated reduction of p53 activity. Altogether, our study indicates that NCT controls cell death via phosphoinositide 3-kinase/Akt and p53-dependent pathways and that this function remains independent of the activity and molecular integrity of the gamma-secretase complexes.

  12. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans.

    PubMed

    Simeonovic, Charmaine J; Popp, Sarah K; Starrs, Lora M; Brown, Debra J; Ziolkowski, Andrew F; Ludwig, Barbara; Bornstein, Stefan R; Wilson, J Dennis; Pugliese, Alberto; Kay, Thomas W H; Thomas, Helen E; Loudovaris, Thomas; Choong, Fui Jiun; Freeman, Craig; Parish, Christopher R

    2018-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.

  13. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis.

    PubMed

    Halama, Anna; Kulinski, Michal; Dib, Shaima S; Zaghlool, Shaza B; Siveen, Kodappully S; Iskandarani, Ahmad; Zierer, Jonas; Prabhu, Kirti S; Satheesh, Noothan J; Bhagwat, Aditya M; Uddin, Shahab; Kastenmüller, Gabi; Elemento, Olivier; Gross, Steven S; Suhre, Karsten

    2018-08-28

    Suppressing glutaminolysis does not always induce cancer cell death in glutamine dependent tumors because cells may switch to alternative energy sources. To reveal compensatory metabolic pathways, we investigated the metabolome-wide cellular response to inhibited glutaminolysis in cancer cells. Glutaminolysis inhibition with C.968 suppressed cell proliferation but was insufficient to induce cancer cell death. We found that lipid catabolism was activated as a compensation for glutaminolysis inhibition. Accelerated lipid catabolism, together with oxidative stress induced by glutaminolysis inhibition, triggered autophagy. Simultaneously inhibiting glutaminolysis and either beta oxidation with trimetazidine or autophagy with chloroquine both induced cancer cell death. Here we identified metabolic escape mechanisms contributing to cancer cell survival under treatment and we suggest potentially translational strategy for combined cancer therapy, given that chloroquine is an FDA approved drug. Our findings are first to show efficiency of combined inhibition of glutaminolysis and beta oxidation as potential anti-cancer strategy as well as add to the evidence that combined inhibition of glutaminolysis and autophagy may be effective in glutamine-addicted cancers. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. In vitro cell injury by oxidized low density lipoprotein involves lipid hydroperoxide-induced formation of alkoxyl, lipid, and peroxyl radicals.

    PubMed Central

    Coffey, M D; Cole, R A; Colles, S M; Chisolm, G M

    1995-01-01

    Mounting evidence supports current theories linking lipoprotein oxidation to atherosclerosis. We sought the cellular biochemical mechanism by which oxidized LDL inflicts cell injury. Inhibitors of candidate pathways of cell death were used to treat human fibroblast target cells exposed to oxidized LDL.. Ebselen, which degrades lipid hydroperoxides, inhibited oxidized LDL toxicity, consistent with our recent report that 7 beta-hydroperoxycholesterol (7 beta-OOH chol) is the major cytotoxin of oxidized LDL. Intracellular chelation of metal ions inhibited, while preloading cells with iron enhanced, toxicity, Inhibition of oxidized LDL and 7 beta-OOH chol toxicity by 2-keto-4-thiolmethyl butyric acid, a putative alkoxyl radical scavenger and by vitamin E, probucol and diphenylphenylenediamine, putative scavengers of peroxyl radicals was consistent with the involvement of these radicals in the lethal sequence. Cell death was thus postulated to occur due to lipid peroxidation via a sequence involving lipid hydroperoxide-induced, iron-mediated formation of alkoxyl, lipid, and peroxyl radicals. Pathways involving other reactive oxygen species, new protein synthesis, or altered cholesterol metabolism were considered less likely, since putative inhibitors failed to lessen toxicity. Understanding the mechanism of cell injury by oxidized LDL and its toxic moiety, 7 beta-OOH chol, may indicate specific interventions in the cell injury believed to accompany vascular lesion development. PMID:7560078

  15. Acorus tatarinowii Schott extract protects PC12 cells from amyloid-beta induced neurotoxicity.

    PubMed

    An, Hong-Mei; Li, Guo-Wen; Lin, Chen; Gu, Chao; Jin, Miao; Sun, Wen-Xian; Qiu, Ming-Feng; Hu, Bing

    2014-05-01

    Amyloid-beta induced neurotoxicity has been identified as a major cause of Alzheimer's disease. Acorus tatarinowii Schott is one of the most frequently used Chinese herbs for Alzheimer's disease treatment. However, the effects of Acorus tatarinowii Schott on amyloid-beta mediated nerve cell damage remains unknown. In the present study, neuronal differentiated PC12 cells were used as a model to evaluate the effects of A. tatarinowii Schott extract (ATSE) against Abeta25-35 induced neurotoxicity. The results showed pretreatment with ATSE significantly protected PC12 cells from Abeta25-35 induced cell death, lactate dehydrogenase release, DNA damage, mitochondrial dysfunction and cytochrome c release from mitochondria. In addition, pretreatment with ATSE also significantly inhibited Abeta25-35 induced caspase-3 activation and reactive oxygen species generation in PC12 cells. These observations suggested that ATSE protects PC12 cells from amyloid-beta induced neurotoxicity.

  16. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    PubMed Central

    Pi, Jingbo; Zhang, Qiang; Fu, Jingqi; Woods, Courtney G.; Hou, Yongyong; Corkey, Barbara E; Collins, Sheila; Andersen, Melvin E.

    2009-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H2O2, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function. PMID:19501608

  17. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update.

    PubMed

    Wang, Mei; Su, Ping

    2018-04-01

    The Fas/FasL signaling pathway is one of the major pathways that regulate apoptosis. Increasing studies have shown that the activation of the Fas/FasL signaling pathway is closely associated with testicular cell apoptosis. However, the mechanism involved is still unclear. We discuss recent findings regarding the molecular mechanisms by which environmental toxicants induce testicular pathology via Fas/FasL signaling. These findings suggest that Fas/FasL signaling is employed to impact the sensitivity (a response to external factors) of germ cells, disrupt steroidogenic hormone and cytokine metabolism mediated by Sertoli cells, and elicit the activation of NFAT (nuclear factor of activated T-cells) in Leydig cell apoptosis. Consequently, degeneration of testicular somatic (Sertoli and Leydig) and spermatogenic cells, leads to decreased numbers of mature sperm and subsequently translates into infertility issues. Collectively, these findings illustrate that it is beneficial to develop potential targets for a new generation of new pharmaceutical therapies that would alleviate testicular dysfunctions. BTB: blood-testis barrier; DD: death domains; DR3: death receptor 3; DR4: death receptor 4; DR5: death receptor 5; DED: death effector domain; DISC: death-inducing signaling complex; ERα: estrogen receptor alpha; FADD: Fas-associated death domain; FSH: follicle- stimulating hormone; IL-1β: interleukin 1 beta; LH: luteinizing hormone; LPS: lipopolysaccharide; mFas: membrane Fas; MMP2: matrix metalloproteinase-2; MTA1: metastasis-associated protein 1; NAC: N-acetylcysteine; NCCD: the Nomenclature Committee on Cell Death; NFAT: nuclear factor of activated T-cells; NF-kB: nuclear transcription factor-kappaB; NO: nitric oxide; NP: 4-nonylphenol; PCD: programmed cell death; PP1/PP2A: protein phosphatase 1 and 2A; ROS: reactive oxygen species; sFas: soluble Fas; T: testosterone; TGF-β: transforming growth factor-beta; THD: TNF homology domain; TIMP-2: tissue inhibitor of metalloproteinase-2; TNF: tumor necrosis factor; TNF-α: tumor necrosis factor-alpha; TNF-R1: Tumor necrosis factor receptor 1; TNFRSF1A: TNF receptor superfamily member 1A.

  18. 17-beta estradiol inhibits oxidative stress-induced accumulation of AIF into nucleolus and PARP1-dependent cell death via estrogen receptor alpha.

    PubMed

    Batnasan, Enkhzaya; Wang, Ruoxi; Wen, Jitao; Ke, Yueshuang; Li, Xiaoxue; Bohio, Ameer Ali; Zeng, Xianlu; Huo, Hongliang; Han, Liping; Boldogh, Istvan; Ba, Xueqing

    2015-01-05

    Oxidative stress-induced DNA damage results in over-activation of poly(ADP-ribose) polymerase 1 (PARP1), leading to parthanatos, a newly discovered cell elimination pathway. Inhibition of PARP1-dependent cell death has shown to improve the outcome of diseases, including stroke, heart ischemia, and neurodegenerative diseases. In the present study we aimed to detect whether estrogen plays a protective role in inhibiting parthanatos. We utilized human mammary adenocarcinoma cells (MCF7) that abundantly express the estrogen receptor alpha and beta (ERα and ERβ). Parthanatos was induced by challenging the cells with hydrogen peroxide (H2O2). Microscopic imaging and molecular biological techniques, such as Western blot analysis and RNA interference, were performed. The results showed 17β estradiol (E2) protected MCF7 cells from PARP1-dependent cell death by decreasing protein PARylation, and AIF translocation into nuclei/nucleoli. Down-regulation of ERα expression by siRNA before E2 addition resulted in the failure of the E2-mediated inhibition of H2O2-induced protein PARylation and AIF nucleolar translocation. Together these data suggest that estrogen via its alpha-type receptor inhibits oxidative stress-induced, PARP1-dependent cell death. The present study provided us insight into how to apply hormone therapy in intervention of parthanatos-implicated ischemic and degenerative diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Changes in proteasome structure and function caused by HAMLET in tumor cells.

    PubMed

    Gustafsson, Lotta; Aits, Sonja; Onnerfjord, Patrik; Trulsson, Maria; Storm, Petter; Svanborg, Catharina

    2009-01-01

    Proteasomes control the level of endogenous unfolded proteins by degrading them in the proteolytic core. Insufficient degradation due to altered protein structure or proteasome inhibition may trigger cell death. This study examined the proteasome response to HAMLET, a partially unfolded protein-lipid complex, which is internalized by tumor cells and triggers cell death. HAMLET bound directly to isolated 20S proteasomes in vitro and in tumor cells significant co-localization of HAMLET and 20S proteasomes was detected by confocal microscopy. This interaction was confirmed by co-immunoprecipitation from extracts of HAMLET-treated tumor cells. HAMLET resisted in vitro degradation by proteasomal enzymes and degradation by intact 20S proteasomes was slow compared to fatty acid-free, partially unfolded alpha-lactalbumin. After a brief activation, HAMLET inhibited proteasome activity in vitro and in parallel a change in proteasome structure occurred, with modifications of catalytic (beta1 and beta5) and structural subunits (alpha2, alpha3, alpha6 and beta3). Proteasome inhibition was confirmed in extracts from HAMLET-treated cells and there were indications of proteasome fragmentation in HAMLET-treated cells. The results suggest that internalized HAMLET is targeted to 20S proteasomes, that the complex resists degradation, inhibits proteasome activity and perturbs proteasome structure. We speculate that perturbations of proteasome structure might contribute to the cytotoxic effects of unfolded protein complexes that invade host cells.

  20. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies.

    PubMed

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela

    2009-04-15

    Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.

  1. In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease.

    PubMed

    Selznick, L A; Holtzman, D M; Han, B H; Gökden, M; Srinivasan, A N; Johnson, E M; Roth, K A

    1999-09-01

    The mechanism by which cells die in Alzheimer disease (AD) is unknown. Several investigators speculate that much of the cell loss may be due to apoptosis, a highly regulated form of programmed cell death. Caspase-3 is a critical effector of neuronal apoptosis and may be inappropriately activated in AD. To address this possibility, we examined cortical and hippocampal brain sections from AD patients, as well as 2 animal models of AD, for in situ evidence of caspase-3 activation. We report here that senile plaques and neurofibrillary tangles in the AD brain are not associated with caspase-3 activation. Furthermore, amyloid beta (A beta) deposition in the APPsw transgenic mouse model of AD does not result in caspase-3 activation despite the ability of A beta to induce caspase-3 activation and neuronal apoptosis in vitro. AD brain sections do, however, exhibit caspase-3 activation in hippocampal neurons undergoing granulovacuolar degeneration. Our data suggests that caspase-3 does not have a significant role in the widespread neuronal cell death that occurs in AD, but may contribute to the specific loss of hippocampal neurons involved in learning and memory.

  2. Studies on the cytotoxicity of miscellaneous compounds from Eupatorium betonicaeforme (D.C.) Baker (Asteraceae).

    PubMed

    Rocha, Danilo D; Dantas, Ivana N F; Albuquerque, Maria Rose Jane R; Montenegro, Raquel C; Pessoa, Cláudia; de Moraes, Manoel Odorico; Pessoa, Otília Deusdênia L; Silveira, Edilberto R; Costa-Lotufo, Letícia V

    2007-12-01

    A detailed study on the cytotoxic effects of five known constituents isolated from the flowers and roots of Eupatorium betonicaeforme is reported, including 2,2-dimethyl-6-vinylchroman-4-one (1), 2-senecioyl-4-vinylphenol (2), 6-acetyl-2,2-dimethylchroman-4-one (3), (4E)-8beta-angeloyloxy-9beta,10beta-dihydroxy-1-oxogermacra-4,11(13)-dien-12,6alpha-olide (4), and 3beta-hydroxyicosan-1,5beta-olide (5). The sesquiterpene lactone 4 exhibited the highest cytotoxicity, with IC50 values ranging from 3.9 to 9.9 microM, showing some degree of cell selectivity. The antiproliferative activity of 4 was examined towards HL-60 cells, and found to diminish cell viability in a dose-dependent manner. Moreover, at all concentrations tested, there was a decrease in the number of cells capable of incorporating 5-bromo-2'-deoxyuridine (BrdU), indicating disruption of DNA synthesis. The morphological changes induced by 4 were compatible with apoptotic cell death. This work, thus, corroborates the anticancer potential of Eupatorium secondary metabolites.

  3. Activation of the endoplasmic reticulum stress response by the amyloid-beta 1-40 peptide in brain endothelial cells.

    PubMed

    Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F

    2013-12-01

    Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration. © 2013.

  4. Dietary toxins, endoplasmic reticulum (ER) stress and diabetes.

    PubMed

    Hettiarachchi, Kalindi D; Zimmet, Paul Z; Myers, Mark A

    2008-05-01

    The incidence of Type 1 diabetes has been increasing at a rate too rapid to be due to changes in genetic risk. Instead changes in environmental factors are the likely culprit. The endoplasmic reticulum (ER) plays an important role in the production of newly synthesized proteins and interference with these processes leads to ER stress. The insulin-producing beta cells are particularly prone to ER stress as a result of their heavy engagement in insulin production. Increasing evidence suggests ER stress is central to initiation and progression of Type 1 diabetes. An early environmental exposure, such as toxins and viral infections, can impart a significant physiological load on beta cells to initiate abnormal processing of proinsulin, ER stress and insulin secretory defects. Release of altered proinsulin from the beta cells early in life may trigger autoimmunity in those with genetic susceptibility leading to cytokine-induced nitric oxide production and so exacerbating ER stress in beta cells, ultimately leading to apoptosis of beta cells and diabetes. Here we suggest that ER stress is an inherent cause of beta cell dysfunction and environmental factors, in particular dietary toxins derived from Streptomyces in infected root vegetables, can impart additional stress that aggravates beta cell death and progression to diabetes. Furthermore, we propose that the increasing incidence of Type 1 diabetes may be accounted for by increased dietary exposure to ER-stress-inducing Streptomyces toxins.

  5. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells.

    PubMed

    Hung, Jen-Yu; Hsu, Ya-Ling; Li, Chien-Te; Ko, Ying-Chin; Ni, Wen-Chiu; Huang, Ming-Shyan; Kuo, Po-Lin

    2009-10-28

    This study is the first study to investigate the anticancer effect of 6-shogaol in human non-small cell lung cancer A549 cells. 6-Shogaol inhibited cell proliferation by inducing autophagic cell death, but not, predominantly, apoptosis. Pretreatment of cells with 3-methyladenine (3-MA), an autophagy inhibitor, suppressed 6-shogaol mediated antiproliferation activity, suggesting that induction of autophagy by 6-shogaol is conducive to cell death. We also found that 6-shogaol inhibited survival signaling through the AKT/mTOR signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin (mTOR), forkhead transcription factors (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). Phosphorylation of both of mTOR's downstream targets, p70 ribosomal protein S6 kinase (p70S6 kinase) and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased 6-shogaol mediated autophagic cell death, supporting inhibition of AKT beneficial to autophagy. Moreover, reduction of AKT expression by siRNA potentiated 6-shogaol's effect, also supporting inhibition of AKT beneficial to autophagy. Taken together, these findings suggest that 6-shogaol may be a promising chemopreventive agent against human non-small cell lung cancer.

  6. Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-beta, TNF-alpha and NK cells activity.

    PubMed

    Quaresma, Juarez A S; Barros, Vera L R S; Pagliari, Carla; Fernandes, Elaine R; Guedes, Fernanda; Takakura, Cleusa F H; Andrade, Heitor F; Vasconcelos, Pedro F C; Duarte, Maria I S

    2006-02-05

    Flavivirus infection as dengue and yellow fever persists as a terrible menace to pandemics, due to Aedes prevalence in the Americas. Yellow fever is characterized by hepatocyte damage, with steatosis, apoptosis and necrosis, mainly in the midzonal region of the liver, but the injury mechanism has not been studied at the light of recent knowledge, such as the advances in cell death mechanisms, inflammatory response and cytokine cell expression tools. We studied 53 human liver paraffin embedded blocks from patients who died with yellow fever, all with histological demonstration of higher prevalence of apoptosis over necrosis and mild disproportionate inflammatory response. Viral antigens were found most frequently in hepatocytes from the midzonal area than other lobule areas, as detected by specific immunohistochemistry. Infiltrating cell subpopulations showed mainly CD4+ T lymphocytes, with small numbers of CD8+ cytotoxic lymphocytes, CD20+ B lymphocytes, NKT+ cells and S100+ dendritic cells in the sites of inflammation, as compared to normal and leptospirosis liver blocks. Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever. Most affected hepatocyte presented apoptosis markers that appear at the cell death main pathway in this infection. Viral antigens, which production could interfere in hepatocyte biology, could induce the activation of apoptosis cascade, but TGF-beta was also an apoptosis promoter. Our finding supports the key effect of the yellow fever virus in hepatocyte injury, resulting in prevalence of apoptosis over necrosis, aside from a TGF-beta action induced by the inflammatory response.

  7. Hemodynamic resuscitation with arginine vasopressin reduces lung injury after brain death in the transplant donor.

    PubMed

    Rostron, Anthony J; Avlonitis, Vassilios S; Cork, David M W; Grenade, Danielle S; Kirby, John A; Dark, John H

    2008-02-27

    The autonomic storm accompanying brain death leads to neurogenic pulmonary edema and triggers development of systemic and pulmonary inflammatory responses. Neurogenic vasoplegia exacerbates the pulmonary injury caused by brain death and primes the lung for ischemia reperfusion injury and primary graft dysfunction in the recipient. Donor resuscitation with norepinephrine ameliorates the inflammatory response to brain death, however norepinephrine has deleterious effects, particularly on the heart. We tested the hypothesis that arginine vasopressin is a suitable alternative to norepinephrine in managing the hypotensive brain dead donor. Brain death was induced in Wistar rats by intracranial balloon inflation. Pulmonary capillary leak was estimated using radioiodinated albumin. Development of pulmonary edema was assessed by measurement of wet and dry lung weights. Cell surface expression of CD11b/CD18 by neutrophils was determined using flow cytometry. Enzyme-linked immunosorbent assays were used to measure the levels of TNFalpha, IL-1beta, CINC-1, and CINC-3 in serum and bronchoalveolar lavage. Quantitative reverse-transcription polymerase chain reaction was used to determine the expression of cytokine mRNA (IL-1beta, CINC-1 and CINC-3) in lung tissue. There was a significant increase in pulmonary capillary permeability, wet/dry lung weight ratios, neutrophil integrin expression and pro-inflammatory cytokines in serum (TNFalpha, IL-1beta, CINC-1 and CINC-3), bronchoalveolar lavage (TNFalpha and IL-1beta) and lung tissue (IL-1beta and CINC-1) in braindead animals compared to controls. Correction of neurogenic hypotension with either arginine vasopressin or norepinephrine limits edema, reduces pulmonary capillary leak, and modulates systemic and pulmonary inflammatory responses to brain death. Arginine vasopressin and norepinephrine are equally effective in treating the hypotensive pulmonary donor in this rodent model.

  8. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co

    2010-08-01

    Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Wenqing, E-mail: liangwenqing_1234@126.com; Yang, Chengwei; Qian, Yu

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interferencemore » was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.« less

  10. Augmented cell survival in eutopic endometrium from women with endometriosis: Expression of c-myc, TGF-beta1 and bax genes

    PubMed Central

    Johnson, M Cecilia; Torres, Marisa; Alves, Alessandra; Bacallao, Ketty; Fuentes, Ariel; Vega, Margarita; Boric, M Angélica

    2005-01-01

    Background Endometriosis is a common gynaecological disorder characterized by the presence of endometrial tissue outside of the uterus. The fragments in normal menstruation are composed of necrotic and living cells, which do not survive in ectopic locations because of programmed cell death. The aim of this study was to evaluate if the balance between cell proliferation and apoptosis is changed in eutopic endometrium from women with endometriosis throughout the menstrual cycle by studying bax (pro-apoptotic), c-myc (regulator of cell cycle) and TGF-beta1 (involved in cell differentiation) genes. Methods Eutopic endometrium was obtained from: 30 women with endometriosis (32.8 +/- 5 years) and 34 fertile eumenorrheic women (36 +/- 5.3 years). We analyzed apoptosis (TUNEL: DNA fragmentation); cell proliferation (immunohistochemistry (IHC) for Ki67); c-myc, bax and TGF-beta1 mRNA abundance (RT-PCR) and TGF-beta1 protein (IHC) in endometrial explants. Results Cell proliferation strongly decreased from proliferative to late secretory phases in glands, but not in stroma, in both endometria. Positive staining in glands and stroma from proliferative endometrium with endometriosis was 1.9- and 2.2-fold higher than control endometrium, respectively (p < 0.05). Abundance of c-myc mRNA was 65% higher in proliferative endometrium from endometriosis than normal tissue (p < 0.05). TGF-beta1 (mRNA and protein) augmented during mid secretory phase in normal endometrium, effect not observed in endometrium with endometriosis. In normal endometrium, the percentage of apoptotic epithelial and stromal cells increased more than 30-fold during late secretory phase. In contrast, in endometrium from endometriosis, not only this increase was not observed, besides bax mRNA decreased 63% versus normal endometrium (p < 0.05). At once, in early secretory phase, apoptotic stromal cells increased 10-fold with a concomitant augment of bax mRNA abundance (42%) in endometria from endometriosis (p < 0.05). Conclusion An altered expression of c-myc, TGF-beta1 and bax was observed in eutopic endometrium from endometriosis, suggesting its participation in the regulation of cell survival in this disease. The augmented cell viability in eutopic endometrium from these patients as a consequence of a reduction in cell death by apoptosis, and also an increase in cell proliferation indicates that this condition may facilitate the invasive feature of the endometrium. PMID:16150151

  11. Hepatic apoptotic activity following transient normothermic inflow occlusion and reperfusion in the swine model.

    PubMed

    Helling, T S; Edwards, C A; Helling, T S; Chang, C C; Hodges, M C; Dhar, A; VanWay, C

    1999-09-01

    Accelerated hepatic apoptosis was first described in portal vein-ligated livers but has since been reported in a variety of liver injuries. Because porto-prival states can induce apoptosis we sought to determine whether transient ischemic periods followed by reperfusion would trigger such cell death. The cytokines TNF-alpha and TGF-beta are known to facilitate apoptosis and are released in response to a number of stimuli including ischemia. We also investigated alterations in plasma and tissue levels of these cytokines which might lend support to their role in increased apoptotic activity following ischemia/reperfusion. Female pigs were used as the experimental model. Inflow occlusion of portal and hepatic arterial blood was performed to a portion of the swine liver directing the entire splanchnic flow to the remaining hepatic lobes for a period of 2 h. The livers were then reperfused and plasma and tissue samples taken for determination of apoptotic activity utilizing cell death immunoperoxidase staining of 3'-OH DNA ends generated by fragmentation and ELISA assay of histone-associated DNA fragments. Plasma and tissue levels of TNF-alpha and plasma levels of TGF-beta were determined by ELISA assay. An increase in apoptotic activity following reperfusion was seen at Day 2 and Day 4 compared to preischemic values by the cell death stain. The ELISA cell death assay showed an increase in apoptotic activity at 60 min, Day 2, and Day 4. Moreover, the ELISA cell death assay showed enhanced apoptotic activity in "hyperperfused" hepatic lobes compared to preischemic, or resting, liver. This was also observed when compared to sham-operated animals. Surprisingly, there was no detectable increase in plasma TNF-alpha or TGF-beta levels following ischemia/reperfusion, although homogenized liver TNF-alpha levels were increased at 60 min and Day 2 following reperfusion. We conclude that transient hepatic inflow occlusion followed by reperfusion can induce increased apoptotic activity in the swine model. Furthermore, increased apoptotic activity also occurs in the hyperperfused liver raising the possibility of a locally active factor or global hepatic expression of receptor activity in response to ischemia/reperfusion. This period of ischemia/reperfusion did not produce a detectable increase in circulating cytokine levels, and accelerated apoptosis could not be linked to heightened TNF-alpha or TGF-beta plasma activity. Higher tissue levels of TNF-alpha could reflect enhanced binding to TNF cell surface receptors or amplified receptor expression. Copyright 1999 Academic Press.

  12. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    PubMed

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Role of glycogen synthase kinase 3 beta (GSK3beta) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA) in MCF-7 breast cancer cells.

    PubMed

    Alao, John P; Stavropoulou, Alexandra V; Lam, Eric W-F; Coombes, R Charles

    2006-10-03

    Histone deacetylase inhibitors (HDACIs) have been shown to induce apoptotic and autophagic cell death in vitro and in vivo. The molecular mechanisms that underlie these cytotoxic effects are not yet clearly understood. Recently, HDACIs were shown to induce Akt dephosphorylation by disrupting HDAC-protein phosphatase 1 (PP1) complexes. This disruption results in the increased association of PP1 with Akt, resulting in the dephosphorylation and consequent inactivation of the kinase. Akt enhances cellular survival through the phosphorylation-dependent inhibition of several pro-apoptotic proteins. Akt is an important negative regulator of GSK3beta, a kinase that has been shown to regulate apoptosis in response to various stimuli. In the present study, we investigated the role of GSK3beta in mediating the cytotoxic effects in MCF-7 breast cancer cells treated with trichostatin A (TSA), a prototype HDACI. We show that TSA induces Akt dephosphorylation in a PP1-dependent manner, resulting in activation of GSK3beta in MCF-7 cells. Similarly, knockdown of HDAC1 and-2 by small interfering RNA (siRNA) resulted in the dephosphorylation of Akt and GSK3beta. Selective inhibition of GSK3beta attenuated TSA induced cytotoxicity and resulted in enhanced proliferation following drug removal. Our findings identify GSK3beta as an important mediator of TSA-induced cytotoxicity in MCF-7 breast cancer cells.

  14. Human islet cells are killed by BID-independent mechanisms in response to FAS ligand.

    PubMed

    Joglekar, Mugdha V; Trivedi, Prerak M; Kay, Thomas W; Hawthorne, Wayne J; O'Connell, Philip J; Jenkins, Alicia J; Hardikar, Anandwardhan A; Thomas, Helen E

    2016-04-01

    Cell death via FAS/CD95 can occur either by activation of caspases alone (extrinsic) or by activation of mitochondrial death signalling (intrinsic) depending on the cell type. The BH3-only protein BID is activated in the BCL-2-regulated or mitochondrial apoptosis pathway and acts as a switch between the extrinsic and intrinsic cell death pathways. We have previously demonstrated that islets from BID-deficient mice are protected from FAS ligand-mediated apoptosis in vitro. However, it is not yet known if BID plays a similar role in human beta cell death. We therefore aimed to test the role of BID in human islet cell apoptosis immediately after isolation from human cadaver donors, as well as after de-differentiation in vitro. Freshly isolated human islets or 10-12 day cultured human islet cells exhibited BID transcript knockdown after BID siRNA transfection, however they were not protected from FAS ligand-mediated cell death in vitro as determined by DNA fragmentation analysis using flow cytometry. On the other hand, the same cells transfected with siRNA for FAS-associated via death domain (FADD), a molecule in the extrinsic cell death pathway upstream of BID, showed significant reduction in cell death. De-differentiated islets (human islet-derived progenitor cells) also demonstrated similar results with no difference in cell death after BID knockdown as compared to scramble siRNA transfections. Our results indicate that BID-independent pathways are responsible for FAS-dependent human islet cell death. These results are different from those observed in mouse islets and therefore demonstrate potentially alternate pathways of FAS ligand-induced cell death in human and mouse islet cells.

  15. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    PubMed

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  16. Mechanism of abnormal growth in astrocytes derived from a mouse model of GM2 gangliosidosis.

    PubMed

    Kawashima, Nagako; Tsuji, Daisuke; Okuda, Tetsuya; Itoh, Kohji; Nakayama, Ken-ichi

    2009-11-01

    Sandhoff disease is a progressive neurodegenerative disorder caused by mutations in the HEXB gene which encodes the beta-subunit of N-acetyl-beta-hexosaminidase A and B, resulting in the accumulation of the ganglioside GM2. We isolated astrocytes from the neonatal brain of Sandhoff disease model mice in which the N-acetyl-beta-hexosaminidase beta-subunit gene is genetically disrupted (ASD). Glycolipid profiles revealed that GM2/GA2 accumulated in the lysosomes and not on the cell surface of ASD astrocytes. In addition, GM3 was increased on the cell surface. We found remarkable differences in the cell proliferation of ASD astrocytes when compared with cells isolated from wild-type mice, with a faster growth rate of ASD cells. In addition, we observed increased extracellular, signal-regulated kinase (ERK) phosphorylation in ASD cells, but Akt phosphorylation was decreased. Furthermore, the phosphorylation of ERK in ASD cells was not dependent upon extracellular growth factors. Treatment of ASD astrocytes with recombinant N-acetyl-beta-hexosaminidase A resulted in a decrease of their growth rate and ERK phosphorylation. These results indicated that the up-regulation of ERK phosphorylation and the increase in proliferation of ASD astrocytes were dependent upon GM2/GA2 accumulation. These findings may represent a mechanism in linking the nerve cell death and reactive gliosis observed in Sandhoff disease.

  17. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations.

    PubMed

    Souza, Raquel Santos; Diaz-Albiter, Hector Manuel; Dillon, Vivian Maureen; Dillon, Rod J; Genta, Fernando Ariel

    2016-01-01

    Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2 h, 100% in 48 h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.

  18. Yersinia YopP-induced apoptotic cell death in murine dendritic cells is partially independent from action of caspases and exhibits necrosis-like features.

    PubMed

    Gröbner, Sabine; Autenrieth, Stella E; Soldanova, Irena; Gunst, Dani S J; Schaller, Martin; Bohn, Erwin; Müller, Steffen; Leverkus, Martin; Wesselborg, Sebastian; Autenrieth, Ingo B; Borgmann, Stefan

    2006-11-01

    Yersinia outer protein P (YopP) is a virulence factor of Yersinia enterocolitica that is injected into the cytosol of host cells where it targets MAP kinase kinases (MKKs) and inhibitor of kappaB kinase (IKK)-beta resulting in inhibition of cytokine production as well as induction of apoptosis in murine macrophages and dendritic cells (DC). Here we show that DC death was only partially prevented by the broad spectrum caspase inhibitor zVAD-fmk, indicating simultaneous caspase-dependent and caspase-independent mechanisms of cell death induction by YopP. Microscopic analyses and measurement of cell size demonstrated necrosis-like morphology of caspase-independent cell death. Application of zVAD-fmk prevented cleavage of procaspases and Bid, decrease of the inner transmembrane mitochondrial potential DeltaPsi(m) and mitochondrial release of cytochrome c. From these data we conclude that YopP-induced activation of the mitochondrial death pathway is mediated upstream via caspases. In conclusion, our results suggest that YopP simultaneously induces caspase-dependent apoptotic and caspase-independent necrosis-like death in DC. However, it has to be resolved if necrosis-like DC death occurs independently from apoptotic events or as an apoptotic epiphenomenon.

  19. Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer's disease.

    PubMed

    Jayaprakasam, Bolleddula; Padmanabhan, Kaillathe; Nair, Muraleedharan G

    2010-06-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with symptoms of confusion, memory loss, and mood swings. The beta-amyloid peptide, with 39-42 amino acid residues (BAP), plays a significant role in the development of AD. Although there is no cure for AD, it can be managed with available drugs to some degree. Several studies have revealed that natural antioxidants, such as vitamin E, vitamin C and beta-carotene, may help in scavenging free radicals generated during the initiation and progression of this disease. Therefore, there has been considerable interest in plant phytochemicals with antioxidant property as potential agents to prevent the progression of AD. Our earlier investigations of the Withania somnifera fruit afforded lipid peroxidation inhibitory withanamides that are more potent than the commercial antioxidants. In this study, we have tested two major withanamides A (WA) and C (WC) for their ability to protect the PC-12 cells, rat neuronal cells, from beta-amyloid induced cell damage. The cell death caused by beta-amyloid was negated by withanamide treatment. Molecular modeling studies showed that withanamides A and C uniquely bind to the active motif of beta-amyloid (25-35) and suggest that withanamides have the ability to prevent the fibril formation. Further understanding of the mechanism of action and in vivo efficacy of these withanamides may facilitate its development as a prophylaxis. (c) 2009 John Wiley & Sons, Ltd.

  20. Effects of mitomycin-C on normal dermal fibroblasts.

    PubMed

    Chen, Theodore; Kunnavatana, Shaun S; Koch, R James

    2006-04-01

    To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1. Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-beta1. A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro.

  1. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Cheol-Hee; Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759; Lee, Byung-Hoon

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy andmore » apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK{sup Ser9}/p70S6K{sup Thr380} and ERK/GSK3{beta}{sup Thr390}/p70S6K{sup Thr421/Ser424} kinase signaling, which is involved in cell survival and cell death.« less

  2. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta.

    PubMed

    Coffinier, Catherine; Gresh, Lionel; Fiette, Laurence; Tronche, François; Schütz, Günther; Babinet, Charles; Pontoglio, Marco; Yaniv, Moshe; Barra, Jacqueline

    2002-04-01

    The inactivation of the Hnf1beta gene identified an essential role in epithelial differentiation of the visceral endoderm and resulted in early embryonic death. In the present study, we have specifically inactivated this gene in hepatocytes and bile duct cells using the Cre/loxP system. Mutant animals exhibited severe jaundice caused by abnormalities of the gallbladder and intrahepatic bile ducts (IHBD). The paucity of small IHBD was linked to a failure in the organization of duct structures during liver organogenesis, suggesting an essential function of Hnf1b in bile duct morphogenesis. Mutant mice also lacked interlobular arteries. As HNF1beta is not expressed in these cells, it further emphasizes the link between arterial and biliary formation. Hepatocyte metabolism was also affected and we identified hepatocyte-specific HNF1beta target genes involved in bile acids sensing and in fatty acid oxidation.

  3. WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeilstra, Jurrit; Joosten, Sander P.J.; Wensveen, Felix M.

    Research highlights: {yields} Intestinal adenomas initiated by aberrant activation of the WNT pathway displayed an increased sensitivity to apoptosis. {yields} Expression profiling of apoptosis-related genes in Apc{sup Min/+} mice revealed the differential expression of pro-apoptotic Bok and Bax. {yields} APC-mutant adenomatous crypts in FAP patients showed strongly increased BAX immunoreactivity. {yields} Blocking of {beta}-catenin/TCF-4-mediated signaling in colon cancer cells reduced the expression of BOK and BAX. -- Abstract: In a majority of cases, colorectal cancer is initiated by aberrant activation of the WNT signaling pathway. Mutation of the genes encoding the WNT signaling components adenomatous polyposis coli or {beta}-catenin causesmore » constitutively active {beta}-catenin/TCF-mediated transcription, driving the transformation of intestinal crypts to cancer precursor lesions, called dysplastic aberrant crypt foci. Deregulated apoptosis is a hallmark of adenomatous colon tissue. However, the contribution of WNT signaling to this process is not fully understood. We addressed this role by analyzing the rate of epithelial apoptosis in aberrant crypts and adenomas of the Apc{sup Min/+} mouse model. In comparison with normal crypts and adenomas, aberrant crypts displayed a dramatically increased rate of apoptotic cell death. Expression profiling of apoptosis-related genes along the crypt-villus axis and in Apc mutant adenomas revealed increased expression of two pro-apoptotic Bcl-2 family members in intestinal adenomas, Bok and Bax. Analysis of the colon of familial adenomatous polyposis (FAP) patients along the crypt-to-surface axis, and of dysplastic crypts, corroborated this expression pattern. Disruption of {beta}-catenin/TCF-4-mediated signaling in the colorectal cancer cell line Ls174T significantly decreased BOK and BAX expression, confirming WNT-dependent regulation in intestinal epithelial cells. Our results suggest a feedback mechanism by which uncontrolled epithelial cell proliferation in the stem cell compartment can be counterbalanced by an increased propensity to undergo cell death.« less

  4. Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.

    PubMed

    Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit

    2006-06-01

    Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.

  5. Inhibition of glycogen synthase kinase 3beta during heart failure is protective.

    PubMed

    Hirotani, Shinichi; Zhai, Peiyong; Tomita, Hideharu; Galeotti, Jonathan; Marquez, Juan Pablo; Gao, Shumin; Hong, Chull; Yatani, Atsuko; Avila, Jesús; Sadoshima, Junichi

    2007-11-26

    Glycogen synthase kinase (GSK)-3, a negative regulator of cardiac hypertrophy, is inactivated in failing hearts. To examine the histopathological and functional consequence of the persistent inhibition of GSK-3beta in the heart in vivo, we generated transgenic mice with cardiac-specific overexpression of dominant negative GSK-3beta (Tg-GSK-3beta-DN) and tetracycline-regulatable wild-type GSK-3beta. GSK-3beta-DN significantly reduced the kinase activity of endogenous GSK-3beta, inhibited phosphorylation of eukaryotic translation initiation factor 2B epsilon, and induced accumulation of beta-catenin and myeloid cell leukemia-1, confirming that GSK-3beta-DN acts as a dominant negative in vivo. Tg-GSK-3beta-DN exhibited concentric hypertrophy at baseline, accompanied by upregulation of the alpha-myosin heavy chain gene and increases in cardiac function, as evidenced by a significantly greater Emax after dobutamine infusion and percentage of contraction in isolated cardiac myocytes, indicating that inhibition of GSK-3beta induces well-compensated hypertrophy. Although transverse aortic constriction induced a similar increase in hypertrophy in both Tg-GSK-3beta-DN and nontransgenic mice, Tg-GSK-3beta-DN exhibited better left ventricular function and less fibrosis and apoptosis than nontransgenic mice. Induction of the GSK-3beta transgene in tetracycline-regulatable wild-type GSK-3beta mice induced left ventricular dysfunction and premature death, accompanied by increases in apoptosis and fibrosis. Overexpression of GSK-3beta-DN in cardiac myocytes inhibited tumor necrosis factor-alpha-induced apoptosis, and the antiapoptotic effect of GSK-3beta-DN was abrogated in the absence of myeloid cell leukemia-1. These results suggest that persistent inhibition of GSK-3beta induces compensatory hypertrophy, inhibits apoptosis and fibrosis, and increases cardiac contractility and that the antiapoptotic effect of GSK-3beta inhibition is mediated by myeloid cell leukemia-1. Thus, downregulation of GSK-3beta during heart failure could be compensatory.

  6. Age-related alterations in IL-1beta, TNF-alpha, and IL-6 concentrations in parotid acinar cells from BALB/c and non-obese diabetic mice.

    PubMed

    Yamakawa, M; Weinstein, R; Tsuji, T; McBride, J; Wong, D T; Login, G R

    2000-08-01

    IL-1beta, TNF-alpha, and IL-6 have been implicated in the destruction of parotid gland acinar cells (but not duct cells) in autoimmune sialoadenitis. Here we report the temporal alterations of these cytokines in parotid acinar cells that may lead to this specificity in cell death in the non-obese diabetic (NOD) mouse model for Sjögren's syndrome. Immunohistochemistry on paraffin sections of parotid gland from 5- and 10-week-old BALB/c and NOD mice confirmed the presence of many peri-acinar lymphoid nodules but few T-cells and macrophages between acinar cells. RT-PCR on enzymatically dispersed mouse parotid acinar cells (MPACs) showed no bands for CD3varepsilon, CD20, or F4/80 regardless of mouse strain or age. By ELISA, MPACs from 10-week-old NODs showed a small but highly significant (p<0.003) increase in IL-1beta and a large significant decrease (p<0.008) in IL-6 compared to 5-week-old NODs. Norepinephrine-stimulated amylase release from MPACs was not different regardless of mouse strain or age. These data show that alterations in acinar cell production of IL-1beta and IL-6 in aging NODs precede periductal lymphoid aggregates and acinar cell secretory dysfunction. (J Histochem Cytochem 48:1033-1041,2000)

  7. Interferon-induced TRAIL-independent cell death in DNase II-/- embryos.

    PubMed

    Kitahara, Yusuke; Kawane, Kohki; Nagata, Shigekazu

    2010-09-01

    The chromosomal DNA of apoptotic cells and the nuclear DNA expelled from erythroid precursors is cleaved by DNase II in lysosomes after the cells or nuclei are engulfed by macrophages. DNase II(-/-) embryos suffer from lethal anemia due to IFN-beta produced in the macrophages carrying undigested DNA. Here, we show that Type I IFN induced a caspase-dependent cell death in human epithelial cells that were transformed to express a high level of IFN type I receptor. During this death process, a set of genes was strongly activated, one of which encoded TRAIL, a death ligand. A high level of TRAIL mRNA was also found in the fetal liver of the lethally anemic DNase II(-/-) embryos, and a lack of IFN type I receptor in the DNase II(-/-) IFN-IR(-/-) embryos blocked the expression of TRAIL mRNA. However, a null mutation in TRAIL did not rescue the lethal anemia of the DNase II(-/-) embryos, indicating that TRAIL is dispensable for inducing the apoptosis of erythroid cells in DNase II(-/-) embryos, and therefore, that there is a TRAIL-independent mechanism for the IFN-induced apoptosis.

  8. Sulforaphane protects against cytokine- and streptozotocin-induced {beta}-cell damage by suppressing the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Kim, Eun-Kyung; Moon, Woo-Sung

    2009-02-15

    Sulforaphane (SFN) is an indirect antioxidant that protects animal tissues from chemical or biological insults by stimulating the expression of several NF-E2-related factor-2 (Nrf2)-regulated phase 2 enzymes. Treatment of RINm5F insulinoma cells with SFN increases Nrf2 nuclear translocation and expression of phase 2 enzymes. In this study, we investigated whether the activation of Nrf2 by SFN treatment or ectopic overexpression of Nrf2 inhibited cytokine-induced {beta}-cell damage. Treatment of RIN cells with IL-1{beta} and IFN-{gamma} induced {beta}-cell damage through a NF-{kappa}B-dependent signaling pathway. Activation of Nrf2 by treatment with SFN and induction of Nrf2 overexpression by transfection with Nrf2 prevented cytokinemore » toxicity. The mechanism by which Nrf2 activation inhibited NF-{kappa}B-dependent cell death signals appeared to involve the reduction of oxidative stress, as demonstrated by the inhibition of cytokine-induced H{sub 2}O{sub 2} production. The protective effect of SFN was further demonstrated by the restoration of normal insulin secreting responses to glucose in cytokine-treated rat pancreatic islets. Furthermore, pretreatment with SFN blocked the development of type 1 diabetes in streptozotocin-treated mice.« less

  9. Detrimental effects of discectomy on intervertebral disc biology can be decelerated by growth factor treatment during surgery: a large animal organ culture model.

    PubMed

    Illien-Jünger, Svenja; Lu, Young; Purmessur, Devina; Mayer, Jillian E; Walter, Benjamin A; Roughley, Peter J; Qureshi, Sheeraz A; Hecht, Andrew C; Iatridis, James C

    2014-11-01

    Lumbar discectomies are common surgical interventions that treat radiculopathy by removing herniated and loose intervertebral disc (IVD) tissues. However, remaining IVD tissue can continue to degenerate resulting in long-term clinical problems. Little information is available on the effects of discectomy on IVD biology. Currently, no treatments exist that can suspend or reverse the degeneration of the remaining IVD. To improve the knowledge on how discectomy procedures influence IVD physiology and to assess the potential of growth factor treatment as an augmentation during surgery. To determine effects of discectomy on IVDs with and without transforming growth factor beta 3 (TGFβ3) augmentation using bovine IVD organ culture. This study determined effects of discectomy with and without TGFβ3 injection using 1-, 6-, and 19-day organ culture experiments. Treated IVDs were injected with 0.2 μg TGFβ3 in 20 μL phosphate-buffered saline+bovine serum albumin into several locations of the discectomy site. Cell viability, gene expression, nitric oxide (NO) release, IVD height, aggrecan degradation, and proteoglycan content were determined. Discectomy significantly increased cell death, aggrecan degradation, and NO release in healthy IVDs. Transforming growth factor beta 3 injection treatment prevented or mitigated these effects for the 19-day culture period. Discectomy procedures induced cell death, catabolism, and NO production in healthy IVDs, and we conclude that post-discectomy degeneration is likely to be associated with cell death and matrix degradation. Transforming growth factor beta 3 injection augmented discectomy procedures by acting to protect IVD tissues by maintaining cell viability, limiting matrix degradation, and suppressing NO. We conclude that discectomy procedures can be improved with injectable therapies at the time of surgery although further in vivo and human studies are required. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3.more » Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in (Derynck and Zhang, 2003)]. Although signaling by Smads has been shown to be causally associated with the anti-proliferative effect of TGF{beta} (Datto et al., 1999; Liu et al., 1997), the role of non-Smad effectors on mediating the cellular effects of TGF{beta} is less well characterized.« less

  11. Induction of apoptosis in endothelial cells treated with cholesterol oxides.

    PubMed Central

    Lizard, G.; Deckert, V.; Dubrez, L.; Moisant, M.; Gambert, P.; Lagrost, L.

    1996-01-01

    Cholesterol oxides have a wide range of cytotoxic effects on vascular cells. Therefore, 7-ketocholesterol, 7 beta-hydroxycholesterol, 19-hydroxycholesterol, cholesterol 5 alpha, 6 alpha-epoxide, and 25-hydroxycholesterol, identified in various foodstuffs and human tissues, were chosen to compare and characterize the mode of cell death they induce, apoptosis or necrosis, on bovine aortic endothelial cells. The toxic potency differed from one compound to another, and 7 beta-hydroxycholesterol and 7-ketocholesterol exhibited the most potent effects. Cytotoxicity was accompanied by a decreased number of adherent cells, an increased number of non-adherent cells, and an enhanced permeability to propidium iodide. By electron and fluorescence microscopy performed after staining with Hoechst 33342, apoptotic cells with fragmented and condensed nuclei were identified mainly among non-adherent cells. By flow cytometry, cells with a lower DNA content than cells in the G0/G1 phase were apparent, giving a characteristic sub-G1 peak. Quantification of apoptosis evaluated either by the proportion of apoptotic cells identified by fluorescence microscopy after staining with Hoechst 33342 or by the percentage of cells present in the sub-G1 peak indicated that the ability of cholesterol oxides in inducing apoptosis was in the following order: 7 beta-hydroxycholesterol > 7-ketocholesterol > 19-hydroxycholesterol > cholesterol 5 alpha, 6 alpha-epoxide > 25-hydroxycholesterol. By using electrophoresis on agarose gel, typical internucleosomal DNA fragmentations were detected; they were no longer observed when bovine aortic endothelial cells were simultaneously incubated with 0.5 mmol/L zinc chloride, known to inhibit Ca2+/Mg2+-dependent endonucleases. None of the cholesterol-oxide-induced apoptotic features described above were noted with cholesterol. It is concluded that cholesterol oxides constitute a new class of cholesterol derivatives that can induce cell death by apoptosis in cultured endothelial cells. Images Figure 3 Figure 4 Figure 7 PMID:8623930

  12. Mutual antagonism of TGF-beta and Interleukin-2 in cell survival and lineage commitment of induced regulatory T cells

    PubMed Central

    Tischner, D; Wiegers, G J; Fiegl, H; Drach, M; Villunger, A

    2012-01-01

    Transforming growth factor beta (TGF-β)- and Interleukin-2 (IL-2)-mediated signaling enables the generation and expansion of induced regulatory T (iTreg) cells that carry high hopes for the treatment of chronic inflammatory and autoimmune diseases. Knowledge about factors stabilizing their lineage commitment and lifespan, however, is limited. Here, we investigated the behavior of iTreg cells, derived from apoptosis-defective mouse mutants, during activated cell autonomous cell death, triggered by cytokine-deprivation, or activation-induced cell death (AICD) after restimulation of the T-cell receptor, and compared these responses with those of effector T cells. We observed that iTreg cells were much more sensitive to IL-2-deprivation but poorly susceptible to AICD. In fact, when apoptosis was compromised, T-cell receptor (TCR)-religation resulted in methylation-independent, ERK- and PI3K/mTOR-mediated loss of Foxp3 expression, impaired suppressive capacity and effector cytokine production. Although iTreg cells prevented colitis induction they rapidly lost Foxp3-GFP expression and gained ability to produce effector cytokines thereby imposing Th1 cell fate on resident effector cells. Surprisingly, iTreg cell conversion itself was limited by TGF-β-mediated Bim/Bcl2L11-dependent apoptosis. Hence, the very same cytokine that drives the generation of iTreg cells can trigger their demise. Our results provide novel insights in iTreg cell biology that will assist optimization of iTreg-based therapy. PMID:22322859

  13. Protective effects of St. John's wort extract and its component hyperforin against cytokine-induced cytotoxicity in a pancreatic beta-cell line.

    PubMed

    Menegazzi, Marta; Novelli, Michela; Beffy, Pascale; D'Aleo, Valentina; Tedeschi, Elisa; Lupi, Roberto; Zoratti, Elisa; Marchetti, Piero; Suzuki, Hisanori; Masiello, Pellegrino

    2008-01-01

    In both type 1 and type 2 diabetes, increased production of cytokines on autoimmune or metabolic basis is supposed to trigger an inflammatory process leading to dysfunction and death of pancreatic beta-cells. Therefore, anti-inflammatory pharmacological approaches aimed at blocking cytokine signalling pathways and consequent cytotoxicity in beta-cells are highly advisable. Based on previous evidence of cytokine antagonistic effects in other cell types, we explored the protective action of Hypericum perforatum (St-John's-wort) extract and its component hyperforin against cytokine-induced functional impairment and apoptosis in the INS-1E beta-cell line, searching for the underlying mechanisms. The results showed that either St-John's-wort extract or hyperforin (at 1-3 microM) prevented cytokine-induced impairment in glucose-stimulated insulin secretion and protected cells against apoptosis in a dose-dependent fashion. Inducible-NO-synthase expression was also potently hindered by the vegetal compounds. Interestingly, cytokine-induced activations of the signal-transducer-and-activator-of-transcription-1 (STAT-1) and the nuclear-factor-kappaB (NF-kappaB) were both down-regulated by SJW extract or HPF (range 0.5-5 microM) when evaluated by electrophoretic-mobility-shift-assay. Other transcription factors (CBF-1, SP-1) were unaffected. Components of SJW extract other than HPF were much less effective in down-regulating cytokine signalling. Significantly, inhibition of cytokine-elicited STAT-1 and NF-kappaB activation was confirmed in isolated rat and human islets incubated in the presence of these vegetal compounds. In conclusion, St-John's-wort extract and hyperforin are non-peptidyl compounds which, at low concentrations, target key mechanisms of cytokine-induced beta-cell injury, thereby improving beta-cell function and survival. Thus, they are potentially valuable for the prevention or limitation of beta-cell loss in diabetes.

  14. ALK and TGF-Beta Resistance in Breast Cancer

    DTIC Science & Technology

    2016-10-01

    ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene, 2002. 21(7): p. 1038 -47. 10 . Khoury, J.D., et al., Differential...of Medicine Houston, TX 77030 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 . SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT... 10 3 INTRODUCTION: TGF-β exerts its tumor suppressing function by inhibiting the growth of normal epithelial cells. Loss of the

  15. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    PubMed

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cdk5 inhibitory peptide (CIP) inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.

    PubMed

    Zheng, Ya-Li; Li, Congyu; Hu, Ya-Fang; Cao, Li; Wang, Hui; Li, Bo; Lu, Xiao-Hua; Bao, Li; Luo, Hong-Yan; Shukla, Varsha; Amin, Niranjana D; Pant, Harish C

    2013-01-01

    Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG) results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs), however was detectable in the long exposure in HG cells (24 hrs and 48 hrs). Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5) with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes.

  17. Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Byung-Wan; Chun, Sung Wan; Kim, Soo Hyun

    2011-04-01

    Lithospermic acid B (LAB) has been reported to protect OLETF rats, an established type 2 diabetic animal model, from the development of diabetes-related vascular complications. We investigated whether magnesium lithospermate B (LAB) has a protective role under cytokine-induced apoptosis in INS-1 cells in vitro and whether it slows the development of diabetes in OLETF rats in vivo. Pretreatment with 50 {mu}M LAB significantly reduced the 1000 U/mL INF-{gamma} and 100 U/mL IL-1{beta}-induced INS-1 cell death. LAB significantly alleviated cytokine-induced phosphorylations of p38 and JNK in accordance with a decrease in cleaved caspase-3 activity in beta-cells. LAB also protected against themore » cytokine-induced caspase-3 apoptotic pathway via significant activation of Nrf2-HO (heme-oxigenase)-1 and Sirt1 expression. OLETF rats treated with 40 mg/kg/day LAB showed a significant improvement in glucose tolerance compared to untreated OLETF control rats in vivo. Our results suggest that the cytoprotective effects of LAB on pancreatic {beta}-cells are related with both alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1.« less

  18. Candidate Gene Study of TRAIL and TRAIL Receptors: Association with Response to Interferon Beta Therapy in Multiple Sclerosis Patients

    PubMed Central

    Órpez-Zafra, Teresa; Pinto-Medel, María Jesús; Oliver-Martos, Begoña; Ortega-Pinazo, Jesús; Arnáiz, Carlos; Guijarro-Castro, Cristina; Varadé, Jezabel; Álvarez-Lafuente, Roberto; Urcelay, Elena; Sánchez-Jiménez, Francisca

    2013-01-01

    TRAIL and TRAIL Receptor genes have been implicated in Multiple Sclerosis pathology as well as in the response to IFN beta therapy. The objective of our study was to evaluate the association of these genes in relation to the age at disease onset (AAO) and to the clinical response upon IFN beta treatment in Spanish MS patients. We carried out a candidate gene study of TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 genes. A total of 54 SNPs were analysed in 509 MS patients under IFN beta treatment, and an additional cohort of 226 MS patients was used to validate the results. Associations of rs1047275 in TRAILR-2 and rs7011559 in TRAILR-4 genes with AAO under an additive model did not withstand Bonferroni correction. In contrast, patients with the TRAILR-1 rs20576-CC genotype showed a better clinical response to IFN beta therapy compared with patients carrying the A-allele (recessive model: p = 8.88×10−4, pc = 0.048, OR = 0.30). This SNP resulted in a non synonymous substitution of Glutamic acid to Alanine in position 228 (E228A), a change previously associated with susceptibility to different cancer types and risk of metastases, suggesting a lack of functionality of TRAILR-1. In order to unravel how this amino acid change in TRAILR-1 would affect to death signal, we performed a molecular modelling with both alleles. Neither TRAIL binding sites in the receptor nor the expression levels of TRAILR-1 in peripheral blood mononuclear cell subsets (monocytes, CD4+ and CD8+ T cells) were modified, suggesting that this SNP may be altering the death signal by some other mechanism. These findings show a role for TRAILR-1 gene variations in the clinical outcome of IFN beta therapy that might have relevance as a biomarker to predict the response to IFN beta in MS. PMID:23658636

  19. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    PubMed

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves.

    PubMed

    D'Antonio, Maurizio; Droggiti, Anna; Feltri, M Laura; Roes, Jürgen; Wrabetz, Lawrence; Mirsky, Rhona; Jessen, Kristján R

    2006-08-16

    During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.

  1. Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/beta-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells.

    PubMed

    Seitz, Roswitha; Hackl, Simon; Seibuchner, Thomas; Tamm, Ernst R; Ohlmann, Andreas

    2010-04-28

    Norrin is a secreted protein that binds to frizzled 4 and controls development of capillaries in retina and inner ear. We provide evidence that Norrin has distinct neuroprotective properties that are independent from its effects on vascular development. The function of Norrin was investigated in a mouse model of excitotoxic retinal ganglion cell (RGC) damage after intravitreal injection of NMDA, and in cultured Müller glia or immortalized RGC-5 cells. Intravitreal injection of Norrin significantly increased the number of surviving RGC axons in the optic nerve and decreased apoptotic death of retinal neurons following NMDA-mediated damage. This effect could be blocked by adding dickkopf (DKK)-1, an inhibitor of the Wnt/beta-catenin signaling pathway. Treatment of eyes with combined Norrin/NMDA activated Wnt/beta-catenin signaling and increased the retinal expression of leukemia inhibitory factor and endothelin-2, as well as that of neurotrophic growth factors such as fibroblast growth factor-2, brain-derived neurotrophic factor, lens epithelium-derived growth factor, and ciliary neurotrophic factor. A similar activation of Wnt/beta-catenin signaling and an increased expression of neurotrophic factors was observed in cultured Müller cells after treatment with Norrin, effects that again could be blocked by adding DKK-1. In addition, conditioned cell culture medium of Norrin-treated Müller cells increased survival of differentiated RGC-5 cells. We conclude that Norrin has pronounced neuroprotective properties on retinal neurons with the distinct potential to decrease the damaging effects of NMDA-induced RGC loss. The effects of Norrin involve activation of Wnt/beta-catenin signaling and subsequent induction of neurotrophic growth factors in Müller cells.

  2. hCG, the wonder of today's science

    PubMed Central

    2012-01-01

    Background hCG is a wonder. Firstly, because hCG is such an extreme molecule. hCG is the most acidic glycoprotein containing the highest proportion of sugars. Secondly, hCG exists in 5 common forms. Finally, it has so many functions ranging from control of human pregnancy to human cancer. This review examines these molecules in detail. Content These 5 molecules, hCG, sulfated hCG, hyperglycosylated hCG, hCG free beta and hyperglycosylated free beta are produced by placental syncytiotrophoblast cells and pituitary gonadotrope cells (group 1), and by placental cytotrophoblast cells and human malignancies (group 2). Group 1 molecules are both hormones that act on the hCG/LH receptor. These molecules are central to human menstrual cycle and human pregnancy. Group 2 molecules are autocrines, that act by antagonizing a TGF beta receptor. These molecules are critical to all advanced malignancies. Conclusions The hCG groups are molecules critical to both the molecules of pregnancy or human life, and to the advancement of cancer, or human death. PMID:22455390

  3. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Hwi; Kim, Eung-Hwi

    Oxidative stress in pancreatic beta cells can inhibit insulin secretion and promote apoptotic cell death. Exendin-4 (EX4), a glucagon-like peptide-1 receptor agonist, can suppress beta cell apoptosis, improve beta cell function and protect against oxidative damage. In this study, we investigated the molecular mechanisms for antioxidative effects of EX4 in pancreatic beta cells. INS-1 cells, a rat insulinoma cell line, were pretreated with EX4 and exposed to palmitate or H{sub 2}O{sub 2}. Reactive oxygen species (ROS) production, and glutathione and insulin secretion were measured. The mRNA and protein expression levels of antioxidant genes were examined. The level of nuclear factormore » erythroid 2-related factor 2 (Nrf2), its binding to antioxidant response element (ARE), and its ubiquination in the presence of EX4 were determined. The Nrf2 signaling pathway was determined using rottlerin (protein kinase [PK]Cδ inhibitor), H89 (PKA inhibitor) and LY294002 (phosphatidylinositide 3-kinase [PI3K] inhibitor). EX4 treatment decreased ROS production, recovered cellular glutathione levels and insulin secretion in the presence of oxidative stress in INS-1 cells. The expression levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 were increased by EX4 treatment. EX4 promoted Nrf2 translocation, ARE binding activity and enhanced stabilization of Nrf2 by inhibition of ubiquitination. Knockdown of Nrf2 abolished the effect of EX4 on increased insulin secretion. Inhibition of PKCδ attenuated Nrf2 translocation and antioxidative gene expression by EX4 treatment. We suggest that EX4 activates and stabilizes Nrf2 through PKCδ activation, contributing to the increase of antioxidant gene expression and consequently improving beta cell function in the presence of oxidative stress. - Highlights: • EX4 protects against oxidative stress-induced pancreatic beta cell dysfunction. • EX4 increases antioxidant gene expression. • Antioxidative effect of EX4 is mediated by Nrf2. • EX4 increases Nrf2 level by stabilizing Nrf2 protein. • EX4 stabilizes Nrf2 by activation of PKCδ.« less

  4. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogenmore » synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.« less

  5. [Chronic mild inflammation links obesity, metabolic syndrome, atherosclerosis and diabetes].

    PubMed

    Andel, M; Polák, J; Kraml, P; Dlouhý, P; Stich, V

    2009-01-01

    Chronic low grade inflammation is relatively new concept in metabolic medicine. This concept describes the relations between the inflammation and adipose tissue, insulin resistence, atherosclerosis and type 2 diabetes mellitus. Macrophages and lymphocytes deposed in adipose tissue produce proinflammatory cytokines which directly or through the CRP liver secretion are targeting endothelial cells, hepatocytes and beta cells of Langerhans islets of pancreas. The dysfunction of these cells follows often further disturbances and in case of beta cells - the cell death. The connection between the adipose tissue insulin resistence, atherosclerosis and type 2 diabetes was earlier described with endocrine and metabolic descriptors. The concept of chronic low grade inflammation creates also another description of multilateral connections in metabolic syndome. The salicylates and the drugs related to them seem to have some glucose lowering properties. The recent development in the field ofchronic low grade inflammation represents also certain therapeutic hope for antiinflammatory intervention in type 2 diabetes.

  6. Group A beta-haemolytic streptococcal acute chest event in a child with sickle cell anaemia.

    PubMed

    Suara, R O

    2001-06-01

    Acute chest syndrome is a major cause of death and hospitalisation in children with sickle cell anaemia. It is often initiated by an infection, particularly pneumonia. Microbial agents previously not associated with acute chest syndrome are becoming increasingly important. Group A beta-haemolytic Streptococcus (GABHS) is thought to be an uncommon cause of pneumonia in children with sickle cell anaemia. We report a 15-year-old African-American girl who presented with an acute chest event characterised by fever, cough, chest pain, shortness of breath, right upper abdominal quadrant pain, jaundice and otitis media. Chest radiograph showed multi-lobar pneumonia with left pleural effusion. Group A beta-haemolytic Streptococcus was isolated from culture of pleural and middle ear fluids. She responded to therapy that included antibiotics, exchange blood transfusion, oxygen, thoracotomy chest tube drainage and decortication. In a child with sickle cell anaemia presenting with fever and an acute chest event, pneumonia should be considered and GABHS recognised as a possible aetiological agent. In addition, a chest X-ray should be obtained and antibiotics against agents causing community-acquired pneumonia instituted.

  7. The pro-angiogenic cytokine pleiotrophin potentiates cardiomyocyte apoptosis through inhibition of endogenous AKT/PKB activity.

    PubMed

    Li, Jinliang; Wei, Hong; Chesley, Alan; Moon, Chanil; Krawczyk, Melissa; Volkova, Maria; Ziman, Bruce; Margulies, Kenneth B; Talan, Mark; Crow, Michael T; Boheler, Kenneth R

    2007-11-30

    Pleiotrophin is a development-regulated cytokine and growth factor that can promote angiogenesis, cell proliferation, or differentiation, and it has been reported to have neovasculogenic effects in damaged heart. Developmentally, it is prominently expressed in fetal and neonatal hearts, but it is minimally expressed in normal adult heart. Conversely, we show in a rat model of myocardial infarction and in human dilated cardiomyopathy that pleiotrophin is markedly up-regulated. To elucidate the effects of pleiotrophin on cardiac contractile cells, we employed primary cultures of rat neonatal and adult cardiomyocytes. We show that pleiotrophin is released from cardiomyocytes in vitro in response to hypoxia and that the addition of recombinant pleiotrophin promotes caspase-mediated genomic DNA fragmentation in a dose- and time-dependent manner. Functionally, it potentiates the apoptotic response of neonatal cardiomyocytes to hypoxic stress and to ultraviolet irradiation and of adult cardiomyocytes to hypoxia-reoxygenation. Moreover, UV-induced apoptosis in neonatal cardiomyocytes can be partially inhibited by small interfering RNA-mediated knockdown of endogenous pleiotrophin. Mechanistically, pleiotrophin antagonizes IGF-1 associated Ser-473 phosphorylation of AKT/PKB, and it concomitantly decreases both BAD and GSK3beta phosphorylation. Adenoviral expression of constitutively active AKT and lithium chloride-mediated inhibition of GSK3beta reduce the potentiated programmed cell death elicited by pleiotrophin. These latter data indicate that pleiotrophin potentiates cardiomyocyte cell death, at least partially, through inhibition of AKT signaling. In conclusion, we have uncovered a novel function for pleiotrophin on heart cells following injury. It fosters cardiomyocyte programmed cell death in response to pro-apoptotic stress, which may be critical to myocardial injury repair.

  8. Role of the DIP Molecules in DCC Signaling

    DTIC Science & Technology

    2001-03-01

    DIP13 interacts with AKT , a key molecule for cell survival. Our results suggest that the DCC apoptotic signal is mediated by DIP13 that interferes with... AKT cell survival pathway, resulting in cell death. Finally, we have cloned DIP13 beta, suggesting that DIP13 represents a family of molecules with at...interacts with DCC through its PTB domain (Fig. 4). Interestingly, Mitsuuchi et al. (1999) identified a gene dubbed APPL that interacts with AKT , a key

  9. The cell wall: a carbohydrate armour for the fungal cell.

    PubMed

    Latgé, Jean-Paul

    2007-10-01

    The cell wall is composed of a polysaccharide-based three-dimensional network. Considered for a long time as an inert exoskeleton, the cell wall is now seen as a dynamic structure that is continuously changing as a result of the modification of culture conditions and environmental stresses. Although the cell wall composition varies among fungal species, chemogenomic comparative analysis have led to a better understanding of the genes and mechanisms involved in the construction of the common central core composed of branched beta1,3 glucan-chitin. Because of its essential biological role, unique biochemistry and structural organization and the absence in mammalian cells of most of its constitutive components, the cell wall is an attractive target for the development of new antifungal agents. Genomic as well as drug studies have shown that the death of the fungus can result from inhibition of cell wall polysaccharide synthases. To date, only beta1,3 glucan synthase inhibitors have been launched clinically and many more targets remain to be explored.

  10. Protection against RAGE-mediated neuronal cell death by sRAGE-secreting human mesenchymal stem cells in 5xFAD transgenic mouse model.

    PubMed

    Son, Myeongjoo; Oh, Seyeon; Park, Hyunjin; Ahn, Hyosang; Choi, Junwon; Kim, Hyungho; Lee, Hye Sun; Lee, Sojung; Park, Hye-Jeong; Kim, Seung U; Lee, Bonghee; Byun, Kyunghee

    2017-11-01

    Alzheimer's disease (AD), which is the most commonly encountered neurodegenerative disease, causes synaptic dysfunction and neuronal loss due to various pathological processes that include tau abnormality and amyloid beta (Aβ) accumulation. Aβ stimulates the secretion and the synthesis of Receptor for Advanced Glycation End products (RAGE) ligand by activating microglial cells, and has been reported to cause neuronal cell death in Aβ 1-42 treated rats and in mice with neurotoxin-induced Parkinson's disease. The soluble form of RAGE (sRAGE) is known to reduce inflammation, and to decrease microglial cell activation and Aβ deposition, and thus, it protects from neuronal cell death in AD. However, sRAGE protein has too a short half-life for therapeutic purposes. We developed sRAGE-secreting umbilical cord derived mesenchymal stem cells (sRAGE-MSCs) to enhance the inhibitory effects of sRAGE on Aβ deposition and to reduce the secretion and synthesis of RAGE ligands in 5xFAD mice. In addition, these cells improved the viability of injected MSCs, and enhanced the protective effects of sRAGE by inhibiting the binding of RAGE and RAGE ligands in 5xFAD mice. These findings suggest sRAGE protein from sRAGE-MSCs has better protection against neuronal cell death than sRAGE protein or single MSC treatment by inhibiting the RAGE cell death cascade and RAGE-induce inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegerin expression in osteosarcoma cells.

    PubMed

    Benedikt, Michaela B; Mahlum, Eric W; Shogren, Kristen L; Subramaniam, Malayannan; Spelsberg, Thomas C; Yaszemski, Michael J; Maran, Avudaiappan

    2010-04-01

    Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17beta-estradiol and a tumorigenic estrogen metabolite, 16alpha-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. Copyright 2010 Wiley-Liss, Inc.

  12. Methylglyoxal induces oxidative stress-dependent cell injury and up-regulation of interleukin-1beta and nerve growth factor in cultured hippocampal neuronal cells.

    PubMed

    Di Loreto, Silvia; Caracciolo, Valentina; Colafarina, Sabrina; Sebastiani, Pierluigi; Gasbarri, Antonella; Amicarelli, Fernanda

    2004-05-01

    Methylglyoxal (MG) is one of the most powerful glycating agents of proteins and other important cellular components and has been shown to be toxic to cultured cells. Under hyperglycaemic conditions, an increase in the concentration of MG has been observed in human body fluids and tissues that seems to be responsible for diabetic complications. Recent data suggest that diabetes may cause impairment of cognitive processes, according to a mechanism involving both oxidative stress and advanced glycation end product (AGE) formation. In this work, we explored the molecular mechanism underlying MG toxicity in neural cells, by investigating the effect of MG on both the interleukin-1beta (IL-1beta), as the major inducer of the acute phase response, and the nervous growth factor (NGF) expression. Experiments were performed on cultured neural cells from rat hippocampus, being this brain region mostly involved in cognitive processes and, therefore, possible target of diabetes-mediated impairment of cognitive abilities. Results show that MG treatment causes in hippocampal neural cells extensive, oxidative stress-mediated cell death, in consequence of a strong catalase enzymatic activity and protein inhibition. MG also causes a very significant increase in both transcript and protein expression of the NGF as well as of the pro-inflammatory cytokine IL-1beta. MG co-treatment with the antioxidant N-acetylcysteine (NAC) completely abrogates the observed effects. Taken together, these data demonstrate that hippocampal neurons are strongly susceptible to MG-mediated oxidative stress.

  13. Regressive changes in finasteride-treated human hyperplastic prostates correlate with an upregulation of TGF-beta receptor expression.

    PubMed

    Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Miranda, G; Rodríguez-Vallejo, J M; González-Esteban, J; Torrubia, F

    1998-10-01

    Prostatic atrophy has been documented histologically as a consequence of finasteride action on human hyperplastic prostates. An increase in apoptotic rates has also been reported in androgen-deprived hyperplastic prostates. Transforming growth factor beta (TGF-beta) signaling is implicated in apoptotic cell death. TGF-betas have been detected in normal and diseased human prostate. In the normal prostate, TGF-beta acts as a predominantly negative growth regulator. TGF-beta signaling receptors TbetaRI and TbetaRII have been shown to be negatively regulated by androgens. We studied the histological changes in 9 selected finasteride-treated patients with benign prostatic hyperplasia (BPH), and analyzed the levels of expression and localization of TGF-beta receptor types TbetaRI and TbetaRII in these patients as compared to selected BPH controls. The prostatic epithelial compartment seemed to be a primary target site for finasteride action, since we observed moderate to severe glandular atrophy after 4-6 months of treatment. TGF-beta receptors were upregulated in treated cases. We assessed a twofold increase in TbetaRII mRNA levels in treated cases as compared to controls. An increase in both TbetaRI and TbetaRII at the protein level by immunostaining was observed, which also provided a helpful means for detecting glands undergoing regression. We conclude that finasteride may modulate the TGF-beta signaling system to promote changes leading to apoptosis of epithelial cells and prostatic glandular atrophy.

  14. LET and ion-species dependence for cell killing and mutation induction in normal human fibroblasts.

    PubMed

    Tsuruoka, Chizuru; Suzuki, Masao; Fujitaka, Kazunobu

    2003-10-01

    We have been studying LET and ion species dependence of RBE values in cell killing and mutation induction. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon (290 Mev/u and 135 Mev/u), neon (230 Mev/u and 400 Mev/u), silicon (490 Mev/u) and iron (500 Mev/u) ion beams, generated by Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS). Cell killing effect was detected as reproductive cell death using a colony formation assay. Mutation induction in hprt locus was detected to measure 6-thioguanine resistant colonies. The RBE-LET curves of cell killing and mutation induction were different each ion beam. So, we plotted RBE for cell killing and mutation induction as function of Z*2/beta2 instead of LET. RBE-Z*2/beta2 curves of cell killing indicated that the discrepancy of RBE-LET curves was reconciled each ion species. But RBE-Z*2/beta2 curves of mutation induction didn't corresponded between carbon- and silicon-ion beams. These results suggested that different biological endpoints may be suitable for different physical parameter, which represent the track structure of energy deposition of ion beams.

  15. Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo.

    PubMed

    Chumakova, Olga V; Liopo, Anton V; Andreev, Valery G; Cicenaite, Inga; Evers, B Mark; Chakrabarty, Shilla; Pappas, Todd C; Esenaliev, Rinat O

    2008-03-18

    The goal of this study was to enhance gene delivery and tumor cell transfection in vivo by using a combination of ultrasonication with complex nanoparticles consisting of two types of nanoparticles: PEI/DNA beta-gal plasmid with highly positive zeta-potential and air-filled poly (lactic-co-glycolic acid) (PLGA) particles (with negative zeta-potential) manufactured in our laboratory. The PLGA/PEI/DNA nanoparticles were a colloid with positive zeta-potential and injected i.v. in nude mice with DU145 human prostate tumors. We found that the combination of PLGA/PEI/DNA nanoparticles with ultrasonication substantially enhanced tumor cell transfection in vivo. The overexpression of beta-gal gene was evaluated histochemically and by Western blot analysis. At least an 8-fold increase of the cell transfection efficacy was obtained in irradiated tumors compared to non-irradiated controls, while little to no cell death was produced by ultrasonication.

  16. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLXmore » increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.« less

  17. [Regulatory mechanisms in focal cerebral ischemia. New possibilities in neuroprotective therapy].

    PubMed

    Nagy, Zoltán; Simon, László; Bori, Zoltán

    2002-03-20

    Permanent or temporary disruption of cerebral blood flow rapidly depletes brain regions of their limited energy reserves (glycogen, glucose, oxygen, ATP) leading to an energy crisis. Tissue damage occurs due to the energy crisis. The central part of the damage, the ischaemic "core" region is surrounded by zones of the shell-like penumbra. Necrotic, as well as apoptotic cell death could be identified in the penumbra. Going away from the ischaemic core different neurochemical processes are occurring by space and time. "Immediate early response" genes (c-fos, fos-B, c-Jun, krox 20, 24) are activated, heatshock proteins (hsp 70, 72, HSF, HSE, HIF), cytokines (TNF-alpha, IL-1 beta), inflammatory factors (COX), adhesion and glial factors (ICAM-1, ELAM-1, P-selectin), vasoactive factors (IL-6, -10, PAF), reactive oxigen radicals and connected factors (O2, OH, NO, NOS, SOD) are produced within minutes and hours. Cell deaths, necrosis and apoptosis due to the activation of calpains, caspases and nucleases occur in days. In parallel, growth factors and plasticity proteins (BDNF, NGF, TGF-beta, VEGF, PDGF, GAP-43) are activated as a basis of functional rehabilitation.

  18. Gold nanoparticle mediated membrane permeabilization of phytochemicals into breast cancer cells

    NASA Astrophysics Data System (ADS)

    Chen, Feifei

    Breast cancer is one of the most common cancers in women with a very high incident rate, especially for those women who are between 40-60 years old. Most drugs are large or non-polar macromolecules, which cannot get into cancer cells autonomously, so a method that can deliver those drugs is very important. Optoporation method has been facilitated with gold nanoparticles, which are bound to breast cancer cells, and then absorb the optical energy to improve the membrane permeabilization. Long-term dietary consumption of fruits and vegetables high in beta-carotene and other phytochemicals has been shown beneficial in terms of anti-cancer, anti-aging, preventing cardiovascular disease and cataract. However they are large non-polar molecules that are difficult to enter the cancer cells. Here in this study, we applied optoporation method by using beta-carotene, and tetracycline as anti-cancer drugs in various concentrations to optimize highest selective cell death/best potential for T47D breast cancer cell lines.

  19. Growth regulation of simian and human AIDS-related non-Hodgkin's lymphoma cell lines by TGF-β1 and IL-6

    PubMed Central

    Ruff, Kristin R; Puetter, Adriane; Levy, Laura S

    2007-01-01

    Background AIDS-related non-Hodgkin's lymphoma (AIDS-NHL) is the second most frequent cancer associated with AIDS, and is a frequent cause of death in HIV-infected individuals. Experimental analysis of AIDS-NHL has been facilitated by the availability of an excellent animal model, i.e., simian Acquired Immunodeficiency Syndrome (SAIDS) in the rhesus macaque consequent to infection with simian immunodeficiency virus. A recent study of SAIDS-NHL demonstrated a lymphoma-derived cell line to be sensitive to the growth inhibitory effects of the ubiquitous cytokine, transforming growth factor-beta (TGF-beta). The authors concluded that TGF-beta acts as a negative growth regulator of the lymphoma-derived cell line and, potentially, as an inhibitory factor in the regulatory network of AIDS-related lymphomagenesis. The present study was conducted to assess whether other SAIDS-NHL and AIDS-NHL cell lines are similarly sensitive to the growth inhibitory effects of TGF-beta, and to test the hypothesis that interleukin-6 (IL-6) may represent a counteracting positive influence in their growth regulation. Methods Growth stimulation or inhibition in response to cytokine treatment was quantified using trypan blue exclusion or colorimetric MTT assay. Intracellular flow cytometry was used to analyze the activation of signaling pathways and to examine the expression of anti-apoptotic proteins and distinguishing hallmarks of AIDS-NHL subclass. Apoptosis was quantified by flow cytometric analysis of cell populations with sub-G1 DNA content and by measuring activated caspase-3. Results Results confirmed the sensitivity of LCL8664, an immunoblastic SAIDS-NHL cell line, to TGF-beta1-mediated growth inhibition, and further demonstrated the partial rescue by simultaneous treatment with IL-6. IL-6 was shown to activate STAT3, even in the presence of TGF-beta1, and thereby to activate proliferative and anti-apoptotic pathways. By comparison, human AIDS-NHL cell lines differed in their responsiveness to TGF-beta1 and IL-6. Analysis of a recently derived AIDS-NHL cell line, UMCL01-101, indicated that it represents immunoblastic AIDS-DLCBL. Like LCL-8664, UMCL01-101 was sensitive to TGF-beta1-mediated inhibition, rescued partially by IL-6, and demonstrated rapid STAT3 activation following IL-6 treatment even in the presence of TGF-beta1. Conclusion These studies indicate that the sensitivity of immunoblastic AIDS- or SAIDS-DLBCL to TGF-beta1-mediated growth inhibition may be overcome through the stimulation of proliferative and anti-apoptotic signals by IL-6, particularly through the rapid activation of STAT3. PMID:17324269

  20. Pharmacological characterization of P2X7 receptors in rat peritoneal cells.

    PubMed

    Chen, Y-W; Donnelly-Roberts, D L; Namovic, M T; Gintant, G A; Cox, B F; Jarvis, M F; Harris, R R

    2005-03-01

    P2X(7) receptor activation by ATP results in the release of IL-1beta and IL-18. Prolonged stimulation can lead to pore formation and cell death. In this study we pharmacologically characterized P2X(7) receptors on rat peritoneal cells (RPC) and on 1321N1 cells transfected with rat P2X(7) receptor (1321rP2X(7)-11). RPC were isolated from rats by lavage. P2X(7) agonist induced pore formation in RPC was measured by EtBr uptake. P2X(7)-stimulated pore formation and Ca(++) influx in 1321rP2X(7)-11 cells were measured by a fluorometric imaging plate reader. The effects of pyridoxal phosphate-6-azo phenyl -2'-4'-disulfonic acid (PPADS) on pore formation and Ca(++) influx were examined in both RPC and 1321rP2X(7)-11. P2X(7)-mediated IL-1beta release in RPC and the effect of PPADS were determined. RPC express functional P2X(7) receptors that were activated by ATP analogs with a rank order of potency of 2'- 3'-O-(4-Benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) > ATP > alpha,beta-methylene ATP. Activation of P2X(7) receptors by BzATP was inhibited by PPADS. Similar results were also obtained in 1321rP2X(7)-11 cells. Activation of P2X(7) receptors on RPC resulted in IL-1 beta secretion, which was inhibited by PPADS. RPC express functional P2X(7) receptors that form pores and mediate the release of IL-1beta.

  1. Cycloheximide and actinomycin D delay death and affect bcl-2, bax, and Ice gene expression in astrocytes under in vitro ischemia.

    PubMed

    Yu, Albert Cheung Hoi; Yung, Hon Wa; Hui, Michael Hung Kit; Lau, Lok Ting; Chen, Xiao Qian; Collins, Richard A

    2003-10-15

    An in vitro ischemia model was established and the effect of the metabolic inhibitors cycloheximide (CHX) and actinomycin D (ActD) on apoptosis in astrocytes under ischemia studied. CHX decreased by 75% the number of cells dying after 6 hr of ischemia compared with control cultures. TdT-mediated dUTP nick end labelling (TUNEL) staining of comparable cultures was reduced by 40%. ActD decreased cell death by 60% compared with controls. The number of TUNEL-positive cells was reduced by 38%. The nuclear shrinkage in TUNEL-positive astrocytes in control cultures did not occur in ActD-treated astrocytes, indicating that nuclear shrinkage and DNA fragmentation during apoptosis are two unrelated processes. Expression of bcl-2 (alpha and beta), bax, and Ice in astrocytes under similar ischemic conditions, as measured by quantitative reverse transcription-polymerase chain reaction, indicated that ischemia down-regulated bcl-2 (alpha and beta) and bax. Ice was initially down-regulated from 0 to 4 hr, before returning to control levels after 8 hr of ischemia. ActD decreased the expression of these genes. CHX reduced the expression of bcl-2 (alpha and beta) but increased bax and Ice expression. It is hypothesized that the balance of proapoptotic (Bad, Bax) and antiapoptotic (Bcl-2, Bcl-Xl) proteins determines apoptosis. The data suggest that the ratio of Bcl-2/Bad in astrocytes following ActD and CHX treatment does not decrease as much in untreated cells during ischemia. Our data indicate that it is the ratio of Bcl-2 family members that plays a critical role in determining ischemia-induced apoptosis. It is also important to note that ischemia-induced apoptosis involves the regulation of RNA and protein synthesis. Copyright 2003 Wiley-Liss, Inc.

  2. Evidence for the activation of pyroptotic and apoptotic pathways in RPE cells associated with NLRP3 inflammasome in the rodent eye.

    PubMed

    Gao, Jiangyuan; Cui, Jing Z; To, Eleanor; Cao, Sijia; Matsubara, Joanne A

    2018-01-12

    Age-related macular degeneration (AMD) is a devastating eye disease causing irreversible vision loss in the elderly. Retinal pigment epithelium (RPE), the primary cell type that is afflicted in AMD, undergoes programmed cell death in the late stages of the disease. However, the exact mechanisms for RPE degeneration in AMD are still unresolved. The prevailing theories consider that each cell death pathway works independently and without regulation of each other. Building upon our previous work in which we induced a short burst of inflammasome activity in vivo, we now investigate the effects of prolonged inflammasome activity on RPE cell death mechanisms in rats. Long-Evans rats received three intravitreal injections of amyloid beta (Aβ), once every 4 days, and were sacrificed at day 14. The vitreous samples were collected to assess the levels of secreted cytokines. The inflammasome activity was evaluated by both immunohistochemistry and western blot. The types of RPE cell death mechanisms were determined using specific cell death markers and morphological characterizations. We found robust inflammasome activation evident by enhanced caspase-1 immunoreactivity, augmented NF-κB nuclear translocalization, increased IL-1β vitreal secretion, and IL-18 protein levels. Moreover, we observed elevated proteolytic cleavage of caspase-3 and gasdermin D, markers for apoptosis and pyroptosis, respectively, in RPE-choroid tissues. There was also a significant reduction in the anti-apoptotic factor, X-linked inhibitor of apoptosis protein, consistent with the overall changes of RPE cells. Morphological analysis showed phenotypic characteristics of pyroptosis including RPE cell swelling. Our data suggest that two cell death pathways, pyroptosis and apoptosis, were activated in RPE cells after exposure to prolonged inflammasome activation, induced by a drusen component, Aβ. The involvement of two distinct cell death pathways in RPE sheds light on the potential interplay between these pathways and provides insights on the future development of therapeutic strategies for AMD.

  3. Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences.

    PubMed

    Ford, Stephen P; Zhang, Liren; Zhu, Meijun; Miller, Myrna M; Smith, Derek T; Hess, Bret W; Moss, Gary E; Nathanielsz, Peter W; Nijland, Mark J

    2009-09-01

    Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.

  4. Purification and characterization of moschins, arginine-glutamate-rich proteins with translation-inhibiting activity from brown pumpkin (Cucurbita moschata) seeds.

    PubMed

    Ng, T B; Parkash, A; Tso, W W

    2002-10-01

    From fresh brown pumpkin seeds, two proteins with a molecular mass of 12kDa and an N-terminal sequence rich in arginine and glutamate residues were obtained. The protein designated alpha-moschin closely resembled the fruitfly programmed-cell death gene product and the protein designated beta-moschin demonstrated striking similarity to prepro 2S albumin in N-terminal sequence. alpha- and beta-moschins inhibited translation in the rabbit reticulocyte lysate system with an IC(50) of 17 microM and 300nM, respectively.

  5. Maximum hypothetical accident analysis for HEU to LEU fuel conversion at the University of Missouri Research Reactor

    NASA Astrophysics Data System (ADS)

    Cowherd, Wilson

    Breast cancer is one of the most common cancers in women with a very high incident rate, especially for those women who are between 40-60 years old. Most drugs are large or non-polar macromolecules, which cannot get into cancer cells autonomously, so a method that can deliver those drugs is very important. Optoporation method has been facilitated with gold nanoparticles, which are bound to breast cancer cells, and then absorb the optical energy to improve the membrane permeabilization. Long-term dietary consumption of fruits and vegetables high in beta-carotene and other phytochemicals has been shown beneficial in terms of anti-cancer, anti-aging, preventing cardiovascular disease and cataract. However they are large non-polar molecules that are difficult to enter the cancer cells. Here in this study, we applied optoporation method by using beta-carotene, and tetracycline as anti-cancer drugs in various concentrations to optimize highest selective cell death/best potential for T47D breast cancer cell lines.

  6. Preparation of quantum fingerprint(TM)-ready metal-gallium arsenide interfaces for molecular characterization

    NASA Astrophysics Data System (ADS)

    De Castro, Julian Paulo B.

    Breast cancer is one of the most common cancers in women with a very high incident rate, especially for those women who are between 40-60 years old. Most drugs are large or non-polar macromolecules, which cannot get into cancer cells autonomously, so a method that can deliver those drugs is very important. Optoporation method has been facilitated with gold nanoparticles, which are bound to breast cancer cells, and then absorb the optical energy to improve the membrane permeabilization. Long-term dietary consumption of fruits and vegetables high in beta-carotene and other phytochemicals has been shown beneficial in terms of anti-cancer, anti-aging, preventing cardiovascular disease and cataract. However they are large non-polar molecules that are difficult to enter the cancer cells. Here in this study, we applied optoporation method by using beta-carotene, and tetracycline as anti-cancer drugs in various concentrations to optimize highest selective cell death/best potential for T47D breast cancer cell lines.

  7. Reduced virus replication, proinflammatory cytokine production, and delayed macrophage cell death in human PBMCs infected with the newly discovered Bundibugyo ebolavirus relative to Zaire ebolavirus.

    PubMed

    Gupta, Manisha; Goldsmith, Cynthia S; Metcalfe, Maureen G; Spiropoulou, Christina F; Spipopoulou, Christina F; Rollin, Pierre E

    2010-06-20

    Bundibugyo ebolavirus is a newly identified Ebolavirus species. The virus was responsible for a recent hemorrhagic fever outbreak in Uganda with an approximate 30% case fatality rate. In this study, we compared the pathogenesis of Bundibugyo with highly lethal Zaire Ebolavirus by using in vitro human PBMCs. We found that PBMCs infected with Bundibugyo ebolaviruses resulted in 1 to 2 log lower virus yields compared to Zaire ebolavirus and produced 2- to 10-fold lower levels of TNF-alpha, MCP-1, IL-1beta, MIP1-alpha and IL-10 than PBMCs infected with Zaire ebolavirus. In addition, flow cytometric studies have shown lower levels and delay of the macrophage cell death in Bundibugyo ebolavirus compared to Zaire ebolavirus infection. The findings of slower Bundibugyo ebolavirus replication, lower production of proinflammatory cytokines and delay in macrophage cell death provide insight into the basis of the lower case fatality observed with Bundibugyo ebolavirus. Published by Elsevier Inc.

  8. TRPM2, calcium and neurodegenerative diseases

    PubMed Central

    Xie, Yu-Feng; MacDonald, John F; Jackson, Michael F

    2010-01-01

    NMDA receptor overactivation triggers intracellular Ca2+ dysregulation, which has long been thought to be critical for initiating excitotoxic cell death cascades associated with stroke and neurodegenerative disease. The inability of NMDA receptor antagonists to afford neuroprotection in clinical stroke trials has led to a re-evaluation of excitotoxic models of cell death and has focused research efforts towards identifying additional Ca2+ influx pathways. Recent studies indicate that TRPM2, a member of the TRPM subfamily of Ca2+-permeant, non-selective cation channel, plays an important role in mediating cellular responses to a wide range of stimuli that, under certain situations, can induce cell death. These include reactive oxygen and nitrogen species, tumour necrosis factor as well as soluble oli-gomers of amyloid beta. However, the molecular basis of TRPM2 channel involvement in these processes is not fully understood. In this review, we summarize recent studies about the regulation of TRPM2, its interaction with calcium and the possible implications for neurodegenerative diseases. PMID:21383889

  9. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy.

    PubMed

    Parkinson, Richard J; Mian, Shahid; Bishop, Michael C; Gray, Trevor; Li, Geng; McArdle, Stephanie E B; Ali, Selman; Rees, Robert C

    2003-06-15

    DISC-HSV is a replication incompetent herpes simplex virus that is a highly efficient vector for the transduction of genes in vivo and in vitro. We examine the ability of DISC-HSV to infect human prostate cancer cell-lines and xenograft tumor models, and induce expression of reporter and therapeutic cytokine genes. Infection was confirmed by cellular staining for the beta-galactosidase reporter gene product, and by EM. Human GM-CSF production following DISC-hGMCSF infection was measured using ELISA. The metabolic activity of infected cells was determined by NADP/NADPH assay. Cell death was estimated by cell-cycle analysis using flow cytometry with propidium iodide staining. Infection of DU145, PC3 and LNCaP cells with DISC-HSV was dose dependent. Cells infected with DISC-hGM-CSF released significant levels of hGM-CSF for 3 days. NADP/NADPH assay suggested that infected cells continued to be metabolically active for 3 days post-infection, which was consistent with flow cytometry findings that cell death did not occur within 7 days of infection. Tumor xenografts injected with DISC-HSV expressed beta-galactosidase, and intracellular viral particles were demonstrated using EM. We have previously reported the rejection of established tumors following intra-tumoral injection of DISC-GMCSF. This study demonstrates the ability of DISC-HSV to infect prostate cancer and express GMCSF at significant levels. We suggest that prostate cancer is a potential target for therapy using DISC-HSV containing GM-CSF. Copyright 2003 Wiley-Liss, Inc.

  10. Genes encoding a callose synthase and phytochrome A are adjacent to a MAP3Ka-like gene in Beta vulgaris USH20

    USDA-ARS?s Scientific Manuscript database

    MAP3Ka encodes a key conserved protein kinase responsible for orchestrating a rapid cascade of cellular events ultimately leading to localized cell death. Hypersensitive response, as it is termed, enables genetically-resistant plants to limit microbial invasion under the right environmental conditio...

  11. Regulation of programmed cell death or apoptosis in atherosclerosis.

    PubMed

    Geng, Y J

    1997-01-01

    Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.

  12. Expression of class III beta tubulin in cervical cancer patients administered preoperative radiochemotherapy: correlation with response to treatment and clinical outcome.

    PubMed

    Ferrandina, Gabriella; Martinelli, Enrica; Zannoni, Gian Franco; Distefano, Mariagrazia; Paglia, Amelia; Ferlini, Cristiano; Scambia, Giovanni

    2007-02-01

    Alterations of the beta subunit of tubulin have been reported to be predictive of resistance to radiation and antitubulin agents in several solid tumors. The aim of the study was to investigate the clinical role of beta III tubulin expression as prognostic factor for survival and as a predictive parameter of response to preoperative radiochemotherapy in a single institutional series of locally advanced cervical cancer (LACC) patients. The study included 98 LACC patients admitted to the Gynecologic Oncology Unit, Catholic University of Rome and Campobasso between January 1998 and January 2005. Immunohistochemistry was performed by using the polyclonal rabbit anti-beta III tubulin antibody (Covance, Princeton, NJ, USA). The value of 10% immunostained tumor cells was arbitrarily chosen as cut-off value to distinguish cases with high versus low beta III tubulin content. In the whole series, beta III tubulin immunoreaction was detectable in 66/98 cases (67.3%), and the percentage of positively stained cells ranged from 0 to 100% (median=10%). The percentages of cases with high beta III tubulin expression were shown not to be differently distributed according to clinico-pathological characteristics. There was no statistically significant difference in the distribution of cases with high beta III tubulin expression according to clinical and pathological response to treatment. During the follow-up period, recurrence and death of disease occurred in 15 and 13 cases, respectively. There was no difference in disease-free and overall survival in cases with high versus low beta III tubulin expression. The assessment of class III beta tubulin status seems of little usefulness in order to identify LACC patients with poor chance of response to concomitant radiochemotherapy and unfavorable prognosis.

  13. Endoplasmic Reticulum Stress in Beta Cells and Development of Diabetes

    PubMed Central

    Fonseca, Sonya G.; Burcin, Mark; Gromada, Jesper; Urano, Fumihiko

    2009-01-01

    The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. ER stress elicits a signaling cascade to mitigate stress, the Unfolded Protein Response (UPR). As long as the UPR can relieve stress, cells can produce the proper amount of proteins and maintain ER homeostasis. If the UPR, however, fails to maintain ER homeostasis, cells will undergo apoptosis. Activation of the UPR is critical to the survival of insulin-producing pancreatic β-cells with high secretory protein production. Any disruption of ER homeostasis in β-cells can lead to cell death and contribute to the pathogenesis of diabetes. There are several models of ER stress-mediated diabetes. In this review, we outline the underlying molecular mechanisms of ER stress-mediated β-cell dysfunction and death during the progression of diabetes. PMID:19665428

  14. Effects of combined radiofrequency field exposure on amyloid-beta–induced cytotoxicity in HT22 mouse hippocampal neurones

    PubMed Central

    Lee, Jong-Sun; Kim, Jeong-Yub; Kim, Hee-Jin; Kim, Jeong Cheol; Lee, Jae-Seon; Kim, Nam; Park, Myung-Jin

    2016-01-01

    Alzheimer's disease (AD) is the most common progressive and irreversible neurodegenerative disease and it is caused by neuronal death in the brain. Recent studies have shown that non-ionizing radiofrequency (RF) radiation has some beneficial cognitive effects in animal models of AD. In this study, we examined the effect of combined RF radiation on amyloid-beta (Aβ)–induced cytotoxicity in HT22 rat hippocampal neurons. Treatment with Aβ suppressed HT22 cell proliferation in a concentration-dependent manner. RF exposure did not affect cell proliferation, and also had a marginal effect on Aβ-induced suppression of growth in HT22 cells. Cell cycle analysis showed that Aβ decreased the G1 fraction and increased the subG1 fraction, indicating increased apoptosis. Accordingly, Aβ increased the annexin V/propidium iodide (PI)–positive cell fraction and the degradation of poly (ADP ribose) polymerase and caspase-3 in HT22 cells. However, RF alone and the combination of Aβ and RF did not affect these events significantly. Aβ increased reactive oxygen species (ROS) generation, thereby suppressing cell proliferation. This was abrogated by N-acetylcysteine (NAC) treatment, indicating that Aβ-induced ROS generation is the main cause of suppression of proliferation. NAC also restored Aβ-induced annexin V/PI–positive cell populations. However, RF did not have a significant impact on these events. Finally, Aβ stimulated the ataxia telangiectasia and Rad3-related protein/checkpoint kinase 1 DNA single-strand breakage pathway, and enhanced beta-site amyloid precursor protein expression; RF had no effect on them. Taken together, our results demonstrate that RF exposure did not significantly affect the Aβ-induced decrease of cell proliferation, increase of ROS production, or induction of cell death in these cells. PMID:27325640

  15. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Yong-Whan; Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr; Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly,more » OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.« less

  16. Overexpression of the VSSC-associated CAM, β-2, enhances LNCaP cell metastasis associated behavior.

    PubMed

    Jansson, Keith H; Lynch, Jill E; Lepori-Bui, Nadia; Czymmek, Kirk J; Duncan, Randall L; Sikes, Robert A

    2012-07-01

    Prostate cancer (PCa) is the second-leading cause of cancer death in American men. This is due largely to the "silent" nature of the disease until it has progressed to a highly metastatic and castrate resistant state. Voltage sensitive sodium channels (VSSCs) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two β subunits. The β-subunits modulate surface expression and gating kinetics of the channels but also have inherent cell adhesion molecule (CAM) functions. We hypothesize that PCa cells use VSSC β-subunits as CAMs during PCa progression and metastasis. We overexpressed the beta-2 isoform as a C-terminal fusion protein with enhanced cyan fluorescence protein (ECFP) in the weakly metastatic LNCaP cells. The effect of beta-2 overexpression on cell morphology was examined using confocal microscopy while metastasis-associated behavior was tested by performing several in vitro metastatic functional assays and in vivo subcutaneous tumor studies. We found that cells overexpressing beta-2 (2BECFP) converted to a bipolar fibroblastic morphology. 2BECFP cells were more adhesive than control (ECFP) to vitronectin (twofold) and Matrigel® (1.3-fold), more invasive through Matrigel® (3.6-fold in 72 hr), and had enhanced migration (2.1-fold in 96 hr) independent of proliferation in wound-healing assays. In contrast, 2BECFP cells have a reduced tumor-take and tumor volume in vivo even though the overexpression of beta-2 was maintained. Functional overexpression of VSSC β-subunits in PCa may be one mechanism leading to increased metastatic behavior while decreasing the ability to form localized tumor masses. Copyright © 2011 Wiley Periodicals, Inc.

  17. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    PubMed

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding investigation of beta-cell therapeutic targets for the treatment and prevention of type 1 diabetes mellitus is fundamentally relevant and timely. This review summarizes the overall scope of research into novel type 1 diabetes mellitus therapeutics, highlighting weaknesses or caveats in current clinical trials as well as describing potential new targets to pursue. More specifically, signaling proteins that act as modulators of beta-cell function, survival, and replication, as well as immune infiltration may need to be targeted to develop the most efficient pharmaceutical interventions for type 1 diabetes mellitus. One such beta-cell signaling pathway, mediated by the alpha subunit of the heterotrimeric G z protein (Gα z ), is discussed in more detail. The work described here will be critical in moving the field forward as it emphasizes the central role of the beta-cell in type 1 diabetes mellitus disease pathology.

  18. GSK-3β: A Bifunctional Role in Cell Death Pathways.

    PubMed

    Jacobs, Keith M; Bhave, Sandeep R; Ferraro, Daniel J; Jaboin, Jerry J; Hallahan, Dennis E; Thotala, Dinesh

    2012-01-01

    Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer's disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.

  19. Lithium prevents acrolein-induced neurotoxicity in HT22 mouse hippocampal cells.

    PubMed

    Huang, Yingjuan; Qin, Jian; Chen, Meihui; Chao, Xiaojuan; Chen, Ziwei; Ramassamy, Charles; Pi, Rongbiao; Jin, Minghua

    2014-04-01

    Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde to which humans are exposed in many situations and has been implicated in neurodegenerative diseases, such as Alzheimer's disease. Lithium is demonstrated to have neuroprotective and neurotrophic effects in brain ischemia, trauma, neurodegenerative disorders, and psychiatric disorders. Previously we have found that acrolein induced neuronal death in HT22 mouse hippocampal cells. In this study, the effects of lithium on the acrolein-induced neurotoxicity in HT22 cells as well as its mechanism(s) were investigated. We found that lithium protected HT22 cells against acrolein-induced damage by the attenuation of reactive oxygen species and the enhancement of the glutathione level. Lithium also attenuated the mitochondrial dysfunction caused by acrolein. Furthermore, lithium significantly increased the level of phospho-glycogen synthase kinase-3 beta (GSK-3β), the non-activated GSK-3β. Taken together, our findings suggest that lithium is a protective agent for acrolein-related neurotoxicity.

  20. Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications

    PubMed Central

    Freedman, John C.; Shrestha, Archana; McClane, Bruce A.

    2016-01-01

    Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C. perfringens type A food poisoning strains) or large conjugative plasmids (for the remaining type A food poisoning and most, if not all, other CPE-producing strains). In all CPE-positive strains, the cpe gene is strongly associated with insertion sequences that may help to assist its mobilization and spread. During disease, CPE is produced when C. perfringens sporulates in the intestines, a process involving several sporulation-specific alternative sigma factors. The action of CPE starts with its binding to claudin receptors to form a small complex; those small complexes then oligomerize to create a hexameric prepore on the membrane surface. Beta hairpin loops from the CPE molecules in the prepore assemble into a beta barrel that inserts into the membrane to form an active pore that enhances calcium influx, causing cell death. This cell death results in intestinal damage that causes fluid and electrolyte loss. CPE is now being explored for translational applications including cancer therapy/diagnosis, drug delivery, and vaccination. PMID:26999202

  1. Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells.

    PubMed

    Rajavel, Tamilselvam; Mohankumar, Ramar; Archunan, Govindaraju; Ruckmani, Kandasamy; Devi, Kasi Pandima

    2017-06-13

    Lung cancer is the leading cause of cancer related deaths both in developed and developing countries. Since majority of the existing therapeutic methods harms both normal and malignant cells, a viable alternative is to switch into safe and beneficial traditional medicinal plants. Hence the present study was framed to identify selective anti-lung cancer agents from the medicinal plant Grewia tiliaefolia (GT). Cell viability experiments showed that benzene extract of GT (BGT) leaf effectively inhibited the growth of A549 cells, while being non-toxic to normal human lung L132 and PBMC cells. Ames and comet assays demonstrated that BGT is of non-mutagenic and non-genotoxic nature in untransformed cells. The hematological and histopathological profiles of the in vivo acute and sub-acute toxicity studies demonstrated that BGT is safe and tolerable. Importantly, western blot analysis and Annexin V-FITC staining confirmed that BGT promotes mitochondrial dependent apoptotic cell death in A549 cells by arresting cell cycle at G2/M phase. Bio-assay guided fractionation revealed the presence of phytosteols (β-sitosterol and daucosterol) which significantly inhibited the growth of A549 cells both alone and in combination. This study warrants that these phytosterols in alone or in combination can be considered as safe and potential drug candidates for lung cancer treatment.

  2. Patterns of in vitro cell-death, metaloproteinase-9 and pro-inflammatory cytokines in human monocytes induced by the BCG vaccine, Moreau strain.

    PubMed

    Simas, C J A; Silva, D P H; Ponte, C G G; Castello-Branco, L R R; Antas, P R Z

    2011-09-02

    Mononuclear cells have been implicated in the primary inflammatory response against mycobacteria. Yet, little is known about the interaction of Mycobacterium bovis bacillus Calmette-Guerin (BCG) with human monocytes. Here, we investigated the potential of BCG Moreau strain to induce in vitro specific cell-death utilizing a flow cytometry approach that revealed an increase in apoptosis events in BCG-stimulated monocytes from healthy adults. We also detected a concomitant release of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), but not metalloproteinase (MMP)-9. In addition, annexin V-propidium iodide double staining demonstrated an enhancement of monocytes necrosis, but not apoptosis, following BCG Moreau strain stimulation of umbilical vein cells from naïve, neonate. This pattern was paralleled by different pro-inflammatory cytokine levels, as well as MMP-9 induction when compared to the adults. Our findings support the hypothesis that BCG induces distinct cell-death patterns during the maturation of the immune system and that this pattern might set the stage for a subsequent antimycobacterial immune response that might have profound effects during vaccination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells.

    PubMed

    Autheman, Delphine; Wyder, Marianne; Popoff, Michel; D'Herde, Katharina; Christen, Stephan; Posthaus, Horst

    2013-01-01

    Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").

  4. Granulocyte macrophage-colony stimulating factor and interleukin-3 increase expression of type II tumour necrosis factor receptor, increasing susceptibility to tumour necrosis factor-induced apoptosis. Control of leukaemia cell life/death switching.

    PubMed

    Rae, C; MacEwan, D J

    2004-12-01

    Tumour necrosis factor (TNF) induces apoptosis in a range of cell types via its two receptors, TNFR1 and TNFR2. Here, we demonstrate that proliferation and TNFR2 expression was increased in human leukaemic TF-1 cells by granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3), with TNFR1 expression unaffected. Consequently, they switch from a proliferative to a TNF-induced apoptotic phenotype. Raised TNFR2 expression and susceptibility to TNF-induced apoptosis was not a general effect of proliferation as IL-1beta and IFN-gamma both proliferated TF-1 cells with no effect on TNFR expression or apoptosis. Although raised TNFR2 expression correlated with the apoptotic phenotype, stimulation of apoptosis in GM-CSF-pretreated cells was mediated by TNFR1, with stimulation of TNFR2 alone insufficient to initiate cell death. However, TNFR2 did play a role in apoptotic and proliferative responses as they were blocked by the presence of an antagonistic TNFR2 antibody. Additionally, coincubation with cycloheximide blocked the mitotic effects of GM-CSF or IL-3, allowing only the apoptotic responses of TNF to persist. TNF life/death was also observed in K562, but not MOLT-4 and HL-60 human leukaemic cell types. These findings show a cooperative role of TNFR2 in the TNF life/death switching phenomenon.

  5. Thymic B Cell-Mediated Attack of Thymic Stroma Precedes Type 1 Diabetes Development

    PubMed Central

    Pinto, Ana Isabel; Smith, Jennifer; Kissack, Miriam R.; Hogg, Karen G.; Green, E. Allison

    2018-01-01

    Type 1 diabetes (T1D) results from a coordinated autoimmune attack of insulin producing beta cells in the pancreas by the innate and adaptive immune systems, beta cell death being predominantly T cell-mediated. In addition to T cells, peripheral B cells are important in T1D progression. The thymus of mice and man also contains B cells, and lately they have been linked to central tolerance of T cells. The role of thymic B cells in T1D is undefined. Here, we show there are abnormalities in the thymic B cell compartment before beta cell destruction and T1D manifestation. Using non-obese diabetic (NOD) mice, we document that preceding T1D development, there is significant accumulation of thymic B cells-partly through in situ development- and the putative formation of ectopic germinal centers. In addition, in NOD mice we quantify thymic plasma cells and observe in situ binding of immunoglobulins to undefined antigens on a proportion of medullary thymic epithelial cells (mTECs). By contrast, no ectopic germinal centers or pronounced intrathymic autoantibodies are detectable in animals not genetically predisposed to developing T1D. Binding of autoantibodies to thymic stroma correlates with apoptosis of mTECs, including insulin-expressing cells. By contrast, apoptosis of mTECs was decreased by 50% in B cell-deficient NOD mice suggesting intrathymic autoantibodies may selectively target certain mTECs for destruction. Furthermore, we observe that these thymic B cell-associated events correlated with an increased prevalence of premature thymic emigration of T cells. Together, our data suggest that the thymus may be a principal autoimmune target in T1D and contributes to disease progression.

  6. HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response

    PubMed Central

    Hsu, Li-Jin; Chiang, Ming-Fu; Sze, Chun-I; Su, Wan-Pei; Yap, Ye Vone; Lee, I-Ting; Kuo, Hsiang-Ling; Chang, Nan-Shan

    2016-01-01

    Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response. PMID:27999774

  7. New aspects in pathogenesis of konzo: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz).

    PubMed

    Sreeja, V G; Nagahara, N; Li, Q; Minami, M

    2003-08-01

    Epidemic spastic paraparesis (konzo) found in tropical and subtropical countries is known to be caused by long-term intake of cassava (Manihot esculenta Crantz), which contains a cyanoglucoside linamarin (alpha-hydroxyisobutyronitrile-beta-d-glucopyranoside). It has been reported that linamarin is enzymatically converted to cyanide by bacteria in the intestine, and this is absorbed into the blood and then damages neural cells. However, unmetabolized linamarin was found in the urine after oral administration of cassava; thus, we hypothesized that konzo could be caused by direct toxicity of the unmetabolized linamarin that was transferred to the brain and could be transported into neural cells via a glucose transporter. In the present study it was confirmed that linamarin directly damaged neural culture pheochromocytoma cell (PC) 12 cells; 0.10 mm-linamarin caused cell death at 13.31 (SD 2.07) %, which was significantly different from that of control group (3.18 (SD 0.92) %, P=0.0004). Additional 10 microM-cytochalasin B, an inhibitor of a glucose transporter, prevented cell death: the percentage of dead cells significantly decreased to 6.06 (SD 1.98), P=0.0088). Furthermore, glucose also prevented cell death. These present results strongly suggest that linamarin competes with cytochalasin B and glucose for binding to a glucose transporter and enters into cells via glucose transporter.

  8. HeLa Cells Containing a Truncated Form of DNA Polymerase Beta are More Sensitized to Alkylating Agents than to Agents Inducing Oxidative Stress.

    PubMed

    Khanra, Kalyani; Chakraborty, Anindita; Bhattacharyya, Nandan

    2015-01-01

    The present study was aimed at determining the effects of alkylating and oxidative stress inducing agents on a newly identified variant of DNA polymerase beta (polβ Δ208-304) specific for ovarian cancer. Pol β Δ208-304 has a deletion of exons 11-13 which lie in the catalytic part of enzyme. We compared the effect of these chemicals on HeLa cells and HeLa cells stably transfected with this variant cloned into in pcDNAI/neo vector by MTT, colony forming and apoptosis assays. Polβ Δ208-304 cells exhibited greater sensitivity to an alkylating agent and less sensitivity towards H2O2 and UV when compared with HeLa cells alone. It has been shown that cell death in Pol β Δ208-304 transfected HeLa cells is mediated by the caspase 9 cascade. Exon 11 has nucleotidyl selection activity, while exons 12 and 13 have dNTP selection activity. Hence deletion of this part may affect polymerizing activity although single strand binding and double strand binding activity may remain same. The lack of this part may adversely affect catalytic activity of DNA polymerase beta so that the variant may act as a dominant negative mutant. This would represent clinical significance if translated into a clinical setting because resistance to radiation or chemotherapy during the relapse of the disease could be potentially overcome by this approach.

  9. IGF-1 protects against dexamethasone-induced cell death in insulin secreting INS-1 cells independent of AKT/PKB phosphorylation.

    PubMed

    Avram, Diana; Ranta, Felicia; Hennige, Anita M; Berchtold, Susanne; Hopp, Sabine; Häring, Hans-Ulrich; Lang, Florian; Ullrich, Susanne

    2008-01-01

    Appropriate insulin secretion depends on beta-cell mass that is determined by the balance between cell proliferation and death. IGF-1 stimulates proliferation and protects against apoptosis. In contrast, glucocorticoids promote cell death. In this study we examined molecular interactions of the glucocorticoid dexamethasone (dexa) with IGF-1 signalling pathways in insulin secreting INS-1 cells. IGF-1 (50 ng/ml) increased the growth rate and stimulated BrdU incorporation, while dexa (100 nmol/l) inhibited cell growth, BrdU incorporation and induced apoptosis. Dexa-induced cell death was partially antagonized by IGF-1. This protection was further increased by LY294002 (10 micromol/l), an inhibitor of PI3 kinase. In contrast, MAP kinase inhibitor PD98059 (10 micromol/l) significantly reduced the protective effect of IGF-1. The analysis of signalling pathways by Western blotting revealed that dexa increased IRS-2 protein abundance while the expression of PI3K, PKB and ERK remained unchanged. Despite increased IRS-2 protein,IRS-2 tyrosine phosphorylation stimulated by IGF-1 was inhibited by dexa. Dexa treatment reduced basal PKB phosphorylation. However, IGF-1-mediated stimulation of PKB phosphorylation was not affected by dexa, but ERK phosphorylation was reduced. LY294002 restored IGF-1-induced ERK phosphorylation. These data suggest that dexa induces apoptosis in INS-1 cells by inhibiting phosphorylation of IRS-2, PKB and ERK. IGF-1 counteracts dexa-mediated apoptosis in the presence of reduced PKB but increased ERK phosphorylation. (c) 2008 S. Karger AG, Basel.

  10. Fluorescence Microspectroscopy for Testing the Dimerization Hypothesis of BACE1 Protein in Cultured HEK293 Cells

    NASA Astrophysics Data System (ADS)

    Gardeen, Spencer; Johnson, Joseph L.; Heikal, Ahmed A.

    2016-06-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder that results from the formation of beta-amyloid plaques in the brain that trigger the known symptoms of memory loss in AD patients. The beta-amyloid plaques are formed by the proteolytic cleavage of the amyloid precursor protein (APP) by the proteases BACE1 and gamma-secretase. These enzyme-facilitated cleavages lead to the production of beta-amyloid fragments that aggregate to form plaques, which ultimately lead to neuronal cell death. Recent detergent protein extraction studies suggest that BACE1 protein forms a dimer that has significantly higher catalytic activity than its monomeric counterpart. In this contribution, we examine the dimerization hypothesis of BACE1 in cultured HEK293 cells using complementary fluorescence spectroscopy and microscopy methods. Cells were transfected with a BACE1-EGFP fusion protein construct and imaged using confocal, and differential interference contrast to monitor the localization and distribution of intracellular BACE1. Complementary fluorescence lifetime and anisotropy measurements enabled us to examine the conformational and environmental changes of BACE1 as a function of substrate binding. Using fluorescence correlation spectroscopy, we also quantified the diffusion coefficient of BACE1-EGFP on the plasma membrane as a means to test the dimerization hypothesis as a fucntion of substrate-analog inhibitition. Our results represent an important first towards examining the substrate-mediated dimerization hypothesis of BACE1 in live cells.

  11. Protective effects of nicergoline against neuronal cell death induced by activated microglia and astrocytes.

    PubMed

    Mizuno, Tetsuya; Kuno, Reiko; Nitta, Atsumi; Nabeshima, Toshitaka; Zhang, Guiqin; Kawanokuchi, Jun; Wang, Jinyan; Jin, Shijie; Takeuchi, Hideyuki; Suzumura, Akio

    2005-12-20

    We examined the neuroprotective role of nicergoline in neuron-microglia or neuron-astrocytes co-cultures. Nicergoline, an ergoline derivative, significantly suppressed the neuronal cell death induced by co-culture with activated microglia or astrocytes stimulated with lipopolysaccharide (LPS) and interferon (IFN)-gamma. To elucidate the mechanism by which nicergoline exerts a neuroprotective effect, we examined the production of inflammatory mediators and neurotrophic factors in activated microglia and astrocytes following nicergoline treatment. In microglia stimulated with LPS and IFN-gamma, nicergoline suppressed the production of superoxide anions, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. In astrocytes, nicergoline also suppressed the production of proinflammatory cytokines and enhanced brain-derived neurotrophic factor (BDNF). Thus, nicergoline-mediated neuroprotection resulted primarily from the inhibition of inflammatory mediators and the upregulation of neurotrophic factors by glial cells.

  12. A comparative analysis of the results from 4 trials of beta-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS.

    PubMed

    Domanski, Michael J; Krause-Steinrauf, Heidi; Massie, Barry M; Deedwania, Prakash; Follmann, Dean; Kovar, David; Murray, David; Oren, Ron; Rosenberg, Yves; Young, James; Zile, Michael; Eichhorn, Eric

    2003-10-01

    Recent large randomized, controlled trials (BEST [Beta-blocker Evaluation of Survival Trial], CIBIS-II [Cardiac Insufficiency Bisoprolol Trial II], COPERNICUS [Carvedilol Prospective Randomized Cumulative Survival Study], and MERIT-HF [Metoprolol Randomized Intervention Trial in Congestive Heart Failure]) have addressed the usefulness of beta-blockade in the treatment of advanced heart failure. CIBIS-II, COPERNICUS, and MERIT-HF have shown that beta-blocker treatment with bisoprolol, carvedilol, and metoprolol XL, respectively, reduce mortality in advanced heart failure patients, whereas BEST found a statistically nonsignificant trend toward reduced mortality with bucindolol. We conducted a post hoc analysis to determine whether the response to beta-blockade in BEST could be related to differences in the clinical and demographic characteristics of the study populations. We generated a sample from BEST to resemble the patient cohorts studied in CIBIS-II and MERIT-HF to find out whether the response to beta-blocker therapy was similar to that reported in the other trials. These findings are further compared with COPERNICUS, which entered patients with more severe heart failure. To achieve conformity with the entry criteria for CIBIS-II and MERIT-HF, the BEST study population was adjusted to exclude patients with systolic blood pressure <100 mm Hg, heart rate <60 bpm, and age >80 years (exclusion criteria employed in those trials). The BEST comparison subgroup (BCG) was further modified to more closely reflect the racial demographics reported for patients enrolled in CIBIS-II and MERIT-HF. The association of beta-blocker therapy with overall survival and survival free of cardiac death, sudden cardiac death, and progressive pump failure in the BCG was assessed. In the BCG subgroup, bucindolol treatment was associated with significantly lower risk of death from all causes (hazard ratio (HR)=0.77 [95% CI=0.65, 0.92]), cardiovascular death (HR=0.71 [0.58, 0.86]), sudden death (HR=0.77 [0.59, 0.999]), and pump failure death (HR=0.64 [0.45, 0.91]). Although not excluding the possibility of differences resulting from chance alone or to different properties among beta-blockers, this study suggests the possibility that different heart failure population subgroups may have different responses to beta-blocker therapy.

  13. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    PubMed

    Sanz-Blasco, Sara; Valero, Ruth A; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-07-23

    Dysregulation of intracellular Ca(2+) homeostasis may underlie amyloid beta peptide (Abeta) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42) oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+) in neurons and promote mitochondrial Ca(2+) overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+) overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+) overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i) mitochondrial Ca(2+) overload underlies the neurotoxicity induced by Abeta oligomers and ii) inhibition of mitochondrial Ca(2+) overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  14. Fish thymocyte viability, apoptosis and necrosis: In-vitro effects of organochlorine contaminants

    USGS Publications Warehouse

    Sweet, L.I.; Passino-Reader, D. R.; Meier, P.G.; Omann, G.M.

    1998-01-01

    The thymus is believed to be a central component of haematopoiesis and immune function in teleosts. Hence, chemically-elicited adverse effects to the thymus may result in immunomodulation and organ dysfunction. The objective of this research was to assess the levels of active (apoptotic) and passive (necrotic) cell death in untreated and organochlorine treated fish thymocytes. Lake trout (Salvelinus namaycush) thymocytes were challenged with Aroclor 1254 (concentration range 1.5-10.5??g ml-1) and alpha, beta, gamma, delta isomers of hexachlorocyclohexane (concentration range 10-100??M). The resulting maintenance or loss of viability was assessed by cytofluorometry (expression of phosphatidylserine and exclusion of propidium iodide) and confirmed with fluorescence microscopy. The results indicate that 20-60% of thymocytes in healthy fish undergo apoptosis, whereas thymocytes treated for 6-24 h with organochlorines exhibit increased levels of apoptotic cell death. This study demonstrates that given sufficient concentration, contact time and cellular receptors, organochlorines such as Aroclor 1254 and hexachlorocyclohexanes may induce direct or indirect toxicity, altered functionality, or cell death to an organ important for fish immunocompetence. ?? 1998 Academic Press Limited.

  15. Beta-blocker use is associated with improved outcomes in adult trauma patients.

    PubMed

    Arbabi, Saman; Campion, Eric M; Hemmila, Mark R; Barker, Melissa; Dimo, Mary; Ahrns, Karla S; Niederbichler, Andreas D; Ipaktchi, Kyros; Wahl, Wendy L

    2007-01-01

    Beta-adrenoreceptor blocker (beta-blocker) therapy may improve outcomes in surgical patients by decreasing cardiac oxygen consumption and hypermetabolism. Because beta-blockers can lower the systemic blood pressure and cerebral perfusion pressure, there is concern regarding their use in patients with head injury. However, beta-blockers may protect beta-receptor rich brain cells by attenuating cerebral oxygen consumption and metabolism. We hypothesized that beta-blockers are safe in trauma patients, even if they have suffered a significant head injury. Using pharmacy and trauma registry data of a Level I trauma center, we identified a cohort of trauma patients who received beta-blockers during their hospital stay (beta-cohort). Trauma admissions who did not receive beta-blockers were in the control cohort. beta-blocker status, in combination with other variables associated with mortality, were placed in a stepwise multivariate logistic regression to identify independent predictors of fatal outcome. In all, 303 (7%) of 4,117 trauma patients received beta-blockers. In the beta-cohort, 45% of patients were on beta-blockers preinjury. The most common reason to initiate beta-blocker therapy was blood pressure (60%) and heart rate (20%) control. The overall mortality rate was 5.6% and head injury was considered to be the major cause of death. After adjusting for age, Injury Severity Scale score, blood pressure, Glasgow Coma Scale score, respiratory status, and mechanism of injury, the odds ratio for fatal outcome was 0.3 (p < 0.001) for beta-cohort as compared with control. Decreased risk of fatal outcome was more pronounced in patients with a significant head injury. beta-blocker therapy is safe and may be beneficial in selected trauma patients with or without head injury. Further studies looking at beta-blocker therapy in trauma patients and their effect on cerebral metabolism are warranted.

  16. Effect of Irrigation Time of Antiseptic Solutions on Bone Cell Viability and Growth Factor Release.

    PubMed

    Sawada, Kosaku; Nakahara, Ken; Haga-Tsujimura, Maiko; Fujioka-Kobayashi, Masako; Iizuka, Tateyuki; Miron, Richard J

    2018-03-01

    Antiseptic solutions are commonly utilized to treat local infection in the oral and maxillofacial region. However, surrounding vital bone is also exposed to antiseptic agents during irrigation and may have a potential negative impact on bone survival. The aim of the present study was therefore to investigate the effect of rinsing time with various antiseptic solutions on bone cell viability, as well as their subsequent release of growth factors important for bone regeneration. The bone samples collected from porcine mandible were rinsed in the following commonly utilized antiseptic solutions; povidone-iodine (0.5%), chlorhexidine digluconate (CHX, 0.2%), hydrogen peroxide (1%), and sodium hypochlorite (0.25%) for 1, 5, 10, 20, 30, or 60 minutes and assessed for cell viability and release of growth factors including vascular endothelial growth factor, transforming growth factor beta 1, bone morphogenetic protein 2, receptor activator of nuclear factor kappa-B ligand, and interleukin-1 beta by enzyme-linked immunosorbent assay. It was found in all the tested groups that the long exposure of any of the tested antiseptic solutions drastically promoted higher cell death. Sodium hypochlorite demonstrated the significantly highest cell death and at all time points. Interestingly, bone cell viability was highest in the CHX group post short-term rinsing of 1, 5, or 10 minutes when compared with the other 4 tested groups. A similar trend was also observed in subsequent growth factor release. The present study demonstrated that of the 4 tested antiseptic solutions, short-term CHX rinsing (ideally within 1 minute) favored bone cell viability and growth factor release. Clinical protocols should be adapted accordingly.

  17. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.

    PubMed

    Chort, Alice; Alves, Sandro; Marinello, Martina; Dufresnois, Béatrice; Dornbierer, Jean-Gabriel; Tesson, Christelle; Latouche, Morwena; Baker, Darren P; Barkats, Martine; El Hachimi, Khalid H; Ruberg, Merle; Janer, Alexandre; Stevanin, Giovanni; Brice, Alexis; Sittler, Annie

    2013-06-01

    We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.

  18. Novel beta-1,3-, 1,6-oligoglucan elicitor from Alternaria alternata 102 for defense responses in tobacco.

    PubMed

    Shinya, Tomonori; Ménard, Rozenn; Kozone, Ikuko; Matsuoka, Hideaki; Shibuya, Naoto; Kauffmann, Serge; Matsuoka, Ken; Saito, Mikako

    2006-06-01

    A novel elicitor that induces chitinases in tobacco BY-2 cells was isolated from Alternaria alternata 102. Six other fungi, including A. alternata IFO 6587, could not induce, or weakly induce chitinase activity. The purified elicitor was soluble in 75% methanol and showed the chitinase-inducing activity when applied at concentrations of as low as 25 ng x mL(-1). Structural determination by methylation analysis, reducing-end analysis, MALDI-TOF/MS, and NMR spectroscopy indicated that the elicitor was a mixture of beta-1,3-, 1,6-oligoglucans mostly with a degree of polymerization of between 8 and 17. Periodate oxidation of the elicitor suggested that the 1,6-linked and nonreducing terminal residues are essential for the elicitor activity. Further analysis of the elicitor responses in BY-2 cells indicated that the activity of this beta-1,3-, 1,6-glucan elicitor was about 1000 times more potent than that of laminarin, which is a known elicitor of defense responses in tobacco. Analyzing the expression of defense-related genes indicated that a phenylalanine ammonia-lyase gene and a coumaroyl-CoA O-methyltransferase gene were transiently expressed by this beta-1,3-, 1,6-glucan elicitor. The elicitor induced a weak oxidative burst but did not induce cell death in the BY-2 cells. In the tissue of tobacco plants, this beta-1,3-, 1,6-glucan elicitor induced the expression of basic PR-3 genes, the phenylpropanoid pathway genes, and the sesquiterpenoid pathway genes. In comparison with laminarin and laminarin sulfate, which are reported to be potent elicitors of defense responses in tobacco, the expression pattern of genes induced by the purified beta-1,3-, 1,6-glucan elicitor was more similar to that induced by laminarin than to that induced by laminarin sulfate.

  19. Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed

    PubMed Central

    Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan

    2017-01-01

    Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. PMID:27845895

  20. Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.

    PubMed

    Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan

    2017-03-21

    Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.

  1. Estradiol is a protective factor in the adult and aging brain: understanding of mechanisms derived from in vivo and in vitro studies.

    PubMed

    Wise, P M; Dubal, D B; Wilson, M E; Rau, S W; Böttner, M; Rosewell, K L

    2001-11-01

    We have shown that 17beta-estradiol exerts profound protective effects against stroke-like ischemic injury in female rats. These effects are evident using physiological levels of estradiol replacement in ovariectomized rats and require hormone treatment prior to the time of injury. The protective actions of estradiol appear to be most prominent in the cerebral cortex, where cell death is not apparent until at least 4 h after the initiation of ischemic injury and where cell death is thought to be apoptotic in nature. Middle-aged rats remain equally responsive to the protective actions of estradiol. The maintenance of responsiveness of the cerebral cortex to the neuroprotective actions of estradiol was unexpected since responsiveness of the hypothalamus to estradiol decreases dramatically by the time animals are middle-aged. We believe that the protective actions of estradiol require the estrogen receptor-alpha, since estradiol does not protect in estrogen receptor-alpha knockout mice. We have also implemented a method of culturing cerebral cortical explants to assess the protective effects of estradiol in vitro. This model exhibits remarkable parallelisms with our in vivo model of brain injury. We have found that 17beta-estradiol decreases the extent of cell death and that this protective effect requires hormone pretreatment. Finally, 17alpha-estradiol, which does not interact effectively with the estrogen receptor, does not protect; and addition of ICI 182,780, an estrogen receptor antagonist, blocks the protective actions of estradiol. We have begun to explore the molecular and cellular mechanisms of estradiol-mediated protection. In summary, our findings demonstrate that estradiol exerts powerful protective effects both in vivo and in vitro and suggest that these actions are mediated by estrogen receptors.

  2. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    PubMed

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  3. Tacrine derivatives stimulate human glioma SF295 cell death and alter important proteins related to disease development: An old drug for new targets.

    PubMed

    Costa Nunes, Fernanda; Silva, Letícia Barros; Winter, Evelyn; Silva, Adny Henrique; de Melo, Leônidas João; Rode, Michele; Martins, Marcos Antônio Pinto; Zanatta, Nilo; Feitosa, Sarah Coelho; Bonacorso, Hélio Gauze; Creczynski-Pasa, Tânia Beatriz

    2018-07-01

    Glioblastoma is the most common and aggressive glioma, characterized by brain invasion capability. Being very resistant to the current therapies, since even under treatment, surgery, and chemotherapy with temozolomide (TMZ), patients achieve a median survival of one year. In the search for more effective therapies, new molecules have been designed. For nervous system cancers, molecules able to cross the blood-brain barrier are handled with priority. Accordingly, tacrine was chosen for this study and the inclusion of spiro-heterocyclic rings was done in its structure resulting in new compounds. Cytotoxic activity of tacrine derivatives was assayed using glioblastoma cell line (SF295) as well as analyzing cell death mechanism. Increased caspases activities were observed, confirming apoptosis as cell death type. Some derivatives also increased reactive oxygen species formation and decreased the mitochondrial membrane potential. Moreover, compounds acted on several glioblastoma-related proteins including p53, HLA-DR, beta-catenin, Iba-1, MAP2c, Olig-2, and IDH1. Therefore, tacrine derivatives presented promising results for the development of new glioblastoma therapy, particularly to treat those patients resistant to TMZ. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins.

    PubMed

    Navarro, Mauricio A; McClane, Bruce A; Uzal, Francisco A

    2018-05-22

    Clostridium perfringens uses its large arsenal of protein toxins to produce histotoxic, neurologic and intestinal infections in humans and animals. The major toxins involved in diseases are alpha (CPA), beta (CPB), epsilon (ETX), iota (ITX), enterotoxin (CPE), and necrotic B-like (NetB) toxins. CPA is the main virulence factor involved in gas gangrene in humans, whereas its role in animal diseases is limited and controversial. CPB is responsible for necrotizing enteritis and enterotoxemia, mostly in neonatal individuals of many animal species, including humans. ETX is the main toxin involved in enterotoxemia of sheep and goats. ITX has been implicated in cases of enteritis in rabbits and other animal species; however, its specific role in causing disease has not been proved. CPE is responsible for human food-poisoning and non-foodborne C. perfringens -mediated diarrhea. NetB is the cause of necrotic enteritis in chickens. In most cases, host⁻toxin interaction starts on the plasma membrane of target cells via specific receptors, resulting in the activation of intracellular pathways with a variety of effects, commonly including cell death. In general, the molecular mechanisms of cell death associated with C. perfringens toxins involve features of apoptosis, necrosis and/or necroptosis.

  5. Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins

    PubMed Central

    Navarro, Mauricio A.; Uzal, Francisco A.

    2018-01-01

    Clostridium perfringens uses its large arsenal of protein toxins to produce histotoxic, neurologic and intestinal infections in humans and animals. The major toxins involved in diseases are alpha (CPA), beta (CPB), epsilon (ETX), iota (ITX), enterotoxin (CPE), and necrotic B-like (NetB) toxins. CPA is the main virulence factor involved in gas gangrene in humans, whereas its role in animal diseases is limited and controversial. CPB is responsible for necrotizing enteritis and enterotoxemia, mostly in neonatal individuals of many animal species, including humans. ETX is the main toxin involved in enterotoxemia of sheep and goats. ITX has been implicated in cases of enteritis in rabbits and other animal species; however, its specific role in causing disease has not been proved. CPE is responsible for human food-poisoning and non-foodborne C. perfringens-mediated diarrhea. NetB is the cause of necrotic enteritis in chickens. In most cases, host–toxin interaction starts on the plasma membrane of target cells via specific receptors, resulting in the activation of intracellular pathways with a variety of effects, commonly including cell death. In general, the molecular mechanisms of cell death associated with C. perfringens toxins involve features of apoptosis, necrosis and/or necroptosis. PMID:29786671

  6. Beta-blocker usage after malignant melanoma diagnosis and survival: a population-based nested case-control study.

    PubMed

    McCourt, C; Coleman, H G; Murray, L J; Cantwell, M M; Dolan, O; Powe, D G; Cardwell, C R

    2014-04-01

    Beta-blockers have potential antiangiogenic and antimigratory activity. Studies have demonstrated a survival benefit in patients with malignant melanoma treated with beta-blockers. To investigate the association between postdiagnostic beta-blocker usage and risk of melanoma-specific mortality in a population-based cohort of patients with malignant melanoma. Patients with incident malignant melanoma diagnosed between 1998 and 2010 were identified within the U.K. Clinical Practice Research Datalink and confirmed using cancer registry data. Patients with malignant melanoma with a melanoma-specific death (cases) recorded by the Office of National Statistics were matched on year of diagnosis, age and sex to four malignant melanoma controls (who lived at least as long after diagnosis as their matched case). A nested case-control approach was used to investigate the association between postdiagnostic beta-blocker usage and melanoma-specific death and all-cause mortality. Conditional logistic regression was applied to generate odds ratios (ORs) and 95% confidence intervals (CIs) for beta-blocker use determined from general practitioner prescribing. Beta-blocker medications were prescribed after malignant melanoma diagnosis to 20·2% of 242 patients who died from malignant melanoma (cases) and 20·3% of 886 matched controls. Consequently, there was no association between beta-blocker use postdiagnosis and cancer-specific death (OR 0·99, 95% CI 0·68-1·42), which did not markedly alter after adjustment for confounders including stage (OR 0·87, 95% CI 0·56-1·34). No significant associations were detected for individual beta-blocker types, by defined daily doses of use or for all-cause mortality. Contrary to some previous studies, beta-blocker use after malignant melanoma diagnosis was not associated with reduced risk of death from melanoma in this U.K. population-based study. © 2014 British Association of Dermatologists.

  7. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast, there was a dose-dependent increase in ICAM-1 immunofluorescence in confluent, but not exponentially-growing cells. These results suggest that proton irradiation downregulates beta 1-integrin and upregulates ICAM-1, potentially contributing to cell death or to aberrant differentiation via modulation of anchorage and/or signal transduction functions. Quantification of the expression levels of the CAMs by Western analysis is in progress.

  8. [Heat-shock protein HSP70 protects neuroblastoma cells SK-N-SH from the neurotoxic effects hydrogen peroxide and the β-amyloid peptide].

    PubMed

    Yurinskaya, M M; Mit'kevich, V A; Barykin, E P; Garbuz, D G; Evgen'ev, M B; Makarov, A A; Vinokurov, M G

    2015-01-01

    Neuronal cell death in Alzheimer's disease is associated with the development of oxidative stress caused by the reactive oxygen species (ROS), which can be generated as a result of the effect of beta-amyloid peptides. One of the sources of ROS is hydrogen peroxide, inducing the apoptosis and necrosis of neural tissue cells. The mechanism of hydrogen peroxide apoptotic action includes launching signaling pathways that involve protein kinases PI3K, p38MAPK, JNK and ERK. Oxidative stress leads to increased synthesis of heat-shock proteins in the cells including HSP70. It was shown that the exogenous HSP70 could reduce generation of ROS in cells. In this study, we determined how HSP70 affected apoptosis and necrosis in human neuroblastoma cells SK-N-SH, induced by hydrogen peroxide and β-amyloid peptide Aβ(1-42). It was shown that HSP70 reduces the cytotoxic effects of hydrogen peroxide and beta-amyloid, and protein kinases PI3K and JNK play an important role in the mechanism of HSP70 protective effect on the peroxide induced apoptosis in SK-N-SH cells.

  9. Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells.

    PubMed

    Pajak, B; Orzechowski, A; Gajkowska, B

    2007-01-01

    This review outlines the molecular events that accompany the antitumor action of sodium butyrate (NaBt). Butyrate, a low-molecular weight four-carbon chain volatile fatty acid (VFA) has been previously shown to withdraw cells from cell cycle or to promote cell differentiation, and finally to induce programmed cell death. Recent advances in molecular biology indicate, that this product of large bowel microbial fermentation of dietary fiber, might evoke the above-mentioned effects by indirect action on genes. NaBt was shown to inhibit histone deacetylase activity, allowing DNA binding of several transcription factors. Higher genomic activity leads to the higher expression of proapoptotic genes, higher level of their protein products and elevated sensitivity to death ligand-induced apoptosis. Cancer cells might be arrested in G1 phase of cell cycle in a p21-dependent manner. Proapoptotic activity of NaBt includes higher expression of membrane death receptors (DR4/5), higher level and activation of Smad3 protein in TGF-beta-dependent apoptotic pathway, lower level of antiapoptotic proteins (cFLIP, XIAP) and activation ofproapoptotic tBid protein. Thus, both intrinsic and extrinsic apoptotic pathways are stimulated to ampify the apoptotic signals. These effects are specific for tumor but not for regular cells. Unique properties of NaBt make this agent a promising metabolic inhibitor to retard tumorigenesis to suppress tumor growth.

  10. Hypothermia blocks beta-catenin degradation after focal ischemia in rats.

    PubMed

    Zhang, Hanfeng; Ren, Chuancheng; Gao, Xuwen; Takahashi, Tetsuya; Sapolsky, Robert M; Steinberg, Gary K; Zhao, Heng

    2008-03-10

    Dephosphorylated and activated glycogen synthase kinase (GSK) 3beta hyperphosphorylates beta-catenin, leading to its ubiquitin-proteosome-mediated degradation. beta-catenin-knockdown increases while beta-catenin overexpression prevents neuronal death in vitro; in addition, protein levels of beta-catenin are reduced in the brain of Alzheimer's patients. However, whether beta-catenin degradation is involved in stroke-induced brain injury is unknown. Here we studied activities of GSK 3beta and beta-catenin, and the protective effect of moderate hypothermia (30 degrees C) on these activities after focal ischemia in rats. The results of Western blot showed that GSK 3beta was dephosphorylated at 5 and 24 h after stroke in the normothermic (37 degrees C) brain; hypothermia augmented GSK 3beta dephosphorylation. Because hypothermia reduces infarction, these results contradict with previous studies showing that GSK 3beta dephosphorylation worsens neuronal death. Nevertheless, hypothermia blocked degradation of total GSK 3beta protein. Corresponding to GSK 3beta activity in normothermic rats, beta-catenin phosphorylation transiently increased at 5 h in both the ischemic penumbra and core, and the total protein level of beta-catenin degraded after normothermic stroke. Hypothermia did not inhibit beta-catenin phosphorylation, but it blocked beta-catenin degradation in the ischemic penumbra. In conclusion, moderate hypothermia can stabilize beta-catenin, which may contribute to the protective effect of moderate hypothermia.

  11. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shterzer, Naama; Heyman, Dariya; Shapiro, Beny

    In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB inducedmore » protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis. - Highlights: • Primary keratinocytes were used to evaluate transforming and carcinogenic abilities of cutaneous HPVs. • E6E7 of cancer associated β HPV types transform primary human keratinocytes. • E6 proteins of cancer and wart associated HPVs inhibit UVB induced cell death. • E6s of cancer and wart associated HPVs attenuate UVB induced proliferation arrest. • E6s of cancer and wart associated HPVs attenuate UVB induced apoptosis signaling.« less

  12. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion.

    PubMed

    Furukawa, Ayako; Tada-Oikawa, Saeko; Kawanishi, Shosuke; Oikawa, Shinji

    2007-01-01

    It has been reported that p53 acetylation, which promotes cellular senescence, can be regulated by the NAD(+)-dependent deacetylase SIRT1, the human homolog of yeast Sir2, a protein that modulates lifespan. To clarify the role of SIRT1 in cellular senescence induced by oxidative stress, we treated normal human diploid fibroblast TIG-3 cells with H(2)O(2) and examined DNA cleavage, depletion of intracellular NAD(+), expression of p21, SIRT1, and acetylated p53, cell cycle arrest, and senescence-associated beta-galactosidase (SA-beta-gal) activity. DNA cleavage was observed immediately in TIG-3 cells treated with H(2)O(2), though no cell death was observed. NAD(+) levels in TIG-3 cells treated with H(2)O(2) were also decreased significantly. Pre-incubation with the poly (ADP-ribose) polymerase (PARP) inhibitor resulted in preservation of intracellular NAD(+) levels. The amount of acetylated p53 was increased in TIG-3 cells at 4h after H(2)O(2) treatment, while there was little to no decrease in SIRT1 protein expression. The expression level of p21 was increased at 12h and continued to increase for up to 24h. Additionally, exposure of TIG-3 cells to H(2)O(2) induced cell cycle arrest at 24h and increased SA-beta-gal activity at 48h. This pathway likely plays an important role in the acceleration of cellular senescence by oxidative stress.

  13. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways.

    PubMed

    Gharibyan, Anna L; Zamotin, Vladimir; Yanamandra, Kiran; Moskaleva, Olesya S; Margulis, Boris A; Kostanyan, Irina A; Morozova-Roche, Ludmilla A

    2007-02-02

    Among the newly discovered amyloid properties, its cytotoxicity plays a key role. Lysozyme is a ubiquitous protein involved in systemic amyloidoses in vivo and forming amyloid under destabilising conditions in vitro. We characterized both oligomers and fibrils of hen lysozyme by atomic force microscopy and demonstrated their dose (5-50 microM) and time-dependent (6-48 h) effect on neuroblastoma SH-SY5Y cell viability. We revealed that fibrils induce a decrease of cell viability after 6 h due to membrane damage shown by inhibition of WST-1 reduction, early lactate dehydrogenase release, and propidium iodide intake; by contrast, oligomers activate caspases after 6 h but cause the cell viability to decline only after 48 h, as shown by fluorescent-labelled annexin V binding to externalized phosphatidylserine, propidium iodide DNA staining, lactate dehydrogenase release, and by typical apoptotic shrinking of cells. We conclude that oligomers induce apoptosis-like cell death, while the fibrils lead to necrosis-like death. As polymorphism is a common property of an amyloid, we demonstrated that it is not a single uniform species but rather a continuum of cross-beta-sheet-containing amyloids that are cytotoxic. An abundance of lysozyme highlights a universal feature of this phenomenon, indicating that amyloid toxicity should be assessed in all clinical applications involving proteinaceous materials.

  14. Stabilization of beta-catenin induces pancreas tumor formation.

    PubMed

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  15. Regulation of radial glial survival by signals from the meninges.

    PubMed

    Radakovits, Randor; Barros, Claudia S; Belvindrah, Richard; Patton, Bruce; Müller, Ulrich

    2009-06-17

    Radial glial cells (RGCs) in the developing cerebral cortex are progenitors for neurons and glia, and their processes serve as guideposts for migrating neurons. So far, it has remained unclear whether RGC processes also control the function of RGCs more directly. Here, we show that RGC numbers and cortical size are reduced in mice lacking beta1 integrins in RGCs. TUNEL stainings and time-lapse video recordings demonstrate that beta1-deficient RGCs processes detach from the meningeal basement membrane (BM) followed by apoptotic death of RGCs. Apoptosis is also induced by surgical removal of the meninges. Finally, mice lacking the BM components laminin alpha2 and alpha4 show defects in the attachment of RGC processes at the meninges, a reduction in cortical size, and enhanced apoptosis of RGC cells. Our findings demonstrate that attachment of RGC processes at the meninges is important for RGC survival and the control of cortical size.

  16. PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus.

    PubMed

    Mellado-Gil, José Manuel; Jiménez-Moreno, Carmen María; Martin-Montalvo, Alejandro; Alvarez-Mercado, Ana Isabel; Fuente-Martin, Esther; Cobo-Vuilleumier, Nadia; Lorenzo, Petra Isabel; Bru-Tari, Eva; Herrera-Gómez, Irene de Gracia; López-Noriega, Livia; Pérez-Florido, Javier; Santoyo-López, Javier; Spyrantis, Andreas; Meda, Paolo; Boehm, Bernhard O; Quesada, Ivan; Gauthier, Benoit R

    2016-04-01

    A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.

  17. Comparative Neuroprotective Effects of Dietary Curcumin and Solid Lipid Curcumin Particles in Cultured Mouse Neuroblastoma Cells after Exposure to Aβ42

    PubMed Central

    2017-01-01

    Aggregation of amyloid beta protein (Aβ) and phosphorylated tau (p-Tau) plays critical roles in pathogenesis of Alzheimer's disease (AD). As an antiamyloid natural polyphenol, curcumin (Cur) has a potential role in prevention of neurodegeneration in AD. However, due to limited absorption of the dietary Cur, the solid lipid Cur particles (SLCP) have been suggested as being more effective for AD therapy. In the present study, we compared the role of dietary Cur and SLCP on oxidative stress, neuronal death, p-Tau level, and certain cell survival markers in vitro, after exposure to Aβ42. Mouse neuroblastoma cells were exposed to Aβ42 for 24 h and incubated with or without dietary Cur and/or SLCP. Reactive oxygen species (ROS), apoptotic cell death, p-Tau, and tau kinase (including GSK-3β and cell survival markers, such as total Akt, phosphorylated Akt, and PSD95 levels) were investigated. SLCP showed greater permeability than dietary Cur in vitro, decreased ROS production, and prevented apoptotic death. In addition, SLCP also inhibited p-Tau formation and significantly decreased GSK-3β levels. Further, the cell survival markers, such as total Akt, p-Akt, and PSD95 levels, were more effectively maintained by SLCP than dietary Cur in Aβ42 exposed cells. Therefore, SLCP may provide greater neuroprotection than dietary Cur in Alzheimer's disease. PMID:28567323

  18. Dynamics of beta-cell turnover: evidence for beta-cell turnover and regeneration from sources of beta-cells other than beta-cell replication in the HIP rat.

    PubMed

    Manesso, Erica; Toffolo, Gianna M; Saisho, Yoshifumi; Butler, Alexandra E; Matveyenko, Aleksey V; Cobelli, Claudio; Butler, Peter C

    2009-08-01

    Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.

  19. Electrocardiographic Presentation, Cardiac Arrhythmias, and Their Management in β-Thalassemia Major Patients.

    PubMed

    Russo, Vincenzo; Rago, Anna; Papa, Andrea Antonio; Nigro, Gerardo

    2016-07-01

    Beta-thalassemia major (β-TM) is a genetic hemoglobin disorder characterized by an absent synthesis of globin chains that are essential for hemoglobin formation, causing chronic hemolytic anemia. Clinical management of thalassemia major consists in regular long-life red blood cell transfusions and iron chelation therapy to remove iron introduced in excess with transfusions. Iron deposition in combination with inflammatory and immunogenic factors is involved in the pathophysiology of cardiac dysfunction in these patients. Heart failure and arrhythmias, caused by myocardial siderosis, are the most important life-limiting complications of iron overload in beta-thalassemia patients. Cardiac complications are responsible for 71% of global death in the beta-thalassemia major patients. The aim of this review was to describe the most frequent electrocardiographic abnormalities and arrhythmias observed in β-TM patients, analyzing their prognostic impact and current treatment strategies. © 2016 Wiley Periodicals, Inc.

  20. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression

    PubMed Central

    Krstić, Jelena; Trivanović, Drenka; Mojsilović, Slavko; Santibanez, Juan F.

    2015-01-01

    Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies. PMID:26078812

  1. Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Montalban, Nuria; Departament de Genetica i de Microbiologia, Universitat Autonoma de Barcelona, Bellaterra, 08193 Barcelona; Ciber de Bioingenieria, Biomateriales y Nanomedicina

    The aggregation of proteins in the form of amyloid fibrils and plaques is the characteristic feature of some pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. The mechanisms by which the aggregation processes result in cell damage are under intense investigation but recent data indicate that prefibrillar aggregates are the most proximate mediators of toxicity rather than mature fibrils. Since it has been shown that prefibrillar forms of the nondisease-related misfolded proteins are highly toxic to cultured mammalian cells we have studied the cytoxicity associated to bacterial inclusion bodies that have been recently described as protein deposits presenting amyloid-likemore » structures. We have proved that bacterial inclusion bodies composed by a misfolding-prone {beta}-galactosidase fusion protein are clearly toxic for mammalian cells but the {beta}-galactosidase wild type enzyme forming more structured thermal aggregates does not impair cell viability, despite it also binds and enter into the cells. These results are in the line that the most cytotoxic aggregates are early prefibrilar assemblies but discard the hypothesis that the membrane destabilization is Key event to subsequent disruption of cellular processes, such as ion balance, oxidative state and the eventually cell death.« less

  2. The pro-apoptotic protein Bmf co-operates with Bim and Puma in neuron death induced by β-amyloid or NGF deprivation.

    PubMed

    Akhter, Rumana; Saleem, Suraiya; Saha, Akash; Biswas, Subhas Chandra

    2018-04-01

    The pro-apoptotic Bcl-2 homology 3 domain only (BH3-only) proteins are central regulators of cell death in various physiological and pathological conditions, including Alzheimer's disease (AD). Bcl-2 modifying factor (Bmf) is one such BH3-only protein that is implicated in various death paradigms such as anoikis, seizures, cancer and autoimmunity. It also co-operates with other BH3-only proteins such as Bim in various death paradigms. However, its role in neurodegeneration is under-investigated. Here, we report for the first time the essential role of Bmf and its co-operativity with direct activator BH3-only proteins Bim and Puma in neuron death induced by beta-amyloid (Aβ) toxicity or NGF deprivation. Oligomeric Aβ is main pathologic species in AD and NGF deprivation is relevant for both developmental as well as pathologic neuron death. We find that Bmf over-expression causes cell death and Bmf knockdown protects neurons against death evoked by Aβ or NGF deprivation. We also find that Bmf co-operates with other important BH3-only proteins such as Bim and Puma in neuron death induced by Aβ or NGF deprivation. Simultaneous knocking down of these molecules by their respective shRNAs provide enhanced protection against Aβ. Taken together, our results elucidate the essential role of Bmf and its co-operative effects with already known neuron death inducers, Bim and Puma, in neuron death evoked by Aβ treatment or NGF deprivation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Lactose-induced cell death of beta-galactosidase mutants in Kluyveromyces lactis.

    PubMed

    Lodi, Tiziana; Donnini, Claudia

    2005-05-01

    The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.

  4. Effects of alpha-galactosylceramides on bone marrow cells in vitro and hematopoiesis in vivo.

    PubMed

    Motoki, K; Morita, M; Kobayashi, E; Uchida, T; Fukushima, H; Koezuka, Y

    1996-07-01

    We found that AGL-517, an alpha-galactosylceramide (alpha-GalCer), possesses potent radioprotective activities against mice irradiated with 9 Gy of X-ray in contrast to its having no effect on mice irradiated with 10 Gy of X-ray. The result suggested the possibility that alpha-GalCers protect mice from bone marrow death. To examine this possibility, we examined the effects of two kinds of alpha- and beta-GalCers on counts of platelets (PLT) and white blood cells (WBC) in the peripheral blood of normal mice and mice irradiated in a whole body with 5 Gy of X-ray. alpha-GalCers significantly increased the PLT and WBC counts of both mice in comparison with the vehicle-treated group, and their potencies were stronger than those of their beta-types. Furthermore, we evaluated the in vitro bone marrow cell-proliferation stimulatory activities of four kinds of GalCers, and found that alpha-GalCers show stronger stimulatory effects than beta-types. These results demonstrate that the alpha-configuration of GalCers plays an important role in the manifestation of the above-mentioned activities of GalCers. The results also suggest that alpha-GalCers may be useful as hematopoietic stimulators as well as radioprotective agents.

  5. Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway.

    PubMed

    Arafa, El-Shaimaa A; Zhu, Qianzheng; Barakat, Bassant M; Wani, Gulzar; Zhao, Qun; El-Mahdy, Mohamed A; Wani, Altaf A

    2009-12-01

    Combination of innocuous dietary components with anticancer drugs is an emerging new strategy for cancer chemotherapy to increase antitumor responses. Tangeretin is a citrus flavonoid known to inhibit cancer cell proliferation. Here, we show an enhanced response of A2780/CP70 and 2008/C13 cisplatin-resistant human ovarian cancer cells to various combination treatments of cisplatin and tangeretin. Pretreatment of cells with tangeretin before cisplatin treatment synergistically inhibited cancer cell proliferation. This combination was effective in activating apoptosis via caspase cascade as well as arresting cell cycle at G(2)-M phase. Moreover, phospho-Akt and its downstream substrates, e.g., NF-kappaB, phospho-GSK-3beta, and phospho-BAD, were downregulated upon tangeretin-cisplatin treatment. The tangeretin-cisplatin-induced apoptosis in A2780/CP70 cells was increased by phosphoinositide-3 kinase (PI3K) inhibition and siRNA-mediated Akt silencing, but reduced by overexpression of constitutively activated Akt and GSK-3beta inhibition. The overall results indicated that tangeretin exposure preconditions cisplatin-resistant human ovarian cancer cells for a conventional response to low-dose cisplatin-induced cell death occurring through downregulation of PI3K/Akt signaling pathway. Thus, effectiveness of tangeretin combinations, as a promising modality in the treatment of resistant cancers, warrants systematic clinical studies.

  6. Spirulina maxima extract prevents cell death through BDNF activation against amyloid beta 1-42 (Aβ1-42) induced neurotoxicity in PC12 cells.

    PubMed

    Koh, Eun-Jeong; Kim, Kui-Jin; Choi, Jia; Kang, Do-Hyung; Lee, Boo-Yong

    2018-04-23

    Spirulina maxima is a blue-green micro alga that contains abundant amounts of proteins (60-70%), vitamins, chlorophyll a, and C-phycocyanin (C-PC). It has been shown to reduce oxidative stress, and prevent diabetes and non-alcoholic fatty liver disease. However, it is unclear whether Spirulina maxima 70% ethanol extract (SM70EE), chlorophyll a, and C-PC prevent Aβ 1-42 -induced neurotoxicity in PC12 cells. The aim of this study was to investigate whether SM70EE, chlorophyll a, and C-PC prevent Aβ 1-42 -induced cell death. SM70EE, chlorophyll a, and C-PC suppressed the Aβ 1-42 -induced increase in poly-ADP ribose polymerase-1 (PARP-1) cleavage and reduced Aβ 1-42 -induced decreases in glutathione and its associated factors. The level of brain-derived neurotrophic factor (BDNF), which plays a critical role in neuronal survival and neuroprotection, was increased by SM70EE, chlorophyll a, and C-PC in Aβ 1-42 -treated cells. SM70EE treatment decreased oxidative stress and cell death in response to Aβ 1-42 treatment, while simultaneously suppressing PARP cleavage and increasing the levels of glutathione (GSH) and its associated factors. Moreover, SM70EE lowered the levels of APP and BACE1, two major factors involved in APP processing, and increased BDNF expression during Aβ 1-42 -induced neurotoxicity in PC12 cells. We suggest that SM70EE prevents cell death caused by Aβ 1-42 -induced neurotoxicity via the activation of BDNF signaling. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    PubMed Central

    Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter

    2011-01-01

    Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120

  8. [Predicting the outcome in severe injuries: an analysis of 2069 patients from the trauma register of the German Society of Traumatology (DGU)].

    PubMed

    Rixen, D; Raum, M; Bouillon, B; Schlosser, L E; Neugebauer, E

    2001-03-01

    On hospital admission numerous variables are documented from multiple trauma patients. The value of these variables to predict outcome are discussed controversially. The aim was the ability to initially determine the probability of death of multiple trauma patients. Thus, a multivariate probability model was developed based on data obtained from the trauma registry of the Deutsche Gesellschaft für Unfallchirurgie (DGU). On hospital admission the DGU trauma registry collects more than 30 variables prospectively. In the first step of analysis those variables were selected, that were assumed to be clinical predictors for outcome from literature. In a second step a univariate analysis of these variables was performed. For all primary variables with univariate significance in outcome prediction a multivariate logistic regression was performed in the third step and a multivariate prognostic model was developed. 2069 patients from 20 hospitals were prospectively included in the trauma registry from 01.01.1993-31.12.1997 (age 39 +/- 19 years; 70.0% males; ISS 22 +/- 13; 18.6% lethality). From more than 30 initially documented variables, the age, the GCS, the ISS, the base excess (BE) and the prothrombin time were the most important prognostic factors to predict the probability of death (P(death)). The following prognostic model was developed: P(death) = 1/1 + e(-[k + beta 1(age) + beta 2(GCS) + beta 3(ISS) + beta 4(BE) + beta 5(prothrombin time)]) where: k = -0.1551, beta 1 = 0.0438 with p < 0.0001, beta 2 = -0.2067 with p < 0.0001, beta 3 = 0.0252 with p = 0.0071, beta 4 = -0.0840 with p < 0.0001 and beta 5 = -0.0359 with p < 0.0001. Each of the five variables contributed significantly to the multifactorial model. These data show that the age, GCS, ISS, base excess and prothrombin time are potentially important predictors to initially identify multiple trauma patients with a high risk of lethality. With the base excess and prothrombin time value, as only variables of this multifactorial model that can be therapeutically influenced, it might be possible to better guide early and aggressive therapy.

  9. SU-E-T-146: Effects of Uncertainties of Radiation Sensitivity of Biological Modelling for Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oita, M; Department of Life System, Institute of Technology and Science, Graduate School, The Tokushima University; Uto, Y

    Purpose: The aim of this study was to evaluate the distribution of uncertainty of cell survival by radiation, and assesses the usefulness of stochastic biological model applying for gaussian distribution. Methods: For single cell experiments, exponentially growing cells were harvested from the standard cell culture dishes by trypsinization, and suspended in test tubes containing 1 ml of MEM(2x10{sup 6} cells/ml). The hypoxic cultures were treated with 95% N{sub 2}−5% CO{sub 2} gas for 30 minutes. In vitro radiosensitization was also measured in EMT6/KU single cells to add radiosensitizer under hypoxic conditions. X-ray irradiation was carried out by using an Xraymore » unit (Hitachi X-ray unit, model MBR-1505R3) with 0.5 mm Al/1.0 mm Cu filter, 150 kV, 4 Gy/min). In vitro assay, cells on the dish were irradiated with 1 Gy to 24 Gy, respectively. After irradiation, colony formation assays were performed. Variations of biological parameters were investigated at standard cell culture(n=16), hypoxic cell culture(n=45) and hypoxic cell culture(n=21) with radiosensitizers, respectively. The data were obtained by separate schedule to take account for the variation of radiation sensitivity of cell cycle. Results: At standard cell culture, hypoxic cell culture and hypoxic cell culture with radiosensitizers, median and standard deviation of alpha/beta ratio were 37.1±73.4 Gy, 9.8±23.7 Gy, 20.7±21.9 Gy, respectively. Average and standard deviation of D{sub 50} were 2.5±2.5 Gy, 6.1±2.2 Gy, 3.6±1.3 Gy, respectively. Conclusion: In this study, we have challenged to apply these uncertainties of parameters for the biological model. The variation of alpha values, beta values, D{sub 50} as well as cell culture might have highly affected by probability of cell death. Further research is in progress for precise prediction of the cell death as well as tumor control probability for treatment planning.« less

  10. Mesangial cell Fas ligand: upregulation in human lupus nephritis and NF-kappaB-mediated expression in cultured human mesangial cells.

    PubMed

    Tsukinoki, Tomoko; Sugiyama, Hitoshi; Sunami, Reiko; Kobayashi, Mizuho; Onoda, Tetsuya; Maeshima, Yohei; Yamasaki, Yasushi; Makino, Hirofumi

    2004-09-01

    Fas ligand (FasL) is a well-known death factor; however, the role of FasL in the regulation of human glomerulonephritis remains unclear. We investigated the renal expression and localization of FasL in various forms of human glomerulonephritis by immunohistochemistry, utilizing confocal laser scanning microscopy. We further evaluated cytokine-induced FasL expression via nuclear factor (NF)kappaB in cultured human mesangial cells (HMC). The level of soluble FasL was measured by a specific enzyme-linked immunosorbent assay (ELISA). The frequency of glomerular FasL-positive cases was higher in lupus nephritis (37.9%) as compared with other forms of glomerulonephritis (8.7%). The glomerular FasL score in proliferative lupus nephritis was significantly higher than that in nonproliferative forms. Patients with a high apoptosis score, severe microhematuria, proteinuria, or decreased renal function had a high FasL score. Double immunolabelling demonstrated that the most prevalent phenotypes of FasL-positive cells were mesangial cells. In cultured HMC, interleukin (IL)1beta, lipopolysaccharide (LPS), or gamma interferon (IFN) upregulated membrane-bound FasL. IL1beta significantly, and LPS or gammaIFN weakly activated NFkappaB, but none of these agents activated NFkappaB/Rel-related nuclear factor of activated T cells (NFATc) or IFN regulatory factor-1. IL1beta-mediated NFkappaB was completely inhibited in the presence of lactacystin, a potent inhibitor of NFkappaB. Lactacystin-mediated inhibition of NFkappaB reduced FasL protein levels. Matrix metalloproteinase (MMP)-7, but not other MMPs (1, 2, 3, 8, or 9), significantly sensitized HMC to release soluble FasL after IL1beta stimulation. The results suggest that: (1) upregulation of mesangial FasL may contribute to the glomerular inflammation in proliferative lupus nephritis in vivo; (2) proinflammatory cytokines, in particular IL1beta, produced in nephritis can upregulate FasL via the transcription factor NFkappaB in HMC; and (3) MMP-7-mediated release of soluble FasL could control the mesangial inflammation.

  11. In vitro streptozotocin model for modeling Alzheimer-like changes: effect on amyloid precursor protein secretases and glycogen synthase kinase-3.

    PubMed

    Plaschke, Konstanze; Kopitz, Jürgen

    2015-04-01

    There is accumulating evidence for a pathogenetic link between sporadic Alzheimer's disease (AD) and diabetes mellitus (DM). At subdiabetogenic doses, the cerebral administration of the diabetogenic substance streptozotocin (STZ) induces an insulin-resistant brain state (IRBS). The aim of the present pilot study was to investigate the effect of STZ on Alzheimer-like characteristics such as amyloid precursor protein (APP) cleavage secretases, betaA4 fragment, and glycogen synthase kinase (GSK) in vitro. Different STZ concentrations (0-5 mM) and incubation intervals (0-48 h) were tested to find appropriate cell culture conditions for further biochemical analyses in human neuroblastoma cells (SK-N-MC). Lactate dehydrogenase (LDH) was measured spectrophotometrically. Intracellular ATP was determined using bioluminescent luciferase assay. Secretase activity (alpha, beta, and gamma) was measured by employing commercial fluorometric secretase activity assay kits, betaA4 fragment by immunoprecipitation. Glycogen synthase kinase-3alpha/beta (total and phospho-GSK) content was assayed by ELISA technique. In vitro STZ administration (1 mM) induced a significant reduction in intracellular ATP concentration without pronounced cell death after 24 and 48 h as measured by LDH. Under these experimental conditions, a significant increase in beta-secretase and a significant drop in alpha-secretase were obtained, whereas gamma-secretase was not changed significantly. Simultaneously, the betaA4 concentration was increased by about threefold. Furthermore, STZ significantly increased total GSK and markedly decreased phospho-GSK. A direct link between STZ, intracellular ATP deficit, and Alzheimer-related enzymes was shown in this in vitro pilot study. Thus, these results support the hypothesis that sporadic AD is being recognized as an IRBS, which can be modulated by in vitro STZ model. Continuing investigations relating pathogenetic mechanisms and AD-like hallmarks are necessary to modulate different cascades of the IRBS using in vitro models.

  12. Vitamin A and cancer prevention II: comparison of the effects of retinol and beta-carotene.

    PubMed

    de Klerk, N H; Musk, A W; Ambrosini, G L; Eccles, J L; Hansen, J; Olsen, N; Watts, V L; Lund, H G; Pang, S C; Beilby, J; Hobbs, M S

    1998-01-30

    Former blue asbestos workers known to be at high risk of asbestos-related diseases, particularly malignant mesothelioma and lung cancer, were enrolled in a chemo-prevention program using vitamin A. Our aims were to compare rates of disease and death in subjects randomly assigned to beta-carotene or retinol. Subjects were assigned randomly to take 30 mg/day beta-carotene (512 subjects) or 25,000 IU/day retinol (512 subjects) and followed up through death and cancer registries from the start of the study in June 1990 till May 1995. Comparison between groups was by Cox regression in both intention-to-treat analyses and efficacy analyses based on treatment actually taken. Median follow-up time was 232 weeks. Four cases of lung cancer and 3 cases of mesothelioma were observed in subjects randomised to retinol and 6 cases of lung cancer and 12 cases of mesothelioma in subjects randomised to beta-carotene. The relative rate of mesothelioma (the most common single cause of death in our study) for those on retinol compared with those on beta-carotene was 0.24 (95% CI 0.07-0.86). In the retinol group, there was also a significantly lower rate for death from all causes but a higher rate of ischaemic heart disease mortality. Similar results were found with efficacy analyses. Our results confirm other findings of a lack of any benefit from administration of large doses of synthetic beta-carotene. The finding of significantly lower rates of mesothelioma among subjects assigned to retinol requires further investigation.

  13. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in patients with Fabry disease.

    PubMed

    Germain, Dominique P; Waldek, Stephen; Banikazemi, Maryam; Bushinsky, David A; Charrow, Joel; Desnick, Robert J; Lee, Philip; Loew, Thomas; Vedder, Anouk C; Abichandani, Rekha; Wilcox, William R; Guffon, Nathalie

    2007-05-01

    Fabry disease, an inherited deficiency of the lysosomal enzyme alpha-galactosidase A, causes progressive intralysosomal accumulation of globotriaosylceramide (GL-3) and premature death from renal, cardiac, and cerebrovascular manifestations. To determine the long-term safety and efficacy of recombinant human alpha-galactosidase A, an open-label, phase III extension study was conducted, involving 58 patients who had classic Fabry disease and completed a 20-wk, double-blind, randomized, placebo-controlled, phase III study of agalsidase beta and were transitioned to an extension trial to receive biweekly 1 mg/kg agalsidase beta for up to an additional 54 mo. GL-3 accumulation was evaluated in the capillary endothelia of the skin, kidney, and heart. Renal function was assessed. By month 54, all patients with optional kidney biopsies (n = 8) maintained complete GL-3 clearance in renal capillary endothelial cells and multiple cell types. Continued, complete clearance of skin (31 of 36) and heart (six of eight) capillary endothelium was demonstrated. Mean plasma GL-3 levels remained decreased in the normal range. Median serum creatinine and estimated GFR remained stable (normal) in patients with renal data at month 54 (n = 41). Six patients had renal disease progression; most (four of six) were older than 40 yr and had significant proteinuria at baseline and evidence of sclerotic glomeruli pretreatment. Adverse events were generally mild and unrelated to treatment. The most common treatment-related adverse events were infusion-associated reactions, which decreased over time. Long-term agalsidase beta therapy stabilizes renal function in patients without renal involvement at baseline, maintains reduction of plasma GL-3, and sustains GL-3 clearance in capillary endothelial cells and multiple renal cell types.

  14. Nicergoline, a drug used for age-dependent cognitive impairment, protects cultured neurons against beta-amyloid toxicity.

    PubMed

    Caraci, Filippo; Chisari, Mariangela; Frasca, Giuseppina; Canonico, Pier Luigi; Battaglia, Angelo; Calafiore, Marco; Battaglia, Giuseppe; Bosco, Paolo; Nicoletti, Ferdinando; Copani, Agata; Sortino, Maria Angela

    2005-06-14

    Nicergoline, a drug used for the treatment of Alzheimer's disease and other types of dementia, was tested for its ability to protect neurons against beta-amyloid toxicity. Pure cultures of rat cortical neurons were challenged with a toxic fragment of beta-amyloid peptide (betaAP(25-35)) and toxicity was assessed after 24 h. Micromolar concentrations of nicergoline or its metabolite, MDL, attenuated betaAP(25-35)-induced neuronal death, whereas MMDL (another metabolite of nicergoline), the alpha1-adrenergic receptor antagonist, prazosin, or the serotonin 5HT-2 receptor antagonist, methysergide, were inactive. Nicergoline increased the basal levels of Bcl-2 and reduced the increase in Bax levels induced by beta-amyloid, indicating that the drug inhibits the execution of an apoptotic program in cortical neurons. In mixed cultures of rat cortical cells containing both neurons and astrocytes, nicergoline and MDL were more efficacious than in pure neuronal cultures in reducing beta-amyloid neurotoxicity. Experiments carried out in pure cultures of astrocytes showed that a component of neuroprotection was mediated by a mechanism of glial-neuronal interaction. The conditioned medium of cultured astrocytes treated with nicergoline or MDL for 72-96 h (collected 24 h after drug withdrawal) was neuroprotective when transferred to pure neuronal cultures challenged with beta-amyloid. In cultured astrocytes, nicergoline increased the intracellular levels of transforming-growth factor-beta and glial-derived neurotrophic factor, two trophic factors that are known to protect neurons against beta-amyloid toxicity. These results raise the possibility that nicergoline reduces neurodegeneration in the Alzheimer's brain.

  15. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs

    PubMed Central

    Ranoa, Diana Rose E.; Parekh, Akash D.; Pitroda, Sean P.; Huang, Xiaona; Darga, Thomas; Wong, Anthony C.; Huang, Lei; Andrade, Jorge; Staley, Jonathan P.; Satoh, Takashi; Akira, Shizuo

    2016-01-01

    Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism. PMID:27034163

  16. Are beta-blockers needed in patients receiving spironolactone for severe chronic heart failure? An analysis of the COPERNICUS study.

    PubMed

    Krum, Henry; Mohacsi, Paul; Katus, Hugo A; Tendera, Michael; Rouleau, Jean-Lucien; Fowler, Michael B; Coats, Andrew J; Roecker, Ellen B; Packer, Milton

    2006-01-01

    The beneficial effects of beta-blockers and aldosterone receptor antagonists are now well established in patients with severe systolic chronic heart failure (CHF). However, it is unclear whether beta-blockers are able to provide additional benefit in patients already receiving aldosterone antagonists. We therefore examined this question in the COPERNICUS study of 2289 patients with severe CHF receiving the beta1-beta2/alpha1 blocker carvedilol compared with placebo. Patients were divided post hoc into subgroups according to whether they were receiving spironolactone (n = 445) or not (n = 1844) at baseline. Consistency of the effect of carvedilol versus placebo was examined for these subgroups with respect to the predefined end points of all-cause mortality, death or CHF-related hospitalizations, death or cardiovascular hospitalizations, and death or all-cause hospitalizations. The beneficial effect of carvedilol was similar among patients who were or were not receiving spironolactone for each of the 4 efficacy measures. For all-cause mortality, the Cox model hazard ratio for carvedilol compared with placebo was 0.65 (95% CI 0.36-1.15) in patients receiving spironolactone and 0.65 (0.51-0.83) in patients not receiving spironolactone. Hazard ratios for death or all-cause hospitalization were 0.76 (0.55-1.05) versus 0.76 (0.66-0.88); for death or cardiovascular hospitalization, 0.61 (0.42-0.89) versus 0.75 (0.64-0.88); and for death or CHF hospitalization, 0.63 (0.43-0.94) versus 0.70 (0.59-0.84), in patients receiving and not receiving spironolactone, respectively. The safety and tolerability of treatment with carvedilol were also similar, regardless of background spironolactone. Carvedilol remained clinically efficacious in the COPERNICUS study of patients with severe CHF when added to background spironolactone in patients who were practically all receiving angiotensin-converting enzyme inhibitor (or angiotensin II antagonist) therapy. Therefore, the use of spironolactone in patients with severe CHF does not obviate the necessity of additional treatment that interferes with the adverse effects of sympathetic activation, specifically beta-blockade.

  17. Curcumin inhibits cellular condensation and alters microfilament organization during chondrogenic differentiation of limb bud mesenchymal cells.

    PubMed

    Kim, Dong Kyun; Kim, Song Ja; Kang, Shin Sung; Jin, Eun Jung

    2009-09-30

    Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin beta1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling.

  18. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  19. Morphine via nitric oxide modulates beta-amyloid metabolism: a novel protective mechanism for Alzheimer's disease.

    PubMed

    Pak, Theodore; Cadet, Patrick; Mantione, Kirk J; Stefano, George B

    2005-10-01

    The deposition of intracellular and extracellular beta-amyloid peptide (Abeta) in the brain is a pathologic feature of Alzheimer's disease (AD), a prevalent neurodegenerative disorder. However, the exact role of the Abeta peptide in causing AD's symptoms is unclear. CRL-2266 SH-SY5Y human neuroblastoma cells (ATCC, USA) and HTB-11 human neuroblastoma cells (ATCC, USA) were cultured. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to analyze the effects of beta25-35, morphine, and SNAP treatments upon BACE-1 and BACE-2 mRNA expression semi-quantitative RT-PCR. The production of NO in SH-SY5Y cells was detected using the Apollo 4000 Free Radical Analyzer (World Precision Instruments). Untreated HTB-11 neuroblastoma cells constitutively express BACE-1 and BACE-2 mRNA. Morphine down regulates the expression of BACE-1 and up regulates the expression of BACE-2 in a naloxone antagonizable manner. When HTB-11 cells were treated with L-NAME, a cNOS inhibitor; the effects of morphine were blocked. SNAP (a NO donor) mimicked the effect of morphine. In SH-SY5Y cells, Abeta treated cells show a dose-dependent decrease in NO release, demonstrating that Ab is dose-dependently inhibiting the release of constitutive NO. Ab and morphine/NO each inhibit the production of the other. This suggests that a deficiency of basal NO or endogenous morphine may trigger drastically reduced levels of basal NO. The outcome is chronic vasoconstriction and brain hypoperfusion and eventual neuronal death. This novel theorized mechanism for AD supports an increasingly-accepted vascular pathological hypothesis for the disease.

  20. Nanomaterial Solutions for the Protection of Insulin Producing Beta Cells

    NASA Astrophysics Data System (ADS)

    Atchison, Nicole Ann

    Islet transplantation is a promising treatment for type 1 diabetes. However, even with the many successes, islet transplantation has yet to reach its full potential. Limited islet sources, loss of cell viability during isolation and culture, and post-transplant graft loss are a few of the issues preventing extensive use of islet transplantation. The application of biomaterial systems to alleviate some of the stresses affecting islet viability has led to improvements in isolation and transplantation outcomes, but problems persist. In this work we approach two distinct issues affecting islet viability; ischemic conditions and immunological attack post-transplant. Ischemic conditions have been linked to a loss of islet graft function and occur during organ preservation, islet isolation and culture, and after islets are transplanted. We show that liposomal delivery of adenosine triphosphate (ATP) to beta cells can limit cell death and loss of function in ischemic conditions. We demonstrate that by functionalizing liposomes with the fibronectin-mimetic peptide PR_b, delivery of liposomes to porcine islets and rat beta cells is increased compared to nontargeted controls. Additionally, liposomes are shown to protect by providing both ATP and lipids to the ischemic cells. The delivery of ATP was investigated here but application of PR_b functionalized liposomes could be extended to other interesting cargos as well. The second area of investigation involves encapsulation of islets with silica nanoparticles to create a permselective barrier. Silica nanoparticles are an interesting material for encapsulation given their ability to be fine-tuned and further functionalized. We demonstrate that size-tunable, fluorescent silica nanoparticles can be assembled layer-by-layer on the surface of cells and that silica nanoparticle encapsulated islets are able to secrete insulin in response to a glucose challenge.

  1. Circulating DNA: a potential marker of sickle cell crisis.

    PubMed

    Vasavda, Nisha; Ulug, Pinar; Kondaveeti, Sheila; Ramasamy, Karthik; Sugai, Taku; Cheung, Gordon; Rees, David C; Awogbade, Moji; Bannister, Sybil; Cunningham, Juliette; Menzel, Stephan; Thein, Swee Lay

    2007-10-01

    Free circulating DNA is present in the plasma of healthy subjects, and is elevated in conditions characterized by increased cell death, such as cancer and physical trauma. Analysis of circulating DNA in plasma could provide a useful biomarker in sickle cell disease (SCD) in view of the increased cell turnover through chronic ongoing haemolysis, recurrent vaso-occlusion and inflammation. Plasma DNA was determined by real-time quantitative polymerase chain reaction (PCR) amplification of the beta-globin gene (HBB) in 154 patients with SCD [105 haemoglobin (Hb)SS, 46 HbSC and three HbS/beta(0) thalassaemia] and 53 ethnically matched controls. Blood samples were obtained from all patients in steady state; 21 of the 154 patients were also sampled during admission to hospital for acute pain. Median concentration of circulating plasma DNA in acute pain was more than 10-fold that in steady state and in controls - 10070 vs. 841 and 10070 vs. 933 genome equivalents/ml respectively (P < 0.0001, in both cases). During steady state, patients had plasma DNA levels similar to controls. Plasma DNA levels in SCD correlated with C-reactive protein levels (P < 0.005) and total white cell counts (P < 0.05) in steady state. The study shows that plasma DNA concentration may have potential as a biomarker in sickle cell patients.

  2. Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents.

    PubMed

    Saleem, A; Datta, R; Yuan, Z M; Kharbanda, S; Kufe, D

    1995-12-01

    The cellular response to 1-beta-D-arabinofuranosylcytosine (ara-C) includes activation of Jun/AP-1, induction of c-jun transcription, and programmed cell death. The stress-activated protein (SAP) kinases stimulate the transactivation function of c-jun by amino terminal phosphorylation. The present work demonstrates that ara-C activates p54 SAP kinase. The finding that SAP kinase is also activated by alkylating agents (mitomycin C and cisplatinum) and the topoisomerase I inhibitor 9-amino-camptothecin supports DNA damage as an initial signal in this cascade. The results demonstrate that ara-C also induces binding of SAP kinase to the SH2/SH3-containing adapter protein Grb2. SAP kinase binds to the SH3 domains of Grb2, while interaction of the p85 alpha-subunit of phosphatidylinositol 3-kinase complex. The results also demonstrate that ara-C treatment is associated with inhibition of lipid and serine kinase activities of PI 3-kinase. The potential significance of the ara-C-induced interaction between SAP kinase and PI 3-kinase is further supported by the demonstration that Wortmannin, an inhibitor of PI 3-kinase, stimulates SAP kinase activity. The finding that Wortmannin treatment is also associated with internucleosomal DNA fragmentation may support a potential link between PI 3-kinase and regulation of both SAP kinase and programmed cell death.

  3. Induction of painless thyroiditis in patients receiving programmed death 1 receptor immunotherapy for metastatic malignancies.

    PubMed

    Orlov, Steven; Salari, Farnaz; Kashat, Lawrence; Walfish, Paul G

    2015-05-01

    Immunotherapies against immune checkpoints that inhibit T cell activation [cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1)] are emerging and promising treatments for several metastatic malignancies. However, the precise adverse effects of these therapies on thyroid gland function have not been well described. We report on 10 cases of painless thyroiditis syndrome (PTS) from a novel etiology, following immunotherapy with anti-PD-1 monoclonal antibodies (mAb) during treatment for metastatic malignancies. Six patients presented with transient thyrotoxicosis in which thyrotropin binding inhibitory immunoglobulins (TBII) were absent for all, whereas four patients had evidence of positive antithyroid antibodies. All thyrotoxic patients required temporary beta-blocker therapy and had spontaneous resolution of thyrotoxicosis with subsequent hypothyroidism. Four patients presented with hypothyroidism without a detected preceding thyrotoxic phase, occurring 6-8 weeks after initial drug exposure. All of these patients had positive antithyroid antibodies and required thyroid hormone replacement therapy for a minimum of 6 months. Patients receiving anti-PD-1 mAb therapy should be monitored for signs and symptoms of PTS which may require supportive treatment with beta-blockers or thyroid hormone replacement. The anti-PD-1 mAb is a novel exogenous cause of PTS and provides new insight into the possible perturbations of the immune network that may modulate the development of endogenous PTS, including cases of sporadic and postpartum thyroiditis.

  4. Effect of LED irradiation on the expression of MMP-3 and MMP-13 in SW1353 cells in vitro

    NASA Astrophysics Data System (ADS)

    Zeng, Chang-chun; Guo, Zhou-yi; Zhang, Feng-xue; Deng, Wen-di; Liu, Song-hao

    2007-05-01

    Matrix Metalloproteinase (MMP) plays an active role in remodeling cartilage in osteoarthritic cartilage. To find an effective method of prevention of osteoclasia, this in vitro study focuses on the expression of MMP-3 and MMP-13 in the SW1353 cells by LED irradiation. The human chondrosarcoma cell line SW1353 were stimulated with the proinflammatory cytokine IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and were received the irradiation of LED (632nm, 4mW/cm2). The cell count was assessed over a 96-hour period by using Trypan blue dye exclusion assay, and the cell activity was evaluated with a Cell Counting Kit-8 Assays. The subsequent expression of MMP-3 and MMP-13 was quantified. Results of this experiment showed that the cultural cell activity was decreased, and the expression of MMP-3 and MMP-13 was increased by being stimulated with IL-1beta or TNF-alpha. After received LED irradiation, the death rate of cultural cell was increased and the expression of MMP-3 and MMP-13 was decreased significantly. The present study concluded that particular LED irradiation stimulates SW1353 cell proliferation activity and inhibit the MMP-3 and MMP-13 enzymatic activity. These findings might be clinically relevant, indicating that the low power laser irradiation treatment is likely to achieve the repair of articular cartilage in clinic.

  5. Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to beta-cell hyperplasia in mutant mice lacking insulin.

    PubMed

    Duvillié, B; Currie, C; Chrones, T; Bucchini, D; Jami, J; Joshi, R L; Hill, D J

    2002-04-01

    The targeted disruption of the two nonallelic insulin genes in mouse was reported previously to result in intrauterine growth retardation, severe diabetes immediately after suckling, and death within 48 h of birth. We have further used these animals to investigate the morphology and cell biology of the endocrine pancreas in late gestation and at birth when insulin is absent throughout development. Pancreatic beta-cells were identified by detecting the activity of the LacZ gene inserted at the Ins2 locus. A significant increase in the mean area of the islets was found at embryonic d 18.5 (E18.5) and in the newborn in Ins1-/-, Ins2-/- animals compared with Ins1-/-, Ins2+/- and wild-type controls, whereas the blood glucose levels were unaltered. The individual size of the beta-cells in the insulin-deficient fetuses was similar to controls, suggesting that the relative increase in islet size was due to an increase in cell number. Immunohistochemistry for proliferating cell nuclear antigen within the pancreatic ductal epithelium showed no differences in labeling index between insulin-deficient and control mice, and no change in the number of beta-cells associated with ducts, but the relative size distribution of the islets was altered so that fewer islets under 5,000 microm(2) and more islets greater than 10,000 microm(2) were present in Ins1-/-, Ins2-/- animals. This suggests that the greater mean islet size seen in insulin-deficient animals represented an enlargement of formed islets and was not associated with an increase in islet neogenesis. The proportional contribution of alpha- and beta-cells to the islets was not altered. This was supported by an increase in the number of cells containing immunoreactive proliferating cell nuclear antigen in both islet alpha- and beta-cells at E18.5 in insulin-deficient mice, and a significantly lower incidence of apoptotic cells, as determined by molecular histochemistry using the terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling reaction. The density of blood vessels within sections of whole pancreas, or within islets, was determined by immunohistochemistry for the endothelial cell marker CD31 and was found to be increased 2-fold in insulin-deficient mice compared with controls at E18.5. However, no changes were found in the steady-state expression of mRNAs encoding vascular endothelial growth factor, its receptor Flk-1, IGF-I or -II, the IGF-I and insulin receptors, or insulin receptor substrates-1 or -2 in pancreata from Ins1-/-, Ins2-/- mice compared with Ins1-/-, Ins2+/- controls. Thus, we conclude that the relative hyperplasia of the islets in late gestation in the insulin-deficient mice was due to an increased islet cell proliferation coupled with a reduced apoptosis, which may be related to an increased vascularization of the pancreas.

  6. The Role of Organelle Stresses in Diabetes Mellitus and Obesity: Implication for Treatment

    PubMed Central

    Chang, Yi-Cheng; Hee, Siow-Wey; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2015-01-01

    The type 2 diabetes pandemic in recent decades is a huge global health threat. This pandemic is primarily attributed to the surplus of nutrients and the increased prevalence of obesity worldwide. In contrast, calorie restriction and weight reduction can drastically prevent type 2 diabetes, indicating a central role of nutrient excess in the development of diabetes. Recently, the molecular links between excessive nutrients, organelle stress, and development of metabolic disease have been extensively studied. Specifically, excessive nutrients trigger endoplasmic reticulum stress and increase the production of mitochondrial reactive oxygen species, leading to activation of stress signaling pathway, inflammatory response, lipogenesis, and pancreatic beta-cell death. Autophagy is required for clearance of hepatic lipid clearance, alleviation of pancreatic beta-cell stress, and white adipocyte differentiation. ROS scavengers, chemical chaperones, and autophagy activators have demonstrated promising effects for the treatment of insulin resistance and diabetes in preclinical models. Further results from clinical trials are eagerly awaited. PMID:26613076

  7. ß3 integrin modulates transforming growth factor beta induced (TGFBI) function and paclitaxel response in ovarian cancer cells.

    PubMed

    Tumbarello, David A; Temple, Jillian; Brenton, James D

    2012-05-28

    The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.

  8. A synthetic peptide derived from alpha-fetoprotein inhibits the estradiol-induced proliferation of mammary tumor cells in culture through the modulation of p21.

    PubMed

    Sierralta, Walter D; Epuñan, María J; Reyes, José M; Valladares, Luis E; Pino, Ana M

    2008-01-01

    A stable cyclized 9-mer peptide (cP) containing the active site of alpha-alpha fetoprotein (alphaFP) has been shown to be effective for prevention of estrogen-stimulated tumor cell proliferation in culture or of xenographt growth in immunodeficient mice. cP does not block 17beta-estradiol (E2) binding to its receptors, but rather appears to interfere with intracellular processing of the signal that supports growth. To obtain insight on that mechanism we studied the effect of cP on the proliferation of MCF-7 cells in culture. Proliferation in the presence of 2 microM E2 is decreased up to 40% upon addition of 2 microg ml(-1) cP to the medium; the presence of cP did not increase cell death, cP reduced also the proliferation of estrogen-dependent ZR75-1 cells but had no effect on autonomous MDA-MB-231 cells, cP did not modify the number of binding sites for labeled E2 or affected cell death. We detected increased nuclear p21Cip1 immunoreactivity after cP treatment. Our results suggest that cP acts via p21Cip1 to slow the process of MCF-7 cells through the cycle.

  9. Antioxidant and Proapoptotic Activities of Sclerocarya birrea [(A. Rich.) Hochst.] Methanolic Root Extract on the Hepatocellular Carcinoma Cell Line HepG2

    PubMed Central

    Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B.; Valentão, Patrícia; Diop, Moussoukhoye Sissokho

    2015-01-01

    The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death. PMID:26075245

  10. Antioxidant and proapoptotic activities of Sclerocarya birrea [(A. Rich.) Hochst.] methanolic root extract on the hepatocellular carcinoma cell line HepG2.

    PubMed

    Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B; Valentão, Patrícia; Diop, Moussoukhoye Sissokho; Milella, Luigi

    2015-01-01

    The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death.

  11. Sudden death in the presence of overt beta-adrenergic receptor activation in guinea pigs immediately following isoflurane anesthesia.

    PubMed

    Overholser, Brian R; Zheng, Xiaomei; Pell, Carrie; Blickman, Andrew

    2010-05-01

    A case series of sudden death is reported in five consecutive guinea pigs following anesthesia with inhalational isoflurane during beta-adrenergic receptor stimulation with isoproterenol. Sustained-release isoproterenol pellets or mini-osmotic pumps were implanted subcutaneously in male Dunkin-Hartley guinea pigs as part of a research study to assess the interplay of adrenergic receptor activation and the development of atrial arrhythmias. The continuous exposure to isoproterenol resulted in a similar presentation and eventual sudden death in all guinea pigs exposed to inhalational isoflurane between 15 to 40 minutes after discontinuation of anesthesia. Death occurred in guinea pigs in this case series despite the fact that doses of isoproterenol used were more than 10-fold lower than previously reported in guinea pigs in the absence of isoflurane anesthesia. The cause of death was suspected to be due to an interaction of isoproterenol with isoflurane anesthesia, as placebo implantation or anesthesia alone did not result in cardiac arrest. Of four subsequent guinea pigs anesthetized with the combination of xylazine and ketamine (X/K), three survived isoproterenol implantation for the full 21-day study period while one died perioperatively. There was an increased rate of post-anesthetic mortality associated with isoproterenol pellet implantation in guinea pigs anesthetized with isoflurane compared to X/K. This may be due to the detrimental effects of the combination of isoflurane during overt beta-adrenergic receptor activation or cardioprotective effects of X/K anesthesia during beta-adrenergic receptor hyperactivity.

  12. Role of caspase-1 and interleukin-1{beta} in acetaminophen-induced hepatic inflammation and liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. David; Farhood, Anwar; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.ed

    2010-09-15

    Acetaminophen (APAP) overdose can result in serious liver injury and potentially death. Toxicity is dependent on metabolism of APAP to a reactive metabolite initiating a cascade of intracellular events resulting in hepatocellular necrosis. This early injury triggers a sterile inflammatory response with formation of cytokines and innate immune cell infiltration in the liver. Recently, IL-1{beta} signaling has been implicated in the potentiation of APAP-induced liver injury. To test if IL-1{beta} formation through caspase-1 is critical for the pathophysiology, C57Bl/6 mice were treated with the pan-caspase inhibitor Z-VD-fmk to block the inflammasome-mediated maturation of IL-1{beta} during APAP overdose (300 mg/kg APAP).more » This intervention did not affect IL-1{beta} gene transcription but prevented the increase in IL-1{beta} plasma levels. However, APAP-induced liver injury and neutrophil infiltration were not affected. Similarly, liver injury and the hepatic neutrophilic inflammation were not attenuated in IL-1-receptor-1 deficient mice compared to wild-type animals. To evaluate the potential of IL-1{beta} to increase injury, mice were given pharmacological doses of IL-1{beta} after APAP overdose. Despite increased systemic activation of neutrophils and recruitment into the liver, there was no alteration in injury. We conclude that endogenous IL-1{beta} formation after APAP overdose is insufficient to activate and recruit neutrophils into the liver or cause liver injury. Even high pharmacological doses of IL-1{beta}, which induce hepatic neutrophil accumulation and activation, do not enhance APAP-induced liver injury. Thus, IL-1 signaling is irrelevant for APAP hepatotoxicity. The inflammatory cascade is a less important therapeutic target than intracellular signaling pathways to attenuate APAP-induced liver injury.« less

  13. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionate attenuates glutamate-induced caspase-3 cleavage via regulation of glycogen synthase kinase 3beta.

    PubMed

    Nishimoto, Takaaki; Kihara, Takeshi; Akaike, Akinori; Niidome, Tetsuhiro; Sugimoto, Hachiro

    2008-04-01

    Preconditioning of sublethal ischemia exhibits neuroprotection against subsequent ischemia-induced neuronal death. It has been indicated that glutamate, an excitatory amino acid, is involved in the pathogenesis of ischemia-induced neuronal death or neurodegeneration. To elucidate whether prestimulation of glutamate receptor could counter ischemia-induced neuronal death or neurodegeneration, we examined the effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), an ionotropic subtype of glutamate receptor, on excess glutamate-induced excitotoxicity using primary cortical neuronal cultures. We found that AMPA exerted a neuroprotective effect in a time- and concentration-dependent manner. A blocker of phosphatidylinositol-3 kinase (PI3K), LY294002 (10 microM), significantly attenuated AMPA-induced protection. In addition, Ser473 of Akt/PKB, a downstream target of PI3K, was phosphorylated by AMPA administration (10 microM). Glycogen synthase kinase 3beta (GSK3beta), which has been reported to be inactivated by Akt, was phosphorylated at Ser9 by AMPA. Ser9-phosphorylated GSK3beta or inactivated form would be a key molecule for neuroprotection, insofar as lithium chloride (100 microM) and SB216763 (10 microM), inhibitors of GSK3beta, also induced phosphorylation of GSK3beta at Ser9 and exerted neuroprotection, respectively. Glutamate (100 microM) increased cleaved caspase-3, an apoptosis-related cysteine protease, and caspase-3 inhibitor (Ac-DEVD-CHO; 1 microM) blocked glutamate-induced excitotoxicity in our culture. AMPA (10 microM, 24 hr) and SB216763 (10 microM) prominently decreased glutamate-induced caspase-3 cleavage. These findings suggest that AMPA activates PI3K-Akt and subsequently inhibits GSK3beta and that inactivated GSK3beta attenuates glutamate-induced caspase-3 cleavage and neurotoxicity.

  14. Beta-blockers influence the short-term and long-term prognostic information of natriuretic peptides and catecholamines in chronic heart failure independent from specific agents.

    PubMed

    Frankenstein, Lutz; Nelles, Manfred; Slavutsky, Maxim; Schellberg, Dieter; Doesch, Andreas; Katus, Hugo; Remppis, Andrew; Zugck, Christian

    2007-10-01

    In chronic heart failure (CHF), the physiologic effects of natriuretic peptides and catecholamines are interdependent. Furthermore, reports state an agent-dependent effect of individual beta-blockers on biomarkers. Data on the short-term and long-term predictive power comparing these biomarkers as well as accounting for the influence of beta-blocker treatment both on the marker or the resultant prognostic information are scarce. We included 513 consecutive patients with systolic CHF, measured atrial natriuretic peptide (ANP), N-terminal prohormone brain natriuretic peptide (NTproBNP), noradrenaline, and adrenaline, and monitored them for 90 +/- 25 months. Death or the combination of death and cardiac transplantation at 1 year, 5 years, and overall follow-up were considered end points. Compared with patients not taking beta-blockers, patients taking beta-blockers had significantly lower levels of catecholamines but not natriuretic peptides. Only for adrenaline was the amount of this effect related to the specific beta-blocker chosen. Receiver operating characteristic curves demonstrated superior prognostic accuracy for NTproBNP both at the 1- and 5-year follow-up compared with ANP, noradrenaline, and adrenaline. In multivariate analysis including established risk markers (New York Heart Association functional class, left ventricular ejection fraction, peak oxygen uptake, and 6-minute walk test), of all neurohumoral parameters, only NTproBNP remained an independent predictor for both end points. Long-term beta-blocker therapy is associated with decreased levels of plasma catecholamines but not natriuretic peptides. This effect is independent from the actual beta-blocker chosen for natriuretic peptides and noradrenaline. In multivariate analysis, both for short-term and long-term prediction of mortality or the combined end point of death and cardiac transplantation, only NTproBNP remained independent from established clinical risk markers.

  15. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials

    PubMed Central

    Pedraza, Eileen; Coronel, Maria M.; Fraker, Christopher A.; Ricordi, Camillo; Stabler, Cherie L.

    2012-01-01

    A major hindrance in engineering tissues containing highly metabolically active cells is the insufficient oxygenation of these implants, which results in dying or dysfunctional cells in portions of the graft. The development of methods to increase oxygen availability within tissue-engineered implants, particularly during the early engraftment period, would serve to allay hypoxia-induced cell death. Herein, we designed and developed a hydrolytically activated oxygen-generating biomaterial in the form of polydimethylsiloxane (PDMS)-encapsulated solid calcium peroxide, PDMS-CaO2. Encapsulation of solid peroxide within hydrophobic PDMS resulted in sustained oxygen generation, whereby a single disk generated oxygen for more than 6 wk at an average rate of 0.026 mM per day. The ability of this oxygen-generating material to support cell survival was evaluated using a β cell line and pancreatic rat islets. The presence of a single PDMS-CaO2 disk eliminated hypoxia-induced cell dysfunction and death for both cell types, resulting in metabolic function and glucose-dependent insulin secretion comparable to that in normoxic controls. A single PDMS-CaO2 disk also sustained enhanced β cell proliferation for more than 3 wk under hypoxic culture conditions. Incorporation of these materials within 3D constructs illustrated the benefits of these materials to prevent the development of detrimental oxygen gradients within large implants. Mathematical simulations permitted accurate prediction of oxygen gradients within 3D constructs and highlighted conditions under which supplementation of oxygen tension would serve to benefit cellular viability. Given the generality of this platform, the translation of these materials to other cell-based implants, as well as ischemic tissues in general, is envisioned. PMID:22371586

  16. Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩

    PubMed Central

    Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar

    2014-01-01

    In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415

  17. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia.

    PubMed

    Jiang, Jin-Yi; Cheung, Carmen K M; Wang, Yifang; Tsang, Benjamin K

    2003-01-01

    Mammalian ovarian follicular development and atresia is closely regulated by the cross talk of cell death and cell survival signals, which include endocrine hormones (gonadotropins) and intra-ovarian regulators (gonadal steroids, cytokines and growth factors). The fate of the follicle is dependent on a delicate balance in the expression and actions of factors promoting follicular cell proliferation, growth and differentiation and of those inducing programmed cell death (apoptosis). As an important endocrine hormone, FSH binds to its granulosa cell receptors and promotes ovarian follicle survival and growth not only by stimulating proliferation and estradiol secretion of these cells, but also inhibiting the apoptosis by up-regulating the expression of intracellular anti-apoptotic proteins, such as XIAP and FLIP. In addition, intra-ovarian regulators, such as TGF-alpha and TNF-alpha, also play an important role in the control of follicular development and atresia. In response to FSH, Estradiol-17 beta synthesized from the granulosa cells stimulates thecal expression of TGF-alpha, which in turn increases granulosa cell XIAP expression and proliferation. The death receptor and ligand, Fas and Fas ligand, are expressed in granulosa cells following gonadotropin withdrawal, culminating in caspase-mediated apoptosis and follicular atresia. In contrast, TNF-alpha has both survival and pro-apoptotic function in the follicle, depending on the receptor subtype activated, but has been shown to promote granulosa cell survival by increasing XIAP and FLIP expression via the IkappaB-NFkappaB pathway. The pro-apoptotic action of TNF-alpha is mediated through the activation of caspases, via its receptor- (i.e. Caspases-8 and -3) and mitochrondria- (i.e. Caspase-9 and -3) death pathways. In the present manuscript, we have reviewed the actions and interactions of gonadotropins and intra-ovarian regulators in the control of granulosa cell fate and ultimately follicular destiny. We have highlighted the role and regulation of granulosa cell XIAP and FLIP expression, as well as their interactions with the death signaling pathways in the maintenance of granulosa cell survival during follicular development. We have provided strong evidence for these intracellular survival factors as key determinants for ovarian follicular destiny (growth versus atresia), the expression of which is regulated by a highly integrated endocrine, paracrine and autocrine mechanism. Further studies in these aspects will lead to a better understanding of the molecular and cellular regulation of follicular development and atresia, and provide invaluable insight into novel strategies in assisted reproduction in human infertility as well as in increasing reproductive efficiency in livestock industries.

  18. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blockedmore » TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-{beta}-gal, p21{sup Waf1/Cip1}, p16{sup INK4a}, and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects.« less

  19. Three-Dimensional Bioreactor Technologies for the Cocultivation of Human Mesenchymal Stem/Stromal Cells and Beta Cells

    PubMed Central

    Petry, Florian; Weidner, Tobias; Salzig, Denise

    2018-01-01

    Diabetes is a prominent health problem caused by the failure of pancreatic beta cells. One therapeutic approach is the transplantation of functional beta cells, but it is difficult to generate sufficient beta cells in vitro and to ensure these cells remain viable at the transplantation site. Beta cells suffer from hypoxia, undergo apoptosis, or are attacked by the host immune system. Human mesenchymal stem/stromal cells (hMSCs) can improve the functionality and survival of beta cells in vivo and in vitro due to direct cell contact or the secretion of trophic factors. Current cocultivation concepts with beta cells are simple and cannot exploit the favorable properties of hMSCs. Beta cells need a three-dimensional (3D) environment to function correctly, and the cocultivation setup is therefore more complex. This review discusses 3D cultivation forms (aggregates, capsules, and carriers) for hMSCs and beta cells and strategies for large-scale cultivation. We have determined process parameters that must be balanced and considered for the cocultivation of hMSCs and beta cells, and we present several bioreactor setups that are suitable for such an innovative cocultivation approach. Bioprocess engineering of the cocultivation processes is necessary to achieve successful beta cell therapy. PMID:29731775

  20. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology inmore » pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.« less

  1. Familial Alzheimer's disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage.

    PubMed

    Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E

    2010-02-01

    Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.

  2. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation.

    PubMed

    Tsuji, Naoki; Ninov, Nikolay; Delawary, Mina; Osman, Sahar; Roh, Alex S; Gut, Philipp; Stainier, Didier Y R

    2014-01-01

    Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.

  3. A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia.

    PubMed

    Lemper, Marie; De Groef, Sofie; Stangé, Geert; Baeyens, Luc; Heimberg, Harry

    2016-09-01

    When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.

  4. Multi-Scale Model of Galactic Cosmic Ray Effects on the Hippocampus

    NASA Astrophysics Data System (ADS)

    Cucinotta, Francis

    An important concern for risk assessment from galactic cosmic ray (GCR) exposures is impacts to the central nervous systems including changes in cognition, and associations with increased risk of Alzheimer’s disease (AD). AD, which affects about 50 percent of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages, and the small number of epidemiology studies that have considered the possibility have not identified an association with low dose radiation. However, experimental studies in transgenic mice suggest the possibility exits. We discuss modeling approaches to consider mechanisms whereby GCR would accelerate the occurrence of AD to earlier ages. Biomarkers of AD include Amyloid beta plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyper-phosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dendritic spine loss, and neuronal cell loss through apoptosis. GCR may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuro-inflammation. Cell types considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3 beta and neuro-inflammation, and considered approaches to develop computer simulations of GCR induced cell interactions and their relationships to Amyloid beta plaques and NFTs. Comparison of model results to experimental data for the age specific development of plaques in transgenic mice and predictions of space radiation effects will be discussed.

  5. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    PubMed

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  6. Different susceptibility of rat pancreatic alpha and beta cells to hypoxia.

    PubMed

    Bloch, Konstantin; Vennäng, Julia; Lazard, Daniel; Vardi, Pnina

    2012-06-01

    Insulin-producing beta cells are known to be highly susceptible to hypoxia, which is a major factor in their destruction after pancreatic islet transplantation. However, whether the glucagon-producing pancreatic islet alpha cells are sensitive to hypoxia is not known. Our objective was to compare the sensitivity of alpha and beta cells to hypoxia. Isolated rat pancreatic islets were exposed to hypoxia (1% oxygen, 94% N(2), 5% CO(2)) for 3 days. The viability of the alpha and beta cells, as well as the stimulus-specific secretion of glucagon and insulin, was evaluated. A quantitative analysis of the proportion of beta to alpha cells indicated that, under normoxic conditions, islet cells were composed mainly of beta cells (87 ± 3%) with only 13 ± 3% alpha cells. Instead, hypoxia treatment significantly increased the proportion of alpha cells (40 ± 13%) and decreased the proportion of beta cells to 60 ± 13%. Using the fluorescent TUNEL assay we found that only a few percent of beta cells and alpha cells were apoptotic in normoxia. In contrast, hypoxia induced an abundance of apoptotic beta cells (61 ± 22%) and had no effect on the level of apoptosis in alpha cells. In conclusion, this study demonstrates that hypoxia results in severe functional abnormality in both beta and alpha cells while alpha cells display significantly decreased rate of apoptosis compared to intensive apoptotic injury of beta cells. These findings have implications for the understanding of the possible role of hypoxia in the pathophysiology of diabetes.

  7. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    PubMed

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  8. HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern

    2007-04-06

    To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but wasmore » repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.« less

  9. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    PubMed

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  10. Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta Cells

    PubMed Central

    van der Meulen, Talitha; Xie, Ruiyu; Kelly, Olivia G.; Vale, Wylie W.; Sander, Maike; Huising, Mark O.

    2012-01-01

    The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies. PMID:23251699

  11. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    PubMed Central

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133

  12. Inhibin/activin-betaC and -betaE subunits in the Ishikawa human endometrial adenocarcinoma cell line.

    PubMed

    Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis

    2010-08-01

    Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in human endometrium.

  13. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis.

    PubMed

    Kiaei, Mahmoud; Petri, Susanne; Kipiani, Khatuna; Gardian, Gabrielle; Choi, Dong-Kug; Chen, Junyu; Calingasan, Noel Y; Schafer, Peter; Muller, George W; Stewart, Charles; Hensley, Kenneth; Beal, M Flint

    2006-03-01

    Accumulating evidence suggests that inflammation plays a major role in the pathogenesis of motor neuron death in amyotrophic lateral sclerosis (ALS). Important mediators of inflammation such as the cytokine tumor necrosis factor-alpha (TNF-alpha) and its superfamily member fibroblast-associated cell-surface ligand (FasL) have been implicated in apoptosis. We found increased TNF-alpha and FasL immunoreactivity in lumbar spinal cord sections of ALS patients and G93A transgenic mice. Both increased TNF-alpha and FasL immunostaining in the lumbar spinal cord of the G93A SOD1 transgenic mice occurred at 40-60 d, well before the onset of symptoms and loss of motor neurons. We tested the neuroprotective effect of thalidomide and its analog lenalidomide, pharmacological agents that inhibit the expression of TNF-alpha and other cytokines by destabilizing their mRNA. Treatment with either thalidomide or lenalidomide attenuated weight loss, enhanced motor performance, decreased motor neuron cell death, and significantly increased the life span in G93A transgenic mice. Treated G93A mice showed a reduction in TNF-alpha and FasL immunoreactivity as well as their mRNA in the lumbar spinal cord. Both compounds also reduced interleukin (IL)-12p40, IL-1alpha, and IL-1beta and increased IL-RA and TGF-beta1 mRNA. Therefore, both thalidomide and lenalidomide bear promise as therapeutic interventions for the treatment of ALS.

  14. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammelsrud, A.; Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo; Solhaug, A.

    2012-05-15

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalizemore » receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1β. ► There was a synergistic action between EnnB and bacterial LPS.« less

  15. Beta-carotene Antioxidant Use During Radiation Therapy and Prostate Cancer Outcome in the Physicians' Health Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margalit, Danielle N., E-mail: dmargalit@lroc.harvard.edu; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts

    2012-05-01

    Purpose: The safety of antioxidant supplementation during radiation therapy (RT) for cancer is controversial. Antioxidants could potentially counteract the pro-oxidant effects of RT and compromise therapeutic efficacy. We performed a prospective study nested within the Physicians' Health Study (PHS) randomized trial to determine if supplemental antioxidant use during RT for prostate cancer is associated with an increased risk of prostate cancer death or metastases. Methods and Materials: PHS participants (383) received RT for prostate cancer while randomized to receive beta-carotene (50 mg on alternate days) or placebo. The primary endpoint was time from RT to lethal prostate cancer, defined asmore » prostate cancer death or bone metastases. The Kaplan-Meier method was used to estimate survival probabilities and the log-rank test to compare groups. Cox proportional hazards regression was used to estimate the effect of beta-carotene compared with that of placebo during RT. Results: With a median follow-up of 10.5 years, there was no significant difference between risk of lethal prostate cancer with the use of beta-carotene during RT compared with that of placebo (hazard ratio = 0.72; 95% confidence interval [CI], 0.42-1.24; p = 0.24). After we adjusted for age at RT, prostate-specific antigen serum level, Gleason score, and clinical stage, the difference remained nonsignificant. The 10-year freedom from lethal prostate cancer was 92% (95% CI, 87-95%) in the beta-carotene group and 89% (95% CI, 84-93%) in the placebo group. Conclusion: The use of supplemental antioxidant beta-carotene during RT was not associated with an increased risk of prostate cancer death or metastases. This study suggests a lack of harm from supplemental beta-carotene during RT for prostate cancer.« less

  16. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4more » daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.« less

  17. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity

    PubMed Central

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Hu, Zhen; Zhao, Ming; Che, Chun-Tao; Ip, Siu-Po

    2012-01-01

    Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer's disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer's disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer's disease, beta-amyloid- (Aβ-) induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation. PMID:22778778

  18. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity.

    PubMed

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Hu, Zhen; Zhao, Ming; Che, Chun-Tao; Ip, Siu-Po

    2012-01-01

    Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer's disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer's disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer's disease, beta-amyloid- (Aβ-) induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation.

  19. Characterization and inhibition of beta-adrenergic receptor kinase in intact myocytes.

    PubMed

    Laugwitz, K L; Kronsbein, K; Schmitt, M; Hoffmann, K; Seyfarth, M; Schömig, A; Ungerer, M

    1997-08-01

    beta-Adrenergic receptor kinase (beta ARK) phosphorylates and thereby inactivates agonist-occupied beta-adrenergic receptors (beta AR). beta ARK is thought to play an important role in the regulation of cardiac function. Therefore, we studied beta ARK activation and its inhibition in intact smooth muscle cells and in cardiomyoblasts. beta AR agonist-stimulated translocation of beta ARK was monitored by immunofluorescence labelling with specific antibodies and confocal laser scanning microscopy in DDT-MF 2 hamster smooth muscle cells and in H9c2 rat cardiomyoblasts. In unstimulated cells. beta ARK was mainly located in the cytosol. After beta AR agonist stimulation, the beta ARK signal was partially translocated to the membranes. Liposomal gene transfer of the COOH-terminus of beta ARK ('beta ARKmini') as a beta ARK inhibitor led to functional expression of this protein in both cell lines with high efficiency. Western blots with beta ARK antibodies showed a gene concentration-dependent immunoreactivity of the 'beta ARKmini' protein. 'beta ARKmini'-transfected myocytes demonstrated reduced membrane targeting of the beta ARK immuno-fluorescence signal. Additionally, the effect of 'beta ARKmini' on beta AR-induced desensitization of myocytic cAMP accumulation was investigated. In control cells, desensitization with isoproterenol led to a subsequent reduction of beta AR-induced cAMP accumulation. In 'beta ARKmini'-transfected myocytes, this beta AR-induced desensitization was significantly diminished, whereas normal beta AR-induced cAMP accumulation was unaffected. A gene concentration of 2 micrograms 'beta ARKmini' DNA/100,000 cardiomyoblasts, and of 0.7 microgram 'beta ARKmini' DNA/100,000 DDT-MF2 smooth muscle cells led to approximately 5.9- and approximately 5.6-fold overexpressions of 'beta ARKmini' vs. native beta ARK, respectively. These gene doses proved sufficient to attenuate beta-adrenergic desensitization significantly. (1) beta ARK translocation was evidenced in DDT-MF2 smooth muscle cells and in cardiomyoblasts by confocal laser scanning microscopy. (2) Feasibility of 'beta ARKmini' gene transfer to myocytes was demonstrated, and necessary gene doses for beta ARK inhibition were titered. (3) Overexpression of 'beta ARKmini' functionally interacted with endogenous beta-adrenergic signal transduction, leading to sustained cAMP accumulation after prolonged beta-adrenergic stimulation.

  20. Characterization of T cell repertoire changes in acute Kawasaki disease

    PubMed Central

    1993-01-01

    Kawasaki disease (KD) is an acute multisystem vasculitis of unknown etiology that is associated with marked activation of T cells and monocyte/macrophages. Using a quantitative polymerase chain reaction (PCR) technique, we recently found that the acute phase of KD is associated with the expansion of T cells expressing the V beta 2 and V beta 8.1 gene segments. In the present work, we used a newly developed anti-V beta 2 monoclonal antibody (mAb) and studied a new group of KD patients to extend our previous PCR results. Immunofluorescence analysis confirmed that V beta 2-bearing T cells are selectively increased in patients with acute KD. The increase occurred primarily in the CD4 T cell subset. The percentages of V beta 2+ T cells as determined by mAb reactivity and flow cytometry correlated linearly with V beta expression as quantitated by PCR. However, T cells from acute KD patients appeared to express proportionately higher levels of V beta 2 transcripts per cell as compared with healthy controls or convalescent KD patients. Sequence analysis of T cell receptor beta chain genes of V beta 2 and V beta 8.1 expressing T cells from acute KD patients showed extensive junctional region diversity. These data showing polyclonal expansion of V beta 2+ and V beta 8+ T cells in acute KD provide additional insight into the immunopathogenesis of this disease. PMID:8094737

  1. Fatal overdose due to prescription fentanyl patches in a patient with sickle cell/beta-thalassemia and acute chest syndrome: A case report and review of the literature.

    PubMed

    Biedrzycki, Olaf J; Bevan, David; Lucas, Sebastian

    2009-06-01

    Introduced into clinical practice in the 1960s, the analgesic fentanyl is 100 times more potent than morphine. Various methods of administration exist including the transdermal Duragesic patch system, widely used in chronic pain and palliative care settings. Numerous, often imaginative methods of abuse of fentanyl patches have been reported; the majority of fatal fentanyl overdose cases resulting from deliberate abuse or suicide. We describe the accidental overdose of a young black male with sickle cell/beta-thalassemia who had been using the Duragesic system for almost 2 years.At autopsy the macroscopic findings were of nonspecific opiate overdose with congested heavy lungs. Histopathological examination revealed severe sickling of red blood cells in the lungs (acute chest syndrome). Toxicological examination revealed blood and urine fentanyl levels of 40 microg/L and 400 microg/L (10 fold and 100 fold higher than therapeutic levels). The mast cell tryptase was also significantly elevated at 76 microg/L, (Normal 2-14 microg/L). We discuss the relevance of these findings with regard to the cause of death, and stress the need to consider fentanyl when confronted with nonspecific signs of opiate overdose as it is not detected in routine toxicological drug screens.

  2. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis

    PubMed Central

    Lebrun, Jean-Jacques

    2012-01-01

    The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects. PMID:27340590

  3. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    PubMed

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P < 0.05). Among patients with DE, TGF-beta bioactivity was highest in those with Sjögren syndrome. Approximately, 79.1% of TGF-beta in DE tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where elevated levels of TGF-beta1 transcripts in the conjunctival epithelium have been previously detected.

  4. A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass

    PubMed Central

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-01-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  5. Studies on the bioavailability of the provitamin A carotenoid, beta-carotene, using human exfoliated colonic epithelial cells.

    PubMed

    Gireesh, T; Nair, P P; Sudhakaran, P R

    2004-08-01

    The possibility of using exfoliated colonic epithelial cells for assessing the bioavailability of beta-carotene was examined. Analysis of exfoliated colonic epithelial cells showed the presence of beta-carotene and vitamin A. The beta-carotene content was significantly lower in cells from stool samples of subjects on a beta-carotene-poor diet than those receiving a single dose of a beta-carotene supplement. Colonic epithelial cells isolated from stool samples collected daily during a wash-out period while the subjects were on a beta-carotene-poor diet showed a steady decrease in beta-carotene content, reaching the lowest value on day 7. Kinetic analysis showed that a single dose of a beta-carotene supplement in the form of spirulina (Spirulina platensis) or agathi (Sesbania grandiflora) after the wash-out period caused an increase in the beta-carotene content after a lag period of 5-7 d, but the vitamin A levels during these periods were not significantly affected. Analysis of plasma beta-carotene concentration also showed similar changes, which correlated with those of exfoliated colonic cells. A relationship between the beta-carotene content of the diet and that of the colonic epithelial cells suggests that analysis of the beta-carotene content in exfoliated human colonic epithelial cells is a useful non-invasive method to assess the bioavailability of provitamin A beta-carotene.

  6. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Il-Rae; Koh, Sang Seok; Department of Functional Genomics, University of Science and Technology, Daejeon 305-333

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, knownmore » to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1-mediated degradation of {beta}-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target molecule of {beta}-catenin. These results suggest that SIRT1 activation may be a therapeutic strategy for treatment of pancreatic cancer cells that express PAUF via the down-regulation of {beta}-catenin.« less

  7. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus

    PubMed Central

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-01-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA (shRNA) to suppress expression of the enzyme CYP46A1. This protein hydroxylates cholesterol and so facilitates trans-membrane extrusion. A sh-RNA CYP46A1construction coupled to an adeno-associated virus (AAV5) was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the CA3a region. Cytoplasmic and membrane cholesterol increased, neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, inter-ictal EEG events occurred during exploration and non-REM sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low amplitude, high-frequency oscillations of peak power at ~300Hz and a range of 250-350 Hz. While episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behavior PMID:25847620

  8. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function.

    PubMed

    He, Xiaoyu; Lai, Qiaohong; Chen, Cai; Li, Na; Sun, Fei; Huang, Wenting; Zhang, Shu; Yu, Qilin; Yang, Ping; Xiong, Fei; Chen, Zhishui; Gong, Quan; Ren, Boxu; Weng, Jianping; Eizirik, Décio L; Zhou, Zhiguang; Wang, Cong-Yi

    2018-04-01

    Post-translational attachment of a small ubiquitin-like modifier (SUMO) to the lysine (K) residue(s) of target proteins (SUMOylation) is an evolutionary conserved regulatory mechanism. This modification has previously been demonstrated to be implicated in the control of a remarkably versatile regulatory mechanism of cellular processes. However, the exact regulatory role and biological actions of the E2 SUMO-conjugating enzyme (UBC9)-mediated SUMOylation function in pancreatic beta cells has remained elusive. Inducible beta cell-specific Ubc9 (also known as Ube2i) knockout (KO; Ubc9 Δbeta ) and transgenic (Ubc9 Tg ) mice were employed to address the impact of SUMOylation on beta cell viability and functionality. Ubc9 deficiency or overexpression was induced at 8 weeks of age using tamoxifen. To study the mechanism involved, we closely examined the regulation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) through SUMOylation in beta cells. Upon induction of Ubc9 deficiency, Ubc9 Δbeta islets exhibited a 3.5-fold higher accumulation of reactive oxygen species (ROS) than Ubc9 f/f control islets. Islets from Ubc9 Δbeta mice also had decreased insulin content and loss of beta cell mass after tamoxifen treatment. Specifically, at day 45 after Ubc9 deletion only 40% of beta cell mass remained in Ubc9 Δbeta mice, while 90% of beta cell mass was lost by day 75. Diabetes onset was noted in some Ubc9 Δbeta mice 8 weeks after induction of Ubc9 deficiency and all mice developed diabetes by 10 weeks following tamoxifen treatment. In contrast, Ubc9 Tg beta cells displayed an increased antioxidant ability but impaired insulin secretion. Unlike Ubc9 Δbeta mice, which spontaneously developed diabetes, Ubc9 Tg mice preserved normal non-fasting blood glucose levels without developing diabetes. It was noted that SUMOylation of NRF2 promoted its nuclear expression along with enhanced transcriptional activity, thereby preventing ROS accumulation in beta cells. SUMOylation function is required to protect against oxidative stress in beta cells; this mechanism is, at least in part, carried out by the regulation of NRF2 activity to enhance ROS detoxification. Homeostatic SUMOylation is also likely to be essential for maintaining beta cell functionality.

  9. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  10. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cellsmore » and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.« less

  11. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines

    PubMed Central

    2013-01-01

    Background MET is a receptor tyrosine kinase that is activated by the ligand HGF and this pathway promotes cell survival, migration, and motility. In accordance with its oncogenic role, MET is constitutively active, mutated, or over-expressed in many cancers. Corollary to its impact, inhibition of MET kinase activity causes reduction of the downstream signaling and demise of cells. In myeloma, a B-cell plasma malignancy, MET is neither mutated nor over-expressed, however, HGF is increased in plasma or serum obtained from myeloma patients and this was associated with poor prognosis. The small-molecule, amuvatinib, inhibits MET receptor tyrosine kinase. Based on this background, we hypothesized that targeting the HGF/MET signaling pathway is a rational approach to myeloma therapy and that myeloma cells would be sensitive to amuvatinib. Methods Expression of MET and HGF mRNAs in normal versus malignant plasma cells was compared during disease progression. Cell death and growth as well as MET signaling pathway were assessed in amuvatinib treated primary myeloma cells and cell lines. Results There was a progressive increase in the transcript levels of HGF (but not MET) from normal plasma cells to refractory malignant plasma cells. Amuvatinib readily inhibited MET phosphorylation in primary CD138+ cells from myeloma patients and in concordance, increased cell death. A 48-hr amuvatinib treatment in high HGF-expressing myeloma cell line, U266, resulted in growth inhibition. Levels of cytotoxicity were time-dependent; at 24, 48, and 72 h, amuvatinib (25 μM) resulted in 28%, 40%, and 55% cell death. Consistent with these data, there was an amuvatinib-mediated decrease in MET phosphorylation in the cell line. Amuvatinib at concentrations of 5, 10, or 25 μM readily inhibited HGF-dependent MET, AKT, ERK and GSK-3-beta phosphorylation. MET-mediated effects were not observed in myeloma cell line that has low MET and/or HGF expression. Conclusions These data suggest that at the cellular level MET/HGF pathway inclines with myeloma disease progression. Amuvatinib, a small molecule MET kinase inhibitor, is effective in inducing growth inhibition and cell death in myeloma cell lines as well as primary malignant plasma cells. These cytostatic and cytotoxic effects were associated with an impact on MET/HGF pathway. PMID:24326130

  12. Elliptical-P cells in the avian perilymphatic interface of the Tegmentum vasculosum

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Lee, D. H.; Martin, D. S.

    1995-01-01

    Elliptical cells (E-P) are present at the perilymphatic interface lumen (PIL) of the lagena. The E-P cells often separate from the tegmentum vasculosum (TV) and have touching processes that form a monolayer between the K+ rich perilymph and the Na+ rich endolymph, similar to the mammalian Reissner's membrane. We examined the TV of chicks (Gallus domesticus) and quantitated the expression of anti-S100 alphaalphabetabeta and S100 beta. There was a 30% increase of S100 beta saturation in the light cells facing the PIL when compared to other TV light cells. We show that: (1) the dimer anti- S100 alphaalphabetabeta and the monomer anti-S100 beta are expressed preferentially in the light cells and the E-P cells of TV; (2) expression of S100 beta is higher in light cells facing the PIL than in adjacent cells; (3) the expression of the dimer S100 alphaalphabetabeta and monomer S100 beta overlaps in most inner ear cell types, including the cells of the TV, most S100 alphaalphabetabeta positive cells express S 100 beta, but S100 beta positive cells do not always express S100 alphaalphabetabeta; and (4) the S100 beta expression in light cells, the abundant Na+-K+ ATPase on dark cells of the TV, and previously demonstrated co-localization of S100 beta/GABA in sensory cells suggest that S100 beta could have, in the inner ear, a dual neurotrophic-ionic modulating function.

  13. From the rat to the beta cell: a fast and effective technique of separation of Langerhans islets and direct purification of pancreatic beta cells.

    PubMed

    Tamagno, Gianluca; Vigolo, Simonetta; Olivieri, Massimiliano; Martini, Chiara; De Carlo, Eugenio

    2014-01-01

    Isolated Langerhans islets represent a useful model for the study of the endocrine pancreas. The possibility to purify pancreatic beta cells from a mixed Langerhans islet cell population may lead towards a dedicated focus on beta cell research. We describe an effective and rapid immunomagnetic technique for the direct purification of beta cells from isolated Langerhans islets of rat. After the sacrifice of the rat, the Langerhans islets were separated by ductal injection of the pancreas with collagenase, altered to a mixed Langerhans islet cell population and incubated with conditioned immunomagnetic beads targeted to the beta cell surface. The beads were previously coated with a specific antibody against the surface of the beta cell, namely K14D10. The suspension of mixed Langerhans islet cells and immunomagnetic K14D10-conditioned beads was pelleted by a magnetic particle concentrator to isolate the bead-bound cells, which were finally suspended in a culture medium. The purified cells were immunoreactive for insulin and no glucagon-positive cells were detected at immunocytochemistry. Real Time PCR confirmed the purification of the pancreatic beta cells. This immunomagnetic technique allows a rapid, effective and consistent purification of beta cells from isolated Langerhans islets in a direct manner by conditioning the immunomagnetic beads only. This technique is easy, fast and reproducible. It promises to be a reliable method for providing purified beta cells for in vitro research.

  14. Expression of S100 beta in sensory and secretory cells of the vertebrate inner ear

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D. S.

    1995-01-01

    We evaluated anti-S100 beta expression in the chick (Gallus domesticus) inner ear and determined that: 1) the monomer anti-S100 beta is expressed differentially in the vestibular and auditory perikarya; 2) expression of S100 beta in the afferent nerve terminals is time-related to synapse and myelin formation; 3) the expression of the dimer anti-S100 alpha alpha beta beta and monomer anti-S100 beta overlaps in most inner ear cell types. Most S100 alpha alpha beta beta positive cells express S100 beta, but S100 beta positive cells do not always express S100 alpha alpha beta beta. 4) the expression of S100 beta is diffused over the perikaryal cytoplasm and nuclei of the acoustic ganglia but is concentrated over the nuclei of the vestibular perikarya. 6) S100 beta is expressed in secretory cells, and it is co-localized with GABA in sensory cells. 7) Color thresholding objective quantitation indicates that the amount of S100 beta was higher (mean 22, SD +/- 4) at E19 than at E9 (mean 34, SD +/- 3) in afferent axons. 8) Moreover, S100 beta was unchanged between E11-E19 in the perikaryal cytoplasm, but did change over the nuclei. At E9, 74%, and at E21, 5% of vestibular perikarya were positive. The data suggest that S100 beta may be physically associated with neuronal and ionic controlling cells of the vertebrate inner ear, where it could provide a dual ionic and neurotrophic modulatory function.

  15. Histone deacetylase inhibitor belinostat represses survivin expression through reactivation of transforming growth factor beta (TGFbeta) receptor II leading to cancer cell death.

    PubMed

    Chowdhury, Sanjib; Howell, Gillian M; Teggart, Carol A; Chowdhury, Aparajita; Person, Jonathan J; Bowers, Dawn M; Brattain, Michael G

    2011-09-02

    Survivin is a cancer-associated gene that functions to promote cell survival, cell division, and angiogenesis and is a marker of poor prognosis. Histone deacetylase inhibitors induce apoptosis and re-expression of epigenetically silenced tumor suppressor genes in cancer cells. In association with increased expression of the tumor suppressor gene transforming growth factor β receptor II (TGFβRII) induced by the histone deacetylase inhibitor belinostat, we observed repressed survivin expression. We investigated the molecular mechanisms involved in survivin down-regulation by belinostat downstream of reactivation of TGFβ signaling. We identified two mechanisms. At early time points, survivin protein half-life was decreased with its proteasomal degradation. We observed that belinostat activated protein kinase A at early time points in a TGFβ signaling-dependent mechanism. After longer times (48 h), survivin mRNA was also decreased by belinostat. We made the novel observation that belinostat mediated cell death through the TGFβ/protein kinase A signaling pathway. Induction of TGFβRII with concomitant survivin repression may represent a significant mechanism in the anticancer effects of this drug. Therefore, patient populations exhibiting high survivin expression with epigenetically silenced TGFβRII might potentially benefit from the use of this histone deacetylase inhibitor.

  16. Cell surface expression of beta 2-microglobulin (beta 2m) correlates with stages of differentiation in B cell tumours.

    PubMed Central

    Jones, R A; Scott, C S; Norfolk, D R; Stark, A N; Child, J A

    1987-01-01

    Cell surface beta 2-microglobulin (beta 2m) densities of malignant B cells were determined by enzyme immunoassay in 97 cases of immunologically defined lymphoproliferative disease. Absolute beta 2m densities were found to depend on disease category with the lowest levels found on cells from chronic lymphocytic leukaemia (mean = 5.6 ng/10(6) cells, n = 27); atypical chronic lymphocytic leukaemia (mean = 5.9 ng/10(6) cells, n = 8); and prolymphocytoid chronic lymphocytic leukaemia variant (mean = 6.0 ng/10(6) cells, n = 16). beta 2m densities for B non-Hodgkin's lymphoma (n = 14) and B prolymphocytic leukaemia (n = 17) cases were 8.1 and 10.0 ng/10(6) cells, respectively, and the highest densities were found on cells from "late-B cell" tumours (mean = 14.3 ng/10(6) cells). Plasma cells from cases of Ig secreting tumours expressed unexpectedly low beta 2m densities (mean = 9.3 ng/10(6) cells; n = 6). PMID:3108331

  17. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  18. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  19. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    PubMed

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  20. The ethyl acetate extract of Phellinus linteus grown on germinated brown rice induces G0/G1 cell cycle arrest and apoptosis in human colon carcinoma HT29 cells.

    PubMed

    Park, Hye-Jin; Choi, Se Young; Hong, Se Mi; Hwang, Sung Gu; Park, Dong Ki

    2010-07-01

    It is well known that Phellinus linteus has a variety of biological functions, such as antitumor and immunomodulating activities. In our previous studies, we developed a P. linteus grown on germinated brown rice (PBR) and found that organic solvent extracts of PBR possessed immunomodulating activity to regulate a balance of cytokine network in mice. The components of PBR are ergosterol peroxide, gamma-aminobutyric acid (GABA) and Beta-glucan. In this study, we demonstrate that an organic solvent extract of P. linteus grown on PBR induced apoptotic cell death through the induction of G(0)/G(1) arrest of cell cycle and the apoptosis via DNA fragmentation in human colon carcinoma HT-29 cells. Cell death induced by the extract of P. linteus grown on PBR was shown to be associated with the upregulation of p21(CIP1/WAF1), the downregulation of cyclin D1, anti-apoptotic protein, Bcl-2, the release of cytochrome c, and the activation of caspase-9, caspase-3 and caspase-8. This study suggests that the ethyl acetate extract of P. linteus grown on PBR induces apoptosis accompanied by cell cycle arrest at G(0)/G(1) phase and regulates apoptosis-regulatory proteins, which may be applicable to anticancer therapy.

  1. Downregulation of connective tissue growth factor by three-dimensional matrix enhances ovarian carcinoma cell invasion.

    PubMed

    Barbolina, Maria V; Adley, Brian P; Kelly, David L; Shepard, Jaclyn; Fought, Angela J; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D; Stack, M Sharon

    2009-08-15

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancies, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intraperitoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hr of 3D collagen culture) coupled with confirmatory real-time reverse-transcriptase polymerase chain reaction, multiple 3D cell culture matrices, Western blot, immunostaining, adhesion, migration and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion- mimicking conditions (3D Type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n = 41), but was present in 100% of normal ovarian epithelium samples (n = 7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using alpha6beta1 and alpha3beta1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion.

  2. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells.

    PubMed

    Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin

    2018-01-01

    Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.

  3. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2–Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells

    PubMed Central

    Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin

    2018-01-01

    Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state. PMID:29410668

  4. Id-1 promotes TGF-{beta}1-induced cell motility through HSP27 activation and disassembly of adherens junction in prostate epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Kaijun; Wong, Y.C.; Wang Xianghong

    Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-{beta}1 (transforming growth factor {beta}1). Here we demonstrate a novel role of Id-1 in promoting TGF-{beta}1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-{beta}1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-{beta}1-induced cell motility was mediated through activation ofmore » MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-{beta}1-treated cells through down-regulation of E-cadherin, redistribution of {beta}-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-{beta}1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-{beta}1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.« less

  5. Identification of positional candidates for bovine placental genes responsible for early embryonic death during cloning-attempted pregnancy.

    PubMed

    Yamada, Takahisa; Muramatsu, Youji; Taniguchi, Yukio; Sasaki, Yoshiyuki

    Our previous study detected 291 and 77 genes showing early embryonic death-associated elevation and reduction of expression, respectively, in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. In this study, we mapped the 10 genes showing the elevation and the 10 genes doing the reduction most significantly, using somatic cell hybrid and bovine draft genome sequence. We then compared the mapped positions for these genes with the genomic locations of bovine quantitative trait loci for still-birth and/or abortion. Among the mapped genes, peptidylglycine alpha-amidating monooxygenase (PAM), spectrin, beta, nonerythrocytic 1 (SPTBNI), and an unknown novel gene containing AU277832 expressed sequence tag were intriguing, in that the mapped positions were consistent with the genomic locations of bovine still-birth and/or abortion quantitative trait loci, and thus identified as positional candidates for bovine placental genes responsible for the early embryonic death during the pregnancy attempted by somatic nuclear transfer-derived cloning.

  6. Pregnenolone protects the PC-12 cell line against amyloid beta peptide toxicity but its sulfate ester does not.

    PubMed

    Akan, Pinar; Kizildag, Servet; Ormen, Murat; Genc, Sermin; Oktem, Mehmet Ali; Fadiloglu, Meral

    2009-01-15

    Pregnenolone (P), the main precursor of the steroids, and its sulfate ester, pregnenolone sulfate (PS), are the major neurosteroids produced in the neural tissue. Many neuroendocrinological studies stressed the neuroprotective role of neurosteroids although it has been suggested that the inhibition of P and PS synthesis can delay neuronal cell death. The potential roles of P and PS in vital neuronal functions and in amyloid beta peptide (Abeta) toxicity are not clearly identified. This work aims to investigate the effects of P and PS on cell viability and Abeta peptide toxicity in a concentration and exposure time-dependent manner in rat PC-12 cells. The cells were treated with 20muM Abeta peptide 25-35 and variable concentrations of P and PS ranging from 0.5muM to 100muM. To examine the effects of steroid treatment on Abeta peptide toxicity, 0.5muM (low) and 50muM (high) neurosteroids were used. The cell viability and lactate dehydrogenase release of cells were evaluated after 24, 48 and 72h. Morphological changes of cells were also examined. The treatment with higher than 1muM concentrations of P and PS significantly decreased the cell viability comparing to untreated cells. At lower concentrations, P and PS had no toxic actions until 72h. The Abeta treatment resulted in a significant decrease in cell viability comparing to untreated cells. P showed a dose-dependent protective effect against Abeta peptide in PC-12 cells. But its sulfate ester did not have the same effect on Abeta peptide toxicity, even it significantly decreased cell viability in Abeta-treated cells. Consequently, the discrepant effects of P and PS on Abeta peptide toxicity may provide insight on the pathogenesis of Alzheimer's disease.

  7. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: yingliu@doheny.org; Sun Yet-sen University, Zhongshan Ophthalmic Center, State Key Ophthalmic Laboratory, Guangzhou 510060; Kawai, Kirio

    Research highlights: {yields} Inactivation of Smad4 caused disruption in the development of the anterior segment. {yields} Inactivation of Smad4 failed to disrupt early lens development. {yields} Smad4 controlled lens cell cycle and cell death processes. {yields} Smad4 may regulate actin stress fiber assembly and eyelid epithelial movement. -- Abstract: Purpose: Signaling by members of the TGF{beta} superfamily of molecules is essential for embryonic development and homeostasis. Smad4, a key intracellular mediator in TGF{beta} signaling, forms transcriptional activator complexes with Activin-, BMP-, and TGF{beta}-restricted Smad proteins. However, the functional role of Smad4 in controlling different visual system compartments has not beenmore » fully investigated. Methods: Using the Pax6 promoter-driven Cre transgenic, smad4 was conditionally inactivated in the lens, cornea and ectoderm of the eyelids. Standard histological and molecular analytical approaches were employed to reveal morphological and cellular changes. Results: Inactivation of Smad4 in the lens led to microphthalmia and cataract formation in addition to the persistent adhesion of the retina to the lens and the iris to the cornea. Inactivation of Smad4 from the ectoderm of the eyelid and cornea caused disruption to eyelid fusion and proper development of the corneal epithelium and corneal stroma. Conclusions: Smad4 is required for the development and maintenance of the lens in addition to the proper development of the cornea, eyelids, and retina.« less

  9. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  10. Beta-blockade prevents hematopoietic progenitor cell suppression after hemorrhagic shock.

    PubMed

    Elhassan, Ihab O; Hannoush, Edward J; Sifri, Ziad C; Jones, Eyone; Alzate, Walter D; Rameshwar, Pranela; Livingston, David H; Mohr, Alicia M

    2011-08-01

    Severe injury is accompanied by sympathetic stimulation that induces bone marrow (BM) dysfunction by both suppression of hematopoietic progenitor cell (HPC) growth and loss of cells via HPC mobilization to the peripheral circulation and sites of injury. Previous work demonstrated that beta-blockade (BB) given prior to tissue injury both reduces HPC mobilization and restores HPC colony growth within the BM. This study examined the effect and timing of BB on BM function in a hemorrhagic shock (HS) model. Male Sprague-Dawley rats underwent HS via blood withdrawal, maintaining the mean arterial blood pressure at 30-40 mm Hg for 45 min, after which the extracted blood was reinfused. Propranolol (10 mg/kg) was given either prior to or immediately after HS. Blood pressure, heart rate, BM cellularity, and death were recorded. Bone marrow HPC growth was assessed by counting colony-forming unit-granulocyte-, erythrocyte-, monocyte-, megakaryocyte (CFU-GEMM), burst-forming unit-erythroid (BFU-E), and colony-forming unit-erythroid (CFU-E) cells. Administration of BB prior to injury restored HPC growth to that of naïve animals (CFU-GEMM 59 ± 11 vs. 61 ± 4, BFU-E 68 ± 9 vs. 73 ± 3, and CFU-E 81 ± 35 vs. 78 ± 14 colonies/plate). Beta-blockade given after HS increased the growth of CFU-GEMM, BFU-E, and CFU-E significantly and improved BM cellularity compared with HS alone. The mortality rate was not increased in the groups receiving BB. Administration of propranolol either prior to injury or immediately after resuscitation significantly reduced post-shock BM suppression. After HS, BB may improve BM cellularity by decreasing HPC mobilization. Therefore, the early use of BB post-injury may play an important role in attenuating the BM dysfunction accompanying HS.

  11. Suppressive effects of ketamine on macrophage functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Yi; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Chen, T.-L.

    2005-04-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 {mu}M ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 {mu}M, ketamine caused a release of lactate dehydrogenasemore » and cell death. Ketamine, at 10 and 100 {mu}M, did not affect the chemotactic activity of macrophages. Administration of 1000 {mu}M ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-{alpha}, IL-1{beta}, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 {mu}M) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity.« less

  12. Can we induce spermatogenesis in the domestic cat using an in vitro tissue culture approach?

    PubMed Central

    Amaral, Sandra; Tavares, Renata S.; Schlatt, Stefan; Ramalho-Santos, João

    2018-01-01

    The reduced number of animals in most wild felid populations implies a loss of genetic diversity. The death of juveniles, prior to the production of mature sperm, represents a loss of potential genetic contribution to future populations. Since 2011 mouse testicular organ culture has introduced an alternative mechanism to produce sperm in vitro from immature tissue. However, extension of this technology to other species has remained limited. We have used the domestic cat (Felis catus) as a model for wild felids to investigate spermatogenesis initiation and regulation, with the mouse serving as a control species. Testicular tissue fragments were cultured in control medium or medium supplemented with knockout serum replacement (KSR), AlbuMax, beta-estradiol or AlbuMax plus beta-estradiol. Contrary to expectations, and unlike results obtained in mouse controls, no germ cell differentiation could be detected. The only germ cells observed after six weeks of culture were spermatogonia regardless of the initial stage of tubule development in the donor tissue. Moreover, the number of spermatogonia decreased with time in culture in all media tested, especially in the medium supplemented with KSR, while AlbuMax had a slight protective effect. The combination of AlbuMax and beta-estradiol led to an increase in the area occupied by seminiferous tubules, and thus to an increase in total number of spermatogonial cells. Considering all the media combinations tested the stimulus for felid germ cell differentiation in this type of system seems to be different from the mouse. Studies using other triggers of differentiation and tissue survival factors should be performed to pursue this technology for the genetic diversity preservation in wild felids. PMID:29414992

  13. Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells.

    PubMed Central

    Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.

    1996-01-01

    Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226

  14. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

    PubMed Central

    Tsakmaki, Anastasia; Mousavy Gharavy, S Neda; Murawala, Priyanka; Konantz, Judith; Birke, Sarah; Hodson, David J; Rutter, Guy A; Bewick, Gavin A

    2018-01-01

    The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age. PMID:29624168

  15. Fas Apoptosis Inhibitory Molecule (FAIM) Contains a Novel Beta Sandwich in Contact with a Partially Ordered Domain

    PubMed Central

    Hemond, Michael; Rothstein, Thomas L.; Wagner, Gerhard

    2009-01-01

    Summary Fas apoptosis inhibitory molecule (FAIM) is a soluble cytosolic protein inhibitor of programmed cell death and is found in organisms throughout the animal kingdom. A short isoform (FAIM-S) is expressed in all tissue types, while an alternatively spliced long isoform (FAIM-L) is specifically expressed in the brain. Here FAIM-S is shown to consist of two independently folding domains in contact with one another. The NMR solution structure of the C-terminal domain of murine FAIM is solved in isolation and revealed to be a novel protein fold, a noninterleaved seven-stranded beta sandwich. The structure and sequence reveal several residues that are likely to be involved in functionally significant interactions with the N-terminal domain or other binding partners. Chemical shift perturbation is used to elucidate contacts made between the N- and C-terminal domains. PMID:19168072

  16. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  17. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  18. Relationships of pancreatic beta-cell function with microalbuminuria and glomerular filtration rate in middle-aged and elderly population without type 2 diabetes mellitus: a Chinese community-based analysis.

    PubMed

    Fu, Shihui; Zhou, Shanjing; Luo, Leiming; Ye, Ping

    2017-01-01

    Relationships of pancreatic beta-cell function abnormality with microalbuminuria (MA) and glomerular filtration rate (GFR) may differ by age, ethnicity and accompanied diseases. Previous studies were generally conducted in Western adult patients with type 2 diabetes mellitus (T2DM), and it is uncertain whether pancreatic beta-cell function is associated with MA and GFR in Chinese community-dwelling middle-aged and elderly population without T2DM. We therefore examined the relationships of pancreatic beta-cell function with two indices of renal damage, MA and GFR, in Chinese community-dwelling middle-aged and elderly population without T2DM. This analysis focused on 380 Beijing residents older than 45 years who were free of T2DM and completed the evaluation of pancreatic beta-cell function. Median age was 67 (49-80) years. Levels of triglyceride, diastolic blood pressure and homeostasis model assessment-beta (HOMA-beta) index were positively related to urine microalbumin ( P <0.05 for all). Age, low-density lipoprotein cholesterol levels and HOMA-beta index were inversely correlated with GFR, while high-density lipoprotein cholesterol levels were positively correlated with GFR ( P <0.05 for all). In all three adjustment models, there was a significant positive association between HOMA-beta index and MA; subjects with higher beta-cell function had higher odds of MA ( P <0.05 for all). There was no association between HOMA-beta index and GFR <60 mL/min/1.73 m 2 in any model ( P >0.05 for all). Modeling the pancreatic beta-cell function with different adjusted variables provided the same conclusion of association with MA; beta-cell function was positively associated with MA. Additionally, there was a specific difference in the adjusted associations of pancreatic beta-cell function with MA and GFR <60 mL/min/1.73 m 2 ; beta-cell function was not independently associated with GFR <60 mL/min/1.73 m 2 . This result indicated that abnormal pancreatic beta-cell function plays an important role in the development of MA.

  19. Pharmacological activation of estrogen receptor beta augments innate immunity to suppress cancer metastasis.

    PubMed

    Zhao, Linjie; Huang, Shuang; Mei, Shenglin; Yang, Zhengnan; Xu, Lian; Zhou, Nianxin; Yang, Qilian; Shen, Qiuhong; Wang, Wei; Le, Xiaobing; Lau, Wayne Bond; Lau, Bonnie; Wang, Xin; Yi, Tao; Zhao, Xia; Wei, Yuquan; Warner, Margaret; Gustafsson, Jan-Åke; Zhou, Shengtao

    2018-04-17

    Metastases constitute the greatest causes of deaths from cancer. However, no effective therapeutic options currently exist for cancer patients with metastasis. Estrogen receptor β (ERβ), as a member of the nuclear receptor superfamily, shows potent tumor-suppressive activities in many cancers. To investigate whether modulation of ERβ could serve as a therapeutic strategy for cancer metastasis, we examined whether the selective ERβ agonist LY500307 could suppress lung metastasis of triple-negative breast cancer (TNBC) and melanoma. Mechanistically, while we observed that LY500307 potently induced cell death of cancer cells metastasized to lung in vivo, it does not mediate apoptosis of cancer cells in vitro, indicating that the cell death-inducing effects of LY500307 might be mediated by the tumor microenvironment. Pathological examination combined with flow cytometry assays indicated that LY500307 treatment induced significant infiltration of neutrophils in the metastatic niche. Functional experiments demonstrated that LY500307-treated cancer cells show chemotactic effects for neutrophils and that in vivo neutrophil depletion by Ly6G antibody administration could reverse the effects of LY500307-mediated metastasis suppression. RNA sequencing analysis showed that LY500307 could induce up-regulation of IL-1β in TNBC and melanoma cells, which further triggered antitumor neutrophil chemotaxis. However, the therapeutic effects of LY500307 treatment for suppression of lung metastasis was attenuated in IL1B -/- murine models, due to failure to induce antitumor neutrophil infiltration in the metastatic niche. Collectively, our study demonstrated that pharmacological activation of ERβ could augment innate immunity to suppress cancer metastatic colonization to lung, thus providing alternative therapeutic options for cancer patients with metastasis.

  20. Proteomic analysis of testis biopsies in men treated with injectable testosterone undecanoate alone or in combination with oral levonorgestrel as potential male contraceptive.

    PubMed

    Cui, Yugui; Zhu, Hui; Zhu, Yefei; Guo, Xuejiang; Huo, Ran; Wang, Xinghai; Tong, Jiansun; Qian, Lixin; Zhou, Zuomin; Jia, Yue; Lue, Yan-He; Hikim, Amiya Sinha; Wang, Christina; Swerdloff, Ronald S; Sha, Jiahao

    2008-09-01

    Treatment with injectable testosterone undecanoate (TU) alone or in combination with oral levonorgestrel (LNG) resulted in marked decreases in sperm concentrations. In this study, we used proteomic analyses to examine the cellular/molecular events occurring in the human testis after TU or TU + LNG treatment. We conducted a global proteomic analysis of the human testicular biopsies before and at 2 weeks after TU alone or TU + LNG treatment. Proteins showing significant changes in expression were identified and analyzed. As a result, 17 and 46 protein spots were found with significant differential expression after the treatment with TU alone and TU + LNG, respectively. TU treatment changed the expression of heterogeneous nuclear ribonucleoprotein K (hnRNP K), proteasome inhibitor PI31 subunit (PSMF1), and superoxide dismutase [Mn] mitochondrial precursor (SOD2). These proteins inhibit "assembly", induce cell death, and promote compensatory "cell survival" in the testis. After TU + LNG treatment, "proliferation/cell survival" and "apoptosis/death" were the predominant responses in the testis. TU + LNG treatment inhibited the expression of Prolyl 4-hydroxylase beta subunit (P4HB) and Annexin A2 (Annexin II). These proteins are involved in apoptosis and cell proliferation, respectively. TU + LNG treatment also enhanced the expression of SOD2 and Parvalbumin alpha (Pvalb). These two proteins may protect testicular cells against apoptosis/death and promote cell survival. In conclusion, TU and TU + LNG treatments suppress spermatogenesis through different pathways by changing the expression of different proteins. hnRNP K, PSMF1, SOD2, P4HB, Annexin II, and Pvalb, are key proteins that may be early molecular targets responsible for spermatogenesis suppression induced by hormone treatment.

  1. Nanoliposomes protect against AL amyloid light chain protein-induced endothelial injury.

    PubMed

    Truran, Seth; Weissig, Volkmar; Ramirez-Alvarado, Marina; Franco, Daniel A; Burciu, Camelia; Georges, Joseph; Murarka, Shishir; Okoth, Winter A; Schwab, Sara; Hari, Parameswaran; Migrino, Raymond Q

    2014-03-01

    A newly-recognized pathogenic mechanism underlying light chain amyloidosis (AL) involves endothelial dysfunction and cell injury caused by misfolded light chain proteins (LC). Nanoliposomes (NL) are artificial phospholipid vesicles that could attach to misfolded proteins and reduce tissue injury. To test whether co-treatment with NL reduces LC-induced endothelial dysfunction and cell death. Abdominal subcutaneous adipose arterioles from 14 non-AL subjects were cannulated; dilator response to acetylcholine and papaverine were measured at baseline and following 1-hour exposure to LC (20 µg/mL, 2 purified from AL subjects' urine, 1 from human recombinant LC [AL-09]) ± NL (phosphatidylcholine/cholesterol/phosphatidic acid 70/25/5 molar ratio) or NL alone. Human aortic artery endothelial cells (HAEC) were exposed to Oregon Green-labeled LC ± NL for 24 hours and intracellular LC and apoptosis (Hoechst stain) were measured. Circular dichroism spectroscopy was performed on AL-09 LC ± NL to follow changes in secondary structure and protein thermal stability. LC caused impaired dilation to acetylcholine that was restored by NL (control - 94.0 ± 1.8%, LC - 65.0 ± 7.1%, LC + NL - 95.3 ± 1.8%, p ≤ 0.001 LC versus control or LC + NL). NL protection was inhibited by L-NG-nitroarginine methyl ester. NL increased the beta sheet structure of LC, reduced endothelial cell internalization of LC and protected against LC-induced endothelial cell death. LC induced human adipose arteriole endothelial dysfunction and endothelial cell death, which were reversed by co-treatment with NL. This protection may partly be due to enhancing LC protein structure and reducing LC internalization. Nanoliposomes represent a promising new class of agents to ameliorate tissue injury from protein misfolding diseases such as AL.

  2. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF{beta} enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells. Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGF{beta} might be an important pathway of gastric cancer cell proliferation by TGF{beta}.« less

  3. Neurotensin protects pancreatic beta cells from apoptosis.

    PubMed

    Coppola, Thierry; Béraud-Dufour, Sophie; Antoine, Aurélie; Vincent, Jean-Pierre; Mazella, Jean

    2008-01-01

    The survival of pancreatic beta cells depends on the balance between external cytotoxic and protective molecular systems. The neuropeptide neurotensin (NT) has been shown to regulate certain functions of the endocrine pancreas including insulin and glucagon release. However, the mechanism of action of NT as well as the identification of receptors involved in the pancreatic functions of the peptide remained to be studied. We demonstrate here that NT is an efficient protective agent of pancreatic beta cells against cytotoxic agents. Both beta-TC3 and INS-1E cell lines and the mouse pancreatic islet cells express the three known NT receptors. The incubation of beta cells with NT protects cells from apoptosis induced either by staurosporine or by IL-1beta. In beta-TC3 cells, NT activates both MAP and PI-3 kinases pathways and strongly reduces the staurosporine or the Il-1beta-induced caspase-3 activity by a mechanism involving Akt activation. The NTSR2 agonist levocabastine displays the same protective effect than NT whereas the NTSR1 antagonist is unable to block the effect of NT suggesting the predominant involvement of the NTSR2 in the action of NT on beta cells. These results clearly indicate for the first time that NT is able to protect endocrine beta cells from external cytotoxic agents, a role well correlated with its release in the circulation after a meal.

  4. Alzheimer Abeta(1-42) monomer adsorbed on the self-assembled monolayers.

    PubMed

    Wang, Qiuming; Zhao, Jun; Yu, Xiang; Zhao, Chao; Li, Lingyan; Zheng, Jie

    2010-08-03

    Amyloid-beta (Abeta) peptide aggregation on the cell membranes is a key pathological event responsible for neuron cell death in Alzheimer's disease (AD). We present a collection of molecular docking and molecular dynamics simulations to study the conformational dynamics and adsorption behavior of Abeta monomer on the self-assembled monolayer (SAM), in comparison to Abeta structure in bulk solution. Two distinct Abeta conformations (i.e., alpha-helix and beta-hairpin) are selected as initial structures to mimic different adsorption states, whereas four SAM surfaces with different end groups in hydrophobicity and charge distribution are used to examine the effect of surface chemistry on Abeta structure and adsorption. Simulation results show that alpha-helical monomer displays higher structural stability than beta-hairpin monomer on all SAMs, suggesting that the preferential conformation of Abeta monomer could be alpha-helical or random structure when bound to surfaces. Structural stability and adsorption behavior of Abeta monomer on the SAMs originates from competitive interactions between Abeta and SAM and between SAM and interfacial water, which involve the conformation of Abeta, the surface chemistry of SAM, and the structure and dynamics of interfacial waters. The relative net binding affinity of Abeta with the SAMs is in the favorable order of COOH-SAM > NH(2)-SAM > CH(3)-SAM > OH-SAM, highlighting the importance of electrostatic and hydrophobic interactions for driving Abeta adsorption at the SAMs, but both interactions contribute differently to each Abeta-SAM complex. This work provides parallel insights into the understanding of Abeta structure and aggregation on cell membrane.

  5. Death receptors DR6 and TROY regulate brain vascular development.

    PubMed

    Tam, Stephen J; Richmond, David L; Kaminker, Joshua S; Modrusan, Zora; Martin-McNulty, Baby; Cao, Tim C; Weimer, Robby M; Carano, Richard A D; van Bruggen, Nick; Watts, Ryan J

    2012-02-14

    Signaling events that regulate central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation are only beginning to be elucidated. By evaluating the gene expression profile of mouse vasculature, we identified DR6/TNFRSF21 and TROY/TNFRSF19 as regulators of CNS-specific angiogenesis in both zebrafish and mice. Furthermore, these two death receptors interact both genetically and physically and are required for vascular endothelial growth factor (VEGF)-mediated JNK activation and subsequent human brain endothelial sprouting in vitro. Increasing beta-catenin levels in brain endothelium upregulate DR6 and TROY, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for BBB development. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Pancreatic islets and insulinoma cells express a novel isoform of group VIA phospholipase A2 (iPLA2 beta) that participates in glucose-stimulated insulin secretion and is not produced by alternate splicing of the iPLA2 beta transcript.

    PubMed

    Ramanadham, Sasanka; Song, Haowei; Hsu, Fong-Fu; Zhang, Sheng; Crankshaw, Mark; Grant, Gregory A; Newgard, Christopher B; Bao, Shunzhong; Ma, Zhongmin; Turk, John

    2003-12-02

    Many cells express a group VIA 84 kDa phospholipase A(2) (iPLA(2)beta) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA(2)beta in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA(2)beta in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA(2)beta participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA(2)beta-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA(2)beta protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA(2)beta transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA(2)beta, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA(2)beta tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA(2)beta residues 7-53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA(2)beta catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA(2)beta activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA(2)beta and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA(2)beta-immunoreactive protein suggests that a signal transduction role of iPLA(2)beta in the native beta-cell might be attributable to a 70 kDa isoform of iPLA(2)beta.

  7. (beta)-catenin mediates the specification of endoderm cells in ascidian embryos.

    PubMed

    Imai, K; Takada, N; Satoh, N; Satou, Y

    2000-07-01

    In the present study, we addressed the role of (beta)-catenin in the specification of embryonic cells of the ascidians Ciona intestinalis and C. savignyi and obtained the following results: (1) During cleavages, (beta)-catenin accumulated in the nuclei of vegetal blastomeres, suggesting that it plays a role in the specification of endoderm. (2) Mis- and/or overexpression of (beta)-catenin induced the development of an endoderm-specific alkaline phosphatase (AP) in presumptive notochord cells and epidermis cells without affecting differentiation of primary lineage muscle cells. (3) Downregulation of (beta)-catenin induced by the overexpression of cadherin resulted in the suppression of endoderm cell differentiation. This suppression was compensated for by the differentiation of extra epidermis cells. (4) Specification of notochord cells did not take place in the absence of endoderm differentiation. Both the overexpression of (beta)-catenin in presumptive notochord cells and the downregulation of (beta)-catenin in presumptive endoderm cells led to the suppression of Brachyury gene expression, resulting in the failure of notochord specification. These results suggest that the accumulation of (beta)-catenin in the nuclei of endoderm progenitor cells is the first step in the process of ascidian endoderm specification.

  8. Tumor-associated antigen human chorionic gonadotropin beta contains numerous antigenic determinants recognized by in vitro-induced CD8+ and CD4+ T lymphocytes.

    PubMed

    Dangles, Virginie; Halberstam, Ilan; Scardino, Antonio; Choppin, Jeannine; Wertheimer, Mireille; Richon, Sophie; Quelvennec, Erwann; Moirand, Romain; Guillet, Jean-Gérard; Kosmatopoulos, Kostas; Bellet, Dominique; Zeliszewski, Dominique

    2002-02-01

    The beta subunit of human chorionic gonadotropin (hCG beta) is markedly overexpressed by neoplastic cells of differing histological origin including those present in colon, breast, prostate and bladder tumors. We have previously shown that some patients with hCG beta-producing urothelial tumors have circulating T cells that proliferate in response to hCG beta. To make a comprehensive study of hCG beta as a potential target for cancer immunotherapy, we investigated whether hCG beta peptides could induce CD4+ or CD8+ T-cell responses in vitro. By stimulating peripheral blood mononuclear cells (PBMCs) from three donors with mixtures of overlapping 16-mer synthetic peptides analogous to portions of either the hCG beta 20-71 or the hCG beta 102-129 region, we established six CD4+ T-cell lines that proliferated specifically in response to five distinct determinants located within these two hCG beta regions. Three antigenic determinants (hCG beta 52-67, 106-121 and 114-125) were presented by HLA-DR molecules, while the two other antigenic determinants (hCG beta 48-63 and 56-67) were presented by HLA-DQ molecules. Interestingly, one T-cell line specific for peptide hCG beta 106-121 recognized hCG beta peptides comprising, at position 117, either an alanine or an aspartic acid residue, with the latter residue being present within the protein expressed by some tumor cells. In addition, three other hCG beta-derived peptides that exhibited HLA-A*0201 binding ability were able to stimulate CD8+ cytotoxic T cells from two HLA-A*0201 donors. These three immunogenic peptides corresponded to regions hCG beta 40-48, hCG beta 44-52 and hCG beta 75-84. Our results indicate that the tumor-associated antigen hCG beta possesses numerous antigenic determinants liable to stimulate CD4+ and CD8+ T lymphocytes, and might thus be an effective target antigen for the immunotherapy of hCG beta-producing tumors.

  9. Immunological characterization of eristostatin and echistatin binding sites on alpha IIb beta 3 and alpha V beta 3 integrins.

    PubMed Central

    Marcinkiewicz, C; Rosenthal, L A; Mosser, D M; Kunicki, T J; Niewiarowski, S

    1996-01-01

    Two disintegrins with a high degree of amino acid sequence similarity, echistatin and eristostatin, showed a low level of interaction with Chinese hamster ovary (CHO) cells, but they bound to CHO cells transfected with alpha IIb beta 3 genes (A5 cells) and to CHO cells transfected with alpha v beta 3 genes (VNRC3 cells) in a reversible and saturable manner. Scatchard analysis revealed that eristostatin bound to 816000 sites per A5 cell (Kd 28 nM) and to 200000 sites (Kd 14 nM) per VNRC3 cell respectively. However, VNRC3 cells did not bind to immobilized eristostatin. Echistatin bound to 495000 sites (Kd 53 nM) per A5 cell and to 443000 sites (Kd 20 nM) per VNRC3 cell. As determined by flow cytometry, radiobinding assay and adhesion studies, binding of both disintegrins to A5 cells and resting platelets and binding of echistatin to VNRC3 cells resulted in the expression of ligand-induced binding sites (LIBS) on the beta 3 subunit. Eristostatin inhibited, more strongly than echistatin, the binding of three monoclonal antibodies: OPG2 (RGD motif dependent), A2A9 (alpha IIb beta 3 complex dependent) and 7E3 (alpha IIb beta 3 and alpha v beta 3 complex dependent) to A5 cells, to resting and to activated platelets and to purified alpha IIb beta 3. Experiments in which echistatin and eristostatin were used alone or in combination to inhibit the binding of 7E3 and OPG2 antibodies to resting platelets suggested that these two disintegrins bind to different but overlapping sites on alpha IIb beta 3 integrin. Monoclonal antibody LM 609 and echistatin seemed to bind to different sites on alpha v beta 3 integrin. However, echistatin inhibited binding of 7E3 antibody to VNRC3 cells and to purified alpha v beta 3 suggesting that alpha v beta 3 and alpha IIb beta 3 might share the same epitope to which both echistatin and 7E3 bind. Eristostatin had no effect in these systems, providing further evidence that it binds to a different epitope on alpha v beta 3. PMID:8760368

  10. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  11. Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells

    PubMed Central

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.

    2012-01-01

    Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898

  12. A common biological mechanism in cancer and Alzheimer’s disease?

    PubMed Central

    Behrens, Maria I; Lendon, Corinne; Roe, Catherine M.

    2009-01-01

    Cancer and Alzheimer’s disease (AD) are two common disorders for which the final pathophysiological mechanism is not yet clearly defined. In a prospective longitudinal study we have previously shown an inverse association between AD and cancer, such that the rate of developing cancer in general with time was significantly slower in participants with AD, while participants with a history of cancer had a slower rate of developing AD. In cancer, cell regulation mechanisms are disrupted with augmentation of cell survival and/or proliferation, whereas conversely, AD is associated with increased neuronal death, either caused by, or concomitant with, beta amyloid (Aβ) and tau deposition. The possibility that perturbations of mechanisms involved in cell survival/death regulation could be involved in both disorders is discussed. Genetic polymorphisms, DNA methylation or other mechanisms that induce changes in activity of molecules with key roles in determining the decision to “repair and live”- or “die” could be involved in the pathogenesis of the two disorders. As examples, the role of p53, Pin1 and the Wnt signaling pathway are discussed as potential candidates that, speculatively, may explain inverse associations between AD and cancer. PMID:19519301

  13. Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis.

    PubMed

    Mir-Coll, Joan; Duran, Jordi; Slebe, Felipe; García-Rocha, Mar; Gomis, Ramon; Gasa, Rosa; Guinovart, Joan J

    2016-05-01

    Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.

  14. Attenuation of Aβ{sub 25–35}-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiangbao; Wang, Min; Sun, Guibo, E-mail: sunguibo@126.com

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ{sub 25–35}-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ{sub 25–35} (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ{sub 25–35} treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio.more » Aβ{sub 25–35} treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ{sub 25–35}-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ{sub 25–35}-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens or gypenosides. - Highlights: • GP-17 showed protection against Aβ{sub 25–35}-induced neurotoxicity. • The neuroprotective effects of GP-17 are dependent on estrogen receptors. • GP-17 activates Nrf2/ARE/HO-1 pathways. • GP-17 activates PI3K/Akt/GSK-3β pathways.« less

  15. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures

    PubMed Central

    1987-01-01

    In culture, vascular smooth muscle cells (SMC) grow in a "hill-and- valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet- derived growth factor-mediated proliferation of these cells in two- dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury. PMID:3475277

  16. Artemisinin protects PC12 cells against β-amyloid-induced apoptosis through activation of the ERK1/2 signaling pathway.

    PubMed

    Zeng, Zhiwen; Xu, Jinying; Zheng, Wenhua

    2017-08-01

    Accumulating evidence displays that an abnormal deposition of amyloid beta-peptide (Aβ) is the primary cause of the pathogenesis of Alzheimer's disease (AD). And therefore the elimination of Aβ is regarded as an important strategy for AD treatment. The discovery of drug candidates using culture neuronal cells against Aβ peptide toxicity is believed to be an effective approach to develop drug for the treatment of AD patients. We have previously showed that artemisinin, a FDA-approved anti-malaria drug, has neuroprotective effects recently. In the present study, we aimed to investigate the effects and potential mechanism of artemisinin in protecting neuronal PC12 cells from toxicity of β amyloid peptide. Our studies revealed that artemisinin, in clinical relevant concentration, protected and rescued PC12 cells from Aβ25-35-induced cell death. Further study showed that artemisinin significantly ameliorated cell death due to Aβ25-35 insult by restoring abnormal changes in nuclear morphology, lactate dehydrogenase, intracellular ROS, mitochondrial membrane potential and activity of apoptotic caspase. Western blotting analysis demonstrated that artemisinin activated extracellular regulated kinase ERK1/2 but not Akt survival signaling. Consistent with the role of ERK1/2, preincubation of cells with ERK1/2 pathway inhibitor PD98059 blocked the effect of artemisinin while PI3K inhibitor LY294002 has no effect. Moreover, Aβ1-42 also caused cells death of PC12 cells while artemisinin suppressed Aβ1-42 cytotoxicity in PC12 cells. Taken together, these results, at the first time, suggest that artemisinin is a potential protectant against β amyloid insult through activation of the ERK1/2 pathway. Our finding provides a potential application of artemisinin in prevention and treatment of AD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone,more » a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with low NQO1 expression, mitochondria play a critical role in beta-Lp redox activation. • In cancer cells with high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1.« less

  18. Chronology of endocrine differentiation and beta-cell neogenesis.

    PubMed

    Miyatsuka, Takeshi

    2016-01-01

    Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.

  19. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  20. The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds.

    PubMed

    Johnson, James D

    2016-10-01

    The production of fully functional insulin-secreting cells to treat diabetes is a major goal of regenerative medicine. In this article, I review progress towards this goal over the last 15 years from the perspective of a beta cell biologist. I describe the current state-of-the-art, and speculate on the general approaches that will be required to identify and achieve our ultimate goal of producing functional beta cells. The need for deeper phenotyping of heterogeneous cultures of stem cell derived islet-like cells in parallel with a better understanding of the heterogeneity of the target cell type(s) is emphasised. This deep phenotyping should include high-throughput single-cell analysis, as well as comprehensive 'omics technologies to provide unbiased characterisation of cell products and human beta cells. There are justified calls for more detailed and well-powered studies of primary human pancreatic beta cell physiology, and I propose online databases of standardised human beta cell responses to physiological stimuli, including both functional and metabolomic/proteomic/transcriptomic profiles. With a concerted, community-wide effort, including both basic and applied scientists, beta cell replacement will become a clinical reality for patients with diabetes.

  1. Mitochondrial ribosomal protein S18-2 is highly expressed in endometrial cancers along with free E2F1

    PubMed Central

    Iurchenko, Natalia; Kovalevska, Larysa; Stip, Maria C; Budnikova, Daria; Andersson, Sonia; Polischuk, Ludmila; Buchynska, Lubov; Kashuba, Elena

    2016-01-01

    Endometrial cancer (EC) is one of the most frequent causes of cancer death among women in developed countries. Histopathological diagnosis and imaging techniques for EC are limited, thus new prognostic markers are needed to offer patients the best treatment and follow-up. In the present paper we showed that the level of mitochondrial ribosomal protein MRPS18-2 (S18-2) increased in EC compared with the normal endometrium and hyperplasia, based on a study of 42 patient biopsies. Importantly, high expression of free E2F1 in EC correlates well with high S18-2 expression. The EC cell line HEC-1-A, which overexpresses S18-2 constitutively, showed an increased proliferation capacity in vitro and in vivo (in SCID mice). Moreover, pan-keratin, beta-catenin and E-cadherin signals are diminished in these cells, compared to the parental HEC-1-A line, in contrast to vimentin signal that is increased. This may be associated with epithelial-mesenchymal cell transition (EMT). We conclude that high expression of S18-2 and free E2F1, and low pan-keratin, beta-catenin, and E-cadherin signals might be a good set of prognostic markers for EC. PMID:26959119

  2. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling. © 2014 Elsevier Inc. All rights reserved.

  3. Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice.

    PubMed

    Ellenbroek, Johanne H; Töns, Hendrica A; de Graaf, Natascha; Loomans, Cindy J; Engelse, Marten A; Vrolijk, Hans; Voshol, Peter J; Rabelink, Ton J; Carlotti, Françoise; de Koning, Eelco J

    2013-01-01

    Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptation occur. Therefore we investigated beta cell adaptation throughout the pancreas in a model of high-fat diet (HFD)-induced insulin resistance in mice. C57BL/6J mice were fed a HFD to induce insulin resistance, or control diet for 6 weeks. The pancreas was divided in a duodenal (DR), gastric (GR) and splenic (SR) region and taken for either histology or islet isolation. The capacity of untreated islets from the three regions to adapt in an extrapancreatic location was assessed by transplantation under the kidney capsule of streptozotocin-treated mice. SR islets showed 70% increased beta cell proliferation after HFD, whereas no significant increase was found in DR and GR islets. Furthermore, isolated SR islets showed twofold enhanced glucose-induced insulin secretion after HFD, as compared with DR and GR islets. In contrast, transplantation of islets isolated from the three regions to an extrapancreatic location in diabetic mice led to a similar decrease in hyperglycemia and no difference in beta cell proliferation. HFD-induced insulin resistance leads to topologically heterogeneous beta cell adaptation and is most prominent in the splenic region of the pancreas. This topological heterogeneity in beta cell adaptation appears to result from extrinsic factors present in the islet microenvironment.

  4. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB.

    PubMed

    Aya, Koichiro; Ueguchi-Tanaka, Miyako; Kondo, Maki; Hamada, Kazuki; Yano, Kentaro; Nishimura, Mikio; Matsuoka, Makoto

    2009-05-01

    Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and beta-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-beta-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation.

  5. Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1.

    PubMed

    Haydont, Valérie; Riser, Bruce L; Aigueperse, Jocelyne; Vozenin-Brotons, Marie-Catherine

    2008-06-01

    The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.

  6. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial.

    PubMed

    Banikazemi, Maryam; Bultas, Jan; Waldek, Stephen; Wilcox, William R; Whitley, Chester B; McDonald, Marie; Finkel, Richard; Packman, Seymour; Bichet, Daniel G; Warnock, David G; Desnick, Robert J

    2007-01-16

    Fabry disease (alpha-galactosidase A deficiency) is a rare, X-linked lysosomal storage disorder that can cause early death from renal, cardiac, and cerebrovascular involvement. To see whether agalsidase beta delays the onset of a composite clinical outcome of renal, cardiovascular, and cerebrovascular events and death in patients with advanced Fabry disease. Randomized (2:1 treatment-to-placebo randomization), double-blind, placebo-controlled trial. 41 referral centers in 9 countries. 82 adults with mild to moderate kidney disease; 74 of whom were protocol-adherent. Intravenous infusion of agalsidase beta (1 mg per kg of body weight) or placebo every 2 weeks for up to 35 months (median, 18.5 months). The primary end point was the time to first clinical event (renal, cardiac, or cerebrovascular event or death). Six patients withdrew before reaching an end point: 3 to receive commercial therapy and 3 due to positive or inconclusive serum IgE or skin test results. Three patients assigned to agalsidase beta elected to transition to open-label treatment before reaching an end point. Thirteen (42%) of the 31 patients in the placebo group and 14 (27%) of the 51 patients in the agalsidase-beta group experienced clinical events. Primary intention-to-treat analysis that adjusted for an imbalance in baseline proteinuria showed that, compared with placebo, agalsidase beta delayed the time to first clinical event (hazard ratio, 0.47 [95% CI, 0.21 to 1.03]; P = 0.06). Secondary analyses of protocol-adherent patients showed similar results (hazard ratio, 0.39 [CI, 0.16 to 0.93]; P = 0.034). Ancillary subgroup analyses found larger treatment effects in patients with baseline estimated glomerular filtration rates greater than 55 mL/min per 1.73 m2 (hazard ratio, 0.19 [CI, 0.05 to 0.82]; P = 0.025) compared with 55 mL/min per 1.73 m2 or less (hazard ratio, 0.85 [CI, 0.32 to 2.3]; P = 0.75) (formal test for interaction, P = 0.09). Most treatment-related adverse events were mild or moderate infusion-associated reactions, reported by 55% of patients in the agalsidase-beta group and 23% of patients in the placebo group. The study sample was small. Only one third of the patients experienced clinical events, and some patients withdrew before experiencing any event. Agalsidase-beta therapy slowed progression to the composite clinical outcome of renal, cardiac, and cerebrovascular complications and death compared with placebo in patients with advanced Fabry disease. Therapeutic intervention before irreversible organ damage may provide greater clinical benefit.

  7. [Isolation, purification and primary culture of rat pancreatic beta-cells].

    PubMed

    Liu, Yu-Pu; Lü, Qing-Guo; Tong, Nan-Wei

    2009-01-01

    To isolate and purify rat pancreatic beta-cells and to explore the best conditions for the primary culture of the pancreatic beta-cells in vitro. The pancreas of Norman Wistar rats were digested by collagenase V. The islets were purified by mesh sieve. The activity of the islets was stimulated by different concentrations of glucose and detected by dithizone dye. The purified islets were put into RPMI-1640 nutritive medium for culture overnight. The cultured islets were digested again with trypsin and DNAase to obtain the suspension containing single pancreatic cells. The beta-cells were separated and purified in a fluorescence-activated cell sorter (FACS) in the medium containing 2.8 mmol/L glucose. The purified beta-cells were identified by immunohistochemistry and glucose stimulating test. Ham's F-10 with different concentrations of glucose and 3-Isobutyl-1-methylxanthine (IBMX) were used as nutritive medium for the primary cell culture for 24 hours. The best conditions for the culture were identified. An average of 550 +/- 90 islets with fine activities were obtained per rat. The purification with FACS obtained about 5688 beta-cells per rat, with a recovery rate of (93.69 +/- 1.26)% and a purity of (85.5 +/- 1.24)%. A concentration of 10.0 mmol/L and 16.0 mmol/L glucose in primary culture for 24 hours produced the highest survival rates of beta-cells, but IBMX did not increase the survival rates of beta-cells. FACS is effective in purifying pancreatic beta-cells from the suspension with a medium containing 2.8 mmol/L glucose. Pancreatic beta-cells maintain relatively high activities in Ham's F-10 medium containing 10.0-16.0 mmol/L glucose in primary culture.

  8. Normal T lymphocytes can express two different T cell receptor beta chains: implications for the mechanism of allelic exclusion

    PubMed Central

    1995-01-01

    We have examined the extent of allelic exclusion at the T cell receptor (TCR) beta locus using monoclonal antibodies specific for V beta products. A small proportion (approximately 1%) of human peripheral blood T cells express two V beta as determined by flow cytometric analysis, isolation of representative clones, and sequencing of the corresponding V beta chains. Dual beta T cells are present in both the CD45R0+ and CD45R0- subset. These results indicate that dual beta expression is compatible with both central and peripheral selection. They also suggest that the substantial degree of TCR beta allelic exclusion is dependent only on asynchronous rearrangements at the beta locus, whereas the role of the pre-TCR is limited to signaling the presence of at least one functional beta protein. PMID:7699339

  9. Activation of the canonical beta-catenin pathway by histamine.

    PubMed

    Diks, Sander H; Hardwick, James C; Diab, Remco M; van Santen, Marije M; Versteeg, Henri H; van Deventer, Sander J H; Richel, Dick J; Peppelenbosch, Maikel P

    2003-12-26

    Histamine signaling is a principal regulator in a variety of pathophysiological processes including inflammation, gastric acid secretion, neurotransmission, and tumor growth. We report that histamine stimulation causes transactivation of a T cell factor/beta-catenin-responsive construct in HeLa cells and in the SW-480 colon cell line, whereas histamine did not effect transactivation of a construct containing the mutated response construct FOP. On the protein level, histamine treatment increases phosphorylation of glycogen synthase kinase 3-beta in HeLa cells, murine macrophages, and DLD-1, HT-29, and SW-480 colon cell lines. Furthermore, histamine also decreases the phosphorylated beta-catenin content in HeLa cells and murine macrophages. Finally, pharmacological inhibitors of the histamine H1 receptor counteracted histamine-induced T cell factor/beta-catenin-responsive construct transactivation and the dephosphorylation of beta-catenin in HeLa cells and in macrophages. We conclude that the canonical beta-catenin pathway acts downstream of the histamine receptor H1 in a variety of cell types. The observation that inflammatory molecules, like histamine, activate the beta-catenin pathway may provide a molecular explanation for a possible link between inflammation and cancer.

  10. Expression and in vitro regulation of integrins by normal human urothelial cells.

    PubMed

    Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K

    1995-08-01

    Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.

  11. The islet beta-cell: fuel responsive and vulnerable.

    PubMed

    Nolan, Christopher J; Prentki, Marc

    2008-10-01

    The pancreatic beta-cell senses blood nutrient levels and is modulated by neurohormonal signals so that it secretes insulin according to the need of the organism. Nutrient sensing involves marked metabolic activation, resulting in the production of coupling signals that promote insulin biosynthesis and secretion. The beta-cell's high capacity for nutrient sensing, however, necessitates reduced protection to nutrient toxicity. This potentially explains why in susceptible individuals, chronic fuel surfeit results in beta-cell failure and type 2 diabetes. Here we discuss recent insights into first, the biochemical basis of beta-cell signaling in response to glucose, amino acids and fatty acids, and second, beta-cell nutrient detoxification. We emphasize the emerging role of glycerolipid/fatty acid cycling in these processes.

  12. Apparent inhibition of. beta. -fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. [Daucus carota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faye, L.; Chrispeels, M.J.

    1989-03-01

    Suspension-cultured carrot (Daucus carota) cells synthesize and secrete {beta}-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of {beta}-fructosidase as measured by the accumulation of the {sup 35}S-labelled protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated {beta}-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated {beta}-fructosidase does not remain in themore » cells and appears to be secreted in the same way as glycosylated {beta}-fructosidase; however, no radioactive, unglycosylated {beta}-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete {beta}-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated {beta}-fructosidase. In the presence of tunicamycin, there is no accumulation of {beta}-fructosidase activity or unglycosylated {beta}-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of {beta}-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall.« less

  13. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro.

    PubMed

    Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin

    2007-01-01

    Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.

  14. The pharmacoeconomics of peri-operative beta-blocker therapy.

    PubMed

    Biccard, B M; Sear, J W; Foëx, P

    2006-01-01

    It is widely recommended that beta-blockade be used peri-operatively as it may reduce the incidence of postoperative cardiovascular complications including death. However, there are few data concerning the cost-effectiveness of such strategies. We have analysed the pharmacoeconomics of acute beta-blockade using data from eight prospective peri-operative studies in which patients underwent elective non-cardiac surgery, and in which the incidence of adverse side-effects of treatment, as well as clinical outcomes, have been reported. The costs of treatment were based on the NHS reference costs for 2004. From these data, the number-needed-to-treat (NNT) to prevent a major cardiovascular complication (including cardiovascular death) in high-risk patients was 18.5. This is comparable to the NNT for peri-operative statin therapy. The incremental cost of peri-operative beta-blockade (costs of drug acquisition and of treating associated adverse drug events) was 67.80 pounds sterling per patient. This results in a total cost of 1254.30 pounds sterling per peri-operative cardiovascular complication prevented. However, there is evidence that in patients at lower cardiovascular risk, beta-blockers may be potentially harmful, since their adverse effects (hypotension, bradycardia) may outweigh their potential cardioprotective effects.

  15. Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis.

    PubMed

    Vejux, A; Malvitte, L; Lizard, G

    2008-07-01

    Oxysterols are 27-carbon atom molecules resulting from autoxidation or enzymatic oxidation of cholesterol. They are present in numerous foodstuffs and have been demonstrated to be present at increased levels in the plasma of patients with cardiovascular diseases and in atherosclerotic lesions. Thus, their role in lipid disorders is widely suspected, and they might also be involved in important degenerative diseases such as Alzheimer's disease, osteoporosis, and age-related macular degeneration. Since atherosclerosis is associated with the presence of apoptotic cells and with oxidative and inflammatory processes, the ability of some oxysterols, especially 7-ketocholesterol and 7beta-hydroxycholesterol, to trigger cell death, activate inflammation, and modulate lipid homeostasis is being extensively studied, especially in vitro. Thus, since there are a number of essential considerations regarding the physiological/pathophysiological functions and activities of the different oxysterols, it is important to determine their biological activities and identify their signaling pathways, when they are used either alone or as mixtures. Oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever. Moreover, a substantial accumulation of polar lipids in cytoplasmic multilamellar structures has been observed with cytotoxic oxysterols, suggesting that cytotoxic oxysterols are potent inducers of phospholipidosis. This basic knowledge about oxysterols contributes to a better understanding of the associated pathologies and may lead to new treatments and new drugs. Since oxysterols have a number of biological activities, and as oxysterol-induced cell death is assumed to take part in degenerative pathologies, the present review will focus on the cytotoxic activities of these compounds, the corresponding cell death signaling pathways, and associated events (oxidation, inflammation, and phospholipidosis).

  16. Determinants and clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients with heart failure: a prospective European study.

    PubMed

    Ouwerkerk, W; Voors, A A; Anker, S D; Cleland, J G; Dickstein, K; Filippatos, G; van der Harst, P; Hillege, H L; Lang, C C; Ter Maaten, J M; Ng, L L; Ponikowski, P; Samani, N J; van Veldhuisen, D J; Zannad, F; Metra, M; Zwinderman, A H

    2017-06-21

    Despite clear guidelines recommendations, most patients with heart failure and reduced ejection-fraction (HFrEF) do not attain guideline-recommended target doses. We aimed to investigate characteristics and for treatment-indication-bias corrected clinical outcome of patients with HFrEF that did not reach recommended treatment doses of ACE-inhibitors/Angiotensin receptor blockers (ARBs) and/or beta-blockers. BIOSTAT-CHF was specifically designed to study uptitration of ACE-inhibitors/ARBs and/or beta-blockers in 2516 heart failure patients from 69 centres in 11 European countries who were selected if they were suboptimally treated while initiation or uptitration was anticipated and encouraged. Patients who died during the uptitration period (n = 151) and patients with a LVEF > 40% (n = 242) were excluded. Median follow up was 21 months. We studied 2100 HFrEF patients (76% male; mean age 68 ±12), of which 22% achieved the recommended treatment dose for ACE-inhibitor/ARB and 12% of beta-blocker. There were marked differences between European countries. Reaching <50% of the recommended ACE-inhibitor/ARB and beta-blocker dose was associated with an increased risk of death and/or heart failure hospitalization. Patients reaching 50-99% of the recommended ACE-inhibitor/ARB and/or beta-blocker dose had comparable risk of death and/or heart failure hospitalization to those reaching ≥100%. Patients not reaching recommended dose because of symptoms, side effects and non-cardiac organ dysfunction had the highest mortality rate (for ACE-inhibitor/ARB: HR 1.72; 95% CI 1.43-2.01; for beta-blocker: HR 1.70; 95% CI 1.36-2.05). Patients with HFrEF who were treated with less than 50% of recommended dose of ACE-inhibitors/ARBs and beta-blockers seemed to have a greater risk of death and/or heart failure hospitalization compared with patients reaching ≥100%. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  17. Second-trimester maternal serum marker screening: maternal serum alpha-fetoprotein, beta-human chorionic gonadotropin, estriol, and their various combinations as predictors of pregnancy outcome.

    PubMed

    Yaron, Y; Cherry, M; Kramer, R L; O'Brien, J E; Hallak, M; Johnson, M P; Evans, M I

    1999-10-01

    We evaluated the value of all 3 common biochemical serum markers, maternal serum alpha-fetoprotein, beta-human chorionic gonadotropin, and unconjugated estriol, and combinations thereof as predictors of pregnancy outcome. A total of 60,040 patients underwent maternal serum screening. All patients had maternal serum alpha-fetoprotein measurements; beta-human chorionic gonadotropin was measured in 45,565 patients, and 24,504 patients had determination of all 3 markers, including unconjugated estriol. The incidences of various pregnancy outcomes were evaluated according to the serum marker levels by using clinically applied cutoff points. In confirmation of previous observations, increased maternal serum alpha-fetoprotein levels (>2.5 multiples of the median) were found to be significantly associated with pregnancy-induced hypertension, miscarriage, preterm delivery, intrauterine growth restriction, intrauterine fetal death, oligohydramnios, and abruptio placentae. Increased beta-human chorionic gonadotropin levels (>2.5 multiples of the median [MoM]) were significantly associated with pregnancy-induced hypertension, miscarriage, preterm delivery, and intrauterine fetal death. Finally, decreased unconjugated estriol levels (<0.5 MoM) were found to be significantly associated with pregnancy-induced hypertension, miscarriage, intrauterine growth restriction, and intrauterine fetal death. As with increased second-trimester maternal serum alpha-fetoprotein levels, increased serum beta-human chorionic gonadotropin and low unconjugated estriol levels are significantly associated with adverse pregnancy outcomes. These are most likely attributed to placental dysfunction. Multiple-marker screening can be used not only for the detection of fetal anomalies and aneu-ploidy but also for detection of high-risk pregnancies.

  18. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox9, and osteocalcin immunostaining of 22 cases.

    PubMed

    Fanburg-Smith, Julie C; Auerbach, Aaron; Marwaha, Jayson S; Wang, Zengfeng; Rushing, Elisabeth J

    2010-05-01

    Mesenchymal chondrosarcoma, a rare malignant round cell and hyaline cartilage tumor, is most commonly intraosseous but can occur in extraskeletal sites. We intensively observed the morphology and applied Sox9 (master regulator of chondrogenesis), beta-catenin (involved in bone formation, thought to inhibit chondrogenesis in a Sox9-dependent manner), and osteocalcin (a marker for osteoblastic phenotype) to 22 central nervous system and musculoskeletal mesenchymal chondrosarcoma. Cases of mesenchymal chondrosarcoma were retrieved and reviewed from our files. Immunohistochemistry and follow-up were obtained on mesenchymal chondrosarcoma and tumor controls. Twenty-two mesenchymal chondrosarcomas included 5 central nervous system (all female; mean age, 30.2; mean size, 7.8 cm; in frontal lobe [n = 4] and spinal cord [n = 1]) and 17 musculoskeletal (female-male ratio, 11:6; mean age, 31.1; mean size, 6.2 cm; 3 each of humerus and vertebrae; 2 each of pelvis, rib, tibia, neck soft tissue; one each of femur, unspecified bone, and elbow soft tissue). The hyaline cartilage in most tumors revealed a consistent linear progression of chondrocyte morphology, from resting to proliferating to hypertrophic chondrocytes. Sixty-seven percent of cases demonstrated cell death and acquired osteoblastic phenotype, cells positive for osteocalcin at the site of endochondral ossification. Small round cells of mesenchymal chondrosarcoma were negative for osteocalcin. SOX9 was positive in both components of 21 of 22 cases of mesenchymal chondrosarcoma. beta-Catenin highlighted rare nuclei at the interface between round cells and hyaline cartilage in 35% cases. Control skull and central nervous system cases were compared, including chondrosarcomas and small cell osteosarcoma, the latter positive for osteocalcin in small cells. Mesenchymal chondrosarcoma demonstrates centrally located hyaline cartilage with a linear progression of chondrocytes from resting to proliferative to hypertrophic, which undergoes endochondral ossification, recapitulating growth plate cartilage and suggesting that this component of mesenchymal chondrosarcoma may be a differentiated (benign or metaplastic) component of a malignant metastasizing tumor. This hyaline cartilage component is morphologically different from cartilage of control chondrosarcoma. Mesenchymal chondrosarcoma can be separated from small cell osteosarcoma, using Sox 9 for cartilage and osteocalcin for osteoblastic phenotype. Rare nuclear beta-catenin expression at the interface between hyaline cartilage and small round cells potentially implicates the APC/Wnt pathway during endochondral ossification in morphologically benign hyaline cartilage component of mesenchymal chondrosarcoma. Published by Elsevier Inc.

  19. Activation of antigen-specific cytotoxic T lymphocytes by beta 2-microglobulin or TAP1 gene disruption and the introduction of recipient-matched MHC class I gene in allogeneic embryonic stem cell-derived dendritic cells.

    PubMed

    Matsunaga, Yusuke; Fukuma, Daiki; Hirata, Shinya; Fukushima, Satoshi; Haruta, Miwa; Ikeda, Tokunori; Negishi, Izumi; Nishimura, Yasuharu; Senju, Satoru

    2008-11-01

    A method for the genetic modification of dendritic cells (DC) was previously established based on the in vitro differentiation of embryonic stem (ES) cells to DC (ES-DC). The unavailability of human ES cells genetically identical to the patients will be a problem in the future clinical application of this technology. This study attempted to establish a strategy to overcome this issue. The TAP1 or beta(2)-microglobulin (beta(2)m) gene was disrupted in 129 (H-2(b))-derived ES cells and then expression vectors for the H-2K(d) or beta(2)m-linked form of K(d) (beta2m-K(d)) were introduced, thus resulting in two types of genetically engineered ES-DC, TAP1(-/-)/K(d) ES-DC and beta(2)m(-/-)/beta(2)m-K(d) ES-DC. As intended, both of the transfectant ES-DC expressed K(d) but not the intrinsic H-2(b) haplotype-derived MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) and TAP1(-/-)/K(d) ES-DC were not recognized by pre-activated H-2(b)-reactive CTL and did not prime H-2(b) reactive CTL in vitro or in vivo. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC and TAP1(-/-)/K(d) ES-DC had a survival advantage in comparison to beta(2)m(+/-)/beta(2)m-K(d) ES-DC and TAP1(+/+)/K(d) ES-DC, when transferred into BALB/c mice. K(d)-restricted RSV-M2-derived peptide-loaded ES-DC could prime the epitope-specific CTL upon injection into the BALB/c mice, irrespective of the cell surface expression of intrinsic H-2(b) haplotype-encoded MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC were significantly more efficient in eliciting immunity against RSV M2 protein-expressing tumor cells than beta(2)m(+/-)/beta(2)m-K(d) ES-DC. The modification of the beta(2)m or TAP gene may therefore be an effective strategy to resolve the problem of HLA class I allele mismatch between human ES or induced pluripotent stem cells and the recipients to be treated.

  20. Pancreatic Beta Cells Synthesize Neuropeptide Y and Can Rapidly Release Peptide Co-Transmitters

    PubMed Central

    Whim, Matthew D.

    2011-01-01

    Background In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. Methodology/Principal Findings NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. Conclusions These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time. PMID:21559341

  1. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines

    NASA Technical Reports Server (NTRS)

    Sooy, K.; Schermerhorn, T.; Noda, M.; Surana, M.; Rhoten, W. B.; Meyer, M.; Fleischer, N.; Sharp, G. W.; Christakos, S.

    1999-01-01

    The role of the calcium-binding protein, calbindin-D(28k) in potassium/depolarization-stimulated increases in the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release was investigated in pancreatic islets from calbindin-D(28k) nullmutant mice (knockouts; KO) or wild type mice and beta cell lines stably transfected and overexpressing calbindin. Using single islets from KO mice and stimulation with 45 mM KCl, the peak of [Ca(2+)](i) was 3.5-fold greater in islets from KO mice compared with wild type islets (p < 0.01) and [Ca(2+)](i) remained higher during the plateau phase. In addition to the increase in [Ca(2+)](i) in response to KCl there was also a significant increase in insulin release in islets isolated from KO mice. Evidence for modulation by calbindin of [Ca(2+)](i) and insulin release was also noted using beta cell lines. Rat calbindin was stably expressed in betaTC-3 and betaHC-13 cells. In response to depolarizing concentrations of K(+), insulin release was decreased by 45-47% in calbindin expressing betaTC cells and was decreased by 70-80% in calbindin expressing betaHC cells compared with insulin release from vector transfected betaTC or betaHC cells (p < 0.01). In addition, the K(+)-stimulated intracellular calcium peak was markedly inhibited in calbindin expressing betaHC cells compared with vector transfected cells (225 nM versus 1,100 nM, respectively). Buffering of the depolarization-induced rise in [Ca(2+)](i) was also observed in calbindin expressing betaTC cells. In summary, our findings, using both isolated islets from calbindin-D(28k) KO mice and beta cell lines, establish a role for calbindin in the modulation of depolarization-stimulated insulin release and suggest that calbindin can control the rate of insulin release via regulation of [Ca(2+)](i).

  2. In vitro and in vivo tetracycline-controlled myogenic conversion of NIH-3T3 cells: evidence of programmed cell death after muscle cell transplantation.

    PubMed

    Del Bo, R; Torrente, Y; Corti, S; D'Angelo, M G; Comi, G P; Fagiolari, G; Salani, S; Cova, A; Pisati, F; Moggio, M; Ausenda, C; Scarlato, G; Bresolin, N

    2001-01-01

    Ex vivo gene therapy of Duchenne muscular dystrophy based on autologous transplantation of genetically modified myoblasts is limited by their premature senescence. MyoD-converted fibroblasts represent an alternative source of myogenic cells. In this study the forced MyoD-dependent conversion of murine NIH-3T3 fibroblasts into myoblasts under the control of an inducible promoter silent in the presence of tetracycline was evaluated. After tetracycline withdrawal this promoter drives the transcription of MyoD in the engineered fibroblasts, inducing their myogenesis and giving rise to beta-galactosidase-positive cells. MyoD-expressing fibroblasts withdrew from the cell cycle, but were unable to fuse in vitro into multinucleated myotubes. Five days following implantation of engineered fibroblasts in muscles of C57BL/10J mice we observed a sevenfold increase of beta-galactosidase-positive regenerating myofibers in animals not treated with antibiotic compared with treated animals. After 1 week the number of positive fibers decreased and several apoptotic myonuclei were detected. Three weeks following implantation of MyoD-converted fibroblasts in recipient mice, no positive "blue" fiber was observed. Our results suggest that transactivation by tetracycline of MyoD may drive an in vivo myogenic conversion of NIH-3T3 fibroblasts and that, in this experimental setting, apoptosis plays a relevant role in limiting the efficacy of engineered fibroblast transplantation. This work opens the question whether apoptotic phenomena also play a general role as limiting factors of cell-mediated gene therapy of inherited muscle disorders.

  3. Zinc is an essential trace element for spermatogenesis.

    PubMed

    Yamaguchi, Sonoko; Miura, Chiemi; Kikuchi, Kazuya; Celino, Fritzie T; Agusa, Tetsuro; Tanabe, Shinsuke; Miura, Takeshi

    2009-06-30

    Zinc (Zn) plays important roles in various biological activities but there is little available information regarding its functions in spermatogenesis. In our current study, we further examined the role of Zn during spermatogenesis in the Japanese eel (Anguilla japonica). Human CG (hCG) was injected into the animals to induce spermatogenesis, after which the concentration of Zn in the testis increased in tandem with the progression of spermatogenesis. Staining of testicular cells with a Zn-specific fluorescent probe revealed that Zn accumulates in germ cells, particularly in the mitochondria of spermatogonia and spermatozoa. Using an in vitro testicular organ culture system for the Japanese eel, production of a Zn deficiency by chelation with N,N,N',N'-tetrakis (2-pyridylemethyl)ethylenediamine (TPEN) caused apoptosis of the germ cells. However, this cell death was rescued by the addition of Zn to the cultures. Furthermore, an induced deficiency of Zn by TPEN chelation was found to inhibit the germ cell proliferation induced by 11-ketotestosterone (KT), a fish specific androgen, 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP), the initiator of meiosis in fish, and estradiol-17beta (E2), an inducer of spermatogonial stem-cell renewal. We also investigated the effects of Zn deficiency on sperm motility and observed that TPEN treatment of eel sperm suppressed the rate and duration of their motility but that co-treatment with Zn blocked the effects of TPEN. Our present results thus suggest that Zn is an essential trace element for the maintenance of germ cells, the progression spermatogenesis, and the regulation of sperm motility.

  4. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice.

    PubMed

    Qin, Kunhua; Zhang, Ning; Zhang, Zhao; Nipper, Michael; Zhu, Zhenxin; Leighton, Jake; Xu, Kexin; Musi, Nicolas; Wang, Pei

    2018-04-01

    Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.

  5. On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells.

    PubMed

    Singh, Brahmchetna; Murphy, Richard F; Ding, Xian-Zhong; Roginsky, Alexandra B; Bell, Richard H; Adrian, Thomas E

    2007-12-24

    Retinoids are potent growth inhibitory and differentiating agents in a variety of cancer cell types. We have shown that retinoids induce growth arrest in all pancreatic cancer cell lines studied, regardless of their p53 and differentiation status. However, the mechanism of growth inhibition is not known. Since TGF-beta2 is markedly induced by retinoids in other cancers and mediates MUC4 expression in pancreatic cancer cells, we investigated the role of TGF-beta in retinoic acid-mediated growth inhibition in pancreatic cancer cells. Retinoic acid markedly inhibited proliferation of two cell lines (Capan-2 and Hs766T) in a concentration and time-dependent manner. Retinoic acid increased TGF-beta2 mRNA content and secretion of the active and latent forms of TGF-beta2 (measured by ELISA and bioassay). The concentrations of active and TGF-beta2 secreted in response to 0.1 - 10 muM retinoic acid were between 1-5 pM. TGF-beta2 concentrations within this range also inhibited proliferation. A TGF-beta neutralizing antibody blocked the growth inhibitory effects of retinoic acid in Capan-2 cells and partially inhibitory the effects in Hs766T cells. These findings indicate that TGF-beta can cause growth inhibition of pancreatic cancer cells, in a p53-independent manner. Furthermore, it demonstrates the fundamental role of TGF-beta in growth inhibition in response to retinoic acid treatment is preserved in vitro.

  6. Differential usage of T-cell receptor V beta gene families by CD4+ and CD8+ T cells in patients with CD8hi common variable immunodeficiency: evidence of a post-thymic effect.

    PubMed Central

    Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W

    1996-01-01

    In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443

  7. A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins

    PubMed Central

    1995-01-01

    To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947

  8. Dose-dependent lipopolysaccharide-induced fetal brain injury in the guinea pig.

    PubMed

    Harnett, Erica L; Dickinson, Michelle A; Smith, Graeme N

    2007-08-01

    This study determined whether a lipopolysaccharide (LPS) dose-dependent increase in fetal brain injury occurs to further characterize the relationship between maternal inflammation and fetal brain injury. Pregnant guinea pigs (n = 59) at 70% gestation were injected intraperitoneally with 1, 5, 25, 50, 100, 200, or 300 microg LPS per kilogram of maternal body weight or an equivalent volume of vehicle. Animals were killed 7 days later. Maternal serum and amniotic fluid samples were assayed for proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 using enzyme-linked immunosorbent assay kits. Fetal brains (n = 72) were stained for evidence of cell death with NeuroTACS stain. Seven days after LPS injections, cytokine concentrations in maternal serum and amniotic fluid were not different (P > .05) from controls. Levels of cell death in all brain regions examined were highest following the maternal administration of 300 mug/kg LPS (P < .05). The dose effect was brain region-dependent (P < .05). A threshold of maternal infection/inflammation exists, beyond which demonstrable fetal brain injury may result.

  9. Amentoflavone Induces Apoptosis and Inhibits NF-ĸB-modulated Anti-apoptotic Signaling in Glioblastoma Cells

    PubMed Central

    YEN, TSUNG-HSIEN; HSIEH, CHIA-LING; LIU, TSU-TE; HUANG, CHIH-SHENG; CHEN, YEN-CHUNG; CHUANG, YAO-CHEN; LIN, SONG-SHEI; HSU, FEI-TING

    2018-01-01

    >The goal of the present study was to investigate anticancer effect of amentoflavone on glioblastoma cells in vitro. Our results demonstrated that amentoflavone not only significantly reduced cell viability, nuclear factor-ĸappa B (NF-ĸB) activation, and protein expression of cellular Fas-associated protein with death domain-like interleukin 1 beta-converting enzyme inhibitory protein (C-FLIP) and myeloid cell leukemia 1 (MCL1), but significantly triggered cell accumulation at the sub-G 1 phase, loss of mitochondrial membrane potential, and expression of active caspase-3 and -8. In order to verify the effect of NF-ĸB inhibitor on expression of anti-apoptotic proteins, we performed western blotting. We found that the of NF-ĸB inhibitor or amentoflavone markedly diminished protein levels of MCL1 and C-FLIP. Taken all together, our findings show that amentoflavone induces intrinsic and extrinsic apoptosis and inhibits NF-ĸB-modulated anti-apoptotic signaling in U-87 MG cells in vitro. PMID:29475910

  10. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.

    PubMed

    Millette, Katelyn; Georgia, Senta

    2017-10-05

    This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.

  11. Cell-to-cell contact dependence and junctional protein content are correlated with in vivo maturation of pancreatic beta cells.

    PubMed

    Santos-Silva, Junia Carolina; Carvalho, Carolina Prado de França; de Oliveira, Ricardo Beltrame; Boschero, Antonio Carlos; Collares-Buzato, Carla Beatriz

    2012-07-01

    In this study, we investigated the cellular distribution of junctional proteins and the dependence on cell-cell contacts of pancreatic beta cells during animal development. Fetus and newborn rat islets, which display a relatively poor insulin secretory response to glucose, present an immature morphology and cytoarchitecture when compared with young and adult islets that are responsive to glucose. At the perinatal stage, beta cells display a low junctional content of neural cell adhesion molecule (N-CAM), α- and β-catenins, ZO-1, and F-actin, while a differential distribution of N-CAM and Pan-cadherin was seen in beta cells and nonbeta cells only from young and adult islets. In the absence of intercellular contacts, the glucose-stimulated insulin secretion was completely blocked in adult beta cells, but after reaggregation they partially reestablished the secretory response to glucose. By contrast, neonatal beta cells were poorly responsive to sugar, regardless of whether they were arranged as intact islets or as isolated cells. Interestingly, after 10 days of culturing, neonatal beta cells, known to display increased junctional protein content in vitro, became responsive to glucose and concomitantly dependent on cell-cell contacts. Therefore, our data suggest that the developmental acquisition of an adult-like insulin secretory pattern is paralleled by a dependence on direct cell-cell interactions.

  12. Islet immunity and beta cell reserve of indigenous Black South Africans with ketoacidosis at initial diagnosis of diabetes.

    PubMed

    Ekpebegh, Chukwuma; Longo-Mbenza, Benjamin; Blanco-Blanco, Ernesto

    2013-01-01

    Islet immunity and beta cell reserve status were utilized to classify persons with ketoacidosis as the initial manifestation of diabetes. The clinical features of the various diabetes classes were also characterized. Prospective cross sectional study. Nelson Mandela Academic Hospital, Mthatha, Eastern Cape Province, South Africa. Indigenous Black South Africans with ketoacidosis as the initial manifestation of diabetes. Islet immunity and beta cell reserve were respectively assessed using serum anti-glutamic acid decarboxylase 65 (GAD) antibody and serum C-peptide after 1 mg of intravenous glucagon. Serum anti-GAD 65 antibody > or = 5 units/L and < 5 units/L, respectively defined anti-GAD 65 positive (A+) and negative (A-). Replete (beta+) and deplete (beta-) beta cell reserve were serum C-peptide after glucagon injection of > or = 0.5 ng/mL and < 0.5 ng/mL, respectively. The proportions of patients with A+beta-, A+beta+, A-beta- and A-beta+ and their clinical characteristics were determined. Of the 38 males and 33 females who participated in the study, patients were categorized in various classes: A-beta+, 46.5% (n=33/ 71); A-beta-, 26.8% (n=19/71); A+beta-, 22.5% (n=16/71); and A+beta+, 4.2% (n=3/71). The ages of the various classes were: 41.8 +/- 13.8 years for A-beta+ (n=33); 36.5 +/- 14.6 years for A-beta- (n=19); and 20.6 +/- 7.1 years for the combination of A+beta- with A+beta+ (n=19) (P<.0001, P<.0001 for the combination of A+beta- and A+beta+ vs A-beta+, P=.001 for the combination of A+beta- and A+beta+ vs A-beta-and P=.2 for A-beta- vs A-beta+. The clinical features of type 2 diabetes were most prevalent in A-beta+ class while the A+beta- and A+beta+ groups had the clinical profile of type 1A diabetes. Most of the indigenous Black South African patients with ketoacidosis as the initial manifestation of diabetes had islet immunity, beta cell reserve status and clinical profiles of type 2 diabetes.

  13. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    PubMed

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF-beta-mediated suppression of T cell activation may be responsible for the prevention of effector T cell-mediated autoimmune IDDM in NOD mice by TGF-beta-producing CD4+ suppressor T cells.

  14. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice.

    PubMed

    Ryu, Hoon; Smith, Karen; Camelo, Sandra I; Carreras, Isabel; Lee, Junghee; Iglesias, Antonio H; Dangond, Fernando; Cormier, Kerry A; Cudkowicz, Merit E; Brown, Robert H; Ferrante, Robert J

    2005-06-01

    Multiple molecular defects trigger cell death in amyotrophic lateral sclerosis (ALS). Among these, altered transcriptional activity may perturb many cellular functions, leading to a cascade of secondary pathological effects. We showed that pharmacological treatment, using the histone deacetylase inhibitor sodium phenylbutyrate, significantly extended survival and improved both the clinical and neuropathological phenotypes in G93A transgenic ALS mice. Phenylbutyrate administration ameliorated histone hypoacetylation observed in G93A mice and induced expression of nuclear factor-kappaB (NF-kappaB) p50, the phosphorylated inhibitory subunit of NF-kappaB (pIkappaB) and beta cell lymphoma 2 (bcl-2), but reduced cytochrome c and caspase expression. Curcumin, an NF-kappaB inhibitor, and mutation of the NF-kappaB responsive element in the bcl-2 promoter, blocked butyrate-induced bcl-2 promoter activity. We provide evidence that the pharmacological induction of NF-kappaB-dependent transcription and bcl-2 gene expression is neuroprotective in ALS mice by inhibiting programmed cell death. Phenylbutyrate acts to phosphorylate IkappaB, translocating NF-kappaB p50 to the nucleus, or to directly acetylate NF-kappaB p50. NF-kappaB p50 transactivates bcl-2 gene expression. Up-regulated bcl-2 blocks cytochrome c release and subsequent caspase activation, slowing motor neuron death. These transcriptional and post-translational pathways ultimately promote motor neuron survival and ameliorate disease progression in ALS mice. Phenylbutyrate may therefore provide a novel therapeutic approach for the treatment of patients with ALS.

  15. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation.

    PubMed

    Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J

    2017-06-01

    Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  17. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model ofmore » primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined with our recently published in vivo data (Meybohm et al., PLoS One, 2009), the results presented here strongly suggest IL-1{beta} as a key molecule guiding tissue remodelling events after myocardial infarction.« less

  18. Identification of beta-2 as a key cell adhesion molecule in PCa cell neurotropic behavior: a novel ex vivo and biophysical approach.

    PubMed

    Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A

    2014-01-01

    Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.

  19. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  20. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects.

    PubMed

    Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L

    2002-01-01

    A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.

  1. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    PubMed

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  2. Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion.

    PubMed

    Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik

    2005-01-01

    To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.

  3. The involvement of AMPK/GSK3-beta signals in the control of metastasis and proliferation in hepato-carcinoma cells treated with anthocyanins extracted from Korea wild berry Meoru

    PubMed Central

    2014-01-01

    Background Activation of the Wnt pathway is known to promote tumorigenesis and tumor metastasis, and targeting Wnt pathway inhibition has emerged as an attractive approach for controlling tumor invasion and metastasis. The major pathway for inhibiting Wnt is through the degradation of β-catenin by the GSK3-beta/CK1/Axin/APC complex. It was found that Hep3B hepato-carcinoma cells respond to anthocyanins through GSK3-beta-induced suppression of beta-catenin; however, they cannot dephosphorylate GSK3-beta without AMPK activation. Methods We tested the effects of anthocyanins on proliferation and apoptosis by MTT and Annexin V-PI staining in vitro. Mouse xenograft models of hepato-carcinomas were established by inoculation with Hep3B cells, and mice were injected with 50 mg/kg/ml of anthocyanins. In addition, protein levels of p-GSK3-beta, beta-catenin, p-AMPK, MMP-9, VEGF, and Ang-1 were also analyzed using western blot. Results Anthocyanins decrease phospho-GSK3-beta and beta-catenin expression in an in vivo tumor xenograft model, increase AMPK activity in this model, and inhibit cell migration and invasion, possibly by inhibiting MMP-2 (in vitro) and the panendothelial marker, CD31 (in vivo). To elucidate the role of the GSK3-beta/beta-catenin pathway in cancer control, we conditionally inactivated this pathway, using activated AMPK for inhibition. Further, we showed that AMPK siRNA treatment abrogated the ability of anthocyanins to control cell proliferation and metastatic potential, and Compound C, an AMPK inhibitor, could not restore GSK3-beta regulation, as exhibited by anthocyanins in Hep3B cells. Conclusion These observations imply that the AMPK-mediated GSK3-beta/beta-catenin circuit plays crucial roles in inhibiting cancer cell proliferation and metastasis in anthocyanin-treated hepato-carcinoma cells of Meoru origin. PMID:24666969

  4. The J beta segment of the T cell receptor contributes to the V beta-specific T cell expansion caused by staphylococcal enterotoxin B and Urtica dioica superantigens.

    PubMed

    Musette, P; Galelli, A; Truffa-Bachi, P; Peumans, W; Kourilsky, P; Gachelin, G

    1996-03-01

    We have used a new polymerase chain reaction-based technique to analyze at the clonal level the CDR3 diversity and the J beta usage associated with the V beta-dependent T cell receptor (TCR) recognition of two superantigens: the staphylococcal enterotoxin B and the Urtica dioica agglutinin. Our results show that subset of J beta elements is preferentially expanded in a given V beta family, independently of the nature of the superantigen. By contrast, the CDR3 loop does not contribute significantly to the T cell expansion induced by the superantigens. We conclude that the J beta segment of the TCR beta chain, but not the CDR3 region, participates in superantigen binding, presumably by influencing the quaternary structure of the TCR beta chain.

  5. Synthesis and cytotoxic analysis of some disodium 3beta,6beta-dihydroxysterol disulfates.

    PubMed

    Cui, Jianguo; Wang, Hui; Huang, Yanmin; Xin, Yi; Zhou, Aimin

    2009-01-01

    Disodium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (1) was synthesized in 4 steps with a high overall yield from cholesterol. First, cholesterol (4a) was converted to cholest-4-en-3,6-dione (5a) via oxidation with pyridinium chlorochromate (PCC) and then 5a was reduced by NaBH(4) in the presence of NiCl(2) to produce cholest-3beta,6beta-diol (6a). The reaction of 6a with the triethylamine-sulfur trioxide complex generated diammonium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (7a) and the treatment of 7a by cation exchange resin 732 (sodium form)(Na(+)) yielded the target steroid 1. Disodium 24-ethyl-3beta,6beta-dihydroxycholest-22-ene disulfate (2) and disodium 24-ethyl-3beta,6beta-dihydroxycholestane disulfate (3) were synthesized using a similar method. The cytotoxicity of these compounds against Sk-Hep-1 (human liver carcinoma cell line), H-292 (human lung carcinoma cell line), PC-3 (human prostate carcinoma cell line) and Hey-1B (human ovarian carcinoma cell line) cells was investigated. Our results indicate that presence of a cholesterol-type side chain at position 17 is necessary for their biological activity.

  6. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J.

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation ofmore » {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.« less

  7. Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio

    The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of themore » {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.« less

  8. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  9. Inhibitory effect of dimeric beta peptide on the recurrence and metastasis of hepatocellular carcinoma in vitro and in mice.

    PubMed

    Wang, Song-Mei; Zhu, Jun; Pan, Luan-Feng; Liu, Yin-Kun

    2008-05-21

    To block the adhesion of tumor cells to the extracellular matrix, and prevent tumor metastasis and recurrence, the dimer of the beta peptide (DLYYLMDLSYSMKGGDLYYLMDLSYSMK, beta2) was designed and synthesized and its anti-adhesion and anti-invasion effects on hepatocellular carcinoma cells were assessed. Additionally, its influence on the metastasis and recurrence of mouse hepatocellular carcinoma was measured. The anti-adhesion effect of beta2 on the highly metastatic hepatocellular carcinoma cell line HCCLM6 cells and fibronectin (FN) was assayed by the MTT assay. The inhibition of invasion of HCCLM6 cells by beta2 was observed using a Transwell (modified Boyden chamber) and matrigel. Using the hepatocellular carcinoma metastasis model and LCI-D20 nude mice, the influence of beta2 on the metastasis and recurrence of hepatocellular carcinoma after early resection was investigated. HCCLM6 cells co-incubated with 100 mumol/L, 50 micromol/L, 20 micromol/L or 10 micromol/L beta2 for 3 h showed an obvious decrease in adhesion to FN. The adhesion inhibition ratios were 11.8%, 21.7%, 29.6% and 48.7%, respectively. Additionally, HCCLM6 cells cultured with 100 mumol/L beta2 had a dramatic decrease in cell invasion. beta2 was also observed to inhibit the incisal edge recurrence and the distant metastasis of nude mice hepatocellular carcinoma after early resection (P < 0.05). The beta2 peptide can specifically block the adhesion and invasion of HCCLM6 cells, and can inhibit HCC recurrence and metastasis of LCI-D20 model posthepatectomy in vivo. Thus, beta2 should be further studied as a new anti-tumor drug.

  10. Inhibition of beta-adrenergic receptor trafficking in adult cardiocytes by MAP4 decoration of microtubules.

    PubMed

    Cheng, Guangmao; Qiao, Fei; Gallien, Thomas N; Kuppuswamy, Dhandapani; Cooper, George

    2005-03-01

    Decreased beta-adrenergic receptor (beta-AR) number occurs both in animal models of cardiac hypertrophy and failure and in patients. beta-AR recycling is an important mechanism for the beta-AR resensitization that maintains a normal complement of cell surface beta-ARs. We have shown that 1) in severe pressure overload cardiac hypertrophy, there is extensive microtubule-associated protein 4 (MAP4) decoration of a dense microtubule network; and 2) MAP4 microtubule decoration inhibits muscarinic acetylcholine receptor recycling in neuroblastoma cells. We asked here whether MAP4 microtubule decoration inhibits beta-AR recycling in adult cardiocytes. [(3)H]CGP-12177 was used as a beta-AR ligand, and feline cardiocytes were isolated and infected with adenovirus containing MAP4 (AdMAP4) or beta-galactosidase (Adbeta-gal) cDNA. MAP4 decorated the microtubules extensively only in AdMAP4 cardiocytes. beta-AR agonist exposure reduced cell surface beta-AR number comparably in AdMAP4 and Adbeta-gal cardiocytes; however, after agonist withdrawal, the cell surface beta-AR number recovered to 78.4 +/- 2.9% of the pretreatment value in Adbeta-gal cardiocytes but only to 56.8 +/- 1.4% in AdMAP4 cardiocytes (P < 0.01). This result was confirmed in cardiocytes isolated from transgenic mice having cardiac-restricted MAP4 overexpression. In functional terms of cAMP generation, beta-AR agonist responsiveness of AdMAP4 cells was 47% less than that of Adbeta-gal cells. We conclude that MAP4 microtubule decoration interferes with beta-AR recycling and that this may be one mechanism for beta-AR downregulation in heart failure.

  11. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less

  12. Reduction of high-affinity beta2-adrenergic receptor binding by hyperforin and hyperoside on rat C6 glioblastoma cells measured by fluorescence correlation spectroscopy.

    PubMed

    Prenner, Lars; Sieben, Anne; Zeller, Karin; Weiser, Dieter; Häberlein, Hanns

    2007-05-01

    Beta-adrenergic receptors (beta-AR) are potential targets for antidepressants. Desensitization and downregulation of beta-AR are discussed as possible modes of action for antidepressants. We have investigated the effects of hyperforin and hyperoside, compounds with potentially antidepressant activity from St. John's Wort, on the binding behavior and dynamics of beta2-AR in living rat C6 glioblastoma cells, compared to desipramine (desmethylimipramine; DMI) by means of fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. FCS-binding studies with the fluorescently labeled ligand Alexa532-noradrenaline (Alexa532-NA) binding to beta2-AR of C6 cells showed a significant reduction in total beta2-AR binding after preincubation with hyperforin and hyperoside for 3 days, respectively, which was also found for DMI. This was mainly observed in high-affinity receptor-ligand complexes with hindered lateral mobility (D2 = 1.1 (+/-0.4) microm2/s) in the biomembrane. However, internalization of beta2-AR was found neither in z-scans of these C6 cells nor in HEK 293 cells stably transfected with GFP-tagged beta2-adrenergic receptors (beta2AR-GFP) after incubation up to 6 days with either DMI, hyperforin, or hyperoside. Thus, under these conditions reduction of beta2-AR binding was not mediated by receptor internalization. Additionally, preincubation of C6 cells with DMI, hyperforin, and hyperoside led to a loss of second messenger cAMP after beta2-adrenergic stimulating conditions with terbutaline. Our current results indicate that hyperforin and hyperoside from St. John's Wort, as well as DMI, reduce beta2-adrenergic sensitivity in C6 cells, emphasizing the potential usefulness of St. John's Wort dry extracts in clinical treatment of depressive symptoms.

  13. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.

  14. Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity.

    PubMed

    Bosco, Domenico; Rouiller, Dominique G; Halban, Philippe A

    2007-07-01

    The aim of this study was to assess whether the expression of E-cadherin at the surface of rat beta-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all beta-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two beta-cell sub-populations were sorted: one that was poorly labeled ('ECad-low') and another that was highly labeled ('ECad-high'). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high beta-cells was higher than that from ECad-low beta-cells. Ca2+-dependent beta-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of beta-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochalasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet beta-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of beta-cell function.

  15. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    PubMed

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that the neural crest is a critical regulator of beta cell development on two levels: by negatively regulating beta cell proliferation and by promoting beta cell maturation. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Preliminary in vivo efficacy studies of a recombinant rhesus anti-alpha(4)beta(7) monoclonal antibody.

    PubMed

    Pereira, L E; Onlamoon, N; Wang, X; Wang, R; Li, J; Reimann, K A; Villinger, F; Pattanapanyasat, K; Mori, K; Ansari, A A

    2009-01-01

    Recent findings established that primary targets of HIV/SIV are lymphoid cells within the gastrointestinal (GI) tract. Focus has therefore shifted to T-cells expressing alpha(4)beta(7) integrin which facilitates trafficking to the GI tract via binding to MAdCAM-1. Approaches to better understand the role of alpha(4)beta(7)+ T-cells in HIV/SIV pathogenesis include their depletion or blockade of their synthesis, binding and/or homing capabilities in vivo. Such studies can ideally be conducted in rhesus macaques (RM), the non-human primate model of AIDS. Characterization of alpha(4)beta(7) expression on cell lineages in RM blood and GI tissues reveal low densities of expression by NK cells, B-cells, naïve and TEM (effector memory) T-cells. High densities were observed on TCM (central memory) T-cells. Intravenous administration of a single 50mg/kg dose of recombinant rhesus alpha(4)beta(7) antibody resulted in significant initial decline of alpha(4)beta(7)+ lymphocytes and sustained coating of the alpha(4)beta(7) receptor in both the periphery and GI tissues.

  17. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-{beta} receptor expression in fibroblasts, especially in CAFs represents a major option in coordination of fibroblast and tumor behavior. A key event in IL1-{beta} signaling, the phosphorylation of IRAK1, occurred in co-cultured fibroblasts, which has lead to nuclear translocation of NF{kappa}B{alpha}, and finally to induction of several genes, including BDNF, IRF1, IL-6 and COX-2. The most enhanced induction was found for IL-6 and COX-2.« less

  18. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria

    PubMed Central

    Zeng, Ximin; Lin, Jun

    2013-01-01

    Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted. PMID:23734147

  19. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells.more » We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.« less

  20. Dopamine-induced programmed cell death is associated with cytochrome c release and caspase-3 activation in snail salivary gland cells.

    PubMed

    Pirger, Zsolt; Rácz, Boglárka; Kiss, Tibor

    2009-02-01

    PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling)-positive cells both in inactive and feeding animals. The DA-induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto-c (cytochrome c) translocation into the cytosol and methyl-beta-cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto-c was under the control of Bcl-2 and Bad. DA also increased the active caspase-3 in gland cells while D2 receptor antagonists and TEA attenuated it. Our results provide evidence for a type of transmitter-mediated pathway that regulates the PCD of secretory cells in a mitochondrial-caspase-dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto-c, ceramide, Bcl-2 proteins and caspase-3, but not caspase-8, was demonstrated in cells involved in the DA-induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.

  1. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.

    PubMed

    Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine

    2014-03-01

    Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

  2. Decursin suppresses human androgen-independent PC3 prostate cancer cell proliferation by promoting the degradation of beta-catenin.

    PubMed

    Song, Gyu-Yong; Lee, Jee-Hyun; Cho, Munju; Park, Byeoung-Soo; Kim, Dong-Eun; Oh, Sangtaek

    2007-12-01

    Alterations in the Wnt/beta-catenin pathway are associated with the development and progression of human prostate cancer. Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, inhibits the growth of androgen-independent human prostate cancer cells, but little is known about its mechanism of action. Using a cell-based screen, we found that decursin attenuates the Wnt/beta-catenin pathway. Decursin antagonized beta-catenin response transcription (CRT), which was induced with Wnt3a-conditioned medium and LiCl, by promoting the degradation of beta-catenin. Furthermore, decursin suppressed the expression of cyclin D1 and c-myc, which are downstream target genes of beta-catenin and thus inhibited the growth of PC3 prostate cancer cells. In contrast, decursinol, in which the (CH3)2-C=CH-COO- side chain of decursin is replaced with -OH, had no effect on CRT, the level of intracellular beta-catenin, or PC3 cell proliferation. Our findings suggest that decursin exerts its anticancer activity in prostate cancer cells via inhibition of the Wnt/beta-catenin pathway.

  3. Mutant HNF-1{alpha} and mutant HNF-1{beta} identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Ning; Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto; Adachi, Tetsuya

    2006-08-04

    Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2more » mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.« less

  4. Surgical Injury to the Mouse Pancreas through Ligation of the Pancreatic Duct as a Model for Endocrine and Exocrine Reprogramming and Proliferation

    PubMed Central

    De Groef, Sofie; Leuckx, Gunter; Van Gassen, Naomi; Staels, Willem; Cai, Ying; Yuchi, Yixing; Coppens, Violette; De Leu, Nico; Heremans, Yves; Baeyens, Luc; Van de Casteele, Mark; Heimberg, Harry

    2015-01-01

    Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories. PMID:26273954

  5. Effect of interlukin-1beta on proliferation of gastric epithelial cells in culture.

    PubMed

    Beales, Ian L P

    2002-04-05

    Helicobacter pylori is the main risk factor for the development of non-cardia gastric cancer. Increased proliferation of the gastric mucosa is a feature of H. pylori infection. Mucosal interkeukin-1beta production is increased in H. pylori infection and IL-1beta genotypes associated with increased pro-inflammatory activity are risk factors for the development of gastric cancer. The effect of IL-1beta on gastric epithelial cell proliferation has been examined in this study. AGS cells were cultured with IL-1beta. DNA synthesis was assed by [3H]thymidine incorporation and total viable cell numbers by MTT assay. IL-1beta dose dependently increased DNA synthesis and cell numbers. The enhanced proliferation was blocked by interleukin-1 receptor antagonist. Addition of neutralising antibody to GM-CSF reduced IL-1beta-stimulated proliferation by 31 +/- 4 %. GM-CSF alone significantly stimulated proliferation. Addition or neutralisation of IL-8 had no effect on basal or IL-1beta-stimulated proliferation. The tyrosine kinase inhibitor genistein completely blocked IL-1beta-stimulated proliferation and inhibition of the extracellular signal related kinase pathway with PD 98059 inhibited IL-1beta stimulated proliferation by 58 +/- 5 %. IL-1beta stimulates proliferation in gastric epithelial cells. Autocrine stimulation by GM-CSF contributes to this proliferative response. Signalling via tyrosine kinase activity is essential to the mitogenic response to IL-1beta. The extracellular signal related kinase pathway is involved in, but not essential to downstream signalling. IL-1beta may contribute to the hyperproliferation seen in H. pylori- infected gastric mucosa, and be involved in the carcinogenic process.

  6. Unusual death of a transvestite: identification of crime weapon and survival time*.

    PubMed

    Cornetta, Sandra; Addante, Annalisa; Zotti, Fiorenza; Dell'Erba, Alessandro

    2009-09-01

    The authors report a case of a transvestite found murdered near his automobile with several lacerated contused wounds to the face and cranial fractures. Autopsy revealed that the cause of death was a serious head trauma with subdural and subarachnoidal hemorrhages. In order to identify the crime weapon, a scanning electron microscopy (SEM) was used which revealed metallic residue on the skin fragments with the same molecular composition of the car paint. As for survival time, antibody anti-beta-amyloid precursor protein (APP) was applied to brain fragments and brainstem tissue, allowing for axonal varicosities (which form 2 to 3 h following death) to be observed under the optic microscope. So, by using SEM we understood that the fatal cranial-encephalic lesions were the result of the victim's head being repeatedly struck against the car door while anti-betaAPP led to the understanding that the time elapsed between injury and death was less than 2 to 3 h.

  7. Islets of Langerhans in the parakeet, Psittacula krameri.

    PubMed

    Gupta, Y K; Kumar, S

    1980-01-01

    The pancreatic gland of Psittacula krameri is divisible into 4 lobes i.e. dorsal, ventral, third and splenic. The endocrine part is composed of alpha 1-, alpha 2- and beta-cells. The islets are of 4 kinds viz., alpha islets (having alpha 1- and alpha 2-cells), beta islets (having beta- and alpha 1-cells), pure beta islets (consisting of beta-cells exclusively) and mixed islets (with beta-, alpha 1- and alpha 2-cells). The distribution of alpha islets is mostly restricted to the splenic and third lobes whereas the beta islets are found in all 4 lobes. Though the alpha islets are only few in the dorsal lobe, their size is best developed in the third and dorsal lobes. Sometimes beta and alpha islets are present in very close proximity but their cells never mingle. An interesting feature was the complete absence of alpha islets from the ventral lobe.A relative abundance of alpha 2- cells in this bird seems to be associated with its comparatively higher blood glucose level and frugivorous habit. Tinctorial reactions suggest that the insulin content of the endocrine pancreas is low. There were no seasonal changes in the islet tissue of P. krameri.

  8. Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy

    PubMed Central

    Schönthal, Axel H.

    2012-01-01

    The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed. PMID:24278747

  9. Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.

    PubMed

    Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M

    2010-03-01

    beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.

  10. Stimulation of interleukin-1 beta production of human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K

    1997-01-01

    IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.

  11. Impaired compensatory beta-cell function and growth in response to high-fat diet in LDL receptor knockout mice

    PubMed Central

    Oliveira, Ricardo B d; Carvalho, Carolina P d F; Polo, Carla C; Dorighello, Gabriel d G; Boschero, Antônio C; Oliveira, Helena C F d; Collares-Buzato, Carla B

    2014-01-01

    In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr−/− mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr−/− mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr−/− mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr−/− mice showed no significant changes in beta-cell mass, but lower islet–duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr−/− mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion. PMID:24853046

  12. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    NASA Technical Reports Server (NTRS)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  13. Expression of the leukemia-associated CBF{beta}/SMMHC chimeric gene causes transformation of 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajra, A.; Liu, P.; Collins, E.S.

    1994-09-01

    A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less

  14. Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves.

    PubMed

    Aupperle, H; März, I; Thielebein, J; Schoon, H-A

    2008-01-01

    The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.

  15. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  16. TGF-beta1 stimulates expression of the aromatase (CYP19) gene in human osteoblast-like cells and THP-1 cells.

    PubMed

    Shozu, M; Zhao, Y; Simpson, E R

    2000-02-25

    Recent evidence has shown that bone is not only a target of estrogen action but also a source of local estrogen production. Bone cells such as osteoblasts express aromatase (P450arom) and the expression of P450arom in osteoblasts is positively regulated in a tissue specific fashion, as in the case of other tissues which express P450arom. To clarify the physiological factors regulating expression of P450arom in bone, we tested TGF-beta1 using osteoblast-like cells obtained from human fetuses as well as THP-1 cells. TGF-beta1 increased IL-1beta+DEX- induced aromatase activity in osteoblast-like cells, while it inhibited activity in skin fibroblasts. Similar enhancement of aromatase activity by TGF-beta1 was found in DEX-stimulated THP-1 cells and this cell line was used for further experiments. In THP-1 cells, TGF-beta1 enhanced DEX-induced aromatase activity almost linearly by 12 h and thereafter. Increased levels of P450arom transcripts were also demonstrated by RT-PCR at 3 h of TGF-beta1 treatment and thereafter. Cyclohexamide abolished enhancement of activity but did not inhibit the accumulation of P450arom transcripts induced by TGF-beta1. Increase in P450arom expression by TGF-beta1 was attributable to expression driven by promoter I.4. TGF-beta1 did not change the half life of P450arom transcripts. To identify the cis-acting elements responsible for TGF-beta1 action on aromatase expression, transient transfection assays were performed using a series of deletion constructs for promoter I.4 (P450-I.4/Luc). Two constructs (-410/+14 and-340/+14) that contain a functional glucocorticoid response element (GRE) and downstream sequence showed significant increase of luciferase activity in response to TGF-beta1. Deletion and mutation of the GRE in P450-I.4/Luc (-340/+14) abolished the TGF-beta1. The luciferase activity of a (GRE)(1)-SV40/Luc construct was also stimulated by TGF-beta1. These results indicate that TGF-beta1 increases the expression of P450arom at the level of transcription through promoter I.4, at least in part via an enhancement of transactivation activity of the GR in THP-1 cells. TGF-beta1 is suggested to be one of the physiological up-regulatory factors of bone aromatase.

  17. Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector.

    PubMed

    Chacón, Pedro J; Rodríguez-Tébar, Alfredo

    2012-07-31

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) in the brain, which produces progressive neuronal loss and dementia. We recently demonstrated that the noxious effects of Aβ on cultured hippocampal neurons are in part provoked by the antagonism of nerve growth factor (NGF) signalling, which impairs the activation of nuclear factor κB (NF-κB) by impeding the tyrosine phosphorylation of I-κBα. As a result, the expression of the homologue of Enhancer-of split 1 (Hes1) gene is downregulated and ultimately, gamma-aminobutyric acid (GABA)-ergic connectivity is lost. Hes1 activity was promoted in cultured hippocampal neurons by overexpressing a Hes1-encoding plasmid or by upregulating this gene by activating NF-κB through different approaches (overexpressing either the I-κB kinaseβ, or p65/RelA/NF-κB). Alternatively neurons were exposed to TGFβ1. Dendrite patterning, GABAergic connectivity and cell survival were analyzed by immunofluorescence microscopy. Hes1 expression was determined by real-time PCR. NF-κB activation was measured using the dual-luciferase reporter assay. The expression of Hes1 abolished the effects of Aβ on dendritic patterning and GABAergic input, and it prevented the death of the cultured neurons. TGFβ1, a known neuroprotector, could counteract the deleterious effects of Aβ by inducing NF-κB activation following the serine phosphorylation of I-κBα. Indeed, the number of GABAergic terminals generated by inducing Hes1 expression was doubled. Our data define some of the mechanisms involved in Aβ-mediated cell death and they point to potential means to counteract this noxious activity.

  18. Beta-lactam antibiotics modulate T-cell functions and gene expression via covalent binding to cellular albumin.

    PubMed

    Mor, Felix; Cohen, Irun R

    2013-02-19

    Recent work has suggested that beta-lactam antibiotics might directly affect eukaryotic cellular functions. Here, we studied the effects of commonly used beta-lactam antibiotics on rodent and human T cells in vitro and in vivo on T-cell-mediated experimental autoimmune diseases. We now report that experimental autoimmune encephalomyelitis and adjuvant arthritis were significantly more severe in rats treated with cefuroxime and other beta-lactams. T cells appeared to mediate the effect: an anti-myelin basic protein T-cell line treated with cefuroxime or penicillin was more encephalitogenic in adoptive transfer experiments. The beta-lactam ampicillin, in contrast to cefuroxime and penicillin, did not enhance encephalomyelitis, but did inhibit the autoimmune diabetes developing spontaneously in nonobese diabetic mice. Gene expression analysis of human peripheral blood T cells showed that numerous genes associated with T helper 2 (Th2) and T regulatory (Treg) differentiation were down-regulated in T cells stimulated in the presence of cefuroxime; these genes were up-regulated in the presence of ampicillin. The T-cell protein that covalently bound beta-lactam antibiotics was found to be albumin. Human and rodent T cells expressed albumin mRNA and protein, and penicillin-modified albumin was taken up by rat T cells, leading to enhanced encephalitogenicity. Thus, beta-lactam antibiotics in wide clinical use have marked effects on T-cell behavior; beta-lactam antibiotics can function as immunomodulators, apparently through covalent binding to albumin.

  19. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    PubMed

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  20. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  1. Toward beta cell replacement for diabetes

    PubMed Central

    Johannesson, Bjarki; Sui, Lina; Freytes, Donald O; Creusot, Remi J; Egli, Dieter

    2015-01-01

    The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. PMID:25733347

  2. Inhibition of necroptosis attenuates lung injury and improves survival in neonatal sepsis.

    PubMed

    Bolognese, Alexandra C; Yang, Weng-Lang; Hansen, Laura W; Denning, Naomi-Liza; Nicastro, Jeffrey M; Coppa, Gene F; Wang, Ping

    2018-04-27

    Neonatal sepsis represents a unique therapeutic challenge owing to an immature immune system. Necroptosis is a form of programmed cell death that has been identified as an important mechanism of inflammation-induced cell death. Receptor-interacting protein kinase 1 plays a key role in mediating this process. We hypothesized that pharmacologic blockade of receptor-interacting protein kinase 1 activity would be protective in neonatal sepsis. Sepsis was induced in C57BL/6 mouse pups (5-7 days old) by intraperitoneal injection of adult cecal slurry. At 1 hour after cecal slurry injection, the receptor-interacting protein kinase 1 inhibitor necrostatin-1 (10 µg/g body weight) or vehicle (5% dimethyl sulfoxide in phosphate buffered saline) was administered via retro-orbital injection. At 20 hours after cecal slurry injection, blood and lung tissues were collected for various analyses. At 20 hours after sepsis induction, vehicle-treated pups showed a marked increase in serum levels of interleukin 6, interleukin 1-beta, and interleukin 18 compared to sham. With necrostatin-1 treatment, serum levels of interleukin 6, interleukin 1-beta, and interleukin 18 were decreased by 77%, 81%, and 63%, respectively, compared to vehicle. In the lungs, sepsis induction resulted in a 232-, 10-, and 2.8-fold increase in interleukin 6, interleukin 1-beta, and interleukin 18 mRNA levels compared to sham, while necrostatin-1 treatment decreased these levels to 40-, 4-, and 0.8-fold, respectively. Expressions of the neutrophil chemokines keratinocyte chemoattractant and macrophage-inflammatory-protein-2 were also increased in the lungs in sepsis, while necrostatin-1 treatment decreased these levels by 81% and 61%, respectively, compared to vehicle. In addition, necrostatin-1 treatment significantly improved the lung histologic injury score and decreased lung apoptosis in septic pups. Finally, treatment with necrostatin-1 increased the 7-day survival rate from 0% in the vehicle-treated septic pups to 29% (P = .11). Inhibition of receptor-interacting protein kinase 1 by necrostatin-1 decreases systemic and pulmonary inflammation, decreases lung injury, and increases survival in neonatal mice with sepsis. Targeting the necroptosis pathway might represent a new therapeutic strategy for neonatal sepsis. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  4. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    PubMed

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  5. Genome-wide analysis of DNA methylation variations caused by chronic glucolipotoxicity in beta-cells.

    PubMed

    Hu, Y; Xu, X-H; He, K; Zhang, L-L; Wang, S-K; Pan, Y-Q; He, B-S; Feng, T-T; Mao, X-M

    2014-02-01

    There is a growing body of literature suggesting the role of interactions between genes and the environment in development of type 2 diabetes mellitus (T2DM). However, the interplay between environment and genetic in developing and progressing T2MD is not fully understood. To determine the effects of high-glucose-lipid on the status of DNA methylation in beta cells, and clarify the mechanism of glucolipotoxicity on beta-cell deterioration, the DNA methylation profile was detected in beta-cells cultured with high-glucose-lipid medium.We utilized a high throughput NimbleGen RN34 CpG Island & Promoter Microarray to investigate the DNA methylation profile in beta-cells cultured with high-glucose-lipid medium. To validate the results of microarray, the immunoprecipitation (MeDIP) PCR was used to test the methylation status of some selected genes. The mRNA and protein expression of insulin and Tcf7l2 in these cells were quantified by RT-PCR and western blot, respectively.We have identified a lot of loci which experienced aberrant DNA methylation in beta-cells cultured with high-glucose-lipid medium. The results of MeDIP PCR were consistency to the microarray. An opposite regulation in transcription and translation of Tcf7l2 gene was found. Furthermore, the insulin mRNA and protein expression in beta-cells also decreased after cultured with high-glucose-lipid medium compared with the control cells.We conclude that chronic glucolipotoxicity could induce aberrant DNA methylation of some genes and may affect these genes expression in beta-cells, which might contribute to beta-cell function failure in T2DM and be helpful to explain, at least partially, the mechanism of glucolipotoxicity on beta-cells deterioration. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  6. Genetics Home Reference: sickle cell disease

    MedlinePlus

    ... of beta-globin; this abnormality is called beta thalassemia . In people with sickle cell disease , at least ... globin. If mutations that produce hemoglobin S and beta thalassemia occur together, individuals have hemoglobin S- beta thalassemia (HbSBetaThal) ...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiying; Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp; Morita, Ikuo

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells inmore » vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.« less

  8. Beta2 toxin is not involved in in vitro cell cytotoxicity caused by human and porcine cpb2-harbouring Clostridium perfringens.

    PubMed

    Allaart, Janneke G; van Asten, Alphons J A M; Vernooij, Johannes C M; Gröne, Andrea

    2014-06-25

    Clostridium perfringens is a common cause of intestinal disease in animals and humans. Its pathogenicity is attributed to the toxins it can produce, including the beta2 toxin. The presence of cpb2, the gene encoding the beta2 toxin, has been associated with diarrhoea in neonatal piglets and humans. However, the exact role of the beta2 toxin in the development of diarrhoea is still unknown. In this study we investigated the level of cytotoxicity to porcine IPI-21 and human Caco-2 cell-lines caused by porcine and human cpb2-harbouring C. perfringens and the significance of the beta2 toxin for the induction of cell cytotoxicity. Supernatants of porcine cpb2-harbouring C. perfringens strains were cytotoxic to both cell lines. Cell cytotoxicity caused by supernatant of human cpb2-harbouring C. perfringens strains was variable among strains. However, removal of the beta2 toxin by anti-beta2 toxin antibodies or degradation of the beta2 toxin by trypsin did not reduce the cytotoxic effect of any of the supernatants. These data suggest that beta2 toxin does not play a role in the development of cell cytotoxicity in in vitro experiments. In vivo studies are necessary to definitely define the role of beta2 toxin in the development of cell cytotoxicity and subsequent diarrhoea. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Epidermal differentiation during ontogeny and after hatching in the snake Liasis fuscus (Pythonidae, Serpentes, Reptilia), with emphasis on the formation of the shedding complex.

    PubMed

    Alibardi, L; Thompson, M B

    2003-04-01

    Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal. Copyright 2003 Wiley-Liss, Inc.

  10. Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors.

    PubMed

    Patel, Hemal H; Head, Brian P; Petersen, Heidi N; Niesman, Ingrid R; Huang, Diane; Gross, Garrett J; Insel, Paul A; Roth, David M

    2006-07-01

    The role of caveolae, membrane microenvironments enriched in signaling molecules, in myocardial ischemia is poorly defined. In the current study, we used cardiac myocytes prepared from adult rats to test the hypothesis that opioid receptors (OR), which are capable of producing cardiac protection in vivo, promote cardiac protection in cardiac myocytes in a caveolae-dependent manner. We determined protein expression and localization of delta-OR (DOR) using coimmunohistochemistry, caveolar fractionation, and immunoprecipitations. DOR colocalized in fractions with caveolin-3 (Cav-3), a structural component of caveolae in muscle cells, and could be immunoprecipitated by a Cav-3 antibody. Immunohistochemistry confirmed plasma membrane colocalization of DOR with Cav-3. Cardiac myocytes were subjected to simulated ischemia (2 h) or an ischemic preconditioning (IPC) protocol (10 min ischemia, 30 min recovery, 2 h ischemia) in the presence and absence of methyl-beta-cyclodextrin (MbetaCD, 2 mM), which binds cholesterol and disrupts caveolae. We also assessed the cardiac protective effects of SNC-121 (SNC), a selective DOR agonist, on cardiac myocytes with or without MbetaCD and MbetaCD preloaded with cholesterol. Ischemia, simulated by mineral oil layering to inhibit gas exchange, promoted cardiac myocyte cell death (trypan blue staining), a response blunted by SNC (37 +/- 3 vs. 59 +/- 3% dead cells in the presence and absence of 1 muM SNC, respectively, P < 0.01) or by use of the IPC protocol (35 +/- 4 vs. 62 +/- 3% dead cells, P < 0.01). MbetaCD treatment, which disrupted caveolae (as detected by electron microscopy), fully attenuated the protective effects of IPC or SNC, resulting in cell death comparable to that of the ischemic group. By contrast, SNC-induced protection was not abrogated in cells incubated with cholesterol-saturated MbetaCD, which maintained caveolae structure and function. These findings suggest a key role for caveolae, perhaps through enrichment of signaling molecules, in contributing to protection of cardiac myocytes from ischemic damage.

  11. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells.

    PubMed

    Fernando, Joan; Malfettone, Andrea; Cepeda, Edgar B; Vilarrasa-Blasi, Roser; Bertran, Esther; Raimondi, Giulia; Fabra, Àngels; Alvarez-Barrientos, Alberto; Fernández-Salguero, Pedro; Fernández-Rodríguez, Conrado M; Giannelli, Gianluigi; Sancho, Patricia; Fabregat, Isabel

    2015-02-15

    The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients. © 2014 UICC.

  12. Cell cycle-related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line.

    PubMed

    Montemurro, Chiara; Vadrevu, Suryakiran; Gurlo, Tatyana; Butler, Alexandra E; Vongbunyong, Kenny E; Petcherski, Anton; Shirihai, Orian S; Satin, Leslie S; Braas, Daniel; Butler, Peter C; Tudzarova, Slavica

    2017-01-01

    Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca 2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca 2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca 2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca 2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.

  13. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin

    PubMed Central

    Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.

    2014-01-01

    Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125

  14. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin.

    PubMed

    Wakae-Takada, N; Xuan, S; Watanabe, K; Meda, P; Leibel, R L

    2013-04-01

    In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.

  15. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase.

    PubMed

    Taddei, Maria Letizia; Chiarugi, Paola; Cirri, Paolo; Buricchi, Francesca; Fiaschi, Tania; Giannoni, Elisa; Talini, Doriana; Cozzi, Giacomo; Formigli, Lucia; Raugei, Giovanni; Ramponi, Giampietro

    2002-11-15

    Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.

  16. [The effect of 18beta-glycyrrhetinic acid on gap junction among cerebral arteriolar smooth muscle cells in Wistar rat and spontaneously hypertensive rat].

    PubMed

    Chen, Xin-Yan; Si, Jun-Qiang; Li, Li; Zhao, Lei; Wei, Li-Li; Jiang, Xue-Wei; Ma, Ke-Tao

    2013-05-01

    This study compared Wistar rat with spontaneously hypertensive rat (SHR) on the electrophysiology and coupling force of the smooth muscle cells in the cerebral arteriolar segments and observe the influence of 18beta-glycyrrhetinic acid(18beta-GA) on the gap junctions between the arterial smooth muscle cells. The outer layer's connective tissue of the cerebral arteriolar segments was removed. Whole-cell patch clamp recordings were used to observe the 18beta-GA's impaction on the arteriolar segment membrane's input capacitance (C(input)), input conductance (G(input)) and input resistance (R(input)) of the smooth muscle cells. (1) The C(input) and G(input) of the SHR arteriolar segment smooth muscle cells was much higher than the Wistar rats, there was significant difference (P < 0.05). (2) 18beta-GA concentration-dependently reduced C(input) and G(input) (or increase R(input)) on smooth muscle cells in arteriolar segment. IC50 of 18beta-GA suppression's G(input) of the Wistar rat and SHR were 1.7 and 2.0 micromol/L respectively, there was not significant difference (P > 0.05). After application of 18beta-GA concentration > or = 100 micrmol/L, the C(input), G(input) and R(input) of the single smooth muscle cells was very close. Gap junctional coupling is enhanced in the SHR cerebral arterial smooth muscle cells. 18beta-GA concentration-dependent inhibits Wistar rat's and SHR cerebral arteriolar gap junctions between arterial smooth muscle cells. The inhibitory potency is similar between the two different rats. When 18beta-GA concentration is > or = 100 micromol/L, it can completely block gap junctions between arteriolar smooth muscle cells.

  17. Gene silencing of beta-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Suehara, Tetsuya; Takiguchi, Naomi; Takakura, Yoshinobu

    2008-11-15

    Altered expression of beta-catenin, a key component of the Wnt signaling pathway, is involved in a variety of cancers because increased levels of beta-catenin protein are frequently associated with enhanced cellular proliferation. Although our previous study demonstrated that gene silencing of beta-catenin in melanoma B16-BL6 cells by plasmid DNA (pDNA) expressing short-hairpin RNA targeting the gene (pshbeta-catenin) markedly suppressed their growth in vivo, gene silencing of beta-catenin could promote tumor metastasis by the rearranging cell adhesion complex. In this study, we investigated how silencing of beta-catenin affects metastatic aspects of melanoma cells. Transfection of B16-BL6 cells with pshbeta-catenin significantly reduced the amount of cadherin protein, a cell adhesion molecule binding to beta-catenin, with little change in its mRNA level. Cadherin-derived fragments were detected in culture media of B16-BL6 cells transfected with pshbeta-catenin, suggesting that cadherin is shed from the cell surface when the expression of beta-catenin is reduced. The mobility of B16-BL6 cells transfected with pshbeta-catenin was greater than that of cells transfected with any of the control pDNAs. B16-BL6 cells stably transfected with pshbeta-catenin (B16/pshbeta-catenin) formed less or an equal number of tumor nodules in the lung than cells stably transfected with other plasmids when injected into mice via the tail vein. However, when subcutaneously inoculated, B16/pshbeta-catenin cells formed more nodules in the lung than the other stably transfected cells. These results raise concerns about the gene silencing of beta-catenin for inhibiting tumor growth, because it promotes tumor metastasis by reducing the amount of cadherin in tumor cells. (c) 2008 Wiley-Liss, Inc.

  18. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  19. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  20. Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy.

    PubMed

    Briviba, Karlis; Bornemann, Rainer; Lemmer, Ulrich

    2006-11-01

    Astaxanthin, a carotenoid found in plants and seafood, exhibits antiproliferative, antioxidant and anticarcinogenic properties. We show that astaxanthin delivered with tetrahydrofuran is effectively taken up by cultured colon adenocarcinoma cells and is localized mostly in the cytoplasm as detected by confocal resonance Raman and broad-band fluorescence microspectroscopy image analysis. Cells incubated with beta-carotene at the same concentration as astaxanthin (10 microM) showed about a 50-fold lower cellular amount of beta-carotene, as detected by HPLC. No detectable Raman signal of beta-carotene was found in cells, but a weak broad-band fluorescence signal of beta-carotene was observed. beta-Carotene, like astaxanthin, was localized mostly in the cytoplasm. The heterogeneity of astaxanthin and beta-carotene cellular distribution in cells of intestinal origin suggests that the possible defense against reactive molecules by carotenoids in these cells may also be heterogeneous.

  1. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization.

    PubMed

    Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W

    1998-11-01

    Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.

  2. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    PubMed

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  3. Regulation of GM-CSF-induced dendritic cell development by TGF-beta1 and co-developing macrophages.

    PubMed

    Yamaguchi, Y

    1998-01-01

    Using a culture system of bone marrow progenitor cells with GM-CSF and TGF-beta1, a study was performed to analyze the effect of TGF-beta1 on the development of dendritic cells (DC) and to elucidate the regulatory role of macrophages co-developing with dendritic cells. The results demonstrate that DC generated in the presence of TGF-beta1 were immature with respect to the expression of CD86, nonspecific esterase activity and cell shape. Such inhibitory effects of TGF-beta1 were dependent on FcR+ macrophages, which were depleted by panning. TGF-beta1 did not appear to inhibit the commitment of progenitor cells to the DC lineage. In addition, TGF-beta1 also acted directly on the intermediate stage of DC to prevent their over-maturation, which results in a preferential decrease in MHC class II, but not in CD86, in the presence of TNF-alpha. FcR+ suppressive macrophages were also shown to facilitate DC maturation when stimulated via FcR-mediated signals even in the presence of TGF-beta1. These results indicate that TGF-beta1 indirectly and directly regulate the development of DC and that co-developing macrophages have a regulatory role in DC maturation.

  4. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.

    PubMed

    Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L

    1996-07-01

    Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.

  5. Can transforming growth factor-beta1 and retinoids modify the activity of estradiol and antiestrogens in MCF-7 breast cancer cells?.

    PubMed

    Czeczuga-Semeniuk, Ewa; Anchim, Tomasz; Dziecioł, Janusz; Dabrowska, Milena; Wołczyński, Sławomir

    2004-01-01

    Retinoic acid and transforming growth factor-beta (TGF-beta) affect differentiation, proliferation and carcinogenesis of epithelial cells. The effect of both compounds on the proliferation of cells of the hormone sensitive human breast cancer cell line (ER+) MCF-7 was assessed in the presence of estradiol and tamoxifen. The assay was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in MCF-7 cells were also determined. Exogenous TGF-beta1 added to the cell culture showed antiproliferative activity within the concentration range of 0.003-30 ng/ml. Irrespective of TGF-beta1 concentrations, a marked reduction in the stimulatory action of estradiol (10(-9) and 10(-8) M) was observed whereas in combination with tamoxifen (10(-7) and 10(-6) M) only 30 ng/ml TGF-beta1 caused a statistically significant reduction to approximately 30% of the proliferative cells. In further experiments we examined the effect of exposure of breast cancer cells to retinoids in combination with TGF-beta1. The incorporation of [3H]thymidine into MCF-7 cells was inhibited to 52 +/- 19% (control =100%) by 3 ng/ml TGF-beta1, and this dose was used throughout. It was found that addition of TGF-beta1 and isotretinoin to the culture did not decrease proliferation, while TGF-beta1 and tretinoin at low concentrations (3 x 10(-8) and 3 x 10(-7) M) reduced the percentage of proliferating cells by approximately 30% (67+/-8% and 67+/-5%, P<0.05 compared to values in the tretinoin group). Both retinoids also led to a statistically significant decrease in the stimulatory effect of 10(-9) M estradiol, attenuated by TGF-beta1. In addition, the retinoids in combination with TGF-beta1 and tamoxifen (10(-6) M) caused a further reduction in the percentage of proliferating cells. Immunocytochemical analysis showed that all the examined compounds gave a statistically significant reduction in the percentage of cells with a positive reaction to PCNA and Ki 67 antigen. TGF-beta1, isotretinoin and tretinoin added to the culture resulted in the lowest percentage of PCNA positive cells. However, the lowest fraction of Ki 67 positive cells was observed after addition of isotretinoin. The obtained results also confirm the fact that the well-known regulatory proteins Bcl-2 and p53 play an important role in the regulation of apoptosis in the MCF-7 cell line, with lowered Bcl-2 expression accompanying easier apoptotic induction. The majority of the examined compounds act via the p53 pathway although some bypass this important proapoptotic factor.

  6. Basics and applications of stem cells in the pancreas.

    PubMed

    Sekine, Keisuke; Taniguchi, Hideki

    2012-11-01

    Enormous efforts have been made to establish pancreatic stem/progenitor cells as a source for regenerative medicine for the treatment of diabetes mellitus. In recent years, it has been recognized that the self-renewal of beta cells is the dominant process involved in postnatal beta-cell regeneration and expansion. Nevertheless, several in-vitro studies have suggested that ductal or as yet unidentified cells are candidates for pancreatic stem/progenitor cells that can differentiate into multilineage cells, including insulin(+) cells. The question remains as to whether beta cells are generated postnatally from stem/progenitor cells other than pre-existing beta cells. Furthermore, mutated pancreatic stem cells are considered to be prospective candidates for cancer stem cells or tumor-initiating cells. This review highlights recent progress in pancreatic stem/progenitor cell research.

  7. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  8. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP expression in beta cells.« less

  9. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells.

    PubMed

    Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda

    2010-03-01

    We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.

  10. Pleiotrophin regulates lung epithelial cell proliferation and differentiation during fetal lung development via beta-catenin and Dlk1.

    PubMed

    Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin

    2009-10-09

    The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.

  11. Targeting cellular energy production in neurological disorders.

    PubMed

    Baker, Steven K; Tarnopolsky, Mark A

    2003-10-01

    The concepts of energy dysregulation and oxidative stress and their complicated interdependence have rapidly evolved to assume primary importance in understanding the pathophysiology of numerous neurological disorders. Therefore, neuroprotective strategies addressing specific bioenergetic defects hold particular promise in the treatment of these conditions (i.e., amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, Friedreich's ataxia, mitochondrial cytopathies and other neuromuscular diseases), all of which, to some extent, share 'the final common pathway' leading to cell death through either necrosis or apoptosis. Compounds such as creatine monohydrate and coenzyme Q(10) offer substantial neuroprotection against ischaemia, trauma, oxidative damage and neurotoxins. Miscellaneous agents, including alpha-lipoic acid, beta-OH-beta-methylbutyrate, riboflavin and nicotinamide, have also been shown to improve various metabolic parameters in brain and/or muscle. This review will highlight the biological function of each of the above mentioned compounds followed by a discussion of their utility in animal models and human neurological disease. The balance of this work will be comprised of discussions on the therapeutic applications of creatine and coenzyme Q(10).

  12. Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzene.

    PubMed

    Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste

    2005-08-14

    We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.

  13. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes.

    PubMed Central

    German, M S; Moss, L G; Wang, J; Rutter, W J

    1992-01-01

    The pancreatic beta cell makes several unique gene products, including insulin, islet amyloid polypeptide (IAPP), and beta-cell-specific glucokinase (beta GK). The functions of isolated portions of the insulin, IAPP, and beta GK promoters were studied by using transient expression and DNA binding assays. A short portion (-247 to -197 bp) of the rat insulin I gene, the FF minienhancer, contains three interacting transcriptional regulatory elements. The FF minienhancer binds at least two nuclear complexes with limited tissue distribution. Sequences similar to that of the FF minienhancer are present in the 5' flanking DNA of the human IAPP and rat beta GK genes and also the rat insulin II and mouse insulin I and II genes. Similar minienhancer constructs from the insulin and IAPP genes function as cell-specific transcriptional regulatory elements and compete for binding of the same nuclear factors, while the beta GK construct competes for protein binding but functions poorly as a minienhancer. These observations suggest that the patterns of expression of the beta-cell-specific genes result in part from sharing the same transcriptional regulators. Images PMID:1549125

  14. Proteolytic processing of endogenous and recombinant beta 4 integrin subunit

    PubMed Central

    1992-01-01

    The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432

  15. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damodaran, T.V., E-mail: tdamodar@nccu.edu; Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC; Dept of Biology, North Carolina Central University, Durham, NC 27707

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7-14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. Themore » hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative analysis revealed that the order of severity of damage declines from the spino-cerebellar, ventral, and dorsal tract respectively, suggesting neuroanatomical specificity. Thus, early activation of cell death and cell survival processes may play significant role in the clinical progression and syndromic clinical feature presentation of OPIDN. -- Highlights: Black-Right-Pointing-Pointer Multiple mechanisms of neurodegeneration were indicated in a study on OPIDN model. Black-Right-Pointing-Pointer Altered expressions of BCL2 and GADD45 were recorded in various tissues of CNS. Black-Right-Pointing-Pointer Multiple anomalous cellular (neuronal and astroglial) features were recorded. Black-Right-Pointing-Pointer Anatomical specificity of the neurodegeneration was described.« less

  16. Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm.

    PubMed

    Portha, Bernard

    2005-01-01

    Now that the reduction in beta-mass has been clearly established in humans with type 2 diabetes mellitus (T2DM) 1-4, the debate focuses on the possible mechanisms responsible for decreased beta-cell number and impaired beta-cell function and their multifactorial etiology. Appropriate inbred rodent models are essential tools for identification of genes and environmental factors that increase the risk of abnormal beta-cell function and of T2DM. The information available in the Goto-Kakizaki (GK) rat, one of the best characterized animal models of spontaneous T2DM, are reviewed in such a perspective. We propose that the defective beta-cell mass and function in the GK model reflect the complex interactions of three pathogenic players: (1) several independent loci containing genes causing impaired insulin secretion; (2) gestational metabolic impairment inducing a programming of endocrine pancreas (decreased beta-cell neogenesis) which is transmitted to the next generation; and (3) secondary (acquired) loss of beta-cell differentiation due to chronic exposure to hyperglycemia (glucotoxicity). An important message is that the 'heritable' determinants of T2DM are not simply dependant on genetic factors, but probably involve transgenerational epigenetic responses. Copyright (c) 2005 John Wiley & Sons, Ltd.

  17. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, modulates the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3.

    PubMed

    Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi

    2002-07-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.

  18. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    PubMed

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  19. Mono-(2-ethylhexyl) phthalate (MEHP) regulates glucocorticoid metabolism through 11{beta}-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Dun; Department of Orthopedics, Taizhou Hospital, Wenzhou Medical College, Lin Hai, ZJ 317000; Li, Xing-Wang

    2009-11-13

    Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11{beta}-hydroxysteroid dehydrogenase type 2 (11{beta}-HSD2), not 11{beta}-HSD1, is strongly expressed in murine gonadotrope L{beta}T2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11{beta}-HSD2 enzyme activity in L{beta}T2 cells at as low as 10{sup -7} M. Corticosterone (CORT) atmore » a concentration of 10{sup -6} M significantly inhibited L{beta}T2 cell proliferation after 2-day culture, and 10{sup -6} M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10{sup -5} or 10{sup -4} M MEHP, the minimal concentration of CORT to inhibit the proliferation of L{beta}T2 cells was lowered to 10{sup -7} M, and 10{sup -6} M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11{beta}-HSD2 may have a key role in glucocorticoid metabolism in L{beta}T2 cells. MEHP may participate in the glucocorticoid metabolism in L{beta}T2 cells through inhibition of 11{beta}-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.« less

  20. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels.

    PubMed

    van Tiel, Claudia M; Westerman, Jan; Paasman, Marten A; Hoebens, Martha M; Wirtz, Karel W A; Snoek, Gerry T

    2002-06-21

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Jiawei; Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA 90502; Lu Zhenyu

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response tomore » FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.« less

  2. D-beta-hydroxybutyrate protects dopaminergic SH-SY5Y cells in a rotenone model of Parkinson's disease.

    PubMed

    Imamura, Keiko; Takeshima, Takao; Kashiwaya, Yoshihiro; Nakaso, Kazuhiro; Nakashima, Kenji

    2006-11-01

    It has been postulated that the pathogenesis of Parkinson's disease (PD) is associated with mitochondrial dysfunction. Rotenone, an inhibitor of mitochondrial complex I, provides models of PD both in vivo and in vitro. We investigated the neuroprotective effect of D-beta-hydroxybutyrate (bHB), a ketone body, against rotenone toxicity by using SH-SY5Y dopaminergic neuroblastoma cells. SH-SY5Y cells, differentiated by all-trans-retinoic acid, were exposed to rotenone at concentrations ranging from 0 to 1,000 nM. We evaluated cellular oxidation reduction by the alamarBlue assay, viability by lactate dehydrogenase (LDH) assay, and survival/death ratio by live/dead assays. Exposure to rotenone for 48 hr oxidized cells and decreased their viability and survival rate in a concentration-dependent manner. Pretreatment of cells with 8 mM bHB provided significant protection to SH-SY5Y cells. Whereas rotenone caused the loss of mitochondrial membrane potential, released cytochrome c into the cytosol, and reduced cytochrome c content in mitochondria, addition of bHB blocked this toxic effect. bHB also attenuated the rotenone-induced activation of caspase-9 and caspase-3. Administration of 0-10 mM 3-nitropropionic acid, a complex II inhibitor, also decreased the reducing power of SH-SY5Y cells measured by alamarBlue assay. Pretreatment with 8 mM bHB attenuated the decrease of alamarBlue fluorescence. These data demonstrated that bHB had a neuroprotective effect that supported the mitochondrial respiration system by reversing the inhibition of complex I or II. Ketone bodies, the alternative energy source in the mammalian brain, appear to have therapeutic potential in PD. Copyright 2006 Wiley-Liss, Inc.

  3. Characterization of the high affinity binding of epsilon toxin from Clostridium perfringens to the renal system.

    PubMed

    Dorca-Arévalo, Jonatan; Martín-Satué, Mireia; Blasi, Juan

    2012-05-25

    Epsilon toxin (ε-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxaemia in livestock. In the renal system, the toxin binds to target cells before oligomerization, pore formation and cell death. Still, there is little information about the cellular and molecular mechanism involved in the initial steps of the cytotoxic action of ε-toxin, including the specific binding to the target sensitive cells. In the present report, the binding step of ε-toxin to the MDCK cell line is characterized by means of an ELISA-based binding assay with recombinant ε-toxin-green fluorescence protein (ε-toxin-GFP) and ε-prototoxin-GFP. In addition, different treatments with Pronase E, detergents, N-glycosidase F and beta-elimination on MDCK cells and renal cryosections have been performed to further characterize the ε-toxin binding. The ELISA assays revealed a single binding site with a similar dissociation constant (K(d)) for ε-toxin-GFP and ε-prototoxin-GFP, but a three-fold increase in B(max) levels in the case of ε-toxin-GFP. Double staining on kidney cryoslices with lectins and ε-prototoxin-GFP revealed specific binding to distal and collecting tubule cells. In addition, experiments on kidney and bladder cryoslices demonstrated the specific binding to distal tubule of a range of mammalian renal systems. Pronase E and beta-elimination treatments on kidney cryoslices and MDCK cells revealed that the binding of ε-toxin in renal system is mediated by a O-glycoprotein. Detergent treatments revealed that the integrity of the plasma membrane is required for the binding of ε-toxin to its receptor. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A case of long QT syndrome: challenges on a bumpy road.

    PubMed

    Magnusson, Peter; Gustafsson, Per-Erik

    2017-06-01

    Beta-agonist treatment during pregnancy may unmask the diagnosis of long QT syndrome. The QT prolongation can result in functional AV block. A history of seizure and/or sudden death in a family member should raise suspicion of ventricular tachycardia. More than one mutation may coexist. Refusal of beta-blocker therapy complicates risk stratification.

  5. Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    PubMed

    Lin, Yi-Chin; Uang, Hao-Wei; Lin, Rong-Jyh; Chen, Ing-Jun; Lo, Yi-Ching

    2007-12-01

    Glyceryl nonivamide (GLNVA), a vanilloid receptor (VR) agonist, has been reported to have calcitonin gene-related peptide-associated vasodilatation and to prevent subarachnoid hemorrhage-induced cerebral vasospasm. In this study, we investigated the neuroprotective effects of GLNVA on activated microglia-like cell mediated- and proparkinsonian neurotoxin 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. In coculture conditions, we used lipopolysaccharide (LPS)-stimulated BV-2 cells as a model of activated microglia. LPS-induced neuronal death was significantly inhibited by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase. However, capsazepine, the selective VR1 antagonist, did not block the neuroprotective effects of GLNVA. GLNVA reduced LPS-activated microglia-mediated neuronal death, but it lacked protection in DPI-pretreated cultures. GLNVA also decreased LPS activated microglia induced overexpression of neuronal nitric-oxide synthase (nNOS) and glycoprotein 91 phagocyte oxidase (gp91(phox)) on SH-SY5Y cells. Pretreatment of BV-2 cells with GLNVA diminished LPS-induced nitric oxide production, overexpression of inducible nitric-oxide synthase (iNOS), and gp91(phox) and intracellular reactive oxygen species (iROS). GLNVA also reduced cyclooxygenase (COX)-2 expression, inhibitor of nuclear factor (NF)-kappaB (IkappaB)alpha/IkappaBbeta degradation, NF-kappaB activation, and the overproduction of tumor necrosis factor-alpha, interleukin (IL)-1beta, and prostaglandin E2 in BV-2 cells. However, GLNVA augmented anti-inflammatory cytokine IL-10 production on LPS-stimulated BV-2 cells. Furthermore, in 6-OHDA-treated SH-SY5Y cells, GLNVA rescued the changes in condensed nuclear and apoptotic bodies, prevented the decrease in mitochondrial membrane potential, and reduced cells death. GLNVA also suppressed accumulation of iROS and up-regulated heme oxygenase-1 expression. 6-OHDA-induced overexpression of nNOS, iNOS, COX-2, and gp91(phox) was also reduced by GLNVA. In summary, the neuroprotective effects of GLNVA are mediated, at least in part, by decreasing the inflammation- and oxidative stress-associated factors induced by microglia and 6-OHDA.

  6. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normalmore » glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.« less

  7. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.

    PubMed

    Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F

    2006-05-01

    The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.

  8. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yong, E-mail: yongzhao@uic.edu; Guo, Chengshan; Hwang, David

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model inmore » NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.« less

  9. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish

    PubMed Central

    2011-01-01

    Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development. PMID:22034951

  10. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    PubMed

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  11. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study.

    PubMed

    Mathis, Ute; Schaeffel, Frank

    2010-06-01

    In the chicken model of myopia, it has first been shown that imposing defocus to the retina results in active remodelling of the sclera which, in turn, results in axial length changes of the eye. Transforming growth factor-beta (TGF-beta) is one of the scleral growth modulators but its cellular localization in the fundal layers, colocalization and function are not well known. The aim of the current study was to investigate the cellular distribution of the three isoforms TGF-beta1, 2 and 3 by immunohistochemical labelling. Furthermore, the effects of visual experience that induces refractive errors on TGF-beta2 labelling were examined. Transversal cryostat sections of the fundal layers were analyzed by indirect immunofluorescent labelling and cell counts. Visual experience was changed by having the chicks wear either diffusers, or positive or negative lenses of 7D power in front of the right eyes for various periods of time. Left eyes served as uncovered controls. All TGF-beta isoforms were localized in both scleral layers. In choroid, diffuse labelling of all isoforms was found. In retina, TGF-beta1 and 3 were detected in bipolar, amacrine and ganglion cells and TGF-beta2 in amacrine and ganglion cells. To further characterize these cells, double-labelling with known amacrine and bipolar cell markers was performed (calbindin, cellular retinoic acid binding protein (CRABP), Islet1, Lim3 and protein kinase C (PKC)). TGF-beta1, 2 and 3 could be colocalized with calbindin and CRABP in single amacrine cells. TGF-beta1-positive bipolar cells were immunoreactive to Lim3. TGF-beta1 and 3 were never colocalized with PKC in bipolar cells. Also, colocalization with peptides known to be involved in myopia development in chicks, such as glucagon, or vasointestinal polypeptide and the key enzyme for dopamine synthesis, tyrosine hydroxylase, was not observed. Lenses or diffusers, worn by the chicks for various periods of time, had no effect on TGF-beta2 immunoreactivity in choroid or sclera, or on the number of TGF-beta2 (active and latent form) expressing amacrine cells. This result did not change when the two identified populations of TGF-beta2 expressing amacrine cells (one calbindin-positive and the other CRABP-positive) were separately considered. Also no modulation was seen in choroid, although an earlier study had found changes in TGF-beta2 mRNA after lens treatment. The lack of any visually-induced changes in retina or choroid suggests that TGF-beta may not represent a key molecule in the retino-choroidal signalling cascade although it has previously been shown to have a primary role in scleral remodelling. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity.

    PubMed

    Tomasini, Richard; Seux, Mylène; Nowak, Jonathan; Bontemps, Caroline; Carrier, Alice; Dagorn, Jean-Charles; Pébusque, Marie-Josèphe; Iovanna, Juan L; Dusetti, Nelson J

    2005-12-08

    TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.

  13. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  14. Off-Target Effects of Drugs that Disrupt Human Mitochondrial DNA Maintenance

    PubMed Central

    Young, Matthew J.

    2017-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus (HIV) the cause of acquired immunodeficiency syndrome. Development of severe mitochondrial toxicity has been well documented in patients infected with HIV and administered NRTIs. In vitro biochemical experiments have demonstrated that the replicative mitochondrial DNA (mtDNA) polymerase gamma, Polg, is a sensitive target for inhibition by metabolically active forms of NRTIs, nucleotide reverse transcriptase inhibitors (NtRTIs). Once incorporated into newly synthesized daughter strands NtRTIs block further DNA polymerization reactions. Human cell culture and animal studies have demonstrated that cell lines and mice exposed to NRTIs display mtDNA depletion. Further complicating NRTI off-target effects on mtDNA maintenance, two additional DNA polymerases, Pol beta and PrimPol, were recently reported to localize to mitochondria as well as the nucleus. Similar to Polg, in vitro work has demonstrated both Pol beta and PrimPol incorporate NtRTIs into nascent DNA. Cell culture and biochemical experiments have also demonstrated that antiviral ribonucleoside drugs developed to treat hepatitis C infection act as off-target substrates for POLRMT, the mitochondrial RNA polymerase and primase. Accompanying the above-mentioned topics, this review examines: (1) mtDNA maintenance in human health and disease, (2) reports of DNA polymerases theta and zeta (Rev3) localizing to mitochondria, and (3) additional drugs with off-target effects on mitochondrial function. Lastly, mtDNA damage may induce cell death; therefore, the possibility of utilizing compounds that disrupt mtDNA maintenance to kill cancer cells is discussed. PMID:29214156

  15. Hepatitis C virus core protein subverts the antiviral activities of human Kupffer cells.

    PubMed

    Tu, Zhengkun; Pierce, Robert H; Kurtis, Jonathan; Kuroki, Yoshio; Crispe, I Nicholas; Orloff, Mark S

    2010-01-01

    Kupffer cells (KC) are important innate immune cells of the liver, functioning as scavenging sinusoidal phagocytes and transducers of pattern recognition signals, including those of toll-like receptors (TLRs). The hepatitis C virus core protein (HCVc) engages TLR2 on peripheral blood monocytes and induces production of multiple inflammatory cytokines. We examined the effects of HCVc on human primary KC functions. KC were isolated from living donor allografts and stimulated with HCVc and/or ligands for TLRs. KC were examined for production of cytokines, expression of programmed death-ligand 1 (PD-L1), secretion of type 1 interferons (IFNs), and expression of the apoptosis-inducing protein tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). HCVc acts as a ligand for TLR2 on human KC, inducing them to secrete interleukin (IL)-1beta, TNF-alpha, and IL-10 and up-regulate cell surface PD-L1. HCVc blocked TLR3-mediated secretion of IFN-alpha, IFN-beta, and cell surface expression of the cytotoxic molecule TRAIL. Inhibition of phosphoinositide 3 kinase with LY294002 blocked the up-regulation of PD-L1 by TLR ligands and the TLR3-specific induction of TRAIL and type 1 IFNs. KC are intravascular macrophages that are continuously exposed to, and tolerant of, bacterial TLR ligands, which are delivered via the portal circulation. By mimicking a bacterial TLR2 ligand and effectively blocking the TLR3-mediated, double-stranded RNA-induced antiviral response, HCVc might appear to exploit this unique aspect of immunity in the liver. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    PubMed

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists indicates that beta2-AR activation is mediating the increased AP frequency. Knowledge of functional AR expression in CA1 pyramidal neurons will aid future long-term potentiation studies by allowing selective manipulation of specific beta-AR subtypes.

  17. Radiation leukemia virus-induced thymic lymphomas express a restricted repertoire of T-cell receptor V beta gene products.

    PubMed Central

    Sen-Majumdar, A; Weissman, I L; Hansteen, G; Marian, J; Waller, E K; Lieberman, M

    1994-01-01

    We have investigated the phenotypic changes that take place during the process of neoplastic transformation in the thymocytes of C57BL/Ka mice infected by the radiation leukemia virus (RadLV). By the combined use of antibodies against the envelope glycoprotein gp70 of RadLV, the transformation-associated cell surface marker 1C11, and the CD3-T-cell receptor (TCR) complex, we found that in the RadLV-infected thymus, the earliest expression of viral gp70 is in 1C11hi cells; a small but significant percentage of these cells also express CD3. A first wave of viral replication, manifested by the expression of high levels of gp70 in thymocytes (over 70% positive), reaches a peak at 2 weeks; during this period, no significant changes are observed in the expression of 1C11 or CD3. The population of gp70+ cells is drastically reduced at 3 to 4 weeks after infection. However, a second cohort of gp70+ cells appears after 4 weeks, and these cells express high levels of 1C11 and TCR determinants as well. RadLV-induced lymphomas differ from normal thymocytes in their CD4 CD8 phenotype, with domination by one or more subsets. Characterization of TCR gene rearrangements in RadLV-induced lymphomas shows that most of these tumors are clonal or oligoclonal with respect to the J beta 2 TCR gene, while the J beta 1 TCR gene is rearranged in a minority (4 of 11) of lymphomas. TCR V beta repertoire analysis of 12 tumors reveals that 6 (50%) express exclusively the V beta 6 gene product, 2 (17%) are V beta 5+, and 1 (8%) each are V beta 8+ and V beta 9+. In normal C57BL/Ka mice, V beta 6 is expressed on 12%, V beta 5 is expressed on 9%, V beta 8 is expressed on 22%, and V beta 9 is expressed on 4% of TCRhi thymocytes. Thus, it appears that RadLV-induced thymic lymphomas are not randomly selected with respect to expressed TCR V beta type. Images PMID:8289345

  18. beta 2-glycoprotein I (apolipoprotein H) modulates uptake and endocytosis associated chemiluminescence in rat Kupffer cells.

    PubMed

    Gomes, L F; Gonçalves, L M; Fonseca, F L A; Celli, C M; Videla, L A; Chaimovich, H; Junqueira, V B C

    2002-07-01

    beta 2-Glycoprotein I (beta 2 GPI) is known to influence macrophage uptake of particles with phosphatidylserine containing surfaces, as apoptotic thymocytes and unilamellar vesicles in vitro. Nevertheless, effects upon macrophage activation induced by this interaction are still unknown. beta 2 GPI influence upon the reactive species production by Kupffer cells was evaluated in order to investigate whether beta 2 GPI modulates the macrophage response to negatively charged surfaces. Chemiluminescence of isolated non-parenchymal rat liver cells was measured after phagocytosis of opsonized zymosan or phorbolymristate acetate (PMA) stimulation, in the presence and absence of large unilamellar vesicles (LUVs) containing 25 mol% phosphatidylserine (PS) or 50 mol% cardiolipin (CL) and complementary molar ratio of phosphatidylcholine (PC). beta 2 GPI decreased by 50% the chemiluminescence response induced by opsonized zymosan, with a 66% reduction of the initial light emission rate. PMA stimulated Kupffer cell chemiluminescence was insensitive to human or rat beta 2 GPI. Albumin (500 micrograms/ml) showed no effect upon chemiluminescence. beta 2 GPI increased PS/PC LUV uptake and degradation by Kupffer cells in a concentration-dependent manner, without leakage of the internal contents of the LUVs, as shown by fluorescence intensity enhancement. LUVs opsonized with antiphospholipid antibodies (aPL) from syphilitic patients increased light emission by Kupffer cells. Addition of beta 2 GPI to the assay reduced chemiluminescence due to opsonization with purified IgG antibodies from systemic lupus erythematosus (SLE or syphilis (Sy) patient sera. A marked net increase in chemiluminescence is observed in the presence of Sy aPL antibodies, whereas a decrease was found when SLE aPL were added to the assay, in the presence or absence of beta 2 GPI. At a concentration of 125 micrograms/ml, beta 2 GPI significantly reduced Kupffer cell Candida albicans phagocytosis index and killing score by 50 and 10%, respectively. The present data strongly suggest that particle uptake in the presence of beta 2 GPI is coupled to an inhibition of reactive species production by liver macrophages during the respiratory burst, supporting the role of beta 2 GPI as a mediator of senescent cell removal.

  19. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation.

    PubMed

    Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E

    2003-01-20

    Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (P<0.005), and diminish the bradykinin (BK)-induced calcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.

  20. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    PubMed Central

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  1. Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Perc, Matjaž; Marhl, Marko; Rupnik, Marjan Slak; Korošak, Dean

    2013-01-01

    We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are analyzed in the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network under stimulation with glucose, we show that the dynamics are more correlated under stimulation than under non-stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly, the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide support for the existing knowledge of beta cell physiology from a network perspective and shed important new light on the functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far. PMID:23468610

  2. GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells.

    PubMed

    Quoyer, Julie; Longuet, Christine; Broca, Christophe; Linck, Nathalie; Costes, Safia; Varin, Elodie; Bockaert, Joël; Bertrand, Gyslaine; Dalle, Stéphane

    2010-01-15

    Strategies based on activating GLP-1 receptor (GLP-1R) are intensively developed for the treatment of type 2 diabetes. The exhaustive knowledge of the signaling pathways linked to activated GLP-1R within the beta-cells is of major importance. In beta-cells, GLP-1 activates the ERK1/2 cascade by diverse pathways dependent on either Galpha(s)/cAMP/cAMP-dependent protein kinase (PKA) or beta-arrestin 1, a scaffold protein. Using pharmacological inhibitors, beta-arrestin 1 small interfering RNA, and islets isolated from beta-arrestin 1 knock-out mice, we demonstrate that GLP-1 stimulates ERK1/2 by two temporally distinct pathways. The PKA-dependent pathway mediates rapid and transient ERK1/2 phosphorylation that leads to nuclear translocation of the activated kinases. In contrast, the beta-arrestin 1-dependent pathway produces a late ERK1/2 activity that is restricted to the beta-cell cytoplasm. We further observe that GLP-1 phosphorylates the cytoplasmic proapoptotic protein Bad at Ser-112 but not at Ser-155. We find that the beta-arrestin 1-dependent ERK1/2 activation engaged by GLP-1 mediates the Ser-112 phosphorylation of Bad, through p90RSK activation, allowing the association of Bad with the scaffold protein 14-3-3, leading to its inactivation. beta-Arrestin 1 is further found to mediate the antiapoptotic effect of GLP-1 in beta-cells through the ERK1/2-p90RSK-phosphorylation of Bad. This new regulatory mechanism engaged by activated GLP-1R involving a beta-arrestin 1-dependent spatiotemporal regulation of the ERK1/2-p90RSK activity is now suspected to participate in the protection of beta-cells against apoptosis. Such signaling mechanism may serve as a prototype to generate new therapeutic GLP-1R ligands.

  3. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process

    PubMed Central

    Ghosal, Abhisek; Sekar, Thillai V.

    2014-01-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078

  4. Effects of alpha/beta-androstenediol immune regulating hormones on bone remodeling and apoptosis in osteoblasts.

    PubMed

    Urban, Nicole H; Chamberlin, Brett; Ramage, Samuel; Roberts, Zachary; Loria, Roger M; Beckman, Matthew J

    2008-06-01

    A large body of evidence suggests that the immune system directly impacts bone physiology. We tested whether immune regulating hormones (IRH), 17beta-androstenediol (beta-AED), 7beta,17beta-androstenetriol (beta-AET) or the 17alpha-androstenediol (alpha-AED), and 7alpha,17beta-androstenetriol (alpha-AET) metabolites could directly influence bone remodeling in vitro using human fetal osteoblasts (FOB-9). The impact on bone remodeling was examined by comparing the ratio of RANKL/OPG gene expression in response to AED and AET compounds. The alpha-AED was found to significantly increase in the ratio of RANKL/OPG gene expression and altering the morphology of RANKL stained FOB-9 cells. Cell viability was assessed using a Live/Dead assay. Again alpha-AED was unique in its ability to reduce the proportion of viable cells, and to induce mild apoptosis of FOB-9 cells. Treatment of FOB-9 cells with WY14643, an activator of PPAR-alpha and -gamma, also significantly elevated the percentage of dead cells. This increase was abolished by co-treatment with GW9962, a specific inhibitor of PPAR-gamma. Analysis of PPAR-gamma mRNA by Quantitative RT-PCR and its activation by DNA binding demonstrated that alpha-AED increased PPAR-gamma activation by 19%, while beta-AED conferred a 37% decrease in PPAR-gamma activation. In conclusion, alpha-AED opposed beta-AED by elevating a bone resorption scenario in osteoblast cells. The increase in RANKL/OPG is modulated by an activation of PPAR-gamma that in turn caused mild apoptosis of FOB-9 cells.

  5. The p75 neurotrophin receptor localization in blood-CSF barrier: expression in choroid plexus epithelium.

    PubMed

    Spuch, Carlos; Carro, Eva

    2011-05-11

    The presence of neurotrophins and their receptors Trk family has been reported in the choroid plexus. High levels of Nerve Growth Factor (NGF), Neurotrophin-4 (NT-4) and TrkB receptor were detected, while nothing was know about p75 neurotrophin receptor (p75NTR) in the choroid plexus epithelial cells. In neurons, p75NTR receptor has a dual function: promoting survival together with TrkA in response to NGF, and inducing apoptotic signaling through p75NTR. We postulated that p75NTR may also affect the survival pathways in the choroid plexus and also undergoes regulated proteolysis with metalloproteases. Here, we demonstrated the presence of p75NTR receptor in the choroid plexus epithelial cells. The p75NTR receptor would be involved in cell death mechanisms and in the damaged induced by amyloid beta (Aβ) in the choroid plexus and finally, we propose an essential role of p75NTR in the Aβ transcytosis through out choroid plexus barrier. The presence analysis reveals the new localization of p75NTR in the choroid plexus and, the distribution mainly in the cytoplasm and cerebrospinal fluid (CSF) side of the epithelial cells. We propose that p75NTR receptor plays a role in the survival pathways and Aβ-induced cell death. These data suggest that p75NTR dysfunction play an important role in the pathogenesis of brain diseases. The importance and novelty of this expression expands a new role of p75NTR.

  6. A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer.

    PubMed

    Kim, Sungwoo; Nishimoto, Satoru K; Bumgardner, Joel D; Haggard, Warren O; Gaber, M Waleed; Yang, Yunzhi

    2010-05-01

    We report here the development of a chitosan/beta-glycerophosphate(Ch/beta-GP) thermo-sensitive gel to deliver ellagic acid (EA) for cancer treatment. The properties of the Ch/beta-GP gels were characterized regarding chemical structure, surface morphology, and viscoelasticity. In vitro EA release rate from the EA loaded Ch/beta-GP gel and chitosan degradation rate were investigated. The anti-tumor effect of the EA loaded Ch/beta-GP gel on brain cancer cells (human U87 glioblastomas and rat C6 glioma cells) was evaluated by examining cell viability. Cell number and activity were monitored by the MTS assay. The Ch/beta-GP solution formed a heat-induced gel at body temperature, and the gelation temperature and time were affected by the final pH of the Ch/beta-GP solution. The lysozyme increased the EA release rate by 2.5 times higher than that in the absence of lysozyme. Dialyzed chitosan solution with final pH 6.3 greatly reduced the beta-GP needed for gelation, thereby significantly improving the biocompatibility of gel (p < 0.001). The chitosan gels containing 1% (w/v) of ellagic acid significantly reduced viability of U87 cells and C6 cells compared with the chitosan gels at 3 days incubation (p < 0.01, and p < 0.001, respectively). Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo, E-mail: csshin@snu.ac.kr

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2more » was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.« less

  8. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    PubMed

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  9. N-terminal tyrosine phosphorylation of caveolin-2 negates anti-proliferative effect of transforming growth factor beta in endothelial cells

    PubMed Central

    Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz

    2012-01-01

    Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829

  10. Adenomatous polyposis coli protein (APC)-independent regulation of beta-catenin/Tcf-4 mediated transcription in intestinal cells.

    PubMed Central

    Baulida, J; Batlle, E; García De Herreros, A

    1999-01-01

    Alterations in the transcriptional activity of the beta-catenin-Tcf complex have been associated with the earlier stages of colonic transformation. We show here that the activation of protein kinase C by the phorbol ester PMA in several intestinal cell lines increases the levels of beta-catenin detected in the nucleus and augments the transcriptional activity mediated by beta-catenin. The response to PMA was not related to modifications in the cytosolic levels of beta-catenin and was observed not only in cells with wild-type adenomatous polyposis coli protein (APC) but also in APC-deficient cells. Binding assays in vitro revealed that PMA facilitates the interaction of the beta-catenin with the nuclear structure. Our results therefore show that beta-catenin-mediated transcription can be regulated independently of the presence of APC. PMID:10567241

  11. Clostridium perfringens enterotoxin is a superantigen reactive with human T cell receptors V beta 6.9 and V beta 22

    PubMed Central

    1992-01-01

    Candidate superantigens were screened for their ability to induce lysis of human histocompatibility leukocyte antigen class II-positive targets by human CD8+ influenza-specific cytotoxic T cell (CTL) lines. Clostridium perfringens enterotoxin (CPET) induced major histocompatibility complex unrestricted killing by some but not all CTL lines. Using "anchored" polymerase chain reactions, CPET was shown to selectively stimulate peripheral blood lymphocytes bearing T cell receptor V beta 6.9 and V beta 22 in five healthy donors. V beta 24, V beta 21, V beta 18, V beta 5, and V beta 6.1-5 appeared to be weakly stimulated. Antigen processing was not required for CPET to induce proliferation. Like the staphylococcal enterotoxins, CPET is a major cause of food poisoning. These data suggest that superantigenic and enterotoxigenic properties may be closely linked. PMID:1512551

  12. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  13. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo.

    PubMed

    Gautam, Dinesh; Han, Sung-Jun; Hamdan, Fadi F; Jeon, Jongrye; Li, Bo; Li, Jian Hua; Cui, Yinghong; Mears, David; Lu, Huiyan; Deng, Chuxia; Heard, Thomas; Wess, Jürgen

    2006-06-01

    One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.

  14. Galectin-1 induces cell adhesion to the extracellular matrix and apoptosis of non-adherent human colon cancer Colo201 cells.

    PubMed

    Horiguchi, Natsuko; Arimoto, Kei-ichiro; Mizutani, Atsushi; Endo-Ichikawa, Yoko; Nakada, Hiroshi; Taketani, Shigeru

    2003-12-01

    To isolate cDNAs for molecules involved in cell adhesion to the extracellular matrix, expression cloning with non-adherent colon cancer Colo201 cells was carried out. Four positive clones were isolated and, when sequenced, one was found to be galectin-1, a beta-galactoside-binding protein. When cultured on fibronectin-, laminin-, and collagen-coated and non-coated dishes, the adherent galectin-1 cDNA-transfected Colo201 cells increased and spread somewhat. Immunofluorescence staining revealed that galectin-1 was expressed inside and outside of Colo201 cells. The adhesion was dependent on the carbohydrate-recognition domain of galectin-1 since lactose inhibited the adhesion and exogenously-added galectin-1 caused the adhesion. PD58059, an inhibitor of mitogen-activated protein kinase, or LY294002, a phosphoinositide 3-OH kinase inhibitor, decreased the adhesion. Furthermore, the expression of galectin-1 in Colo201 cells induced apoptotic cell death, while exogenously-added galectin-1 did not cause apoptosis. These results indicate that galectin-1 plays a role in both cell-matrix interactions and the inhibition of Colo201 cell proliferation, and suggest that galectin-1 expressed in cells could be associated with apoptosis.

  15. Expression and function of glycogen synthase kinase-3 in human hair follicles.

    PubMed

    Yamauchi, Koichi; Kurosaka, Akira

    2010-05-01

    Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.

  16. On the mathematical analysis of Ebola hemorrhagic fever: deathly infection disease in West African countries.

    PubMed

    Atangana, Abdon; Goufo, Emile Franc Doungmo

    2014-01-01

    For a given West African country, we constructed a model describing the spread of the deathly disease called Ebola hemorrhagic fever. The model was first constructed using the classical derivative and then converted to the generalized version using the beta-derivative. We studied in detail the endemic equilibrium points and provided the Eigen values associated using the Jacobian method. We furthered our investigation by solving the model numerically using an iteration method. The simulations were done in terms of time and beta. The study showed that, for small portion of infected individuals, the whole country could die out in a very short period of time in case there is not good prevention.

  17. Calcium Channels in Postnatal Development of Rat Pancreatic Beta Cells and Their Role in Insulin Secretion

    PubMed Central

    García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia

    2018-01-01

    Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214

  18. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells.

    PubMed

    Hisanaga, Etsuko; Nagasawa, Masahiro; Ueki, Kohjiro; Kulkarni, Rohit N; Mori, Masatomo; Kojima, Itaru

    2009-01-01

    Calcium-permeable cation channel TRPV2 is expressed in pancreatic beta-cells. We investigated regulation and function of TRPV2 in beta-cells. Translocation of TRPV2 was assessed in MIN6 cells and cultured mouse beta-cells by transfecting TRPV2 fused to green fluorescent protein or TRPV2 containing c-Myc tag in the extracellular domain. Calcium entry was assessed by monitoring fura-2 fluorescence. In MIN6 cells, TRPV2 was observed mainly in cytoplasm in an unstimulated condition. Addition of exogenous insulin induced translocation and insertion of TRPV2 to the plasma membrane. Consistent with these observations, insulin increased calcium entry, which was inhibited by tranilast, an inhibitor of TRPV2, or by knockdown of TRPV2 using shRNA. A high concentration of glucose also induced translocation of TRPV2, which was blocked by nefedipine, diazoxide, and somatostatin, agents blocking glucose-induced insulin secretion. Knockdown of the insulin receptor attenuated insulin-induced translocation of TRPV2. Similarly, the effect of insulin on TRPV2 translocation was not observed in a beta-cell line derived from islets obtained from a beta-cell-specific insulin receptor knockout mouse. Knockdown of TRPV2 or addition of tranilast significantly inhibited insulin secretion induced by a high concentration of glucose. Likewise, cell growth induced by serum and glucose was inhibited by tranilast or by knockdown of TRPV2. Finally, insulin-induced translocation of TRPV2 was observed in cultured mouse beta-cells, and knockdown of TRPV2 reduced insulin secretion induced by glucose. TRPV2 is regulated by insulin and is involved in the autocrine action of this hormone on beta-cells.

  19. Neutrophil chemotaxis in response to TGF-beta isoforms (TGF-beta 1, TGF-beta 2, TGF-beta 3) is mediated by fibronectin.

    PubMed

    Parekh, T; Saxena, B; Reibman, J; Cronstein, B N; Gold, L I

    1994-03-01

    TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta is no longer chemotactic, suggesting that PMNs only use Fn that is constitutively expressed for migration. At higher concentrations of TGF-beta, the Fn released may accumulate basal to the cell, ultimately retarding cellular migration and modulating the chemotactic response.

  20. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    PubMed

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  1. Coexistence and community structure of tropical trees in a Hawaiian montane rain forest

    USGS Publications Warehouse

    Hatfield, J.S.; Link, W.A.; Dawson, D.K.; Lindquist, E.L.

    1996-01-01

    We measured the diameter at breast height of all trees and shrubs > 5 meters in height, including standing dead trees, on 68 0.04-hectare study plots in a montane, subtropical rain forest on Mauna Loa, Hawai`i. The canopy species consisted of 88 percent Metrosideros polymorpha (ohia) and 12 percent Acacia koa (koa). Negative associations were found between the densities of koa and ohia, the density of koa and the total basal area of ohia, and the total basal areas of koa and ohia. The two-species lottery competition model, a stochastic model in which the coexistence of two species in a space-limited community results from temporal variation in recruitment and death rates, predicts a quadratic-beta distribution for the proportion of space occupied by each species. A discrete version of the quadratic-beta distribution, the quadratic-beta binomial distribution, was fit to the live koa and ohia densities and assessed with goodness-of-fit tests. Likelihood ratio tests provided evidence that the mean adult death rates of the two species were equal but that the relative competitive abilities of the two species favored ohia. These tests were corroborated by a contingency table analysis of death rates based on standing dead trees and growth rate studies which report that koa grows much faster than ohia. The lottery model predicts a positive covariance between death rates and ohia recruitment when mean death rates are equal and koa has a higher growth rate than ohia. We argue that the competitive advantage of ohia is due to its superior dispersal ability into large gaps, which would yield the positive covariance described above, and it is this positive covariance term that skews the occupation of space in favor of ohia.

  2. Nicotine promotes cell proliferation via {alpha}7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferationmore » and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.« less

  3. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    PubMed

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  4. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo.

    PubMed

    De Bari, Cosimo; Dell'Accio, Francesco; Luyten, Frank P

    2004-01-01

    We previously reported the identification in a nude mouse assay of molecular markers predictive of the capacity of articular cartilage-derived cells (ACDCs) to form ectopic stable cartilage that is resistant to vascular invasion and endochondral ossification. In the present study, we investigated whether in vitro-differentiated mesenchymal stem cells (MSCs) from the synovial membrane (SM) express the stable-chondrocyte markers and form ectopic stable cartilage in vivo. Chondrogenesis was induced in micromass culture with the addition of transforming growth factor beta1 (TGFbeta1). After acquisition of the cartilage phenotype, micromasses were implanted subcutaneously into nude mice. Alternatively, cells were released enzymatically and either replated in monolayer or injected intramuscularly into nude mice. Marker analysis was performed by quantitative reverse transcription-polymerase chain reaction. Cell death was detected with TUNEL assay. Cartilage-like micromasses and released cells expressed the stable-chondrocyte markers at levels comparable with those expressed by stable ACDCs. The released cells lost chondrocyte marker expression by 24 hours in monolayer and failed to form cartilage when injected intramuscularly into nude mice. Instead, myogenic differentiation was detected. When intact TGFbeta1-treated micromasses were implanted subcutaneously, they partially lost their cartilage phenotype and underwent cell death and neoangiogenesis within 1 week. At later time points (15-40 days), we retrieved neither cartilage nor bone, and human cells were not detectable. The chondrocyte-like phenotype of human SM MSCs, induced in vitro under specific conditions, appears to be unstable and is not sufficient to obtain ectopic formation of stable cartilage in vivo. Studies in animal models of joint surface defect repair are necessary to evaluate the stability of the SM MSC chondrocyte-like phenotype within the joint environment.

  5. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function

    PubMed Central

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  6. Early stages in the development of human T, natural killer and thymic dendritic cells.

    PubMed

    Spits, H; Blom, B; Jaleco, A C; Weijer, K; Verschuren, M C; van Dongen, J J; Heemskerk, M H; Res, P C

    1998-10-01

    T-cell development is initiated when CD34+ pluripotent stem cells or their immediate progeny leave the bone marrow to migrate to the thymus. Upon arrival in the thymus the stem cell progeny is not yet committed to the T-cell lineage as it has the capability to develop into T, natural killer (NK) and dendritic cells (DC). Primitive hematopoietic progenitor cells in the human thymus express CD34 and lack CD1a. When these progenitor cells develop into T cells they traverse a number of checkpoints. One early checkpoint is the induction of T-cell commitment, which correlates with appearance of CD1a and involves the loss of capacity to develop into NK cells and DC and the initiation of T-cell receptor (TCR) gene rearrangements. Basic helix-loop-helix transcription factors play a role in induction of T-cell commitment. CD1a+CD34+ cells develop into CD4+CD8 alpha+ beta+ cells by upregulating first CD4, followed by CD8 alpha and then CD8 beta. Selection for productive TCR beta gene rearrangements (beta selection) likely occurs in the CD4+CD8 alpha+ beta- and CD4+CD8 alpha+ beta+ populations. Although the T and NK-cell lineages are closely related to each other, NK cells can develop independently of the thymus. The fetal thymus is most likely one site of NK-cell development.

  7. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells.

    PubMed

    Jaiswal, Aruna S; Marlow, Benjamin P; Gupta, Nirupama; Narayan, Satya

    2002-12-05

    The development of nontoxic natural agents with chemopreventive activity against colon cancer is the focus of investigation in many laboratories. Curcumin (feruylmethane), a natural plant product, possesses such chemopreventive activity, but the mechanisms by which it prevents cancer growth are not well understood. In the present study, we examined the mechanisms by which curcumin treatment affects the growth of colon cancer cells in vitro. Results showed that curcumin treatment causes p53- and p21-independent G(2)/M phase arrest and apoptosis in HCT-116(p53(+/+)), HCT-116(p53(-/-)) and HCT-116(p21(-/-)) cell lines. We further investigated the association of the beta-catenin-mediated c-Myc expression and the cell-cell adhesion pathways in curcumin-induced G(2)/M arrest and apoptosis in HCT-116 cells. Results described a caspase-3-mediated cleavage of beta-catenin, decreased transactivation of beta-catenin/Tcf-Lef, decreased promoter DNA binding activity of the beta-catenin/Tcf-Lef complex, and decreased levels of c-Myc protein. These activities were linked with decreased Cdc2/cyclin B1 kinase activity, a function of the G(2)/M phase arrest. The decreased transactivation of beta-catenin in curcumin-treated HCT-116 cells was unpreventable by caspase-3 inhibitor Z-DEVD-fmk, even though the curcumin-induced cleavage of beta-catenin was blocked in Z-DEVD-fmk pretreated cells. The curcumin treatment also induced caspase-3-mediated degradation of cell-cell adhesion proteins beta-catenin, E-cadherin and APC, which were linked with apoptosis, and this degradation was prevented with the caspase-3 inhibitor. Our results suggest that curcumin treatment impairs both Wnt signaling and cell-cell adhesion pathways, resulting in G(2)/M phase arrest and apoptosis in HCT-116 cells.

  8. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral endotoxin following GM-CSF therapy, as evidenced by production of the tissue-reactive cytokines IL-1beta and TNF-alpha.

  9. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    PubMed

    Tsung, H C; Yao, Z

    1996-09-01

    When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and their immediate progenitor cells) from ES-T6 cells to form vessel-like structures, and that the role of TGF-beta 1 in vasculogenesis might be performed, in part, through the modulation of the composition and organization of the extracellular matrix. In addition, the enhanced expression of bFGF mRNA in derivatives differentiated from both ES-5 cells treated with rhTGF-beta 1 and ES-T6 cells were detected by Northern blot analysis. Thus, aside from its effects on extracellular matrix, TGF-beta 1 might also modulate the bioactivity of bFGF in relation to the growth of vascular endothelial cells in the present system.

  10. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Kazuki; Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180; Feril, Loreto B., E-mail: ferilism@yahoo.com

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA,more » which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.« less

  11. Antiproliferative properties of toremifene on AIDS-related Kaposi's sarcoma cells.

    PubMed

    Hong, Angela; Leigh, Bryan R

    2002-12-01

    Kaposi's sarcoma (KS) is the most common neoplastic apoptosis manifestation of acquired immunodeficiency syndrome. Toremifene is known to upregulate transforming growth factor beta-1 (TGF-beta1), which is a growth-inhibitory factor for KS. We investigated the in vitro effect of toremifene on KS cells. MTT assay was used to measure the growth of four KS cell lines and a human umbilical vein endothelial (HUVE) cell line after incubation with toremifene. Reverse transcription polymerase chain reaction and ELISA were used to measure the level of TGF-beta1. The IC(50) for the KS cells ranged from 2.2 to 3.2 microM, and 80% of the growth inhibition occurred within 24 h. Toremifene enhanced TGF-beta1 mRNA expression, and the level of TGF-beta1 increased from 103 to 473 pg/ml after 48 h of incubation. Toremifene had no effect on the growth of HUVE cells. Toremifene has a specific antiproliferative effect on KS cells. The stimulation of TGF-beta1 production may play a role in the antiproliferative process. Copyright 2002 S. Karger AG, Basel

  12. Beta-cryptoxanthin protection against cigarette smoke-induced inflammatory responses in the lung is due to the action of its own molecule

    USDA-ARS?s Scientific Manuscript database

    Higher intake of the dietary xanthophyll, beta-cryptoxanthin (BCX), has been associated with a lower risk of lung cancer death in smokers. We have previously shown that BCX feeding was effective in reducing both cigarette smoke (CS)-induced lung inflammation in ferrets and carcinogen-induced lung tu...

  13. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    PubMed

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-04-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

  14. Establishing Mental Retardation in Capital Cases: A Potential Matter of Life and Death.

    ERIC Educational Resources Information Center

    Baroff, George S.

    1991-01-01

    This paper discusses psychological test obstacles to gaining the acceptance of a diagnosis of mental retardation in criminal defendants, use of the Revised Beta intelligence test with defendants who may be retarded, possible modification of the adaptive behavior criterion for criminal defendants, and appropriateness of the death penalty for…

  15. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less

  16. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less

  17. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta.

    PubMed

    Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung

    2007-03-01

    CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.

  18. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K; Ohbayashi, E; Yamazaki, M; Shibata, Y; Abiko, Y

    1996-12-01

    Dental pulpal infection is most commonly caused by extensive dental caries. A principal driving force behind pulpal disease response appears to lie in the immune system's response to bacteria. However, the production of interleukin (IL)-1beta and IL-6 in human dental pulp (HDP) cells in response to lipopolysaccharide (LPS) has not been well characterized. We examined IL-1beta and IL-6 production in HDP cells by challenging with LPS from Porphyromonas endodontalis, which is a Gram-negative bacteria found in root canals. Our results presented here showed that when HDP cells were stimulated by LPS, the production of IL-6 always preceded that of IL-1beta. Since the IL-6 production was observed even in the presence of the IL-1beta receptor antagonist, we concluded IL-6 production was independent of the IL-1beta molecule in LPS-stimulated HDP cells. This idea was further supported by the results obtained from RT-PCR experiments, in which IL-6 mRNA, but not IL-1beta mRNA, was present in the RNA preparation isolated from the early stage of cells.

  19. 17betaE2 promotes cell proliferation in endometriosis by decreasing PTEN via NFkappaB-dependent pathway.

    PubMed

    Zhang, Hui; Zhao, Xingbo; Liu, Shu; Li, Jijun; Wen, Zeqing; Li, Mingjiang

    2010-04-12

    The objective of this study was to explore the mechanism of phosphatase and tensin homolog (PTEN) loss in endometriosis. We found that aberrant PTEN expression and mitogen-activated protein kinases (MAPK)/ERK, phosphoinositide 3-kinase (PI3K)/AKt, and nuclear factor-kappaB (NFkappaB) signaling overactivities coexisted in endometriosis. In vitro, 17beta-estradiol rapidly activated the 3 pathways in endometriotic cells and specific inhibitions on the 3 pathways respectively blocked 17beta-estradiol-induced cell proliferation. 17beta-estradiol suppressed PTEN transcription and expression in endometriotic cells which was abolished by specific NFkappaB inhibition. Total/nuclear PTEN-loss and MAPK/ERK, PI3K/AKt, and NFkappaB signal overactivities coexist in endometriosis. In vitro, 17beta-estradiol can promotes cell proliferation in endometriosis by activating PI3K/AKt pathway via an NFkappaB/PTEN-dependent pathway. For the first time we propose the possibility of the presence of a positive feedback-loop: 17beta-estradiol-->high NFkappaB-->low PTEN-->high PI3K-->high NFkappaB, in endometriosis, which may finally promote the proliferation of ectopic endometrial epithelial cells and in turn contributes to the progression of the disease.

  20. Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin

    NASA Technical Reports Server (NTRS)

    Bridge, K. Y.; Young, R. B.; Vaughn, J. R.

    1998-01-01

    Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 microM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  1. A human beta cell line with drug inducible excision of immortalizing transgenes

    PubMed Central

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  2. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer.

    PubMed

    Nam, Jeong-Seok; Suchar, Adam M; Kang, Mi-Jin; Stuelten, Christina H; Tang, Binwu; Michalowska, Aleksandra M; Fisher, Larry W; Fedarko, Neal S; Jain, Alka; Pinkas, Jan; Lonning, Scott; Wakefield, Lalage M

    2006-06-15

    Transforming growth factor betas (TGF-beta) play a dual role in carcinogenesis, functioning as tumor suppressors early in the process, and then switching to act as prometastatic factors in late-stage disease. We have previously shown that high molecular weight TGF-beta antagonists can suppress metastasis without the predicted toxicities. To address the underlying mechanisms, we have used the 4T1 syngeneic mouse model of metastatic breast cancer. Treatment of mice with a monoclonal anti-TGF-beta antibody (1D11) significantly suppressed metastasis of 4T1 cells to the lungs. When metastatic 4T1 cells were recovered from lungs of 1D11-treated and control mice, the most differentially expressed gene was found to be bone sialoprotein (Bsp). Immunostaining confirmed the loss of Bsp protein in 1D11-treated lung metastases, and TGF-beta was shown to regulate and correlate with Bsp expression in vitro. Functionally, knockdown of Bsp in 4T1 cells reduced the ability of TGF-beta to induce local collagen degradation and invasion in vitro, and treatment with recombinant Bsp protected 4T1 cells from complement-mediated lysis. Finally, suppression of Bsp in 4T1 cells reduced metastasis in vivo. We conclude that Bsp is a plausible mediator of at least some of the tumor cell-targeted prometastatic activity of TGF-beta in this model and that Bsp expression in metastases can be successfully suppressed by systemic treatment with anti-TGF-beta antibodies.

  3. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  4. SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.Y.; Guatelli, S; Oborn, B

    2014-06-01

    Purpose: The purpose of this study is to perform a comprehensive comparison of the therapeutic efficacy and cytotoxicity of alpha and beta emitters for Radioimmunotherapy (RIT). For each stage of cancer development, specific models were built for the separate objectives of RIT to be addressed:a) kill isolated cancer cells in transit in the lymphatic and vascular circulation,b) regress avascular cell clusters,c) regress tumor vasculature and tumors. Methods: Because of the nature of short range, high LET alpha and long energy beta radiation and heterogeneous antigen expression among cancer cells, the microdosimetric approach is essential for the RIT assessment. Geant4 basedmore » microdosimetric models are developed for the three different stages of cancer progression: cancer cells, cell clusters and tumors. The energy deposition, specific energy resulted from different source distribution in the three models was calculated separately for 4 alpha emitting radioisotopes ({sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac) and 6 beta emitters ({sup 32}P, {sup 33}P, {sup 67}Cu, {sup 90}Y, {sup 131}I and {sup 177}Lu). The cell survival, therapeutic efficacy and cytotoxicity are determined and compared between alpha and beta emitters. Results: We show that internal targeted alpha radiation has advantages over beta radiation for killing isolated cancer cells, regressing small cell clusters and also solid tumors. Alpha particles have much higher dose specificity and potency than beta particles. They can deposit 3 logs more dose than beta emitters to single cells and solid tumor. Tumor control probability relies on deep penetration of radioisotopes to cancer cell clusters and solid tumors. Conclusion: The results of this study provide a quantitative understanding of the efficacy and cytotoxicity of RIT for each stage of cancer development.« less

  5. GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice.

    PubMed

    Schwenk, Robert W; Baumeier, Christian; Finan, Brian; Kluth, Oliver; Brauer, Christine; Joost, Hans-Georg; DiMarchi, Richard D; Tschöp, Matthias H; Schürmann, Annette

    2015-03-01

    Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone.

  6. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg.

    PubMed

    Stockis, Julie; Colau, Didier; Coulie, Pierre G; Lucas, Sophie

    2009-12-01

    Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.

  7. [Concentration of proinflammatory cytokines (TNF-alpha, IL-8) in the cerebrospinal fluid and the course of bacterial meningitis].

    PubMed

    Bociaga-Jasik, Monika; Garlicki, Aleksander; Kalinowska-Nowak, Anna; Mach, Tomasz

    2004-01-01

    Bacterial meningitis is still associated with high mortality rate and severe neurological sequels. The aim of the study was to assess correlation between concentration of proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-8) in the cerebrospinal fluid (CSF) and patient condition described on the basis of Glasgow Coma Scale (GCS), changes in the CSF (pleocytosis, protein and glucose level), mortality rate and occurrence of neurological complications. 42 patients with bacterial meningitis have been analysed. Control group consisted of 25 patients with viral meningitis and 23 patients without meningitis. In analysed group with bacterial meningitis the correlation between number of scores aggregated by patients in GCS and outcome has been observed. Concentration of TNF-alpha, IL-1 beta, IL-8 in CSF of patient with bacterial meningitis was significantly higher (mean value; 705.2 pg/ml, 401.1 pg/ml and 1696.0 pg/ml) than in control group (viral meningitis: 7.93 pg/ml, 31.89 pg/ml, 405.28 pg/ml, without meningitis: 0.38 pg/ml, 2.55 pg/ml, 32.56 pg/ml). Negative correlation between concentration of investigated cytokines in the CSF of patient with bacterial meningitis and GCS has been observed. Furthermore TNF-alpha and IL-8 levels correlated with pleocytosis, and protein and glucose levels, whereas IL-1 beta correlated with pleocytosis and protein level in CSF. Connection between TNF-alpha and IL-1 beta but not IL-8 level and outcome of bacterial meningitis has been observed. High TNF-alpha in the CSF (median value 953 pg/ml) was associated with significant risk of patient death. IL-1 beta has been better prognostic indicator. Patients who developed neurological sequels had median value of IL-1 beta level 401.3 pg/ml, and those who died had 585.9 pg/ml vs 244.7 pg/ml in the group who survived without any complications. Analysis of the ROC curve-revealed, that concentration of IL-1 beta > or = 289.9 pg/ml with 88.9% sensitivity and 67.7% specifity differentiate cases who at risk for death. For TNF-alpha the cut-off was > or = 538.9 pg/ml. The sensitivity for determined critical point was 77%, and specificity was 68.7%. Our investigation confirm that TNF alpha, IL-1 beta, IL-8 are useful in differential diagnosis of neuroinfections. Assessment of patients with bacterial meningitis on the basis of GCS is helpful to establish prognosis, and CGS seems to correlate with the intensity of inflammation in the CSF. High concentration of TNF-alpha, and IL-1 beta in the CSF are associated with the risk of patient death during the course of bacterial meningitis, but IL-1 beta has been the better prognostic marker.

  8. Caveolae are negative regulators of transforming growth factor-beta1 signaling in ureteral smooth muscle cells.

    PubMed

    Stehr, Maximilian; Estrada, Carlos R; Khoury, Joseph; Danciu, Theodora E; Sullivan, Maryrose P; Peters, Craig A; Solomon, Keith R; Freeman, Michael R; Adam, Rosalyn M

    2004-12-01

    The mechanisms underlying ureteral cell regulation are largely unknown. Previous studies have identified lipid rafts/caveolae as regulators of growth stimulatory signals in ureteral smooth muscle cells (USMCs). In this study we determined whether growth inhibitory signaling by transforming growth factor-beta1 (TGF-beta1) is also regulated by caveolae in USMC. Expression of components of the TGF-beta1 signaling axis in USMCs was determined by immunoblot and mRNA analyses. Growth regulatory activity of TGF-beta1 was assessed by H-thymidine incorporation. In select experiments caveolae were disrupted reversibly by cholesterol depletion and replenishment prior to TGF-beta1 treatment. TGF-beta1-responsive gene expression was evaluated using the TGF-beta1 responsive promoter-reporter construct 3TP-Lux. USMCs expressed TGF-beta1, types I and II TGF-beta1 receptors, and the effector Smad-2. TGF-beta1 potently inhibited DNA synthesis in USMCs (IC50 60 pM). TGF-beta1 mediated DNA synthesis inhibition was potentiated following the disruption of caveolae by cholesterol depletion. This effect was reversible with membrane cholesterol restoration. TGF-beta1 stimulated gene activity was augmented by caveolae disruption, while caveolae reformation returned promoter activity to baseline levels. TGF-beta1 is a potent growth inhibitor of USMCs and its activity can be enhanced by caveolae ablation. These findings suggest a role for TGF-beta1 in the growth regulation of normal ureteral cells and implicate caveolar membrane domains in the negative regulation of TGF-beta1 signaling. These studies may be relevant to ureteral pathologies that are characterized by smooth muscle dysplasia.

  9. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    PubMed

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  10. Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Tempel, Rebecca; Cambronne, Xiaolu A.

    2013-09-22

    Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared to the wild type parent strain. To elucidate the cellularmore » signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin (TTP), a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of TTP, leading to the production of cytokines such as IL-1beta and TNF-alpha which may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that controls infection by this pathogen.« less

  11. Integrin beta 1 inhibition alleviates the chronic hyperproliferative dermatitis phenotype of SHARPIN-deficient mice.

    PubMed

    Peuhu, Emilia; Salomaa, Siiri I; De Franceschi, Nicola; Potter, Christopher S; Sundberg, John P; Pouwels, Jeroen

    2017-01-01

    SHARPIN (Shank-Associated RH Domain-Interacting Protein) is a component of the linear ubiquitin chain assembly complex (LUBAC), which enhances TNF-induced NF-κB activity. SHARPIN-deficient (Sharpincpdm/cpdm) mice display multi-organ inflammation and chronic proliferative dermatitis (cpdm) due to TNF-induced keratinocyte apoptosis. In cells, SHARPIN also inhibits integrins independently of LUBAC, but it has remained enigmatic whether elevated integrin activity levels in the dermis of Sharpincpdm/cpdm mice is due to increased integrin activity or is secondary to inflammation. In addition, the functional contribution of increased integrin activation to the Sharpincpdm/cpdm phenotype has not been investigated. Here, we find increased integrin activity in keratinocytes from Tnfr1-/- Sharpincpdm/cpdm double knockout mice, which do not display chronic inflammation or proliferative dermatitis, thus suggesting that SHARPIN indeed acts as an integrin inhibitor in vivo. In addition, we present evidence for a functional contribution of integrin activity to the Sharpincpdm/cpdm skin phenotype. Treatment with an integrin beta 1 function blocking antibody reduced epidermal hyperproliferation and epidermal thickness in Sharpincpdm/cpdm mice. Our data indicate that, while TNF-induced cell death triggers the chronic inflammation and proliferative dermatitis, absence of SHARPIN-dependent integrin inhibition exacerbates the epidermal hyperproliferation in Sharpincpdm/cpdm mice.

  12. Cell type-specific regulation of beta2-adrenoceptor mRNA by agonists.

    PubMed

    Danner, S; Lohse, M J

    1997-07-16

    Prolonged agonist stimulation of beta2-adrenoceptors results in receptor down-regulation which is often paralleled by a reduction of the corresponding mRNA. In this study, we investigated the agonist-dependent regulation of beta2-adrenoceptor mRNA in DDT1-MF2 smooth muscle cells and C6 glioma cells. In DDT1-MF2 cells the half-life of the mRNA was 12 h in monolayer compared to 2 h in suspension cultures. Under both conditions, the agonist isoproterenol reduced this half-life by a factor of 2. In contrast, in C6 glioma cells isoproterenol had no effect on the mRNA stability, even though it reduced mRNA levels by approximately 50%. Isoproterenol-induced downregulation of beta2-adrenoceptor mRNA was completely blocked in C6 cells by the presence of a protein synthesis inhibitor, while this was not so in DDT1-MF2-cells. These data show that beta2-adrenoceptor downregulation occurs via cell-type specific mechanisms.

  13. Effects of beta-blocker therapy on mortality in patients with heart failure. A systematic overview of randomized controlled trials.

    PubMed

    Doughty, R N; Rodgers, A; Sharpe, N; MacMahon, S

    1997-04-01

    Several randomized trials have reported that beta-blocker therapy improves left ventricular function and reduces the rate of hospitalization in patients with congestive heart failure. However, most trials were individually too small to assess reliably the effects of treatment on mortality. In these circumstances a systematic overview of all trials of beta-blocker therapy in patients with congestive heart failure may provide the most reliable guide to treatment effects. Details were sought from all completed randomized trials of oral beta-blocker therapy in patients with heart failure of any aetiology. In particular, data on mortality were sought from all randomized patients for the scheduled treatment period. The typical effect of treatment on mortality was estimated from an overview in which the results of all individual trials were combined using standard statistical methods. Twenty-four randomized trials, involving 3141 patients with stable congestive heart failure were identified. Complete data on mortality were obtained from all studies, and a total of 297 deaths were documented during an average of 13 months of follow-up. Overall, there was a 31% reduction in the odds of death among patients assigned a beta-blocker (95% confidence interval 11 to 46%, 2P = 0.0035), representing an absolute reduction in mean annual mortality from 9.7% to 7.5%. The effects on mortality of vasodilating beta-blockers (47% reduction SD 15), principally carvedilol, were non-significantly greater (2P = 0.09) than those of standard agents (18% reduction SD 15), principally metoprolol. Beta-blocker therapy is likely to reduce mortality in patients with heart failure. However, large-scale, long-term randomized trials are still required to confirm and quantify more precisely the benefit suggested by this overview.

  14. Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients.

    PubMed

    Pfleger, Christian; Meierhoff, Guido; Kolb, Hubert; Schloot, Nanette C

    2010-03-01

    The aim of the current study was to investigate whether autoantigen directed T-cell reactivity relates to beta-cell function during the first 78 weeks after diagnosis of type 1 diabetes. 50 adults and 49 children (mean age 27.3 and 10.9 years respectively) with recent onset type 1 diabetes who participated in a placebo-controlled trial of immune intervention with DiaPep277 were analyzed. Secretion of interferon (IFN)-gamma, interleukin (IL)-5, IL-13 and IL-10 by single peripheral mononuclear cells (PBMC) upon stimulation with islet antigens GAD65, heat shock protein 60 (Hsp60) protein-tyrosine-phosphatase-like-antigen (pIA2) or tetanus toxoid (TT) was determined applying ELISPOT; beta-cell function was evaluated by glucagon stimulated C-peptide. Multivariate regression analysis was applied. In general, number of islet antigen-reactive cells decreased over 78 weeks in both adults and children, whereas reactivity to TT was not reduced. In addition, there was an association between the quality of immune cell responses and beta-cell function. Overall, increased responses by IFN-gamma secreting cells were associated with lower beta-cell function whereas IL-5, IL-13 and IL-10 cytokine responses were positively associated with beta-cell function in adults and children. Essentially, the same results were obtained with three different models of regression analysis. The number of detectable islet-reactive immune cells decreases within 1-2 years after diagnosis of type 1 diabetes. Cytokine production by antigen-specific PBMC reactivity is related to beta-cell function as measured by stimulated C-peptide. Cellular immunity appears to regress soon after disease diagnosis and begin of insulin therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. A kinetic comparison of the processing and secretion of the alpha beta dimer and the uncombined alpha and beta subunits of chorionic gonadotropin synthesized by human choriocarcinoma cells.

    PubMed

    Peters, B P; Krzesicki, R F; Hartle, R J; Perini, F; Ruddon, R W

    1984-12-25

    Human choriocarcinoma cells (JAR) synthesize the alpha and beta subunits of the glycoprotein hormone chorionic gonadotropin (hCG) (R.W. Ruddon, C.A. Hanson, A. H. Bryan, G.J. Putterman, E.L. White, F. Perini, K. S. Meade, and P.H. Aldenderfer (1980) J. Biol. Chem. 255, 1000-1007). In addition to the hCG dimer (alpha beta), JAR cells secrete uncombined alpha and beta subunits into the culture medium (L.A. Cole, R.J. Hartle, J.A. Laferla, and R.W. Ruddon (1983) Endocrinology 113, 1176-1178). Pulse-chase studies with [35S]methionine or [3H]mannose were carried out in order to compare free alpha, free beta, and the alpha beta dimer with regard to the kinetics of synthesis, N-linked oligosaccharide processing, and secretion and to determine the kinetics of alpha-beta subunit combination. A panel of three antisera was used to immunoprecipitate directly the free subunits and the alpha beta dimer sequentially from the same cell lysates and culture media. The alpha subunit of hCG was synthesized in a slight molar excess (1.2-1.5-fold) over the beta subunit, and alpha beta dimer was rapidly formed by combination of the intracellular alpha and beta precursors. Dimer formation was already apparent in JAR cells following a 10-min biosynthetic labeling incubation with [35S]methionine. The combination of subunits ceased by 30 min of chase even though 51% of alpha and 44% of beta remained free within the cells. Combination of the alpha and beta precursors had occurred before their N-linked oligosaccharides were processed beyond the Man8GlcNAc2 structure. The initial trimming of glucosyl and mannosyl units from the high-mannose oligosaccharides of the hCG precursors occurred more rapidly for free alpha and CG-alpha than for free beta and CG-beta. JAR cells accumulated alpha precursors bearing mostly Man8GlcNAc2 units and beta precursors bearing Man8GlcNAc2 units that represent the substrates of the rate-limiting step in the secretory pathway. In spite of the fact that their N-linked oligosaccharides were trimmed at different rates, free alpha, free beta, and alpha beta dimer were all secreted into the medium at the same rate, with a half-time of 35 min. The secreted hCG forms were stable in the chase medium between 4 and 8h, indicating that extracellular degradation, combination of free subunits to form dimer, or dissociation of dimer to form free subunits did not occur.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. Phospholipase C-mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor beta 1 inhibitory signals.

    PubMed Central

    Diaz-Meco, M T; Dominguez, I; Sanz, L; Municio, M M; Berra, E; Cornet, M E; Garcia de Herreros, A; Johansen, T; Moscat, J

    1992-01-01

    Cell growth and tumor transformation can be restrained in certain cell systems by the action of transforming growth factor beta (TGF-beta). It has been established that the mechanism whereby TGF-beta 1 inhibits cell growth does not interfere with the triggering of early mitogenic signal transduction mechanisms. Phospholipase C-catalyzed hydrolysis of phosphatidylcholine (PC) is a relatively late step in the cascade activated by growth factors. Therefore, conceivably activation of phospholipase C-catalyzed hydrolysis of PC could be the target of TGF-beta 1 action. In the study reported here, we demonstrate that TGF-beta 1 inhibits the coupling of ras p21 to the activation of PC hydrolysis, which appears to be critical for the antiproliferative effects of TGF-beta 1. Images PMID:1309592

  17. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  18. Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma.

    PubMed

    Fukuchi, Minoru; Nakajima, Masanobu; Fukai, Yasuyuki; Miyazaki, Tatsuya; Masuda, Norihiro; Sohda, Makoto; Manda, Ryokuhei; Tsukada, Katsuhiko; Kato, Hiroyuki; Kuwano, Hiroyuki

    2004-03-01

    Transforming growth factor-beta (TGF-beta) regulates cell growth inhibition, and inactivation of the TGF-beta signaling pathway contributes to tumor development. In our previous study, altered expression of TGF-beta, TGF-beta-specific receptors and Smad4 was shown to correlate with tumor progression in esophageal squamous cell carcinoma (SCC). These components, however, were maintained normally in some patients with esophageal SCC. In our study, the mechanism by which aggressive esophageal SCC maintains these components was investigated, with particular emphasis on the participation of c-Ski and SnoN as transcriptional co-repressors in TGF-beta signaling. Immunohistochemistry for c-Ski and SnoN was carried out on surgical specimens obtained from 80 patients with esophageal SCC. The expression of c-Ski and SnoN was also studied in 6 established cell lines derived from esophageal SCC and compared to an immortalized human esophageal cell line by Western blotting. High levels of expression of c-Ski, detected immunohistologically, were found to correlate with depth of invasion (p = 0.0080) and pathologic stage (p = 0.0447). There was, however, no significant correlation between expression of SnoN and clinicopathologic characteristics. A significant correlation between c-Ski and TGF-beta expression was observed. Moreover, in patients with TGF-beta negative expression, the survival rates of patients with c-Ski positive expression were significantly lower than those of patients with c-Ski negative expression (p = 0.0486). c-Ski was expressed at a high level in 5 of 6 cell lines derived from esophageal SCC compared to immortalized esophageal keratinocytes. Furthermore, the cyclin-dependent kinase (CDK) inhibitor, p21 that was up-regulated by TGF-beta signaling was expressed at a low level in the 5 cell lines. The expression of c-Ski protein as a transcriptional co-repressor in TGF-beta signaling seems to be correlated with tumor progression of esophageal SCC. Copyright 2003 Wiley-Liss, Inc.

  19. Bloodstream Amyloid-beta (1-40) Peptide, Cognition, and Outcomes in Heart Failure.

    PubMed

    Bayes-Genis, Antoni; Barallat, Jaume; de Antonio, Marta; Domingo, Mar; Zamora, Elisabet; Vila, Joan; Subirana, Isaac; Gastelurrutia, Paloma; Pastor, M Cruz; Januzzi, James L; Lupón, Josep

    2017-11-01

    In the brain, amyloid-beta generation participates in the pathophysiology of cognitive disorders; in the bloodstream, the role of amyloid-beta is uncertain but may be linked to sterile inflammation and senescence. We explored the relationship between blood levels of amyloid-beta 1-40 peptide (Aβ40), cognition, and mortality (all-cause, cardiovascular, and heart failure [HF]-related) in ambulatory patients with HF. Bloodstream Aβ40 was measured in 939 consecutive patients with HF. Cognition was evaluated with the Pfeiffer questionnaire (adjusted for educational level) at baseline and during follow-up. Multivariate Cox regression analyses and measurements of performance (discrimination, calibration, and reclassification) were used, with competing risk for specific causes of death. Over 5.1 ± 2.9 years, 471 patients died (all-cause): 250 from cardiovascular causes and 131 HF-related. The median Aβ40 concentration was 519.1 pg/mL [Q1-Q3: 361.8-749.9 pg/mL]. The Aβ40 concentration correlated with age, body mass index, renal dysfunction, and New York Heart Association functional class (all P < .001). There were no differences in Aβ40 in patients with and without cognitive impairment at baseline (P = .97) or during follow-up (P = .20). In multivariable analysis, including relevant clinical predictors and N-terminal pro-B-type natriuretic peptide, Aβ40 remained significantly associated with all-cause death (HR, 1.22; 95%CI, 1.10-1.35; P < .001) and cardiovascular death (HR, 1.18; 95%CI, 1.03-1.36; P = .02), but not with HF-related death (HR, 1.13; 95%CI, 0.93-1.37; P = .22). Circulating Aβ40 improved calibration and patient reclassification. Blood levels of Aβ40 are not associated with cognitive decline in HF. Circulating Aβ40 was predictive of mortality and may indicate systemic aging. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Glucocorticoid Signaling Enhances Expression of Glucose-Sensing Molecules in Immature Pancreatic Beta-Like Cells Derived from Murine Embryonic Stem Cells In Vitro.

    PubMed

    Ghazalli, Nadiah; Wu, Xiaoxing; Walker, Stephanie; Trieu, Nancy; Hsin, Li-Yu; Choe, Justin; Chen, Chialin; Hsu, Jasper; LeBon, Jeanne; Kozlowski, Mark T; Rawson, Jeffrey; Tirrell, David A; Yip, M L Richard; Ku, Hsun Teresa

    2018-06-06

    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GR flox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.

  1. Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.

    PubMed

    Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus

    2011-06-06

    Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K.S.

    Norepinephrine has previously been demonstrated by this laboratory to potentiate the in vitro T-dependent antibody response through the stimulation of {beta}-adrenergic receptors. The role of {beta}-adrenergic receptor subtypes in norepinephrine-induced potentiation of the antibody responses was examined with selective {beta}-adrenergic antagonists. The antagonists were metoprolol ({beta}{sub 1}-selective), ICI 118-551 ({beta}{sub 2}-selective), and propranolol ({beta}-non-selective). Both propranolol and ICI 118-551 blocked norepinephrine-induced potentiation of the antibody response, but metoprolol was ineffective. Receptor binding competition of antagonists with the radioligant, ({sup 3}H)CGP-12177 was examined and results were analyzed with the computer program, LIGAND. Competition by ICI 118-551 identified 75% {beta}{sub 2}- andmore » 25% {beta}{sub 1}-adrenergic receptors on splenic mononuclear cells. Enriched T lymphocytes exhibited 75% {beta}{sub 2}-adrenergic receptors, while enriched B lymphocytes contained 90% {beta}{sub 2}-adrenergic receptors as identified by ICI 118-551. Greater than twice as many total receptors were identified on B lymphocytes than T lymphocytes. A T cell lymphoma contained about 60% {beta}{sub 2}-receptors, while 100% were {beta}{sub 2} receptors on a B cell lymphoma, as assessed by ICI 118-551. Results support a heterogeneous {beta}-adrenergic receptor population on T lymphocytes and a more homogeneous {beta}{sub 2}-population on B lymphocytes.« less

  3. Genuine functions of P-glycoprotein (ABCB1).

    PubMed

    Mizutani, Takaharu; Masuda, Masatoshi; Nakai, Emi; Furumiya, Kenji; Togawa, Hiroshi; Nakamura, Yutaka; Kawai, Yuko; Nakahira, Keiko; Shinkai, Shigeko; Takahashi, Kazuhiko

    2008-02-01

    P-glycoprotein (P-gp, ABCB1, MDR1) was recognized as a drug-exporting protein from cancer cells three decade ago. Apart from the multidrug transporter side effects of P-gp, normal physiological functions of P-gp have been reported. P-gp could be responsible for translocating platelet-activating factor (PAF) across the plasma membrane and PAF inhibited drug transport mediated by P-gp in cancer cells. P-gp regulated the translocation of sphingomyelin (SM) and GlcCer, and short chain C(6)-NBD-GlcCer was found in the apical medium of P-gp cells exclusively and not in the basolateral membrane. SM plays an important role in the esterification of cholesterol. High expression of P-gp prevents stem-cell differentiation, leading to the proliferation and amplification of this cell repertoire, and functional P-gp plays a fundamental role in regulating programmed cell death, apoptosis. The transporter function of P-gp is therefore necessary to protect cells from death. P-gp can translocate both C(6)-NBD-PC and C(6)-NBD-PE across the apical membrane. This PC translocation was also confirmed with [(3)H]choline radioactivity. Progesterone is not transported by P-gp, but blocks P-gp-mediated efflux of other drugs and P-gp can mediate the transport of a variety of steroids. Cells transfected with human P-gp esterified more cholesterol. P-gp might also be involved in the transport of cytokines, particularly IL-1beta, IL-2, IL-4 and IFNgamma, out of activated normal lymphocytes into the surrounding medium. P-gp expression is also associated with a volume-activated chloride channel, thus P-gp is bifunctional with both transport and channel regulators. We also present information about P-gp polymorphism and new structural concepts, "gate" and "twist", of the P-gp structure.

  4. Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart.

    PubMed

    Granata, Riccarda; Trovato, Letizia; Gallo, Maria Pia; Destefanis, Silvia; Settanni, Fabio; Scarlatti, Francesca; Brero, Alessia; Ramella, Roberta; Volante, Marco; Isgaard, Jorgen; Levi, Renzo; Papotti, Mauro; Alloatti, Giuseppe; Ghigo, Ezio

    2009-07-15

    The hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) stimulates GH synthesis and release in the pituitary. GHRH also exerts proliferative effects in extrapituitary cells, whereas GHRH antagonists have been shown to suppress cancer cell proliferation. We investigated GHRH effects on cardiac myocyte cell survival and the underlying signalling mechanisms. Reverse transcriptase-polymerase chain reaction analysis showed GHRH receptor (GHRH-R) mRNA in adult rat ventricular myocytes (ARVMs) and in rat heart H9c2 cells. In ARVMs, GHRH prevented cell death and caspase-3 activation induced by serum starvation and by the beta-adrenergic receptor agonist isoproterenol. The GHRH-R antagonist JV-1-36 abolished GHRH survival action under both experimental conditions. GHRH-induced cardiac cell protection required extracellular signal-regulated kinase (ERK)1/2 and phosphoinositide-3 kinase (PI3K)/Akt activation and adenylyl cyclase/cAMP/protein kinase A signalling. Isoproterenol strongly upregulated the mRNA and protein of the pro-apoptotic inducible cAMP early repressor, whereas GHRH completely blocked this effect. Similar to ARVMs, in H9c2 cardiac cells, GHRH inhibited serum starvation- and isoproterenol-induced cell death and apoptosis through the same signalling pathways. Finally, GHRH improved left ventricular recovery during reperfusion and reduced infarct size in Langendorff-perfused rat hearts, subjected to ischaemia-reperfusion (I/R) injury. These effects involved PI3K/Akt signalling and were inhibited by JV-1-36. Our findings suggest that GHRH promotes cardiac myocyte survival through multiple signalling mechanisms and protects against I/R injury in isolated rat heart, indicating a novel cardioprotective role of this hormone.

  5. Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma

    PubMed Central

    Meads, MB; Fang, B; Mathews, L; Gemmer, J; Nong, L; Rosado-Lopez, I; Nguyen, T; Ring, JE; Matsui, W; MacLeod, AR; Pachter, JA; Hazlehurst, LA; Koomen, JM; Shain, KH

    2015-01-01

    Multiple myeloma (MM) remains an incurable malignancy due, in part, to the influence of the bone marrow microenvironment on survival and drug response. Identification of microenvironment-specific survival signaling determinants is critical for the rational design of therapy and elimination of MM. Previously, we have shown that collaborative signaling between β1 integrin-mediated adhesion to fibronectin and interleukin-6 confers a more malignant phenotype via amplification of signal transducer and activator of transcription 3 (STAT3) activation. Further characterization of the events modulated under these conditions with quantitative phosphotyrosine profiling identified 193 differentially phosphorylated peptides. Seventy-seven phosphorylations were upregulated upon adhesion, including PYK2/FAK2, Paxillin, CASL and p130CAS consistent with focal adhesion (FA) formation. We hypothesized that the collaborative signaling between β1 integrin and gp130 (IL-6 beta receptor, IL-6 signal transducer) was mediated by FA formation and proline-rich tyrosine kinase 2 (PYK2) activity. Both pharmacological and molecular targeting of PYK2 attenuated the amplification of STAT3 phosphorylation under co-stimulatory conditions. Co-culture of MM cells with patient bone marrow stromal cells (BMSC) showed similar β1 integrin-specific enhancement of PYK2 and STAT3 signaling. Molecular and pharmacological targeting of PYK2 specifically induced cell death and reduced clonogenic growth in BMSC-adherent myeloma cell lines, aldehyde dehydrogenase-positive MM cancer stem cells and patient specimens. Finally, PYK2 inhibition similarly attenuated MM progression in vivo. These data identify a novel PYK2-mediated survival pathway in MM cells and MM cancer stem cells within the context of microenvironmental cues, providing preclinical support for the use of the clinical stage FAK/PYK2 inhibitors for treatment of MM, especially in a minimal residual disease setting. PMID:26387544

  6. Platelet factor 4/CXCL4-stimulated human monocytes induce apoptosis in endothelial cells by the release of oxygen radicals.

    PubMed

    Woller, Geske; Brandt, Ernst; Mittelstädt, Jessica; Rybakowski, Christian; Petersen, Frank

    2008-04-01

    The generation of reactive oxygen species (ROS) represents a pivotal element of phagocyte defense against microbial invaders. However, oxidative stress also participates in pathophysiological processes of vascular damage leading to cell death of endothelial cells (EC). Currently, ROS-producing cells involved in this process as well as the corresponding extracellular signals required for their activation are ill-defined. In this study, we investigate the impact of the platelet-derived CXC chemokine platelet factor 4 (PF4/CXCL4) on the interaction of human monocytes and EC. We can show for the first time that PF4-activated monocytes become cytotoxic for EC but not epithelial cells. Cytotoxicity was time- and dose-dependent, and earliest effects were seen after 15 h of culture and at a concentration from 0.125 microM PF4 up. By performing transwell experiments and by using specific inhibitory antibodies, we could show that direct cell contact between effector and target cells, mediated by beta(2)integrins as well as their corresponding ligand ICAM-1, is essential for the cytotoxic effect. Investigations of the cellular mechanisms of cytotoxicity revealed that in the presence of EC, PF4-activated monocytes are capable of releasing high amounts of ROS for more than 2 h following stimulation. This causes programmed cell death in EC, as inhibitors of the NADPH oxidase (diphenyleneiodonium and apocynin) effectively blocked PF4-induced monocyte oxidative burst and protected EC from undergoing apoptosis. Taken together, our data suggest a role for platelet-derived PF4 in oxidative stress-mediated vascular disorders, as observed during atherosclerosis or ischemia/reperfusion injury.

  7. IL-1beta suppresses the formation of osteoclasts by increasing OPG production via an autocrine mechanism involving celecoxib-related prostaglandins in chondrocytes.

    PubMed

    Watanabe, Yusuke; Namba, Aki; Aida, Yukiko; Honda, Kazuhiro; Tanaka, Hideki; Suzuki, Naoto; Matsumura, Hideo; Maeno, Masao

    2009-01-01

    Elevated interleukin (IL)-1 concentrations in synovial fluid have been implicated in joint bone and cartilage destruction. Previously, we showed that IL-1beta stimulated the expression of prostaglandin (PG) receptor EP4 via increased PGE(2) production. However, the effect of IL-1beta on osteoclast formation via chondrocytes is unclear. Therefore, we examined the effect of IL-1beta and/or celecoxib on the expression of macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) in human chondrocytes, and the indirect effect of IL-1beta on osteoclast-like cell formation using RAW264.7 cells. OPG and RANKL expression increased with IL-1beta; whereas M-CSF expression decreased. Celecoxib blocked the stimulatory effect of IL-1beta. Conditioned medium from IL-1beta-treated chondrocytes decreased TRAP staining in RAW264.7 cells. These results suggest that IL-1beta suppresses the formation of osteoclast-like cells via increased OPG production and decreased M-CSF production in chondrocytes, and OPG production may increase through an autocrine mechanism involving celecoxib-related PGs.

  8. Neuroprotective effect of the new thiadiazolidinone NP00111 against oxygen-glucose deprivation in rat hippocampal slices: implication of ERK1/2 and PPARgamma receptors.

    PubMed

    Rosa, Angelo O; Egea, Javier; Martínez, Ana; García, Antonio G; López, Manuela G

    2008-07-01

    Thiadiazolidinones (TDZDs) are small molecules that inhibit glycogen synthase kinase 3-beta (GSK3-beta) activity in a non competitive manner to ATP. NP00111, a new TDZD, besides causing inhibition of GSK-3beta, has also shown to be an agonist of PPARgamma . Since phosphorylation and consequent inhibition of GSK-3beta by PI-3K/Akt and agonism of PPARgamma have shown to afford neuroprotection in several in vitro and in vivo models, we have studied the potential neuroprotective effect of NP00111 in an "in vitro" model of ischemia-reperfusion. NP00111, at the concentration of 10 microM, significantly protected adult rat hippocampal slices subjected to oxygen and glucose deprivation (OGD) for 1 h followed by 3 h re-oxygenation, measured as lactic dehydrogenase (LDH) released to the extracellular media. The protective effects of NP00111 were more pronounced during the re-oxygenation period in comparison to the OGD period. Other GSK-3beta inhibitors like lithium or AR-A014418 did not afford protection in this model. However, the PPARgamma agonist rosiglitazone was protective at 3 microM. Protection afforded by NP00111 and rosiglitazone were prevented by the PPARgamma antagonist GW9662, suggesting that both NP00111 and rosiglitazone were preventing cell death caused by oxygen-glucose deprivation via activation of PPARgamma. NP00111 increased by two fold phosphorylation of ERK1/2 and its protective effects were lost when the hippocampal slices were co-incubated with the mitogen-activated protein kinase (MAPK) inhibitor PD98059. In conclusion, the novel TDZD NP00111 was protective against OGD in rat hippocampal slices by a mechanism related to phosphorylation of ERK1/2 via activation of PPARgamma.

  9. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwak, Jungsug; Song, Taeyun; Song, Jie-Young

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cellmore » proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.« less

  10. Application of microalgal fucoxanthin for the reduction of colon cancer risk: inhibitory activity of fucoxanthin against beta-glucuronidase and DLD-1 cancer cells.

    PubMed

    Kawee-Ai, Arthitaya; Kim, Sang Moo

    2014-07-01

    Intestinal bacterial beta-glucuronidases are capable of retoxifying compounds that have been detoxified by liver glucuronidation and are also known to accelerate colon cancer invasion and metastasis. In this study, fucoxanthin extracted from the microalga Phaeodactylum tricornutum was investigated for its inhibitory activity against Escherichia coli beta-glucuronidase and DLD-1 cancer cells. Fucoxanthin inhibited beta-glucuronidase in a concentration-dependent manner with an IC50 value of 2.32 mM and a mixed inhibition type. Fucoxanthin had more potent inhibitory activity on beta-glucuronidase at 37 degrees C and in alkaline conditions. Fucoxanthin also inhibited the beta-glucuronidase activity of DLD-1 cancer cells at a concentration of 20-50 microM. The presence of beta-glucuronidase and substrate in the medium decreased the inhibitory activity of fucoxanthin against DLD-1 cancer cells. Therefore, microalgal fucoxanthin might prevent colon cancer because of its strong beta-glucuronidase inhibitory activity and could be utilized as a novel functional ingredient of food and pharmaceutical supplements.

  11. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.

    1988-11-01

    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Antony W., E-mail: burgess@ludwig.edu.au; Faux, Maree C.; Layton, Meredith J.

    In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the {beta}-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of {beta}-catenin is contrasted with roles for phospho-{beta}-catenin in the activation of transcription, cell adhesion and migration. The synergy between Myb and {beta}-catenin regulation of transcription in crypt stem cells during Wnt signaling is discussed. Finally, potential effects of growth factor regulatory systems, Apc or truncated-Apc on crypt morphogenesis, stemmore » cell localization and crypt fission are considered.« less

  13. Streptococcal modulation of cellular invasion via TGF-beta1 signaling.

    PubMed

    Wang, Beinan; Li, Shaoying; Southern, Peter J; Cleary, Patrick P

    2006-02-14

    Group A Streptococcus (GAS) and other bacterial pathogens are known to interact with integrins as an initial step in a complex pathway of bacterial ingestion by host cells. Efficient GAS invasion depends on the interaction of bound fibronectin (Fn) with integrins and activation of integrin signaling. TGF-beta1 regulates expression of integrins, Fn, and other extracellular matrix proteins, and positively controls the integrin signaling pathway. Therefore, we postulated that TGF-beta1 levels could influence streptococcal invasion of mammalian cells. Pretreatment of HEp-2 cells with TGF-beta1 increased their capacity to ingest GAS when the bacteria expressed fibronectin-binding proteins (M1 or PrtF1). Western blots revealed significant induction of alpha5 integrin and Fn expression by HEp-2 cells in response to TGF-beta1. Increased ingestion of streptococci by these cells was blocked by a specific inhibitor of the TGF-beta1 receptor I and antibodies directed against alpha5 integrin and Fn, indicating that increased invasion depends on TGF-beta1 up-regulation of both the alpha5 integrin and Fn. The capacity of TGF-beta1 to up-regulate integrin expression and intracellular invasion by GAS was reproduced in primary human tonsil fibroblasts, which could be a source of TGF-beta1 in chronically infected tonsils. The relationship between TGF-beta1 and GAS invasion was strengthened by the observation that TGF-beta1 production was stimulated in GAS-infected primary human tonsil fibroblasts. These findings suggest a mechanism by which GAS induce a cascade of changes in mammalian tissue leading to elevated expression of the alpha5beta1 receptor, enhanced invasion, and increased opportunity for survival and persistence in their human host.

  14. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-12-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL.

  15. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed Central

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-01-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL. Images Figure 4 Figure 6 PMID:9014832

  16. Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection.

    PubMed

    Wang, Beinan; Dileepan, Thamotharampillai; Briscoe, Sarah; Hyland, Kendra A; Kang, Johnthomas; Khoruts, Alexander; Cleary, P Patrick

    2010-03-30

    Recurrent group A Streptococcus (GAS) tonsillitis and associated autoimmune diseases indicate that the immune response to this organism can be ineffective and pathological. TGF-beta1 is recognized as an essential signal for generation of regulatory T cells (Tregs) and T helper (Th) 17 cells. Here, the impact of TGF-beta1 induction on the T-cell response in mouse nasal-associated lymphoid tissue (NALT) following intranasal (i.n.) infections is investigated. ELISA and TGF-beta1-luciferase reporter assays indicated that persistent infection of mouse NALT with GAS sets the stage for TGF-beta1 and IL-6 production, signals required for promotion of a Th17 immune response. As predicted, IL-17, the Th17 signature cytokine, was induced in a TGF-beta1 signaling-dependent manner in single-cell suspensions of both human tonsils and NALT. Intracellular cytokine staining and flow cytometry demonstrated that CD4(+) IL-17(+) T cells are the dominant T cells induced in NALT by i.n. infections. Moreover, naive mice acquired the potential to clear GAS by adoptive transfer of CD4(+) T cells from immunized IL-17A(+)/(+) mice but not cells from IL-17A(-)/(-) mice. These experiments link specific induction of TGF-beta1 by a bacterial infection to an in vivo Th17 immune response and show that this cellular response is sufficient for protection against GAS. The association of a Th17 response with GAS infection reveals a potential mechanism for destructive autoimmune responses in humans.

  17. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.

    PubMed

    Gerber, Philipp A; Rutter, Guy A

    2017-04-01

    Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn 2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.

  18. Ectopic production of beta-HCG by a maxillary squamous cell carcinoma.

    PubMed

    Scholl, P D; Jurco, S; Austin, J R

    1997-12-01

    Paraneoplastic syndromes of the head and neck are rare. Hypercalcemia and leukocytosis have been described. The literature was reviewed, and a case of a squamous cell carcinoma of the maxilla producing beta human chorionic gonadotropin (beta-HCG) is presented. A 47-year-old white man with a T4N1M0 squamous cell carcinoma of the left maxilla was treated with a maxillectomy and neck dissection for an N1 positive neck. After completing his planned radiotherapy, he developed distant metastases, which included an axillary node that stained positive for human beta-HCG. Retrospective review of the primary specimen showed beta-HCG positivity in an anaplastic component of the tumor along with vascular invasion. The first case in the literature of a paraneoplastic syndrome with beta-HCG production in association with squamous cell carcinoma of the maxilla is presented. This case history fits the aggressive nature of beta HCG producing tumors elsewhere in the body.

  19. Heat shock protein 90{beta}: A novel mediator of vitamin D action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, Giana; Mineral Bioavailability Laboratory, 711 Washington Street, Boston, MA 02111; Lamon-Fava, Stefania

    2008-03-14

    We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90{beta} expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90{beta} by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%,more » respectively, in Hsp90{beta}-deficient cells. Nuclear protein for VDR and RXR{alpha}, its heterodimer partner, were not reduced in Hsp90{beta}-deficient cells. These findings indicate that Hsp90{beta} is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90{beta} in VDR signaling.« less

  20. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

Top