Chronology of endocrine differentiation and beta-cell neogenesis.
Miyatsuka, Takeshi
2016-01-01
Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.
Millette, Katelyn; Georgia, Senta
2017-10-05
This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.
Manesso, Erica; Toffolo, Gianna M; Saisho, Yoshifumi; Butler, Alexandra E; Matveyenko, Aleksey V; Cobelli, Claudio; Butler, Peter C
2009-08-01
Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.
Regulation of GM-CSF-induced dendritic cell development by TGF-beta1 and co-developing macrophages.
Yamaguchi, Y
1998-01-01
Using a culture system of bone marrow progenitor cells with GM-CSF and TGF-beta1, a study was performed to analyze the effect of TGF-beta1 on the development of dendritic cells (DC) and to elucidate the regulatory role of macrophages co-developing with dendritic cells. The results demonstrate that DC generated in the presence of TGF-beta1 were immature with respect to the expression of CD86, nonspecific esterase activity and cell shape. Such inhibitory effects of TGF-beta1 were dependent on FcR+ macrophages, which were depleted by panning. TGF-beta1 did not appear to inhibit the commitment of progenitor cells to the DC lineage. In addition, TGF-beta1 also acted directly on the intermediate stage of DC to prevent their over-maturation, which results in a preferential decrease in MHC class II, but not in CD86, in the presence of TNF-alpha. FcR+ suppressive macrophages were also shown to facilitate DC maturation when stimulated via FcR-mediated signals even in the presence of TGF-beta1. These results indicate that TGF-beta1 indirectly and directly regulate the development of DC and that co-developing macrophages have a regulatory role in DC maturation.
Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.
1996-01-01
Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226
Early stages in the development of human T, natural killer and thymic dendritic cells.
Spits, H; Blom, B; Jaleco, A C; Weijer, K; Verschuren, M C; van Dongen, J J; Heemskerk, M H; Res, P C
1998-10-01
T-cell development is initiated when CD34+ pluripotent stem cells or their immediate progeny leave the bone marrow to migrate to the thymus. Upon arrival in the thymus the stem cell progeny is not yet committed to the T-cell lineage as it has the capability to develop into T, natural killer (NK) and dendritic cells (DC). Primitive hematopoietic progenitor cells in the human thymus express CD34 and lack CD1a. When these progenitor cells develop into T cells they traverse a number of checkpoints. One early checkpoint is the induction of T-cell commitment, which correlates with appearance of CD1a and involves the loss of capacity to develop into NK cells and DC and the initiation of T-cell receptor (TCR) gene rearrangements. Basic helix-loop-helix transcription factors play a role in induction of T-cell commitment. CD1a+CD34+ cells develop into CD4+CD8 alpha+ beta+ cells by upregulating first CD4, followed by CD8 alpha and then CD8 beta. Selection for productive TCR beta gene rearrangements (beta selection) likely occurs in the CD4+CD8 alpha+ beta- and CD4+CD8 alpha+ beta+ populations. Although the T and NK-cell lineages are closely related to each other, NK cells can develop independently of the thymus. The fetal thymus is most likely one site of NK-cell development.
Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A
2011-01-15
Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that the neural crest is a critical regulator of beta cell development on two levels: by negatively regulating beta cell proliferation and by promoting beta cell maturation. Copyright © 2010 Elsevier Inc. All rights reserved.
He, Xiaoyu; Lai, Qiaohong; Chen, Cai; Li, Na; Sun, Fei; Huang, Wenting; Zhang, Shu; Yu, Qilin; Yang, Ping; Xiong, Fei; Chen, Zhishui; Gong, Quan; Ren, Boxu; Weng, Jianping; Eizirik, Décio L; Zhou, Zhiguang; Wang, Cong-Yi
2018-04-01
Post-translational attachment of a small ubiquitin-like modifier (SUMO) to the lysine (K) residue(s) of target proteins (SUMOylation) is an evolutionary conserved regulatory mechanism. This modification has previously been demonstrated to be implicated in the control of a remarkably versatile regulatory mechanism of cellular processes. However, the exact regulatory role and biological actions of the E2 SUMO-conjugating enzyme (UBC9)-mediated SUMOylation function in pancreatic beta cells has remained elusive. Inducible beta cell-specific Ubc9 (also known as Ube2i) knockout (KO; Ubc9 Δbeta ) and transgenic (Ubc9 Tg ) mice were employed to address the impact of SUMOylation on beta cell viability and functionality. Ubc9 deficiency or overexpression was induced at 8 weeks of age using tamoxifen. To study the mechanism involved, we closely examined the regulation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) through SUMOylation in beta cells. Upon induction of Ubc9 deficiency, Ubc9 Δbeta islets exhibited a 3.5-fold higher accumulation of reactive oxygen species (ROS) than Ubc9 f/f control islets. Islets from Ubc9 Δbeta mice also had decreased insulin content and loss of beta cell mass after tamoxifen treatment. Specifically, at day 45 after Ubc9 deletion only 40% of beta cell mass remained in Ubc9 Δbeta mice, while 90% of beta cell mass was lost by day 75. Diabetes onset was noted in some Ubc9 Δbeta mice 8 weeks after induction of Ubc9 deficiency and all mice developed diabetes by 10 weeks following tamoxifen treatment. In contrast, Ubc9 Tg beta cells displayed an increased antioxidant ability but impaired insulin secretion. Unlike Ubc9 Δbeta mice, which spontaneously developed diabetes, Ubc9 Tg mice preserved normal non-fasting blood glucose levels without developing diabetes. It was noted that SUMOylation of NRF2 promoted its nuclear expression along with enhanced transcriptional activity, thereby preventing ROS accumulation in beta cells. SUMOylation function is required to protect against oxidative stress in beta cells; this mechanism is, at least in part, carried out by the regulation of NRF2 activity to enhance ROS detoxification. Homeostatic SUMOylation is also likely to be essential for maintaining beta cell functionality.
Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A
2005-06-01
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia
2018-01-01
Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214
Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish
2011-01-01
Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development. PMID:22034951
Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J
2017-06-01
Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Allaart, Janneke G; van Asten, Alphons J A M; Vernooij, Johannes C M; Gröne, Andrea
2014-06-25
Clostridium perfringens is a common cause of intestinal disease in animals and humans. Its pathogenicity is attributed to the toxins it can produce, including the beta2 toxin. The presence of cpb2, the gene encoding the beta2 toxin, has been associated with diarrhoea in neonatal piglets and humans. However, the exact role of the beta2 toxin in the development of diarrhoea is still unknown. In this study we investigated the level of cytotoxicity to porcine IPI-21 and human Caco-2 cell-lines caused by porcine and human cpb2-harbouring C. perfringens and the significance of the beta2 toxin for the induction of cell cytotoxicity. Supernatants of porcine cpb2-harbouring C. perfringens strains were cytotoxic to both cell lines. Cell cytotoxicity caused by supernatant of human cpb2-harbouring C. perfringens strains was variable among strains. However, removal of the beta2 toxin by anti-beta2 toxin antibodies or degradation of the beta2 toxin by trypsin did not reduce the cytotoxic effect of any of the supernatants. These data suggest that beta2 toxin does not play a role in the development of cell cytotoxicity in in vitro experiments. In vivo studies are necessary to definitely define the role of beta2 toxin in the development of cell cytotoxicity and subsequent diarrhoea. Copyright © 2014 Elsevier B.V. All rights reserved.
Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩
Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar
2014-01-01
In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415
Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.
Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen
2011-01-01
Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.
A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass
Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George
2016-01-01
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622
Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya
2010-01-01
Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.
Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin
2009-10-09
The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.
MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes.
Ardestani, Amin; Paroni, Federico; Azizi, Zahra; Kaur, Supreet; Khobragade, Vrushali; Yuan, Ting; Frogne, Thomas; Tao, Wufan; Oberholzer, Jose; Pattou, Francois; Conte, Julie Kerr; Maedler, Kathrin
2014-04-01
Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20-like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter's ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes.
Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H
1999-01-01
Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625
Toward beta cell replacement for diabetes
Johannesson, Bjarki; Sui, Lina; Freytes, Donald O; Creusot, Remi J; Egli, Dieter
2015-01-01
The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. PMID:25733347
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiying; Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp; Morita, Ikuo
Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells inmore » vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.« less
Characterization of T cell repertoire changes in acute Kawasaki disease
1993-01-01
Kawasaki disease (KD) is an acute multisystem vasculitis of unknown etiology that is associated with marked activation of T cells and monocyte/macrophages. Using a quantitative polymerase chain reaction (PCR) technique, we recently found that the acute phase of KD is associated with the expansion of T cells expressing the V beta 2 and V beta 8.1 gene segments. In the present work, we used a newly developed anti-V beta 2 monoclonal antibody (mAb) and studied a new group of KD patients to extend our previous PCR results. Immunofluorescence analysis confirmed that V beta 2-bearing T cells are selectively increased in patients with acute KD. The increase occurred primarily in the CD4 T cell subset. The percentages of V beta 2+ T cells as determined by mAb reactivity and flow cytometry correlated linearly with V beta expression as quantitated by PCR. However, T cells from acute KD patients appeared to express proportionately higher levels of V beta 2 transcripts per cell as compared with healthy controls or convalescent KD patients. Sequence analysis of T cell receptor beta chain genes of V beta 2 and V beta 8.1 expressing T cells from acute KD patients showed extensive junctional region diversity. These data showing polyclonal expansion of V beta 2+ and V beta 8+ T cells in acute KD provide additional insight into the immunopathogenesis of this disease. PMID:8094737
NASA Astrophysics Data System (ADS)
Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan
1990-09-01
Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.
Effect of interlukin-1beta on proliferation of gastric epithelial cells in culture.
Beales, Ian L P
2002-04-05
Helicobacter pylori is the main risk factor for the development of non-cardia gastric cancer. Increased proliferation of the gastric mucosa is a feature of H. pylori infection. Mucosal interkeukin-1beta production is increased in H. pylori infection and IL-1beta genotypes associated with increased pro-inflammatory activity are risk factors for the development of gastric cancer. The effect of IL-1beta on gastric epithelial cell proliferation has been examined in this study. AGS cells were cultured with IL-1beta. DNA synthesis was assed by [3H]thymidine incorporation and total viable cell numbers by MTT assay. IL-1beta dose dependently increased DNA synthesis and cell numbers. The enhanced proliferation was blocked by interleukin-1 receptor antagonist. Addition of neutralising antibody to GM-CSF reduced IL-1beta-stimulated proliferation by 31 +/- 4 %. GM-CSF alone significantly stimulated proliferation. Addition or neutralisation of IL-8 had no effect on basal or IL-1beta-stimulated proliferation. The tyrosine kinase inhibitor genistein completely blocked IL-1beta-stimulated proliferation and inhibition of the extracellular signal related kinase pathway with PD 98059 inhibited IL-1beta stimulated proliferation by 58 +/- 5 %. IL-1beta stimulates proliferation in gastric epithelial cells. Autocrine stimulation by GM-CSF contributes to this proliferative response. Signalling via tyrosine kinase activity is essential to the mitogenic response to IL-1beta. The extracellular signal related kinase pathway is involved in, but not essential to downstream signalling. IL-1beta may contribute to the hyperproliferation seen in H. pylori- infected gastric mucosa, and be involved in the carcinogenic process.
SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.Y.; Guatelli, S; Oborn, B
2014-06-01
Purpose: The purpose of this study is to perform a comprehensive comparison of the therapeutic efficacy and cytotoxicity of alpha and beta emitters for Radioimmunotherapy (RIT). For each stage of cancer development, specific models were built for the separate objectives of RIT to be addressed:a) kill isolated cancer cells in transit in the lymphatic and vascular circulation,b) regress avascular cell clusters,c) regress tumor vasculature and tumors. Methods: Because of the nature of short range, high LET alpha and long energy beta radiation and heterogeneous antigen expression among cancer cells, the microdosimetric approach is essential for the RIT assessment. Geant4 basedmore » microdosimetric models are developed for the three different stages of cancer progression: cancer cells, cell clusters and tumors. The energy deposition, specific energy resulted from different source distribution in the three models was calculated separately for 4 alpha emitting radioisotopes ({sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac) and 6 beta emitters ({sup 32}P, {sup 33}P, {sup 67}Cu, {sup 90}Y, {sup 131}I and {sup 177}Lu). The cell survival, therapeutic efficacy and cytotoxicity are determined and compared between alpha and beta emitters. Results: We show that internal targeted alpha radiation has advantages over beta radiation for killing isolated cancer cells, regressing small cell clusters and also solid tumors. Alpha particles have much higher dose specificity and potency than beta particles. They can deposit 3 logs more dose than beta emitters to single cells and solid tumor. Tumor control probability relies on deep penetration of radioisotopes to cancer cell clusters and solid tumors. Conclusion: The results of this study provide a quantitative understanding of the efficacy and cytotoxicity of RIT for each stage of cancer development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah
2011-11-18
Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology inmore » pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.« less
Characterization of a Commercial Silicon Beta Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxe, Michael P.; Hayes, James C.; Mayer, Michael F.
Silicon detectors are of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) due to their enhanced energy resolution compared to plastic scintillators beta cells. Previous work developing a figure-of-merit (FOM) for comparison of beta cells suggests that the minimum detectable activity (MDA) could be reduced by a factor of two to three with the use of silicon detectors. Silicon beta cells have been developed by CEA (France) and Lares Ltd. (Russia), with the PIPSBox developed by CEA being commercially available from Canberra for approximately $35k, but there is still uncertainty about the reproducibility of the capabilities in themore » field. PNNL is developing a high-resolution beta-gamma detector system in the shallow underground laboratory, which will utilize and characterize the operation of the PIPSBox detector. Throughout this report, we examine the capabilities of the PIPSBox as developed by CEA. The lessons learned through the testing and use of the PIPSBox will allow PNNL to strategically develop a silicon detector optimized to better suit the communities needs in the future.« less
(beta)-catenin mediates the specification of endoderm cells in ascidian embryos.
Imai, K; Takada, N; Satoh, N; Satou, Y
2000-07-01
In the present study, we addressed the role of (beta)-catenin in the specification of embryonic cells of the ascidians Ciona intestinalis and C. savignyi and obtained the following results: (1) During cleavages, (beta)-catenin accumulated in the nuclei of vegetal blastomeres, suggesting that it plays a role in the specification of endoderm. (2) Mis- and/or overexpression of (beta)-catenin induced the development of an endoderm-specific alkaline phosphatase (AP) in presumptive notochord cells and epidermis cells without affecting differentiation of primary lineage muscle cells. (3) Downregulation of (beta)-catenin induced by the overexpression of cadherin resulted in the suppression of endoderm cell differentiation. This suppression was compensated for by the differentiation of extra epidermis cells. (4) Specification of notochord cells did not take place in the absence of endoderm differentiation. Both the overexpression of (beta)-catenin in presumptive notochord cells and the downregulation of (beta)-catenin in presumptive endoderm cells led to the suppression of Brachyury gene expression, resulting in the failure of notochord specification. These results suggest that the accumulation of (beta)-catenin in the nuclei of endoderm progenitor cells is the first step in the process of ascidian endoderm specification.
Musette, P; Galelli, A; Chabre, H; Callard, P; Peumans, W; Truffa-Bachi, P; Kourilsky, P; Gachelin, G
1996-08-01
The V beta 8.3-specific superantigenic lectin Urtica dioica agglutinin (UDA) was used to delete the V beta 8.3+ T cells in MRL lpr/lpr mice. In contrast to the systemic lupus erythematosus-like pathology which progresses with age in the phosphate-buffered saline-injected MRL lpr/lpr controls, UDA-treated animals did not develop overt clinical signs of lupus and nephritis. The pathogenic T cell clones thus reside within the V beta 8.3+ T cell population, which includes an expanded T cell clone described previously. Finally, UDA alters the production of autoantibodies in a sex-dependent manner.
Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi
2018-06-13
Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.
Beta-Actin Is Required for Proper Mouse Neural Crest Ontogeny
Tondeleir, Davina; Noelanders, Rivka; Bakkali, Karima; Ampe, Christophe
2014-01-01
The mouse genome consists of six functional actin genes of which the expression patterns are temporally and spatially regulated during development and in the adult organism. Deletion of beta-actin in mouse is lethal during embryonic development, although there is compensatory expression of other actin isoforms. This suggests different isoform specific functions and, more in particular, an important function for beta-actin during early mammalian development. We here report a role for beta-actin during neural crest ontogeny. Although beta-actin null neural crest cells show expression of neural crest markers, less cells delaminate and their migration arrests shortly after. These phenotypes were associated with elevated apoptosis levels in neural crest cells, whereas proliferation levels were unchanged. Specifically the pre-migratory neural crest cells displayed higher levels of apoptosis, suggesting increased apoptosis in the neural tube accounts for the decreased amount of migrating neural crest cells seen in the beta-actin null embryos. These cells additionally displayed a lack of membrane bound N-cadherin and dramatic decrease in cadherin-11 expression which was more pronounced in the pre-migratory neural crest population, potentially indicating linkage between the cadherin-11 expression and apoptosis. By inhibiting ROCK ex vivo, the knockout neural crest cells regained migratory capacity and cadherin-11 expression was upregulated. We conclude that the presence of beta-actin is vital for survival, specifically of pre-migratory neural crest cells, their proper emigration from the neural tube and their subsequent migration. Furthermore, the absence of beta-actin affects cadherin-11 and N-cadherin function, which could partly be alleviated by ROCK inhibition, situating the Rho-ROCK signaling in a feedback loop with cadherin-11. PMID:24409333
Hu, Y; Xu, X-H; He, K; Zhang, L-L; Wang, S-K; Pan, Y-Q; He, B-S; Feng, T-T; Mao, X-M
2014-02-01
There is a growing body of literature suggesting the role of interactions between genes and the environment in development of type 2 diabetes mellitus (T2DM). However, the interplay between environment and genetic in developing and progressing T2MD is not fully understood. To determine the effects of high-glucose-lipid on the status of DNA methylation in beta cells, and clarify the mechanism of glucolipotoxicity on beta-cell deterioration, the DNA methylation profile was detected in beta-cells cultured with high-glucose-lipid medium.We utilized a high throughput NimbleGen RN34 CpG Island & Promoter Microarray to investigate the DNA methylation profile in beta-cells cultured with high-glucose-lipid medium. To validate the results of microarray, the immunoprecipitation (MeDIP) PCR was used to test the methylation status of some selected genes. The mRNA and protein expression of insulin and Tcf7l2 in these cells were quantified by RT-PCR and western blot, respectively.We have identified a lot of loci which experienced aberrant DNA methylation in beta-cells cultured with high-glucose-lipid medium. The results of MeDIP PCR were consistency to the microarray. An opposite regulation in transcription and translation of Tcf7l2 gene was found. Furthermore, the insulin mRNA and protein expression in beta-cells also decreased after cultured with high-glucose-lipid medium compared with the control cells.We conclude that chronic glucolipotoxicity could induce aberrant DNA methylation of some genes and may affect these genes expression in beta-cells, which might contribute to beta-cell function failure in T2DM and be helpful to explain, at least partially, the mechanism of glucolipotoxicity on beta-cells deterioration. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.
Mirhashemi, Farshad; Kluth, Oliver; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Schurmann, Annette; Joost, Hans-Georg; Neschen, Susanne
2008-01-01
We have previously reported that a high-fat, carbohydrate-free diet prevents diabetes and beta-cell destruction in the New Zealand Obese (NZO) mouse strain. Here we investigated the effect of diets with and without carbohydrates on obesity and development of beta-cell failure in a second mouse model of type 2 diabetes, the db/db mouse. When kept on a carbohydrate-containing standard (SD; with (w/w) 5.1, 58.3, and 17.6% fat, carbohydrates and protein, respectively) or high-fat diet (HFD; 14.6, 46.7 and 17.1%), db/db mice developed severe diabetes (blood glucose >20 mmol/l, weight loss, polydipsia and polyurea) associated with a selective loss of pancreatic beta-cells, reduced GLUT2 expression in the remaining beta-cells, and reduced plasma insulin levels. In contrast, db/db mice kept on a high-fat, carbohydrate-free diet (CFD; with 30.2 and 26.4% (w/w) fat or protein) did not develop diabetes and exhibited near-normal, hyperplastic islets in spite of a morbid obesity (fat content >60%) associated with hyperinsulinaemia. These data indicate that in genetically different mouse models of obesity-associated diabetes, obesity and dietary fat are not sufficient, and dietary carbohydrates are required, for beta-cell destruction.
Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A
2005-01-01
Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133
Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.
Huang, Yao; Chang, Yongchang
2014-01-01
Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling. © 2014 Elsevier Inc. All rights reserved.
Mazzarelli, Joan M; Brestelli, John; Gorski, Regina K; Liu, Junmin; Manduchi, Elisabetta; Pinney, Deborah F; Schug, Jonathan; White, Peter; Kaestner, Klaus H; Stoeckert, Christian J
2007-01-01
EPConDB (http://www.cbil.upenn.edu/EPConDB) is a public web site that supports research in diabetes, pancreatic development and beta-cell function by providing information about genes expressed in cells of the pancreas. EPConDB displays expression profiles for individual genes and information about transcripts, promoter elements and transcription factor binding sites. Gene expression results are obtained from studies examining tissue expression, pancreatic development and growth, differentiation of insulin-producing cells, islet or beta-cell injury, and genetic models of impaired beta-cell function. The expression datasets are derived using different microarray platforms, including the BCBC PancChips and Affymetrix gene expression arrays. Other datasets include semi-quantitative RT-PCR and MPSS expression studies. For selected microarray studies, lists of differentially expressed genes, derived from PaGE analysis, are displayed on the site. EPConDB provides database queries and tools to examine the relationship between a gene, its transcriptional regulation, protein function and expression in pancreatic tissues.
A human beta cell line with drug inducible excision of immortalizing transgenes
Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe
2015-01-01
Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308
Generation of Beta Cells from Human Pluripotent Stem Cells: Potential for Regenerative Medicine
Nostro, Maria Cristina; Keller, Gordon
2015-01-01
The loss of beta cells in Type I Diabetes ultimately leads to insulin dependence and major complications that are difficult to manage by insulin injections. Given the complications associated with long-term administration of insulin, cell-replacement therapy is now under consideration as an alternative treatment that may someday provide a cure for this disease. Over the past 10 years, islet transplantation trials have demonstrated that it is possible to replenish beta cell function in Type I Diabetes patients and, at least temporarily, eliminate their dependency on insulin. While not yet optimal, the success of these trials has provided proof-of-principle that cell replacement therapy is a viable option for treating diabetes. Limited access to donor islets has launched a search for alternative source of beta cells for cell therapy purposes and focused the efforts of many investigators on the challenge of deriving such cells from human embryonic and induced pluripotent stem cells. Over the past five years, significant advances have been made in understanding the signaling pathways that control lineage development from hPSCs and as a consequence, it is now possible to routinely generate human insulin producing cells from both hESCs and hiPSCs. While these achievements are impressive, significant challenges do still exist, as the majority of insulin producing cells generated under these conditions are polyhormonal and non functional, likely reflecting the emergence of the polyhormonal population that is known to arise in the early embryo during the phase of pancreatic development known as the ‘first transition’. Functional beta cells, which arise during the second phase or transition of pancreatic development have been generated from hPSCs, however they are detected only following transplantation of progenitor stage cells into immunocompromised mice. With this success, our challenge now is to define the pathways that control the development and maturation of this second transition population from hPSCs, and establish conditions for the generation of functional beta cells in vitro. PMID:22750147
Li, X; Velleman, S G
2009-02-01
During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic and posthatch development. Furthermore, TGF-beta1 also reduced the expression of the cell adhesion receptor beta1 integrin subunit during embryonic and posthatch muscle growth in normal and LSN chickens. Therefore, the reduction of beta1 integrin in response to TGF-beta1 is also associated with decreased posthatch muscle growth. The results from this study indicate that TGF-beta1 inhibits skeletal muscle growth by regulating MyoD and myogenin expression. These data also suggest that a beta1 integrin-mediated alternative pathway is likely involved in the TGF-beta1-induced reduction of muscle growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Pengfei; Jiang Bimei; Yang Xinghua
2008-10-15
Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less
Song, Gyu-Yong; Lee, Jee-Hyun; Cho, Munju; Park, Byeoung-Soo; Kim, Dong-Eun; Oh, Sangtaek
2007-12-01
Alterations in the Wnt/beta-catenin pathway are associated with the development and progression of human prostate cancer. Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, inhibits the growth of androgen-independent human prostate cancer cells, but little is known about its mechanism of action. Using a cell-based screen, we found that decursin attenuates the Wnt/beta-catenin pathway. Decursin antagonized beta-catenin response transcription (CRT), which was induced with Wnt3a-conditioned medium and LiCl, by promoting the degradation of beta-catenin. Furthermore, decursin suppressed the expression of cyclin D1 and c-myc, which are downstream target genes of beta-catenin and thus inhibited the growth of PC3 prostate cancer cells. In contrast, decursinol, in which the (CH3)2-C=CH-COO- side chain of decursin is replaced with -OH, had no effect on CRT, the level of intracellular beta-catenin, or PC3 cell proliferation. Our findings suggest that decursin exerts its anticancer activity in prostate cancer cells via inhibition of the Wnt/beta-catenin pathway.
A thymosin beta15-like peptide promotes intersegmental myotome extension in the chicken embryo.
Chankiewitz, Verena; Morosan-Puopolo, Gabriela; Yusuf, Faisal; Rudloff, Stefan; Pröls, Felicitas; Kleff, Veronika; Hofmann, Dietrich Kurt; Brand-Saberi, Beate
2014-03-01
Beta-thymosins constitute a group of small actin-sequestering peptides. These highly conserved peptides are involved in cytoskeleton dynamics and can influence different cell properties such as motility, substrate adhesion, shape and chemotaxis. As a marker for tumour metastasis, the mammalian thymosin beta15 is believed to have an important diagnostic relevance in cancer prognosis, although little is known about its physiological function. In order to study the role of thymosin beta15(avian) in embryogenesis, we cloned the chicken and quail orthologues of thymosin beta15 and used the chicken as a model for vertebrate development. Avian thymosin beta15, the first known non-mammalian thymosin beta15-like gene, encodes a peptide that possesses a cysteine at position one after the methionine which is a significant difference compared to its mammalian counterparts. Thymosin beta15(avian) expression starts at an early stage of development. The expression pattern changes rapidly with development and differs from that of the related thymosin beta4 gene. The most prominent expression domain is seen in developing muscles of limbs and trunk. Gain-of-function experiments revealed that thymosin beta15(avian) has a function in normal myotome development. Ectopic over-expression of thymosin beta15(avian) leads to premature elongation of myotome cells trespassing segment borders. We conclude that thymosin beta15(avian) has a still undescribed function in promoting myocyte elongation.
The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.
Gerber, Philipp A; Rutter, Guy A
2017-04-01
Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn 2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.
Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria
Zeng, Ximin; Lin, Jun
2013-01-01
Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted. PMID:23734147
Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C
2010-09-01
To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P < 0.05). Among patients with DE, TGF-beta bioactivity was highest in those with Sjögren syndrome. Approximately, 79.1% of TGF-beta in DE tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where elevated levels of TGF-beta1 transcripts in the conjunctival epithelium have been previously detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Junxing; Yue, Wanfu; Zhu, Mei J.
AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation ofmore » {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.« less
Souza, Raquel Santos; Diaz-Albiter, Hector Manuel; Dillon, Vivian Maureen; Dillon, Rod J; Genta, Fernando Ariel
2016-01-01
Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2 h, 100% in 48 h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.
1987-01-01
In culture, vascular smooth muscle cells (SMC) grow in a "hill-and- valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet- derived growth factor-mediated proliferation of these cells in two- dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury. PMID:3475277
Islets of Langerhans in the parakeet, Psittacula krameri.
Gupta, Y K; Kumar, S
1980-01-01
The pancreatic gland of Psittacula krameri is divisible into 4 lobes i.e. dorsal, ventral, third and splenic. The endocrine part is composed of alpha 1-, alpha 2- and beta-cells. The islets are of 4 kinds viz., alpha islets (having alpha 1- and alpha 2-cells), beta islets (having beta- and alpha 1-cells), pure beta islets (consisting of beta-cells exclusively) and mixed islets (with beta-, alpha 1- and alpha 2-cells). The distribution of alpha islets is mostly restricted to the splenic and third lobes whereas the beta islets are found in all 4 lobes. Though the alpha islets are only few in the dorsal lobe, their size is best developed in the third and dorsal lobes. Sometimes beta and alpha islets are present in very close proximity but their cells never mingle. An interesting feature was the complete absence of alpha islets from the ventral lobe.A relative abundance of alpha 2- cells in this bird seems to be associated with its comparatively higher blood glucose level and frugivorous habit. Tinctorial reactions suggest that the insulin content of the endocrine pancreas is low. There were no seasonal changes in the islet tissue of P. krameri.
Santos-Silva, Junia Carolina; Carvalho, Carolina Prado de França; de Oliveira, Ricardo Beltrame; Boschero, Antonio Carlos; Collares-Buzato, Carla Beatriz
2012-07-01
In this study, we investigated the cellular distribution of junctional proteins and the dependence on cell-cell contacts of pancreatic beta cells during animal development. Fetus and newborn rat islets, which display a relatively poor insulin secretory response to glucose, present an immature morphology and cytoarchitecture when compared with young and adult islets that are responsive to glucose. At the perinatal stage, beta cells display a low junctional content of neural cell adhesion molecule (N-CAM), α- and β-catenins, ZO-1, and F-actin, while a differential distribution of N-CAM and Pan-cadherin was seen in beta cells and nonbeta cells only from young and adult islets. In the absence of intercellular contacts, the glucose-stimulated insulin secretion was completely blocked in adult beta cells, but after reaggregation they partially reestablished the secretory response to glucose. By contrast, neonatal beta cells were poorly responsive to sugar, regardless of whether they were arranged as intact islets or as isolated cells. Interestingly, after 10 days of culturing, neonatal beta cells, known to display increased junctional protein content in vitro, became responsive to glucose and concomitantly dependent on cell-cell contacts. Therefore, our data suggest that the developmental acquisition of an adult-like insulin secretory pattern is paralleled by a dependence on direct cell-cell interactions.
Izaguirre, M F; Adur, J F; Soler, A P; Casco, V H
2001-10-01
E(epithelial)-cadherin is a member of a calcium-dependent family of cell surface glycoproteins involved in cell-cell adhesion and morphogenesis. Catenins are a large family of proteins that connect the cadherins to the cytoskeleton. They are important for cadherin function and for transducing signals involved in specification of cell fate during embryogenesis. The best characterized catenins include alpha-, beta-, gamma-, and p120-catenin. Using specific antibodies, we studied the expression and distribution of E-cadherin, and alpha- and beta-catenin in developmental stages of Bufo arenarum toad. The three proteins were found co-localized in stages 19 to 41 of development. Surprisingly, E-cadherin was the only of these three proteins found earlier than stage 19. To test whether E-cadherin and beta-catenin have a functional role in Bufo arenarum embryogenesis, stage 17 whole embryos were incubated with anti-E-cadherin and beta-catenin antibodies. Both anti-E-cadherin and anti-beta-catenin antibodies induced severe morphological alterations. However, while alterations produced by the anti-beta-catenin antibody, showed some variability from the most severe (neural tube and notochord duplication) to a simple delay in development, the alterations with anti-E-cadherin were homogeneous. These observations suggest a critical role for E-cadherin and beta-catenin in the early embryonic development of the Bufo arenarum toad. Our results are consistent with the developmental role of these proteins in other species. One of the most surprising findings was the blockage with the anti-beta-catenin antibodies on later embryo stages, and we hypothesize that the partial axes duplication could be mediated by the notochord induction.
Fu, Shihui; Zhou, Shanjing; Luo, Leiming; Ye, Ping
2017-01-01
Relationships of pancreatic beta-cell function abnormality with microalbuminuria (MA) and glomerular filtration rate (GFR) may differ by age, ethnicity and accompanied diseases. Previous studies were generally conducted in Western adult patients with type 2 diabetes mellitus (T2DM), and it is uncertain whether pancreatic beta-cell function is associated with MA and GFR in Chinese community-dwelling middle-aged and elderly population without T2DM. We therefore examined the relationships of pancreatic beta-cell function with two indices of renal damage, MA and GFR, in Chinese community-dwelling middle-aged and elderly population without T2DM. This analysis focused on 380 Beijing residents older than 45 years who were free of T2DM and completed the evaluation of pancreatic beta-cell function. Median age was 67 (49-80) years. Levels of triglyceride, diastolic blood pressure and homeostasis model assessment-beta (HOMA-beta) index were positively related to urine microalbumin ( P <0.05 for all). Age, low-density lipoprotein cholesterol levels and HOMA-beta index were inversely correlated with GFR, while high-density lipoprotein cholesterol levels were positively correlated with GFR ( P <0.05 for all). In all three adjustment models, there was a significant positive association between HOMA-beta index and MA; subjects with higher beta-cell function had higher odds of MA ( P <0.05 for all). There was no association between HOMA-beta index and GFR <60 mL/min/1.73 m 2 in any model ( P >0.05 for all). Modeling the pancreatic beta-cell function with different adjusted variables provided the same conclusion of association with MA; beta-cell function was positively associated with MA. Additionally, there was a specific difference in the adjusted associations of pancreatic beta-cell function with MA and GFR <60 mL/min/1.73 m 2 ; beta-cell function was not independently associated with GFR <60 mL/min/1.73 m 2 . This result indicated that abnormal pancreatic beta-cell function plays an important role in the development of MA.
Leijon, K; Hillörn, V; Bergqvist, I; Holmberg, D
1995-06-01
We have tested the hypothesis that allelic differences in the antigens expressed by the beta-cells of the islets of Langerhans influence the development of insulitis in the non-obese diabetic (NOD) mouse. Islets of Langerhans from NOD, C57BL/6 and C3H/Tif mice were transplanted under the kidney capsule of NOD<-->C57BL/6 and NOD<-->C3H/Tif embryo aggregation (EA) chimeras and the infiltration was scored 5-7 weeks later. Mononuclear cell infiltration of pancreatic islets was observed in 60% of the NOD<-->C57BL/6 and in 55% of the NOD<-->C3H/Tif EA chimeras. All transplanted EA chimeras that developed insulitis also displayed mononuclear cell infiltrates in the transplants, irrespective of the origin of the transplanted islets. In contrast, no infiltration of transplants was detected in EA chimeras scoring negative for insulitis. These results demonstrate that the specific destruction of islet transplants does not require the expression of NOD specific antigens by the islets. Moreover, the beta-cell destruction appears not to be restricted to NOD-MHC. The correlation between insulitis and transplant beta-cell destruction suggests the possibility that the development of insulitis is a prerequisite for transplant specific destruction. MHC restricted destruction may, therefore, precede the beta-cell destruction of transplanted islets. The chimerism among the mononuclear cells infiltrating the islet transplants was found to correlate with the overall haematopoetic chimerism in each of the individual EA chimeras. This observation suggests that NOD bone marrow, as well as non-NOD bone marrow, generates cells contributing to the beta-cell destruction process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose
2006-01-01
Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells.more » We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.« less
The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus
Gerber, Philipp A.
2017-01-01
Abstract Significance: Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Critical Issues: Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene–environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Future Directions: Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501–518. PMID:27225690
Buckwalter, Marion S; Coleman, Bronwen S; Buttini, Manuel; Barbour, Robin; Schenk, Dale; Games, Dora; Seubert, Peter; Wyss-Coray, Tony
2006-11-01
Immunotherapy targeting the amyloid beta (Abeta) peptide is a novel therapy under investigation for the treatment of Alzheimer's disease (AD). A clinical trial using Abeta(1-42) (AN1792) as the immunogen was halted as a result of development of meningoencephalitis in a small number of patients. The cytokine TGF-beta1 is a key modulator of immune responses that is increased in the brain in AD. We show here that local overexpression of TGF-beta1 in the brain increases both meningeal and parenchymal T lymphocyte number. Furthermore, TGF-beta1 overexpression in a mouse model for AD [amyloid precursor protein (APP) mice] leads to development of additional T cell infiltrates when mice were immunized at a young but not old age with AN1792. Notably, only mice overproducing both Abeta (APP mice) and TGF-beta1 experienced a rise in T lymphocyte number after immunization. One-third of infiltrating T cells were CD4 positive. We did not observe significant differences in B lymphocyte numbers in any of the genotypes or treatment groups. These results demonstrate that TGF-beta1 overproduction in the brain can promote T cell infiltration, in particular after Abeta(1-42) immunization. Likewise, levels of TGF-beta1 or other immune factors in brains of AD patients may influence the response to Abeta(1-42) immunization.
Pancreatic Beta Cells Synthesize Neuropeptide Y and Can Rapidly Release Peptide Co-Transmitters
Whim, Matthew D.
2011-01-01
Background In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. Methodology/Principal Findings NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. Conclusions These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time. PMID:21559341
Lee, Kyeong-Min; Seo, Ye Jin; Kim, Mi-Kyung; Seo, Hyun-Ae; Jeong, Ji-Yun; Choi, Hueng-Sik; Lee, In-Kyu; Park, Keun-Gyu
2012-03-23
Sustained elevations of glucose and free fatty acid concentration have deleterious effects on pancreatic beta cell function. One of the hallmarks of such glucolipotoxicity is a reduction in insulin gene expression, resulting from decreased insulin promoter activity. Sterol regulatory element binding protein-1c (SREBP-1c), a lipogenic transcription factor, is related to the development of beta cell dysfunction caused by elevated concentrations of glucose and free fatty acid. Small heterodimer partner (SHP) interacting leucine zipper protein (SMILE), also known as Zhangfei, is a novel protein which interacts with SHP that mediates glucotoxicity in INS-1 rat insulinoma cells. Treatment of INS-1 cells with high concentrations of glucose and palmitate increased SREBP-1c and SMILE expression, and decreased insulin gene expression. Adenovirus-mediated overexpression of SREBP-1c in INS-1 cells induced SMILE expression. Moreover, adenovirus-mediated overexpression of SMILE (Ad-SMILE) in INS-1 cells impaired glucose-stimulated insulin secretion as well as insulin gene expression. Ad-SMILE overexpression also inhibited the expression of beta-cell enriched transcription factors including pancreatic duodenal homeobox factor-1, beta cell E box transactivator 2 and RIPE3b1/MafA, in INS-1 cells. Finally, in COS-1 cells, expression of SMILE inhibited the insulin promoter activity induced by these same beta-cell enriched transcription factors. These results collectively suggest that SMILE plays an important role in the development of beta cell dysfunction induced by glucolipotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.
The physiology of rodent beta-cells in pancreas slices.
Rupnik, M
2009-01-01
Beta-cells in pancreatic islets form complex syncytia. Sufficient cell-to-cell electrical coupling seems to ensure coordinated depolarization pattern and insulin release that can be further modulated by rich innervation. The complex structure and coordinated action develop after birth during fast proliferation of the endocrine tissue. These emergent properties can be lost due to various reasons later in life and can lead to glucose intolerance and diabetes mellitus. Pancreas slice is a novel method of choice to study the physiology of beta-cells still embedded in their normal cellulo-social context. I present major advantages, list drawbacks and provide an overview on recent advances in our understanding of the physiology of beta-cells using the pancreas slice approach.
Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.
Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus
2011-06-06
Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popp, R.A.; Popp, D.M.; Johnson, F.M.
Mice homozygous for a spontaneous mutation, in which the ..beta..-major globin gene is deleted, have clinical symptoms of ..beta..-thalassemia. These mice have a hypocellular, hypochromic, microcytic anemia that becomes more severe with increasing age. The defective red cell morphology, decreased osmotic fragility of erythrocytes and shortened red cell life span found in ..beta..-thalassemic mice are similar to those observed in human ..beta..-thalassemia. Synthesis of ..beta..-globin is depressed but not as much as might be expected because the expression of the..beta..-minor globin gene is enhanced to encode two to three times more globin than in normal mice. Splenomegaly, an enlarged poolmore » of stem cells for erythropoiesis, and iron overloading occur in older mice. The fact that these mice remain moderately healthy makes them a very suitable animal model in which to develop and test alternative techniques of gene therapy that could be successfully applied to the treatment of human thalassemia. Homozygous ..beta..-thalassemic mice have large deposits of iron in their tissues, which might make these mice also useful for in vivo tests of the effectiveness and possible long-term side effects for newly developed iron chelators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwak, Jungsug; Song, Taeyun; Song, Jie-Young
2009-09-25
Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cellmore » proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.« less
Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph
2010-07-01
By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.
Portha, Bernard
2005-01-01
Now that the reduction in beta-mass has been clearly established in humans with type 2 diabetes mellitus (T2DM) 1-4, the debate focuses on the possible mechanisms responsible for decreased beta-cell number and impaired beta-cell function and their multifactorial etiology. Appropriate inbred rodent models are essential tools for identification of genes and environmental factors that increase the risk of abnormal beta-cell function and of T2DM. The information available in the Goto-Kakizaki (GK) rat, one of the best characterized animal models of spontaneous T2DM, are reviewed in such a perspective. We propose that the defective beta-cell mass and function in the GK model reflect the complex interactions of three pathogenic players: (1) several independent loci containing genes causing impaired insulin secretion; (2) gestational metabolic impairment inducing a programming of endocrine pancreas (decreased beta-cell neogenesis) which is transmitted to the next generation; and (3) secondary (acquired) loss of beta-cell differentiation due to chronic exposure to hyperglycemia (glucotoxicity). An important message is that the 'heritable' determinants of T2DM are not simply dependant on genetic factors, but probably involve transgenerational epigenetic responses. Copyright (c) 2005 John Wiley & Sons, Ltd.
Mor, Felix; Cohen, Irun R
2013-02-19
Recent work has suggested that beta-lactam antibiotics might directly affect eukaryotic cellular functions. Here, we studied the effects of commonly used beta-lactam antibiotics on rodent and human T cells in vitro and in vivo on T-cell-mediated experimental autoimmune diseases. We now report that experimental autoimmune encephalomyelitis and adjuvant arthritis were significantly more severe in rats treated with cefuroxime and other beta-lactams. T cells appeared to mediate the effect: an anti-myelin basic protein T-cell line treated with cefuroxime or penicillin was more encephalitogenic in adoptive transfer experiments. The beta-lactam ampicillin, in contrast to cefuroxime and penicillin, did not enhance encephalomyelitis, but did inhibit the autoimmune diabetes developing spontaneously in nonobese diabetic mice. Gene expression analysis of human peripheral blood T cells showed that numerous genes associated with T helper 2 (Th2) and T regulatory (Treg) differentiation were down-regulated in T cells stimulated in the presence of cefuroxime; these genes were up-regulated in the presence of ampicillin. The T-cell protein that covalently bound beta-lactam antibiotics was found to be albumin. Human and rodent T cells expressed albumin mRNA and protein, and penicillin-modified albumin was taken up by rat T cells, leading to enhanced encephalitogenicity. Thus, beta-lactam antibiotics in wide clinical use have marked effects on T-cell behavior; beta-lactam antibiotics can function as immunomodulators, apparently through covalent binding to albumin.
Conlee, J W; Shapiro, S M; Churn, S B
2000-04-01
The homozygous (jj) jaundiced Gunn rat model for hyperbilirubinemia displays pronounced cerebellar hypoplasia. To examine the cellular mechanisms involved in bilirubin toxicity, this study focused on the effect of hyperbilirubinemia on calcium/calmodulin-dependent kinase II (CaM kinase II). CaM kinase II is a neuronally enriched enzyme which performs several important functions. Immunohistochemical analysis of alternating serial sections were performed using monoclonal antibodies for the alpha and beta subunits of CaM kinase II. Measurements were made of the total numbers of stained cells in each of the deep cerebellar nuclei and of Purkinje and granule cell densities in cerebellar lobules II, VI, and IX. The beta subunit was present in Purkinje cells and deep cerebellar nuclei of both groups at all ages, but only granule cells which had migrated through the Purkinje cell layer showed staining for beta subunit; external granule cells were completely negative. Many Purkinje cells had degenerated in the older animals, and the percent of granule cells stained for beta subunit was significantly reduced. The alpha subunit was found exclusively in Purkinje cells, although its appearance was delayed in the jaundiced animals. Sulfadimethoxine was administered to some jj rats 24 h or 15 days prior to sacrifice to increase brain bilirubin concentration. Results showed that bilirubin exposure modulated both alpha and beta CaM kinase II subunit expression in selective neuronal populations, but sulfadimethoxine had no acute effect on enzyme immunoreactivity. Thus, developmental expression of the alpha and beta subunits of CaM kinase II was affected by chronic bilirubin exposure during early postnatal development of jaundiced Gunn rats.
The role of oestrogens in the adaptation of islets to insulin resistance.
Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ropero, Ana B; Quesada, Ivan
2009-11-01
Pregnancy is characterized by peripheral insulin resistance, which is developed in parallel with a plasma increase of maternal hormones; these include prolactin, placental lactogens, progesterone and oestradiol among others. Maternal insulin resistance is counteracted by the adaptation of the islets of Langerhans to the higher insulin demand. If this adjustment is not produced, gestational diabetes may be developed. The adaptation process of islets is characterized by an increase of insulin biosynthesis, an enhanced glucose-stimulated insulin secretion (GSIS) and an increase of beta-cell mass. It is not completely understood why, in some individuals, beta-cell mass and function fail to adapt to the metabolic demands of pregnancy, yet a disruption of the beta-cell response to maternal hormones may play a key part. The role of the maternal hormone 17beta-oestradiol (E2) in this adaptation process has been largely unknown. However, in recent years, it has been demonstrated that E2 acts directly on beta-cells to increase insulin biosynthesis and to enhance GSIS through different molecular mechanisms. E2 does not increase beta-cell proliferation but it is involved in beta-cell survival. Classical oestrogen receptors ERalpha and ERbeta, as well as the G protein-coupled oestrogen receptor (GPER) seem to be involved in these adaptation changes. In addition, as the main production of E2 in post-menopausal women comes from the adipose tissue, E2 may act as a messenger between adipocytes and islets in obesity.
Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L
2002-01-01
A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.
Qin, Kunhua; Zhang, Ning; Zhang, Zhao; Nipper, Michael; Zhu, Zhenxin; Leighton, Jake; Xu, Kexin; Musi, Nicolas; Wang, Pei
2018-04-01
Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.
Ectopic production of beta-HCG by a maxillary squamous cell carcinoma.
Scholl, P D; Jurco, S; Austin, J R
1997-12-01
Paraneoplastic syndromes of the head and neck are rare. Hypercalcemia and leukocytosis have been described. The literature was reviewed, and a case of a squamous cell carcinoma of the maxilla producing beta human chorionic gonadotropin (beta-HCG) is presented. A 47-year-old white man with a T4N1M0 squamous cell carcinoma of the left maxilla was treated with a maxillectomy and neck dissection for an N1 positive neck. After completing his planned radiotherapy, he developed distant metastases, which included an axillary node that stained positive for human beta-HCG. Retrospective review of the primary specimen showed beta-HCG positivity in an anaplastic component of the tumor along with vascular invasion. The first case in the literature of a paraneoplastic syndrome with beta-HCG production in association with squamous cell carcinoma of the maxilla is presented. This case history fits the aggressive nature of beta HCG producing tumors elsewhere in the body.
{beta}-Catenin regulates airway smooth muscle contraction.
Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud
2010-08-01
beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.
Omar, Bilal; Ahlkvist, Linda; Yamada, Yuchiro; Seino, Yutaka; Ahrén, Bo
2016-05-01
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development. Copyright © 2016. Published by Elsevier Inc.
Scavuzzo, Marissa A; Teaw, Jessica; Yang, Diane; Borowiak, Malgorzata
2018-06-02
The pancreas is a complex organ composed of many different cell types that work together to regulate blood glucose homeostasis and digestion. These cell types include enzyme-secreting acinar cells, an arborized ductal system responsible for the transportation of enzymes to the gut, and hormone-producing endocrine cells. Endocrine beta-cells are the sole cell type in the body that produce insulin to lower blood glucose levels. Diabetes, a disease characterized by a loss or the dysfunction of beta-cells, is reaching epidemic proportions. Thus, it is essential to establish protocols to investigate beta-cell development that can be used for screening purposes to derive the drug and cell-based therapeutics. While the experimental investigation of mouse development is essential, in vivo studies are laborious and time-consuming. Cultured cells provide a more convenient platform for screening; however, they are unable to maintain the cellular diversity, architectural organization, and cellular interactions found in vivo. Thus, it is essential to develop new tools to investigate pancreatic organogenesis and physiology. Pancreatic epithelial cells develop in the close association with mesenchyme from the onset of organogenesis as cells organize and differentiate into the complex, physiologically competent adult organ. The pancreatic mesenchyme provides important signals for the endocrine development, many of which are not well understood yet, thus difficult to recapitulate during the in vitro culture. Here, we describe a protocol to culture three-dimensional, cellular complex mouse organoids that retain mesenchyme, termed pancreatoids. The e10.5 murine pancreatic bud is dissected, dissociated, and cultured in a scaffold-free environment. These floating cells self-assemble with mesenchyme enveloping the developing pancreatoid and a robust number of endocrine beta-cells developing along with the acinar and the duct cells. This system can be used to study the cell fate determination, structural organization, and morphogenesis, cell-cell interactions during organogenesis, or for the drug, small molecule, or genetic screening.
Distinct single-cell morphological dynamics under beta-lactam antibiotics
Yao, Zhizhong; Kahne, Daniel; Kishony, Roy
2012-01-01
Summary The bacterial cell wall is conserved in prokaryotes, stabilizing cells against osmotic stress. Beta-lactams inhibit cell wall synthesis and induce lysis through a bulge-mediated mechanism; however, little is known about the formation dynamics and stability of these bulges. To capture processes of different timescales, we developed an imaging platform combining automated image analysis with live cell microscopy at high time resolution. Beta-lactam killing of Escherichia coli cells proceeded through four stages: elongation, bulge formation, bulge stagnation and lysis. Both the cell wall and outer membrane (OM) affect the observed dynamics; damaging the cell wall with different beta-lactams and compromising OM integrity cause different modes and rates of lysis. Our results show that the bulge formation dynamics is determined by how the cell wall is perturbed. The OM plays an independent role in stabilizing the bulge once it is formed. The stabilized bulge delays lysis, and allows recovery upon drug removal. PMID:23103254
Synergy between TGF-beta 3 and NT-3 to promote the survival of spiral ganglia neurones in vitro.
Marzella, P L; Clark, G M; Shepherd, R K; Bartlett, P F; Kilpatrick, T J
1998-01-09
Transforming growth factor-betas (TGF-betas) have been implicated in normal inner ear development and in promoting neuronal survival. Early rat post-natal spiral ganglion cells (SGC) in dissociated cell culture were used as a model of auditory innervation to test the trophic factors TGF-beta3 and neurotrophin-3 (NT-3) for their ability, individually or in combination, to promote neuronal survival. The findings from this study suggest that TGF-beta3 supports neuronal survival in a concentration-dependent manner. Moreover TGF-beta3 and NT-3-potentiated spiral ganglion neuronal survival in a synergistic fashion.
Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro
2011-01-01
Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896
Kim, Sungwoo; Nishimoto, Satoru K; Bumgardner, Joel D; Haggard, Warren O; Gaber, M Waleed; Yang, Yunzhi
2010-05-01
We report here the development of a chitosan/beta-glycerophosphate(Ch/beta-GP) thermo-sensitive gel to deliver ellagic acid (EA) for cancer treatment. The properties of the Ch/beta-GP gels were characterized regarding chemical structure, surface morphology, and viscoelasticity. In vitro EA release rate from the EA loaded Ch/beta-GP gel and chitosan degradation rate were investigated. The anti-tumor effect of the EA loaded Ch/beta-GP gel on brain cancer cells (human U87 glioblastomas and rat C6 glioma cells) was evaluated by examining cell viability. Cell number and activity were monitored by the MTS assay. The Ch/beta-GP solution formed a heat-induced gel at body temperature, and the gelation temperature and time were affected by the final pH of the Ch/beta-GP solution. The lysozyme increased the EA release rate by 2.5 times higher than that in the absence of lysozyme. Dialyzed chitosan solution with final pH 6.3 greatly reduced the beta-GP needed for gelation, thereby significantly improving the biocompatibility of gel (p < 0.001). The chitosan gels containing 1% (w/v) of ellagic acid significantly reduced viability of U87 cells and C6 cells compared with the chitosan gels at 3 days incubation (p < 0.01, and p < 0.001, respectively). Copyright 2010 Elsevier Ltd. All rights reserved.
Paria, B C; Dey, S K
1990-01-01
We have established a model that shows cooperative interaction among preimplantation embryos and the role of growth factors on their development and growth. Two-cell mouse embryos cultured singly in 25-microliters microdrops had inferior development to blastocysts and lower cell numbers per blastocyst compared with those cultured in groups of 5 or 10. The inferior development of singly cultured embryos was markedly improved by addition of epidermal growth factor (EGF) or transforming growth factor alpha or beta 1 (TGF-alpha or TGF-beta 1) to the culture medium. The stage of embryonic development, primarily affected by these treatments, was between eight-cell/morula and blastocyst. Furthermore, blastocysts developed from eight-cell embryos cultured in groups or singly in the presence of EGF showed a higher incidence of zona hatching compared with those cultured singly in the absence of EGF. Detection of EGF receptors on the embryonic cell surface at eight-cell/morula and blastocyst stages suggests beneficial effects of EGF or TGF-alpha on preimplantation embryo development and blastocyst functions. Insulin-like growth factor I (IGF-I) had no influence on embryo development. To further document the cooperative interactions among embryos, the volume of the culture medium was doubled to 50 microliters. This increase in culture volume was even more detrimental to the development of singly cultured embryos. However, this detrimental effect was significantly reversed by EGF and reversed even more markedly by a combination of EGF and TGF-beta 1 but not by TGF-beta 1 alone. Although TGF-beta 1 plus IGF-I caused a modest improvement of embryo development, the response was not as great as shown by EGF alone. Furthermore, IGF-I had no additive effect on EGF-induced embryonic development. The study presents clear evidence that specific growth factors of embryonic and/or reproductive tract origin participate in preimplantation embryo development and blastocyst functions in an autocrine/paracrine manner. Images PMID:2352946
High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways
NASA Technical Reports Server (NTRS)
Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.
2010-01-01
The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.
Han, H S; Jun, H S; Utsugi, T; Yoon, J W
1997-06-01
A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF-beta-mediated suppression of T cell activation may be responsible for the prevention of effector T cell-mediated autoimmune IDDM in NOD mice by TGF-beta-producing CD4+ suppressor T cells.
Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik
2008-12-01
Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.
Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela
2009-04-15
Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.
Zhang, Yuan; Shu, Yi Min; Wang, Shu Fang; Da, Bang Hong; Wang, Ze Hua; Li, Hua Bin
2010-02-23
PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3beta (GSK-3beta) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3beta(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3beta after transfection with GSK-3beta by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3beta (s9). Furthermore, we demonstrated GSK-3beta transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3beta was important to improve chemosensitization, indicating the significance of GSK-3beta-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.
1996-01-01
The importance of cytotoxic T lymphocytes (CTLs) in the immunosurveillance of Epstein-Barr virus (EBV)-infected B cells is firmly established, and the viral antigens of CTL recognition in latent infection are well defined. The epitopes targeted by CTLs during primary infection have not been identified, however, and there is only limited information about T cell receptor (TCR) selection. In the present report, we have monitored the development of memory TCR-beta clonotypes selected in response to natural EBV infection in a longitudinal study of an HLA-B8+ individual with acute infectious mononucleosis (IM). By stimulating peripheral blood lymphocytes with HLA-B8+ EBV-transformed B lymphoblastoid cells, the primary virus- specific CTL response was shown to include specificities for two HLA-B8- restricted antigenic determinants, FLRGRAYGL and QAKWRLQTL, which are encoded within the latent EBV nuclear antigen EBNA-3. TCR-beta sequence analysis of CTL clones specific for each epitope showed polyclonal TCR- beta repertoire selection, with structural restrictions on recognition that indicated antigen-driven selection. Furthermore, longitudinal repertoire analysis revealed long-term preservation of a multiclonal effector response throughout convalescence, with the reemergence of distinct memory T cell clonotypes sharing similar structural restrictions. Tracking the progression of specific TCR-beta clonotypes and antigen-specific TCR-V beta family gene expression in the peripheral repertoire ex vivo using semiquantitative PCR strongly suggested that selective TCR-beta expansions were present at the clonotype level, but not at the TCR-V beta family level. Overall, in this first analysis of antigen-specific TCR development in IM, a picture of polyclonal TCR stimulation is apparent. This diversity may be especially important in the establishment of an effective CTL control during acute EBV infection and in recovery from disease. PMID:8920869
Li, X; Velleman, S G
2009-02-01
During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.
Unraveling the role of the ghrelin gene peptides in the endocrine pancreas.
Granata, Riccarda; Baragli, Alessandra; Settanni, Fabio; Scarlatti, Francesca; Ghigo, Ezio
2010-09-01
The ghrelin gene peptides include acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (Ob). AG, mainly produced by the stomach, exerts its central and peripheral effects through the GH secretagogue receptor type 1a (GHS-R1a). UAG, although devoid of GHS-R1a-binding affinity, is an active peptide, sharing with AG many effects through an unknown receptor. Ob was discovered as the G-protein-coupled receptor 39 (GPR39) ligand; however, its physiological actions remain unclear. The endocrine pancreas is necessary for glucose homeostasis maintenance. AG, UAG, and Ob are expressed in both human and rodent pancreatic islets from fetal to adult life, and the pancreas is the major source of ghrelin in the perinatal period. GHS-R1a and GPR39 expression has been shown in beta-cells and islets, as well as specific binding sites for AG, UAG, and Ob. Ghrelin colocalizes with glucagon in alpha-islet cells, but is also uniquely expressed in epsilon-islet cells, suggesting a role in islet function and development. Indeed, AG, UAG, and Ob regulate insulin secretion in beta-cells and isolated islets, promote beta-cell proliferation and survival, inhibit beta-cell and human islet cell apoptosis, and modulate the expression of genes that are essential in pancreatic islet cell biology. They even induce beta-cell regeneration and prevent diabetes in streptozotocin-treated neonatal rats. The receptor(s) mediating their effects are not fully characterized, and a signaling crosstalk has been suggested. The present review summarizes the newest findings on AG, UAG, and Ob expression in pancreatic islets and the role of these peptides on beta-cell development, survival, and function.
Yamaguchi, Y; Tsumura, H; Miwa, M; Inaba, K
1997-01-01
Dendritic cells (DC) are a distinct population of leukocytes and specialized antigen-presenting cells for T cell responses. Prior work has shown that GM-CSF can induce the development of large numbers of DC from proliferating progenitors in mouse bone marrow. We have monitored the effects of potentially enhancing and suppressive cytokines in these cultures. In this system, many immature DC develop from proliferating precursors during the first six days of culture, and between days 6-8 maturation of typical nonadherent and nonreplicating DC takes place. The maturation is accompanied by a large increase in the expression of major histocompatibilities complex class II (MHC II) and B7-2/CD86, and in mixed leukocyte reaction stimulating activity. Tumor necrosis factor-alpha (TNF-alpha), previously shown to be required for development of human DC, was found to enhance the maturation of mouse DC in the last two days of culture. Transforming growth factor-beta 1 (TGF-beta 1), on the other hand, almost totally blocked DC maturation, but it had to be given in the first six days of culture when the DC were actively proliferating. TGF-beta 1 did not block the production of immature, MHC II-positive but B7-2/CD86-negative DC. Maturation would take place between days 6-8 as long as the cultures were depleted of Fc-receptor-bearing cells, or if TNF-alpha were added. In both instances, maturation was not blocked even when TGF-beta 1 remained in the culture. We conclude that the development of DC, in response to GM-CSF, can be modified by other cytokines. TGF-beta 1 is suppressive but only indirectly via Fc-receptor-bearing suppressive cells, presumably suppressive macrophages, while TNF-alpha enhances the final maturation of DC.
Betavoltaics Of Increased Power
NASA Technical Reports Server (NTRS)
Pool, Frederick S.; Stella, Paul
1991-01-01
Batteries of newly developed betavoltaic cells proposed as long-lived sources of power of order of watts. High-power betavoltaic cell resembles solar photo voltaic cell, except it includes layer of beta-emitting material. Betavoltaic battery cells are stacked as in chemical battery, and surrounded by material containing beta rays. Intended for use aboard spacecraft, batteries also used in surgically implanted devices requiring high power.
1996-01-01
Thymic selection of natural killer-1+ natural T cells that express alpha beta T cell receptors requires a conserved beta 2-microglobulin- associated molecule, presumably CD1d, displayed by CD4+8+ thymocytes. Here we demonstrate that positive selection of natural T cells occurs independent of transporters associated with antigen presentation-1 (TAP- 1) function. Moreover, natural T cells in TAP-1o/o mice are numerically expanded. Several H-2 class Ib molecules function in a TAP-independent manner, suggesting that if expressed in TAP-1o/o thymocytes, they could play a role in natural T cell development. Of these class Ib molecules, H-2TL is expressed by TAP-1o/o thymocytes. Moreover, we find that thymi of TL+ mice congenic or transgenic for H-2T18 also have a numerically expanded natural T cell repertoire compared with TL- mice. This expansion, as in TAP-1o/o thymi, is evident in each of the limited T cell receptor V beta chains expressed by natural T cells, suggesting that TL and CD1d impact similar repertoires. Thus TL, in addition to CD1d, plays a role in natural T cell development. PMID:8879233
Jayaprakasam, Bolleddula; Padmanabhan, Kaillathe; Nair, Muraleedharan G
2010-06-01
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with symptoms of confusion, memory loss, and mood swings. The beta-amyloid peptide, with 39-42 amino acid residues (BAP), plays a significant role in the development of AD. Although there is no cure for AD, it can be managed with available drugs to some degree. Several studies have revealed that natural antioxidants, such as vitamin E, vitamin C and beta-carotene, may help in scavenging free radicals generated during the initiation and progression of this disease. Therefore, there has been considerable interest in plant phytochemicals with antioxidant property as potential agents to prevent the progression of AD. Our earlier investigations of the Withania somnifera fruit afforded lipid peroxidation inhibitory withanamides that are more potent than the commercial antioxidants. In this study, we have tested two major withanamides A (WA) and C (WC) for their ability to protect the PC-12 cells, rat neuronal cells, from beta-amyloid induced cell damage. The cell death caused by beta-amyloid was negated by withanamide treatment. Molecular modeling studies showed that withanamides A and C uniquely bind to the active motif of beta-amyloid (25-35) and suggest that withanamides have the ability to prevent the fibril formation. Further understanding of the mechanism of action and in vivo efficacy of these withanamides may facilitate its development as a prophylaxis. (c) 2009 John Wiley & Sons, Ltd.
Philipp, Katrin; Riedel, Frank; Germann, Günter; Hörmann, Karl; Sauerbier, Michael
2005-02-01
The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix. The transforming growth factor-beta (TGF-beta) has been identified as an important component of wound healing. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-beta. We investigated the effect of TGF-beta antisense oligonucleotides on the mRNA expression of matrix metalloproteinases in cultured human keratinocytes, fibroblasts and endothelial cells using multiplex RT-PCR. The treatment of keratinocytes and fibroblasts with TGF-beta antisense oligonucleotides resulted in a significant decrease of expression of mRNA of MMP-1 and MMP-9 compared to controls. Accordingly, a decreased expression of MMP-1 mRNA in endothelial cells was detectable. Other MMPs were not affected. Affecting all dermal wound-healing-related cell types, TGF-beta antisense oligonucleotide technology may be a potential therapeutic option for the inhibition of proteolytic tissue destruction in chronic wounds. Pharmaceutical intervention in this area ultimately may help clinicians to proactively intervene in an effort to prevent normal wounds from becoming chronic.
Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.
Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V
2007-09-14
The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.
Dumitriu, Ingrid E; Dunbar, Donald R; Howie, Sarah E; Sethi, Tariq; Gregory, Christopher D
2009-03-01
Dendritic cells (DCs) have a central role in the development of adaptive immune responses, including antitumor immunity. Factors present in the tumor milieu can alter the maturation of DCs and inhibit their capacity to activate T cells. Using gene expression analysis, we found that human DCs increased the expression of TGF-beta1 transcripts following culture with human lung carcinoma cells (LCCs). These DCs produced increased amounts of TGF-beta1 protein compared with DCs not exposed to tumor cells. LCCs also decreased the expression of CD86 and HLA-DR by immature DCs. Furthermore, LCCs decreased CD86 expression and the production of TNF-alpha and IL-12 p70 by mature DCs. Moreover, LCCs also converted mature DCs into cells producing TGF-beta1. These TGF-beta1-producing DCs were poor at eliciting the activation of naive CD4(+) T cells and sustaining their proliferation and differentiation into Th1 (IFN-gamma(+)) effectors. Instead, TGF-beta1-producing DCs demonstrated an increased ability to generate CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress the proliferation of T lymphocytes. These results identify a novel mechanism by which the function of human DCs is altered by tumor cells and contributes to the evasion of the immune response.
Hachimine, Daisaku; Uchida, Kazushige; Asada, Masanori; Nishio, Akiyoshi; Kawamata, Seiji; Sekimoto, Go; Murata, Miki; Yamagata, Hideo; Yoshida, Katsunori; Mori, Shigeo; Tahashi, Yoshiya; Matsuzaki, Koichi; Okazaki, Kazuichi
2008-06-01
Chronic inflammation predisposes to cancer. Transforming growth factor (TGF)-beta, a multifunctional protein, suppresses the growth of normal colonic epithelial cells, whereas it stimulates the proliferation of cancer cells. Interleukin (IL)-10-deficient mice, which develop colitis and colorectal cancer, show an increased level of plasma TGF-beta. Although TGF-beta may be a key molecule in the development of colon cancer arising from chronic colitis in IL-10-deficient mice, the role of TGF-beta still remains unclear. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), which converts the mediator Smad3 into two distinctive phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). We studied C57BL/6-IL-10-deficient mice (n=18) at 4 to 32 weeks of age. We investigated histology, and pSmad2/3L, pSmad2/3C, and p53 by immunohistochemistry. pSmad3L staining was detected in the cancer cells in all 10 mice with colonic cancer and in the epithelial cells in 7 of 12 mice with colonic dysplasia, but not in the normal or colitic mice. pSmad3c was detected without any significant difference between stages. p53 was weakly stained in a few cancer cells in 5 out of 10 mice. Smad3L signaling plays an important role in the carcinogenesis of chronic colitis in IL-10-deficient mice.
Quoyer, Julie; Longuet, Christine; Broca, Christophe; Linck, Nathalie; Costes, Safia; Varin, Elodie; Bockaert, Joël; Bertrand, Gyslaine; Dalle, Stéphane
2010-01-15
Strategies based on activating GLP-1 receptor (GLP-1R) are intensively developed for the treatment of type 2 diabetes. The exhaustive knowledge of the signaling pathways linked to activated GLP-1R within the beta-cells is of major importance. In beta-cells, GLP-1 activates the ERK1/2 cascade by diverse pathways dependent on either Galpha(s)/cAMP/cAMP-dependent protein kinase (PKA) or beta-arrestin 1, a scaffold protein. Using pharmacological inhibitors, beta-arrestin 1 small interfering RNA, and islets isolated from beta-arrestin 1 knock-out mice, we demonstrate that GLP-1 stimulates ERK1/2 by two temporally distinct pathways. The PKA-dependent pathway mediates rapid and transient ERK1/2 phosphorylation that leads to nuclear translocation of the activated kinases. In contrast, the beta-arrestin 1-dependent pathway produces a late ERK1/2 activity that is restricted to the beta-cell cytoplasm. We further observe that GLP-1 phosphorylates the cytoplasmic proapoptotic protein Bad at Ser-112 but not at Ser-155. We find that the beta-arrestin 1-dependent ERK1/2 activation engaged by GLP-1 mediates the Ser-112 phosphorylation of Bad, through p90RSK activation, allowing the association of Bad with the scaffold protein 14-3-3, leading to its inactivation. beta-Arrestin 1 is further found to mediate the antiapoptotic effect of GLP-1 in beta-cells through the ERK1/2-p90RSK-phosphorylation of Bad. This new regulatory mechanism engaged by activated GLP-1R involving a beta-arrestin 1-dependent spatiotemporal regulation of the ERK1/2-p90RSK activity is now suspected to participate in the protection of beta-cells against apoptosis. Such signaling mechanism may serve as a prototype to generate new therapeutic GLP-1R ligands.
Zenke, Kosuke; Nam, Yoon Kwon; Kim, Ki Hong
2010-01-01
In the present study, we have developed short interfering RNA (siRNA) expression vector utilizing rock bream beta-actin promoter and examined the possible use for the inhibition of highly pathogenic fish virus, rock bream iridovirus (RBIV), replication in vitro. Initially, in order to express siRNA effectively, we added several modifications to wild-type rock bream beta-actin promoter. Next, we succeeded in knocking down the expression of enhanced green fluorescent protein reporter gene expression in fish cells using newly developed vector more effectively than the fugu U6 promoter-driven vector we described previously. Finally, we could observe that cells transfected with modified rock bream beta-actin promoter-driven siRNA expression vector targeting major capsid protein (MCP) gene of RBIV exhibited more resistance to RBIV challenge than other control cells. Our results indicate that this novel siRNA expression vector can be used as a new tool for therapeutics in virus infection in fish species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yong, E-mail: yongzhao@uic.edu; Guo, Chengshan; Hwang, David
2010-09-03
Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model inmore » NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Flavia E.; Coffin, J. Douglas; Beall, Howard D.
2007-04-15
Arsenic exposure has been shown to exacerbate atherosclerosis, beginning with activation of the endothelium that lines the vessel wall. Endothelial barrier integrity is maintained by proteins of the adherens junction (AJ) such as vascular endothelial cadherin (VE-cadherin) and {beta}-catenin and their association with the actin cytoskeleton. In the present study, human aortic endothelial cells (HAECs) were exposed to 1, 5 and 10 {mu}M sodium arsenite [As(III)] for 1, 6, 12 and 24 h, and the effects on endothelial barrier integrity were determined. Immunofluorescence studies revealed formation of actin stress fibers and non-uniform VE-cadherin and {beta}-catenin staining at cell-cell junctions thatmore » were concentration- and time-dependent. Intercellular gaps were observed with a measured increase in endothelial permeability. In addition, concentration-dependent increases in tyrosine phosphorylation (PY) of {beta}-catenin and activation of protein kinase C{alpha} (PKC{alpha}) were observed. Inhibition of PKC{alpha} restored VE-cadherin and {beta}-catenin staining at cell-cell junctions and abolished the As(III)-induced formation of actin stress fibers and intercellular gaps. Endothelial permeability and PY of {beta}-catenin were also reduced to basal levels. These results demonstrate that As(III) induces activation of PKC{alpha}, which leads to increased PY of {beta}-catenin downstream of PKC{alpha} activation. Phosphorylation of {beta}-catenin plausibly severs the association of VE-cadherin and {beta}-catenin, which along with formation of actin stress fibers, results in intercellular gap formation and increased endothelial permeability. To the best of our knowledge, this is the first report demonstrating that As(III) causes a loss of endothelial monolayer integrity, which potentially could contribute to the development of atherosclerosis.« less
CLIC4 Moves Into Nucleus to Stabilize Anti-Growth Signal | Center for Cancer Research
In cancer, the delicate balance of signaling pathways that control cell growth and function is disrupted. One signaling pathway commonly altered in cancer is the TGF-beta pathway. TGF-beta significantly inhibits growth of normal cells, particularly epithelial cells. Many cancer cells have developed ways to bypass one or more steps of this pathway in order to achieve uncontrolled growth.
CLIC4 Moves Into Nucleus to Stabilize Anti-Growth Signal | Center for Cancer Research
In cancer, the delicate balance of signaling pathways that control cell growth and function is disrupted. One signaling pathway commonly altered in cancer is the TGF-beta pathway. TGF-beta significantly inhibits growth of normal cells, particularly epithelial cells. Many cancer cells have developed ways to bypass one or more steps of this pathway in order to achieve
Dubreuil, R R; Maddux, P B; Grushko, T A; MacVicar, G R
1997-10-01
Spectrin isoforms are often segregated within specialized plasma membrane subdomains where they are thought to contribute to the development of cell surface polarity. It was previously shown that ankyrin and beta spectrin are recruited to sites of cell-cell contact in Drosophila S2 cells expressing the homophilic adhesion molecule neuroglian. Here, we show that neuroglian has no apparent effect on a second spectrin isoform (alpha beta H), which is constitutively associated with the plasma membrane in S2 cells. Another membrane marker, the Na,K-ATPase, codistributes with ankyrin and alpha beta spectrin at sites of neuroglian-mediated contact. The distributions of these markers in epithelial cells in vivo are consistent with the order of events observed in S2 cells. Neuroglian, ankyrin, alpha beta spectrin, and the Na,K-ATPase colocalize at the lateral domain of salivary gland cells. In contrast, alpha beta H spectrin is sorted to the apical domain of salivary gland and somatic follicle cells. Thus, the two spectrin isoforms respond independently to positional cues at the cell surface: in one case an apically sorted receptor and in the other case a locally activated cell-cell adhesion molecule. The results support a model in which the membrane skeleton behaves as a transducer of positional information within cells.
Schwenk, Robert W; Baumeier, Christian; Finan, Brian; Kluth, Oliver; Brauer, Christine; Joost, Hans-Georg; DiMarchi, Richard D; Tschöp, Matthias H; Schürmann, Annette
2015-03-01
Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone.
Alibardi, L; Thompson, M B
2003-04-01
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal. Copyright 2003 Wiley-Liss, Inc.
Jaiswal, Aruna S; Marlow, Benjamin P; Gupta, Nirupama; Narayan, Satya
2002-12-05
The development of nontoxic natural agents with chemopreventive activity against colon cancer is the focus of investigation in many laboratories. Curcumin (feruylmethane), a natural plant product, possesses such chemopreventive activity, but the mechanisms by which it prevents cancer growth are not well understood. In the present study, we examined the mechanisms by which curcumin treatment affects the growth of colon cancer cells in vitro. Results showed that curcumin treatment causes p53- and p21-independent G(2)/M phase arrest and apoptosis in HCT-116(p53(+/+)), HCT-116(p53(-/-)) and HCT-116(p21(-/-)) cell lines. We further investigated the association of the beta-catenin-mediated c-Myc expression and the cell-cell adhesion pathways in curcumin-induced G(2)/M arrest and apoptosis in HCT-116 cells. Results described a caspase-3-mediated cleavage of beta-catenin, decreased transactivation of beta-catenin/Tcf-Lef, decreased promoter DNA binding activity of the beta-catenin/Tcf-Lef complex, and decreased levels of c-Myc protein. These activities were linked with decreased Cdc2/cyclin B1 kinase activity, a function of the G(2)/M phase arrest. The decreased transactivation of beta-catenin in curcumin-treated HCT-116 cells was unpreventable by caspase-3 inhibitor Z-DEVD-fmk, even though the curcumin-induced cleavage of beta-catenin was blocked in Z-DEVD-fmk pretreated cells. The curcumin treatment also induced caspase-3-mediated degradation of cell-cell adhesion proteins beta-catenin, E-cadherin and APC, which were linked with apoptosis, and this degradation was prevented with the caspase-3 inhibitor. Our results suggest that curcumin treatment impairs both Wnt signaling and cell-cell adhesion pathways, resulting in G(2)/M phase arrest and apoptosis in HCT-116 cells.
Jin, Cai-Xia; Li, Wen-Lin; Xu, Fang; Geng, Zhen H; He, Zhi-Ying; Su, Juan; Tao, Xin-Rong; Ding, Xiao-Yan; Wang, Xin; Hu, Yi-Ping
2008-05-01
The conversion of expandable liver progenitor cells into pancreatic beta cells would provide a renewable cell source for diabetes cell therapy. Previously, we reported the establishment of liver epithelial progenitor cells (LEPCs). In this work, LEPCs were modified into EGFP/Pdx-1 LEPCs, cells with stable expression of both Pdx-1 and EGFP. Unlike previous work, with persistent expression of Pdx-1, EGFP/Pdx-1 LEPCs acquired the phenotype of pancreatic endocrine progenitor cells rather than giving rise to insulin-producing cells directly. EGFP/Pdx-1 LEPCs proliferated vigorously and expressed the crucial transcription factors involved in beta cell development, including Ngn3, NeuroD, Nkx2.2, Nkx6.1, Pax4, Pax6, Isl1, MafA and endogenous Pdx-1, but did not secrete insulin. When cultured in high glucose/low serum medium supplemented with cytokines, EGFP/Pdx-1 LEPCs stopped proliferating and gave rise to functional beta cells without any evidence of exocrine or other islet cell lineage differentiation. When transplanted into diabetic SCID mice, EGFP/Pdx-1 LEPCs ameliorated hyperglycemia by secreting insulin in a glucose regulated manner. Considering the limited availability of beta cells, we propose that our experiments will provide a framework for utilizing the immortal liver progenitor cells as a renewable cell source for the generation of functional pancreatic beta cells.
Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung
2007-03-01
CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.
Ramaswamy, S; Grace, C; Mattei, A A; Siemienowicz, K; Brownlee, W; MacCallum, J; McNeilly, A S; Duncan, W C; Rae, M T
2016-06-06
Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells.
Ramaswamy, S.; Grace, C.; Mattei, A. A.; Siemienowicz, K.; Brownlee, W.; MacCallum, J.; McNeilly, A. S.; Duncan, W. C.; Rae, M. T.
2016-01-01
Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells. PMID:27265420
Opposing actions of Arx and Pax4 in endocrine pancreas development.
Collombat, Patrick; Mansouri, Ahmed; Hecksher-Sorensen, Jacob; Serup, Palle; Krull, Jens; Gradwohl, Gerard; Gruss, Peter
2003-10-15
Genes encoding homeodomain-containing proteins potentially involved in endocrine pancreas development were isolated by combined in silico and nested-PCR approaches. One such transcription factor, Arx, exhibits Ngn3-dependent expression throughout endocrine pancreas development in alpha, beta-precursor, and delta cells. We have used gene targeting in mouse embryonic stem cells to generate Arx loss-of-function mice. Arx-deficient animals are born at the expected Mendelian frequency, but develop early-onset hypoglycemia, dehydration, and weakness, and die 2 d after birth. Immunohistological analysis of pancreas from Arx mutants reveals an early-onset loss of mature endocrine alpha cells with a concomitant increase in beta-and delta-cell numbers, whereas islet morphology remains intact. Our study indicates a requirement of Arx for alpha-cell fate acquisition and a repressive action on beta-and delta-cell destiny, which is exactly the opposite of the action of Pax4 in endocrine commitment. Using multiplex reverse transcriptase PCR (RT-PCR), we demonstrate an accumulation of Pax4 and Arx transcripts in Arx and Pax4 mutant mice, respectively. We propose that the antagonistic functions of Arx and Pax4 for proper islet cell specification are related to the pancreatic levels of the respective transcripts.
Yang, Jian-zhu; Zhang, Xiang-hong; Wu, Wen-xin; Yan, Xia; Liu, Yan-li; Wang, Jun-ling; Wang, Feng-rong
2003-07-01
To study the expression of EP-CAM, beta-catenin in the carcinogenesis of squamous cell carcinoma of uterine cervix. The expressions of EP-CAM and beta-catenin were detected with immunohistochemical stain in 14 cases of normal cervical squamous epithelium, 32 cases of cervical intraepithelial neoplasia (CIN) and 38 cases of cervical invasive squamous cell carcinoma. The over-expression rates of EP-CAM were 0, 7.1%, 20.0%, 62.5% and 55.3% for normal cervical epithelium, CINI, CINII, CINIII and carcinoma groups. The EP-CAM over-expression rates in CINIII and cervical carcinoma groups were significantly higher than those in normal epithelium and CINI groups (P < 0.001). No aberrant expression of beta-catenin was shown in normal cervical epithelium, while the aberrant expression rates of beta-catenin in CINI, CINII, CINIII and cervical carcinoma group were 28.6%, 40.0%, 62.5% and 84.2%. The aberrant expression rate of beta-catenin increased with the increase in degree of CIN and development of cervical carcinoma. The over-expression rate of EP-CAM was reversely related to the differentiation of cervical squamous cell carcinoma (P < 0.001). EP-CAM and beta-catenin may be involved in the carcinogenesis of squamous cell carcinoma of uterine cervix. The over-expression of EP-CAM and aberrant expression of beta-catenin may serve as markers of squamous carcinogenesis of uterine cervix.
Fukuchi, Minoru; Nakajima, Masanobu; Fukai, Yasuyuki; Miyazaki, Tatsuya; Masuda, Norihiro; Sohda, Makoto; Manda, Ryokuhei; Tsukada, Katsuhiko; Kato, Hiroyuki; Kuwano, Hiroyuki
2004-03-01
Transforming growth factor-beta (TGF-beta) regulates cell growth inhibition, and inactivation of the TGF-beta signaling pathway contributes to tumor development. In our previous study, altered expression of TGF-beta, TGF-beta-specific receptors and Smad4 was shown to correlate with tumor progression in esophageal squamous cell carcinoma (SCC). These components, however, were maintained normally in some patients with esophageal SCC. In our study, the mechanism by which aggressive esophageal SCC maintains these components was investigated, with particular emphasis on the participation of c-Ski and SnoN as transcriptional co-repressors in TGF-beta signaling. Immunohistochemistry for c-Ski and SnoN was carried out on surgical specimens obtained from 80 patients with esophageal SCC. The expression of c-Ski and SnoN was also studied in 6 established cell lines derived from esophageal SCC and compared to an immortalized human esophageal cell line by Western blotting. High levels of expression of c-Ski, detected immunohistologically, were found to correlate with depth of invasion (p = 0.0080) and pathologic stage (p = 0.0447). There was, however, no significant correlation between expression of SnoN and clinicopathologic characteristics. A significant correlation between c-Ski and TGF-beta expression was observed. Moreover, in patients with TGF-beta negative expression, the survival rates of patients with c-Ski positive expression were significantly lower than those of patients with c-Ski negative expression (p = 0.0486). c-Ski was expressed at a high level in 5 of 6 cell lines derived from esophageal SCC compared to immortalized esophageal keratinocytes. Furthermore, the cyclin-dependent kinase (CDK) inhibitor, p21 that was up-regulated by TGF-beta signaling was expressed at a low level in the 5 cell lines. The expression of c-Ski protein as a transcriptional co-repressor in TGF-beta signaling seems to be correlated with tumor progression of esophageal SCC. Copyright 2003 Wiley-Liss, Inc.
Beecken, Wolf-Dietrich C; Engl, Tobias; Ringel, Eva M; Camphausen, Kevin; Michaelis, Martin; Jonas, Dietger; Folkman, Judah; Shing, Yuen; Blaheta, Roman A
2006-09-01
Invasive cell carcinoma of the bladder often develops after complete transurethral excision of superficial transitional cell carcinoma. It has been postulated that primary tumors release angiogenesis-blocking proteins which suppress distant metastases. We have identified an endogenous protein which might be responsible for tumor dormancy. A transitional cell carcinoma cell line was developed (UMUC-3i) which inhibits the growth of a tumor implant at a distant site in SCID mice. Conditioned media of UMUC-3i cultured cells was first pooled and then fractioned, and the capacity of individual components to block endothelial cell growth was tested. The protein fraction responsible for blocking endothelial cell growth was identified by N-terminal amino acid sequencing as well as by mass-spectrometry. The effects of the purified protein in preventing endothelial cell proliferation and tube formation in an in vitro angiogenesis assay was investigated. The plasma protein beta(2)-glycoprotein-I (beta(2)gpI) was isolated and identified from conditioned medium of UMUC-3i cultured cells. Based on the in vitro angiogenesis assay, beta(2)gpI strongly inhibited endothelial cell growth and tube formation, whereby the inhibitory activity corresponded to the clipped version of beta(2)gpI (cbeta(2)gpI). Clipping was induced by adding plasmin at a molar ratio 1:15 (plasmin:substrate). Further analysis indicated that cbeta(2)gpI effects were mediated by annexin II surface receptors expressed on endothelial cells. cbeta2gpI may be involved in blocking angiogenic processes and bladder cancer progression. In this case, cbeta2gpI may be a promising tool in bladder cancer therapy.
Putative signaling action of amelogenin utilizes the Wnt/beta-catenin pathway.
Matsuzawa, M; Sheu, T-J; Lee, Y-J; Chen, M; Li, T-F; Huang, C T; Holz, J D; Puzas, J E
2009-06-01
While it has long been known that amelogenin is essential for the proper development of enamel, its role has generally been seen as structural in nature. However, our new data implicate this protein in the regulation of cell signaling pathways in periodontal ligament cells and osteoblasts. In this article we report the successful purification of a recombinant mouse amelogenin protein and demonstrate that it has signaling activity in isolated mouse calvarial cells and human periodontal ligament cells. To determine the regulatory function of canonical Wnt signaling by amelogenin, we used TOPGAL transgenic mice. These mice express a beta-galactosidase transgene under the control of a LEF/TCF and beta-catenin-inducible promoter. To investigate in greater detail the molecular mechanisms involved in the beta-catenin signaling pathway, isolated osteoblasts and periodontal ligament cells were exposed to full-length recombinant mouse amelogenin and were evaluated for phenotypic changes and beta-catenin signaling using a TOPFLASH construct and the LacZ reporter gene. In these in vitro models, we showed that amelogenin can activate beta-catenin signaling. Using the TOPGAL transgenic mouse we showed that amelogenin expression in vivo is localized mainly around the root, the periodontal ligament and the alveolar bone.
Trials in the prevention of type 1 diabetes: current and future.
Wherrett, Diane K
2014-08-01
A major thrust in type 1 diabetes research is stopping the destruction of beta cells that leads to type 1 diabetes. Research over the past 30 years has defined genetic factors and evidence of autoimmunity that have led to the development of robust prediction models in those at high risk for type 1 diabetes. The ability to identify those at risk and the development of new agents and of collaborative research networks has led to multiple trials aimed at preventing beta cell loss. Trials at all stages of beta cell loss have been conducted: primary prevention (prior to the development of autoimmunity); secondary prevention (after autoantibodies are found) and tertiary prevention (intervening after diagnosis to maintain remaining beta cells). Studies have shown mixed results; evidence of maintained insulin secretion after the time of diagnosis has been described in a number of studies, and primary and secondary prevention is proving to be elusive. Much has been learned from the increasing number of studies in the field in terms of network creation, study design and choice of intervention that will facilitate new avenues of investigation. Copyright © 2014 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
Inhibitory effect of tributyltin on expression of steroidogenic enzymes in mouse testis.
Kim, Suel-Kee; Kim, Jong-Hoon; Han, Jung Ho; Yoon, Yong-Dal
2008-01-01
Tributyltin (TBT) is known to disrupt the development of reproductive organs, thereby reducing fertility. The aim of this study was to evaluate the acute toxicity of TBT on the testicular development and steroid hormone production. Immature (3-week-old) male mice were given a single administration of 25, 50, or 100 mg/kg of TBT by oral gavage. Lumen formation in seminiferous tubule was remarkably delayed, and the number of apoptotic germ cells found inside the tubules was increased in the TBT-exposed animals, whereas no apoptotic signal was observed in interstitial Leydig cells. Reduced serum testosterone concentration and down-regulated expressions of the mRNAs for cholesterol side-chain cleavage enzyme (P450scc), 17alpha -hydroxylase/C(17-20) lyase (P450(17alpha)), 3beta -hydroxysteroid-dehydrogenase (3beta -HSD), and 17beta -hydroxysteroid-dehydrogenase (17beta -HSD) were also observed after TBT exposure. Altogether, these findings demonstrate that exposure to TBT is associated with induced apoptosis of testicular germ cells and inhibition of steroidogenesis by reduction in the expression of steroidogenic enzymes in interstitial Leydig cells. These adverse effects of TBT would cause serious defects in testicular development and function.
Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.
Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry
2016-01-01
Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.
Hartwig, N. R.; Kalmbach, N.; Klietz, M.; Anlauf, M.; Eiden, L. E.; Weihe, E.
2014-01-01
Aims/hypothesis Imaging of beta cell mass (BCM) is a major challenge in diabetes research. The vesicular monoamine transporter 2 (VMAT2) is abundantly expressed in human beta cells. Radiolabelled analogues of tetrabenazine (TBZ; a low-molecular-weight, cell-permeant VMAT2-selective ligand) have been employed for pancreatic islet imaging in humans. Since reports on TBZ-based VMAT2 imaging in rodent pancreas have been fraught with confusion, we compared VMAT2 gene expression patterns in the mouse, rat, pig and human pancreas, to identify appropriate animal models with which to further validate and optimise TBZ imaging in humans. Methods We used a panel of highly sensitive VMAT2 antibodies developed against equivalently antigenic regions of the transporter from each species in combination with immunostaining for insulin and species-specific in situ hybridisation probes. Individual pancreatic islets were obtained by laser-capture microdissection and subjected to analysis of mRNA expression of VMAT2. Results The VMAT2 protein was not expressed in beta cells in the adult pancreas of common mouse or rat laboratory strains, in contrast to its expression in beta cells (but not other pancreatic endocrine cell types) in the pancreas of pigs and humans. VMAT2- and tyrosine hydroxylase co-positive (catecholaminergic) innervation was less abundant in humans than in rodents. VMAT2-positive mast cells were identified in the pancreas of all species. Conclusions/interpretation Primates and pigs are suitable models for TBZ imaging of beta cells. Rodents, because of a complete lack of VMAT2 expression in the endocrine pancreas, are a ‘null’ model for assessing interference with BCM measurements by VMAT2-positive mast cells and sympathetic innervation in the pancreas. PMID:23404442
Massumi, Mohammad; Pourasgari, Farzaneh; Nalla, Amarnadh; Batchuluun, Battsetseg; Nagy, Kristina; Neely, Eric; Gull, Rida; Nagy, Andras; Wheeler, Michael B.
2016-01-01
The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25–30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25–30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function. PMID:27755557
Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study.
Mathis, Ute; Schaeffel, Frank
2010-06-01
In the chicken model of myopia, it has first been shown that imposing defocus to the retina results in active remodelling of the sclera which, in turn, results in axial length changes of the eye. Transforming growth factor-beta (TGF-beta) is one of the scleral growth modulators but its cellular localization in the fundal layers, colocalization and function are not well known. The aim of the current study was to investigate the cellular distribution of the three isoforms TGF-beta1, 2 and 3 by immunohistochemical labelling. Furthermore, the effects of visual experience that induces refractive errors on TGF-beta2 labelling were examined. Transversal cryostat sections of the fundal layers were analyzed by indirect immunofluorescent labelling and cell counts. Visual experience was changed by having the chicks wear either diffusers, or positive or negative lenses of 7D power in front of the right eyes for various periods of time. Left eyes served as uncovered controls. All TGF-beta isoforms were localized in both scleral layers. In choroid, diffuse labelling of all isoforms was found. In retina, TGF-beta1 and 3 were detected in bipolar, amacrine and ganglion cells and TGF-beta2 in amacrine and ganglion cells. To further characterize these cells, double-labelling with known amacrine and bipolar cell markers was performed (calbindin, cellular retinoic acid binding protein (CRABP), Islet1, Lim3 and protein kinase C (PKC)). TGF-beta1, 2 and 3 could be colocalized with calbindin and CRABP in single amacrine cells. TGF-beta1-positive bipolar cells were immunoreactive to Lim3. TGF-beta1 and 3 were never colocalized with PKC in bipolar cells. Also, colocalization with peptides known to be involved in myopia development in chicks, such as glucagon, or vasointestinal polypeptide and the key enzyme for dopamine synthesis, tyrosine hydroxylase, was not observed. Lenses or diffusers, worn by the chicks for various periods of time, had no effect on TGF-beta2 immunoreactivity in choroid or sclera, or on the number of TGF-beta2 (active and latent form) expressing amacrine cells. This result did not change when the two identified populations of TGF-beta2 expressing amacrine cells (one calbindin-positive and the other CRABP-positive) were separately considered. Also no modulation was seen in choroid, although an earlier study had found changes in TGF-beta2 mRNA after lens treatment. The lack of any visually-induced changes in retina or choroid suggests that TGF-beta may not represent a key molecule in the retino-choroidal signalling cascade although it has previously been shown to have a primary role in scleral remodelling. Copyright 2010 Elsevier Ltd. All rights reserved.
Subash-Babu, P; Ignacimuthu, S; Agastian, P; Varghese, Babu
2009-04-01
Reduction of the beta-cell mass is critical in the pathogenesis of diabetes mellitus. The discovery of agents which induce regeneration of pancreatic beta-cells would be useful to develop new therapeutic approaches to treat diabetes. The present study was aimed at identifying a new agent for the control of diabetes through regeneration of pancreatic beta cells and insulin secretory potential. Nymphaea stellata flower chloroform extract (NSFCExt) showed significant plasma glucose lowering effect. Further NSFCExt was utilized to isolate and identify the lead compound based on bioassay guided fractionation; we found Nymphayol (25,26-dinorcholest-5-en-3beta-ol) a new crystal [space group P2(1) (No. 4), a=9.618(5), b=7.518(5), c=37.491(5)]. It was purified by repeat column. The structure was determined on the basis of X-ray crystallography and spectral data. Oral administration of Nymphayol for 45 days significantly (p<0.05) lowered the blood glucose level and more importantly it effectively increased the insulin content in diabetic rats. In addition, Nymphayol increased the number of beta cell mass enormously. Islet-like cell clusters in the islets of Langerhans were clearly observed based on histochemical and immunohistochemical study.
Genders, Roel E; Mazlom, Hadi; Michel, Angelika; Plasmeijer, Elsemieke I; Quint, Koen D; Pawlita, Michael; van der Meijden, Els; Waterboer, Tim; de Fijter, Hans; Claas, Frans H; Wolterbeek, Ron; Feltkamp, Mariet C W; Bouwes Bavinck, Jan Nico
2015-05-01
Organ transplant recipients (OTRs) have an increased risk of developing keratinocyte carcinomas (KCs). The aim of this study was to correlate infection with human papillomaviruses (HPVs) belonging to the beta genus (Beta-papillomavirus (Beta-PV)) at transplantation with later development of KCs. In a cohort study, sera collected between 1 year before and 1 year after transplantation of OTRs transplanted between 1990 and 2006 were tested for antibody responses against the L1 capsid antigen of Beta-PV and other HPV genera (Gamma-, Mu-, Nu-, and Alpha-PV) using multiplex serology. The OTRs were followed for a maximum of 22 years. Cox regression models with KC, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) as outcome variables were used. Out of 445 OTRs, 60 had developed KC: 14 developed only SCC, 24 only BCC, and 22 both types of KC. The time-dependent hazard ratio (HR) to develop either or both types of KC, adjusted for age, sex, and transplanted organ, in tested Beta-PV-seropositive OTR around the time of transplantation compared with Beta-PV-seronegative OTR was 2.9 (95% confidence interval (CI) 1.3-6.4). The HR for SCC was 2.9 (95% CI 0.99-8.5) and for BCC it was 3.1 (95% CI 1.2-8.0). There was also an association between Mu-PV seropositivity and KC, but there were no significant associations between other HPV genera tested and KC. A positive seroresponse for Beta-PV around transplantation significantly predicted the development of KC in OTRs up to 22 years later, providing additional evidence that infection with Beta-PV has a role in KC carcinogenesis.
Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-1beta.
Lebovic, D I; Bentzien, F; Chao, V A; Garrett, E N; Meng, Y G; Taylor, R N
2000-03-01
Activated peritoneal macrophages are associated with endometriosis and may play a central role in its aetiology by releasing interleukin-1beta (IL-1beta) in response to refluxed endometrium. Pari passu with the establishment of endometriotic implants is the development of a vascular supply. In this study we investigated the angiogenic properties of two endometrial proteins, vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6), and assessed their production in response to IL-1beta stimulation in human stromal cells isolated from normal endometrium (NE) and endometriotic lesions (EI). Proliferation of bovine brain capillary endothelial cells (BBCE) with a [(3)H]-thymidine incorporation assay was observed when VEGF (2.1 +/- 0.2-fold; P < 0.05) or VEGF and IL-6 (1.8 +/- 0.1-fold; P < 0.05) were added in vitro, relative to saline-treated control cultures. Northern blot analysis showed induction of VEGF mRNA (2.6-fold; P < 0.05) and IL-6 mRNA (6.3-fold; P < 0.05) transcripts in EI cells, but not NE cells, exposed to IL-1beta. A similar induction was seen with VEGF and IL-6 protein secretion in the responsive EI cells. Reverse transcription-polymerase chain reaction (RT-PCR) for the IL-1 receptor type I (IL-1 RI) indicated that the differential effects of IL-1beta on NE and EI cells was associated with 2.4 +/- 0.1-fold more receptor mRNA in EI versus NE cells. We propose that the ability of IL-1beta to activate an angiogenic phenotype in EI stromal cells but not in NE cells, is mediated by the IL-1 RI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muselet-Charlier, Celine; Universite Pierre et Marie Curie-Paris 6, Paris, UMR-S719, F-75012; Roque, Telma
2007-06-01
Transcription nuclear factor-{kappa}B (NF-{kappa}B) is hyperactivated in cystic fibrosis (CF) lung epithelial cells, and participates in exaggerated IL-8 production in the CF lung. We recently found that rapid activation of NF-{kappa}B occurred in a CF lung epithelial IB3-1 cell line (CF cells) upon IL-1{beta} stimulation, which was not observed in its CFTR-corrected lung epithelial S9 cell line (corrected cells). To test whether other signaling pathways such as that of mitogen-activated protein kinases (MAPKs) could be involved in IL-1{beta}-induced IL-8 production of CF cells, we investigated ERK1/2, JNK, and p38MAP signaling compared to NF-{kappa}B. Within 30 min, exposure to IL-1{beta} causedmore » high activation of NF-{kappa}B, ERK1/2, p38MAP but not JNK in CF cells compared to corrected cells. Treatment of IL-1{beta}-stimulated CF cells with a series of chemical inhibitors of NF-{kappa}B, ERK1/2, and p38MAP, when used separately, reduced slightly IL-8 production. However, when used together, these inhibitors caused a blockade in IL-1{beta}-induced IL-8 production in CF cells. Understanding of the cross-talk between NF-{kappa}B and MAPKs signaling in CF lung epithelial cells may help in developing new therapeutics to reduce lung inflammation in patients with CF.« less
Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90α.
Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette; Deffit, Sarah N; Evans-Molina, Carmella; Thurmond, Debbie C; Blum, Janice S
2017-06-01
A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the α cytoplasmic isoform of heat-shock protein 90 (hsp90) were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized that hsp90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released hsp90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including interleukin-1β, tumour necrosis factor-α and interferon-γ. Mechanistically, hsp90α release was found to be driven by cytokine-induced endoplasmic reticulum stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell hsp90α release and JNK activation were significantly reduced by pre-treating cells with the endoplasmic reticulum stress-mitigating chemical chaperone tauroursodeoxycholic acid. The hsp90α release by cells may therefore be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity. © 2017 John Wiley & Sons Ltd.
MSX-1 gene expression and regulation in embryonic palatal tissue.
Nugent, P; Greene, R M
1998-01-01
The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.
Buss, Claudia; Opitz, Bastian; Hocke, Andreas C; Lippmann, Juliane; van Laak, Vincent; Hippenstiel, Stefan; Krüll, Matthias; Suttorp, Norbert; Eitel, Julia
2010-03-15
Chlamydophila pneumoniae infection of the vascular wall as well as activation of the transcription factor IFN regulatory factor (IRF)3 have been linked to development of chronic vascular lesions and atherosclerosis. The innate immune system detects invading pathogens by use of pattern recognition receptors, some of which are able to stimulate IRF3/7 activation and subsequent type I IFN production (e. g., IFN-beta). In this study, we show that infection of human endothelial cells with C. pneumoniae-induced production of IFN-beta, a cytokine that so far has been mainly associated with antiviral immunity. Moreover, C. pneumoniae infection led to IRF3 and IRF7 nuclear translocation in HUVECs and RNA interference experiments showed that IRF3 and IRF7 as well as the mitochondrial antiviral signaling (MAVS) were essential for IFN-beta induction. Finally, C. pneumoniae replication was enhanced in endothelial cells in which IRF3, IRF7, or MAVS expression was inhibited by small interfering RNA and attenuated by IFN-beta treatment. In conclusion, C. pneumoniae infection of endothelial cells activates an MAVS-, IRF3-, and IRF7-dependent signaling, which controls bacterial growth and might modulate development of vascular lesions.
miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-{beta}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Libing, E-mail: lb.song1@gmail.com; Huang, Quan; Chen, Kun
2010-11-05
Research highlights: {yields} miR-218 is markedly downregulated in glioma cell lines and in primary glioma tissues. {yields} Upregulation of miR-218 dramatically reduces the invasive ability of glioma cells. {yields} Ectopic expression of miR-218 inactivates IKK-{beta}/NF-{kappa}B signaling pathway. {yields} miR-218 directly targets the 3'-untranslated region (3'-UTR) of IKK-{beta}. -- Abstract: Aberrant activation of nuclear factor-kappa B (NF-{kappa}B) pathway has been proven to play important roles in the development and progression of cancers. Activation of NF-{kappa}B via the classical pathway is modulated by I{kappa}Bs kinase (IKK-{beta}). However, the mechanism underlying the epigenetic regulation of IKK-{beta}/NF-{kappa}B pathway remains largely unknown. In this study,more » we found that the expression level of miR-218 was markedly downregulated in glioma cell lines and in human primary glioma tissues. Upregulation of miR-218 dramatically reduced the migratory speed and invasive ability of glioma cells. Furthermore, we showed that ectopically expressing miR-218 in glioma cells resulted in downregulation of matrix metalloproteinase-9 (MMP-9) and reduction in NF-{kappa}B transactivity at a transcriptional level, but inhibition of miR-218 enhanced the expression of MMP-9 and transcriptional activity of NF-{kappa}B. Moreover, we showed that miR-218 inactivated the NF-{kappa}B pathway through downregulating IKK-{beta} expression by directly targeting the 3'-untranslated region (3'-UTR) of IKK-{beta}. Taken together, our results suggest that miR-218 plays an important role in preventing the invasiveness of glioma cells, and our results present a novel mechanism of miRNA-mediated direct suppression of IKK-{beta}/NF-{kappa}B pathway in gliomas.« less
Metabolic Stress and Compromised Identity of Pancreatic Beta Cells
Swisa, Avital; Glaser, Benjamin; Dor, Yuval
2017-01-01
Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834
Metabolic Stress and Compromised Identity of Pancreatic Beta Cells.
Swisa, Avital; Glaser, Benjamin; Dor, Yuval
2017-01-01
Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.
[IL-1beta, IL-10, INF-gamma, TNF-alpha, S100beta, AMA-M2 and cell immune response in stroke].
Sergeeva, S P; Erofeeva, L M; Gul'tiaev, M M
2011-01-01
Clinical data showed a role for stress, inflammatory, innate immune and adaptive immune mechanisms is stroke. Absolute and relative count of lymphocytes decrease, CD3 HLA DR+ and immunoregulatory balance (CD4+/CD8+) increase, concentration of IL-1beta, INF-gamma, TNF-alpha, S100beta, AMA-M2 increase, IL-10 decrease were detected in peripheral blood of 25 patients with stroke. It is explained that the products of brain cell stroke destruction (AMA-M2) play in autoimmune stroke progress mechanisms the same role as neurospecific proteins as S100beta. It is concluded that both stereotype and autoimmune mechanisms are involved in the development of stroke.
Seitz, Roswitha; Hackl, Simon; Seibuchner, Thomas; Tamm, Ernst R; Ohlmann, Andreas
2010-04-28
Norrin is a secreted protein that binds to frizzled 4 and controls development of capillaries in retina and inner ear. We provide evidence that Norrin has distinct neuroprotective properties that are independent from its effects on vascular development. The function of Norrin was investigated in a mouse model of excitotoxic retinal ganglion cell (RGC) damage after intravitreal injection of NMDA, and in cultured Müller glia or immortalized RGC-5 cells. Intravitreal injection of Norrin significantly increased the number of surviving RGC axons in the optic nerve and decreased apoptotic death of retinal neurons following NMDA-mediated damage. This effect could be blocked by adding dickkopf (DKK)-1, an inhibitor of the Wnt/beta-catenin signaling pathway. Treatment of eyes with combined Norrin/NMDA activated Wnt/beta-catenin signaling and increased the retinal expression of leukemia inhibitory factor and endothelin-2, as well as that of neurotrophic growth factors such as fibroblast growth factor-2, brain-derived neurotrophic factor, lens epithelium-derived growth factor, and ciliary neurotrophic factor. A similar activation of Wnt/beta-catenin signaling and an increased expression of neurotrophic factors was observed in cultured Müller cells after treatment with Norrin, effects that again could be blocked by adding DKK-1. In addition, conditioned cell culture medium of Norrin-treated Müller cells increased survival of differentiated RGC-5 cells. We conclude that Norrin has pronounced neuroprotective properties on retinal neurons with the distinct potential to decrease the damaging effects of NMDA-induced RGC loss. The effects of Norrin involve activation of Wnt/beta-catenin signaling and subsequent induction of neurotrophic growth factors in Müller cells.
Rodriguez, C; Huang, L J; Son, J K; McKee, A; Xiao, Z; Lodish, H F
2001-08-10
Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.
Graser, R T; DiLorenzo, T P; Wang, F; Christianson, G J; Chapman, H D; Roopenian, D C; Nathenson, S G; Serreze, D V
2000-04-01
Previous work has indicated that an important component for the initiation of autoimmune insulin-dependent diabetes mellitus (IDDM) in the NOD mouse model entails MHC class I-restricted CD8 T cell responses against pancreatic beta cell Ags. However, unless previously activated in vitro, such CD8 T cells have previously been thought to require helper functions provided by MHC class II-restricted CD4 T cells to exert their full diabetogenic effects. In this study, we show that IDDM development is greatly accelerated in a stock of NOD mice expressing TCR transgenes derived from a MHC class I-restricted CD8 T cell clone (designated AI4) previously found to contribute to the earliest preclinical stages of pancreatic beta cell destruction. Importantly, these TCR transgenic NOD mice (designated NOD.AI4alphabeta Tg) continued to develop IDDM at a greatly accelerated rate when residual CD4 helper T cells were eliminated by introduction of the scid mutation or a functionally inactivated CD4 allele. In a previously described stock of NOD mice expressing TCR transgenes derived from another MHC class I-restricted beta cell autoreactive T cell clone, IDDM development was retarded by elimination of residual CD4 T cells. Hence, there is variability in the helper dependence of CD8 T cells contributing to the development of autoimmune IDDM. The AI4 clonotype represents the first CD8 T cell with a demonstrated ability to progress from a naive to functionally activated state and rapidly mediate autoimmune IDDM development in the complete absence of CD4 T cell helper functions.
Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling.
Du, Qiang; Park, Kyung Soo; Guo, Zhong; He, Peijun; Nagashima, Makoto; Shao, Lifang; Sahai, Rohit; Geller, David A; Hussain, S Perwez
2006-07-15
Nitric oxide (NO.), an important mediator of inflammation, and beta-catenin, a component of the Wnt-adenomatous polyposis coli signaling pathway, contribute to the development of cancer. We have identified two T-cell factor 4 (Tcf-4)-binding elements (TBE1 and TBE2) in the promoter of human inducible NO synthase 2 (NOS2). We tested the hypothesis that beta-catenin regulates human NOS2 gene. Mutation in either of the two TBE sites decreased the basal and cytokine-induced NOS2 promoter activity in different cell lines. The promoter activity was significantly reduced when both TBE1 and TBE2 sites were mutated (P < 0.01). Nuclear extract from HCT116, HepG2, or DLD1 cells bound to NOS2 TBE1 or TBE2 oligonucleotides in electrophoretic mobility shift assays and the specific protein-DNA complexes were supershifted with anti-beta-catenin or anti-Tcf-4 antibody. Overexpression of beta-catenin and Tcf-4 significantly increased both basal and cytokine-induced NOS2 promoter activity (P < 0.01), and the induction was dependent on intact TBE sites. Overexpression of beta-catenin or Tcf-4 increased NOS2 mRNA and protein expression in HCT116 cells. Lithium chloride (LiCl), an inhibitor of glycogen synthase kinase-3beta, increased cytosolic and nuclear beta-catenin level, NOS2 expression, and NO. production in primary human and rat hepatocytes and cancer cell lines. Treatment with Wnt-3A-conditioned medium increased beta-catenin and NOS2 expression in fetal human hepatocytes. When administered in vivo, LiCl increased hepatic beta-catenin level in a dose-dependent manner with simultaneous increase in NOS2 expression. These data are consistent with the hypothesis that beta-catenin up-regulates NOS2 and suggest a novel mechanism by which the Wnt/beta-catenin signaling pathway may contribute to cancer by increasing NO. production.
Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao
2015-11-01
Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Petry, Florian; Weidner, Tobias; Salzig, Denise
2018-01-01
Diabetes is a prominent health problem caused by the failure of pancreatic beta cells. One therapeutic approach is the transplantation of functional beta cells, but it is difficult to generate sufficient beta cells in vitro and to ensure these cells remain viable at the transplantation site. Beta cells suffer from hypoxia, undergo apoptosis, or are attacked by the host immune system. Human mesenchymal stem/stromal cells (hMSCs) can improve the functionality and survival of beta cells in vivo and in vitro due to direct cell contact or the secretion of trophic factors. Current cocultivation concepts with beta cells are simple and cannot exploit the favorable properties of hMSCs. Beta cells need a three-dimensional (3D) environment to function correctly, and the cocultivation setup is therefore more complex. This review discusses 3D cultivation forms (aggregates, capsules, and carriers) for hMSCs and beta cells and strategies for large-scale cultivation. We have determined process parameters that must be balanced and considered for the cocultivation of hMSCs and beta cells, and we present several bioreactor setups that are suitable for such an innovative cocultivation approach. Bioprocess engineering of the cocultivation processes is necessary to achieve successful beta cell therapy. PMID:29731775
Gupta, Rajnish A; Sarraf, Pasha; Brockman, Jeffrey A; Shappell, Scott B; Raftery, Laurel A; Willson, Timothy M; DuBois, Raymond N
2003-02-28
Peroxisome proliferator-activated receptor gamma (PPARgamma) and transforming growth factor-beta (TGF-beta) are key regulators of epithelial cell biology. However, the molecular mechanisms by which either pathway induces growth inhibition and differentiation are incompletely understood. We have identified transforming growth factor-simulated clone-22 (TSC-22) as a target gene of both pathways in intestinal epithelial cells. TSC-22 is member of a family of leucine zipper containing transcription factors with repressor activity. Although little is known regarding its function in mammals, the Drosophila homolog of TSC-22, bunched, plays an essential role in fly development. The ability of PPARgamma to induce TSC-22 was not dependent on an intact TGF-beta1 signaling pathway and was specific for the gamma isoform. Localization studies revealed that TSC-22 mRNA is enriched in the postmitotic epithelial compartment of the normal human colon. Cells transfected with wild-type TSC-22 exhibited reduced growth rates and increased levels of p21 compared with vector-transfected cells. Furthermore, transfection with a dominant negative TSC-22 in which both repressor domains were deleted was able to reverse the p21 induction and growth inhibition caused by activation of either the PPARgamma or TGF-beta pathways. These results place TSC-22 as an important downstream component of PPARgamma and TGF-beta signaling during intestinal epithelial cell differentiation.
High fat programming of beta cell compensation, exhaustion, death and dysfunction.
Cerf, Marlon E
2015-03-01
Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Early-Life Origins of Type 2 Diabetes: Fetal Programming of the Beta-Cell Mass
Portha, Bernard; Chavey, Audrey; Movassat, Jamileh
2011-01-01
A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission. PMID:22110471
Tóth, Beáta; Garabuczi, Eva; Sarang, Zsolt; Vereb, György; Vámosi, György; Aeschlimann, Daniel; Blaskó, Bernadett; Bécsi, Bálint; Erdõdi, Ferenc; Lacy-Hulbert, Adam; Zhang, Ailiang; Falasca, Laura; Birge, Raymond B; Balajthy, Zoltán; Melino, Gerry; Fésüs, László; Szondy, Zsuzsa
2009-02-15
Transglutaminase 2 (TG2), a protein cross-linking enzyme with many additional biological functions, acts as coreceptor for integrin beta(3). We have previously shown that TG2(-/-) mice develop an age-dependent autoimmunity due to defective in vivo clearance of apoptotic cells. Here we report that TG2 on the cell surface and in guanine nucleotide-bound form promotes phagocytosis. Besides being a binding partner for integrin beta(3), a receptor known to mediate the uptake of apoptotic cells via activating Rac1, we also show that TG2 binds MFG-E8 (milk fat globulin EGF factor 8), a protein known to bridge integrin beta(3) to apoptotic cells. Finally, we report that in wild-type macrophages one or two engulfing portals are formed during phagocytosis of apoptotic cells that are characterized by accumulation of integrin beta(3) and Rac1. In the absence of TG2, integrin beta(3) cannot properly recognize the apoptotic cells, is not accumulated in the phagocytic cup, and its signaling is impaired. As a result, the formation of the engulfing portals, as well as the portals formed, is much less efficient. We propose that TG2 has a novel function to stabilize efficient phagocytic portals.
Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation.
Tsuji, Naoki; Ninov, Nikolay; Delawary, Mina; Osman, Sahar; Roh, Alex S; Gut, Philipp; Stainier, Didier Y R
2014-01-01
Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.
Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination.
Betz, U A; Vosshenrich, C A; Rajewsky, K; Müller, W
1996-10-01
The analysis of gene function based on the generation of mutant mice by homologous recombination in embryonic stem cells is limited if gene disruption results in embryonic lethality. Mosaic mice, which contain a certain proportion of mutant cells in all organs, allow lethality to be circumvented and the potential of mutant cells to contribute to different cell lineages to be analyzed. To generate mosaic animals, we used the bacteriophage P1-derived Cre-loxP recombination system, which allows gene alteration by Cre-mediated deletion of loxP-flanked gene segments. We generated nestin-cre transgenic mouse lines, which expressed the Cre recombinase under the control of the rat nestin promoter and its second intron enhancer. In crosses to animals carrying a loxP-flanked target gene, partial deletion of the loxP-flanked allele occurred before day 10.5 post coitum and was detectable in all adult organs examined, including germ-line cells. Using this approach, we generated mosaic mice containing cells deficient in the gamma-chain of the interleukin-2 receptor (IL-2R gamma); in these animals, the IL-2R gamma-deficient cells were underrepresented in the thymus and spleen. Because mice deficient in DNA polymerase beta die perinatally, we studied the effects of DNA polymerase beta deficiency in mosaic animals. We found that some of the mosaic polymerase beta-deficient animals were viable, but were often reduced in size and weight. The fraction of DNA polymerase beta-deficient cells in mosaic embryos decreased during embryonic development, presumably because wild-type cells had a competitive advantage. The nestin-cre transgenic mice can be used to generate mosaic animals in which target genes are mutated by Cre-mediated recombination of loxP-flanked target genes. By using mosaic animals, embryonic lethality can be bypassed and cell lineages for whose development a given target gene is critical can be identified. In the case of DNA polymerase beta, deficient cells are already selected against during embryonic development, demonstrating the general importance of this protein in multiple cell types.
Jhappan, C; Geiser, A G; Kordon, E C; Bagheri, D; Hennighausen, L; Roberts, A B; Smith, G H; Merlino, G
1993-01-01
Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland. Images PMID:8491177
Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse
2015-01-01
Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.
Ma, C G; Zhang, G X; Xiao, B G; Wang, Z Y; Link, J; Olsson, T; Link, H
1996-02-13
Oral and nasal administration of nicotinic acetylcholine receptor (AChR) to Lewis rats prior to myasthenogenic immunization with AChR and complete Freund's adjuvant (CFA) resulted in prevention or marked decrease of the severity of experimental autoimmune myasthenia gravis (EAMG) and suppression of AChR-specific B-cell responses and of AChR-reactive T-cell function. To examine the involvement of immunoregulatory cytokines and the underlying mechanisms involved in tolerance induction, in situ hybridization with radiolabeled cDNA oligonucleotide proves was adopted to enumerate mononuclear cells (MNC) expressing mRNA for the proinflammatory cytokine interferon-gamma (IFN-gamma), the B cell-stimulating interleukin-4 (IL-4), and the immunosuppressive transforming growth factor-beta (TGF-beta). Popliteal and inguinal lymph nodes from EAMG rats contained elevated numbers of AChR-reactive IFN-gamma, IL-4, and TGF-beta mRNA-expressing cells, compared to control rats receiving PBS orally or nasally and injected with CFA only. Oral and nasal tolerance was accompanied by decreased numbers of AChR-reactive IFN-gamma and IL-4 mRNA-expressing cells and strong up-regulation of TGF-beta mRNA-positive cells in lymphoid organs when compared to nontolerized EAMG control rats. The results suggest that IFN-gamma and IL-4 are central effector molecules in the development of EAMG and that TGF-beta plays an important role in tolerance induction to EAMG.
Lemper, Marie; De Groef, Sofie; Stangé, Geert; Baeyens, Luc; Heimberg, Harry
2016-09-01
When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, R.L.; Hausman, G.J.; Gaskins, H.R.
1990-02-26
The influence of serum, IGF-1 and TGF-{beta} on the differentiation of preadipocytes was examined in primary cultures of porcine adipose tissue cells. In serum-supplemented or serum-free, IGF-1 (1 and 10 nM) had no effect on total cell number. However, IGF-1 (10nM) increased adipocyte number only in serum-supplemented (1% pig serum) cultures, whereas TGF-{beta} (15 pm) reduced the adipocyte number in the presence and absence of IGF-1. Replication of preadipocytes was analyzed with a ({sup 3}H) thymidine assay. Preadipocyte proliferation (cpm in adipocyte fraction) was increased by IGF-1 (10nM) only in cultures containing pig serum. TGF-{beta} had no effect on preadipocytemore » proliferation specifically, but slightly increased total ({sup 3}H) thymidine incorporation in cultures with serum. Glycerol phosphate dehydrogenase (GPDH) specific activity was decreased by adding TGF-{beta} to serum-free cultures but TGF-{beta} had little effect in serum-supplemented cultures. Cellular secretion of IGF-1 was decreased when TGF-{beta} was added to serum-free or serum-supplemented cultures. These studies indicate that TGF-{beta} does not inhibit adipocyte development in the initial growth phase, but may inhibit differentiation and/or hypertrophy at a later stage of development.« less
Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J
2001-04-20
A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.
Neira, J A; Tainturier, D; Peña, M A; Martal, J
2010-03-15
This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer. Copyright 2010 Elsevier Inc. All rights reserved.
Different susceptibility of rat pancreatic alpha and beta cells to hypoxia.
Bloch, Konstantin; Vennäng, Julia; Lazard, Daniel; Vardi, Pnina
2012-06-01
Insulin-producing beta cells are known to be highly susceptible to hypoxia, which is a major factor in their destruction after pancreatic islet transplantation. However, whether the glucagon-producing pancreatic islet alpha cells are sensitive to hypoxia is not known. Our objective was to compare the sensitivity of alpha and beta cells to hypoxia. Isolated rat pancreatic islets were exposed to hypoxia (1% oxygen, 94% N(2), 5% CO(2)) for 3 days. The viability of the alpha and beta cells, as well as the stimulus-specific secretion of glucagon and insulin, was evaluated. A quantitative analysis of the proportion of beta to alpha cells indicated that, under normoxic conditions, islet cells were composed mainly of beta cells (87 ± 3%) with only 13 ± 3% alpha cells. Instead, hypoxia treatment significantly increased the proportion of alpha cells (40 ± 13%) and decreased the proportion of beta cells to 60 ± 13%. Using the fluorescent TUNEL assay we found that only a few percent of beta cells and alpha cells were apoptotic in normoxia. In contrast, hypoxia induced an abundance of apoptotic beta cells (61 ± 22%) and had no effect on the level of apoptosis in alpha cells. In conclusion, this study demonstrates that hypoxia results in severe functional abnormality in both beta and alpha cells while alpha cells display significantly decreased rate of apoptosis compared to intensive apoptotic injury of beta cells. These findings have implications for the understanding of the possible role of hypoxia in the pathophysiology of diabetes.
Simeonovic, Charmaine J; Popp, Sarah K; Starrs, Lora M; Brown, Debra J; Ziolkowski, Andrew F; Ludwig, Barbara; Bornstein, Stefan R; Wilson, J Dennis; Pugliese, Alberto; Kay, Thomas W H; Thomas, Helen E; Loudovaris, Thomas; Choong, Fui Jiun; Freeman, Craig; Parish, Christopher R
2018-01-01
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.
Do, Jeong-su; Fink, Pamela J; Li, Lily; Spolski, Rosanne; Robinson, Janet; Leonard, Warren J; Letterio, John J; Min, Booki
2010-02-15
In naive animals, gammadelta T cells are innate sources of IL-17, a potent proinflammatory cytokine mediating bacterial clearance as well as autoimmunity. However, mechanisms underlying the generation of these cells in vivo remain unclear. In this study, we show that TGF-beta1 plays a key role in the generation of IL-17(+) gammadelta T cells and that it mainly occurs in the thymus particularly during the postnatal period. Interestingly, IL-17(+) gammadelta TCR(+) thymocytes were mainly CD44(high)CD25(low) cells, which seem to derive from double-negative 4 gammadelta TCR(+) cells that acquired CD44 and IL-17 expression. Our findings identify a novel developmental pathway during which IL-17-competent gammadelta T cells arise in the thymus by a TGF-beta1-dependent mechanism.
HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern
2007-04-06
To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but wasmore » repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.« less
Fibronectin regulates the activation of THP-1 cells by TGF-beta1.
Wang, A C; Fu, L
2001-03-01
To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.
van der Meulen, Talitha; Xie, Ruiyu; Kelly, Olivia G.; Vale, Wylie W.; Sander, Maike; Huising, Mark O.
2012-01-01
The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies. PMID:23251699
Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.
Fenske, Rachel J; Kimple, Michelle E
2018-03-01
Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding investigation of beta-cell therapeutic targets for the treatment and prevention of type 1 diabetes mellitus is fundamentally relevant and timely. This review summarizes the overall scope of research into novel type 1 diabetes mellitus therapeutics, highlighting weaknesses or caveats in current clinical trials as well as describing potential new targets to pursue. More specifically, signaling proteins that act as modulators of beta-cell function, survival, and replication, as well as immune infiltration may need to be targeted to develop the most efficient pharmaceutical interventions for type 1 diabetes mellitus. One such beta-cell signaling pathway, mediated by the alpha subunit of the heterotrimeric G z protein (Gα z ), is discussed in more detail. The work described here will be critical in moving the field forward as it emphasizes the central role of the beta-cell in type 1 diabetes mellitus disease pathology.
Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis
2010-08-01
Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in human endometrium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Byung-Wan; Chun, Sung Wan; Kim, Soo Hyun
2011-04-01
Lithospermic acid B (LAB) has been reported to protect OLETF rats, an established type 2 diabetic animal model, from the development of diabetes-related vascular complications. We investigated whether magnesium lithospermate B (LAB) has a protective role under cytokine-induced apoptosis in INS-1 cells in vitro and whether it slows the development of diabetes in OLETF rats in vivo. Pretreatment with 50 {mu}M LAB significantly reduced the 1000 U/mL INF-{gamma} and 100 U/mL IL-1{beta}-induced INS-1 cell death. LAB significantly alleviated cytokine-induced phosphorylations of p38 and JNK in accordance with a decrease in cleaved caspase-3 activity in beta-cells. LAB also protected against themore » cytokine-induced caspase-3 apoptotic pathway via significant activation of Nrf2-HO (heme-oxigenase)-1 and Sirt1 expression. OLETF rats treated with 40 mg/kg/day LAB showed a significant improvement in glucose tolerance compared to untreated OLETF control rats in vivo. Our results suggest that the cytoprotective effects of LAB on pancreatic {beta}-cells are related with both alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Jun; Jiang, Li; Lue, Qingguo
2010-01-15
Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4more » (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.« less
Reduced expression of TGF beta is associated with advanced disease in transitional cell carcinoma.
Coombs, L. M.; Pigott, D. A.; Eydmann, M. E.; Proctor, A. J.; Knowles, M. A.
1993-01-01
The gene structure and expression of the related peptide regulatory factors TGF beta 1 and TGF beta 2 were studied in a panel of seven urothelial carcinoma cell lines and 40 transitional cell carcinomas. The latter comprised 15 grade 1, 18 grade 2 and 5 grade 3 tumours and two cases of carcinoma in situ. Control tissues included ten matched 'field' biopsies and 17 other biopsies including 11 biopsies of macroscopically normal urothelium, two of which were from patients with no history of bladder cancer. No amplification of rearrangements of either TGF beta 1 or TGF beta 2 were detected in any sample. A complex pattern of expression or the two genes was found in the urothelial cell lines. High, but variable levels of the 2.5 kb TGF beta 1 transcript were detected and lower and more variable levels of the three (4.1 kb, 5.1 kb and 6.5 kb) transcripts of TGF beta 2 were detected. Although those cell lines expressing most TGF beta 1 tended to express less TGF beta 2 transcript there was no clear-cut relationship. In comparison, no TGF beta 2 transcript was identified in any primary transitional cell carcinoma or control tissue. Markedly reduced or undetectable levels of TGF beta 1 transcript were detected in 4/15 (26%) grade 1, 5/18 (28%) grade 2 and 3/5 (60%) grade 3 tumours. There was no clear relationship to tumour stage, lymphocytic infiltration or stromal content of the tumours. Clinical review one year after the 2 year period of tumour collection showed that 6/9 (66%) of patients with tumours with reduced levels of transcript had died or had disease which was not controllable by local resection and 3/9 (33%) had developed tumour re-occurrences. In comparison, in the group with normal levels of expression of TGF beta 1, 3/18 (17%) had disease which was not controllable by local means, 9/18 (50%) had tumour re-occurrence and 6/18 (33%) had no evidence of disease. The association of reduced expression of TGF beta 1 and advanced disease was statistically significant P < 0.02 (Fisher's test). Although the sample size is small, we suggest that the loss of expression of TGF beta 1 may be a potential marker of progressive disease or prognosis in transitional cell carcinoma and warrants further study. Images Figure 1 Figure 2 Figure 3 PMID:8439507
Paulsen, Sarah J; Jelsing, Jacob; Madsen, Andreas N; Hansen, Gitte; Lykkegaard, Kirsten; Larsen, Leif K; Larsen, Philip J; Levin, Barry E; Vrang, Niels
2010-02-01
The selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats represent a polygenetic animal model mimicking most clinical variables characterizing the human metabolic syndrome. When fed a high-energy (HE) diet DIO rats develop visceral obesity, dyslipidemia, hyperinsulinemia, and insulin resistance but never frank diabetes. To improve our understanding of the underlying cause for the deteriorating glucose and insulin parameters, we have investigated possible adaptive responses in DIO and DR rats at the level of the insulin-producing beta-cells. At the time of weaning, DR rats were found to have a higher body weight and beta-cell mass compared to DIO rats, and elevated insulin and glucose responses to an oral glucose load. However, at 2.5 months of age, and for the remaining study period, the effect of genotype became evident: the chow-fed DIO rats steadily increased their body weight and beta-cell mass, as well as insulin and glucose levels compared to the DR rats. HE feeding affected both DIO and DR rats leading to an increased body weight and an increased beta-cell mass. Interestingly, although the beta-cell mass in DR rats and chow-fed DIO rats appeared to constantly increase with age, the beta-cell mass in the HE-fed DIO rats did not continue to do so. This might constitute part of an explanation for their reduced glucose tolerance. Collectively, the data support the use of HE-fed DIO rats as a model of human obesity and insulin resistance, and accentuate its relevance for studies examining the benefit of pharmaceutical compounds targeting this disease complex.
Baertschiger, Reto M; Bosco, Domenico; Morel, Philippe; Serre-Beinier, Veronique; Berney, Thierry; Buhler, Leo H; Gonelle-Gispert, Carmen
2008-07-01
Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya
2009-12-18
Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4more » daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.« less
Sequential Coating of Insulin Secreting Beta Cells within Multilayers of Polysaccharide Nanogels.
Bal, Tugba; Oran, Dilem Ceren; Sasaki, Yoshihiro; Akiyoshi, Kazunari; Kizilel, Seda
2018-05-01
Pancreatic islet transplantation has emerged as a promising treatment for type-1 diabetes (T1D); however, its clinical application is still limited by the life-long use of immunosuppressive drugs, insufficient number of islets to achieve normoglycemia, and large transplantation volume. This paper reports a unique approach for nanothin coating of insulin secreting beta cell aggregates. The coating is based on hydrophobic and covalent interactions between natural acrylate modified cholesterol bearing pullulan (CHPOA) nanogels and MIN6 beta cell aggregates. Beta cell aggregates are prepared as spheroids through hanging drop method, which is optimized with respect to hanging drop volume and initial number of beta cells. These aggregates, defined as pseudoislets, are coated with sequential layers of nanogels and are evaluated as viable and functional for insulin secretion. Coating experiments are carried out using physiologically compatible medium, where pseudoislets are not brought in contact with toxic prepolymer solutions used in existing approaches. This study offers new opportunities through coating of islets with advanced functional materials under completely physiological conditions for clinical translation of cell transplantation technology. The technique developed here will establish a new paradigm for creating tolerable grafts for other chronic diseases such as anemia, cancer, central nervous system (CNS) diseases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization and inhibition of beta-adrenergic receptor kinase in intact myocytes.
Laugwitz, K L; Kronsbein, K; Schmitt, M; Hoffmann, K; Seyfarth, M; Schömig, A; Ungerer, M
1997-08-01
beta-Adrenergic receptor kinase (beta ARK) phosphorylates and thereby inactivates agonist-occupied beta-adrenergic receptors (beta AR). beta ARK is thought to play an important role in the regulation of cardiac function. Therefore, we studied beta ARK activation and its inhibition in intact smooth muscle cells and in cardiomyoblasts. beta AR agonist-stimulated translocation of beta ARK was monitored by immunofluorescence labelling with specific antibodies and confocal laser scanning microscopy in DDT-MF 2 hamster smooth muscle cells and in H9c2 rat cardiomyoblasts. In unstimulated cells. beta ARK was mainly located in the cytosol. After beta AR agonist stimulation, the beta ARK signal was partially translocated to the membranes. Liposomal gene transfer of the COOH-terminus of beta ARK ('beta ARKmini') as a beta ARK inhibitor led to functional expression of this protein in both cell lines with high efficiency. Western blots with beta ARK antibodies showed a gene concentration-dependent immunoreactivity of the 'beta ARKmini' protein. 'beta ARKmini'-transfected myocytes demonstrated reduced membrane targeting of the beta ARK immuno-fluorescence signal. Additionally, the effect of 'beta ARKmini' on beta AR-induced desensitization of myocytic cAMP accumulation was investigated. In control cells, desensitization with isoproterenol led to a subsequent reduction of beta AR-induced cAMP accumulation. In 'beta ARKmini'-transfected myocytes, this beta AR-induced desensitization was significantly diminished, whereas normal beta AR-induced cAMP accumulation was unaffected. A gene concentration of 2 micrograms 'beta ARKmini' DNA/100,000 cardiomyoblasts, and of 0.7 microgram 'beta ARKmini' DNA/100,000 DDT-MF2 smooth muscle cells led to approximately 5.9- and approximately 5.6-fold overexpressions of 'beta ARKmini' vs. native beta ARK, respectively. These gene doses proved sufficient to attenuate beta-adrenergic desensitization significantly. (1) beta ARK translocation was evidenced in DDT-MF2 smooth muscle cells and in cardiomyoblasts by confocal laser scanning microscopy. (2) Feasibility of 'beta ARKmini' gene transfer to myocytes was demonstrated, and necessary gene doses for beta ARK inhibition were titered. (3) Overexpression of 'beta ARKmini' functionally interacted with endogenous beta-adrenergic signal transduction, leading to sustained cAMP accumulation after prolonged beta-adrenergic stimulation.
Thymic B Cell-Mediated Attack of Thymic Stroma Precedes Type 1 Diabetes Development
Pinto, Ana Isabel; Smith, Jennifer; Kissack, Miriam R.; Hogg, Karen G.; Green, E. Allison
2018-01-01
Type 1 diabetes (T1D) results from a coordinated autoimmune attack of insulin producing beta cells in the pancreas by the innate and adaptive immune systems, beta cell death being predominantly T cell-mediated. In addition to T cells, peripheral B cells are important in T1D progression. The thymus of mice and man also contains B cells, and lately they have been linked to central tolerance of T cells. The role of thymic B cells in T1D is undefined. Here, we show there are abnormalities in the thymic B cell compartment before beta cell destruction and T1D manifestation. Using non-obese diabetic (NOD) mice, we document that preceding T1D development, there is significant accumulation of thymic B cells-partly through in situ development- and the putative formation of ectopic germinal centers. In addition, in NOD mice we quantify thymic plasma cells and observe in situ binding of immunoglobulins to undefined antigens on a proportion of medullary thymic epithelial cells (mTECs). By contrast, no ectopic germinal centers or pronounced intrathymic autoantibodies are detectable in animals not genetically predisposed to developing T1D. Binding of autoantibodies to thymic stroma correlates with apoptosis of mTECs, including insulin-expressing cells. By contrast, apoptosis of mTECs was decreased by 50% in B cell-deficient NOD mice suggesting intrathymic autoantibodies may selectively target certain mTECs for destruction. Furthermore, we observe that these thymic B cell-associated events correlated with an increased prevalence of premature thymic emigration of T cells. Together, our data suggest that the thymus may be a principal autoimmune target in T1D and contributes to disease progression.
Waldmann, T A; Davis, M M; Bongiovanni, K F; Korsmeyer, S J
1985-09-26
The T alpha and T beta chains of the heterodimeric T-lymphocyte antigen receptor are encoded by separated DNA segments that recombine during T-cell development. We have used rearrangements of the T beta gene as a widely applicable marker of clonality in the T-cell lineage. We show that the T beta genes are used in both the T8 and T4 subpopulations of normal T cells and that Sézary leukemia, adult T-cell leukemia, and the non-B-lineage acute lymphoblastic leukemias are clonal expansions of T cells. Furthermore, circulating T cells from a patient with the T8-cell-predominantly lymphocytosis associated with granulocytopenia are shown to be monoclonal. Finally, the sensitivity and specificity of this tumor-associated marker have been exploited to monitor the therapy of a patient with adult T-cell leukemia. These unique DNA rearrangements provide insights into the cellular origin, clonality, and natural history of T-cell neoplasia.
Downey, Brandon J; Graham, Lisa J; Breit, Jeffrey F; Glutting, Nathaniel K
2014-01-01
Online monitoring of viable cell volume (VCV) is essential to the development, monitoring, and control of bioprocesses. The commercial availability of steam-sterilizable dielectric-spectroscopy probes has enabled successful adoption of this technology as a key noninvasive method to measure VCV for cell-culture processes. Technological challenges still exist, however. For some cell lines, the technique's accuracy in predicting the VCV from probe-permittivity measurements declines as the viability of the cell culture decreases. To investigate the cause of this decrease in accuracy, divergences in predicted vs. actual VCV measurements were directly related to the shape of dielectric frequency scans collected during a cell culture. The changes in the shape of the beta dispersion, which are associated with changes in cell state, are quantified by applying a novel “area ratio” (AR) metric to frequency-scanning data from the dielectric-spectroscopy probes. The AR metric is then used to relate the shape of the beta dispersion to single-frequency permittivity measurements to accurately predict the offline VCV throughout an entire fed-batch run, regardless of cell state. This work demonstrates the possible feasibility of quantifying the shape of the beta dispersion, determined from frequency-scanning data, for enhanced measurement of VCV in mammalian cell cultures by applying a novel shape-characterization technique. In addition, this work demonstrates the utility of using changes in the shape of the beta dispersion to quantify cell health. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:479–487, 2014 PMID:24851255
Levina, E V; Kalinovskiĭ, A I; Andriiashchenko, P V; Menzorova, N I; Dmitrenok, P S
2007-01-01
Three new polar steroids identified as trofoside A, (20R,24S)-24-O-(3-O-methyl-beta-D-xylopyranosyl)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfoxy-(20R,24S)-5alpha-cholestane-3beta,6beta,8,15alpha,24-pentaol sodium salt, were isolated from Trofodiscus uber starfish extracts collected in the Sea of Okhotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3beta,6alpha,8,15beta,24-pentahydroxy-5alpha-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3beta,6alpha,8,15beta-tetrahydroxy-5alpha-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius (C(min)) and terminating the cell division at the stage of the first division (C(min) embr.), as well as the concentrations causing 50% immobilization of sperm cells (ImC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono- and double chained glycosides with the monosaccharide fragment at C3 and C24 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.
Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen
2011-11-01
To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.
WNT7a induces E-cadherin in lung cancer cells.
Ohira, Tatsuo; Gemmill, Robert M; Ferguson, Kevin; Kusy, Sophie; Roche, Joëlle; Brambilla, Elisabeth; Zeng, Chan; Baron, Anna; Bemis, Lynne; Erickson, Paul; Wilder, Elizabeth; Rustgi, Anil; Kitajewski, Jan; Gabrielson, Edward; Bremnes, Roy; Franklin, Wilbur; Drabkin, Harry A
2003-09-02
E-cadherin loss in cancer is associated with de-differentiation, invasion, and metastasis. Drosophila DE-cadherin is regulated by Wnt/beta-catenin signaling, although this has not been demonstrated in mammalian cells. We previously reported that expression of WNT7a, encoded on 3p25, was frequently downregulated in lung cancer, and that loss of E-cadherin or beta-catenin was a poor prognostic feature. Here we show that WNT7a both activates E-cadherin expression via a beta-catenin specific mechanism in lung cancer cells and is involved in a positive feedback loop. Li+, a GSK3 beta inhibitor, led to E-cadherin induction in an inositol-independent manner. Similarly, exposure to mWNT7a specifically induced free beta-catenin and E-cadherin. Among known transcriptional suppressors of E-cadherin, ZEB1 was uniquely correlated with E-cadherin loss in lung cancer cell lines, and its inhibition by RNA interference resulted in E-cadherin induction. Pharmacologic reversal of E-cadherin and WNT7a losses was achieved with Li+, histone deacetylase inhibition, or in some cases only with combined inhibitors. Our findings provide support that E-cadherin induction by WNT/beta-catenin signaling is an evolutionarily conserved pathway operative in lung cancer cells, and that loss of WNT7a expression may be important in lung cancer development or progression by its effects on E-cadherin.
Nemoto, Takayuki; Yanagita, Toshihiko; Kanai, Tasuku; Wada, Akihiko
2009-02-01
Glycogen synthase kinase-3 (GSK-3) is constitutively active in nonstimulated cells, where the majority of its substrates undergo inactivation/proteolysis by phosphorylation. Extracellular stimuli (e.g., insulin) catalyze inhibitory Ser(9)-phosphorylation of GSK-3beta, turning on signaling and causing other biological consequences otherwise constitutively suppressed by GSK-3beta. Regulated and dysregulated activities of GSK-3beta are pivotal to health, disease, and therapeutics (e.g., insulin resistance, neurodegeneration, tumorigenesis, inflammation); however, the underlying mechanisms of multifunctional GSK-3beta remain elusive. In cultured bovine adrenal chromaffin cells, 1) constitutive and negatively-regulated activities of GSK-3beta up- and down-regulated insulin receptor, insulin receptor substrate-1 (IRS-1), IRS-2, and Akt levels via controlling proteasomal degradation and protein synthesis; 2) nicotinic receptor/protein kinase C-alpha (PKC-alpha)/extracellular signal-regulated kinase (ERK) pathway up-regulated IRS-1 and IRS-2 levels, enhancing insulin-induced the phosphoinositide 3-kinase (PI3K)/Akt/GSK-3beta pathway; 3) inhibition of calcineurin by cyclosporin A or FK506 down-regulated IRS-2 level, attenuating insulin-like growth factor-I (IGF-I)-induced ERK and GSK-3beta pathways; and 4) insulin, IGF-I or therapeutics (e.g., lithium) up-regulated the voltage-dependent Na(v)1.7 sodium channel.
Lim, Yeon-Mi; Moon, Seong-Joon; An, Su-Sun; Lee, Soo-Jin; Kim, Seo-Young; Chang, Ih-Seop; Park, Kui-Lea; Kim, Hyoung-Ah; Heo, Yong
2008-04-01
Worldwide restrictions in animal use for research have driven efforts to develop alternative methods. The study aimed to test the efficacy of the macrophage inflammatory protein-1beta (MIP-1beta) assay for testing chemicals' skin-sensitizing capacity. The assay was performed using 9 chemicals judged to be sensitizing and 7 non-sensitizing by the standard in vivo assays. THP-1 cells were cultured in the presence or absence of 4 doses, 0.01x, 0.1x, 0.5x, or 1x IC(50) (50% inhibitory concentration for THP-1 cell proliferation) of these chemicals for 24 hr, and the MIP-1beta level in the supernatants was determined. Skin sensitization by the test chemicals was determined by MIP-1beta production rates. The MIP-1beta production rate was expressed as the relative increase in MIP-1beta production in response to chemical treatment compared with vehicle treatment. When the threshold MIP-1beta production rate used was 100% or 105% of dimethyl sulfoxide, all the sensitizing chemicals tested (dinitrochlorobenzene, hexyl cinnamic aldehyde, eugenol, hydroquinone, dinitrofluorobenzene, benzocaine, nickel, chromium, and 5-chloro-2-methyl-4-isothiazolin-3-one) were positive, and all the non-sensitizing chemicals (methyl salicylate, benzalkonium chloride, lactic acid, isopropanol, and salicylic acid), with the exception of sodium lauryl sulfate, were negative for MIP-1beta production. These results indicate that MIP-1beta could be a biomarker for classification of chemicals as sensitizers or non-sensitizers.
Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L
2006-08-01
Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.
Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A
1995-01-01
Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.
Beta-lactams and their potential use as novel anticancer chemotherapeutics drugs.
Kuhn, Deborah; Coates, Cristina; Daniel, Kenyon; Chen, Di; Bhuiyan, Mohammad; Kazi, Aslamuzzaman; Turos, Edward; Dou, Q Ping
2004-09-01
The discovery of natural and synthetic antibiotics is one of the most important medical breakthroughs in human history. Many diseases, such as bacterial meningitis, pneumonia, and septicemia, are now curable with the use of antibiotics. Antibiotics are efficacious, generally well tolerated in patients, and have a low toxicity level. It is for these reasons antibiotics remain an attractive target for drug discovery. Traditional beta-lactam antibiotics (e.g. penicillins, penems, cephalosporins) have a bicyclic ring structure that is conformationally rigid and functions to inhibit bacterial cell wall synthesis. In addition to the bactericidal action of antibiotics, it has been discovered that many antibiotics are capable of inhibiting tumor cell growth. There are currently many antitumor antibiotics approved for cancer therapy, which work to inhibit tumor cell growth by DNA intercalation. The use of beta-lactams as prodrugs has also met with success by aiding delivery of the chemotherapeutic directly to tumor sites. Recently, a novel class of N-thiolated monobactams, so termed because they possess a monocyclic ring instead of the bicyclic ring, has been found to induce apoptosis potently and specifically in many tumor cell lines but not in normal, non-transformed cell lines. Other beta-lactams, such as the polyaromatics, have been found to slow or inhibit tumor cell growth, and the 4-alkylidene beta-lactams are capable of inhibiting matrix metalloproteinases and leukocyte elactase activity. These data indicate that synthesis and evaluation of beta-lactams are a promising area for further development in anticancer research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidhauser, C. Bissell, M.J.; Myers, C.A.; Casperson, G.F.
1990-12-01
Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-2D has been developed in which more than 35% of the cells express {beta}-casein, form alveoli-like structures when plated onto a reconstituted basement membrane, and secrete {beta}-casein undirectionally into a lumen. These cells were stably transfected with amore » series of chloramphenicol acetyltransferase (CAT) fusion genes to study transcriptional regulation of the bovine {beta}-casein gene. The expression of CAT in these lines demonstrated a striking matrix and hormone dependency. This regulation occurered primarily at the transcriptional level and was dependent on the length of the 5{prime} flanking region of the {beta}-casein promotor. Both matrix and hormonal control of transcription occurred within at least the first 1790 base pairs upstream and/or 42 base pairs downstream of the transcriptional initiation site. The ECM effect was independent of glucocorticoid stimulation. However, prolactin was essential and hydrocortisone further increased CAT expression. Endogenous {beta}-casein expression in these lines was similar to that of the parent CID 9 cells. Our data indicate the existence of matrix-dependent elements that regulate transcription.« less
Gireesh, T; Nair, P P; Sudhakaran, P R
2004-08-01
The possibility of using exfoliated colonic epithelial cells for assessing the bioavailability of beta-carotene was examined. Analysis of exfoliated colonic epithelial cells showed the presence of beta-carotene and vitamin A. The beta-carotene content was significantly lower in cells from stool samples of subjects on a beta-carotene-poor diet than those receiving a single dose of a beta-carotene supplement. Colonic epithelial cells isolated from stool samples collected daily during a wash-out period while the subjects were on a beta-carotene-poor diet showed a steady decrease in beta-carotene content, reaching the lowest value on day 7. Kinetic analysis showed that a single dose of a beta-carotene supplement in the form of spirulina (Spirulina platensis) or agathi (Sesbania grandiflora) after the wash-out period caused an increase in the beta-carotene content after a lag period of 5-7 d, but the vitamin A levels during these periods were not significantly affected. Analysis of plasma beta-carotene concentration also showed similar changes, which correlated with those of exfoliated colonic cells. A relationship between the beta-carotene content of the diet and that of the colonic epithelial cells suggests that analysis of the beta-carotene content in exfoliated human colonic epithelial cells is a useful non-invasive method to assess the bioavailability of provitamin A beta-carotene.
Inoue, Keita; Aoi, Noriyuki; Yamauchi, Yuji; Sato, Takahiro; Suga, Hirotaka; Eto, Hitomi; Kato, Harunosuke; Tabata, Yasuhiko; Yoshimura, Kotaro
2009-01-01
Dermal papilla cells (DPCs) in the mammalian hair follicle have been shown to develop hair follicles through epithelial-mesenchymal interactions. A cell therapy to regenerate human hair is theoretically possible by expanding autologous human DPCs (hDPCs) and transplanting them into bald skin, though much remains to be overcome before clinical success. In this study, we compared gene signatures of hDPCs at different passages and human dermal fibroblasts, and found transforming growth factor (TGF)-beta(2) to be highly expressed in cultured hDPCs. Keratinocyte conditioned medium, which is known to help preserve the hair-inducing capacity of hDPCs, up-regulated TGF-beta(2) expression of hDPCs and also enhanced their alkaline phosphatase (ALP) activity, a known index for hair-inductive capacity. Through screening of components secreted from keratinocytes, the vitamin D(3) analogue was found to promote TGF-beta(2) expression and ALP activity of hDPCs. In animal hair folliculogenesis models using rat epidermis and expanded hDPCs, inhibition of TGF-beta(2) signalling at the ligand or receptor level significantly impaired hair folliculogenesis and maturation. These results suggest an important role for TGF-beta(2) in hair follicle morphogenesis and provide insights into the establishment of future cell therapies for hair regrowth by transplanting expanded DPCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Il-Rae; Koh, Sang Seok; Department of Functional Genomics, University of Science and Technology, Daejeon 305-333
2012-06-29
Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, knownmore » to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1-mediated degradation of {beta}-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target molecule of {beta}-catenin. These results suggest that SIRT1 activation may be a therapeutic strategy for treatment of pancreatic cancer cells that express PAUF via the down-regulation of {beta}-catenin.« less
Pierce Campbell, Christine M; Gheit, Tarik; Tommasino, Massimo; Lin, Hui-Yi; Torres, B Nelson; Messina, Jane L; Stoler, Mark H; Rollison, Dana E; Sirak, Bradley A; Abrahamsen, Martha; Carvalho da Silva, Roberto J; Sichero, Laura; Villa, Luisa L; Lazcano-Ponce, Eduardo; Giuliano, Anna R
2016-10-01
Cutaneous human papillomaviruses (HPVs) increase the risk of non-melanoma skin cancer in sun-exposed skin. We examined the role of beta-HPV in the development of male external genital lesions (EGLs), a sun-unexposed site. In this nested case-control study (67 men with pathologically-confirmed EGLs and 134 controls), exfoliated cells collected from the surface of lesions and normal genital skin 0, 6, and 12 months preceding EGL development were tested for beta-HPV DNA using a type-specific multiplex genotyping assay. Beta-HPV prevalence was estimated and conditional logistic regression was used to evaluate the association with condyloma, the most common EGL. While beta-HPV prevalence among controls remained stable, the prevalence among cases was lowest on the surface of lesion. Detecting beta-HPV on the normal genital skin was not associated with the presence or development of condyloma. Cutaneous beta-HPV does not appear to be contributing to pathogenesis in male genital skin. Copyright © 2016. Published by Elsevier Inc.
Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els
2003-12-01
Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester
Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cellsmore » and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.« less
Elliptical-P cells in the avian perilymphatic interface of the Tegmentum vasculosum
NASA Technical Reports Server (NTRS)
Fermin, C. D.; Lee, D. H.; Martin, D. S.
1995-01-01
Elliptical cells (E-P) are present at the perilymphatic interface lumen (PIL) of the lagena. The E-P cells often separate from the tegmentum vasculosum (TV) and have touching processes that form a monolayer between the K+ rich perilymph and the Na+ rich endolymph, similar to the mammalian Reissner's membrane. We examined the TV of chicks (Gallus domesticus) and quantitated the expression of anti-S100 alphaalphabetabeta and S100 beta. There was a 30% increase of S100 beta saturation in the light cells facing the PIL when compared to other TV light cells. We show that: (1) the dimer anti- S100 alphaalphabetabeta and the monomer anti-S100 beta are expressed preferentially in the light cells and the E-P cells of TV; (2) expression of S100 beta is higher in light cells facing the PIL than in adjacent cells; (3) the expression of the dimer S100 alphaalphabetabeta and monomer S100 beta overlaps in most inner ear cell types, including the cells of the TV, most S100 alphaalphabetabeta positive cells express S 100 beta, but S100 beta positive cells do not always express S100 alphaalphabetabeta; and (4) the S100 beta expression in light cells, the abundant Na+-K+ ATPase on dark cells of the TV, and previously demonstrated co-localization of S100 beta/GABA in sensory cells suggest that S100 beta could have, in the inner ear, a dual neurotrophic-ionic modulating function.
Tamagno, Gianluca; Vigolo, Simonetta; Olivieri, Massimiliano; Martini, Chiara; De Carlo, Eugenio
2014-01-01
Isolated Langerhans islets represent a useful model for the study of the endocrine pancreas. The possibility to purify pancreatic beta cells from a mixed Langerhans islet cell population may lead towards a dedicated focus on beta cell research. We describe an effective and rapid immunomagnetic technique for the direct purification of beta cells from isolated Langerhans islets of rat. After the sacrifice of the rat, the Langerhans islets were separated by ductal injection of the pancreas with collagenase, altered to a mixed Langerhans islet cell population and incubated with conditioned immunomagnetic beads targeted to the beta cell surface. The beads were previously coated with a specific antibody against the surface of the beta cell, namely K14D10. The suspension of mixed Langerhans islet cells and immunomagnetic K14D10-conditioned beads was pelleted by a magnetic particle concentrator to isolate the bead-bound cells, which were finally suspended in a culture medium. The purified cells were immunoreactive for insulin and no glucagon-positive cells were detected at immunocytochemistry. Real Time PCR confirmed the purification of the pancreatic beta cells. This immunomagnetic technique allows a rapid, effective and consistent purification of beta cells from isolated Langerhans islets in a direct manner by conditioning the immunomagnetic beads only. This technique is easy, fast and reproducible. It promises to be a reliable method for providing purified beta cells for in vitro research.
Expression of S100 beta in sensory and secretory cells of the vertebrate inner ear
NASA Technical Reports Server (NTRS)
Fermin, C. D.; Martin, D. S.
1995-01-01
We evaluated anti-S100 beta expression in the chick (Gallus domesticus) inner ear and determined that: 1) the monomer anti-S100 beta is expressed differentially in the vestibular and auditory perikarya; 2) expression of S100 beta in the afferent nerve terminals is time-related to synapse and myelin formation; 3) the expression of the dimer anti-S100 alpha alpha beta beta and monomer anti-S100 beta overlaps in most inner ear cell types. Most S100 alpha alpha beta beta positive cells express S100 beta, but S100 beta positive cells do not always express S100 alpha alpha beta beta. 4) the expression of S100 beta is diffused over the perikaryal cytoplasm and nuclei of the acoustic ganglia but is concentrated over the nuclei of the vestibular perikarya. 6) S100 beta is expressed in secretory cells, and it is co-localized with GABA in sensory cells. 7) Color thresholding objective quantitation indicates that the amount of S100 beta was higher (mean 22, SD +/- 4) at E19 than at E9 (mean 34, SD +/- 3) in afferent axons. 8) Moreover, S100 beta was unchanged between E11-E19 in the perikaryal cytoplasm, but did change over the nuclei. At E9, 74%, and at E21, 5% of vestibular perikarya were positive. The data suggest that S100 beta may be physically associated with neuronal and ionic controlling cells of the vertebrate inner ear, where it could provide a dual ionic and neurotrophic modulatory function.
Jones, R A; Scott, C S; Norfolk, D R; Stark, A N; Child, J A
1987-01-01
Cell surface beta 2-microglobulin (beta 2m) densities of malignant B cells were determined by enzyme immunoassay in 97 cases of immunologically defined lymphoproliferative disease. Absolute beta 2m densities were found to depend on disease category with the lowest levels found on cells from chronic lymphocytic leukaemia (mean = 5.6 ng/10(6) cells, n = 27); atypical chronic lymphocytic leukaemia (mean = 5.9 ng/10(6) cells, n = 8); and prolymphocytoid chronic lymphocytic leukaemia variant (mean = 6.0 ng/10(6) cells, n = 16). beta 2m densities for B non-Hodgkin's lymphoma (n = 14) and B prolymphocytic leukaemia (n = 17) cases were 8.1 and 10.0 ng/10(6) cells, respectively, and the highest densities were found on cells from "late-B cell" tumours (mean = 14.3 ng/10(6) cells). Plasma cells from cases of Ig secreting tumours expressed unexpectedly low beta 2m densities (mean = 9.3 ng/10(6) cells; n = 6). PMID:3108331
Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.
1996-01-01
Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339
Chen, Yan; Whetstone, Heather C; Lin, Alvin C; Nadesan, Puviindran; Wei, Qingxia; Poon, Raymond; Alman, Benjamin A
2007-07-31
Delayed fracture healing causes substantial disability and usually requires additional surgical treatments. Pharmacologic management to improve fracture repair would substantially improve patient outcome. The signaling pathways regulating bone healing are beginning to be unraveled, and they provide clues into pharmacologic management. The beta-catenin signaling pathway, which activates T cell factor (TCF)-dependent transcription, has emerged as a key regulator in embryonic skeletogenesis, positively regulating osteoblasts. However, its role in bone repair is unknown. The goal of this study was to explore the role of beta-catenin signaling in bone repair. Western blot analysis showed significant up-regulation of beta-catenin during the bone healing process. Using a beta-Gal activity assay to observe activation during healing of tibia fractures in a transgenic mouse model expressing a TCF reporter, we found that beta-catenin-mediated, TCF-dependent transcription was activated in both bone and cartilage formation during fracture repair. Using reverse transcription-PCR, we observed that several WNT ligands were expressed during fracture repair. Treatment with DKK1 (an antagonist of WNT/beta-catenin pathway) inhibited beta-catenin signaling and the healing process, suggesting that WNT ligands regulate beta-catenin. Healing was significantly repressed in mice conditionally expressing either null or stabilized beta-catenin alleles induced by an adenovirus expressing Cre recombinase. Fracture repair was also inhibited in mice expressing osteoblast-specific beta-catenin null alleles. In stark contrast, there was dramatically enhanced bone healing in mice expressing an activated form of beta-catenin, whose expression was restricted to osteoblasts. Treating mice with lithium activated beta-catenin in the healing fracture, but healing was enhanced only when treatment was started subsequent to the fracture. These results demonstrate that beta-catenin functions differently at different stages of fracture repair. In early stages, precise regulation of beta-catenin is required for pluripotent mesenchymal cells to differentiate to either osteoblasts or chondrocytes. Once these undifferentiated cells have become committed to the osteoblast lineage, beta-catenin positively regulates osteoblasts. This is a different function for beta-catenin than has previously been reported during development. Activation of beta-catenin by lithium treatment has potential to improve fracture healing, but only when utilized in later phases of repair, after mesenchymal cells have become committed to the osteoblast lineage.
Ren, Jiaqiang; Jin, Ping; Wang, Ena; Liu, Eric; Harlan, David M; Li, Xin; Stroncek, David F
2007-01-03
While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.
Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D
1990-07-01
The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.
2009-01-01
Type 1A diabetes mellitus (T1ADM) is a progressive autoimmune disease mediated by T lymphocytes with destruction of beta cells. Up to now, we do not have precise methods to assess the beta cell mass, "in vivo" or "ex-vivo". The studies about its genetic susceptibility show strong association with class II antigens of the HLA system (particularly DQ). Others genetics associations are weaker and depend on the population studied. A combination of precipitating events may occur at the beginning of the disease. There is a silent loss of immune-mediated beta cells mass which velocity has an inverse relation with the age, but it is influenced by genetic and metabolic factors. We can predict the development of the disease primarily through the determination of four biochemically islet auto antibodies against antigens like insulin, GAD65, IA2 and Znt8. Beta cell destruction is chronically progressive but at clinical diagnosis of the disease a reserve of these cells still functioning. The goal of secondary disease prevention is halt the autoimmune attack on beta cells by redirecting or dampening the immune system. It is remains one of the foremost therapeutic goals in the T1ADM. Glycemic intensive control and immunotherapeutic agents may preserve beta-cell function in newly diagnosed patients with T1ADM. It may be assessed through C-peptide values, which are important for glycemic stability and for the prevention of chronic complications of this disease. This article will summarize the etiopathogenesis mechanisms of this disease and the factors can influence on residual C-peptide and the strategies to it preservation. PMID:19961609
MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jian-Yong; State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an; Huang, Yi
2012-04-20
Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colonmore » cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.« less
Silveira, Pablo A; Grey, Shane T
2006-01-01
It has long been established that type 1 diabetes (T1D) is a T cell-mediated autoimmune disease, with CD4+ and CD8+ T cells being largely responsible for the destruction of beta cells within the pancreatic islets of Langerhans. Although autoantibodies specific for islet cell proteins are regularly detected in individuals with T1D and can be utilized as effective markers for predicting the onset of disease, they are not believed to be directly pathogenic to beta cells. Thus, activation of autoantibody-secreting B cells has long been regarded as a secondary consequence of the ongoing self-reactive T cell response. However, recently, studies in the nonobese diabetic mouse model of disease have demonstrated that B cells are an important component in the development of T1D by virtue of their ability to act as the preferential antigen presenting cell population required for efficient expansion of diabetogenic CD4+ T cells. Furthermore, autoantibodies might also be responsible for mediating early beta cell pathogenesis in this model.
Wang, Ning; Yi, Wen Jing; Tan, Lu; Zhang, Jia Hui; Xu, Jiamin; Chen, Yi; Qin, Mengting; Yu, Shuang; Guan, Jing; Zhang, Rui
2017-06-01
Pancreatic beta cells are very sensitive to oxidative stress, which is one of the major causes of cell damages in diabetes. Growing interest has focused on the development of effective therapeutics to protect pancreatic cells from oxidative stress and searching for potentially protective antioxidants for treating diabetes. Apigenin, a plant-derived flavonoid, was investigated to determine whether it could protect rat insulinoma cell lines (RINm5F pancreatic beta cells) against streptozotocin (STZ)-induced oxidative damages and the mechanisms implicated. Our results showed that STZ treatment could induce oxidative stress and consequent cytotoxic effects in RINm5F cells. Pretreatment with apigenin effectively decreased the intracellular reactive oxygen species (ROS) production, attenuated cellular DNA damage, diminished lipid peroxidation, relieved protein carbonylation, and restored the cell apoptosis of pancreatic beta cells stressed by STZ. Our further experiments demonstrated that the beneficial effects of apigenin were related to ameliorate the loss of antioxidant enzymes of the STZ-treated cells in the level of gene transcription, protein expression, and enzyme activity. That suggested apigenin was not only a free radical scavenger but also a regulator to antioxidant defenses of pancreatic cells. Taken all together, our findings suggested that apigenin could attenuate the STZ-induced oxidative damages in pancreatic beta cells and might serve as a novel agent for the treatment of diabetes.
Duncan, Robin E; Lau, Dominic; El-Sohemy, Ahmed; Archer, Michael C
2004-11-01
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the formation of mevalonate, a precursor of cholesterol that is also required for cell proliferation. Mevalonate depletion results in a G1 phase cell cycle arrest that is mediated in part by impaired activity of cyclin-dependent kinase (CDK) 2, and decreased expression of positive regulators of G1 to S phase progression. Inhibition of mevalonate synthesis may, therefore, be a useful strategy to impair the growth of malignant cells. Plant isoprenoids, including beta-ionone and geraniol, have previously been shown to inhibit rodent mammary tumor development, and rodent and avian hepatic HMG-CoA reductase activity. We hypothesized that the putative anti-proliferative and cell cycle inhibitory effects of beta-ionone and geraniol on MCF-7 human breast cancer cells in culture are mediated by mevalonate depletion resulting from inhibition of HMG-CoA reductase activity. Flow cytometric analysis showed a G1 arrest in isoprenoid-treated MCF-7 cells, and also a G2/M arrest at higher concentrations of isoprenoids. These compounds minimally affected the growth of MCF-10F normal breast epithelial cells. Both beta-ionone and geraniol inhibited CDK 2 activity and dose-dependently decreased the expression of cyclins D1, E, and A, and CDK 2 and 4, without changing the expression of p21cip1 or p27kip1. Although both beta-ionone and geraniol also inhibited MCF-7 proliferation, only geraniol inhibited HMG-CoA reductase activity. While these effects were significantly correlated (r2=0.89, P <0.01), they were not causally related, since exogenous mevalonate did not restore growth in geraniol-inhibited cells. These findings indicate that mechanisms other than impaired mevalonate synthesis mediate the anti-proliferative and cell cycle regulatory effects of beta-ionone and geraniol in human breast cancer cells.
[Role of Ski/SnoN protein in the regulation of TGF-beta signal pathway].
Lu, Zhao-hui; Chen, Jie
2003-04-01
TGF-beta signal pathway plays an important role in the cell growth, differentiation, formation of extracellular matrix, embryo development and carcinogenesis, etc. However, the regulation of TGF-beta pathway is not totally understood. In 1999, three independent research groups found that Ski/SnoN protein could inhibit the TGF-beta mediated transcription by recruiting N-CoR, a transcription co-repressor. Later studies suggested that TGF-beta and SMADs degraded the Ski/SnoN protein by mediating ubiquitin linkage, showing negative feedback regulation. The important findings in Ski/SnoN laid the theoretical foundation for demonstrating the function of TGF-beta signal pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Kaijun; Wong, Y.C.; Wang Xianghong
Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-{beta}1 (transforming growth factor {beta}1). Here we demonstrate a novel role of Id-1 in promoting TGF-{beta}1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-{beta}1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-{beta}1-induced cell motility was mediated through activation ofmore » MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-{beta}1-treated cells through down-regulation of E-cadherin, redistribution of {beta}-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-{beta}1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-{beta}1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Li; Division of Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001; Yang Yunbo
Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of various cardiovascular diseases. Curcumin, extracted from Curcumae longae, has been shown a variety of beneficial effects on human health, including anti-atherosclerosis by mechanisms poorly understood. In the present study, we attempted to investigate whether curcumin has any effect on VSMCs proliferation and the potential mechanisms involved. Our data showed curcumin concentration-dependently abrogated the proliferation of primary rat VSMCs induced by Chol:M{beta}CD. To explore the underlying cellular and molecular mechanisms, we found that curcumin was capable of restoring caveolin-1 expression which was reduced by Chol:M{beta}CD treatment. Moreover, curcumin abrogatedmore » the increment of phospho-ERK1/2 and nuclear accumulation of ERK1/2 in primary rat VSMCs induced by Chol:M{beta}CD, which led to a suppression of AP-1 promoter activity stimulated by Chol:M{beta}CD. In addition, curcumin was able to reverse cell cycle progression induced by Chol:M{beta}CD, which was further supported by its down-regulation of cyclinD1 and E2F promoter activities in the presence of Chol:M{beta}CD. Taking together, our data suggest curcumin inhibits Chol:M{beta}CD-induced VSMCs proliferation via restoring caveolin-1 expression that leads to the suppression of over-activated ERK signaling and causes cell cycle arrest at G1/S phase. These novel findings support the beneficial potential of curcumin in cardiovascular disease.« less
Ning, Shang-lei; Zheng, Wen-shuai; Su, Jing; Liang, Nan; Li, Hui; Zhang, Dao-lai; Liu, Chun-hua; Dong, Jun-hong; Zhang, Zheng-kui; Cui, Min; Hu, Qiao-Xia; Chen, Chao-chao; Liu, Chang-hong; Wang, Chuan; Pang, Qi; Chen, Yu-xin; Yu, Xiao; Sun, Jin-peng
2015-11-01
Cholecystokinin (CCK) is secreted by intestinal I cells and regulates important metabolic functions. In pancreatic islets, CCK controls beta cell functions primarily through CCK1 receptors, but the signalling pathways downstream of these receptors in pancreatic beta cells are not well defined. Apoptosis in pancreatic beta cell apoptosis was evaluated using Hoechst-33342 staining, TUNEL assays and Annexin-V-FITC/PI staining. Insulin secretion and second messenger production were monitored using ELISAs. Protein and phospho-protein levels were determined by Western blotting. A glucose tolerance test was carried out to examine the functions of CCK-8s in streptozotocin-induced diabetic mice. The sulfated carboxy-terminal octapeptide CCK26-33 amide (CCK-8s) activated CCK1 receptors and induced accumulation of both IP3 and cAMP. Whereas Gq -PLC-IP3 signalling was required for the CCK-8s-induced insulin secretion under low-glucose conditions, Gs -PKA/Epac signalling contributed more strongly to the CCK-8s-mediated insulin secretion in high-glucose conditions. CCK-8s also promoted formation of the CCK1 receptor/β-arrestin-1 complex in pancreatic beta cells. Using β-arrestin-1 knockout mice, we demonstrated that β-arrestin-1 is a key mediator of both CCK-8s-mediated insulin secretion and of its the protective effect against apoptosis in pancreatic beta cells. The anti-apoptotic effects of β-arrestin-1 occurred through cytoplasmic late-phase ERK activation, which activates the 90-kDa ribosomal S6 kinase-phospho-Bcl-2-family protein pathway. Knowledge of different CCK1 receptor-activated downstream signalling pathways in the regulation of distinct functions of pancreatic beta cells could be used to identify biased CCK1 receptor ligands for the development of new anti-diabetic drugs. © 2015 The British Pharmacological Society.
Chong, Zhao Zhong; Li, Faqi; Maiese, Kenneth
2007-06-01
Initially described as a modulator of embryogenesis for a number of organ systems, Wnt1 has recently been linked to the development of several neurodegenerative disorders, none being of greater significance than Alzheimer's disease. We therefore examined the ability of Wnt1 to oversee vital pathways responsible for cell survival during beta-amyloid (Abeta1-42) exposure. Here we show that Wnt1 is critical for protection in the SH-SY5Y neuronal cell line against genomic DNA degradation, membrane phosphatidylserine (PS) exposure, and microglial activation, since these neuroprotective attributes of Wnt1 are lost during gene silencing of Wnt1 protein expression. Intimately tied to Wnt1 protection is the presence and activation of Akt1. Pharmacological inhibition of the PI 3-K pathway or gene silencing of Akt1 expression can abrogate the protective capacity of Wnt1. Closely aligned with Wnt1 and Akt1 are the integrated canonical pathways of synthase kinase-3beta (GSK-3beta) and beta-catenin. Through Akt1 dependent pathways, Wnt1 phosphorylates GSK-3beta and maintains beta-catenin integrity to insure its translocation from the cytoplasm to the nucleus to block apoptosis. Our work outlines a highly novel role for Wnt1 and its integration with Akt1, GSK-3beta, and beta-catenin to foster neuronal cell survival and repress inflammatory microglial activation that can identify new avenues of therapy against neurodegenerative disorders.
Antidiabetic and Beta Cell-Protection Activities of Purple Corn Anthocyanins
Hong, Su Hee; Heo, Jee-In; Kim, Jeong-Hyeon; Kwon, Sang-Oh; Yeo, Kyung-Mok; Bakowska-Barczak, Anna M.; Kolodziejczyk, Paul; Ryu, Ok-Hyun; Choi, Moon-Ki; Kang, Young-Hee; Lim, Soon Sung; Suh, Hong-Won; Huh, Sung-Oh; Lee, Jae-Yong
2013-01-01
Antidiabetic and beta cell-protection activities of purple corn anthocyanins (PCA) were examined in pancreatic beta cell culture and db/db mice. Only PCA among several plant anthocyanins and polyphenols showed insulin secretion activity in culture of HIT-T15 cells. PCA had excellent antihyperglycemic activity (in terms of blood glucose level and OGTT) and HbA1c-decreasing activity when compared with glimepiride, a sulfonylurea in db/db mice. In addition, PCA showed efficient protection activity of pancreatic beta cell from cell death in HIT-T15 cell culture and db/db mice. The result showed that PCA had antidiabetic and beta cell-protection activities in pancreatic beta cell culture and db/db mice. PMID:24244813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov
2010-07-30
Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less
Crystal Structures of T Cell Receptor (Beta) Chains Related to Rheumatoid Arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li,H.; van Vranken, S.; Zhao, Y.
The crystal structures of the V{beta}17+ {beta} chains of two human T cell receptors (TCRs), originally derived from the synovial fluid (SF4) and tissue (C5-1) of a patient with rheumatoid arthritis (RA), have been determined in native (SF4) and mutant (C5-1{sub F104{yields}Y/C187{yields}S}) forms, respectively. These TCR {beta} chains form homo-dimers in solution and in crystals. Structural comparison reveals that the main-chain conformations in the CDR regions of the C5-1 and SF4 V{beta}17 closely resemble those of a V{beta}17 JM22 in a bound form; however, the CDR3 region shows different conformations among these three V{beta}17 structures. At the side-chain level, conformationalmore » differences were observed at the CDR2 regions between our two ligand-free forms and the bound JM22 form. Other significant differences were observed at the V{beta} regions 8-12, 40-44, and 82-88 between C5-1/SF4 and JM22 V{beta}17, implying that there is considerable variability in the structures of very similar {beta} chains. Structural alignments also reveal a considerable variation in the V{beta}-C{beta} associations, and this may affect ligand recognition. The crystal structures also provide insights into the structure basis of T cell recognition of Mycoplasma arthritidis mitogen (MAM), a superantigen that may be implicated in the development of human RA. Structural comparisons of the V{beta} domains of known TCR structures indicate that there are significant similarities among V{beta} regions that are MAM-reactive, whereas there appear to be significant structural differences among those V{beta} regions that lack MAM-reactivity. It further reveals that CDR2 and framework region (FR) 3 are likely to account for the binding of TCR to MAM.« less
1995-01-01
Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945
Sidenius, Ulrik; Heegaard, Niels H.
2016-01-01
Gluten promotes type 1 diabetes in nonobese diabetic (NOD) mice and likely also in humans. In NOD mice and in non-diabetes-prone mice, it induces inflammation in the pancreatic lymph nodes, suggesting that gluten can initiate inflammation locally. Further, gliadin fragments stimulate insulin secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally and intravenously administered 33-mer and 19-mer gliadin peptide to NOD, BALB/c, and C57BL/6 mice and found that the peptides readily crossed the intestinal barrier in all strains. Several degradation products were found in the pancreas by mass spectroscopy. Notably, the exocrine pancreas incorporated large amounts of radioactive label shortly after administration of the peptides. The study demonstrates that, even in normal animals, large gliadin fragments can reach the pancreas. If applicable to humans, the increased gut permeability in prediabetes and type 1 diabetes patients could expose beta cells directly to gliadin fragments. Here they could initiate inflammation and induce beta cell stress and thus contribute to the development of type 1 diabetes. PMID:27795959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkoe, D.J.; Podlisny, M.B.; Joachim, C.L.
1988-10-01
Progressive cerebral deposition of extracellular filaments composed of the {beta}-amyloid protein ({beta}AP) is a constant feature of Alzheimer disease (AD). Since the gene on chromosome 21 encoding the {beta}AP precursor ({beta}APP) is not known to be altered in AD, transcriptional or posttranslational changes may underlie accelerated {beta}AP deposition. Using two antibodies to the predicted carboxyl terminus of {beta}APP, the authors have identified the native {beta}APP in brain and nonneural human tissues as a 110- to 135-kDa protein complex that is insoluble in buffer and found in various membrane-rich subcellular fractions. These proteins are relatively uniformly distributed in adult brain, abundantmore » in fetal brain, and detected in nonneural tissues that contain {beta}APP mRNA. Similarly sized proteins occur in rat, cow, and monkey brain and in cultured human HL-60 and HeLa cells; the precise patterns in the 110- to 135-kDa range are heterogeneous among various tissues and cell lines. They conclude that the highly conserved {beta}APP molecule occurs in mammalian tissues as a heterogeneous group of membrane-associated proteins of {approx} 120 kDa. Detection of the nonamyloidogenic carboxyl terminus within plaques suggests that proteolytic processing of the {beta}APP into insoluble filaments occurs locally in cortical regions that develop {beta}-amyloid deposits with age.« less
Giovannoni, Gavin; Wiendl, Heinz; Turner, Benjamin; Umans, Kimberly; Mokliatchouk, Oksana; Castro-Borrero, Wanda; Greenberg, Steven J; McCroskery, Peter; Giannattasio, Giorgio
2017-09-01
Reversible lymphocyte count reductions have occurred following daclizumab beta treatment for relapsing-remitting multiple sclerosis. To analyse total and differential lymphocyte levels and relationship with infection status. In DECIDE, blood samples were collected at 12-week intervals from daclizumab beta- ( n = 919) or intramuscular interferon beta-1a-treated ( n = 922) patients. Infections/serious infections were assessed proximate to grade 2/3 lymphopenia or low CD4 + /CD8 + T-cell counts. Total safety population (TSP) data were additionally analysed from the entire clinical development programme ( n = 2236). Over 96 weeks in DECIDE, mean absolute lymphocyte count (ALC), CD4 + and CD8 + T-cell counts decreased <10% (7.1% vs 1.6%, 9.7% vs 2.0%, 9.3% vs 5.9%: daclizumab beta vs interferon beta-1a, respectively); shifts to ALC below lower limit of normal occurred in 13% versus 15%, respectively. Grade 3 lymphopenia was uncommon (TSP: <1%) and transient. Lymphocyte changes generally occurred within 24 weeks after treatment initiation and were reversible within 12 weeks of discontinuation. In DECIDE, mean CD4 + /CD8 + T-cell counts were similar regardless of infection status. TSP data were consistent with DECIDE. When observed, ALC and CD4 + /CD8 + T-cell count decreases in daclizumab beta-treated patients were generally mild-to-modest, reversible upon treatment discontinuation and not associated with increased risk of infections, including opportunistic infections.
Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis.
Xu, Gang; Watanabe, Takuya; Iso, Yoshitaka; Koba, Shinji; Sakai, Tetsuo; Nagashima, Masaharu; Arita, Shigeko; Hongo, Shigeki; Ota, Hidekazu; Kobayashi, Youichi; Miyazaki, Akira; Hirano, Tsutomu
2009-08-28
Human heregulins, neuregulin-1 type I polypeptides that activate proliferation, differentiation, and survival of glial cells, neurons, and myocytes, are expressed in macrophage foam cells within human coronary atherosclerotic lesions. Macrophage foam cell formation, characterized by cholesterol ester accumulation, is modulated by scavenger receptor class A (SR-A), acyl-coenzyme A:cholesterol acyltransferase (ACAT)1, and ATP-binding cassette transporter (ABC)A1. The present study clarified the roles of heregulins in macrophage foam cell formation and atherosclerosis. Plasma heregulin-beta(1) levels were significantly decreased in 31 patients with acute coronary syndrome and 33 patients with effort angina pectoris compared with 34 patients with mild hypertension and 40 healthy volunteers (1.3+/-0.3, 2.0+/-0.4 versus 7.6+/-1.4, 8.2+/-1.2 ng/mL; P<0.01). Among all patients with acute coronary syndrome and effort angina pectoris, plasma heregulin-beta(1) levels were further decreased in accordance with the severity of coronary artery lesions. Expression of heregulin-beta(1) was observed at trace levels in intracoronary atherothrombosis obtained by aspiration thrombectomy from acute coronary syndrome patients. Heregulin-beta(1), but not heregulin-alpha, significantly reduced acetylated low-density lipoprotein-induced cholesterol ester accumulation in primary cultured human monocyte-derived macrophages by reducing SR-A and ACAT1 expression and by increasing ABCA1 expression at both mRNA and protein levels. Heregulin-beta(1) significantly decreased endocytic uptake of [(125)I]acetylated low-density lipoprotein and ACAT activity, and increased cholesterol efflux to apolipoprotein (Apo)A-I from human macrophages. Chronic infusion of heregulin-beta(1) into ApoE(-/-) mice significantly suppressed the development of atherosclerotic lesions. This study provided the first evidence that heregulin-beta(1) inhibits atherogenesis and suppresses macrophage foam cell formation via SR-A and ACAT1 downregulation and ABCA1 upregulation.
Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish
Tsakmaki, Anastasia; Mousavy Gharavy, S Neda; Murawala, Priyanka; Konantz, Judith; Birke, Sarah; Hodson, David J; Rutter, Guy A; Bewick, Gavin A
2018-01-01
The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age. PMID:29624168
Dynamical mechanisms for skeletal pattern formation in the vertebrate limb.
Hentschel, H. G. E.; Glimm, Tilmann; Glazier, James A.; Newman, Stuart A.
2004-01-01
We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud. PMID:15306292
Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.
Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M
2007-05-15
The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.
Participation of OCT3/4 and beta-catenin during dysgenetic gonadal malignant transformation.
Palma, Icela; Peña, Rocio-Yolanda; Contreras, Alejandra; Ceballos-Reyes, Guillermo; Coyote, Ninel; Eraña, Luis; Kofman-Alfaro, Susana; Queipo, Gloria
2008-05-18
Gonadoblastoma (GB) is an in situ tumor consisting of a heterogeneous population of mature and immature germ cells, other cells resembling immature Sertoli/granulosa cells, and Leydig/lutein-like cells, may also be present. GB almost exclusively affects a subset of patients with intersex disorders and in 30% of them overgrowth of the germinal component of the tumor is observed and the lesion is term dysgerminoma/seminoma. Several pathways have been proposed to explain the malignant process, and abnormal OCT3/4 expression is the most robust risk factor for malignant transformation. Some authors have suggested that OCT3/4 and beta-catenin might both be involved in the same oncogenic pathway, as both genes are master regulators of cell differentiation and, overexpression of either gene may result in cancer development. The mechanism by which beta-catenin participates in GB transformation is not completely clear and exploration of the E-cadherin pathway did not conclusively show that this pathway participated in the molecular pathogenesis of GB. Here we analyze seven patients with mixed gonadal dysgenesis and GB, in an effort to elucidate the participation of beta-catenin and E-cadherin, as well as OCT3/4, in the oncogenic pathways involved in the transformation of GB into seminoma/dysgerminoma. We conclude that the proliferation of immature germ cells in GB may be due to an interaction between OCT3/4 and accumulated beta-catenin in the nuclei of the immature germ cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun
Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytesmore » were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya
2010-11-19
Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF{beta} enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells. Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGF{beta} might be an important pathway of gastric cancer cell proliferation by TGF{beta}.« less
Neurotensin protects pancreatic beta cells from apoptosis.
Coppola, Thierry; Béraud-Dufour, Sophie; Antoine, Aurélie; Vincent, Jean-Pierre; Mazella, Jean
2008-01-01
The survival of pancreatic beta cells depends on the balance between external cytotoxic and protective molecular systems. The neuropeptide neurotensin (NT) has been shown to regulate certain functions of the endocrine pancreas including insulin and glucagon release. However, the mechanism of action of NT as well as the identification of receptors involved in the pancreatic functions of the peptide remained to be studied. We demonstrate here that NT is an efficient protective agent of pancreatic beta cells against cytotoxic agents. Both beta-TC3 and INS-1E cell lines and the mouse pancreatic islet cells express the three known NT receptors. The incubation of beta cells with NT protects cells from apoptosis induced either by staurosporine or by IL-1beta. In beta-TC3 cells, NT activates both MAP and PI-3 kinases pathways and strongly reduces the staurosporine or the Il-1beta-induced caspase-3 activity by a mechanism involving Akt activation. The NTSR2 agonist levocabastine displays the same protective effect than NT whereas the NTSR1 antagonist is unable to block the effect of NT suggesting the predominant involvement of the NTSR2 in the action of NT on beta cells. These results clearly indicate for the first time that NT is able to protect endocrine beta cells from external cytotoxic agents, a role well correlated with its release in the circulation after a meal.
Zhao, Huifen; Pestina, Tamara I; Nasimuzzaman, Md; Mehta, Perdeep; Hargrove, Phillip W; Persons, Derek A
2009-06-04
Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However, transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT), driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs, which can be administered to kill residual untransduced, diseased HSCs, whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells, transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin, leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.
Ramanadham, Sasanka; Song, Haowei; Hsu, Fong-Fu; Zhang, Sheng; Crankshaw, Mark; Grant, Gregory A; Newgard, Christopher B; Bao, Shunzhong; Ma, Zhongmin; Turk, John
2003-12-02
Many cells express a group VIA 84 kDa phospholipase A(2) (iPLA(2)beta) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA(2)beta in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA(2)beta in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA(2)beta participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA(2)beta-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA(2)beta protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA(2)beta transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA(2)beta, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA(2)beta tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA(2)beta residues 7-53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA(2)beta catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA(2)beta activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA(2)beta and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA(2)beta-immunoreactive protein suggests that a signal transduction role of iPLA(2)beta in the native beta-cell might be attributable to a 70 kDa isoform of iPLA(2)beta.
Chen, Gang; Bower, Kimberly A; Xu, Mei; Ding, Min; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia
2009-05-01
Ethanol is a potent teratogen for the developing central nervous system (CNS), and fetal alcohol syndrome (FAS) is the most common nonhereditary cause of mental retardation. Ethanol disrupts neuronal differentiation and maturation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Using an in vitro neuronal model, mouse Neuro2a (N2a) neuroblastoma cells, we demonstrated that ethanol inhibited neurite outgrowth and the expression of neurofilament (NF) proteins. Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase negatively regulated neurite outgrowth of N2a cells; inhibiting GSK3beta activity by retinoic acid (RA) and lithium induced neurite outgrowth, while over-expression of a constitutively active S9A GSK3beta mutant prevented neurite outgrowth. Ethanol inhibited neurite outgrowth by activating GSK3beta through the dephosphorylation of GSK3beta at serine 9. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family rich in many edible berries and other pigmented fruits, enhanced neurite outgrowth by promoting p-GSK3beta(Ser9). More importantly, C3G reversed ethanol-mediated activation of GSK3beta and inhibition of neurite outgrowth as well as the expression of NF proteins. C3G also blocked ethanol-induced intracellular accumulation of reactive oxygen species (ROS). However, the antioxidant effect of C3G appeared minimally involved in its protection. Our study provides a potential avenue for preventing or ameliorating ethanol-induced damage to the developing CNS.
Dangles, Virginie; Halberstam, Ilan; Scardino, Antonio; Choppin, Jeannine; Wertheimer, Mireille; Richon, Sophie; Quelvennec, Erwann; Moirand, Romain; Guillet, Jean-Gérard; Kosmatopoulos, Kostas; Bellet, Dominique; Zeliszewski, Dominique
2002-02-01
The beta subunit of human chorionic gonadotropin (hCG beta) is markedly overexpressed by neoplastic cells of differing histological origin including those present in colon, breast, prostate and bladder tumors. We have previously shown that some patients with hCG beta-producing urothelial tumors have circulating T cells that proliferate in response to hCG beta. To make a comprehensive study of hCG beta as a potential target for cancer immunotherapy, we investigated whether hCG beta peptides could induce CD4+ or CD8+ T-cell responses in vitro. By stimulating peripheral blood mononuclear cells (PBMCs) from three donors with mixtures of overlapping 16-mer synthetic peptides analogous to portions of either the hCG beta 20-71 or the hCG beta 102-129 region, we established six CD4+ T-cell lines that proliferated specifically in response to five distinct determinants located within these two hCG beta regions. Three antigenic determinants (hCG beta 52-67, 106-121 and 114-125) were presented by HLA-DR molecules, while the two other antigenic determinants (hCG beta 48-63 and 56-67) were presented by HLA-DQ molecules. Interestingly, one T-cell line specific for peptide hCG beta 106-121 recognized hCG beta peptides comprising, at position 117, either an alanine or an aspartic acid residue, with the latter residue being present within the protein expressed by some tumor cells. In addition, three other hCG beta-derived peptides that exhibited HLA-A*0201 binding ability were able to stimulate CD8+ cytotoxic T cells from two HLA-A*0201 donors. These three immunogenic peptides corresponded to regions hCG beta 40-48, hCG beta 44-52 and hCG beta 75-84. Our results indicate that the tumor-associated antigen hCG beta possesses numerous antigenic determinants liable to stimulate CD4+ and CD8+ T lymphocytes, and might thus be an effective target antigen for the immunotherapy of hCG beta-producing tumors.
Marzella, P L; Gillespie, L N; Clark, G M; Bartlett, P F; Kilpatrick, T J
1999-12-01
A number of growth factor families have been implicated in normal inner ear development, auditory neuron survival and protection. Several growth factors, including transforming growth factor-beta5 (TGF-beta5) and TGF-beta3, neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were tested for their ability, individually or in combination, to promote auditory neuron survival in dissociated cell cultures of early rat post-natal spiral ganglion cells (SGCs). The results indicate that at discrete concentrations all growth factors act in an additive fashion and some in synergy when promoting neuronal survival. These findings support the hypothesis that growth factors from different families may be interdependent when sustaining neuronal integrity.
Marcinkiewicz, C; Rosenthal, L A; Mosser, D M; Kunicki, T J; Niewiarowski, S
1996-01-01
Two disintegrins with a high degree of amino acid sequence similarity, echistatin and eristostatin, showed a low level of interaction with Chinese hamster ovary (CHO) cells, but they bound to CHO cells transfected with alpha IIb beta 3 genes (A5 cells) and to CHO cells transfected with alpha v beta 3 genes (VNRC3 cells) in a reversible and saturable manner. Scatchard analysis revealed that eristostatin bound to 816000 sites per A5 cell (Kd 28 nM) and to 200000 sites (Kd 14 nM) per VNRC3 cell respectively. However, VNRC3 cells did not bind to immobilized eristostatin. Echistatin bound to 495000 sites (Kd 53 nM) per A5 cell and to 443000 sites (Kd 20 nM) per VNRC3 cell. As determined by flow cytometry, radiobinding assay and adhesion studies, binding of both disintegrins to A5 cells and resting platelets and binding of echistatin to VNRC3 cells resulted in the expression of ligand-induced binding sites (LIBS) on the beta 3 subunit. Eristostatin inhibited, more strongly than echistatin, the binding of three monoclonal antibodies: OPG2 (RGD motif dependent), A2A9 (alpha IIb beta 3 complex dependent) and 7E3 (alpha IIb beta 3 and alpha v beta 3 complex dependent) to A5 cells, to resting and to activated platelets and to purified alpha IIb beta 3. Experiments in which echistatin and eristostatin were used alone or in combination to inhibit the binding of 7E3 and OPG2 antibodies to resting platelets suggested that these two disintegrins bind to different but overlapping sites on alpha IIb beta 3 integrin. Monoclonal antibody LM 609 and echistatin seemed to bind to different sites on alpha v beta 3 integrin. However, echistatin inhibited binding of 7E3 antibody to VNRC3 cells and to purified alpha v beta 3 suggesting that alpha v beta 3 and alpha IIb beta 3 might share the same epitope to which both echistatin and 7E3 bind. Eristostatin had no effect in these systems, providing further evidence that it binds to a different epitope on alpha v beta 3. PMID:8760368
Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.
Guo, Xing; Ramirez, Alejandro; Waddell, David S; Li, Zhizhong; Liu, Xuedong; Wang, Xiao-Fan
2008-01-01
The broad range of biological responses elicited by transforming growth factor-beta (TGF-beta) in various types of tissues and cells is mainly determined by the expression level and activity of the effector proteins Smad2 and Smad3. It is not fully understood how the baseline properties of Smad3 are regulated, although this molecule is in complex with many other proteins at the steady state. Here we show that nonactivated Smad3, but not Smad2, undergoes proteasome-dependent degradation due to the concerted action of the scaffolding protein Axin and its associated kinase, glycogen synthase kinase 3-beta (GSK3-beta). Smad3 physically interacts with Axin and GSK3-beta only in the absence of TGF-beta. Reduction in the expression or activity of Axin/GSK3-beta leads to increased Smad3 stability and transcriptional activity without affecting TGF-beta receptors or Smad2, whereas overexpression of these proteins promotes Smad3 basal degradation and desensitizes cells to TGF-beta. Mechanistically, Axin facilitates GSK3-beta-mediated phosphorylation of Smad3 at Thr66, which triggers Smad3 ubiquitination and degradation. Thr66 mutants of Smad3 show altered protein stability and hence transcriptional activity. These results indicate that the steady-state stability of Smad3 is an important determinant of cellular sensitivity to TGF-beta, and suggest a new function of the Axin/GSK3-beta complex in modulating critical TGF-beta/Smad3-regulated processes during development and tumor progression.
Ford, Stephen P; Zhang, Liren; Zhu, Meijun; Miller, Myrna M; Smith, Derek T; Hess, Bret W; Moss, Gary E; Nathanielsz, Peter W; Nijland, Mark J
2009-09-01
Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.
TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.
Farmer, John T; Weigent, Douglas A
2006-03-01
Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.
Li, Xin; Gonzalez, Maria E; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D; Kleer, Celina G
2009-09-01
The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.
Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells
Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.
2012-01-01
Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898
Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis.
Mir-Coll, Joan; Duran, Jordi; Slebe, Felipe; García-Rocha, Mar; Gomis, Ramon; Gasa, Rosa; Guinovart, Joan J
2016-05-01
Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.
Mujtaba, Muhammad Ahmad; Fridell, Jonathan; Book, Benita; Faiz, Sara; Sharfuddin, Asif; Wiebke, Eric; Rigby, Mark; Taber, Tim
2015-11-01
Re-exposure to beta cell autoantigens and its relevance in the presence of donor-specific antibodies (DSA) in pancreatic allograft recipients is not well known. Thirty-three patients requiring a pancreas transplant were enrolled in an IRB approved study. They underwent prospective monitoring for DSA and beta cell autoantibody (BCAA) levels to GAD65, insulinoma-associated antigen 2 (IA-2), insulin (micro-IAA [mIAA]), and islet-specific zinc transporter isoform-8 (ZnT8). Twenty-five (75.7%) had pre-transplant BCAA. Twenty had a single antibody (mIAA n = 15, GAD65 n = 5); five had two or more BCAA (GAD65 + mIAA n = 2, GAD65 + mIAA+IA-2 n = 2, GA65 + mIAA+IA-2 + ZnT8 = 1). No changes in GAD65 (p > 0.29), IA-2 (>0.16), and ZnT8 (p > 0.07) were observed between pre-transplant and post-transplant at 6 or 12 months. A decrease in mIAA from pre- to post-6 months (p < 0.0001), 12 months (p < 0.0001), and from post-6 to post-12 months (p = 0.0002) was seen. No new BCAA was observed at one yr. Seven (21.0%) developed de novo DSA. The incidence of DSA was 24% in patients with BCAA vs. 25% in patients without BCAA (p = 0.69). Pancreatic allograft function of patients with vs. without BCAA, and with and without BCAA + DSA was comparable until last follow-up (three yr). Re-exposure to beta cell autoantigens by pancreas transplant may not lead to increased levels or development of new BCAA or pancreatic allograft dysfunction. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jason Z.; Ke, Yuebin; Misra, Hara P.
Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone,more » a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with low NQO1 expression, mitochondria play a critical role in beta-Lp redox activation. • In cancer cells with high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1.« less
Johnson, James D
2016-10-01
The production of fully functional insulin-secreting cells to treat diabetes is a major goal of regenerative medicine. In this article, I review progress towards this goal over the last 15 years from the perspective of a beta cell biologist. I describe the current state-of-the-art, and speculate on the general approaches that will be required to identify and achieve our ultimate goal of producing functional beta cells. The need for deeper phenotyping of heterogeneous cultures of stem cell derived islet-like cells in parallel with a better understanding of the heterogeneity of the target cell type(s) is emphasised. This deep phenotyping should include high-throughput single-cell analysis, as well as comprehensive 'omics technologies to provide unbiased characterisation of cell products and human beta cells. There are justified calls for more detailed and well-powered studies of primary human pancreatic beta cell physiology, and I propose online databases of standardised human beta cell responses to physiological stimuli, including both functional and metabolomic/proteomic/transcriptomic profiles. With a concerted, community-wide effort, including both basic and applied scientists, beta cell replacement will become a clinical reality for patients with diabetes.
Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice.
Ellenbroek, Johanne H; Töns, Hendrica A; de Graaf, Natascha; Loomans, Cindy J; Engelse, Marten A; Vrolijk, Hans; Voshol, Peter J; Rabelink, Ton J; Carlotti, Françoise; de Koning, Eelco J
2013-01-01
Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptation occur. Therefore we investigated beta cell adaptation throughout the pancreas in a model of high-fat diet (HFD)-induced insulin resistance in mice. C57BL/6J mice were fed a HFD to induce insulin resistance, or control diet for 6 weeks. The pancreas was divided in a duodenal (DR), gastric (GR) and splenic (SR) region and taken for either histology or islet isolation. The capacity of untreated islets from the three regions to adapt in an extrapancreatic location was assessed by transplantation under the kidney capsule of streptozotocin-treated mice. SR islets showed 70% increased beta cell proliferation after HFD, whereas no significant increase was found in DR and GR islets. Furthermore, isolated SR islets showed twofold enhanced glucose-induced insulin secretion after HFD, as compared with DR and GR islets. In contrast, transplantation of islets isolated from the three regions to an extrapancreatic location in diabetic mice led to a similar decrease in hyperglycemia and no difference in beta cell proliferation. HFD-induced insulin resistance leads to topologically heterogeneous beta cell adaptation and is most prominent in the splenic region of the pancreas. This topological heterogeneity in beta cell adaptation appears to result from extrinsic factors present in the islet microenvironment.
Xe isotope detection and discrimination using beta spectroscopy with coincident gamma spectroscopy
NASA Astrophysics Data System (ADS)
Reeder, P. L.; Bowyer, T. W.
1998-02-01
Beta spectroscopic techniques show promise of significant improvements for a beta-gamma coincidence counter that is part of a system for analyzing Xe automatically separated from air. The previously developed counting system for 131mXe, 133mXe, 133gXe, and 135gXe can be enhanced to give additional discrimination between these Xe isotopes by using the plastic scintillation sample cell as a beta spectrometer to resolve the conversion electron peaks. The automated system will be a key factor in monitoring the Comprehensive Test Ban Treaty.
Kowluru, Anjaneyulu
2008-01-15
Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.
Type 1 diabetes: New horizons in prediction and prevention.
Razack, Natasha N; Wherrett, Diane K
2005-01-01
Significant advances have been made in our understanding of the pathogenesis of type 1 diabetes and our ability to predict risk for the condition. This knowledge is being used to develop new and innovative strategies to prevent type 1 diabetes or to prevent further destruction of beta cells in those who are newly diagnosed. Several multicentre studies are underway investigating the natural history of the disease, the genetics behind the disease and ways to stop the autoimmune reaction against beta cells (Type 1 Diabetes TrialNet, Type 1 Diabetes Genetics Consortium and the Trial to Reduce Diabetes in the Genetically at Risk [TRIGR] Study Group). The stage is set to find an agent or strategy to prevent type 1 diabetes or to preserve the residual beta cell mass in new-onset patients.
Assembly Properties of Divergent Tubulin Isotypes and Altered Tubulin Polypeptides in Vivo
NASA Astrophysics Data System (ADS)
Gu, Wei
1990-01-01
Mbeta1 is one of the closely related (though distinct) gene products termed isotypes encoded by the mouse beta-tubulin multigene family. These isotypes typically share 95%-98% homology at the amino acid level. However, Mbeta 1 is unusual in its relatively high degree of divergence compared to other beta-tubulin isotypes; furthermore, its tissue-restricted pattern of expression (Mbeta1 is only expressed in hematopoietic tissue) led to speculation that this isotype might be specialized for assembly into unique microtubule structures (such as the marginal band in some erythropoietic cell types). To test if this isotype is capable of coassembly into microtubules in cell types other than those in which it is normally expressed, a method was developed for the generation of an anti-Mbeta1 specific antibody. The Mbeta1 tubulin isotype was introduced into tissue culture cells by transfection and its expression and assembly properties were studied in both transiently transfected cells and stable cell lines using the anti -Mbeta1 specific antibody. The successful expression and coassembly of a 'foreign' tubulin isotype into microtubules in tissue culture cells and the generation of an antibody that can specifically recognize this isotype provided an approach to study the properties of altered beta-tubulin polypeptides in vivo. beta-tubulin synthesis in eukaryotic cells is autoregulated by a posttranscriptional mechanism in which the first four amino acids are responsible for determining the stability of beta -tubulin mRNA. To test if the beta -tubulin amino-terminal regulatory domain also contributes to the capacity of the tubulin monomer to polymerize into microtubules, altered sequences encoding Mbeta 1 but containing deletions encompassing amino acids 2-5 were expressed in HeLa cells. Stable cell lines expressing the altered Mbeta1 isotype were also generated. The assembly properties and stability of these altered Mbeta1 tubulin polypeptides were tested using the anti-Mbeta1 specific antibody. The data suggest that the first four amino acids of beta-tubulin play a regulatory rather than a structural role.
Schulte, B A; Steel, K P
1994-07-01
Mice homozygous for mutations at the viable dominant spotting (Wv) and Steel-dickie (Sld) loci exhibit a similar phenotype which includes deafness. The auditory dysfunction derives from failure of the stria vascularis to develop normally and to generate a high positive endocochlear potential (EP). Because strial function is driven by Na,K-ATPase its expression was investigated in inner ears of Wv/Wv and Sld/Sld mice and their wild-type littermates by immunostaining with antisera against four of the enzyme's subunit isoforms. Wild-type mice from two different genetic backgrounds showed an identical distribution of subunit isoforms among inner ear transport cells. Several epithelial cell types coexpressed the alpha 1 and beta 1 subunits. Vestibular dark cells showed no reactivity for beta 1 but expressed abundant beta 2, whereas, strial marginal cells stained strongly for both beta isoforms. The only qualitative difference between mutant and wild-type mice was the absence of beta 1 subunit in marginal cells of the mutant's stria. However, it is unlikely that this difference accounts for failure of mutants to generate a high EP because the beta 1 subunit is not present in the stria vascularis of either rats or gerbils with normal EP values. Strong immunostaining for Na,K-ATPase in lateral wall fibrocytes of normal mice along with diminished immunoreactivity in the mutants supports the concept that these strategically located transport fibrocytes actively resorb K+ leaked across Reissner's membrane into scala vestibuli or effluxed from hair cells and nerves into scala tympani. It is further speculated that the resorbed K+ normally is siphoned down its concentration gradient into the intrastrial space through gap junctions between fibrocytes and strial basal and intermediate cells where it is recycled back to endolymph via marginal cells. Thus, failure of mutants to generate a positive EP could be explained by the absence of intermediate cells which may form the final link in the conduit for moving K+ from perilymph to the intrastrial compartment.
Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification
Xu, Cheng-Ran; Li, Lin-Chen; Donahue, Greg; Ying, Lei; Zhang, Yu-Wei; Gadue, Paul; Zaret, Kenneth S
2014-01-01
Endoderm cells undergo sequential fate choices to generate insulin-secreting beta cells. Ezh2 of the PRC2 complex, which generates H3K27me3, modulates the transition from endoderm to pancreas progenitors, but the role of Ezh2 and H3K27me3 in the next transition to endocrine progenitors is unknown. We isolated endoderm cells, pancreas progenitors, and endocrine progenitors from different staged mouse embryos and analyzed H3K27me3 genome-wide. Unlike the decline in H3K27me3 domains reported during embryonic stem cell differentiation in vitro, we find that H3K27me3 domains increase in number during endocrine progenitor development in vivo. Genes that lose the H3K27me3 mark typically encode transcriptional regulators, including those for pro-endocrine fates, whereas genes that acquire the mark typically are involved in cell biology and morphogenesis. Deletion of Ezh2 at the pancreas progenitor stage enhanced the production of endocrine progenitors and beta cells. Inhibition of EZH2 in embryonic pancreas explants and in human embryonic stem cell cultures increased endocrine progenitors in vitro. Our studies reveal distinct dynamics in H3K27me3 targets in vivo and a means to modulate beta cell development from stem cells. PMID:25107471
Haydont, Valérie; Riser, Bruce L; Aigueperse, Jocelyne; Vozenin-Brotons, Marie-Catherine
2008-06-01
The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.
DACH1 inhibits transforming growth factor-beta signaling through binding Smad4.
Wu, Kongming; Yang, Ying; Wang, Chenguang; Davoli, Maria A; D'Amico, Mark; Li, Anping; Cveklova, Kveta; Kozmik, Zbynek; Lisanti, Michael P; Russell, Robert G; Cvekl, Ales; Pestell, Richard G
2003-12-19
The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.
[Isolation, purification and primary culture of rat pancreatic beta-cells].
Liu, Yu-Pu; Lü, Qing-Guo; Tong, Nan-Wei
2009-01-01
To isolate and purify rat pancreatic beta-cells and to explore the best conditions for the primary culture of the pancreatic beta-cells in vitro. The pancreas of Norman Wistar rats were digested by collagenase V. The islets were purified by mesh sieve. The activity of the islets was stimulated by different concentrations of glucose and detected by dithizone dye. The purified islets were put into RPMI-1640 nutritive medium for culture overnight. The cultured islets were digested again with trypsin and DNAase to obtain the suspension containing single pancreatic cells. The beta-cells were separated and purified in a fluorescence-activated cell sorter (FACS) in the medium containing 2.8 mmol/L glucose. The purified beta-cells were identified by immunohistochemistry and glucose stimulating test. Ham's F-10 with different concentrations of glucose and 3-Isobutyl-1-methylxanthine (IBMX) were used as nutritive medium for the primary cell culture for 24 hours. The best conditions for the culture were identified. An average of 550 +/- 90 islets with fine activities were obtained per rat. The purification with FACS obtained about 5688 beta-cells per rat, with a recovery rate of (93.69 +/- 1.26)% and a purity of (85.5 +/- 1.24)%. A concentration of 10.0 mmol/L and 16.0 mmol/L glucose in primary culture for 24 hours produced the highest survival rates of beta-cells, but IBMX did not increase the survival rates of beta-cells. FACS is effective in purifying pancreatic beta-cells from the suspension with a medium containing 2.8 mmol/L glucose. Pancreatic beta-cells maintain relatively high activities in Ham's F-10 medium containing 10.0-16.0 mmol/L glucose in primary culture.
1995-01-01
We have examined the extent of allelic exclusion at the T cell receptor (TCR) beta locus using monoclonal antibodies specific for V beta products. A small proportion (approximately 1%) of human peripheral blood T cells express two V beta as determined by flow cytometric analysis, isolation of representative clones, and sequencing of the corresponding V beta chains. Dual beta T cells are present in both the CD45R0+ and CD45R0- subset. These results indicate that dual beta expression is compatible with both central and peripheral selection. They also suggest that the substantial degree of TCR beta allelic exclusion is dependent only on asynchronous rearrangements at the beta locus, whereas the role of the pre-TCR is limited to signaling the presence of at least one functional beta protein. PMID:7699339
Elgqvist, Jörgen; Timmermand, Oskar Vilhelmsson; Larsson, Erik; Strand, Sven-Erik
2016-01-01
The purpose of the present study was to investigate the radiosensitivity of the prostate cancer cell lines LNCaP, DU145, and PC3 when irradiated with beta particles emitted from (177)Lu, and to compare the effect with irradiation using alpha particles or gamma rays. Cells were irradiated with beta particles emitted from (177)Lu, alpha particles from (241)Am, or gamma rays from (137)Cs. A non-specific polyclonal antibody was labeled with (177)Lu and used to irradiate cells in suspension with beta particles. A previously described in-house developed alpha-particle irradiator based on a (241)Am source was used to irradiate cells with alpha particles. External gamma-ray irradiation was achieved using a standard (137)Cs irradiator. Cells were irradiated to absorbed doses equal to 0, 0.5, 1, 2, 4, 6, 8, or 10 Gy. The absorbed doses were calculated as mean absorbed doses. For evaluation of cell survival, the tetrazolium-based WST-1 assay was used. After irradiation, WST-1 was added to the cell solutions, incubated, and then measured for level of absorbance at 450 nm, indicating the live and viable cells. LNCaP, DU145, and PC3 cell lines all had similar patterns of survival for the different radiation types. No significant difference in surviving fractions were observed between cells treated with beta-particle and gamma-ray irradiation, represented for example by the surviving fraction values (mean±SD) at 2, 6, and 10 Gy (SF2, SF6, and SF10) for DU145 after beta-particle irradiation: 0.700±0.090, 0.186±0.050 and 0.056±0.010, respectively. A strong radiosensitivity to alpha particles was observed, with SF2 values of 0.048±0.008, 0.018±0.006 and 0.015±0.005 for LNCaP, DU145, and PC3, respectively. The surviving fractions after irradiation using beta particles or gamma rays did not differ significantly at the absorbed dose levels and dose rates used. Irradiation using alpha particles led to a high level of cell killing. The results show that the beta-particle emitter (177)Lu as well as alpha-particles are both good candidates for radionuclide-therapy applications in the treatment of prostate cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Activation of the canonical beta-catenin pathway by histamine.
Diks, Sander H; Hardwick, James C; Diab, Remco M; van Santen, Marije M; Versteeg, Henri H; van Deventer, Sander J H; Richel, Dick J; Peppelenbosch, Maikel P
2003-12-26
Histamine signaling is a principal regulator in a variety of pathophysiological processes including inflammation, gastric acid secretion, neurotransmission, and tumor growth. We report that histamine stimulation causes transactivation of a T cell factor/beta-catenin-responsive construct in HeLa cells and in the SW-480 colon cell line, whereas histamine did not effect transactivation of a construct containing the mutated response construct FOP. On the protein level, histamine treatment increases phosphorylation of glycogen synthase kinase 3-beta in HeLa cells, murine macrophages, and DLD-1, HT-29, and SW-480 colon cell lines. Furthermore, histamine also decreases the phosphorylated beta-catenin content in HeLa cells and murine macrophages. Finally, pharmacological inhibitors of the histamine H1 receptor counteracted histamine-induced T cell factor/beta-catenin-responsive construct transactivation and the dephosphorylation of beta-catenin in HeLa cells and in macrophages. We conclude that the canonical beta-catenin pathway acts downstream of the histamine receptor H1 in a variety of cell types. The observation that inflammatory molecules, like histamine, activate the beta-catenin pathway may provide a molecular explanation for a possible link between inflammation and cancer.
Expression and in vitro regulation of integrins by normal human urothelial cells.
Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K
1995-08-01
Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.
The islet beta-cell: fuel responsive and vulnerable.
Nolan, Christopher J; Prentki, Marc
2008-10-01
The pancreatic beta-cell senses blood nutrient levels and is modulated by neurohormonal signals so that it secretes insulin according to the need of the organism. Nutrient sensing involves marked metabolic activation, resulting in the production of coupling signals that promote insulin biosynthesis and secretion. The beta-cell's high capacity for nutrient sensing, however, necessitates reduced protection to nutrient toxicity. This potentially explains why in susceptible individuals, chronic fuel surfeit results in beta-cell failure and type 2 diabetes. Here we discuss recent insights into first, the biochemical basis of beta-cell signaling in response to glucose, amino acids and fatty acids, and second, beta-cell nutrient detoxification. We emphasize the emerging role of glycerolipid/fatty acid cycling in these processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faye, L.; Chrispeels, M.J.
1989-03-01
Suspension-cultured carrot (Daucus carota) cells synthesize and secrete {beta}-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of {beta}-fructosidase as measured by the accumulation of the {sup 35}S-labelled protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated {beta}-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated {beta}-fructosidase does not remain in themore » cells and appears to be secreted in the same way as glycosylated {beta}-fructosidase; however, no radioactive, unglycosylated {beta}-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete {beta}-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated {beta}-fructosidase. In the presence of tunicamycin, there is no accumulation of {beta}-fructosidase activity or unglycosylated {beta}-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of {beta}-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall.« less
Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin
2007-01-01
Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.
Coffey, M D; Cole, R A; Colles, S M; Chisolm, G M
1995-01-01
Mounting evidence supports current theories linking lipoprotein oxidation to atherosclerosis. We sought the cellular biochemical mechanism by which oxidized LDL inflicts cell injury. Inhibitors of candidate pathways of cell death were used to treat human fibroblast target cells exposed to oxidized LDL.. Ebselen, which degrades lipid hydroperoxides, inhibited oxidized LDL toxicity, consistent with our recent report that 7 beta-hydroperoxycholesterol (7 beta-OOH chol) is the major cytotoxin of oxidized LDL. Intracellular chelation of metal ions inhibited, while preloading cells with iron enhanced, toxicity, Inhibition of oxidized LDL and 7 beta-OOH chol toxicity by 2-keto-4-thiolmethyl butyric acid, a putative alkoxyl radical scavenger and by vitamin E, probucol and diphenylphenylenediamine, putative scavengers of peroxyl radicals was consistent with the involvement of these radicals in the lethal sequence. Cell death was thus postulated to occur due to lipid peroxidation via a sequence involving lipid hydroperoxide-induced, iron-mediated formation of alkoxyl, lipid, and peroxyl radicals. Pathways involving other reactive oxygen species, new protein synthesis, or altered cholesterol metabolism were considered less likely, since putative inhibitors failed to lessen toxicity. Understanding the mechanism of cell injury by oxidized LDL and its toxic moiety, 7 beta-OOH chol, may indicate specific interventions in the cell injury believed to accompany vascular lesion development. PMID:7560078
Matsunaga, Yusuke; Fukuma, Daiki; Hirata, Shinya; Fukushima, Satoshi; Haruta, Miwa; Ikeda, Tokunori; Negishi, Izumi; Nishimura, Yasuharu; Senju, Satoru
2008-11-01
A method for the genetic modification of dendritic cells (DC) was previously established based on the in vitro differentiation of embryonic stem (ES) cells to DC (ES-DC). The unavailability of human ES cells genetically identical to the patients will be a problem in the future clinical application of this technology. This study attempted to establish a strategy to overcome this issue. The TAP1 or beta(2)-microglobulin (beta(2)m) gene was disrupted in 129 (H-2(b))-derived ES cells and then expression vectors for the H-2K(d) or beta(2)m-linked form of K(d) (beta2m-K(d)) were introduced, thus resulting in two types of genetically engineered ES-DC, TAP1(-/-)/K(d) ES-DC and beta(2)m(-/-)/beta(2)m-K(d) ES-DC. As intended, both of the transfectant ES-DC expressed K(d) but not the intrinsic H-2(b) haplotype-derived MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) and TAP1(-/-)/K(d) ES-DC were not recognized by pre-activated H-2(b)-reactive CTL and did not prime H-2(b) reactive CTL in vitro or in vivo. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC and TAP1(-/-)/K(d) ES-DC had a survival advantage in comparison to beta(2)m(+/-)/beta(2)m-K(d) ES-DC and TAP1(+/+)/K(d) ES-DC, when transferred into BALB/c mice. K(d)-restricted RSV-M2-derived peptide-loaded ES-DC could prime the epitope-specific CTL upon injection into the BALB/c mice, irrespective of the cell surface expression of intrinsic H-2(b) haplotype-encoded MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC were significantly more efficient in eliciting immunity against RSV M2 protein-expressing tumor cells than beta(2)m(+/-)/beta(2)m-K(d) ES-DC. The modification of the beta(2)m or TAP gene may therefore be an effective strategy to resolve the problem of HLA class I allele mismatch between human ES or induced pluripotent stem cells and the recipients to be treated.
Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research
Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is also essential for proper development and differentiation of all cells of the human body.
NASA Technical Reports Server (NTRS)
Sooy, K.; Schermerhorn, T.; Noda, M.; Surana, M.; Rhoten, W. B.; Meyer, M.; Fleischer, N.; Sharp, G. W.; Christakos, S.
1999-01-01
The role of the calcium-binding protein, calbindin-D(28k) in potassium/depolarization-stimulated increases in the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release was investigated in pancreatic islets from calbindin-D(28k) nullmutant mice (knockouts; KO) or wild type mice and beta cell lines stably transfected and overexpressing calbindin. Using single islets from KO mice and stimulation with 45 mM KCl, the peak of [Ca(2+)](i) was 3.5-fold greater in islets from KO mice compared with wild type islets (p < 0.01) and [Ca(2+)](i) remained higher during the plateau phase. In addition to the increase in [Ca(2+)](i) in response to KCl there was also a significant increase in insulin release in islets isolated from KO mice. Evidence for modulation by calbindin of [Ca(2+)](i) and insulin release was also noted using beta cell lines. Rat calbindin was stably expressed in betaTC-3 and betaHC-13 cells. In response to depolarizing concentrations of K(+), insulin release was decreased by 45-47% in calbindin expressing betaTC cells and was decreased by 70-80% in calbindin expressing betaHC cells compared with insulin release from vector transfected betaTC or betaHC cells (p < 0.01). In addition, the K(+)-stimulated intracellular calcium peak was markedly inhibited in calbindin expressing betaHC cells compared with vector transfected cells (225 nM versus 1,100 nM, respectively). Buffering of the depolarization-induced rise in [Ca(2+)](i) was also observed in calbindin expressing betaTC cells. In summary, our findings, using both isolated islets from calbindin-D(28k) KO mice and beta cell lines, establish a role for calbindin in the modulation of depolarization-stimulated insulin release and suggest that calbindin can control the rate of insulin release via regulation of [Ca(2+)](i).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Young; Kim, Eun-Kyung; Moon, Woo-Sung
2009-02-15
Sulforaphane (SFN) is an indirect antioxidant that protects animal tissues from chemical or biological insults by stimulating the expression of several NF-E2-related factor-2 (Nrf2)-regulated phase 2 enzymes. Treatment of RINm5F insulinoma cells with SFN increases Nrf2 nuclear translocation and expression of phase 2 enzymes. In this study, we investigated whether the activation of Nrf2 by SFN treatment or ectopic overexpression of Nrf2 inhibited cytokine-induced {beta}-cell damage. Treatment of RIN cells with IL-1{beta} and IFN-{gamma} induced {beta}-cell damage through a NF-{kappa}B-dependent signaling pathway. Activation of Nrf2 by treatment with SFN and induction of Nrf2 overexpression by transfection with Nrf2 prevented cytokinemore » toxicity. The mechanism by which Nrf2 activation inhibited NF-{kappa}B-dependent cell death signals appeared to involve the reduction of oxidative stress, as demonstrated by the inhibition of cytokine-induced H{sub 2}O{sub 2} production. The protective effect of SFN was further demonstrated by the restoration of normal insulin secreting responses to glucose in cytokine-treated rat pancreatic islets. Furthermore, pretreatment with SFN blocked the development of type 1 diabetes in streptozotocin-treated mice.« less
Dash, Pradyot; Barnett, Paul V; Denyer, Michael S; Jackson, Terry; Stirling, Catrina M A; Hawes, Philippa C; Simpson, Jennifer L; Monaghan, Paul; Takamatsu, Haru-H
2010-09-01
Three-dimensional (3D) porcine nasal mucosal and tracheal mucosal epithelial cell cultures were developed to analyze foot-and-mouth disease virus (FMDV) interactions with mucosal epithelial cells. The cells in these cultures differentiated and polarized until they closely resemble the epithelial layers seen in vivo. FMDV infected these cultures predominantly from the apical side, primarily by binding to integrin alphav beta6, in an Arg-Gly-Asp (RGD)-dependent manner. However, FMDV replicated only transiently without any visible cytopathic effect (CPE), and infectious progeny virus could be recovered only from the apical side. The infection induced the production of beta interferon (IFN-beta) and the IFN-inducible gene Mx1 mRNA, which coincided with the disappearance of viral RNA and progeny virus. The induction of IFN-beta mRNA correlated with the antiviral activity of the supernatants from both the apical and basolateral compartments. IFN-alpha mRNA was constitutively expressed in nasal mucosal epithelial cells in vitro and in vivo. In addition, FMDV infection induced interleukin 8 (IL-8) protein, granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES mRNA in the infected epithelial cells, suggesting that it plays an important role in modulating the immune response.
Singh, Brahmchetna; Murphy, Richard F; Ding, Xian-Zhong; Roginsky, Alexandra B; Bell, Richard H; Adrian, Thomas E
2007-12-24
Retinoids are potent growth inhibitory and differentiating agents in a variety of cancer cell types. We have shown that retinoids induce growth arrest in all pancreatic cancer cell lines studied, regardless of their p53 and differentiation status. However, the mechanism of growth inhibition is not known. Since TGF-beta2 is markedly induced by retinoids in other cancers and mediates MUC4 expression in pancreatic cancer cells, we investigated the role of TGF-beta in retinoic acid-mediated growth inhibition in pancreatic cancer cells. Retinoic acid markedly inhibited proliferation of two cell lines (Capan-2 and Hs766T) in a concentration and time-dependent manner. Retinoic acid increased TGF-beta2 mRNA content and secretion of the active and latent forms of TGF-beta2 (measured by ELISA and bioassay). The concentrations of active and TGF-beta2 secreted in response to 0.1 - 10 muM retinoic acid were between 1-5 pM. TGF-beta2 concentrations within this range also inhibited proliferation. A TGF-beta neutralizing antibody blocked the growth inhibitory effects of retinoic acid in Capan-2 cells and partially inhibitory the effects in Hs766T cells. These findings indicate that TGF-beta can cause growth inhibition of pancreatic cancer cells, in a p53-independent manner. Furthermore, it demonstrates the fundamental role of TGF-beta in growth inhibition in response to retinoic acid treatment is preserved in vitro.
Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W
1996-01-01
In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443
1995-01-01
To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947
Transient maintenance in bioreactor improves health of neuronal cells.
Di Loreto, Silvia; Sebastiani, Pierluigi; Benedetti, Elisabetta; Zimmitti, Vincenzo; Caracciolo, Valentina; Amicarelli, Fernanda; Cimini, Annamaria; Adorno, Domenico
2006-01-01
To examine whether a neuronal cell suspension can be held in vitro for a relatively short period without compromising survival rates and functionality, we have set up an experimental protocol planning 24 h of suspension culture in a rotary wall vessel (RWV) bioreactor before plating in a conventional adherent system. Apoptosis measurement and activated caspase-8, -9, and -3 detection have demonstrated that survey of the cells was not affected. The activity of major antioxidant enzymes (AOE), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), was significantly decreased in RWV-maintained cells. A significant decrease of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) is coupled with a level of activated nuclear factor-kappaB (NF-kappaB) protein significantly lower in RVW cells than in the control. On the contrary, the level of IL-6 expression did not change between the test and the control. A significant up-regulation of growth-associated protein-43 (GAP-43), peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta), and acyl-CoA synthetase 2 (ACS2) in RWV cells has been detected. We provide the evidence that primary neuronal cells, at an early stage of development, can be maintained in a suspension condition before adherent plating. This experimental environment does not induce detrimental effects but may have an activator role, leading cells to development and maturation in a tridimensional state.
Ekpebegh, Chukwuma; Longo-Mbenza, Benjamin; Blanco-Blanco, Ernesto
2013-01-01
Islet immunity and beta cell reserve status were utilized to classify persons with ketoacidosis as the initial manifestation of diabetes. The clinical features of the various diabetes classes were also characterized. Prospective cross sectional study. Nelson Mandela Academic Hospital, Mthatha, Eastern Cape Province, South Africa. Indigenous Black South Africans with ketoacidosis as the initial manifestation of diabetes. Islet immunity and beta cell reserve were respectively assessed using serum anti-glutamic acid decarboxylase 65 (GAD) antibody and serum C-peptide after 1 mg of intravenous glucagon. Serum anti-GAD 65 antibody > or = 5 units/L and < 5 units/L, respectively defined anti-GAD 65 positive (A+) and negative (A-). Replete (beta+) and deplete (beta-) beta cell reserve were serum C-peptide after glucagon injection of > or = 0.5 ng/mL and < 0.5 ng/mL, respectively. The proportions of patients with A+beta-, A+beta+, A-beta- and A-beta+ and their clinical characteristics were determined. Of the 38 males and 33 females who participated in the study, patients were categorized in various classes: A-beta+, 46.5% (n=33/ 71); A-beta-, 26.8% (n=19/71); A+beta-, 22.5% (n=16/71); and A+beta+, 4.2% (n=3/71). The ages of the various classes were: 41.8 +/- 13.8 years for A-beta+ (n=33); 36.5 +/- 14.6 years for A-beta- (n=19); and 20.6 +/- 7.1 years for the combination of A+beta- with A+beta+ (n=19) (P<.0001, P<.0001 for the combination of A+beta- and A+beta+ vs A-beta+, P=.001 for the combination of A+beta- and A+beta+ vs A-beta-and P=.2 for A-beta- vs A-beta+. The clinical features of type 2 diabetes were most prevalent in A-beta+ class while the A+beta- and A+beta+ groups had the clinical profile of type 1A diabetes. Most of the indigenous Black South African patients with ketoacidosis as the initial manifestation of diabetes had islet immunity, beta cell reserve status and clinical profiles of type 2 diabetes.
Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav
2017-01-01
Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.
Isa, S H Md; Wong, M; Khalid, B A K
2006-12-01
A patient with beta hCG-secreting germ cell carcinoma of the pineal and suprasellar regions presented with hydrocephalus, Parinaud's syndrome, hypopituitarism and polyuria. Central diabetes insipidus was strongly suspected although the water deprivation test was not diagnostic. The polyuria however, responded to ADH analogue when the hypothyroidism and hypocortisolism were treated. Pubertal development was evident and serum testosterone was normal despite the low FSH/LH, suggesting hCG stimulation of Leydig cells. This case illustrates that a beta hCG-germ cell tumour of the suprasellar region causing hypopituitarism can mask the presence of central diabetes insipidus and hypogonadotrophic hypogonadism.
Warzecha, Jörg; Göttig, Stephan; Brüning, Christian; Lindhorst, Elmar; Arabmothlagh, Mohammad; Kurth, Andreas
2006-10-01
Sonic hedgehog (Shh) protein is known to be an important signaling protein in early embryonic development. Also, Shh is involved in the induction of early cartilaginous differentiation of mesenchymal cells in the limb and in the spine. The impact of Shh on adult stem cells, human bone marrow-derived mesenchymal stem cells (MSCs), was tested. The MSCs were treated either with recombinant Sonic hedgehog protein (r-Shh) or with transforming growth factor-beta 1 (TGF-beta(1)) as a positive control in vitro for 3 weeks. The effects on cartilaginous differentiation and proliferation were assayed. MSCs when treated with either Shh or TGF-beta(1) showed expression of cartilage markers aggrecan, Sox9, CEP-68, and collagen type II and X within 3 weeks. Only r-Shh-treated cells showed a very strong cell proliferation and much higher BrdU incorporation in cell assay systems. These are the first data that indicate an important role of Shh for the induction of cartilage production by MSCs in vitro.
Craighead, J. E.; Kanich, R. E.; Kessler, J. B.
1974-01-01
Mice infected with the M variant of the encephalomyocarditis (EMC) virus develop lesions of the islets of Langerhans associated with a diabetes mellitus-like disease. Ultrastructural alterations become evident in capillaries and beta cells at a time when large amounts of virus are present in the pancreatic tissue. Although some beta cells become necrotic, degranulation and contraction of intact cells is the prominent lesion. Changes in the capillaries appear early in the course of the infection and later are associated with interstitial fibrosis in and around the islets. During early convalescence, beta cells are degranulated and exhibit striking alterations of cytoplasmic organelles. These changes appear to be consequent to increased metabolic activity by the residual insular tissue. Interestingly enough, specific lesions of the alpha cells are not observed. ImagesFig 9Fig 10Fig 11Fig 12Fig 13Fig 1Fig 2Figs 3 and 4Fig 5Figs 6 and 7p[297]-aFig 8 PMID:4359734
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitta, Karina; Brandt, Berenice; Wuensch, Annegret
Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model ofmore » primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined with our recently published in vivo data (Meybohm et al., PLoS One, 2009), the results presented here strongly suggest IL-1{beta} as a key molecule guiding tissue remodelling events after myocardial infarction.« less
Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke
2010-03-19
Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated atmore » a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.« less
May, Randal; Riehl, Terrence E; Hunt, Clayton; Sureban, Sripathi M; Anant, Shrikant; Houchen, Courtney W
2008-03-01
In the gut, tumorigenesis arises from intestinal or colonic crypt stem cells. Currently, no definitive markers exist that reliably identify gut stem cells. Here, we used the putative stem cell marker doublecortin and CaM kinase-like-1 (DCAMKL-1) to examine radiation-induced stem cell apoptosis and adenomatous polyposis coli (APC)/multiple intestinal neoplasia (min) mice to determine the effects of APC mutation on DCAMKL-1 expression. Immunoreactive DCAMKL-1 staining was demonstrated in the intestinal stem cell zone. Furthermore, we observed apoptosis of the cells negative for DCAMKL-1 at 6 hours. We found DNA damage in all the cells in the crypt region, including the DCAMKL-1-positive cells. We also observed stem cell apoptosis and mitotic DCAMKL-1-expressing cells 24 hours after irradiation. Moreover, in APC/min mice, DCAMKL-1-expressing cells were negative for proliferating cell nuclear antigen and nuclear beta-catenin in normal-appearing intestine. However, beta-catenin was nuclear in DCAMKL-1-positive cells in adenomas. Thus, nuclear translocation of beta-catenin distinguishes normal and adenoma stem cells. Targeting DCAMKL-1 may represent a strategy for developing novel chemotherapeutic agents.
Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A
2014-01-01
Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahdjoudj, S.; Kaabeche, K.; Holy, X.
2005-02-01
The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaochuan; Li, Guosheng; Meinhardt, Kerry D.
2016-07-28
Na-beta alumina batteries are one of the most promising technologies for renewable energy storage and grid applications. Na-beta alumina batteries can be constructed in either tubular or planar designs, depending on the shape of the beta-alumina solid electrolyte. The tubular designs have been widely studied and developed since the 1960s primarily because of their ease of sealing. However, planar designs are considered superior to tubular designs in terms of power output, cell packing, ease of assembly, thermal management, and other characteristics. In this paper, we provide an overview on the basic battery electrochemistry, solid electrolyte synthesis and fabrication, battery designs,more » and future trends for further technology improvement.« less
Murgia, C; Blaikie, P; Kim, N; Dans, M; Petrie, H T; Giancotti, F G
1998-01-01
The cytoplasmic domain of the integrin beta4 subunit mediates both association with the hemidesmosomal cytoskeleton and recruitment of the signaling adaptor protein Shc. To examine the significance of these interactions during development, we have generated mice carrying a targeted deletion of the beta4 cytoplasmic domain. Analysis of homozygous mutant mice indicates that the tail-less alpha6beta4 binds efficiently to laminin 5, but is unable to integrate with the cytoskeleton. Accordingly, these mice display extensive epidermal detachment at birth and die immmediately thereafter from a syndrome resembling the human disease junctional epidermolysis bullosa with pyloric atresia (PA-JEB). In addition, we find a significant proliferative defect. Specifically, the number of precursor cells in the intestinal epithelium, which remains adherent to the basement membrane, and in intact areas of the skin is reduced, and post-mitotic enterocytes display increased levels of the cyclin-dependent kinase inhibitor p27(Kip). These findings indicate that the interactions mediated by the beta4 tail are crucial for stable adhesion of stratified epithelia to the basement membrane and for proper cell-cycle control in the proliferative compartments of both stratified and simple epithelia. PMID:9670011
Smad3 phosphoisoform-mediated signaling during sporadic human colorectal carcinogenesis.
Matsuzaki, K
2006-06-01
Transforming growth factor-beta (TGF-beta) signaling occurring during human colorectal carcinogenesis involves a shift in TGF-beta function, reducing the cytokine's antiproliferative effect, while increasing actions that promote invasion and metastasis. TGF-beta signaling involves phosphorylation of Smad3 at serine residues 208 and 213 in the linker region and serine residues 423 and 425 in the C-terminal region. Exogenous TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also c-Jun N-terminal kinase (JNK), changing unphosphorylated Smad3 to its phosphoisoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker phosphorylated Smad3 (pSmad3L). Either pSmad3C or pSmad3L oligomerizes with Smad4, and translocates into nuclei. While the TbetaRI/pSmad3C pathway inhibits growth of normal epithelial cells in vivo, JNK/pSmad3L-mediated signaling promotes tumor cell invasion and extracellular matrix synthesis by activated mesenchymal cells. Furthermore, hepatocyte growth factor signaling interacts with TGF-beta to activate the JNK/pSmad3L pathway, accelerating nuclear transport of cytoplasmic pSmad3L. This reduces accessibility of unphosphorylated Smad3 to membrane-anchored TbetaRI, preventing Smad3C phosphorylation, pSmad3C-mediated transcription, and antiproliferative effects of TGF-beta on epithelial cells. As neoplasia progresses from normal colorectal epithelium through adenoma to invasive adenocarcinoma with distant metastasis, nuclear pSmad3L gradually increases while pSmad3C decreases. The shift from TbetaRI/pSmad3C-mediated to JNK/pSmad3L-mediated signaling is a major mechanism orchestrating a complex transition of TGF-beta signaling during sporadic human colorectal carcinogenesis. This review summarizes the recent understanding of Smad3 phosphoisoform-mediated signaling, particularly 'cross-talk' between Smad3 and JNK pathways that cooperatively promote oncogenic activities. Understanding of these actions should help to develop more effective therapy against human colorectal cancer, involving inhibition of JNK/pSmad3L pathway.
Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong
2010-01-01
The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.
Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H
2008-08-01
Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.
Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik
2005-01-01
To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.
2014-01-01
Background Activation of the Wnt pathway is known to promote tumorigenesis and tumor metastasis, and targeting Wnt pathway inhibition has emerged as an attractive approach for controlling tumor invasion and metastasis. The major pathway for inhibiting Wnt is through the degradation of β-catenin by the GSK3-beta/CK1/Axin/APC complex. It was found that Hep3B hepato-carcinoma cells respond to anthocyanins through GSK3-beta-induced suppression of beta-catenin; however, they cannot dephosphorylate GSK3-beta without AMPK activation. Methods We tested the effects of anthocyanins on proliferation and apoptosis by MTT and Annexin V-PI staining in vitro. Mouse xenograft models of hepato-carcinomas were established by inoculation with Hep3B cells, and mice were injected with 50 mg/kg/ml of anthocyanins. In addition, protein levels of p-GSK3-beta, beta-catenin, p-AMPK, MMP-9, VEGF, and Ang-1 were also analyzed using western blot. Results Anthocyanins decrease phospho-GSK3-beta and beta-catenin expression in an in vivo tumor xenograft model, increase AMPK activity in this model, and inhibit cell migration and invasion, possibly by inhibiting MMP-2 (in vitro) and the panendothelial marker, CD31 (in vivo). To elucidate the role of the GSK3-beta/beta-catenin pathway in cancer control, we conditionally inactivated this pathway, using activated AMPK for inhibition. Further, we showed that AMPK siRNA treatment abrogated the ability of anthocyanins to control cell proliferation and metastatic potential, and Compound C, an AMPK inhibitor, could not restore GSK3-beta regulation, as exhibited by anthocyanins in Hep3B cells. Conclusion These observations imply that the AMPK-mediated GSK3-beta/beta-catenin circuit plays crucial roles in inhibiting cancer cell proliferation and metastasis in anthocyanin-treated hepato-carcinoma cells of Meoru origin. PMID:24666969
Japón, M A; Rubinstein, M; Low, M J
1994-08-01
We used 35S-labeled oligonucleotides and cRNAs (riboprobes) to detect the temporal order and spatial pattern of anterior pituitary hormone gene expression in (B6CBF1 x B6CBF1)F2 fetal mice from embryonic Day 9.5 (E9.5) to postnatal Day 1 (P1). Pro-opiomelanocortin (POMC) mRNA was expressed in the basal diencephalon on Day E10.5, in the ventromedial zone of the pars distalis on Day E12.5, and in the pars intermedia on Day E14.5. The common alpha-glycoprotein subunit (alpha-GSU) mRNA first appeared in the anterior wall of Rathke's pouch on Day E11.5 and extended to the pars tuberalis and ventromedial zone of the pars distalis on Day E12.5. Thyroid-stimulating hormone-beta (TSH beta) subunit mRNA was expressed initially in both the pas tuberalis and ventromedial pars distalis on Day E14.5, with an identical spatial distribution to alpha-GSU at the time. In contrast, luteinizing hormone-beta (LH beta) subunit and follicle-stimulating hormone beta (FSH beta) subunit mRNAs were detected initially only in the ventromedial pars distalis on Days E16.5 and E17.5, respectively, in an identical distribution to each other. POMC-, alpha-GSU-, TSH beta, LH beta-, and FSH beta-positive cells within the pars distalis all increased in number and autoradiographic signal with differing degrees of spatial expansion posteriorly, laterally, and dorsally up to Day P1. POMC expression was typically the most intense and extended circumferentially to include the entire lateral and dorsal surfaces of the pars distalis. The expression of both growth hormone (GH) and prolactin (PRL) started coincidentally on Day E15.5. However PRL cells localized in the ventromedial area similarly to POMC and the glycoprotein hormone subunits, whereas GH cells were found initially in a more lateral and central distribution within the lobes of the pars distalis. Somatotrophs increased dramatically in number and autoradiographic signal, extending throughout the pars distalis except for the most peripheral layer of cells on Day E17.5. Mammotrophs also increased in number but less abundantly than somatotrophs, and PRL expression remained more confined to central-medial and ventrolateral areas of the pars distalis up to Day P1. These data demonstrate distinctive patterns of expression for each of the major anterior pituitary hormone genes during development of the mouse pituitary gland and suggest that different groups of committed cells are the immediate precursors to the terminally differentiated hormone-secreting cell types.
Musette, P; Galelli, A; Truffa-Bachi, P; Peumans, W; Kourilsky, P; Gachelin, G
1996-03-01
We have used a new polymerase chain reaction-based technique to analyze at the clonal level the CDR3 diversity and the J beta usage associated with the V beta-dependent T cell receptor (TCR) recognition of two superantigens: the staphylococcal enterotoxin B and the Urtica dioica agglutinin. Our results show that subset of J beta elements is preferentially expanded in a given V beta family, independently of the nature of the superantigen. By contrast, the CDR3 loop does not contribute significantly to the T cell expansion induced by the superantigens. We conclude that the J beta segment of the TCR beta chain, but not the CDR3 region, participates in superantigen binding, presumably by influencing the quaternary structure of the TCR beta chain.
Metzger, Shulamit; Nusair, Samir; Planer, David; Barash, Varda; Pappo, Orit; Shilyansky, Joel; Chajek-Shaul, Tova
2004-11-01
Mice bearing IL-1beta-secreting tumor were used to study the chronic effect of IL-1beta on glucose metabolism. Mice were injected with syngeneic tumor cells transduced with the human IL-1beta gene. Serum IL-1beta levels increased exponentially with time. Secretion of IL-1beta from the developed tumors was associated with decreased food consumption, reduced body weight, and reduced blood glucose levels. Body composition analysis revealed that IL-1beta caused a significant loss in fat tissue without affecting lean body mass and water content. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activities and mRNA levels of these enzymes were reduced, and 2-deoxy-glucose uptake by peripheral tissues was enhanced. mRNA levels of glucose transporters (Gluts) in the liver were determined by real-time PCR analysis. Glut-3 mRNA levels were up-regulated by IL-1beta. Glut-1 and Glut-4 mRNA levels in IL-1beta mice were similar to mRNA levels in pair-fed mice bearing nonsecreting tumor. mRNA level of Glut-2, the major Glut of the liver, was down-regulated by IL-1beta. We concluded that both decreased glucose production by the liver and enhanced glucose disposal lead to the development of hypoglycemia in mice bearing IL-1beta-secreting tumor. The observed changes in expression of hepatic Gluts that are not dependent on insulin may contribute to the increased glucose uptake.
Kukidome, J; Kakizaki, I; Takagaki, K; Matsuki, A; Munakata, A; Endo, M
2001-05-01
COLO 201, human colon adenocarcinoma cells were incubated with artificial primers, p-nitrophenyl-glycoside derivatives at 1.0 mmol (mM) in the medium containing 10% fetal bovine serum to detect sugar chain elongation. However, when p-nitrophenyl-beta-N-acetylglucosamine (beta-GlcNAc-PNP) was added, the medium changed color to yellow and the cells were dead. To explain this finding, the cells were incubated with 1.0 mM each of beta-GlcNAc-PNP and 4-methylumbelliferyl-beta-N-acetylglucosamine, then the number of living cells was measured in a time course. In beta-GlcNAc-PNP, the living cells were decreased at 24 hours. The cells were survived with N-acetylglucosamine, whereas in the presence of p-nitrophenol (PNP) the living cells were decreased. It was suggested that PNP released from beta-GlcNAc-PNP induced the cell death. Activity of beta-D-N-acetylglucosaminidase was detected in fetal bovine serum. It was shown that PNP induced the cell death in time-and-dose dependent manner. Genomic DNA from COLO 201 analyzed by agarose gel electrophoresis was fragmentated. PNP analogues were tested for toxicity, and the results suggested that the phenolic OH-group linked to benzene ring and nitro-group linked to the structure in para-form (PNP) was the most effective.
Synthesis and cytotoxic analysis of some disodium 3beta,6beta-dihydroxysterol disulfates.
Cui, Jianguo; Wang, Hui; Huang, Yanmin; Xin, Yi; Zhou, Aimin
2009-01-01
Disodium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (1) was synthesized in 4 steps with a high overall yield from cholesterol. First, cholesterol (4a) was converted to cholest-4-en-3,6-dione (5a) via oxidation with pyridinium chlorochromate (PCC) and then 5a was reduced by NaBH(4) in the presence of NiCl(2) to produce cholest-3beta,6beta-diol (6a). The reaction of 6a with the triethylamine-sulfur trioxide complex generated diammonium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (7a) and the treatment of 7a by cation exchange resin 732 (sodium form)(Na(+)) yielded the target steroid 1. Disodium 24-ethyl-3beta,6beta-dihydroxycholest-22-ene disulfate (2) and disodium 24-ethyl-3beta,6beta-dihydroxycholestane disulfate (3) were synthesized using a similar method. The cytotoxicity of these compounds against Sk-Hep-1 (human liver carcinoma cell line), H-292 (human lung carcinoma cell line), PC-3 (human prostate carcinoma cell line) and Hey-1B (human ovarian carcinoma cell line) cells was investigated. Our results indicate that presence of a cholesterol-type side chain at position 17 is necessary for their biological activity.
Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio
The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of themore » {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.« less
Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.
Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng
Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Song-Mei; Zhu, Jun; Pan, Luan-Feng; Liu, Yin-Kun
2008-05-21
To block the adhesion of tumor cells to the extracellular matrix, and prevent tumor metastasis and recurrence, the dimer of the beta peptide (DLYYLMDLSYSMKGGDLYYLMDLSYSMK, beta2) was designed and synthesized and its anti-adhesion and anti-invasion effects on hepatocellular carcinoma cells were assessed. Additionally, its influence on the metastasis and recurrence of mouse hepatocellular carcinoma was measured. The anti-adhesion effect of beta2 on the highly metastatic hepatocellular carcinoma cell line HCCLM6 cells and fibronectin (FN) was assayed by the MTT assay. The inhibition of invasion of HCCLM6 cells by beta2 was observed using a Transwell (modified Boyden chamber) and matrigel. Using the hepatocellular carcinoma metastasis model and LCI-D20 nude mice, the influence of beta2 on the metastasis and recurrence of hepatocellular carcinoma after early resection was investigated. HCCLM6 cells co-incubated with 100 mumol/L, 50 micromol/L, 20 micromol/L or 10 micromol/L beta2 for 3 h showed an obvious decrease in adhesion to FN. The adhesion inhibition ratios were 11.8%, 21.7%, 29.6% and 48.7%, respectively. Additionally, HCCLM6 cells cultured with 100 mumol/L beta2 had a dramatic decrease in cell invasion. beta2 was also observed to inhibit the incisal edge recurrence and the distant metastasis of nude mice hepatocellular carcinoma after early resection (P < 0.05). The beta2 peptide can specifically block the adhesion and invasion of HCCLM6 cells, and can inhibit HCC recurrence and metastasis of LCI-D20 model posthepatectomy in vivo. Thus, beta2 should be further studied as a new anti-tumor drug.
Cheng, Guangmao; Qiao, Fei; Gallien, Thomas N; Kuppuswamy, Dhandapani; Cooper, George
2005-03-01
Decreased beta-adrenergic receptor (beta-AR) number occurs both in animal models of cardiac hypertrophy and failure and in patients. beta-AR recycling is an important mechanism for the beta-AR resensitization that maintains a normal complement of cell surface beta-ARs. We have shown that 1) in severe pressure overload cardiac hypertrophy, there is extensive microtubule-associated protein 4 (MAP4) decoration of a dense microtubule network; and 2) MAP4 microtubule decoration inhibits muscarinic acetylcholine receptor recycling in neuroblastoma cells. We asked here whether MAP4 microtubule decoration inhibits beta-AR recycling in adult cardiocytes. [(3)H]CGP-12177 was used as a beta-AR ligand, and feline cardiocytes were isolated and infected with adenovirus containing MAP4 (AdMAP4) or beta-galactosidase (Adbeta-gal) cDNA. MAP4 decorated the microtubules extensively only in AdMAP4 cardiocytes. beta-AR agonist exposure reduced cell surface beta-AR number comparably in AdMAP4 and Adbeta-gal cardiocytes; however, after agonist withdrawal, the cell surface beta-AR number recovered to 78.4 +/- 2.9% of the pretreatment value in Adbeta-gal cardiocytes but only to 56.8 +/- 1.4% in AdMAP4 cardiocytes (P < 0.01). This result was confirmed in cardiocytes isolated from transgenic mice having cardiac-restricted MAP4 overexpression. In functional terms of cAMP generation, beta-AR agonist responsiveness of AdMAP4 cells was 47% less than that of Adbeta-gal cells. We conclude that MAP4 microtubule decoration interferes with beta-AR recycling and that this may be one mechanism for beta-AR downregulation in heart failure.
Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.
Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less
Kanasaki, Keizo; Kanda, Yoshiko; Palmsten, Kristin; Tanjore, Harikrishna; Lee, Soo Bong; Lebleu, Valerie S; Gattone, Vincent H; Kalluri, Raghu
2008-01-15
The human kidneys filter 180 l of blood every day via about 2.5 million glomeruli. The three layers of the glomerular filtration apparatus consist of fenestrated endothelium, specialized extracellular matrix known as the glomerular basement membrane (GBM) and the podocyte foot processes with their modified adherens junctions known as the slit diaphragm (SD). In this study we explored the contribution of podocyte beta1 integrin signaling for normal glomerular function. Mice with podocyte specific deletion of integrin beta1 (podocin-Cre beta1-fl/fl mice) are born normal but cannot complete postnatal renal development. They exhibit detectable proteinuria on day 1 and die within a week. The kidneys of podocin-Cre beta1-fl/fl mice exhibit normal glomerular endothelium but show severe GBM defects with multilaminations and splitting including podocyte foot process effacement. The integrin linked kinase (ILK) is a downstream mediator of integrin beta1 activity in epithelial cells. To further explore whether integrin beta1-mediated signaling facilitates proper glomerular filtration, we generated mice deficient of ILK in the podocytes (podocin-Cre ILK-fl/fl mice). These mice develop normally but exhibit postnatal proteinuria at birth and die within 15 weeks of age due to renal failure. Collectively, our studies demonstrate that podocyte beta1 integrin and ILK signaling is critical for postnatal development and function of the glomerular filtration apparatus.
Prenner, Lars; Sieben, Anne; Zeller, Karin; Weiser, Dieter; Häberlein, Hanns
2007-05-01
Beta-adrenergic receptors (beta-AR) are potential targets for antidepressants. Desensitization and downregulation of beta-AR are discussed as possible modes of action for antidepressants. We have investigated the effects of hyperforin and hyperoside, compounds with potentially antidepressant activity from St. John's Wort, on the binding behavior and dynamics of beta2-AR in living rat C6 glioblastoma cells, compared to desipramine (desmethylimipramine; DMI) by means of fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. FCS-binding studies with the fluorescently labeled ligand Alexa532-noradrenaline (Alexa532-NA) binding to beta2-AR of C6 cells showed a significant reduction in total beta2-AR binding after preincubation with hyperforin and hyperoside for 3 days, respectively, which was also found for DMI. This was mainly observed in high-affinity receptor-ligand complexes with hindered lateral mobility (D2 = 1.1 (+/-0.4) microm2/s) in the biomembrane. However, internalization of beta2-AR was found neither in z-scans of these C6 cells nor in HEK 293 cells stably transfected with GFP-tagged beta2-adrenergic receptors (beta2AR-GFP) after incubation up to 6 days with either DMI, hyperforin, or hyperoside. Thus, under these conditions reduction of beta2-AR binding was not mediated by receptor internalization. Additionally, preincubation of C6 cells with DMI, hyperforin, and hyperoside led to a loss of second messenger cAMP after beta2-adrenergic stimulating conditions with terbutaline. Our current results indicate that hyperforin and hyperoside from St. John's Wort, as well as DMI, reduce beta2-adrenergic sensitivity in C6 cells, emphasizing the potential usefulness of St. John's Wort dry extracts in clinical treatment of depressive symptoms.
Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L
2008-03-15
Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.
Liu, Ping-Ping; Lu, Xiu-Lan; Xiao, Zheng-Hui; Qiu, Jun; Zhu, Yi-Min
2016-05-01
Although beta cell dysfunction has been proved to predict prognosis among humans and animals, its prediction on severity of disease remains unclear among children. The present study was aimed to examine the relationship between beta cell dysfunction and severity of disease among critically ill children.This prospective study included 1146 critically ill children, who were admitted to Pediatric Intensive Care Unit (PICU) of Hunan Children's Hospital from November 2011 to August 2013. Information on characteristics, laboratory tests, and prognostic outcomes was collected. Homeostasis model assessment (HOMA)-β, evaluating beta cell function, was used to divide all participants into 4 groups: HOMA-β = 100% (group I, n = 339), 80% ≤ HOMA-β < 100% (group II, n = 71), 40% ≤ HOMA-β < 80% (group III, n = 293), and HOMA-β < 40% (group IV, n = 443). Severity of disease was assessed using the worst Sequential Organ Failure Assessment (SOFA) score, Pediatric Risk of Mortality (PRISM) III score, incidence of organ damage, septic shock, multiple organ dysfunction syndrome (MODS), mechanical ventilation (MV) and mortality. Logistic regression analysis was used to evaluate the risk of developing poor outcomes among patients in different HOMA-β groups, with group I as the reference group.Among 1146 children, incidence of HOMA-β < 100% was 70.41%. C-peptide and insulin declined with the decrement of HOMA-β (P < 0.01). C-reactive protein and procalcitonin levels, rather than white blood cell, were significantly different among 4 groups (P < 0.01). In addition, the worst SOFA score and the worst PRISMIII score increased with declined HOMA-β. For example, the worst SOFA score in group I, II, III, and IV was 1.55 ± 1.85, 1.71 ± 1.93, 1.92 ± 1.63, and 2.18 ± 1.77, respectively. Furthermore, patients with declined HOMA-β had higher risk of developing septic shock, MODS, MV, and mortality, even after adjusting age, gender, myocardial injury, and lung injury. For instance, compared with group I, the multivariate-adjusted odds ratio (95% confidence interval) for developing septic shock was 2.17 (0.59, 8.02), 2.94 (2.18, 6.46), and 2.76 (1.18, 6.46) among patients in group II, III, and IV, respectively.Beta cell dysfunction reflected the severity of disease among critically ill children. Therefore, assessment of beta cell function is critically important to reduce incidence of adverse events in PICU.
Bosco, Domenico; Rouiller, Dominique G; Halban, Philippe A
2007-07-01
The aim of this study was to assess whether the expression of E-cadherin at the surface of rat beta-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all beta-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two beta-cell sub-populations were sorted: one that was poorly labeled ('ECad-low') and another that was highly labeled ('ECad-high'). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high beta-cells was higher than that from ECad-low beta-cells. Ca2+-dependent beta-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of beta-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochalasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet beta-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of beta-cell function.
Important role of heparan sulfate in postnatal islet growth and insulin secretion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Iwao; Noguchi, Naoya; Nata, Koji
2009-05-22
Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucosemore » intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.« less
Pereira, L E; Onlamoon, N; Wang, X; Wang, R; Li, J; Reimann, K A; Villinger, F; Pattanapanyasat, K; Mori, K; Ansari, A A
2009-01-01
Recent findings established that primary targets of HIV/SIV are lymphoid cells within the gastrointestinal (GI) tract. Focus has therefore shifted to T-cells expressing alpha(4)beta(7) integrin which facilitates trafficking to the GI tract via binding to MAdCAM-1. Approaches to better understand the role of alpha(4)beta(7)+ T-cells in HIV/SIV pathogenesis include their depletion or blockade of their synthesis, binding and/or homing capabilities in vivo. Such studies can ideally be conducted in rhesus macaques (RM), the non-human primate model of AIDS. Characterization of alpha(4)beta(7) expression on cell lineages in RM blood and GI tissues reveal low densities of expression by NK cells, B-cells, naïve and TEM (effector memory) T-cells. High densities were observed on TCM (central memory) T-cells. Intravenous administration of a single 50mg/kg dose of recombinant rhesus alpha(4)beta(7) antibody resulted in significant initial decline of alpha(4)beta(7)+ lymphocytes and sustained coating of the alpha(4)beta(7) receptor in both the periphery and GI tissues.
Long-term AICAR administration and exercise prevents diabetes in ZDF rats.
Pold, Rasmus; Jensen, Lasse S; Jessen, Niels; Buhl, Esben S; Schmitz, Ole; Flyvbjerg, Allan; Fujii, Nobuharu; Goodyear, Laurie J; Gotfredsen, Carsten F; Brand, Christian L; Lund, Sten
2005-04-01
Lifestyle interventions including exercise programs are cornerstones in the prevention of obesity-related diabetes. The AMP-activated protein kinase (AMPK) has been proposed to be responsible for many of the beneficial effects of exercise on glucose and lipid metabolism. The effects of long-term exercise training or 5-aminoimidazole-4-carboxamide-1-beta-d-riboruranoside (AICAR) treatment, both known AMPK activators, on the development of diabetes in male Zucker diabetic fatty (ZDF) rats were examined. Five-week-old, pre-diabetic ZDF rats underwent daily treadmill running or AICAR treatment over an 8-week period and were compared with an untreated group. In contrast to the untreated, both the exercised and AICAR-treated rats did not develop hyperglycemia during the intervention period. Whole-body insulin sensitivity, as assessed by a hyperinsulinemic-euglycemic clamp at the end of the intervention period, was markedly increased in the exercised and AICAR-treated animals compared with the untreated ZDF rats (P < 0.01). In addition, pancreatic beta-cell morphology was almost normal in the exercised and AICAR-treated animals, indicating that chronic AMPK activation in vivo might preserve beta-cell function. Our results suggest that activation of AMPK may represent a therapeutic approach to improve insulin action and prevent a decrease in beta-cell function associated with type 2 diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest
2011-09-10
Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-{beta} receptor expression in fibroblasts, especially in CAFs represents a major option in coordination of fibroblast and tumor behavior. A key event in IL1-{beta} signaling, the phosphorylation of IRAK1, occurred in co-cultured fibroblasts, which has lead to nuclear translocation of NF{kappa}B{alpha}, and finally to induction of several genes, including BDNF, IRF1, IL-6 and COX-2. The most enhanced induction was found for IL-6 and COX-2.« less
NASA Astrophysics Data System (ADS)
Zalzman, Michal; Gupta, Sanjeev; Giri, Ranjit K.; Berkovich, Irina; Sappal, Baljit S.; Karnieli, Ohad; Zern, Mark A.; Fleischer, Norman; Efrat, Shimon
2003-06-01
Beta-cell replacement is considered to be the most promising approach for treatment of type 1 diabetes. Its application on a large scale is hindered by a shortage of cells for transplantation. Activation of insulin expression, storage, and regulated secretion in stem/progenitor cells offers novel ways to overcome this shortage. We explored whether fetal human progenitor liver cells (FH) could be induced to differentiate into insulin-producing cells after expression of the pancreatic duodenal homeobox 1 (Pdx1) gene, which is a key regulator of pancreatic development and insulin expression in beta cells. FH cells possess a considerable replication capacity, and this was further extended by introduction of the gene for the catalytic subunit of human telomerase. Immortalized FH cells expressing Pdx1 activated multiple beta-cell genes, produced and stored considerable amounts of insulin, and released insulin in a regulated manner in response to glucose. When transplanted into hyperglycemic immunodeficient mice, the cells restored and maintained euglycemia for prolonged periods. Quantitation of human C-peptide in the mouse serum confirmed that the glycemia was normalized by the transplanted human cells. This approach offers the potential of a novel source of cells for transplantation into patients with type 1 diabetes.
1985-01-01
of actin protein xg relative centrifugal force glorin N-propionyl- Y -L-glutawyl-L-ornithine- S- lactam ethyl ester [3 H]FA [7,9,3’,5 ’-3H]folic acid...solubilize the pellet and radioactivity was measured on a LKB Rack Beta scintillation counter. cAMP Binding to Whole Cells. This assay followed the well...inserts, pre-filled with 4ml of Unisolve I scintillant, and radioactivity measured on a LKB Rack Beta scintillation counter. Controls included: a) no
Marian, A J; Yu, Q T; Mann, D L; Graham, F L; Roberts, R
1995-07-01
Mutations in the beta-myosin heavy chain (beta MyHC) induce hypertrophic cardiomyopathy (HCM), cardiac hypertrophy, and sarcomere disarray, with the latter being the characteristic hallmark. Thus, we sought to determine whether expression of mutant beta MyHC in adult feline cardiac myocytes, a species known to develop HCM with a phenotype identical to that in humans, induces sarcomere disarray. A full-length beta MyHC cDNA was cloned from a human heart cDNA library, and an HCM-causing mutation (Arg403Gln) was induced in the beta MyHC cDNA by site-directed mutagenesis using polymerase chain reaction (PCR). The normal and mutant beta MyHC cDNAs were cloned into p delta E1spIB shuttle vector, downstream from a cytomegalovirus (CMV) promoter. Replication-deficient recombinant adenoviral constructs (Ad5/CMV/beta MyHC-N and Ad5/CMV/beta MyHC-403) were generated through homologous recombination of p delta E1spIB/CMV/beta MyHC-N or Ad5/CMV/beta MyHC-403 and pBHG10 after cotransfection in 293 host cells. Infection of COS-1 cells with the beta MyHC construct resulted in the expression of a full-length myosin protein. Efficiency of infection of isolated adult cardiac myocytes was > 95%. Expression of the beta MyHC constructs into mRNA at 48 hours after infection of feline cardiac myocytes was confirmed by reverse transcription-PCR. The net total protein and beta-myosin synthesis were determined by using the amount of incorporation of [3H]phenylalanine into total protein and beta-myosin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Kim, Ki-Hoon; Kim, Yea-Oon; Ko, Bong-Sun; Youn, Hyun-Joo; Lee, Dong-Seok
2004-11-01
An endo-beta-(1-->3),(1-->4)-glucanase gene (bglBC1) from Bacillus circulans ATCC21367 was modified by substituting its native promoter with a strong promoter, BJ27X, to increase expression of the gene when cloned into B. subtilis RM125 and B. megaterium ATCC14945. A 771-bp endo-beta-(1-->3),(1-->4)-glucanase open reading frame was inserted into a new shuttle plasmid, pBLC771, by ligating the ORF and pBE1, the latter of which contained the strong promoter, BJ27X. B. subtilis , transformed with the recombinant plasmid pBLC771, produced an extracellular endo-beta-(1-->3),(1-->4)-glucanase that was 130 times (7176 mU ml(-1)) more active than that of the gene donor cells (55 mU ml(-1)), while the enzyme from the transformed B. megaterium was 7 times (378 mU ml(-1)) more active than that of the gene donor cells. M(r) of the enzyme was 28 kDa, with proteolytic processing of the enzyme being observed only in B. subtilis cells. The major products of water-soluble beta-glucan hydrolyzed by over-produced endo-beta-(1-->3),(1-->4)-glucanase were tri- and tetra-oligosaccharides which can be developed as useful products such as anti-hypercholesterolemic, anti-hypertriglyceridemic, and anti-hyperglycemic agents.
β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.
Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine
2014-03-01
Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu Ning; Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto; Adachi, Tetsuya
2006-08-04
Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2more » mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.« less
De Groef, Sofie; Leuckx, Gunter; Van Gassen, Naomi; Staels, Willem; Cai, Ying; Yuchi, Yixing; Coppens, Violette; De Leu, Nico; Heremans, Yves; Baeyens, Luc; Van de Casteele, Mark; Heimberg, Harry
2015-01-01
Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories. PMID:26273954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geard, C.R.
1983-01-01
In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with initiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) ismore » equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1..mu..m. Abrahamson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will probably affect the ..beta.. component. 23 references, 5 figures, 2 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geard, C.R.
1983-01-01
In root meristems of Tradescantia clone 02 (developed by Sparrow and his colleagues for mutation studies), X-rays interfere with the progression of cells through the cell cycle and induce chromosomal aberrations in a dose-dependent manner consistent with linear-quadratic kinetics. Sequential mitotic cell accumulations after irradiation indicate that sensitivity to aberrration induction is probably greatest in cells from late S to early G2, with chromatid interchanges the most frequent aberration type and all aberrations consistent with intiation from the interaction between two lesions. The ratio of the coefficients in the linear (..cap alpha..) and the quadratic (..beta..) terms (..cap alpha../..beta..) ismore » equal to the dose average of specific energy produced by individual particles in the site where interaction takes place. The ratio ..cap alpha../..beta.. for chromosomal aberrations is similar to that previously found for X-ray-induced mutation in Tradescantia stamen hairs, supporting the proposal that radiation-induced mutational events are due to chromosomal aberrations with interaction distances of about 1 ..mu..m. Abrahmson and co-workers have noted that both ..cap alpha../..beta.. ratios appear to be related to nuclear target size and are similar for chromosomal and mutational endpoints in the same organism. These findings support this concept; however, it is apparent that any situation which diminishes yield at high doses (e.g., mitotic delay) will primarily affect the ..beta.. component, resulting in low assessments of interaction site diameters.« less
Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.
Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M
2010-03-01
beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.
In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells.
Lin, Hsin-Yi; Bumgardner, Joel D
2004-11-01
We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect Co-Cr-Mo alloy's corrosion properties and that alloy corrosion products change macrophage cell behavior. A custom cell culture corrosion cell was used to evaluate how culture medium, cells, and RCS altered alloy corrosion in 3-day tests. Corrosion was evaluated by measuring total charge transfer at a constant potential using a potentiostat and metal ion release by atomic emission spectroscopy. Viability, proliferation, and NO (nitric oxide) and IL-1beta (interlukin-1beta) release were used to assess cellular response to alloy corrosion products. In the presence of activated cells, total charge transfers and Co ion release were the lowest (p < 0.05). This was attributed to an enhancement of the surface oxide by RCS. Cr and Mo release were not different between cells and activated cells. Low levels of metal ions did not affect cell viability, proliferation, or NO release, though IL-1beta released from the activated cells was higher on the alloy compared to the controls. These data support the hypothesis that macrophage cells and their RCS affect alloy corrosion. Changes in alloy corrosion by cells may be important to the development of host responses to the alloy and its corrosion products.
Hosoya, S; Matsushima, K
1997-01-01
IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.
Oliveira, Ricardo B d; Carvalho, Carolina P d F; Polo, Carla C; Dorighello, Gabriel d G; Boschero, Antônio C; Oliveira, Helena C F d; Collares-Buzato, Carla B
2014-01-01
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr−/− mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr−/− mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr−/− mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr−/− mice showed no significant changes in beta-cell mass, but lower islet–duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr−/− mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion. PMID:24853046
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajra, A.; Liu, P.; Collins, E.S.
1994-09-01
A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less
Pillekamp, Frank; Haustein, Moritz; Khalil, Markus; Emmelheinz, Markus; Nazzal, Rewa; Adelmann, Roland; Nguemo, Filomain; Rubenchyk, Olga; Pfannkuche, Kurt; Matzkies, Matthias; Reppel, Michael; Bloch, Wilhelm; Brockmeier, Konrad; Hescheler, Juergen
2012-08-10
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.
MUC1 and colorectal cancer pathophysiology considerations.
Niv, Yaron
2008-04-14
Several lines of evidence point towards a biological role of mucin and particularly MUC1 in colorectal cancer. A positive correlation was described between mucin secretion, proliferation, invasiveness, metastasis and bad prognosis. But, the role of MUC1 in cancer progression is still controversial and somewhat confusing. While Mukherjee and colleagues developed MUC1-specific immune therapy in a CRC model, Lillehoj and co-investigators showed recently that MUC1 inhibits cell proliferation by a beta-catenin-dependent mechanism. In carcinoma cells the polarization of MUC1 is lost and the protein is over expressed at high levels over the entire cell surface. A competitive interaction between MUC1 and E-cadherin, through beta-catenin binding, disrupts E-cadherin-mediated cell-cell interactions at sites of MUC1 expression. In addition, the complex of MUC1-beta-catenin enters the nucleus and activates T-cell factor/leukocyte enhancing factor 1 transcription factors and activates gene expression. This mechanism may be similar to that just described for DCC and UNC5H, which induced apoptosis when not engaged with their ligand netrin, but mediate signals for proliferation, differentiation or migration when ligand bound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana
2010-01-15
Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6more » mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.« less
Aupperle, H; März, I; Thielebein, J; Schoon, H-A
2008-01-01
The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.
Parmo-Cabañas, Marisa; García-Bernal, David; García-Verdugo, Rosa; Kremer, Leonor; Márquez, Gabriel; Teixidó, Joaquin
2007-08-01
The alpha4beta1 integrin is expressed on thymocytes and mediates cell attachment to its ligands CS-1/fibronectin (CS-1/FN) and VCAM-1 in the thymus. The chemokine CCL25 is highly expressed in the thymus, where it binds to its receptor CCR9 on thymocytes promoting migration and activation. We show here that alpha4beta1 and CCR9 are coexpressed mainly on double- and single-positive thymocytes and that CCL25 strongly stimulates CD4(+)CD8(+) and CD4(+)CD8(-) adhesion to CS-1/FN and VCAM-1. CCL25 rapidly activated the GTPases Rac and Rap1 on thymocytes, and this activation was required for stimulation of adhesion, as detected using the CCR9(+)/alpha4beta1(+) human T cell line Molt-4. To study the role on CCL25-stimulated adhesion of the Rac downstream effector Wiskott-Aldrich syndrome protein family verproline-homologous protein 2 (WAVE2) as well as of Rap1-GTP-interacting proteins, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP-interacting adapter molecule (RIAM), we knocked down their expression and tested transfectant attachment to alpha4beta1 ligands. We found that WAVE2 and RAPL but not RIAM were required for efficient triggering by CCL25 of T cell adhesion to CS-1/FN and VCAM-1. Although Rac and Rap1 activation was required during early steps of T cell adhesion stimulated by CCL25, WAVE2 was needed for the development of actin-dependent T cell spreading subsequent to adhesion strengthening but not during initial alpha4beta1-ligand interactions. These results suggest that regulation by CCL25 of adhesion of thymocyte subpopulations mediated by alpha4beta1 could contribute to control their trafficking in the thymus during maturation, and identify Rac-WAVE2 and Rap1-RAPL as pathways whose activation is required in inside-out signaling, leading to stimulated adhesion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando
2012-09-28
Highlights: Black-Right-Pointing-Pointer Rotenone is a model for inducing apoptosis and synphilin-1 accumulation in Parkinson Prime s studies. Black-Right-Pointing-Pointer The metabolite sodium betahydroxybutryate mitigates these effects in SHSY5Y cell lines. Black-Right-Pointing-Pointer Results reveal a novel and innate mechanism to prevent neurodegeneration/cell death. -- Abstract: Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-taggedmore » synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-{beta}-hydroxybutyrate (Na{beta}HB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that Na{beta}HB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.« less
Testa, U; Care, A; Montesoro, E; Fossati, C; Giannella, G; Masciulli, R; Fagioli, M; Bulgarini, D; Habetswallner, D; Isacchi, G
1990-01-01
We have developed a culture system for "long-term" growth of human lymphokine-activated killer (LAK) cells exhibiting an elevated, wide-spectrum antitumor cytotoxicity. The system allows the exponential growth of monocyte-depleted low-density lymphocytes in the presence of human serum and recombinant human interleukin-2 (10(3) U/ml), alone or in combination with interleukin-1 alpha or beta (both at 10 U/ml). Eighteen cultures were established from 18 normal adult donors. The membrane phenotypes of the final LAK cell population, assessed by a panel of monoclonal antibodies (mAb), consist of three main types: (a) NKH-1+, Ti alpha/beta-, Ti gamma/delta-, and CD3- lymphocytes; (b) NKH-1+, Ti alpha/beta-, Ti gamma/delta+, and CD3+ lymphocytes and (c) NKH-1+, Ti alpha/beta+, Ti gamma/delta- and CD3+ lymphocytes. Northern blot analysis showed that all these cell populations express relatively high levels of perforin RNA, particularly cells exhibiting the first phenotype. This culture system may provide a tool for cellular and molecular studies on the mechanisms of antitumor cytotoxicity, as well as the basis for new adoptive immunotherapy protocols in advanced center.
NASA Astrophysics Data System (ADS)
Erisken, Cevat
Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded with adipose derived stromal cells (h-ADSCs). Analysis of resulting tissue constructs revealed chondrocytic differentiation of h-ADSCs, with both the chondrocytic cell concentration and mineralization varying as a function of distributions of concentrations of insulin and beta-GP, respectively. The investigation also covered characterization of biomechanical properties of native bovine osteochondral tissue samples, which were then compared with biomechanical properties of tissue constructs at different stages of development. The hybrid technology developed in this thesis should provide another enabling platform for the fabrication of functionally graded scaffolds that aim to mimic the elegant gradations found in myriad native tissues.
Posttest analysis of beta (Na/S) cells from chloride silent power, limited. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battles, J.E.; Mrazek, F.C.
Researchers have developed a unique methodology for examining sodium/sulfur cells after testing to learn more about their behavior. The new techniques described in this report allow scientists to discern the physical and chemical states of these high-energy cells and to develop hypotheses about degradation mechanisms. This information may provide a basis for building cells with longer lives.
Rodewald, H R; Awad, K; Moingeon, P; D'Adamio, L; Rabinowitz, D; Shinkai, Y; Alt, F W; Reinherz, E L
1993-04-01
We have recently identified a dominant wave of CD4-CD8- (double-negative [DN]) thymocytes in early murine fetal development that express low affinity Fc gamma receptors (Fc gamma RII/III) and contain precursors for Ti alpha/beta lineage T cells. Here we show that Fc gamma RII/III is expressed in very immature CD4low single-positive (SP) thymocytes and that Fc gamma RII/III expression is downregulated within the DN subpopulation and before the CD3-CD8low SP stage in T cell receptor (TCR)-alpha/beta lineage-committed thymocytes. DN Fc gamma RII/III+ thymocytes also contain a small fraction of TCR-gamma/delta lineage cells in addition to TCR-alpha/beta progenitors. Fetal day 15.5 DN TCR-alpha/beta lineage progenitors can be subdivided into three major subpopulations as characterized by cell surface expression of Fc gamma RII/III vs. CD2 (Fc gamma RII/III+CD2-, Fc gamma RII/III+CD2+, Fc gamma RII/III-CD2+). Phenotypic analysis during fetal development as well as adoptive transfer of isolated fetal thymocyte subpopulations derived from C57B1/6 (Ly5.1) mice into normal, nonirradiated Ly5.2 congenic recipient mice identifies one early differentiation sequence (Fc gamma RII/III+CD2(-)-->Fc gamma RII/III+CD2(+)-->Fc gamma RII/III-CD2+) that precedes the entry of DN thymocytes into the CD4+CD8+ double-positive (DP) TCRlow/- stage. Unseparated day 15.5 fetal thymocytes develop into DP thymocytes within 2.5 d and remain at the DP stage for > 48 h before being selected into either CD4+ or CD8+ SP thymocytes. In contrast, Fc gamma RII/III+CD2- DN thymocytes follow this same developmental pathway but are delayed by approximately 24 h before entering the DP compartment, while Fc gamma RII/III-CD2+ display accelerated development by approximately 24 h compared with total day 15.5 thymocytes. Fc gamma RII/III-CD2+ are also more developmentally advanced than Fc gamma RII/III+CD2- fetal thymocytes with respect to their TCR beta chain V(D)J rearrangement. At day 15.5 in gestation, beta chain V(D)J rearrangement is mostly, if not entirely, restricted to the Fc gamma RII/III-CD2+ subset of DN fetal thymocytes. Consistent with this analysis in fetal thymocytes, > 90% of adult thymocytes derived from mice carrying a disrupting mutation at the recombination-activating gene 2 locus (RAG-2-/-) on both alleles are developmentally arrested at the DN CD2- stage. In addition, there is a fivefold increase in the relative percentage of thymocytes expressing Fc gamma RII/III in TCR and immunoglobulin gene rearrangement-incompetent homozygous RAG-2-/- mice (15% Fc gamma RII/III+) versus rearrangement-competent heterozygous RAG-2+/- mice (< 3% Fc gamma RII/III+). Thus, Fc gamma RII/III expression defines an early DN stage preceding V beta(D beta)I beta rearrangement, which in turn is followed by surface expression of CD2. Loss of Fc gamma RII/III and acquisition of CD2 expression characterize a late DN stage immediately before the conversion into DP thymocytes.
Shozu, M; Zhao, Y; Simpson, E R
2000-02-25
Recent evidence has shown that bone is not only a target of estrogen action but also a source of local estrogen production. Bone cells such as osteoblasts express aromatase (P450arom) and the expression of P450arom in osteoblasts is positively regulated in a tissue specific fashion, as in the case of other tissues which express P450arom. To clarify the physiological factors regulating expression of P450arom in bone, we tested TGF-beta1 using osteoblast-like cells obtained from human fetuses as well as THP-1 cells. TGF-beta1 increased IL-1beta+DEX- induced aromatase activity in osteoblast-like cells, while it inhibited activity in skin fibroblasts. Similar enhancement of aromatase activity by TGF-beta1 was found in DEX-stimulated THP-1 cells and this cell line was used for further experiments. In THP-1 cells, TGF-beta1 enhanced DEX-induced aromatase activity almost linearly by 12 h and thereafter. Increased levels of P450arom transcripts were also demonstrated by RT-PCR at 3 h of TGF-beta1 treatment and thereafter. Cyclohexamide abolished enhancement of activity but did not inhibit the accumulation of P450arom transcripts induced by TGF-beta1. Increase in P450arom expression by TGF-beta1 was attributable to expression driven by promoter I.4. TGF-beta1 did not change the half life of P450arom transcripts. To identify the cis-acting elements responsible for TGF-beta1 action on aromatase expression, transient transfection assays were performed using a series of deletion constructs for promoter I.4 (P450-I.4/Luc). Two constructs (-410/+14 and-340/+14) that contain a functional glucocorticoid response element (GRE) and downstream sequence showed significant increase of luciferase activity in response to TGF-beta1. Deletion and mutation of the GRE in P450-I.4/Luc (-340/+14) abolished the TGF-beta1. The luciferase activity of a (GRE)(1)-SV40/Luc construct was also stimulated by TGF-beta1. These results indicate that TGF-beta1 increases the expression of P450arom at the level of transcription through promoter I.4, at least in part via an enhancement of transactivation activity of the GR in THP-1 cells. TGF-beta1 is suggested to be one of the physiological up-regulatory factors of bone aromatase.
Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia
2009-07-01
Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.
2013-01-01
Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382
Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon
2006-10-01
Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.
Stabilization of beta-catenin induces pancreas tumor formation.
Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias
2008-10-01
beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.
Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed
2009-08-07
We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.
Van De Walle, Jacqueline; Hendrickx, Aurélie; Romier, Béatrice; Larondelle, Yvan; Schneider, Yves-Jacques
2010-08-01
Enterocytes regulate gut maintenance and defence by secreting and responding to inflammatory mediators and by modulating the intestinal epithelial permeability. In order to develop an in vitro model of the acute phase of intestinal inflammation, Caco-2 cells were exposed to the inflammatory mediators IL-1beta, TNF-alpha, IFN-gamma and LPS, and the importance of several experimental parameters, i.e. cell differentiation, stimulus nature, concentration and combination on the inflammatory response was assessed by measuring the production of IL-6, IL-8, PGE-2 and NO and by evaluating the monolayer permeability. A maximal increase in IL-8, IL-6 and PGE-2 production and monolayer permeability was observed when using the cytokines simultaneously at their highest level, but this relied mainly on IL-1beta. The effects of TNF-alpha on IL-8 and IL-6 or NO production were stronger upon combination with IL-1beta or IFN-gamma, respectively, whereas cells were unaffected by the presence of LPS. Although NO production, induced by IFN-gamma-containing combinations, was observed only in differentiated cells, general inflammatory response was higher in proliferating cells. The use of a mixture of IL-1beta, TNF-alpha and IFN-gamma thus accurately mimics intestinal inflammatory processes, but cell differentiation and stimuli combination are important parameters to take into account for in vitro studies on intestinal inflammation. Copyright (c) 2010. Published by Elsevier Ltd.
Najjar, Imen; Schischmanoff, Pierre Olivier; Baran-Marszak, Fanny; Deglesne, Pierre-Antoine; Youlyouz-Marfak, Ibtissam; Pampin, Mathieu; Feuillard, Jean; Bornkamm, Georg W; Chelbi-Alix, Mounira K; Fagard, Remi
2008-12-01
Alternate splicing of STAT1 produces two isoforms: alpha, known as the active form, and beta, previously shown to act as a dominant-negative factor. Most studies have dealt with STAT1alpha, showing its involvement in cell growth control and cell death. To examine the specific function of either isoform in cell death, a naturally STAT1-deficient human B cell line was transfected to express STAT1alpha or STAT1beta. STAT1alpha, expressed alone, enhanced cell death, potentiated the fludarabine-induced apoptosis, and enhanced the nuclear location, the phosphorylation, and the transcriptional activity of p53. Unexpectedly, STAT1beta, expressed alone, induced cell death through a mechanism that was independent of the nuclear function of p53. Indeed, in STAT1beta-expressing B cells, p53 was strictly cytoplasmic where it formed clusters, and there was no induction of the transcriptional activity of p53. These data reveal a novel role of STAT1beta in programmed cell death, which is independent of p53.
Expression of the beta-catenin gene in the skin of embryonic geese during feather bud development.
Wu, W; Xu, R F; Xiao, L; Xu, H; Gao, G
2008-01-01
beta-Catenin signaling has been reported to initiate feather bud development. In the present study, beta-catenin gene was isolated and identified from a cDNA library constructed using embryonic goose skin. Expression patterns of beta-catenin gene in the dorsal skin of goose embryos were investigated using the methods of semi-quantitative reverse transcription PCR, Northern blot analysis, and in situ hybridization. The sequence of beta-catenin was found highly conserved at the amino acid level, sharing 100, 99, and 99% identity with chicken, Chinese soft-shell turtle, and human sequences, respectively. Relatively high levels (62.51 +/- 7.11% to 101.74 +/- 7.29%) of beta-catenin mRNA were detected in the dorsal skin samples. The levels of beta-catenin expression were most prominent at the early stage from embryo day (E)10 to E20 and then significantly declined with the embryonic development. In situ hybridization demonstrated that at E10, beta-catenin expression was mainly observed at the surface periderm cells and the localized region of the epidermal layer. Because feather bud forms with an anterior-posterior orientation, strong staining was observed in the periderm layer and in the ectoderm and epidermis with a diffuse distribution within the internal area of the buds. The stronger staining was seen in the barb ridges than in the center pulp of the feather follicles at E18 and E20. In this study, expression of Shh as a marker gene for the bud development was examined paralleling with expression patterns of beta-catenin. It was found that the expression pattern of beta-catenin was almost similar spatially and temporally to that of Shh mRNA at the later stages of bud development. The differential beta-catenin mRNA expression in the goose dorsal skin may be essential for promoting the normal development of embryonic feather bud.
Genetics Home Reference: sickle cell disease
... of beta-globin; this abnormality is called beta thalassemia . In people with sickle cell disease , at least ... globin. If mutations that produce hemoglobin S and beta thalassemia occur together, individuals have hemoglobin S- beta thalassemia (HbSBetaThal) ...
Spatiotemporal Dynamics of Insulitis in Human Type 1 Diabetes
Wedgwood, Kyle C. A.; Richardson, Sarah J.; Morgan, Noel G.; Tsaneva-Atanasova, Krasimira
2016-01-01
Type 1 diabetes (T1D) is an auto-immune disease characterized by the selective destruction of the insulin secreting beta cells in the pancreas during an inflammatory phase known as insulitis. Patients with T1D are typically dependent on the administration of externally provided insulin in order to manage blood glucose levels. Whilst technological developments have significantly improved both the life expectancy and quality of life of these patients, an understanding of the mechanisms of the disease remains elusive. Animal models, such as the NOD mouse model, have been widely used to probe the process of insulitis, but there exist very few data from humans studied at disease onset. In this manuscript, we employ data from human pancreases collected close to the onset of T1D and propose a spatio-temporal computational model for the progression of insulitis in human T1D, with particular focus on the mechanisms underlying the development of insulitis in pancreatic islets. This framework allows us to investigate how the time-course of insulitis progression is affected by altering key parameters, such as the number of the CD20+ B cells present in the inflammatory infiltrate, which has recently been proposed to influence the aggressiveness of the disease. Through the analysis of repeated simulations of our stochastic model, which track the number of beta cells within an islet, we find that increased numbers of B cells in the peri-islet space lead to faster destruction of the beta cells. We also find that the balance between the degradation and repair of the basement membrane surrounding the islet is a critical component in governing the overall destruction rate of the beta cells and their remaining number. Our model provides a framework for continued and improved spatio-temporal modeling of human T1D. PMID:28082906
Cell Science and Cell Biology Research at MSFC: Summary
NASA Technical Reports Server (NTRS)
2003-01-01
The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.
Montemurro, Chiara; Vadrevu, Suryakiran; Gurlo, Tatyana; Butler, Alexandra E; Vongbunyong, Kenny E; Petcherski, Anton; Shirihai, Orian S; Satin, Leslie S; Braas, Daniel; Butler, Peter C; Tudzarova, Slavica
2017-01-01
Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca 2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca 2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca 2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca 2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.
Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.
Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko
2017-07-17
Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.
Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin
Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.
2014-01-01
Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125
Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin.
Wakae-Takada, N; Xuan, S; Watanabe, K; Meda, P; Leibel, R L
2013-04-01
In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.
Taddei, Maria Letizia; Chiarugi, Paola; Cirri, Paolo; Buricchi, Francesca; Fiaschi, Tania; Giannoni, Elisa; Talini, Doriana; Cozzi, Giacomo; Formigli, Lucia; Raugei, Giovanni; Ramponi, Giampietro
2002-11-15
Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.
Chen, Xin-Yan; Si, Jun-Qiang; Li, Li; Zhao, Lei; Wei, Li-Li; Jiang, Xue-Wei; Ma, Ke-Tao
2013-05-01
This study compared Wistar rat with spontaneously hypertensive rat (SHR) on the electrophysiology and coupling force of the smooth muscle cells in the cerebral arteriolar segments and observe the influence of 18beta-glycyrrhetinic acid(18beta-GA) on the gap junctions between the arterial smooth muscle cells. The outer layer's connective tissue of the cerebral arteriolar segments was removed. Whole-cell patch clamp recordings were used to observe the 18beta-GA's impaction on the arteriolar segment membrane's input capacitance (C(input)), input conductance (G(input)) and input resistance (R(input)) of the smooth muscle cells. (1) The C(input) and G(input) of the SHR arteriolar segment smooth muscle cells was much higher than the Wistar rats, there was significant difference (P < 0.05). (2) 18beta-GA concentration-dependently reduced C(input) and G(input) (or increase R(input)) on smooth muscle cells in arteriolar segment. IC50 of 18beta-GA suppression's G(input) of the Wistar rat and SHR were 1.7 and 2.0 micromol/L respectively, there was not significant difference (P > 0.05). After application of 18beta-GA concentration > or = 100 micrmol/L, the C(input), G(input) and R(input) of the single smooth muscle cells was very close. Gap junctional coupling is enhanced in the SHR cerebral arterial smooth muscle cells. 18beta-GA concentration-dependent inhibits Wistar rat's and SHR cerebral arteriolar gap junctions between arterial smooth muscle cells. The inhibitory potency is similar between the two different rats. When 18beta-GA concentration is > or = 100 micromol/L, it can completely block gap junctions between arteriolar smooth muscle cells.
Takahashi, Yuki; Nishikawa, Makiya; Suehara, Tetsuya; Takiguchi, Naomi; Takakura, Yoshinobu
2008-11-15
Altered expression of beta-catenin, a key component of the Wnt signaling pathway, is involved in a variety of cancers because increased levels of beta-catenin protein are frequently associated with enhanced cellular proliferation. Although our previous study demonstrated that gene silencing of beta-catenin in melanoma B16-BL6 cells by plasmid DNA (pDNA) expressing short-hairpin RNA targeting the gene (pshbeta-catenin) markedly suppressed their growth in vivo, gene silencing of beta-catenin could promote tumor metastasis by the rearranging cell adhesion complex. In this study, we investigated how silencing of beta-catenin affects metastatic aspects of melanoma cells. Transfection of B16-BL6 cells with pshbeta-catenin significantly reduced the amount of cadherin protein, a cell adhesion molecule binding to beta-catenin, with little change in its mRNA level. Cadherin-derived fragments were detected in culture media of B16-BL6 cells transfected with pshbeta-catenin, suggesting that cadherin is shed from the cell surface when the expression of beta-catenin is reduced. The mobility of B16-BL6 cells transfected with pshbeta-catenin was greater than that of cells transfected with any of the control pDNAs. B16-BL6 cells stably transfected with pshbeta-catenin (B16/pshbeta-catenin) formed less or an equal number of tumor nodules in the lung than cells stably transfected with other plasmids when injected into mice via the tail vein. However, when subcutaneously inoculated, B16/pshbeta-catenin cells formed more nodules in the lung than the other stably transfected cells. These results raise concerns about the gene silencing of beta-catenin for inhibiting tumor growth, because it promotes tumor metastasis by reducing the amount of cadherin in tumor cells. (c) 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.
2005-03-03
Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less
Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R
2016-06-01
We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
Briviba, Karlis; Bornemann, Rainer; Lemmer, Ulrich
2006-11-01
Astaxanthin, a carotenoid found in plants and seafood, exhibits antiproliferative, antioxidant and anticarcinogenic properties. We show that astaxanthin delivered with tetrahydrofuran is effectively taken up by cultured colon adenocarcinoma cells and is localized mostly in the cytoplasm as detected by confocal resonance Raman and broad-band fluorescence microspectroscopy image analysis. Cells incubated with beta-carotene at the same concentration as astaxanthin (10 microM) showed about a 50-fold lower cellular amount of beta-carotene, as detected by HPLC. No detectable Raman signal of beta-carotene was found in cells, but a weak broad-band fluorescence signal of beta-carotene was observed. beta-Carotene, like astaxanthin, was localized mostly in the cytoplasm. The heterogeneity of astaxanthin and beta-carotene cellular distribution in cells of intestinal origin suggests that the possible defense against reactive molecules by carotenoids in these cells may also be heterogeneous.
Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W
1998-11-01
Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.
Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.
Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin
2004-04-01
Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.
Frutkin, Andrew D; Shi, Haikun; Otsuka, Goro; Levéen, Per; Karlsson, Stefan; Dichek, David A
2006-10-01
Smooth muscle cell (SMC)-specific deletion of transforming growth factor beta (TGF-beta) signaling would help elucidate the mechanisms through which TGF-beta signaling contributes to vascular development and disease. We attempted to generate mice with SMC-specific deletion of TGF-beta signaling by mating mice with a conditional ("floxed") allele for the type II TGF-beta receptor (tgfbr2flox) to mice with SMC-targeted expression of Cre recombinase. We bred male mice transgenic for smooth muscle myosin heavy chain (SMMHC)-Cre with females carrying tgfbr2flox. Surprisingly, SMMHC-Cre mice recombined tgfbr2flox at low levels in SMC and at high levels in the testis. Recombination of tgfbr2flox in testis correlated with high-level expression of SMMHC-Cre in testis and germline transmission of tgfbr2null. In contrast, mice expressing Cre from a SM22alpha promoter (SM22-Cre) efficiently recombined tgfbr2flox in vascular and visceral SMC and the heart, but not in testis. Use of the R26R reporter allele confirmed that Cre-mediated recombination in vascular SMC was inefficient for SMMHC-Cre mice and highly efficient for SM22-Cre mice. Breedings that introduced the SM22-Cre allele into tgfbr2flox/flox zygotes in order to generate adult mice that are hemizygous for SM22-Cre and homozygous for tgfbr2flox- and would have conversion of tgfbr2flox/flox to tgfbr2null/null in SMC-produced no live SM22-Cre : tgfbr2flox/flox pups (P<0.001). We conclude: (1) "SMC-targeted" Cre lines vary significantly in specificity and efficiency of Cre expression; (2) TGF-beta signaling in the subset of cells that express SM22alpha is required for normal development; (3) generation of adult mice with absent TGF-beta signaling in SMC remains a challenge.
Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.
Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L
1996-07-01
Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.
Czeczuga-Semeniuk, Ewa; Anchim, Tomasz; Dziecioł, Janusz; Dabrowska, Milena; Wołczyński, Sławomir
2004-01-01
Retinoic acid and transforming growth factor-beta (TGF-beta) affect differentiation, proliferation and carcinogenesis of epithelial cells. The effect of both compounds on the proliferation of cells of the hormone sensitive human breast cancer cell line (ER+) MCF-7 was assessed in the presence of estradiol and tamoxifen. The assay was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in MCF-7 cells were also determined. Exogenous TGF-beta1 added to the cell culture showed antiproliferative activity within the concentration range of 0.003-30 ng/ml. Irrespective of TGF-beta1 concentrations, a marked reduction in the stimulatory action of estradiol (10(-9) and 10(-8) M) was observed whereas in combination with tamoxifen (10(-7) and 10(-6) M) only 30 ng/ml TGF-beta1 caused a statistically significant reduction to approximately 30% of the proliferative cells. In further experiments we examined the effect of exposure of breast cancer cells to retinoids in combination with TGF-beta1. The incorporation of [3H]thymidine into MCF-7 cells was inhibited to 52 +/- 19% (control =100%) by 3 ng/ml TGF-beta1, and this dose was used throughout. It was found that addition of TGF-beta1 and isotretinoin to the culture did not decrease proliferation, while TGF-beta1 and tretinoin at low concentrations (3 x 10(-8) and 3 x 10(-7) M) reduced the percentage of proliferating cells by approximately 30% (67+/-8% and 67+/-5%, P<0.05 compared to values in the tretinoin group). Both retinoids also led to a statistically significant decrease in the stimulatory effect of 10(-9) M estradiol, attenuated by TGF-beta1. In addition, the retinoids in combination with TGF-beta1 and tamoxifen (10(-6) M) caused a further reduction in the percentage of proliferating cells. Immunocytochemical analysis showed that all the examined compounds gave a statistically significant reduction in the percentage of cells with a positive reaction to PCNA and Ki 67 antigen. TGF-beta1, isotretinoin and tretinoin added to the culture resulted in the lowest percentage of PCNA positive cells. However, the lowest fraction of Ki 67 positive cells was observed after addition of isotretinoin. The obtained results also confirm the fact that the well-known regulatory proteins Bcl-2 and p53 play an important role in the regulation of apoptosis in the MCF-7 cell line, with lowered Bcl-2 expression accompanying easier apoptotic induction. The majority of the examined compounds act via the p53 pathway although some bypass this important proapoptotic factor.
Basics and applications of stem cells in the pancreas.
Sekine, Keisuke; Taniguchi, Hideki
2012-11-01
Enormous efforts have been made to establish pancreatic stem/progenitor cells as a source for regenerative medicine for the treatment of diabetes mellitus. In recent years, it has been recognized that the self-renewal of beta cells is the dominant process involved in postnatal beta-cell regeneration and expansion. Nevertheless, several in-vitro studies have suggested that ductal or as yet unidentified cells are candidates for pancreatic stem/progenitor cells that can differentiate into multilineage cells, including insulin(+) cells. The question remains as to whether beta cells are generated postnatally from stem/progenitor cells other than pre-existing beta cells. Furthermore, mutated pancreatic stem cells are considered to be prospective candidates for cancer stem cells or tumor-initiating cells. This review highlights recent progress in pancreatic stem/progenitor cell research.
Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.
Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R
2015-10-06
Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.
High power beta electron device - Beyond betavoltaics.
Ayers, William M; Gentile, Charles A
2018-01-01
Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.
Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun
Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP expression in beta cells.« less
Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda
2010-03-01
We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.
Transcription factors in pancreatic development. Animal models.
Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard
2007-01-01
Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes.
Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste
2005-08-14
We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.
German, M S; Moss, L G; Wang, J; Rutter, W J
1992-01-01
The pancreatic beta cell makes several unique gene products, including insulin, islet amyloid polypeptide (IAPP), and beta-cell-specific glucokinase (beta GK). The functions of isolated portions of the insulin, IAPP, and beta GK promoters were studied by using transient expression and DNA binding assays. A short portion (-247 to -197 bp) of the rat insulin I gene, the FF minienhancer, contains three interacting transcriptional regulatory elements. The FF minienhancer binds at least two nuclear complexes with limited tissue distribution. Sequences similar to that of the FF minienhancer are present in the 5' flanking DNA of the human IAPP and rat beta GK genes and also the rat insulin II and mouse insulin I and II genes. Similar minienhancer constructs from the insulin and IAPP genes function as cell-specific transcriptional regulatory elements and compete for binding of the same nuclear factors, while the beta GK construct competes for protein binding but functions poorly as a minienhancer. These observations suggest that the patterns of expression of the beta-cell-specific genes result in part from sharing the same transcriptional regulators. Images PMID:1549125
Proteolytic processing of endogenous and recombinant beta 4 integrin subunit
1992-01-01
The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432
Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi
2002-07-01
Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.
De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M
2008-04-01
Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Dun; Department of Orthopedics, Taizhou Hospital, Wenzhou Medical College, Lin Hai, ZJ 317000; Li, Xing-Wang
2009-11-13
Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11{beta}-hydroxysteroid dehydrogenase type 2 (11{beta}-HSD2), not 11{beta}-HSD1, is strongly expressed in murine gonadotrope L{beta}T2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11{beta}-HSD2 enzyme activity in L{beta}T2 cells at as low as 10{sup -7} M. Corticosterone (CORT) atmore » a concentration of 10{sup -6} M significantly inhibited L{beta}T2 cell proliferation after 2-day culture, and 10{sup -6} M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10{sup -5} or 10{sup -4} M MEHP, the minimal concentration of CORT to inhibit the proliferation of L{beta}T2 cells was lowered to 10{sup -7} M, and 10{sup -6} M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11{beta}-HSD2 may have a key role in glucocorticoid metabolism in L{beta}T2 cells. MEHP may participate in the glucocorticoid metabolism in L{beta}T2 cells through inhibition of 11{beta}-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.« less
Kanamori, Mutsumi; Sandy, Peter; Marzinotto, Stefania; Benetti, Roberta; Kai, Chikatoshi; Hayashizaki, Yoshihide; Schneider, Claudio; Suzuki, Harukazu
2003-10-03
Wnt signaling is essential during development while deregulation of this pathway frequently leads to the formation of various tumors including colorectal carcinomas. A key component of the pathway is beta-catenin that, in association with TCF-4, directly regulates the expression of Wnt-responsive genes. To identify novel binding partners of beta-catenin that may control its transcriptional activity, we performed a mammalian two-hybrid screen and isolated the Tax-interacting protein (TIP-1). The in vivo complex formation between beta-catenin and TIP-1 was verified by coimmunoprecipitation, and a direct physical association was revealed by glutathione S-transferase pull-down experiments in vitro. By using a panel of deletion mutants of both proteins, we demonstrate that the interaction is mediated by the PDZ (PSD-95/DLG/ZO-1 homology) domain of TIP-1 and requires primarily the last four amino acids of beta-catenin. TIP-1 overexpression resulted in a dose-dependent decrease in the transcriptional activity of beta-catenin when tested on the TOP/FOPFLASH reporter system. Conversely, siRNA-mediated knock-down of endogenous TIP-1 slightly increased endogenous beta-catenin transactivation function. Moreover, we show that overexpression of TIP-1 reduced the proliferation and anchorage-independent growth of colorectal cancer cells. These data suggest that TIP-1 may represent a novel regulatory element in the Wnt/beta-catenin signaling pathway.
Existence of a regulatory loop between MCP-1 and TGF-beta in glomerular immune injury.
Wolf, Gunter; Jocks, Thomas; Zahner, Gunther; Panzer, Ulf; Stahl, Rolf A K
2002-11-01
Glomerular upregulation of monocyte chemotactic protein-1 (MCP-1), followed by an influx of monocytes resulting eventually in extracellular matrix deposition is a common sequel of many types of glomerulonephritis. However, it is not entirely clear how early expression of MCP-1 is linked to the later development of glomerulosclerosis. Because transforming growth factor-beta (TGF-beta) is a key regulator of extracellular matrix proteins, we hypothesized that there might be a regulatory loop between early glomerular MCP-1 induction and subsequent TGF-beta expression. To avoid interference with other cytokines that may be released from infiltrating monocytes, isolated rat kidneys were perfused with a polyclonal anti-thymocyte-1 antiserum (ATS) and rat serum (RS) as a complement source to induce glomerular injury. Renal TGF-beta protein and mRNA expressions were strongly stimulated after perfusion with ATS-RS. This effect was attenuated by coperfusion with a neutralizing anti-MCP-1 but was partly mimicked by perfusion with recombinant MCP-1 protein. On the other hand, renal MCP-1 expression and production were stimulated by administration of ATS-RS. Additional perfusion with an anti-TGF-beta antibody further aggravated this increase, whereas application of recombinant TGF-beta protein reduced MCP-1 formation. Our data demonstrate an intrinsic regulatory loop in which increased MCP-1 levels stimulate TGF-beta formation in resident glomerular cells in the absence of infiltrating immune competent cells.
van Tiel, Claudia M; Westerman, Jan; Paasman, Marten A; Hoebens, Martha M; Wirtz, Karel W A; Snoek, Gerry T
2002-06-21
Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Jiawei; Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA 90502; Lu Zhenyu
The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response tomore » FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.« less
Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng
2007-03-01
To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co
2010-08-01
Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less
Application of cellular mechanisms to growth and development of food producing animals.
Chung, K Y; Johnson, B J
2008-04-01
Postnatal skeletal muscle growth is a result of hypertrophy of existing skeletal muscle fibers in food producing animals. Accumulation of additional nuclei, as a source of DNA, to the multinucleated skeletal muscle fiber aids in fiber hypertrophy during periods of rapid skeletal muscle growth. Muscle satellite cells are recognized as the source of nuclei to support muscle hypertrophy. Exogenous growth-enhancing compounds have been used to modulate growth rate and efficiency in meat animals for over a half century. In cattle, these compounds enhance efficiency of growth by preferentially stimulating skeletal muscle growth compared with adipose tissue. There are 2 main classes of compounds approved for use in cattle in the United States, anabolic steroids and beta-adrenergic agonists (beta-AA). Administration of both trenbolone acetate and estradiol-17beta, as implants, increased carcass protein accumulation 8 to 10% in yearling steers. Muscle satellite cells isolated from steers implanted with trenbolone acetate/ estradiol-17beta had a shorter lag phase in culture compared with satellite cells isolated from control steers. Collectively, these data indicate that activation, increased proliferation, and subsequent fusion of satellite cells in muscles of implanted cattle may be an important mechanism by which anabolic steroids enhance muscle hypertrophy. Oral administration of beta-AA to ruminants does not alter DNA accumulation in skeletal muscle over a typical feeding period (28 to 42 d). Enhanced muscle hypertrophy observed due to beta-AA feeding occurs by direct, receptor-mediated changes in protein synthesis and degradation rates of skeletal muscle tissue. Proper timing of anabolic steroid administration when coupled with beta-AA feeding could result in a synergistic response in skeletal muscle growth due to the effects of anabolic steroids at increasing satellite cell activity, which then can support the rapid hypertrophic changes of the muscle fiber when exposed to beta-AA. At the same time each of these classes of compounds are stimulating lean tissue deposition, they appear to repress adipogenesis in meat animals. Increased knowledge of the mechanism by which growth promoters regulate lean tissue deposition and adipogenesis in meat animals will allow for effective application of these techniques to optimize lean tissue growth and minimize the negative effects on meat quality.
The effect of smoking cessation pharmacotherapies on pancreatic beta cell function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.
The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normalmore » glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.« less
Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F
2006-05-01
The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.
Wenzel, Katrin; Schulze-Rothe, Sarah; Müller, Johannes; Wallukat, Gerd; Haberland, Annekathrin
2018-01-01
Cell-based analytics for the detection of the beta1-adrenoceptor autoantibody (beta1-AAB) are functional, yet difficult to handle, and should be replaced by easily applicable, routine lab methods. Endeavors to develop solid-phase-based assays such as ELISA to exploit epitope moieties for trapping autoantibodies are ongoing. These solid-phase-based assays, however, are often unreliable when used with human patient material, in contrast to animal derived autoantibodies. We therefore tested an immunogen peptide-based ELISA for the detection of beta1-AAB, and compared commercially available goat antibodies against the 2nd extracellular loop of human beta1-adrenoceptor (ADRB1-AB) to autoantibodies enriched from patient material. The functionality of these autoantibodies was tested in a cell based assay for comparison and their structural appearance was investigated using 2D gel electrophoresis. The ELISA showed a limit of detection for ADRB1-AB of about 1.5 nmol antibody/L when spiked in human control serum and only about 25 nmol/L when spiked in species identical (goat) matrix material. When applied to samples of human origin, the ELISA failed to identify the specific beta1-AABs. A low concentration of beta1-AAB, together with structural inconsistency of the patient originated samples as seen from the 2D Gel appearance, might contribute to the failure of the peptide based ELISA technology to detect human beta1-AABs.
Scholtysek, Carina; Krukiewicz, Aleksandra A; Alonso, José-Luis; Sharma, Karan P; Sharma, Pal C; Goldmann, Wolfgang H
2009-02-13
Saw Palmetto Berry Extract (SPBE) is applied for prostate health and treatment of urinary tract infections, nonbacterial prostitis and Benign Prostatic Hyperplasia (BPH) in man. An assumption is that SPBE affects tumor cell progression and migration in breast and prostate tissue. In this work, DU-145 cells were used to demonstrate that SPBE and its sterol components, beta-sitosterol and stigmasterol, inhibit prostate cancer growth by increasing p53 protein expression and also inhibit carcinoma development by decreasing p21 and p27 protein expression. In the presence of cholesterol, these features are not only reversed but increased significantly. The results show for the first time the potential of SPBE, beta-sitosterol and stigmasterol as potential anti-tumor agents. Since the protein p53 is also regarded as nuclear matrix protein facilitating actin cytoskeletal binding, 2D tractions were measured. The cell adhesion strength in the presence of SPBE, beta-sitosterol and cholesterol and the observation was that the increase in p53 expression triggered an increase in the intracellular force generation. The results suggest a dual function of p53 in cells.
Takasugi, M; Tamura, Y; Tachibana, H; Sugano, M; Yamada, K
2001-01-01
We tried to establish an assay system for screening and assessment of immunoregulatory factors using whole cell cultures of mouse splenocytes and found that splenic adhesive cells markedly increased immunogobulin (Ig) production of splenocytes. In the absence of adhesive cells, lipopolysaccharides, pokeweed mitogen, and phytohemagglutinin stimulated the production of IgA, IgG, and IgM in a class-dependent manner. Adhesive cells increased more markedly Ig production of splenocytes stimulated with these mitogens. When mouse splenocytes were cultured with milk proteins in the absence of adhesive cells, lactoferrin, beta-lactoglobulin, alpha-casein, and beta-casein stimulated IgA and IgG production. Adhesive cells increased IgA production of splenocytes stimulated with milk proteins, especially. These results suggest that the assay system is useful for assessment of Ig production-regulating factors.
Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.
Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit
2006-06-01
Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.
Keating, Dominic T; Sadlier, Denise M; Patricelli, Andrea; Smith, Sinead M; Walls, Dermot; Egan, Jim J; Doran, Peter P
2006-09-01
The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-beta1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-beta1, suggesting a potential role for these molecules in ECM accumulation in IPF.
Pin1 promotes transforming growth factor-beta-induced migration and invasion.
Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang
2010-01-15
Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.
Hillman, Kristin L; Doze, Van A; Porter, James E
2005-08-01
Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists indicates that beta2-AR activation is mediating the increased AP frequency. Knowledge of functional AR expression in CA1 pyramidal neurons will aid future long-term potentiation studies by allowing selective manipulation of specific beta-AR subtypes.
Sen-Majumdar, A; Weissman, I L; Hansteen, G; Marian, J; Waller, E K; Lieberman, M
1994-01-01
We have investigated the phenotypic changes that take place during the process of neoplastic transformation in the thymocytes of C57BL/Ka mice infected by the radiation leukemia virus (RadLV). By the combined use of antibodies against the envelope glycoprotein gp70 of RadLV, the transformation-associated cell surface marker 1C11, and the CD3-T-cell receptor (TCR) complex, we found that in the RadLV-infected thymus, the earliest expression of viral gp70 is in 1C11hi cells; a small but significant percentage of these cells also express CD3. A first wave of viral replication, manifested by the expression of high levels of gp70 in thymocytes (over 70% positive), reaches a peak at 2 weeks; during this period, no significant changes are observed in the expression of 1C11 or CD3. The population of gp70+ cells is drastically reduced at 3 to 4 weeks after infection. However, a second cohort of gp70+ cells appears after 4 weeks, and these cells express high levels of 1C11 and TCR determinants as well. RadLV-induced lymphomas differ from normal thymocytes in their CD4 CD8 phenotype, with domination by one or more subsets. Characterization of TCR gene rearrangements in RadLV-induced lymphomas shows that most of these tumors are clonal or oligoclonal with respect to the J beta 2 TCR gene, while the J beta 1 TCR gene is rearranged in a minority (4 of 11) of lymphomas. TCR V beta repertoire analysis of 12 tumors reveals that 6 (50%) express exclusively the V beta 6 gene product, 2 (17%) are V beta 5+, and 1 (8%) each are V beta 8+ and V beta 9+. In normal C57BL/Ka mice, V beta 6 is expressed on 12%, V beta 5 is expressed on 9%, V beta 8 is expressed on 22%, and V beta 9 is expressed on 4% of TCRhi thymocytes. Thus, it appears that RadLV-induced thymic lymphomas are not randomly selected with respect to expressed TCR V beta type. Images PMID:8289345
Gomes, L F; Gonçalves, L M; Fonseca, F L A; Celli, C M; Videla, L A; Chaimovich, H; Junqueira, V B C
2002-07-01
beta 2-Glycoprotein I (beta 2 GPI) is known to influence macrophage uptake of particles with phosphatidylserine containing surfaces, as apoptotic thymocytes and unilamellar vesicles in vitro. Nevertheless, effects upon macrophage activation induced by this interaction are still unknown. beta 2 GPI influence upon the reactive species production by Kupffer cells was evaluated in order to investigate whether beta 2 GPI modulates the macrophage response to negatively charged surfaces. Chemiluminescence of isolated non-parenchymal rat liver cells was measured after phagocytosis of opsonized zymosan or phorbolymristate acetate (PMA) stimulation, in the presence and absence of large unilamellar vesicles (LUVs) containing 25 mol% phosphatidylserine (PS) or 50 mol% cardiolipin (CL) and complementary molar ratio of phosphatidylcholine (PC). beta 2 GPI decreased by 50% the chemiluminescence response induced by opsonized zymosan, with a 66% reduction of the initial light emission rate. PMA stimulated Kupffer cell chemiluminescence was insensitive to human or rat beta 2 GPI. Albumin (500 micrograms/ml) showed no effect upon chemiluminescence. beta 2 GPI increased PS/PC LUV uptake and degradation by Kupffer cells in a concentration-dependent manner, without leakage of the internal contents of the LUVs, as shown by fluorescence intensity enhancement. LUVs opsonized with antiphospholipid antibodies (aPL) from syphilitic patients increased light emission by Kupffer cells. Addition of beta 2 GPI to the assay reduced chemiluminescence due to opsonization with purified IgG antibodies from systemic lupus erythematosus (SLE or syphilis (Sy) patient sera. A marked net increase in chemiluminescence is observed in the presence of Sy aPL antibodies, whereas a decrease was found when SLE aPL were added to the assay, in the presence or absence of beta 2 GPI. At a concentration of 125 micrograms/ml, beta 2 GPI significantly reduced Kupffer cell Candida albicans phagocytosis index and killing score by 50 and 10%, respectively. The present data strongly suggest that particle uptake in the presence of beta 2 GPI is coupled to an inhibition of reactive species production by liver macrophages during the respiratory burst, supporting the role of beta 2 GPI as a mediator of senescent cell removal.
Estrogen-dependent gallbladder carcinogenesis in LXRbeta-/- female mice.
Gabbi, Chiara; Kim, Hyun-Jin; Barros, Rodrigo; Korach-Andrè, Marion; Warner, Margaret; Gustafsson, Jan-Ake
2010-08-17
Gallbladder cancer is a highly aggressive disease with poor prognosis that is two to six times more frequent in women than men. The development of gallbladder cancer occurs over a long time (more than 15 y) and evolves from chronic inflammation to dysplasia/metaplasia, carcinoma in situ, and invasive carcinoma. In the present study we found that, in female mice in which the oxysterol receptor liver X receptor-beta (LXRbeta) has been inactivated, preneoplastic lesions of the gallbladder developed and evolved to cancer in old animals. LXRbeta is a nuclear receptor involved in the control of lipid homeostasis, glucose metabolism, inflammation, proliferation, and CNS development. LXRbeta(-/-) female gallbladders were severely inflamed, with regions of dysplasia and high cell density, hyperchromasia, metaplasia, and adenomas. No abnormalities were evident in male mice, nor in LXRalpha(-/-) or LXRalpha(-/-)beta(-/-) animals of either sex. Interestingly, the elimination of estrogens with ovariectomy prevented development of preneoplastic lesions in LXRbeta(-/-) mice. The etiopathological mechanism seems to involve TGF-beta signaling, as the precancerous lesions were characterized by strong nuclear reactivity of phospho-SMAD-2 and SMAD-4 and loss of E-cadherin expression. Upon ovariectomy, E-cadherin was reexpressed on the cell membranes and immunoreactivity of pSMAD-2 in the nuclei was reduced. These findings suggest that LXRbeta in a complex interplay with estrogens and TGF-beta could play a crucial role in the malignant transformation of the gallbladder epithelium.
ERIC Educational Resources Information Center
Bavec, Aljosa
2004-01-01
We have developed an "in vitro assay" for following the interaction between the [alpha][subscript i2] subunit and [beta][subscript 1[gamma]2] dimer from sf9 cells. This method is suitable for education purposes because it is easy, reliable, nonexpensive, can be applied for a big class of 20 students, and avoid the commonly used kinetic approach,…
Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices
Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Perc, Matjaž; Marhl, Marko; Rupnik, Marjan Slak; Korošak, Dean
2013-01-01
We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are analyzed in the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network under stimulation with glucose, we show that the dynamics are more correlated under stimulation than under non-stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly, the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide support for the existing knowledge of beta cell physiology from a network perspective and shed important new light on the functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far. PMID:23468610
Burton, Rachel A; Jobling, Stephen A; Harvey, Andrew J; Shirley, Neil J; Mather, Diane E; Bacic, Antony; Fincher, Geoffrey B
2008-04-01
Cellulose synthase-like CslF genes have been implicated in the biosynthesis of (1,3;1,4)-beta-d-glucans, which are major cell wall constituents in grasses and cereals. Seven CslF genes from barley (Hordeum vulgare) can be divided into two classes on the basis of intron-exon arrangements. Four of the HvCslF genes have been mapped to a single locus on barley chromosome 2H, in a region corresponding to a major quantitative trait locus for grain (1,3;1,4)-beta-d-glucan content. The other HvCslF genes map to chromosomes 1H, 5H, and 7H, and in two cases the genes are close to other quantitative trait loci for grain (1,3;1,4)-beta-d-glucan content. Spatial and temporal patterns of transcription of the seven genes have been defined through quantitative polymerase chain reaction. In developing barley coleoptiles HvCslF6 mRNA is most abundant. Transcript levels are maximal in 4- to 5-d coleoptiles, at a time when (1,3;1,4)-beta-d-glucan content of coleoptile cell walls also reaches maximal levels. In the starchy endosperm of developing grain, HvCslF6 and HvCslF9 transcripts predominate. Two peaks of transcription are apparent. One occurs just after endosperm cellularization, 4 to 8 d after pollination, while the second occurs much later in grain development, more than 20 d after pollination. Marked varietal differences in transcription of the HvCslF genes are observed during endosperm development. Given the commercial importance of cereal (1,3;1,4)-beta-d-glucans in human nutrition, in stock feed, and in malting and brewing, the observation that only two genes, HvCslF6 and HvCslF9, are transcribed at high levels in developing grain is of potential relevance for the future manipulation of grain (1,3;1,4)-beta-d-glucan levels.
Uusitalo, Liisa; Kenward, Mike G; Virtanen, Suvi M; Uusitalo, Ulla; Nevalainen, Jaakko; Niinistö, Sari; Kronberg-Kippilä, Carina; Ovaskainen, Marja-Leena; Marjamäki, Liisa; Simell, Olli; Ilonen, Jorma; Veijola, Riitta; Knip, Mikael
2008-08-01
Type 1 diabetes may have its origins in the fetal period of life. Free radicals were implicated in the cause of type 1 diabetes. It was hypothesized that antioxidant nutrients could protect against type 1 diabetes. We assessed whether high maternal intake of selected dietary antioxidants during pregnancy is associated with a reduced risk of advanced beta cell autoimmunity in the child, defined as repeated positivity for islet cell antibodies plus >/=1 other antibody, overt type 1 diabetes, or both. The study was carried out as part of the population-based birth cohort of the Type 1 Diabetes Prediction and Prevention Project. The data comprised 4297 children with increased genetic susceptibility to type 1 diabetes, born at the University Hospital of Oulu or Tampere, Finland, between October 1997 and December 2002. The children were monitored for diabetes-associated autoantibodies from samples obtained at 3-12-mo intervals. Maternal antioxidant intake during pregnancy was assessed postnatally with a self-administered food-frequency questionnaire, which contained a question about consumption of dietary supplements. Maternal intake of none of the studied antioxidant nutrients showed association with the risk of advanced beta cell autoimmunity in the child. The hazard ratios, indicating the change in risk per a 2-fold increase in the intake of each antioxidant, were nonsignificant and close to 1. High maternal intake of retinol, beta-carotene, vitamin C, vitamin E, selenium, zinc, or manganese does not protect the child from development of advanced beta cell autoimmunity in early childhood.
Ghosal, Abhisek; Sekar, Thillai V.
2014-01-01
Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078
Urban, Nicole H; Chamberlin, Brett; Ramage, Samuel; Roberts, Zachary; Loria, Roger M; Beckman, Matthew J
2008-06-01
A large body of evidence suggests that the immune system directly impacts bone physiology. We tested whether immune regulating hormones (IRH), 17beta-androstenediol (beta-AED), 7beta,17beta-androstenetriol (beta-AET) or the 17alpha-androstenediol (alpha-AED), and 7alpha,17beta-androstenetriol (alpha-AET) metabolites could directly influence bone remodeling in vitro using human fetal osteoblasts (FOB-9). The impact on bone remodeling was examined by comparing the ratio of RANKL/OPG gene expression in response to AED and AET compounds. The alpha-AED was found to significantly increase in the ratio of RANKL/OPG gene expression and altering the morphology of RANKL stained FOB-9 cells. Cell viability was assessed using a Live/Dead assay. Again alpha-AED was unique in its ability to reduce the proportion of viable cells, and to induce mild apoptosis of FOB-9 cells. Treatment of FOB-9 cells with WY14643, an activator of PPAR-alpha and -gamma, also significantly elevated the percentage of dead cells. This increase was abolished by co-treatment with GW9962, a specific inhibitor of PPAR-gamma. Analysis of PPAR-gamma mRNA by Quantitative RT-PCR and its activation by DNA binding demonstrated that alpha-AED increased PPAR-gamma activation by 19%, while beta-AED conferred a 37% decrease in PPAR-gamma activation. In conclusion, alpha-AED opposed beta-AED by elevating a bone resorption scenario in osteoblast cells. The increase in RANKL/OPG is modulated by an activation of PPAR-gamma that in turn caused mild apoptosis of FOB-9 cells.
Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe
2005-01-01
KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581
Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.
Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D
2009-06-26
Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.
Stabilization of beta-catenin impacts pancreas growth.
Heiser, Patrick W; Lau, Janet; Taketo, Makoto M; Herrera, Pedro L; Hebrok, Matthias
2006-05-01
A recent study has shown that deletion of beta-catenin within the pancreatic epithelium results in a loss of pancreas mass. Here, we show that ectopic stabilization of beta-catenin within mouse pancreatic epithelium can have divergent effects on both organ formation and growth. Robust stabilization of beta-catenin during early organogenesis drives changes in hedgehog and Fgf10 signaling and induces a loss of Pdx1 expression in early pancreatic progenitor cells. Together, these perturbations in early pancreatic specification culminate in a severe reduction of pancreas mass and postnatal lethality. By contrast, inducing the stabilized form of beta-catenin at a later time point in pancreas development causes enhanced proliferation that results in a dramatic increase in pancreas organ size. Taken together, these data suggest a previously unappreciated temporal/spatial role for beta-catenin signaling in the regulation of pancreas organ growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Wenqing, E-mail: liangwenqing_1234@126.com; Yang, Chengwei; Qian, Yu
Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interferencemore » was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo, E-mail: csshin@snu.ac.kr
2009-05-15
{alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2more » was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.« less
Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M
2009-08-11
TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.
Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz
2012-01-01
Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829
Baulida, J; Batlle, E; García De Herreros, A
1999-01-01
Alterations in the transcriptional activity of the beta-catenin-Tcf complex have been associated with the earlier stages of colonic transformation. We show here that the activation of protein kinase C by the phorbol ester PMA in several intestinal cell lines increases the levels of beta-catenin detected in the nucleus and augments the transcriptional activity mediated by beta-catenin. The response to PMA was not related to modifications in the cytosolic levels of beta-catenin and was observed not only in cells with wild-type adenomatous polyposis coli protein (APC) but also in APC-deficient cells. Binding assays in vitro revealed that PMA facilitates the interaction of the beta-catenin with the nuclear structure. Our results therefore show that beta-catenin-mediated transcription can be regulated independently of the presence of APC. PMID:10567241
Creek, K E; Geslani, G; Batova, A; Pirisi, L
1995-01-01
Retinoids (vitamin A and its natural and synthetic derivatives) have shown potential as chemopreventive agents, and diets poor in vitamin A and/or its precursor beta-carotene have been linked to an increased risk of cancer at several sites including the cervix. Human papillomavirus (HPV) plays an important role in the etiology of cervical cancer. We have developed an in vitro model of cancer progression using human keratinocytes (HKc) immortalized by HPV16 DNA (HKc/HPV16). Although immortal, early passage HKc/HPV16, like normal HKc, require epidermal growth factor (EGF) and bovine pituitary extract (BPE) for proliferation and undergo terminal differentiation in response to serum and calcium. However, following prolonged culture, growth factor independent HKc/HPV16 lines that no longer require EGF and BPE can be selected (HKc/GFI). Further selection of HKc/GFI produces lines that are resistant to serum- and calcium- induced terminal differentiation (HKc/DR). HKc/DR, but not early passage HKc/HPV16, are susceptible to malignant conversion following transfection with viral Harvey ras or Herpes simplex virus type II DNA. We have investigated the sensitivity of low to high passage HKc/HPV16 and HKc/GFI to growth control by all-trans-retinoic acid (RA, an active metabolite of vitamin A). Early passage HKc/HPV16 are very sensitive to growth inhibition by RA, and in these cells RA decreases the expression of the HPV16 oncogenes E6 and E7. However, as the cells progress in culture they lose their sensitivity to RA. Growth inhibition by RA may be mediated through the cytokine transforming growth factor-beta (TGF-beta), a potent inhibitor of epithelial cell proliferation. RA treatment of HKc/HPV16 and HKc/GFI results in a dose-and time-dependent induction (maximal of 3-fold) in secreted levels of TGF-beta. Also, Northern blot analysis of mRNA isolated from HKc/HPV16 demonstrated that RA treatment induced TGF-beta 1 and TGF-beta 2 expression about 3- and 50-fold, respectively. We next studied the effect of TGF-beta 1 and TGF-beta 2 on the proliferation of early to late passage HKc/HPVa6, HKc/GFI and HKc/DR. While early passage HKc/HPV16 were as sensitive as normal HKc to growth inhibition by TGF-beta 1 and TGF-beta 2, the cells became increasingly resistant to TGF-beta during in vitro progression, with the proliferation of HKc/DR being virtually unaffected by TGF-beta 1 or TGF-beta 2 treatment. Overall, loss of growth inhibition by RA parallels loss of TGF-beta sensitivity.(ABSTRACT TRUNCATED AT 400 WORDS)
1992-01-01
Candidate superantigens were screened for their ability to induce lysis of human histocompatibility leukocyte antigen class II-positive targets by human CD8+ influenza-specific cytotoxic T cell (CTL) lines. Clostridium perfringens enterotoxin (CPET) induced major histocompatibility complex unrestricted killing by some but not all CTL lines. Using "anchored" polymerase chain reactions, CPET was shown to selectively stimulate peripheral blood lymphocytes bearing T cell receptor V beta 6.9 and V beta 22 in five healthy donors. V beta 24, V beta 21, V beta 18, V beta 5, and V beta 6.1-5 appeared to be weakly stimulated. Antigen processing was not required for CPET to induce proliferation. Like the staphylococcal enterotoxins, CPET is a major cause of food poisoning. These data suggest that superantigenic and enterotoxigenic properties may be closely linked. PMID:1512551
Test Result of 650 MHz, Beta 0.61 Single Cell Niobium Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seth, Sudeshna; Bhattacharyya, Pranab; Dutta Gupta, Anjan
VECC has been involved in the design, analysis and development of 650 MHz, beta 0.61 (LB650), elliptical Superconducting RF linac cavity, as part of research and development activities on SRF cavities and associated technologies under Indian Institutions Fermilab Collaboration (IIFC). A single-cell niobium cavity has been indigenously designed and developed at VECC, with the help of Electron Beam Welding (EBW) facility at IUAC, New Delhi. Various measurements, processing and testing at 2K in Vertical Test Stand (VTS) of the single-cell cavity was carried out at ANL and Fermilab, USA, with active participation of VECC engineers. It achieved a maximum acceleratingmore » gradient(Eacc) of 34.5 MV/m with Quality Factor of 2·10⁹ and 30 MV/m with Quality Factor of 1.5·10¹⁰. This is probably the highest accelerating gradient achieved so far in the world for LB650 cavities. This paper describes the design, fabrication and measurement of the single cell niobium cavity. Cavity processing and test results of Vertical Test of the single-cell niobium cavity are also presented.« less
1996-01-01
Cadherins are a family of cell-cell adhesion molecules which play a central role in controlling morphogenetic movements during development. Cadherin function is regulated by its association with the actin containing cytoskeleton, an association mediated by a complex of cytoplasmic proteins, the catenins: alpha, beta, and gamma. Phosphorylated tyrosine residues on beta-catenin are correlated with loss of cadherin function. Consistent with this, we find that only nontyrosine phosphorylated beta-catenin is associated with N-cadherin in E10 chick retina tissue. Moreover, we demonstrate that a PTP1B-like tyrosine phosphatase associates with N-cadherin and may function as a regulatory switch controlling cadherin function by dephosphorylating beta-catenin, thereby maintaining cells in an adhesion-competent state. The PTP1B-like phosphatase is itself tyrosine phosphorylated. Moreover, both direct binding experiments performed with phosphorylated and dephosphorylated molecules, and treatment of cells with tyrosine kinase inhibitors indicate that the interaction of the PTP1B-like phosphatase with N-cadherin depends on its tyrosine phosphorylation. Concomitant with the tyrosine kinase inhibitor-induced loss of the PTP1B-like phosphatase from its association with N-cadherin, phosphorylated tyrosine residues are retained on beta-catenin, the association of N- cadherin with the actin containing cytoskeleton is lost and N-cadherin- mediated cell adhesion is prevented. Tyrosine phosphatase inhibitors also result in the accumulation of phosphorylated tyrosine residues on beta-catenin, loss of the association of N-cadherin with the actin- containing cytoskeleton, and prevent N-cadherin mediated adhesion, presumably by directly blocking the function of the PTP1B-like phosphatase. We previously showed that the binding of two ligands to the cell surface N-acetylgalactosaminylphosphotransferase (GalNAcPTase), the monoclonal antibody 1B11 and a proteoglycan with a 250-kD core protein, results in the accumulation of phosphorylated tyrosine residues on beta-catenin, uncoupling of N-cadherin from its association with the actin containing cytoskeleton, and loss of N- cadherin function. We now report that binding of these ligands to the GalNAcPTase results in the absence of the PTP1B-like phosphatase from its association with N-cadherin as well as the loss of the tyrosine kinase and tyrosine phosphatase activities that otherwise co- precipitate with N-cadherin. Control antibodies and proteoglycans have no such effect. This effect is similar to that observed with tyrosine kinase inhibitors, suggesting that the GalNAcPTase/proteoglycan interaction inhibits a tyrosine kinase, thereby preventing the phosphorylation of the PTP1B-like phosphatase, and its association with N-cadherin. Taken together these data indicate that a PTP1B-like tyrosine phosphatase can regulate N-cadherin function through its ability to dephosphorylate beta-catenin and that the association of the phosphatase with N-cadherin is regulated via the interaction of the GalNAcPTase with its proteoglycan ligand. In this manner the GalNAcPTase-proteoglycan interaction may play a major role in morphogenetic cell and tissue interactions during development. PMID:8707857
NASA Technical Reports Server (NTRS)
Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)
1999-01-01
Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.
Gautam, Dinesh; Han, Sung-Jun; Hamdan, Fadi F; Jeon, Jongrye; Li, Bo; Li, Jian Hua; Cui, Yinghong; Mears, David; Lu, Huiyan; Deng, Chuxia; Heard, Thomas; Wess, Jürgen
2006-06-01
One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.
Expression and function of glycogen synthase kinase-3 in human hair follicles.
Yamauchi, Koichi; Kurosaka, Akira
2010-05-01
Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.
Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells.
Hisanaga, Etsuko; Nagasawa, Masahiro; Ueki, Kohjiro; Kulkarni, Rohit N; Mori, Masatomo; Kojima, Itaru
2009-01-01
Calcium-permeable cation channel TRPV2 is expressed in pancreatic beta-cells. We investigated regulation and function of TRPV2 in beta-cells. Translocation of TRPV2 was assessed in MIN6 cells and cultured mouse beta-cells by transfecting TRPV2 fused to green fluorescent protein or TRPV2 containing c-Myc tag in the extracellular domain. Calcium entry was assessed by monitoring fura-2 fluorescence. In MIN6 cells, TRPV2 was observed mainly in cytoplasm in an unstimulated condition. Addition of exogenous insulin induced translocation and insertion of TRPV2 to the plasma membrane. Consistent with these observations, insulin increased calcium entry, which was inhibited by tranilast, an inhibitor of TRPV2, or by knockdown of TRPV2 using shRNA. A high concentration of glucose also induced translocation of TRPV2, which was blocked by nefedipine, diazoxide, and somatostatin, agents blocking glucose-induced insulin secretion. Knockdown of the insulin receptor attenuated insulin-induced translocation of TRPV2. Similarly, the effect of insulin on TRPV2 translocation was not observed in a beta-cell line derived from islets obtained from a beta-cell-specific insulin receptor knockout mouse. Knockdown of TRPV2 or addition of tranilast significantly inhibited insulin secretion induced by a high concentration of glucose. Likewise, cell growth induced by serum and glucose was inhibited by tranilast or by knockdown of TRPV2. Finally, insulin-induced translocation of TRPV2 was observed in cultured mouse beta-cells, and knockdown of TRPV2 reduced insulin secretion induced by glucose. TRPV2 is regulated by insulin and is involved in the autocrine action of this hormone on beta-cells.
Parekh, T; Saxena, B; Reibman, J; Cronstein, B N; Gold, L I
1994-03-01
TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta is no longer chemotactic, suggesting that PMNs only use Fn that is constitutively expressed for migration. At higher concentrations of TGF-beta, the Fn released may accumulate basal to the cell, ultimately retarding cellular migration and modulating the chemotactic response.
Role of IL-1 beta and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures.
Herseth, Jan I; Refsnes, Magne; Låg, Marit; Schwarze, Per E
2009-10-01
The pro-inflammatory cytokines IL-1 beta, TNF-alpha and IL-6 are of great importance in the development of silica-induced lung damage and repair. In this study we investigated the role of IL-1 beta, TNF-alpha and COX2 in silica-induced regulation of IL-6 release and pneumocyte loss in various mono- and co-cultures of monocytes, pneumocytes and endothelial cells. All co-cultures with monocytes, and especially cultures including endothelial cells, showed an increase of silica-induced release of IL-6 compared to the respective monocultures. Treatment with the antagonist IL-1 ra strongly decreased IL-1 beta and IL-6 release in contact co-cultures of monocytes and pneumocytes. COX2 up-regulation by silica and IL-1 beta was eliminated by IL-1 ra. Inhibition of COX2 markedly reduced both IL-1 beta and IL-6 release. IL-1 ra was more effective than COX2-inhibition in reduction of IL-6, but not of IL-1 beta. Silica-induced pneumocyte loss was reduced by IL-1 beta, but this effect was not counteracted by the IL-1 receptor antagonist. Our findings suggest that silica-induced IL-6 release from pneumocytes is mainly mediated via IL-1 beta release from the monocytes, via both COX2-dependent and -independent pathways. Notably, COX2-derived mediators seem crucial for a positive feed-back regulation of IL-1 beta release from the monocytes. In contrast to silica-induced IL-6, the reduction in pneumocyte loss by IL-1 beta does not seem to be regulated through an IL-1R1-dependent mechanism.
Salter, D M; Godolphin, J L; Gourlay, M S
1995-04-01
During development and at maturity different forms of cartilage vary in morphology and macromolecular content. This reflects heterogeneity of chondrocyte activity, in part involving differential interactions with the adjacent extracellular matrix via specialized cell surface receptors such as integrins. We undertook an immunohistological study on a series of human fetal knee joints to assess variation in the expression of integrins by chondrocytes and potential matrix ligands in articular, epiphyseal, growth plate, and meniscal cartilage. The results show that articular chondrocytes (beta 1+, beta 5 alpha V+, alpha 1+, alpha 2+/-, alpha 5+, weakly alpha 6+, alpha V+) differed from epiphyseal (beta 1+, beta 5 alpha V+, alpha 1+/-, alpha 2+/-, alpha 5+, alpha 6+, alpha V+) growth plate (beta 1+, beta 5 alpha V+, alpha 1-, alpha 2-, alpha 5+, alpha 6+, alpha V+), and meniscal cells (beta 1+, beta 5 alpha V+, alpha 1+, strongly alpha 2+, alpha 5+, alpha 6+, alpha V+ in expression of integrin subunits. There was no expression of beta 3, beta 4, beta 6, or alpha 3 by chondrocytes. These results differ from previous reports on the expression of integrins by adult articular cartilage, where alpha 2 and alpha 6 are not seen. Variation in distribution of matrix ligands was also seen. Fibronectin, laminin and Type VI collagen were expressed in all cartilages but there was restricted expression of tenascin, ED-A and ED-B fibronectin isoforms (articular cartilage and meniscus), and vitronectin (absent from growth plate cartilage). Regulated expression of integrins by chondrocytes, associated with changes in the pericellular matrix composition, is of potential importance in control of cartilage differentiation and function in health and disease.
Varley, C L; Royds, J A; Brown, B L; Dobson, P R
2001-01-01
We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee
Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferationmore » and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.« less
The influence of surface integrin binding patterns on specific biomaterial-cell interactions
NASA Astrophysics Data System (ADS)
Beranek, Maggi Marie
As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second aim, the response of surface-bound integrins to flow-related shear stress was examined. Based on fluorescent analysis, total alphavbeta 3, alpha1beta1, and alpha5beta 1 appeared to increase on stainless steel after 90-minute low shear stress exposure, whereas only alpha5beta1 appeared to increase when exposed to high shear. 65/35 poly(D, L-lactide-co-glycolide) exhibited increased total binding of alpha5beta1 and alphaMbeta2, when exposed to either shear stress level. Exposure to either shear stress regimen appeared to increase binding of all integrins on the combinational surface. These responses to shear stress suggest differential integrin binding affinity compared to stainless steel. Using antibodies specific to the integrin subunits, the apparent increase in surface-bound integrins was found to be related to a surface disassociation of alpha and beta subunits. The third aim evaluated human aortic endothelial cells and acute monocytic leukemia cells (THP-1) cell binding to the tested biomaterial surfaces under both static and flow conditions. Both stainless steel and the combinational surface had increased endothelial cell binding compared to monocyte attachment. Pre-incubation of the surface with the specific integrins significantly inhibited human aortic endothelial cell binding. Aim four was designed to investigate the influence of surface bound integrins on human aortic endothelial cell migration under shear stress. If biomaterial surface integrin binding patterns are specific, then pre-bound surface integrins should competitively inhibit binding of cellular integrins to the surface. Cell migration distance on to alphavbeta3, alpha 1beta1, and alpha5beta1 pre-incubated stainless steel was decreased ten-fold, and decreased by three-fold on both 65/35 poly(D, L-lactide-coglycolide) and combinational surfaces compared to the respective bare surfaces. In contrast, migration distance on to alphaMbeta2 pre-coated stainless steel and combinational surface was decreased by only sixty percent and only fifty percent on alphaMbeta2 precoated 65/35 poly(D, L -lactide-co-glycolide). These results suggested that surface binding sites are selective and critical in governing endothelial cell migration. In conclusion, these results support the hypothesis that a surface that encourages specific integrin binding would promote differential cell binding. The novel integrin binding model used in this investigation may be a methodology that can be employed to evaluate potential vascular biomaterials.
Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes
Kimple, Michelle E; Neuman, Joshua C; Linnemann, Amelia K; Casey, Patrick J
2014-01-01
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology. PMID:24946790
Integrin Beta 1 Suppresses Multilayering of a Simple Epithelium
Chen, Jichao; Krasnow, Mark A.
2012-01-01
Epithelia are classified as either simple, a single cell layer thick, or stratified (multilayered). Stratified epithelia arise from simple epithelia during development, and transcription factor p63 functions as a key positive regulator of epidermal stratification. Here we show that deletion of integrin beta 1 (Itgb1) in the developing mouse airway epithelium abrogates airway branching and converts this monolayer epithelium into a multilayer epithelium with more than 10 extra layers. Mutant lung epithelial cells change mitotic spindle orientation to seed outer layers, and cells in different layers become molecularly and functionally distinct, hallmarks of normal stratification. However, mutant lung epithelial cells do not activate p63 and do not switch to the stratified keratin profile of epidermal cells. These data, together with previous data implicating Itgb1 in regulation of epidermal stratification, suggest that the simple-versus-stratified developmental decision may involve not only stratification inducers like p63 but suppressors like Itgb1 that prevent simple epithelia from inappropriately activating key steps in the stratification program. PMID:23285215
Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A
1998-05-01
Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral endotoxin following GM-CSF therapy, as evidenced by production of the tissue-reactive cytokines IL-1beta and TNF-alpha.
Tsung, H C; Yao, Z
1996-09-01
When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and their immediate progenitor cells) from ES-T6 cells to form vessel-like structures, and that the role of TGF-beta 1 in vasculogenesis might be performed, in part, through the modulation of the composition and organization of the extracellular matrix. In addition, the enhanced expression of bFGF mRNA in derivatives differentiated from both ES-5 cells treated with rhTGF-beta 1 and ES-T6 cells were detected by Northern blot analysis. Thus, aside from its effects on extracellular matrix, TGF-beta 1 might also modulate the bioactivity of bFGF in relation to the growth of vascular endothelial cells in the present system.
Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Kazuki; Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180; Feril, Loreto B., E-mail: ferilism@yahoo.com
2011-07-22
Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA,more » which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.« less
Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe
2015-12-04
Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLXmore » increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.« less
Antiproliferative properties of toremifene on AIDS-related Kaposi's sarcoma cells.
Hong, Angela; Leigh, Bryan R
2002-12-01
Kaposi's sarcoma (KS) is the most common neoplastic apoptosis manifestation of acquired immunodeficiency syndrome. Toremifene is known to upregulate transforming growth factor beta-1 (TGF-beta1), which is a growth-inhibitory factor for KS. We investigated the in vitro effect of toremifene on KS cells. MTT assay was used to measure the growth of four KS cell lines and a human umbilical vein endothelial (HUVE) cell line after incubation with toremifene. Reverse transcription polymerase chain reaction and ELISA were used to measure the level of TGF-beta1. The IC(50) for the KS cells ranged from 2.2 to 3.2 microM, and 80% of the growth inhibition occurred within 24 h. Toremifene enhanced TGF-beta1 mRNA expression, and the level of TGF-beta1 increased from 103 to 473 pg/ml after 48 h of incubation. Toremifene had no effect on the growth of HUVE cells. Toremifene has a specific antiproliferative effect on KS cells. The stimulation of TGF-beta1 production may play a role in the antiproliferative process. Copyright 2002 S. Karger AG, Basel
Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K
1993-04-01
The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu
2010-01-01
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less
Henning, Konstanze; Schroeder, Timm; Schwanbeck, Ralf; Rieber, Nikolaus; Bresnick, Emery H; Just, Ursula
2007-09-01
In many developing tissues, signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Notch receptors are expressed on hematopoietic cells and cognate ligands on bone marrow stromal cells. Here, we investigate the role of mNotch1 signaling in the control of erythroid differentiation of multipotent progenitor cells. Multipotent FDCP-mix cell lines engineered to permit the conditional induction of the constitutively active intracellular domain of mNotch1 (mN1(IC)) by the 4-hydroxytamoxifen (OHT)-inducible system were used to analyze the effects of activated mNotch1 on erythroid differentiation and on expression of Gata1, Fog1, Eklf, NF-E2, and beta-globin. Expression was analyzed by Northern blotting and real-time polymerase chain reaction. Enhancer activity of reporter constructs was determined with the dual luciferase system in transient transfection assays. Induction of mN1(IC) by OHT resulted in increased and accelerated differentiation of FDCP-mix cells along the erythroid lineage. Erythroid maturation was induced by activated Notch1 also under conditions that normally promote self-renewal, but required the presence of erythropoietin for differentiation to proceed. While induction of Notch signaling rapidly upregulated Hes1 and Hey1 expression, the expression of Gata1, Fog1, Eklf, and NF-E2 remained unchanged. Concomitantly with erythroid differentiation, activated mNotch1 upregulated beta-globin RNA. Notch signaling transactivated a reporter construct harboring a conserved RBP-J (CBF1) binding site in the hypersensitive site 2 (HS2) of human beta-globin. Transactivation by activated Notch was completely abolished when this RBP-J site was mutated to prevent RBP-J binding. Our results show that activation of mNotch1 induces erythroid differentiation in cooperation with erythropoietin and upregulates beta-globin expression.
Pancreas and gallbladder agenesis in a newborn with semilobar holoprosencephaly, a case report.
Hilbrands, Robert; Keymolen, Kathelijn; Michotte, Alex; Marichal, Miriam; Cools, Filip; Goossens, Anieta; Veld, Peter In't; De Schepper, Jean; Hattersley, Andrew; Heimberg, Harry
2017-05-19
Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer
2009-04-24
Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less
Prinz, Robert D.; Willis, Catherine M.; van Kuppevelt, Toin H.; Klüppel, Michael
2014-01-01
The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury. PMID:24667694
Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael
2014-01-01
The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.
Sun, Guang-Li; Li, Zheng; Wang, Wei-Zhi; Chen, Zheng; Zhang, Lei; Li, Qing; Wei, Song; Li, Bo-Wen; Xu, Jiang-Hao; Chen, Liang; He, Zhong-Yuan; Ying, Kai; Zhang, Xuan; Xu, Hao; Zhang, Dian-Cai; Xu, Ze-Kuan
2018-06-01
Emerging evidence suggested that miRNAs can function as oncogenes or tumor suppressors by regulating downstream target genes. miR-324-3p has been reported to function in several carcinomas, but its role in gastric cancer (GC) is still unknown. This study aims to explore the effects of miR-324-3p on the development of GC. Expression of miR-324-3p was examined in GC cells and tissues by qRT-PCR. Effects of miR-324-3p on GC cells were evaluated by cell vitality assay, colony formation assay, cell migration assay, and flow cytometric assay. The dual luciferase assay was used to verify whether miR-324-3p could interact with the potential target genes. Western blot was used to assess the expression level of Smad4 and beta-catenin. Intracellular ATP level was also examined. The tumor xenografts were established using nude mice. A gastric organoid model was made from fresh stomach tissue. miR-324-3p was expressed at higher levels in the tumor tissues compared with adjacent normal tissues. Overexpression of miR-324-3p promoted cell growth, migration, and decreased apoptosis. miR-324-3p repressed the expression of Smad4, and loss of Smad4 activated the Wnt/beta-catenin signaling pathway. Overexpression of Smad4 rescued the effects of miR-324-3p on GC cells. The intracellular ATP level was upregulated with overexpression of miR-324-3p. miR-324-3p facilitated tumor cell colonization and growth in vivo and contributed to the growth of gastric organoids. The results suggested that miR-324-3p promoted GC through activating the Smad4-mediated Wnt/beta-catenin signaling pathway. The miR-324-3p/Smad4/Wnt signaling axis may be a potential therapeutic target to prevent GC progression.
NASA Astrophysics Data System (ADS)
Kouyoumdjian, Hovig
The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.
Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X
2004-01-01
Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613
Hosoya, S; Matsushima, K; Ohbayashi, E; Yamazaki, M; Shibata, Y; Abiko, Y
1996-12-01
Dental pulpal infection is most commonly caused by extensive dental caries. A principal driving force behind pulpal disease response appears to lie in the immune system's response to bacteria. However, the production of interleukin (IL)-1beta and IL-6 in human dental pulp (HDP) cells in response to lipopolysaccharide (LPS) has not been well characterized. We examined IL-1beta and IL-6 production in HDP cells by challenging with LPS from Porphyromonas endodontalis, which is a Gram-negative bacteria found in root canals. Our results presented here showed that when HDP cells were stimulated by LPS, the production of IL-6 always preceded that of IL-1beta. Since the IL-6 production was observed even in the presence of the IL-1beta receptor antagonist, we concluded IL-6 production was independent of the IL-1beta molecule in LPS-stimulated HDP cells. This idea was further supported by the results obtained from RT-PCR experiments, in which IL-6 mRNA, but not IL-1beta mRNA, was present in the RNA preparation isolated from the early stage of cells.
Zhang, Hui; Zhao, Xingbo; Liu, Shu; Li, Jijun; Wen, Zeqing; Li, Mingjiang
2010-04-12
The objective of this study was to explore the mechanism of phosphatase and tensin homolog (PTEN) loss in endometriosis. We found that aberrant PTEN expression and mitogen-activated protein kinases (MAPK)/ERK, phosphoinositide 3-kinase (PI3K)/AKt, and nuclear factor-kappaB (NFkappaB) signaling overactivities coexisted in endometriosis. In vitro, 17beta-estradiol rapidly activated the 3 pathways in endometriotic cells and specific inhibitions on the 3 pathways respectively blocked 17beta-estradiol-induced cell proliferation. 17beta-estradiol suppressed PTEN transcription and expression in endometriotic cells which was abolished by specific NFkappaB inhibition. Total/nuclear PTEN-loss and MAPK/ERK, PI3K/AKt, and NFkappaB signal overactivities coexist in endometriosis. In vitro, 17beta-estradiol can promotes cell proliferation in endometriosis by activating PI3K/AKt pathway via an NFkappaB/PTEN-dependent pathway. For the first time we propose the possibility of the presence of a positive feedback-loop: 17beta-estradiol-->high NFkappaB-->low PTEN-->high PI3K-->high NFkappaB, in endometriosis, which may finally promote the proliferation of ectopic endometrial epithelial cells and in turn contributes to the progression of the disease.
NASA Technical Reports Server (NTRS)
Bridge, K. Y.; Young, R. B.; Vaughn, J. R.
1998-01-01
Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 microM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.
Nam, Jeong-Seok; Suchar, Adam M; Kang, Mi-Jin; Stuelten, Christina H; Tang, Binwu; Michalowska, Aleksandra M; Fisher, Larry W; Fedarko, Neal S; Jain, Alka; Pinkas, Jan; Lonning, Scott; Wakefield, Lalage M
2006-06-15
Transforming growth factor betas (TGF-beta) play a dual role in carcinogenesis, functioning as tumor suppressors early in the process, and then switching to act as prometastatic factors in late-stage disease. We have previously shown that high molecular weight TGF-beta antagonists can suppress metastasis without the predicted toxicities. To address the underlying mechanisms, we have used the 4T1 syngeneic mouse model of metastatic breast cancer. Treatment of mice with a monoclonal anti-TGF-beta antibody (1D11) significantly suppressed metastasis of 4T1 cells to the lungs. When metastatic 4T1 cells were recovered from lungs of 1D11-treated and control mice, the most differentially expressed gene was found to be bone sialoprotein (Bsp). Immunostaining confirmed the loss of Bsp protein in 1D11-treated lung metastases, and TGF-beta was shown to regulate and correlate with Bsp expression in vitro. Functionally, knockdown of Bsp in 4T1 cells reduced the ability of TGF-beta to induce local collagen degradation and invasion in vitro, and treatment with recombinant Bsp protected 4T1 cells from complement-mediated lysis. Finally, suppression of Bsp in 4T1 cells reduced metastasis in vivo. We conclude that Bsp is a plausible mediator of at least some of the tumor cell-targeted prometastatic activity of TGF-beta in this model and that Bsp expression in metastases can be successfully suppressed by systemic treatment with anti-TGF-beta antibodies.
NASA Technical Reports Server (NTRS)
Young, R. B.; Bridge, K. Y.; Strietzel, C. J.
2000-01-01
Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.
Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg.
Stockis, Julie; Colau, Didier; Coulie, Pierre G; Lucas, Sophie
2009-12-01
Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.
Stehr, Maximilian; Estrada, Carlos R; Khoury, Joseph; Danciu, Theodora E; Sullivan, Maryrose P; Peters, Craig A; Solomon, Keith R; Freeman, Michael R; Adam, Rosalyn M
2004-12-01
The mechanisms underlying ureteral cell regulation are largely unknown. Previous studies have identified lipid rafts/caveolae as regulators of growth stimulatory signals in ureteral smooth muscle cells (USMCs). In this study we determined whether growth inhibitory signaling by transforming growth factor-beta1 (TGF-beta1) is also regulated by caveolae in USMC. Expression of components of the TGF-beta1 signaling axis in USMCs was determined by immunoblot and mRNA analyses. Growth regulatory activity of TGF-beta1 was assessed by H-thymidine incorporation. In select experiments caveolae were disrupted reversibly by cholesterol depletion and replenishment prior to TGF-beta1 treatment. TGF-beta1-responsive gene expression was evaluated using the TGF-beta1 responsive promoter-reporter construct 3TP-Lux. USMCs expressed TGF-beta1, types I and II TGF-beta1 receptors, and the effector Smad-2. TGF-beta1 potently inhibited DNA synthesis in USMCs (IC50 60 pM). TGF-beta1 mediated DNA synthesis inhibition was potentiated following the disruption of caveolae by cholesterol depletion. This effect was reversible with membrane cholesterol restoration. TGF-beta1 stimulated gene activity was augmented by caveolae disruption, while caveolae reformation returned promoter activity to baseline levels. TGF-beta1 is a potent growth inhibitor of USMCs and its activity can be enhanced by caveolae ablation. These findings suggest a role for TGF-beta1 in the growth regulation of normal ureteral cells and implicate caveolar membrane domains in the negative regulation of TGF-beta1 signaling. These studies may be relevant to ureteral pathologies that are characterized by smooth muscle dysplasia.
Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.
Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K
2005-07-01
Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.
Cell type-specific regulation of beta2-adrenoceptor mRNA by agonists.
Danner, S; Lohse, M J
1997-07-16
Prolonged agonist stimulation of beta2-adrenoceptors results in receptor down-regulation which is often paralleled by a reduction of the corresponding mRNA. In this study, we investigated the agonist-dependent regulation of beta2-adrenoceptor mRNA in DDT1-MF2 smooth muscle cells and C6 glioma cells. In DDT1-MF2 cells the half-life of the mRNA was 12 h in monolayer compared to 2 h in suspension cultures. Under both conditions, the agonist isoproterenol reduced this half-life by a factor of 2. In contrast, in C6 glioma cells isoproterenol had no effect on the mRNA stability, even though it reduced mRNA levels by approximately 50%. Isoproterenol-induced downregulation of beta2-adrenoceptor mRNA was completely blocked in C6 cells by the presence of a protein synthesis inhibitor, while this was not so in DDT1-MF2-cells. These data show that beta2-adrenoceptor downregulation occurs via cell-type specific mechanisms.
Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients.
Pfleger, Christian; Meierhoff, Guido; Kolb, Hubert; Schloot, Nanette C
2010-03-01
The aim of the current study was to investigate whether autoantigen directed T-cell reactivity relates to beta-cell function during the first 78 weeks after diagnosis of type 1 diabetes. 50 adults and 49 children (mean age 27.3 and 10.9 years respectively) with recent onset type 1 diabetes who participated in a placebo-controlled trial of immune intervention with DiaPep277 were analyzed. Secretion of interferon (IFN)-gamma, interleukin (IL)-5, IL-13 and IL-10 by single peripheral mononuclear cells (PBMC) upon stimulation with islet antigens GAD65, heat shock protein 60 (Hsp60) protein-tyrosine-phosphatase-like-antigen (pIA2) or tetanus toxoid (TT) was determined applying ELISPOT; beta-cell function was evaluated by glucagon stimulated C-peptide. Multivariate regression analysis was applied. In general, number of islet antigen-reactive cells decreased over 78 weeks in both adults and children, whereas reactivity to TT was not reduced. In addition, there was an association between the quality of immune cell responses and beta-cell function. Overall, increased responses by IFN-gamma secreting cells were associated with lower beta-cell function whereas IL-5, IL-13 and IL-10 cytokine responses were positively associated with beta-cell function in adults and children. Essentially, the same results were obtained with three different models of regression analysis. The number of detectable islet-reactive immune cells decreases within 1-2 years after diagnosis of type 1 diabetes. Cytokine production by antigen-specific PBMC reactivity is related to beta-cell function as measured by stimulated C-peptide. Cellular immunity appears to regress soon after disease diagnosis and begin of insulin therapy. Copyright 2009 Elsevier Ltd. All rights reserved.
Soderberg, Kelly A; Linehan, Melissa M; Ruddle, Nancy H; Iwasaki, Akiko
2004-08-01
The members of the lymphotoxin (LT) family of molecules play a critical role in lymphoid organogenesis. Whereas LT alpha-deficient mice lack all lymph nodes and Peyer's patches, mice deficient in LT beta retain mesenteric lymph nodes and cervical lymph nodes, suggesting that an LT beta-independent pathway exists for the generation of mucosal lymph nodes. In this study, we describe the presence of a lymph node in LT beta-deficient mice responsible for draining the genital mucosa. In the majority of LT beta-deficient mice, a lymph node was found near the iliac artery, slightly misplaced from the site of the sacral lymph node in wild-type mice. The sacral lymph node of the LT beta-deficient mice, as well as that of the wild-type mice, expressed the mucosal addressin cell adhesion molecule-1 similar to the mesenteric lymph node. Following intravaginal infection with HSV type 2, activated dendritic cells capable of stimulating a Th1 response were found in this sacral lymph node. Furthermore, normal HSV-2-specific IgG responses were generated in the LT beta-deficient mice following intravaginal HSV-2 infection even in the absence of the spleen. Therefore, an LT beta-independent pathway exists for the development of a lymph node associated with the genital mucosa, and such a lymph node serves to generate potent immune responses against viral challenge.
Peters, B P; Krzesicki, R F; Hartle, R J; Perini, F; Ruddon, R W
1984-12-25
Human choriocarcinoma cells (JAR) synthesize the alpha and beta subunits of the glycoprotein hormone chorionic gonadotropin (hCG) (R.W. Ruddon, C.A. Hanson, A. H. Bryan, G.J. Putterman, E.L. White, F. Perini, K. S. Meade, and P.H. Aldenderfer (1980) J. Biol. Chem. 255, 1000-1007). In addition to the hCG dimer (alpha beta), JAR cells secrete uncombined alpha and beta subunits into the culture medium (L.A. Cole, R.J. Hartle, J.A. Laferla, and R.W. Ruddon (1983) Endocrinology 113, 1176-1178). Pulse-chase studies with [35S]methionine or [3H]mannose were carried out in order to compare free alpha, free beta, and the alpha beta dimer with regard to the kinetics of synthesis, N-linked oligosaccharide processing, and secretion and to determine the kinetics of alpha-beta subunit combination. A panel of three antisera was used to immunoprecipitate directly the free subunits and the alpha beta dimer sequentially from the same cell lysates and culture media. The alpha subunit of hCG was synthesized in a slight molar excess (1.2-1.5-fold) over the beta subunit, and alpha beta dimer was rapidly formed by combination of the intracellular alpha and beta precursors. Dimer formation was already apparent in JAR cells following a 10-min biosynthetic labeling incubation with [35S]methionine. The combination of subunits ceased by 30 min of chase even though 51% of alpha and 44% of beta remained free within the cells. Combination of the alpha and beta precursors had occurred before their N-linked oligosaccharides were processed beyond the Man8GlcNAc2 structure. The initial trimming of glucosyl and mannosyl units from the high-mannose oligosaccharides of the hCG precursors occurred more rapidly for free alpha and CG-alpha than for free beta and CG-beta. JAR cells accumulated alpha precursors bearing mostly Man8GlcNAc2 units and beta precursors bearing Man8GlcNAc2 units that represent the substrates of the rate-limiting step in the secretory pathway. In spite of the fact that their N-linked oligosaccharides were trimmed at different rates, free alpha, free beta, and alpha beta dimer were all secreted into the medium at the same rate, with a half-time of 35 min. The secreted hCG forms were stable in the chase medium between 4 and 8h, indicating that extracellular degradation, combination of free subunits to form dimer, or dissociation of dimer to form free subunits did not occur.(ABSTRACT TRUNCATED AT 400 WORDS)
Diaz-Meco, M T; Dominguez, I; Sanz, L; Municio, M M; Berra, E; Cornet, M E; Garcia de Herreros, A; Johansen, T; Moscat, J
1992-01-01
Cell growth and tumor transformation can be restrained in certain cell systems by the action of transforming growth factor beta (TGF-beta). It has been established that the mechanism whereby TGF-beta 1 inhibits cell growth does not interfere with the triggering of early mitogenic signal transduction mechanisms. Phospholipase C-catalyzed hydrolysis of phosphatidylcholine (PC) is a relatively late step in the cascade activated by growth factors. Therefore, conceivably activation of phospholipase C-catalyzed hydrolysis of PC could be the target of TGF-beta 1 action. In the study reported here, we demonstrate that TGF-beta 1 inhibits the coupling of ras p21 to the activation of PC hydrolysis, which appears to be critical for the antiproliferative effects of TGF-beta 1. Images PMID:1309592
Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel
2002-01-01
Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102
NASA Technical Reports Server (NTRS)
Young, R. B.; Bridge, K. Y.
1999-01-01
Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.
Bioinformatics Knowledge Map for Analysis of Beta-Catenin Function in Cancer
Arighi, Cecilia N.; Wu, Cathy H.
2015-01-01
Given the wealth of bioinformatics resources and the growing complexity of biological information, it is valuable to integrate data from disparate sources to gain insight into the role of genes/proteins in health and disease. We have developed a bioinformatics framework that combines literature mining with information from biomedical ontologies and curated databases to create knowledge “maps” of genes/proteins of interest. We applied this approach to the study of beta-catenin, a cell adhesion molecule and transcriptional regulator implicated in cancer. The knowledge map includes post-translational modifications (PTMs), protein-protein interactions, disease-associated mutations, and transcription factors co-activated by beta-catenin and their targets and captures the major processes in which beta-catenin is known to participate. Using the map, we generated testable hypotheses about beta-catenin biology in normal and cancer cells. By focusing on proteins participating in multiple relation types, we identified proteins that may participate in feedback loops regulating beta-catenin transcriptional activity. By combining multiple network relations with PTM proteoform-specific functional information, we proposed a mechanism to explain the observation that the cyclin dependent kinase CDK5 positively regulates beta-catenin co-activator activity. Finally, by overlaying cancer-associated mutation data with sequence features, we observed mutation patterns in several beta-catenin PTM sites and PTM enzyme binding sites that varied by tissue type, suggesting multiple mechanisms by which beta-catenin mutations can contribute to cancer. The approach described, which captures rich information for molecular species from genes and proteins to PTM proteoforms, is extensible to other proteins and their involvement in disease. PMID:26509276
Ghazalli, Nadiah; Wu, Xiaoxing; Walker, Stephanie; Trieu, Nancy; Hsin, Li-Yu; Choe, Justin; Chen, Chialin; Hsu, Jasper; LeBon, Jeanne; Kozlowski, Mark T; Rawson, Jeffrey; Tirrell, David A; Yip, M L Richard; Ku, Hsun Teresa
2018-06-06
Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GR flox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, B.
Tandem and stellarator equilibria at high ..beta.. have proved hard to compute and the relaxation methods of Bauer et al., Chodura and Schluter, Hirshman, Strauss, and Pearlstein et al. have been slow to converge. This paper reports an extension of the low-..beta.. analytic method of Pearlstein, Kaiser, and Newcomb to arbitrary ..beta.. for tandem mirrors which converges in 10 to 20 iterations. Extensions of the method to stellarator equilibria are proposed and are very close to the analytic method of Johnson and Greene - the stellarator expansion. Most of the results of all these calculations can be adequately described bymore » low-..beta.. approximations since the MHD stability limits occur at low ..beta... The tandem mirror, having weak curvature and a long central cell, allows finite Larmor radius effects to eliminate most ballooning modes and offers the possibility of really high average ..beta... This is the interest in developing such three-dimensional numerical algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K.S.
Norepinephrine has previously been demonstrated by this laboratory to potentiate the in vitro T-dependent antibody response through the stimulation of {beta}-adrenergic receptors. The role of {beta}-adrenergic receptor subtypes in norepinephrine-induced potentiation of the antibody responses was examined with selective {beta}-adrenergic antagonists. The antagonists were metoprolol ({beta}{sub 1}-selective), ICI 118-551 ({beta}{sub 2}-selective), and propranolol ({beta}-non-selective). Both propranolol and ICI 118-551 blocked norepinephrine-induced potentiation of the antibody response, but metoprolol was ineffective. Receptor binding competition of antagonists with the radioligant, ({sup 3}H)CGP-12177 was examined and results were analyzed with the computer program, LIGAND. Competition by ICI 118-551 identified 75% {beta}{sub 2}- andmore » 25% {beta}{sub 1}-adrenergic receptors on splenic mononuclear cells. Enriched T lymphocytes exhibited 75% {beta}{sub 2}-adrenergic receptors, while enriched B lymphocytes contained 90% {beta}{sub 2}-adrenergic receptors as identified by ICI 118-551. Greater than twice as many total receptors were identified on B lymphocytes than T lymphocytes. A T cell lymphoma contained about 60% {beta}{sub 2}-receptors, while 100% were {beta}{sub 2} receptors on a B cell lymphoma, as assessed by ICI 118-551. Results support a heterogeneous {beta}-adrenergic receptor population on T lymphocytes and a more homogeneous {beta}{sub 2}-population on B lymphocytes.« less
Watanabe, Yusuke; Namba, Aki; Aida, Yukiko; Honda, Kazuhiro; Tanaka, Hideki; Suzuki, Naoto; Matsumura, Hideo; Maeno, Masao
2009-01-01
Elevated interleukin (IL)-1 concentrations in synovial fluid have been implicated in joint bone and cartilage destruction. Previously, we showed that IL-1beta stimulated the expression of prostaglandin (PG) receptor EP4 via increased PGE(2) production. However, the effect of IL-1beta on osteoclast formation via chondrocytes is unclear. Therefore, we examined the effect of IL-1beta and/or celecoxib on the expression of macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) in human chondrocytes, and the indirect effect of IL-1beta on osteoclast-like cell formation using RAW264.7 cells. OPG and RANKL expression increased with IL-1beta; whereas M-CSF expression decreased. Celecoxib blocked the stimulatory effect of IL-1beta. Conditioned medium from IL-1beta-treated chondrocytes decreased TRAP staining in RAW264.7 cells. These results suggest that IL-1beta suppresses the formation of osteoclast-like cells via increased OPG production and decreased M-CSF production in chondrocytes, and OPG production may increase through an autocrine mechanism involving celecoxib-related PGs.
Smad4 is required for the development of cardiac and skeletal muscle in zebrafish.
Yang, Jie; Wang, Junnai; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Jiang, Lijun; Wei, Juncheng; Ma, Quanfu; Wu, Mingfu; Ye, Shuangmei; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan
Transforming growth factor-beta (TGF-beta) regulates cellular functions and plays key roles in development and carcinogenesis. Smad4 is the central intracellular mediator of TGF-beta signaling and plays crucial roles in tissue regeneration, cell differentiation, embryonic development, regulation of the immune system and tumor progression. To clarify the role of smad4 in development, we examined both the pattern of smad4 expression in zebrafish embryos and the effect of smad4 suppression on embryonic development using smad4-specific antisense morpholino-oligonucleotides. We show that smad4 is expressed in zebrafish embryos at all developmental stages examined and that embryonic knockdown of smad4 results in pericardial edema, decreased heartbeat and defects in the trunk structure. Additionally, these phenotypes were associated with abnormal expression of the two heart-chamber markers, cmlc2 and vmhc, as well as abnormal expression of three makers of myogenic terminal differentiation, mylz2, smyhc1 and mck. Furthermore, a notable increase in apoptosis was apparent in the smad4 knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that smad4 plays an important role in heart and skeletal muscle development. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Kawee-Ai, Arthitaya; Kim, Sang Moo
2014-07-01
Intestinal bacterial beta-glucuronidases are capable of retoxifying compounds that have been detoxified by liver glucuronidation and are also known to accelerate colon cancer invasion and metastasis. In this study, fucoxanthin extracted from the microalga Phaeodactylum tricornutum was investigated for its inhibitory activity against Escherichia coli beta-glucuronidase and DLD-1 cancer cells. Fucoxanthin inhibited beta-glucuronidase in a concentration-dependent manner with an IC50 value of 2.32 mM and a mixed inhibition type. Fucoxanthin had more potent inhibitory activity on beta-glucuronidase at 37 degrees C and in alkaline conditions. Fucoxanthin also inhibited the beta-glucuronidase activity of DLD-1 cancer cells at a concentration of 20-50 microM. The presence of beta-glucuronidase and substrate in the medium decreased the inhibitory activity of fucoxanthin against DLD-1 cancer cells. Therefore, microalgal fucoxanthin might prevent colon cancer because of its strong beta-glucuronidase inhibitory activity and could be utilized as a novel functional ingredient of food and pharmaceutical supplements.
Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.D.; Bender, M.A.; Harris, E.A.S.
1988-11-01
Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less
Castresana, C; de Carvalho, F; Gheysen, G; Habets, M; Inzé, D; Van Montagu, M
1990-01-01
The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection. PMID:2152158
Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K
1997-10-01
Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, Antony W., E-mail: burgess@ludwig.edu.au; Faux, Maree C.; Layton, Meredith J.
In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the {beta}-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of {beta}-catenin is contrasted with roles for phospho-{beta}-catenin in the activation of transcription, cell adhesion and migration. The synergy between Myb and {beta}-catenin regulation of transcription in crypt stem cells during Wnt signaling is discussed. Finally, potential effects of growth factor regulatory systems, Apc or truncated-Apc on crypt morphogenesis, stemmore » cell localization and crypt fission are considered.« less
Streptococcal modulation of cellular invasion via TGF-beta1 signaling.
Wang, Beinan; Li, Shaoying; Southern, Peter J; Cleary, Patrick P
2006-02-14
Group A Streptococcus (GAS) and other bacterial pathogens are known to interact with integrins as an initial step in a complex pathway of bacterial ingestion by host cells. Efficient GAS invasion depends on the interaction of bound fibronectin (Fn) with integrins and activation of integrin signaling. TGF-beta1 regulates expression of integrins, Fn, and other extracellular matrix proteins, and positively controls the integrin signaling pathway. Therefore, we postulated that TGF-beta1 levels could influence streptococcal invasion of mammalian cells. Pretreatment of HEp-2 cells with TGF-beta1 increased their capacity to ingest GAS when the bacteria expressed fibronectin-binding proteins (M1 or PrtF1). Western blots revealed significant induction of alpha5 integrin and Fn expression by HEp-2 cells in response to TGF-beta1. Increased ingestion of streptococci by these cells was blocked by a specific inhibitor of the TGF-beta1 receptor I and antibodies directed against alpha5 integrin and Fn, indicating that increased invasion depends on TGF-beta1 up-regulation of both the alpha5 integrin and Fn. The capacity of TGF-beta1 to up-regulate integrin expression and intracellular invasion by GAS was reproduced in primary human tonsil fibroblasts, which could be a source of TGF-beta1 in chronically infected tonsils. The relationship between TGF-beta1 and GAS invasion was strengthened by the observation that TGF-beta1 production was stimulated in GAS-infected primary human tonsil fibroblasts. These findings suggest a mechanism by which GAS induce a cascade of changes in mammalian tissue leading to elevated expression of the alpha5beta1 receptor, enhanced invasion, and increased opportunity for survival and persistence in their human host.
Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K
1996-12-01
The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL.
Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K
1996-01-01
The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL. Images Figure 4 Figure 6 PMID:9014832
Wang, Beinan; Dileepan, Thamotharampillai; Briscoe, Sarah; Hyland, Kendra A; Kang, Johnthomas; Khoruts, Alexander; Cleary, P Patrick
2010-03-30
Recurrent group A Streptococcus (GAS) tonsillitis and associated autoimmune diseases indicate that the immune response to this organism can be ineffective and pathological. TGF-beta1 is recognized as an essential signal for generation of regulatory T cells (Tregs) and T helper (Th) 17 cells. Here, the impact of TGF-beta1 induction on the T-cell response in mouse nasal-associated lymphoid tissue (NALT) following intranasal (i.n.) infections is investigated. ELISA and TGF-beta1-luciferase reporter assays indicated that persistent infection of mouse NALT with GAS sets the stage for TGF-beta1 and IL-6 production, signals required for promotion of a Th17 immune response. As predicted, IL-17, the Th17 signature cytokine, was induced in a TGF-beta1 signaling-dependent manner in single-cell suspensions of both human tonsils and NALT. Intracellular cytokine staining and flow cytometry demonstrated that CD4(+) IL-17(+) T cells are the dominant T cells induced in NALT by i.n. infections. Moreover, naive mice acquired the potential to clear GAS by adoptive transfer of CD4(+) T cells from immunized IL-17A(+)/(+) mice but not cells from IL-17A(-)/(-) mice. These experiments link specific induction of TGF-beta1 by a bacterial infection to an in vivo Th17 immune response and show that this cellular response is sufficient for protection against GAS. The association of a Th17 response with GAS infection reveals a potential mechanism for destructive autoimmune responses in humans.
Gene expression profile of the fibrotic response in the peritoneal cavity.
Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E
2010-01-01
The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic responses.
USDA-ARS?s Scientific Manuscript database
Maternal obesity affects offspring weight, body composition and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high energy diet on fetal pancreatic development. Sixty days prior to breeding. ewes were assigned to control (C, 100% of N...
Heat shock protein 90{beta}: A novel mediator of vitamin D action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelo, Giana; Mineral Bioavailability Laboratory, 711 Washington Street, Boston, MA 02111; Lamon-Fava, Stefania
2008-03-14
We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90{beta} expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90{beta} by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%,more » respectively, in Hsp90{beta}-deficient cells. Nuclear protein for VDR and RXR{alpha}, its heterodimer partner, were not reduced in Hsp90{beta}-deficient cells. These findings indicate that Hsp90{beta} is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90{beta} in VDR signaling.« less
Koyama, T; Hughes, R C
1992-12-25
We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.
Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H
1987-01-01
One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi
2008-10-20
In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissuesmore » in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paessler, Slobodan; Yun, Nadezhda E.; Judy, Barbara M.
2007-10-25
We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta ({alpha}{beta}) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta ({gamma}{delta}) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chainmore » and a minority of vaccinated immunoglobulin heavy chain-deficient ({mu}MT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3{sup +} T cells are required for protection.« less
Grape seed procyanidin extract modulates proliferation and apoptosis of pancreatic beta-cells.
Cedó, Lídia; Castell-Auví, Anna; Pallarès, Victor; Blay, Mayte; Ardévol, Anna; Arola, Lluís; Pinent, Montserrat
2013-05-01
Grape seed procyanidin extract (GSPE) modulates glucose homeostasis and insulinemia in several animal models. Under pathological conditions, insulin levels are dependent on pancreatic beta-cell functionality, as well as on the beta-cell mass expansion or apoptosis in the pancreas. In this study, we analysed the effects of GSPE on modulating apoptosis and proliferation in beta-cells. We tested the effects of GSPE in the INS-1E pancreatic beta-cell line, either under basal or altered conditions with high glucose, insulin or palmitate levels. GSPE enhanced the pro-apoptotic effect of high glucose and showed clear antiproliferative effects under high glucose, insulin and palmitate conditions. These antiproliferative effects are likely due to high molecular weight compounds contained in the extract. GSPE also modulated pro- and anti-apoptotic markers in the pancreas of rats fed a cafeteria diet, with the effect depending on the dose of GSPE and duration of treatment. Thus, GSPE is able to modulate apoptosis and proliferation of beta-cells under altered, but not basal, conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Maestroni, Georges J M; Mazzola, Paola
2003-11-01
We showed that norepinephrine (NE) hampers IL-12 and stimulates IL-10 production via adrenoceptors (ARs) in bone marrow-derived dendritic cells (BMDC) influencing their Th priming ability. Others have shown that Langerhans cells (LC) express mRNA for beta1-, beta2- and alpha1(A)-(ARs) and that catecholamines may inhibit the antigen-presenting capability via beta2-ARs. Here, we show that also BMDC express mRNA for beta1-, beta2-, alpha2(A)- and alpha2(C)-ARs. Inhibition of IL-12 is mediated by both beta2- and alpha2(A)-ARs, while stimulation of IL-10 by beta2-ARs only. In addition, LC migration, the contact hypersensitivity response (CHS) and production of IFN-gamma and IL-2 in draining lymph node cells is increased in mice treated topically with the beta2-AR antagonist ICI 118,551 during FITC sensitization. Activation of beta2-ARs in BMDC before adoptive transfer could reduce both migration and CHS response to FITC. Finally, preincubation of BMDC with LPS in presence of the specific beta2-AR agonist salbutamol impaired their chemotactic response to CCL19 and CCL21 and this effect was neutralized by anti-IL-10 mAb. We suggest that the physiological activation of beta2-ARs in DC (LC) results in stimulation of IL-10 which in turn restrains DC (LC) migration influencing antigen presentation and the consequent CHS response.
Wnt/beta-Catenin, Foxa2, and CXCR4 Axis Controls Prostate Cancer Progression
2014-07-01
NT1 cells that over-expressing Foxa2. The reason we used NT1 cells for the Foxa2 over-expressing experiments is that NT1 is an AR-expressing... cells . We have also established NT1 cells over-expressing a dominant active beta-catenin. We have characterized these cells . Our research found: 1...expression profiles of control NT1 , NT1 /Foxa2, and NT1 /beta-catenin cells Figure 1. We did RT-PCR to examine the expression of key
Li, Dong-Sheng; Warnock, Garth L; Tu, Han-Jun; Ao, Ziliang; He, Zehua; Lu, Hong; Dai, Long-Jun
2009-10-07
Type 1 diabetes (T1D) is the result of the autoimmune response against pancreatic insulin-producing ss-cells. Its ultimate consequence is beta-cell insufficiency-mediated dysregulation of blood glucose control. In terms of T1D treatment, immunotherapy addresses the cause of T1D, mainly through re-setting the balance between autoimmunity and regulatory mechanisms. Regulatory T cells play an important role in this immune intervention. An alternative T1D treatment is beta-cell replacement, which can reverse the consequence of the disease by replacing destroyed beta-cells in the diabetic pancreas. The applicable insulin-producing cells can be directly obtained from islet transplantation or generated from other cell sources such as autologous adult stem cells, embryonic stem cells, and induced pluripotent stem cells. In this review, we summarize the recent research progress and analyze the possible advantages and disadvantages of these two therapeutic options especially focusing on the potential synergistic effect on T1D treatment. Exploring the optimal combination of immunotherapy and beta-cell replacement will pave the way to the most effective cure for this devastating disease.
Katoh, Masuko; Katoh, Masaru
2006-09-01
WNT and FGF signaling pathways cross-talk during a variety of cellular processes, such as human colorectal carcinogenesis, mouse mammary tumor virus (MMTV)-induced carcinogenesis, E2A-Pbx-induced leukemogenesis, early embryogenesis, body-axis formation, limb-bud formation, and neurogenesis. Canonical WNT signals are transduced through Frizzled receptor and LRP5/6 coreceptor to downregulate GSK3beta (GSK3B) activity not depending on Ser 9 phosphorylation. FGF signals are transduced through FGF receptor to the FRS2-GRB2-GAB1-PI3K-AKT signaling cascade to downregulate GSK3beta activity depending on Ser 9 phosphorylation. Because GSK3beta-dependent phosphorylation of beta-catenin and SNAIL leads to FBXW1 (betaTRCP)-mediated ubiquitination and degradation, GSK3beta downregulation results in the stabilization and the nuclear accumulation of beta-catenin and SNAIL. Nuclear beta-catenin is complexed with TCF/LEF, Legless (BCL9 or BCL9L) and PYGO (PYGO1 or PYGO2) to activate transcription of CCND1, MYC, FGF18 and FGF20 genes for the cell-fate determination. Nuclear SNAIL represses transcription of CDH1 gene, encoding E-cadherin, to induce the epithelial-mesenchymal transition (EMT). Mammary carcinogenesis in MMTV-Wnt1 transgenic mice is accelerated by MMTV infection due to MMTV integration around Fgf3-Fgf4 or Fgf8 loci, and mammary carcinogenesis in MMTV-Fgf3 transgenic mice due to MMTV integration around Wnt1-Wnt10b locus. Coactivation of WNT and FGF signaling pathways in tumors leads to more malignant phenotypes. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of WNT and FGF signaling molecules could be utilized as screening method of cancer predisposition. cDNA-PCR, microarray or ELISA reflecting aberrant activation of WNT and FGF signaling pathways could be developed as novel cancer-related biomarkers for diagnosis, prognosis, and therapy. Cocktail therapy using WNT and FGF inhibitors, such as small-molecule compounds and human neutralizing antibodies, should be developed to increase the efficacy of chemotherapy through the inhibition of recurrence by destructing cancer stem cells.
The effect of TRAIL molecule on cell viability in in vitro beta cell culture.
Tekmen, I; Ozyurt, D; Pekçetin, C; Buldan, Z
2007-06-01
Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system.
The Spectrin cytoskeleton regulates the Hippo signalling pathway.
Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J
2015-04-01
The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye
Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract:more » Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.« less
Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E
1998-12-01
Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.
Tamoi, Masahiro; Kurotaki, Hideki; Fukamizo, Tamo
2007-07-01
In the present study, we characterized the gene (Cyanobase accession number slr0897) designated Ssglc encoding a beta-1,4-glucanase-like protein (SsGlc) from Synechocystis PCC6803. The deduced amino acid sequence for Ssglc showed a high degree of similarity to sequences of GH (glycoside hydrolase) family 9 beta-1,4-glucanases (cellulases) from various sources. Surprisingly, the recombinant protein obtained from the Escherichia coli expression system was able to hydrolyse barley beta-glucan and lichenan (beta-1,3-1,4-glucan), but not cellulose (beta-1,4-glucan), curdlan (beta-1,3-glucan), or laminarin (beta-1,3-1,6-glucan). A 1H-NMR analysis of the enzymatic products revealed that the enzyme hydrolyses the beta-1,4-glycosidic linkage of barley beta-glucan through an inverting mechanism. The data indicated that SsGlc was a novel type of GH9 glucanase which could specifically hydrolyse the beta-1,3-1,4-linkage of glucan. The growth of mutant Synechocystis cells in which the Ssglc gene was disrupted by a kanamycin-resistance cartridge gene was almost the same as that of the wild-type cells under continuous light (40 micromol of photons/m2 per s), a 12 h light (40 micromol of photons/m2 per s)/12 h dark cycle, cold stress (4 degrees C), and high light stress (200 micromol of photons/m2 per s). However, under salt stress (300-450 mM NaCl), growth of the Ssglc-disrupted mutant cells was significantly inhibited as compared with that of the wild-type cells. The Ssglc-disrupted mutant cells showed a decreased rate of O2 consumption and NaHCO3-dependent O2 evolution as compared with the wild-type cells under salt stress. Under osmotic stress (100-400 mM sorbitol), there was no difference in growth between the wild-type and the Ssglc-disrupted mutant cells. These results suggest that SsGlc functions in salt stress tolerance in Synechocystis PCC6803.
NASA Technical Reports Server (NTRS)
Miyamoto, Yuko J.; Mitchell, Jason S.; McIntyre, Bradley W.
2003-01-01
CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.
ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function
Pi, Jingbo; Zhang, Qiang; Fu, Jingqi; Woods, Courtney G.; Hou, Yongyong; Corkey, Barbara E; Collins, Sheila; Andersen, Melvin E.
2009-01-01
This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H2O2, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function. PMID:19501608
Iuvone, Teresa; Esposito, Giuseppe; Esposito, Ramona; Santamaria, Rita; Di Rosa, Massimo; Izzo, Angelo A
2004-04-01
Abstract Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the membrane action of beta-amyloid peptide aggregates. Here, we studied the effect of cannabidiol, a major non-psychoactive component of the marijuana plant (Cannabis sativa) on beta-amyloid peptide-induced toxicity in cultured rat pheocromocytoma PC12 cells. Following exposure of cells to beta-amyloid peptide (1 micro g/mL), a marked reduction in cell survival was observed. This effect was associated with increased reactive oxygen species (ROS) production and lipid peroxidation, as well as caspase 3 (a key enzyme in the apoptosis cell-signalling cascade) appearance, DNA fragmentation and increased intracellular calcium. Treatment of the cells with cannabidiol (10(-7)-10(-4)m) prior to beta-amyloid peptide exposure significantly elevated cell survival while it decreased ROS production, lipid peroxidation, caspase 3 levels, DNA fragmentation and intracellular calcium. Our results indicate that cannabidiol exerts a combination of neuroprotective, anti-oxidative and anti-apoptotic effects against beta-amyloid peptide toxicity, and that inhibition of caspase 3 appearance from its inactive precursor, pro-caspase 3, by cannabidiol is involved in the signalling pathway for this neuroprotection.
Yoshida, Yuki; Saitoh, Kana; Aihara, Yoshiko; Okada, Shinji; Misaka, Takumi; Abe, Keiko
2007-10-08
In mammals, transient receptor potential (TRP) channel M5 (TRPM5) is coexpressed with phospholipaseC-beta2 (PLC-beta2) in the taste receptor cells, and both PLC-beta2 and TRPM5 are essential elements in the signal transduction of sweet, bitter and umami stimuli. In this study, we identified the zebrafish homologue of TRPM5 (zfTRPM5) and examined its expression in the gustatory system by in-situ hybridization. Using a transgenic zebrafish line that expressed green fluorescent protein under the control of the PLC-beta2 promoter, we showed that zfTRPM5 is expressed in green fluorescent protein-labeled cells of the taste buds. These results demonstrate that zfTRPM5 and PLC-beta2 colocalize in zebrafish taste receptor cells, suggesting their crucial roles in taste signaling via the fish taste receptors.
Impact of small-molecule glucokinase activator on glucose metabolism and beta-cell mass.
Nakamura, Akinobu; Terauchi, Yasuo; Ohyama, Sumika; Kubota, Junko; Shimazaki, Hiroko; Nambu, Tadahiro; Takamoto, Iseki; Kubota, Naoto; Eiki, Junichi; Yoshioka, Narihito; Kadowaki, Takashi; Koike, Takao
2009-03-01
We investigated the effect of glucokinase activator (GKA) on glucose metabolism and beta-cell mass. We analyzed four mouse groups: wild-type mice and beta-cell-specific haploinsufficiency of glucokinase gene (Gck(+/-)) mice on a high-fat (HF) diet. Each genotype was also treated with GKA mixed in the HF diet. Rodent insulinoma cells and isolated islets were used to evaluate beta-cell proliferation by GKA. After 20 wk on the above diets, there were no differences in body weight, lipid profiles, and liver triglyceride content among the four groups. Glucose tolerance was improved shortly after the GKA treatment in both genotypes of mice. beta-Cell mass increased in wild-type mice compared with Gck(+/-) mice, but a further increase was not observed after the administration of GKA in both genotypes. Interestingly, GKA was able to up-regulate insulin receptor substrate-2 (Irs-2) expression in insulinoma cells and isolated islets. The administration of GKA increased 5-bromo-2-deoxyuridine (BrdU) incorporation in insulinoma cells, and 3 d administration of GKA markedly increased BrdU incorporation in mice treated with GKA in both genotypes, compared with those without GKA. In conclusion, GKA was able to chronically improve glucose metabolism for mice on the HF diet. Although chronic GKA administration failed to cause a further increase in beta-cell mass in vivo, GKA was able to increase beta cell proliferation in vitro and with a 3-d administration in vivo. This apparent discrepancy can be explained by a chronic reduction in ambient blood glucose levels by GKA treatment.
Dehnavi, Ehsan; Soheili, Zahra-Soheila; Samiei, Shahram; Ataei, Zahra; Aryan, Hajar
2009-06-01
Transforming growth factor-beta (TGF-beta) superfamily regulates matrix metalloproteinases (MMP), which intrinsically regulate various cell behaviors leading to metastasis. We investigated the effect of TGF-beta(2) on MMP-2 regulation in human bladder carcinoma cell line 5637. Zymography, ELISA, and real-time polymerase chain reaction revealed that TGF-beta(2) stimulated MMP-2 production, but the transcription of its gene remained unchanged. Wortmannin could not inhibit MMP-2 secretion and activity and conversely the amount of the protein and its enzymatic activity were increased. These data suggest that TGF-beta(2) increased MMP-2 at the posttranscriptional level and this upregulation was independent of phosphatidylinositol 3-kinase signaling pathway.
Rat Sertoli cells acquire a beta-adrenergic response during primary culture.
Kierszenbaum, A L; Spruill, W A; White, M G; Tres, L L; Perkins, J P
1985-01-01
Two-dimensional polyacrylamide gel electrophoresis and the radioligand (-)-[125I]iodopindolol (125I-Pin) have been used to study isoproterenol-dependent protein phosphorylation and beta-adrenergic receptor availability, respectively, in cultured Sertoli cells and freshly isolated seminiferous tubular segments of sexually immature and mature rats. Sertoli cells prepared from sexually immature rats show progressive 125I-Pin binding in primary cultures that correlates with isoproterenol-induced cell shape changes, redistribution of immunoreactive vimentin, and phosphorylation of this intermediate filament protein. The development of 125I-Pin binding to Sertoli cell lysates is blocked by cycloheximide. Seminiferous tubules do not show significant isoproterenol-dependent vimentin phosphorylation nor 125I-Pin binding. However, vimentin phosphorylation can be induced by follicle-stimulating hormone or a cyclic nucleotide analog. This study stresses the need for correlating pharmacological-induced responses observed in Sertoli cell primary cultures with those in the intact seminiferous tubule. Images PMID:2984678
NASA Astrophysics Data System (ADS)
Pan, Huei-Jyuan; Wang, Ruei-Lin; Xiao, Jian-Long; Chang, Yu-Jen; Cheng, Ji-Yen; Chen, Yun-Ru; Lee, Chau-Hwang
2014-01-01
The membrane roughness of Neuro-2a neroblastoma cells is measured by using noninterferometric wide-field optical profilometry. The cells are treated with the fibril and oligomer conformers of amyloid-beta (Aβ) 42, which is a peptide of 42 amino acids related to the development of Alzheimer's disease. We find that both the Aβ42 fibrils and Aβ42 oligomers reduced the cell membrane roughness, but the effect of Aβ42 oligomers was faster and stronger than that of the fibrils. We also apply direct-current electric field (dcEF) stimulations on the cells. A dcEF of 300 mV/mm can increase the membrane roughness under the treatment of Aβ42. These results suggest that Aβ42 can decrease the membrane compliance of live neuroblastoma cells, and dcEFs may counteract this effect.
Fujio, N; Gossard, F; Bayard, F; Tremblay, J
1994-06-01
Two types of natriuretic peptide receptors (NPR-A and NPR-B) are membrane guanylate cyclases whose relative expression varies in different tissues. Because natriuretic peptides have been shown to inhibit aortic smooth muscle proliferation, we investigated the regulation of NPR-A and NPR-B in these cells under different proliferative conditions. NPR subtype mRNA levels were measured by our newly developed quantitative reverse transcription-polymerase chain reaction assay using mutated NPR-A and NPR-B cRNA as internal standards. The functional impact of their expression was determined by atrial natriuretic peptide (ANP)- and C-type natriuretic peptide (CNP)-induced stimulation of cyclic GMP production. In the intact aorta, NPR-B mRNA levels were found to be 10-fold higher than those of NPR-A. This dominance was further amplified (1000-fold) in long-term cultures (10 to 15 passages) of aortic smooth muscle cells (ASMC). Higher cyclic GMP production with CNP than with ANP was observed in cultured ASMC from Wistar-Kyoto (WKY) rats. Similar stimulation by the two agonists was noted in spontaneously hypertensive rat (SHR) cells, paralleled by a 10-fold increase in NPR-A mRNA levels and ANP stimulation of cyclic GMP in hypertensive cells. The present study also evaluated NPR-A and NPR-B mRNA control by transforming growth factor-beta 1 (TGF-beta 1), an important regulator of cell proliferation that is overexpressed in SHR ASMC. TGF-beta 1 decreased both NPR-A and NPR-B mRNA levels with a predominant effect in SHR cells at high cell density.(ABSTRACT TRUNCATED AT 250 WORDS)
Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.
Gonzalo-Gil, Elena; Galindo-Izquierdo, María
2014-01-01
Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis. Copyright © 2013 Elsevier España, S.L. All rights reserved.
beta. -adrenergic relaxation of smooth muscle: differences between cells and tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheid, C.R.
1987-09-01
The present studies were carried out in an attempt to resolve the controversy about the Na/sup +/ dependence of ..beta..-adrenergic relaxation in smooth muscle. Previous studies on isolated smooth muscle cells from the toad stomach had suggested that at least some of the actions of ..beta..-adrenergic agents, including a stimulatory effect on /sup 45/Ca efflux, were dependent on the presence of a normal transmembrane Na/sup +/ gradient. Studies by other investigators using tissues derived from mammalian sources had suggested that the relaxing effect of ..beta..-adrenergic agents was Na/sup +/ independent. Uncertainty remained as to whether these discrepancies reflected differences betweenmore » cells and tissues or differences between species. Thus, in the present studies, the authors utilized both tissues and cells from the same source, the stomach muscle of the toad Bufo marinus, and assessed the Na/sup +/ dependence of ..beta..-adrenergic relaxation. They found that elimination of a normal Na/sup +/ gradient abolished ..beta..-adrenergic relaxation of isolated cells. In tissues, however, similar manipulations had no effect on relaxation. The reasons for this discrepancy are unclear but do not appear to be attributable to changes in smooth muscle function following enzymatic dispersion. Thus the controversy concerning the mechanisms of ..beta..-adrenergic relaxation may reflect inherent differences between tissues and cells.« less
Dietary toxins, endoplasmic reticulum (ER) stress and diabetes.
Hettiarachchi, Kalindi D; Zimmet, Paul Z; Myers, Mark A
2008-05-01
The incidence of Type 1 diabetes has been increasing at a rate too rapid to be due to changes in genetic risk. Instead changes in environmental factors are the likely culprit. The endoplasmic reticulum (ER) plays an important role in the production of newly synthesized proteins and interference with these processes leads to ER stress. The insulin-producing beta cells are particularly prone to ER stress as a result of their heavy engagement in insulin production. Increasing evidence suggests ER stress is central to initiation and progression of Type 1 diabetes. An early environmental exposure, such as toxins and viral infections, can impart a significant physiological load on beta cells to initiate abnormal processing of proinsulin, ER stress and insulin secretory defects. Release of altered proinsulin from the beta cells early in life may trigger autoimmunity in those with genetic susceptibility leading to cytokine-induced nitric oxide production and so exacerbating ER stress in beta cells, ultimately leading to apoptosis of beta cells and diabetes. Here we suggest that ER stress is an inherent cause of beta cell dysfunction and environmental factors, in particular dietary toxins derived from Streptomyces in infected root vegetables, can impart additional stress that aggravates beta cell death and progression to diabetes. Furthermore, we propose that the increasing incidence of Type 1 diabetes may be accounted for by increased dietary exposure to ER-stress-inducing Streptomyces toxins.
Diabetes-associated dry eye syndrome in a new humanized transgenic model of type 1 diabetes.
Imam, Shahnawaz; Elagin, Raya B; Jaume, Juan Carlos
2013-01-01
Patients with Type 1 Diabetes (T1D) are at high risk of developing lacrimal gland dysfunction. We have developed a new model of human T1D using double-transgenic mice carrying HLA-DQ8 diabetes-susceptibility haplotype instead of mouse MHC-class II and expressing the human beta cell autoantigen Glutamic Acid Decarboxylase in pancreatic beta cells. We report here the development of dry eye syndrome (DES) after diabetes induction in our humanized transgenic model. Double-transgenic mice were immunized with DNA encoding human GAD65, either naked or in adenoviral vectors, to induce T1D. Mice monitored for development of diabetes developed lacrimal gland dysfunction. Animals developed lacrimal gland disease (classically associated with diabetes in Non Obese Diabetic [NOD] mice and with T1D in humans) as they developed glucose intolerance and diabetes. Animals manifested obvious clinical signs of dry eye syndrome (DES), from corneal erosions to severe keratitis. Histological studies of peri-bulbar areas revealed lymphocytic infiltration of glandular structures. Indeed, infiltrative lesions were observed in lacrimal/Harderian glands within weeks following development of glucose intolerance. Lesions ranged from focal lymphocytic infiltration to complete acinar destruction. We observed a correlation between the severity of the pancreatic infiltration and the severity of the ocular disease. Our results demonstrate development of DES in association with antigen-specific insulitis and diabetes following immunization with clinically relevant human autoantigen concomitantly expressed in pancreatic beta cells of diabetes-susceptible mice. As in the NOD mouse model and as in human T1D, our animals developed diabetes-associated DES. This specific finding stresses the relevance of our model for studying these human diseases. We believe our model will facilitate studies to prevent/treat diabetes-associated DES as well as human diabetes.
Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József
2017-11-01
Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan
2012-08-03
Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previouslymore » identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.« less
Beta-catenin regulates vitamin C biosynthesis and cell survival in murine liver.
Nejak-Bowen, Kari N; Zeng, Gang; Tan, Xinping; Cieply, Benjamin; Monga, Satdarshan P
2009-10-09
Because the Wnt/beta-catenin pathway plays multiple roles in liver pathobiology, it is critical to identify gene targets that mediate such diverse effects. Here we report a novel role of beta-catenin in controlling ascorbic acid biosynthesis in murine liver through regulation of expression of regucalcin or senescence marker protein 30 and L-gulonolactone oxidase. Reverse transcription-PCR, Western blotting, and immunohistochemistry demonstrate decreased regucalcin expression in beta-catenin-null livers and greater expression in beta-catenin overexpressing transgenic livers, HepG2 hepatoma cells (contain constitutively active beta-catenin), regenerating livers, and in hepatocellular cancer tissues that exhibit beta-catenin activation. Interestingly, coprecipitation and immunofluorescence studies also demonstrate an association of beta-catenin and regucalcin. Luciferase reporter and chromatin immunoprecipitation assays verified a functional TCF-4-binding site located between -163 and -157 (CTTTGCA) on the regucalcin promoter to be critical for regulation by beta-catenin. Significantly lower serum ascorbate levels were observed in beta-catenin knock-out mice secondary to decreased expression of regucalcin and also of L-gulonolactone oxidase, the penultimate and last (also rate-limiting) steps in the synthesis of ascorbic acid, respectively. These mice also show enhanced basal hepatocyte apoptosis. To test if ascorbate deficiency secondary to beta-catenin loss and regucalcin decrease was contributing to apoptosis, beta-catenin-null hepatocytes or regucalcin small interfering RNA-transfected HepG2 cells were cultured, which exhibited significant apoptosis that was alleviated by the addition of ascorbic acid. Thus, through regucalcin and L-gulonolactone oxidase expression, beta-catenin regulates vitamin C biosynthesis in murine liver, which in turn may be one of the mechanisms contributing to the role of beta-catenin in cell survival.
Gein, S V; Gorshkova, K G; Tendryakova, S P
2009-07-01
The studies reported here showed that beta-endorphin at concentrations of 10(-7)-10(-11) M increased interleukin-1beta (IL-1beta) production in unfractionated leukocyte suspensions both in the presence of 0.1 microg/ml lipopolysaccharide (LPS) and in cultures not stimulated with LPS. Interleukin-8 (IL-8) production by leukocytes was inhibited by beta-endorphin at concentrations of 10(-7) and 10(-11) M in the presence of LPS. The stimulatory effect of beta-endorphin on IL-1beta production was not blocked by naloxone or naltrindole. Suppression of IL-8 production was blocked by naloxone and naltrindole. In the mononuclear cell and neutrophil fractions, beta-endorphin and the delta agonist DADLE increased IL-1beta synthesis in both the spontaneous and stimulated versions of the test, while beta-endorphin and the delta agonist DADLE inhibited IL-8 production in the mononuclear cell and neutrophil fractions only in LPS-stimulated cultures. The mu agonist DAGO had no effect on IL-1beta production by mononuclear cells or neutrophils, though it suppressed LPS-induced secretion of IL-8 by neutrophils.
Activins and inhibins: Novel regulators of thymocyte development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licona-Limon, Paula; Aleman-Muench, German; Chimal-Monroy, Jesus
2009-04-03
Activins and inhibins are members of the transforming growth factor-{beta} superfamily that act on different cell types and regulate a broad range of cellular processes including proliferation, differentiation, and apoptosis. Here, we provide the first evidence that activins and inhibins regulate specific checkpoints during thymocyte development. We demonstrate that both activin A and inhibin A promote the DN3-DN4 transition in vitro, although they differentially control the transition to the DP stage. Whereas activin A induces the accumulation of a CD8{sup +}CD24{sup hi}TCR{beta}{sup lo} intermediate subpopulation, inhibin A promotes the differentiation of DN4 to DP. In addition, both activin A andmore » inhibin A appear to promote CD8{sup +}SP differentiation. Moreover, inhibin {alpha} null mice have delayed in vitro T cell development, showing both a decrease in the DN-DP transition and reduced thymocyte numbers, further supporting a role for inhibins in the control of developmental signals taking place during T cell differentiation in vivo.« less
Baldwin, Rae Lynn; Tran, Hang; Karlan, Beth Y
2003-03-15
Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to determine the mechanisms of TGF-beta resistance. To simulate in vivo responses to TGF-beta, primary cultures derived from normal human ovarian surface epithelium (HOSE) and from ovarian carcinomas (CSOC) were grown on collagen I gel, the predominant matrix molecule in the ovarian tumor milieu. When treated with 5 ng/ml TGF-beta for 72 h, HOSE (n = 11) proliferation was inhibited by 20 +/- 21% on average. In contrast, CSOC (n = 10) proliferation was stimulated 5 +/- 10% in response to TGF-beta (a statistically significant difference in response when compared with HOSE; P = 0.001). To dissect the TGF-beta/Smad signaling pathway we used a quantitative RNase protection assay (RPA) for measuring mRNA levels of TGF-beta pathway components in 20 HOSE and 20 CSOC cultures. Basal mRNA levels of TGF-beta receptors I and II, downstream signaling components Smad2, 3, 4, 6, 7, and the transcriptional corepressors Ski and SnoN did not show a statistically significant difference between HOSE and CSOC, and cannot explain their differential susceptibility to TGF-beta-induced cell cycle arrest. To assess functional differences of the TGF-beta pathway in TGF-beta-sensitive HOSE and TGF-beta-resistant CSOC, we measured Smad2/4 and 3/4 complex induction after TGF-beta treatment. HOSE and CSOC showed equivalent Smad2/4 and 3/4 complex induction after TGF-beta exposure for 0, 0.5, 2, and 4 h. It has been proposed that SnoN and Ski are corepressors of the TGF-beta/Smad pathway and undergo TGF-beta-induced degradation followed by reinduction of SnoN mRNA. However, our data show equivalent SnoN degradation in HOSE and CSOC, and equivalent SnoN mRNA induction after TGF-beta treatment. Surprising, TGF-beta-induced Ski degradation was not observed in HOSE or CSOC, suggesting that Ski may not function as a TGF-beta/Smad corepressor in ovarian epithelial cells. These data implied that the TGF-beta/Smad pathway remains functional in CSOC, although CSOC cells are resistant to antimitogenic TGF-beta effects. CSOC resistance to TGF-beta coincided with the loss of c-myc down-regulation. These data suggest that TGF-beta/Smad signaling is blocked downstream of Smad complex formation or that an alternate signaling pathway other than TGF-beta/Smad may transmit TGF-beta-induced cell cycle arrest in the ovarian epithelium.
Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway.
Youlin, Kuang; Li, Zhang; Weiyang, He; Jian, Kang; Siming, Liang; Xin, Gou
2017-03-01
Liver X receptors (LXRs) are nuclear receptors family of ligand-dependent transcription factors that play a crucial role in regulating cholesterol metabolism and inflammation. Recent studies show that LXR agonists exhibit anti-cancer activities in a variety of cancer cell lines including prostate. To further identify the potential mechanisms of LXRα activation on prostate cancer, we investigated the effect of LXR agonist T0901317 on PC3 prostate cancer cell and in which activity of beta-catenin pathway involved. Prostate cancer PC3 cells were transfected with LXR-a siRNA and treated with LXR activator T0901317. qRT-PCR and western blot were used to detect the LXR-a expression. beta-catenin, cyclin D1 and c-MYC were analyzed by western blot. Cell apoptosis was examined by flow cytometry and Cell proliferation was assessed by Cell Counting Kit-8 assay. Cell migration was detected by Transwell chambers. Data showed that T0901317 significantly inhibited PC3 cell proliferation as well as invasion and increased apoptosis in vitro. Furthermore, we found that LXRα activation induced the reduction of beta-catenin expression in PC3 cells, and this inhibitory effect could be totally abolished when cells were treated with LXRα. Meanwhile, the expression of beta-catenin target gene cyclin D1 and c-MYC were also decreased. This study provided additional evidence that LXR activation inhibited PC-3 prostate cancer cells via suppressing beta-catenin pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.
Apte, M V; Haber, P S; Darby, S J; Rodgers, S C; McCaughan, G W; Korsten, M A; Pirola, R C; Wilson, J S
1999-04-01
The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor beta (TGF-beta). Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-beta. Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-beta showed a dose dependent increase in alpha smooth muscle actin expression and increased collagen synthesis. In addition, TGF-beta increased the expression of PDGF receptors on stellate cells. Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-beta by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis.
Huang, Shih-Horng; Wu, Jiahn-Chun; Hwang, Ra-Der; Yeo, Hui-Lin; Wang, Seu-Mei
2003-09-01
Cellular junctions play important roles in cell differentiation, signal transduction, and cell function. This study investigated their function in steroid secretion by adrenal cells. Immunofluorescence staining revealed the presence of gap junctions and adherens junctions between adrenal cells. The major gap junction protein, connexin43, was seen as a linear dotted pattern of the typical gap junction plaques, in contrast to alpha-, beta-, and gamma-catenin, which were seen as continuous, linear staining of cell-cell adherens junction. Treatment with 18beta-glycyrrhetinic acid, a gap junction inhibitor, reduced the immunoreactivity of these proteins in a time- and dose-dependent manner, and caused the gap junction and adherens junction to separate longitudinally from the cell-cell contact sites, indicating the structural interdependency of these two junctions. Interestingly, 18beta-glycyrrhetinic acid stimulated a two- to three-fold increase in steroid production in these adrenal cells lacking intact cell junctions. These data raise the question of the necessity for cell communication for the endocrine function of adrenal cells. Pharmacological analyses indicated that the steroidogenic effect of 18beta-glycyrrhetinic acid was partially mediated by extracellular signal-related kinase and calcium/calmodulin-dependent kinase, a pathway distinct from the protein kinase A signaling pathway already known to mediate steroidogenesis in adrenal cells. Copyright 2003 Wiley-Liss, Inc.
Determination of carbohydrate profile in sugarbeet (Beta vulgaris) cell walls
USDA-ARS?s Scientific Manuscript database
Sugarbeet germplasms USH20, C869, EL55, EL54 were used, and different tissues at different developmental stages were sampled, including dry seeds, germinating seedlings, developing leaves, mature leaves, petioles, hypocotyls, mature roots, flowering stems and inflorescences. Cell Wall Composition An...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra
2007-03-23
Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2more » and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.« less
1996-01-01
Detachment of basal keratinocytes from basement membrane signals a differentiation cascade. Two integrin receptors alpha6beta4 and alpha3beta1 mediate adhesion to laminin 5 (epiligrin), a major extracellular matrix protein in the basement membrane of epidermis. By establishing a low temperature adhesion system at 4 degrees C, we were able to examine the exclusive role of alpha6beta4 in adhesion of human foreskin keratinocyte (HFK) and the colon carcinoma cell LS123. We identified a novel 80-kD membrane-associated protein (p80) that is tyrosine phosphorylated in response to dissociation of alpha6beta4 from laminin 5. The specificity of p80 phosphorylation for laminin 5 and alpha6beta4 was illustrated by the lack of regulation of p80 phosphorylation on collagen, fibronectin, or poly-L-lysine surfaces. We showed that blocking of alpha3beta1 function using inhibitory mAbs, low temperature, or cytochalasin D diminished tyrosine phosphorylation of focal adhesion kinase but not p80 phosphorylation. Therefore, under our assay conditions, p80 phosphorylation is regulated by alpha6beta4, while motility via alpha3beta1 causes phosphorylation of focal adhesion kinase. Consistent with a linkage between p80 dephosphorylation and alpha6beta4 anchorage to laminin 5, we found that phosphatase inhibitor sodium vanadate, which blocked the p80 dephosphorylation, prevented the alpha6beta4-dependent cell anchorage to laminin 5 at 4degreesC. In contrast, adhesion at 37 degrees C via alpha3beta1 was unaffected. Furthermore, by in vitro kinase assay, we identified a kinase activity for p80 phosphorylation in suspended HFKs but not in attached cells. The kinase activity, alpha6beta4, and its associated adhesion structure stable anchoring contacts were all cofractionated in the Triton- insoluble cell fraction that lacks alpha3beta1. Thus, regulation of p80 phosphorylation, through the activities of p80 kinase and phosphatase, correlates with alpha6beta4-SAC anchorage to laminin 5 at 4 degrees C in epithelial cells of the skin and intestine. Transmembrane signaling through p80 is an early tyrosine phosphorylation event responsive to and possibly required for anchorage to laminin 5 by HFK and LS123 epithelial cells. PMID:8647901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn
2005-01-02
The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3.more » Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in (Derynck and Zhang, 2003)]. Although signaling by Smads has been shown to be causally associated with the anti-proliferative effect of TGF{beta} (Datto et al., 1999; Liu et al., 1997), the role of non-Smad effectors on mediating the cellular effects of TGF{beta} is less well characterized.« less
Flanagan, Sarah E.; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M.; Edge, Julie A.; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A.L.; Edghill, Emma L.; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T.
2014-01-01
Summary Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. PMID:24411943
Yamodo, Innocent H; Blystone, Scott D
2004-01-01
Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.
Donnet-Hughes, A; Duc, N; Serrant, P; Vidal, K; Schiffrin, E J
2000-02-01
Human breast milk is rich in nutrients, hormones, growth factors and immunoactive molecules, which influence the growth, development and immune status of the newborn infant. Although several of these factors are also present in bovine milk, the greater susceptibility of the formula-fed infant to infection and disease and the development of allergy is often attributed to the reduced level of protective factors in milk formulas. Nevertheless, modifying manufacturing processes may preserve the biological activity of some bioactive molecules in end products. Transforming growth factor (TGF)-beta is one such molecule. TGF-beta is a polypeptide, which has been described in both human and bovine milk. It is implicated in many processes, including epithelial cell growth and differentiation, development, carcinogenesis and immune regulation. The present article discusses the biological activity of TGF-beta2 that has been preserved and activated in a cow's milk-based product. More specifically, it addresses possible mechanisms of action in the intestinal lumen and speculates on how milk products containing naturally occurring TGF-beta2 could be exploited in functional foods for the infant or as therapies for specific intestinal diseases.
McCarty, Mark F
2006-01-01
Incretin hormones have trophic effects on beta cell function that can aid prevention and treatment of diabetes. cAMP is the primary mediator of these effects, and has been shown to potentiate glucose-stimulated insulin secretion, promote proper beta cells differentiation by increasing expression of the crucial transcription factor PDX-1, and prevent beta cell apoptosis. cGMP's role in beta cell function has received far less scrutiny, but there is emerging evidence that it may have a trophic impact on beta cell function analogous to that of cAMP. An increase in plasma glucose boosts beta cell production of cGMP, which acts as a feed-forward mediator to enhance glucose-stimulated insulin secretion. cGMP also has an anti-apoptotic effect in beta cells, and there is now indirect evidence that it promotes expression of PDX-1. Supraphysiological concentrations of biotin can directly activate guanylate cyclase, and there is limited evidence that high intakes of this vitamin can be therapeutically beneficial in diabetics and in rodent models of diabetes. Beneficial effects of cGMP on muscle insulin sensitivity and on control of hepatic glucose output may contribute to biotin's utility in diabetes. The fact that nitric oxide/cGMP exert a range of favorable effects on vascular health should further encourage exploration of biotin's preventive and therapeutic potential. If an appropriate high-dose biotin regimen could achieve a modest systemic increase in guanylate cyclase activity, without entailing unacceptable side effects or risks, such a regimen might have considerable potential for promoting vascular health and preventing or managing diabetes.
Rui, Jinxiu; Deng, Songyan; Lebastchi, Jasmin; Clark, Pamela L; Usmani-Brown, Sahar; Herold, Kevan C
2016-05-01
Type 1 diabetes is caused by the immunological destruction of pancreatic beta cells. Preclinical and clinical data indicate that there are changes in beta cell function at different stages of the disease, but the fate of beta cells has not been closely studied. We studied how immune factors affect the function and epigenetics of beta cells during disease progression and identified possible triggers of these changes. We studied FACS sorted beta cells and infiltrating lymphocytes from NOD mouse and human islets. Gene expression was measured by quantitative real-time RT-PCR (qRT-PCR) and methylation of the insulin genes was investigated by high-throughput and Sanger sequencing. To understand the role of DNA methyltransferases, Dnmt3a was knocked down with small interfering RNA (siRNA). The effects of cytokines on methylation and expression of the insulin gene were studied in humans and mice. During disease progression in NOD mice, there was an inverse relationship between the proportion of infiltrating lymphocytes and the beta cell mass. In beta cells, methylation marks in the Ins1 and Ins2 genes changed over time. Insulin gene expression appears to be most closely regulated by the methylation of Ins1 exon 2 and Ins2 exon 1. Cytokine transcription increased with age in NOD mice, and these cytokines could induce methylation marks in the insulin DNA by inducing methyltransferases. Similar changes were induced by cytokines in human beta cells in vitro. Epigenetic modification of DNA by methylation in response to immunological stressors may be a mechanism that affects insulin gene expression during the progression of type 1 diabetes.