Science.gov

Sample records for beta decay total

  1. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Taín, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.-A.; Bui, V.M.; and others

    2014-06-15

    An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of {sup 87,88}Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  2. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Tain, J. L.; Jordan, M. D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Podolyak, Zs.; Regan, P. H.; Gelletly, W.; Bowry, M.; Mason, P.; Farrelly, G. F.; Rissanen, J.; Eronen, T.; Moore, I.; Penttila, H.; Aysto, J.; Eloma, V.; Hakala, J.; Jokinen, A.; Kolkinen, V.; Reponen, M.; Sonnenschein, V.; Cano-Ott, D.; Martinez, T.; Mendoza, E.; Garcia, A. R.; Gomez-Hornillos, M. B.; Gorlychev, V.; Caballero-Folch, R.; Kondev, F. G.; Sonzogni, A. A.

    2014-06-01

    We present an overview of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br using a new segmented total absorption spectrometer are presented. Our measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  3. Superallowed Fermi beta decay

    SciTech Connect

    Hardy, J. C.; Towner, I. S.

    1998-12-21

    Superallowed 0{sup +}{yields}0{sup +} nuclear beta decay provides a direct measure of the weak vector coupling constant, G{sub V}. We survey current world data on the nine accurately determined transitions of this type, which range from the decay of {sup 10}C to that of {sup 54}Co, and demonstrate that the results confirm conservation of the weak vector current (CVC) but differ at the 98% confidence level from the unitarity condition for the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and assess the likelihood of even higher quality nuclear data becoming available to confirm or deny the discrepancy. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible today.

  4. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2007-06-01

    The recent results showing the presence of neutrino oscillations clearly indicate that the difference between the squared mass of neutrinos of different flavors is different from zero, but are unable to determine the nature and the absolute value of the neutrino mass. Neutrinoless double beta decay (DBD) is at present the most powerful tool to ascertain if the neutrino is a Majorana particle and to determine under this condition the absolute value of its mass. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is Dirac or Majorana particle.

  5. Double beta decay: Calorimeters

    NASA Astrophysics Data System (ADS)

    Brofferio, Chiara

    2008-11-01

    Calorimeters or, with a more specific definition, low temperature detectors, have been used by now for more than 15 years in Double Beta Decay (DBD) searches, with excellent results: they compete with Ge diodes for the rank of detectors with the highest sensitivity to the effective neutrino mass, which is defined as a linear combination of the neutrino mass eigenvalues. After a brief introduction to the argument, with some notes on DBD and on bolometers, an update on the now closed experiment CUORICINO and on its successor, CUORE, is given. The fundamental role of background is then revealed and commented, introducing in this way the importance of the specific experiment now under construction, CUORE-0, that will precede CUORE to help optimizing the struggle against surface background. The possible future of this technique is then commented, quoting important R&D studies that are going on, for active shielding bolometers and for scintillating bolometers coupled with light detecting bolometers.

  6. Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2010-12-01

    Almost exactly seventy years ago and only one year before his tragic disappearance the ingenious idea of Ettore Majorana is becoming one of the most important step in the development of fundamental physics. The problem of the nature of the neutrino, namely if it is a massless Dirac particle different from its antineutrino or a Majorana particle with finite mass, is discussed. In fact the recent results showing the presence of neutrino oscillations clearly indicates that the difference between the squared mass of neutrinos of different flavours is finite. Neutrinoless double beta decay (DBD) is at present the most powerful tool to determine the effective value of the mass of a Majorana neutrino. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already at least partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is indeed a Majorana particle.

  7. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  8. Neutron beta decay studies with Nab

    NASA Astrophysics Data System (ADS)

    Baeßler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barrón-Palos, L.; Bowman, J. D.; Bychkov, M. A.; Byrne, J.; Calarco, J. R.; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlež, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttilä, S. I.; Počanić, D.; Rykaczewski, K. P.; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-10-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  9. Current double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Giuliani, A.

    2005-01-01

    After an introduction about double beta decay and the deep connections between the lepton-violating channel and the neutrino properties, the most sensitive experimental approaches to the search for this rare nuclear transition are described. An overview of the experiments presently running is then given, with particular emphasis on the adopted techniques and their possible extrapolation to next-generation, higher-sensitivity experiments. The present situation about the experimental determination of the Majorana neutrino mass is presented and discussed.

  10. beta. -decay asymmetry of the free neutron

    SciTech Connect

    Bopp, P.; Dubbers, D.; Klemt, E.; Last, J.; Schuetze, H.; Weibler, W.; Freedman, S.J.; Schaerpf, O.

    1983-01-01

    The ..beta..-decay of polarized neutrons has been studied with the new superconducting spectrometer PERKEO at the ILL. The energy dependence of the ..beta..-decay asymmetry has been measured for the first time. From the measured ..beta..-asymmetry parameter we obtain a new value for the ratio of weak coupling constants g/sub A//g/sub V/. 11 references.

  11. Gauge vectors and double beta decay

    NASA Astrophysics Data System (ADS)

    Fonseca, Renato M.; Hirsch, Martin

    2017-02-01

    We discuss contributions to neutrinoless double beta (0 ν β β ) decay involving vector bosons. The starting point is a list of all possible vector representations that may contribute to 0 ν β β decay via d =9 or d =11 operators at tree level. We then identify gauge groups which contain these vectors in the adjoint representation. Even though the complete list of vector fields that can contribute to 0 ν β β up to d =11 is large (a total of 46 vectors), only a few of them can be gauge bosons of phenomenologically realistic groups. These latter cases are discussed in some more detail, and lower (upper) limits on gauge boson masses (mixing angles) are derived from the absence of 0 ν β β decay.

  12. Beta decay of 99Tcm

    NASA Astrophysics Data System (ADS)

    Alburger, D. E.; Richards, P.; Ku, T. H.

    1980-02-01

    The emission of β rays from 6.02-h 99Tcm has been detected with an intermediate-image magnetic spectrometer. β-ray components with end-point energies of 434.8+/-2.6 keV (β0) to the 99Ru ground state and 346.7+/-2.0 keV (β1) to the 90-keV state were found with intensities per decay of (1.0+/-0.3) × 10-5 for β0 and (2.6+/-0.5) × 10-5 for β1. In the Kurie plot analysis the unique first-forbidden "α" shape was assumed for β0 and an allowed shape was assumed for β1. Values of f1t=9.39+/-0.11 for β0 and f0t=8.66+/-0.08 for β1 were derived. γ rays of 322, 233, and 140 keV were observed in a calibrated Ge(Li) detector with relative source intensities of I322:I233:I140=(1.13+/-0.09)×10-6:(0.95+/-0.17)×10-7:1.000. The total β-ray branching of 3.7 × 10-5 results in a negligible correction to dosage calculations in the use of 99Tcm for diagnostic nuclear medicine. RADIOACTIVITY 99Tcm: measured Eβ, Iβ, and Iγ magnetic spectrometer, Ge(Li); deduced decay scheme.

  13. Review of modern double beta decay experiments

    SciTech Connect

    Barabash, A. S.

    2015-10-28

    The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay in new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.

  14. Precision measurements in 20F beta decay

    NASA Astrophysics Data System (ADS)

    Hughes, Maximilian; Naviliat-Cuncic, Oscar; Voytas, Paul; George, Elizabeth; Paulauskas, Stan; Huyan, Xueying

    2017-01-01

    Precision measurements of the shape of the beta particle energy spectrum provide a sensitive window to search for new interactions beyond the standard model. The decay of 20F offers an attractive system due to the simple decay scheme for a coincidence measurement. A beam of 20F ions, produced at the National Superconducting Cyclotron Laboratory, was implanted into a beta-detector. A gamma-ray detection system surrounded the beta detector to detect the beta-delayed gammas in coincidence to reduce the background. Preliminary analysis of these data focus on the half-life of 20F due to the statistical inconsistency of previous work. Monte Carlo simulations are ongoing to analyze the shape of the beta energy spectrum. Results of the analysis of the half-life will be presented. Supported by National Science Foundation Grant PHY-1102511.

  15. The double-beta decay: Theoretical challenges

    SciTech Connect

    Horoi, Mihai

    2012-11-20

    Neutrinoless double beta decay is a unique process that could reveal physics beyond the Standard Model of particle physics namely, if observed, it would prove that neutrinos are Majorana particles. In addition, it could provide information regarding the neutrino masses and their hierarchy, provided that reliable nuclear matrix elements can be obtained. The two neutrino double beta decay is an associate process that is allowed by the Standard Model, and it was observed for about ten nuclei. The present contribution gives a brief review of the theoretical challenges associated with these two process, emphasizing the reliable calculation of the associated nuclear matrix elements.

  16. Problems and progress in tritium beta decay

    SciTech Connect

    Balke, B.; Fackler, O.; Mugge, M.; White, R.

    1988-04-01

    It has been nearly eight years since the group led by Lubimov first saw evidence for a finite neutrino mass in the tritium beta decay spectrum. Their measurement provided a great stimulus to the field; the number of experiments currently underway reflects the significance of their claim. The fact that further data are only now beginning to appear reflects the difficulty of this measurement. As an introduction to related papers in these proceedings, we briefly consider the key elements involved in neutrino-mass measurements using tritium beta decay and list the experiments currently underway in the field. 5 refs., 1 tab.

  17. Double-Beta Decay at TUNL

    NASA Astrophysics Data System (ADS)

    Kidd, Mary

    2007-10-01

    Studying double-beta decay at Triangle Universities Nuclear Laboratory (TUNL) is perhaps one of the most promising ways to pinpoint the neutrino mass. What they do not mention is that to study double-beta decay, you probably have to become a certified miner, and if you have a fear of goats, you should stay away. In this talk, I will tell you some of my experiences as a TUNL graduate student, and how I am now nearly qualified for a job in the mining industry.

  18. Imperfect World of beta beta-decay Nuclear Data Sets

    SciTech Connect

    Pritychenko, B.

    2015-01-03

    The precision of double-beta ββ-decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for ββ-decay T2v1/2 is consistent with large nuclear reaction and structure data sets and provides validation of experimental half-lives. A complementary analysis of the decay uncertainties indicates deficiencies due to small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead toward more precise values of-decay half-lives and nuclear matrix elements.

  19. Double beta decay: recent developments and projections

    SciTech Connect

    Avignone, F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1983-08-01

    A report of recent events in both theoretical and experimental aspects of double beta decay is given. General theoretical considerations, recent developments in nuclear structure theory, geochronological determinations of half lives and ratios as well as laboratory experiments are discussed with emphasis on the past three years. Some projections are given. 28 references.

  20. Beyond low beta-decay Q values

    SciTech Connect

    Mustonen, M. T.; Suhonen, J.

    2010-11-24

    Beta decays with low Q values can be utilized in the quest to determine the neutrino mass scale. This is being realized in two experiments, KATRIN and MARE, using tritium and {sup 187}Re, respectively. The beta-decay of {sup 187}Re had the lowest known Q value until 2005, when the beta decay of {sup 115}In to the first excited state of {sup 115}Sn was discovered in Gran Sasso underground laboratory. Last year two independent ion trap measurements confirmed that this decay breaks the former record by an order of magnitude.Our theoretical study on this tiny decay channel complemented the experimental effort by the JYFLTRAP group in Finland and HADES underground laboratory in Belgium. A significant discrepancy between the experimental and theoretical results was found. This might be explained by various atomic contributions known to grow larger as the Q value decreases. However, the traditional recipes for taking these effects into account break down on this new ultra-low Q value regime, providing new challenges for theorists on the borderline between nuclear and atomic physics.

  1. A calorimetric search on double beta decay of 130Te

    NASA Astrophysics Data System (ADS)

    Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Pobes, C.; Previtali, E.; Sisti, M.; Vanzini, M.

    2003-04-01

    We report on the final results of a series of experiments on double beta decay of 130Te carried out with an array of twenty cryogenic detectors. The set-up is made with crystals of TeO2 with a total mass of 6.8 kg, the largest operating one for a cryogenic experiment. Four crystals are made with isotopically enriched materials: two in 128Te and two others in 130Te. The remaining ones are made with natural tellurium, which contains 31.7% and 33.8% 128Te and 130Te, respectively. The array was run under a heavy shield in the Gran Sasso Underground Laboratory at a depth of about 3500 m.w.e. By recording the pulses of each detector in anticoincidence with the others a lower limit of 2.1×1023 years has been obtained at the 90% C.L. on the lifetime for neutrinoless double beta decay of 130Te. In terms of effective neutrino mass this leads to the most restrictive limit in direct experiments, after those obtained with Ge diodes. Limits on other lepton violating decays of 130Te and on the neutrinoless double beta decay of 128Te to the ground state of 128Xe are also reported and discussed. An indication is presented for the two neutrino double beta decay of 130Te. Some consequences of the present results in the interpretation of geochemical experiments are discussed.

  2. Search for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Ostrovskiy, Igor; O'Sullivan, Kevin

    2016-06-01

    We review current experimental efforts to search for neutrinoless double beta decay (0νββ). A description of the selected leading experiments is given and the strongest recent results are compared in terms of achieved background indexes (BI) and limits on effective Majorana mass. A combined limit is also shown. The second part of the review covers next generation experiments, highlighting the challenges and new technologies that may be necessary to achieve a justifiable discovery potential. A potential synergy with direct dark matter searches, which could be an especially prudent strategy in case the axial vector coupling constant is quenched in 0νββ decay, is emphasized.

  3. Correlations and the neutrinoless double beta decay

    SciTech Connect

    Menendez, J.; Poves, A.; Caurier, E.; Nowacki, F.

    2009-11-09

    We explore the influence of the deformation on the nuclear matrix elements of the neutrinoless double beta decay (NME), concluding that the difference in deformation -or more generally on the amount of quadrupole correlations- between parent and grand daughter nuclei quenchs strongly the decay. We discuss how varies the nuclear matrix element of {sup 76}Ge decay when the wave functions of the two nuclei involved in the transition are constrained to reproduce the experimental occupancies. In the Interacting Shell Model description the value of the NME is enhanced about 15% compared to previous calculations, whereas in the QRPA the NME's are reduced by 20%-30%, thus, the discrepancies between both approaches diminish.

  4. Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless {beta}{beta} Decays

    SciTech Connect

    Caurier, E.; Nowacki, F.

    2008-02-08

    We study in this Letter the neutrinoless double beta decay nuclear matrix elements (NME's) in the framework of the interacting shell model. We analyze them in terms of the total angular momentum of the decaying neutron pair and as a function of the seniority truncations in the nuclear wave functions. This point of view turns out to be very adequate to gauge the accuracy of the NME's predicted by different nuclear models. In addition, it gives back the protagonist role in this process to the pairing interaction, the one which is responsible for the very existence of double beta decay emitters. We show that low seniority approximations, comparable to those implicit in the quasiparticle RPA in a spherical basis, tend to overestimate the NME's in several decays.

  5. Tau neutrino component to tritium beta decay

    SciTech Connect

    Snyderman, N.J.

    1995-06-01

    A framework is given for explaining anomalous results of neutrino mass experiments that measure the high energy electron spectrum of tritium {beta} decay. The experimental results have been fit to a negative neutrino mass square. We show that there is a consistent phenomenological interpretation due to a positive mass tau neutrino component of the {beta} decay spectrum, with strong near threshold final state interactions with the He nucleus. If this enhancement is due to new interactions between low energy tau neutrinos and nuclei, then the tritium 0 decay experiments could be used as detectors for cosmic background tau neutrinos. The model predicts a distinctive spectrum shape that is consistent with a recent high statistics LLNL experiment. A fit to the experiment gives a tau neutrino mass of 23 eV. Tau neutrinos of this mass would dominate the mass of the universe. Requirements for a theoretical model are given, as well as models that realize different aspects of these requirements. While qualitatively successful, the theoretical models have such severe quantitative difficulties that the accuracy of the molecular physics of the T-{sup 3}He ion, assumed in the analysis of the experimental data, is called into question.

  6. Beta Decay Measurements of Neutron Deficient Cesium Isotopes.

    NASA Astrophysics Data System (ADS)

    Parry, Roger Franklin

    The study of nuclei far from beta stability provides information on nuclear binding energies and nuclear structure. However, as one progresses away from the valley of stability, the associated half-lives and production cross sections decrease with increasing interference from the decays of adjacent nuclei. An experimental solution to these problems was the use of the He-jet fed on-line mass separator, RAMA. This instrument provided a fast and selective technique for the mass separation necessary for the investigation of exotic nuclei. Using this device, a beta decay Q-value study of the neutron deficient cesium isotopes, ('119-123)Cs, was conducted. Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q(,EC)) of the neutron deficient ('119 -123)Cs isotopes. The total decay energies of ('122m)Cs (Q(,EC) = 6.95 (+OR-) 0.25 MeV) and ('119)Cs (Q(,EC) = 6.26 (+OR-) 0.29 MeV) were new measurements. The total decay energies of ('123)Cs (Q(,EC) = 4.05 (+OR-) 0.18 MeV), ('122g)Cs (Q(,EC) = 7.05 (+OR-) 0.18 MeV), ('121)Cs (Q(,EC) = 5.21 (+OR-) 0.22 MeV), and ('120)Cs (Q(,EC) = 7.38 (+OR -) 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for ('121)Xe and the proposal of three new energy levels in ('119)Xe. Comparison of the experimental cesium mass excesses (determined with our Q(,EC) values and known xenon mass excesses) with both the literature and theoretical predicted values showed

  7. Beta-decay measurements of neutron-deficient cesium isotopes

    SciTech Connect

    Parry, R.F.

    1983-03-01

    Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q/sub EC/) of the neutron deficient /sup 119/ /sup 123/Cs isotopes. The total decay energies of /sup 122m/Cs (Q/sub EC/ = 6.95 +- 0.25 MeV) and /sup 119/Cs (Q/sub EC/ = 6.26 +- 0.29 MeV) were new measurements. The total decay energies of /sup 123/Cs (Q/sub EC/ = 4.05 +- 0.18 MeV), /sup 122g/Cs (Q/sub EC/ = 7.05 +- 0.18 MeV), /sup 121/Cs (Q/sub EC/ = 5.21 +- 0.22 MeV), and /sup 120/Cs (Q/sub EC/ = 7.38 +- 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for /sup 121/Xe and the proposal of three new energy levels in /sup 119/Xe. Comparison of the experimental cesium mass excesses (determined with our Q/sub EC/ values and known xenon mass excesses) with both the literature and theoretical predicted values showed general agreement except for /sup 120/Cs. Possible explanations for this deviation are discussed.

  8. Fundamental processes in the interacting boson model: 0{nu}{beta}{beta} decay

    SciTech Connect

    Iachello, F.; Barea, J.

    2011-05-06

    A program to calculate nuclear matrix elements for fundamental processes in the interacting boson model has been initiated. Results for the nuclear matrix elements in neutrinoless double beta decay 0{nu}{beta}{beta} are presented.

  9. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  10. Neutrinoless double beta decay search with SNO+

    NASA Astrophysics Data System (ADS)

    Lozza, V.

    2014-01-01

    The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.'s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB) in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te), it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  11. The NEXT double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Laing, A.; NEXT Collaboration

    2016-05-01

    NEXT (Neutrino Experiment with a Xenon TPC) is a neutrinoless double-beta (ββ0v) decay experiment at Laboratorio Subterraneo de Canfranc (LSC). It is an electroluminescent Time Projection Chamber filled with high pressure 136Xe gas with separated function capabilities for calorimetry and tracking. Energy resolution and background suppression are the two key features of any neutrinoless double beta decay experiment. NEXT has both good energy resolution (< 1% FWHM) and an extra handle for background identification provided by track reconstruction. We expect a background rate of 4 × 10-4 counts keV-1 kg-1 yr-1, and a sensitivity to the Majorana neutrino mass of between 80-160 meV (depending on NME) after a run of 3 effective years of the 100 kg scale NEXT-100 detector. The initial phase of NEXT-100, called NEW, is currently being commissioned at LSC. It will validate the NEXT background rate expectations and will make first measurements of the two neutrino ββ2v mode of 136Xe. Furthermore, the NEXT technique can be extrapolated to the tonne scale, thus allowing the full exploration of the inverted hierarchy of neutrino masses. These proceedings review NEXT R&D results, the status of detector commissioning at LSC and the NEXT physics case.

  12. Double Beta Decay in Gauge Theories

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2002-09-01

    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. From the elementary particle point of view it pops up in almost every model, giving rise among others to the following mechanisms: a) The traditional contributions like the light neutrino mass mechanism as well as the jL - jR leptonic interference (λ and η terms). b) The exotic R-parity violating supersymmetric (SUSY) contributions. From the nuclear physics point of view it is challenging, because: 1) The nuclei, which can undergo double beta decay, have complicated nuclear structure. 2) The energetically allowed transitions are suppressed (exhaust a small part of all the strength). 3) Since in some mechanisms the intermediate particles are very heavy one must cope with the short distance behavior of the transition operators. 4) The intermediate momenta involved are quite high and one has to consider momentum dependent terms of the nucleon current. Taking the above effects into account from the experimental limits on the interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150, we have extracted new limits on the various lepton violating parameters. In particular we get a stringent limit on the R-parity violating parameter λ '111 < 4.0 × 10-4.

  13. Optical pumping for nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; Smale, S.; Craiciu, I.; Vantyghem, A.; Gorelov, A.; Anholm, M.; Behling, R. S.; Fenker, B.; Melconian, D.; Gwinner, G.; Friesen, D.

    2013-05-01

    For nuclear beta decay experiments to test the standard model, we must produce laser-cooled, polarized atoms with vector polarization of at least 99.9%, with knowledge of the polarization from atomic observables at 0.1% accuracy. We cycle on and off an AC MOT, and optically pump 37K atoms for 2 ms with trap off. We use circularly polarized light on the 4S1/2 --> 4P1/2 transition, using RF sidebands on a diode laser to excite transitions from both F=1 and F=2 ground states. We test techniques with stable 41K atoms, which have very similar hyperfine splitting to 37K. Optical pumping techniques include flipping spin state with liquid crystal variable retarders, 0.25 mm thick SiC substrate mirrors in front of the beta detectors, combining 769.9 D1 and 766.5 nm D2 with an angle-tuned narrow bandpass filter, relieving stress from conflat-compatible windows to minimize birefringence, and shifting the frequency of the light with the spin flips to compensate for Zeeman shifts. We must avoid coherent population trapping effects. The polarization is measured by the time dependence of the excited state population after optical pumping light is applied, probed by measuring fluorescence and by nonresonant photoionization. Supported by NSERC, NRC through TRIUMF.

  14. {beta}-decay study of {sup 77}Cu

    SciTech Connect

    Patronis, N.; De Witte, H.; Gorska, M.; Huyse, M.; Kruglov, K.; Pauwels, D.; Van de Vel, K.; Van Duppen, P.; Van Roosbroeck, J.; Thomas, J.-C.; Materna, T.; Mathieu, L.; Serot, O.

    2009-09-15

    A {beta}-decay study of {sup 77}Cu has been performed at the ISOLDE mass separator with the aim to deduce its {beta}-decay properties and to obtain spectroscopic information on {sup 77}Zn. Neutron-rich copper isotopes were produced by means of proton- or neutron-induced fission reactions on {sup 238}U. After the production, {sup 77}Cu was selectively laser ionized, mass separated, and sent to different detection systems where {beta}-{gamma} and {beta}-n coincidence data were collected. We report on the deduced half-live, decay scheme, and possible spin assignment of {sup 77}Cu.

  15. The MAJORANA DEMONSTRATOR: A Search for Neutrino less Double-beta Decay of Ge-76

    SciTech Connect

    Xu, W.; Abgrall, N.; Avignone, III, F. T.; Bertrand, F. E.; Efremenko, Yuri; Galindo-Uribarri, Alfredo {nmn}; Green, M. P.; Radford, D. C.; Romero-Romero, E.; White, B. R.; Wilkerson, J. F.

    2015-01-01

    Neutrino less double-beta (Ov beta beta) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the Ov beta beta decay of Ge-76 and to demonstrate a background rate at or below 3 counts/ (ROI.t.y) in the 4 keV region of interest (ROT) around the 2039 keV Q-value for Ge-76 Ov beta beta decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.

  16. No-neutrino double beta decay: more than one neutrino

    SciTech Connect

    Rosen, S.P.

    1983-01-01

    Interference effects between light and heavy Majorana neutrinos in the amplitude for no-neutrino double beta decay are discussed. The effects include an upper bound on the heavy neutrino mass, and an A dependence for the effective mass extracted from double beta decay. Thus the search for the no-neutrino decay mode should be pursued in several nuclei, and particularly in Ca/sup 48/, where the effective mass may be quite large.

  17. Comparison of the [ital pn] quasiparticle RPA and shell model for Gamow-Teller beta and double-beta decays

    SciTech Connect

    Zhao, L.; Brown, B.A. )

    1993-06-01

    We examine the validity of the [ital pn] quasiparticle RPA ([ital pn]QRPA) as a model for calculating [beta][sup +] and 2[nu][beta][beta] Gamow-Teller decays by making a comparison of the [ital pn]QRPA with a large-basis shell-model calculation within the 0[ital f]1[ital p] shell. We employ [ital A]=46 nuclei (those with six valence nucleons) for this comparison. Our comparison includes the decay matrix elements summed over final states, the strength distributions, and, for the first time, the coherent transition matrix elements (CTME). The [ital pn]QRPA overestimates the total [beta][sup +] and 2[nu][beta][beta] matrix elements. There are large differences in the shape of the spectra as well as in the CTME between the [ital pn]QRPA and shell-model results. Empirical improvements for the [ital pn]QRPA are discussed.

  18. Two-Neutrino Double-Beta Decay.

    NASA Astrophysics Data System (ADS)

    Guerard Ortego, Carlos-Kjell

    1992-01-01

    Two previous independent reports of 2 nubetabeta-decay by the ITEP-YPI collaboration, rm T_sp{1/2} {2nu}=(9+/- 1) times 10^ {20} yr (1sigma), and PNL-USC group, rm T_sp{1/2 }{2nu}=(1.12_sp{-0.26} {+0.48}) times 10^{21} yr (2sigma), were confirmed using a 0.25 Kg Ge(Li) detector isotopically enriched to 86% in ^{76}Ge. The detector was operated in the PNL-USC ultralow background facility in the Homestake gold mine for 168 days. Following a single correction to the data, a spectrum resembling that of the earlier PNL-USC experiment, with about the same intensity per ^{76}Ge atom, per year, was observed with a measured half life of rm T_sp{1/2}{2nu}=(9.2 _sp{-0.4}{+0.7} times 10 ^{20} y (2sigma). This experiment is one of two presented in this dissertation as original work. The half-life of the 2nubeta beta-decay of ^{100} Mo to the 1130 keV level of ^{100 }Ru has been measured to be rm T_{1/2}=(1.1_sp{-0.2} {+0.3}) times 10^{21} y (90% C.L.), by observing the 590.76 and 539.53 keV gamma rays emitted in the 0_sp{1}{+ }to 2^+to 0^+ de -excitation cascade. A review of the most relevant nuclear structure calculations is given, and their predictions are compared to the measurements from our two experiments.

  19. Current and future searches for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle J.

    2016-09-01

    With the discovery of neutrino oscillations and neutrino mass, it has become a pressing question whether neutrinos have distinct antiparticle states. The most practical experimental approach to answering this question is the search for neutrinoless double beta decay, a version of a rare nuclear process that would violate lepton number conservation. The observation of neutrinoless double beta decay would prove that neutrinos are their own antiparticles. Neutrinoless double beta decay experiments deploy large source masses consisting of a select few (usually enriched) isotopes of interest. Detectors must achieve extremely low levels of radioactive background to detect this rare decay. I will report on recent searches for neutrinoless double beta decay and discuss the technical challenges that the next generation of experiments will overcome.

  20. Reinvestigation of the beta-decay of 110Mo

    NASA Astrophysics Data System (ADS)

    Wang, J. C.; Dendooven, P.; Hankonen, S.; Huikari, J.; Jokinen, A.; Kolhinen, V. S.; Lhersonneau, G.; Nieminen, A.; Peräjärvi, K.; Rinta-Antila, S.; Äystö, J.

    2004-01-01

    The beta-decay of the neutron-rich nucleus 110Mo, separated by the IGISOL on-line mass separator from other fission products, has been investigated by using beta-gamma and gamma-gamma coincidence techniques. The decay scheme of 110Mo has been revised, including 3 new excited states and 7 new γ transitions in 110Tc. The β -feedings were measured and log {ft} values and B(GT) values were deduced based on a Q_{β}-value from systematics. Three excited 1 + states in 110Tc fed by spin-flip allowed-unhindered beta transitions were identified. The deduced beta-decay strengths are compared with the Gamow-Teller strength distribution obtained from a macroscopic-microscopic calculation. The role of the asymptotic quantum numbers in the context of the allowed beta-decay is discussed.

  1. Neutrinoless double beta decay and neutrino mass

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Ejiri, H.; Šimkovic, F.

    2016-11-01

    The observation of neutrinoless double beta decay (DBD) will have important consequences. First it will signal that lepton number is not conserved and the neutrinos are Majorana particles. Second, it represents our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal, however, certain hurdles have to be overcome involving particle, nuclear and experimental physics. Particle physics is important since it provides the mechanisms for neutrinoless DBD. In this review, we emphasize the light neutrino mass mechanism. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements (NMEs), a formidable task. To this end, we review the recently developed sophisticated nuclear structure approaches, employing different methods and techniques of calculation. We also examine the question of quenching of the axial vector coupling constant, which may have important consequences on the size of the NMEs. From an experimental point of view it is challenging, since the life times are extremely long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with good energy resolution and very low background.

  2. Proposed experimental test of Bell's inequality in nuclear beta decay

    SciTech Connect

    Skalsey, M.

    1986-04-15

    A ..beta.. decay experiment is proposed for testing Bell's inequality, related to hidden-variables alternatives to quantum mechanics. The experiment uses Mott scattering for spin polarization analysis of internal conversion electrons. Beta-decay electrons, in cascade with the conversion electrons, are longitudinally polarized due to parity violation in the weak interaction. So simply detecting the ..beta.. electron direction effectively measures the spin. A two-particle spin-spin correlation can thus be investigated and related, within certain assumptions, to Bell's inequality. The example of /sup 203/Hg decay is used for a calculation of expected results. Specific problems related to nuclear structure and experimental inconsistencies are also discussed.

  3. Forbidden unique beta-decays and neutrino mass

    NASA Astrophysics Data System (ADS)

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-01

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the "Microcalorimeter Arrays for a Rhenium Experiment" (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of 79Se, 107Pd and 187Re. It is found that the p3/2-wave emission dominates over the s1/2-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of 3H.

  4. Complementarity of Neutrinoless Double Beta Decay and Cosmology

    SciTech Connect

    Dodelson, Scott; Lykken, Joseph

    2014-03-20

    Neutrinoless double beta decay experiments constrain one combination of neutrino parameters, while cosmic surveys constrain another. This complementarity opens up an exciting range of possibilities. If neutrinos are Majorana particles, and the neutrino masses follow an inverted hierarchy, then the upcoming sets of both experiments will detect signals. The combined constraints will pin down not only the neutrino masses but also constrain one of the Majorana phases. If the hierarchy is normal, then a beta decay detection with the upcoming generation of experiments is unlikely, but cosmic surveys could constrain the sum of the masses to be relatively heavy, thereby producing a lower bound for the neutrinoless double beta decay rate, and therefore an argument for a next generation beta decay experiment. In this case as well, a combination of the phases will be constrained.

  5. MOON for double-beta decays and neutrino nuclear responses

    NASA Astrophysics Data System (ADS)

    Fushimi, K.; Kameda, Y.; Harada, K.; Nakayama, S.; Ejiri, H.; Shima, T.; Yasuda, K.; Hazama, R.; Imagawa, K.

    2010-01-01

    Thin and wide area inorganic crystal was tested for double beta decay experiment. The thin NaI(Tl) whose dimension of 18cm×18cm×0.5cm was developed. The energy resolution at Q-value of 100Mo was obtained less than 3% in full-width-half-maximum. Although the backscattering of electrons suffers the detection efficiency, the NaI(Tl) has the advantage for double beta decay experiment.

  6. Beta-decay, Bremsstrahlen, and the origin of molecular chirality

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Yi, L.

    1984-01-01

    A brief review is presented of the Vester-Ulbricht beta-decay Bremsstrahlen hypothesis for the origin of optical activity, and of subsequent experiments designed to test it. Certain experiments along these lines, begun in 1974 and involving the irradiation of racemic and optically active amino acids in a 61.7 KCi Sr-90-Y-90 Bremsstrahlen source, have now been completed and are described. After 10.89 years of irradiation with a total Bremsstrahlen dose of 2.5 x 10 to the 9th rads, crystalline DL-leucine, norleucine, and norvaline suffered 47.2, 33.6, and 27.4 percent radiolysis, respectively, but showed no evidence whatsoever of asymmetric degradation. Dand L-Leucine underwent about 48 percent radiolysis and showed 2.4-2.9 percent radioracemization. Other samples in solution were too severely degraded to analyze. Probable intrinsic reasons for the failure of the Vester-Ulbricht mechanism to afford asymmetric radiolysis in the present and related experiments involving beta-decay Bremsstrahlen are enumerated.

  7. Searches for massive neutrinos in nuclear beta decay

    SciTech Connect

    Jaros, J.A.

    1992-10-01

    The status of searches for massive neutrinos in nuclear beta decay is reviewed. The claim by an ITEP group that the electron antineutrino mass > 17eV has been disputed by all the subsequent experiments. Current measurements of the tritium beta spectrum limit m[sub [bar [nu

  8. Failure of the gross theory of beta decay in neutron deficient nuclei

    SciTech Connect

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Beta Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.

  9. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  10. Microscopic beta and gamma data for decay-heat needs

    SciTech Connect

    Dickens, J.K.

    1983-01-01

    Microscopic beta and gamma data for decay-heat needs are defined as absolute-intensity spectral distributions of beta and gamma rays following radioactive decay of radionuclides created by, or following, the fission process. Four well-known evaluated data files, namely the US ENDF/B-V, the UK UKFPDD-2, the French BDN (for fission products), and the Japanese JNDC Nuclear Data Library, are reviewed. Comments regarding the analyses of experimental data (particularly gamma-ray data) are given; the need for complete beta-ray spectral measurements is emphasized. Suggestions on goals for near-term future experimental measurements are presented. 34 references.

  11. Theory of neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Ejiri, H.; Šimkovic, F.

    2012-10-01

    Neutrinoless double-beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that the lepton number is not conserved and that the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino-mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles must be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting useful information from the data. One must accurately evaluate the relevant nuclear matrix elements—a formidable task. To this end, we review the sophisticated nuclear structure approaches which have recently been developed, and which give confidence that the required nuclear matrix elements can be reliably calculated employing different methods: (a) the various versions of the quasiparticle random phase approximations, (b) the interacting boson model, (c) the energy density functional method and (d) the large basis interacting shell model. It is encouraging that, for the light neutrino-mass term at least, these vastly different approaches now give comparable results. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with high-energy resolution, low thresholds and very low background. If a signal is found, it will be a tremendous accomplishment. The real task then, of course, will be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute to or even dominate this process. In particular, we will consider the following processes: The neutrino induced, but neutrino-mass independent contribution. Heavy left and/or right-handed neutrino-mass contributions. Intermediate scalars (doubly charged, etc

  12. Theory of neutrinoless double-beta decay.

    PubMed

    Vergados, J D; Ejiri, H; Simkovic, F

    2012-10-01

    Neutrinoless double-beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that the lepton number is not conserved and that the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino-mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles must be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting useful information from the data. One must accurately evaluate the relevant nuclear matrix elements--a formidable task. To this end, we review the sophisticated nuclear structure approaches which have recently been developed, and which give confidence that the required nuclear matrix elements can be reliably calculated employing different methods: (a) the various versions of the quasiparticle random phase approximations, (b) the interacting boson model, (c) the energy density functional method and (d) the large basis interacting shell model. It is encouraging that, for the light neutrino-mass term at least, these vastly different approaches now give comparable results. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with high-energy resolution, low thresholds and very low background. If a signal is found, it will be a tremendous accomplishment. The real task then, of course, will be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute to or even dominate this process. In particular, we will consider the following processes: The neutrino induced, but neutrino-mass independent contribution. Heavy left and/or right-handed neutrino-mass contributions. Intermediate scalars (doubly charged, etc

  13. Short-baseline electron neutrino disappearance, tritium beta decay, and neutrinoless double-beta decay

    SciTech Connect

    Giunti, Carlo; Laveder, Marco

    2010-09-01

    We consider the interpretation of the MiniBooNE low-energy anomaly and the gallium radioactive source experiments anomaly in terms of short-baseline electron neutrino disappearance in the framework of 3+1 four-neutrino mixing schemes. The separate fits of MiniBooNE and gallium data are highly compatible, with close best-fit values of the effective oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}. The combined fit gives {Delta}m{sup 2}(greater-or-similar sign)0.1 eV{sup 2} and 0.11(less-or-similar sign)sin{sup 2}2{theta}(less-or-similar sign)0.48 at 2{sigma}. We consider also the data of the Bugey and Chooz reactor antineutrino oscillation experiments and the limits on the effective electron antineutrino mass in {beta} decay obtained in the Mainz and Troitsk tritium experiments. The fit of the data of these experiments limits the value of sin{sup 2}2{theta} below 0.10 at 2{sigma}. Considering the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data as a statistical fluctuation, we perform a combined fit which gives {Delta}m{sup 2}{approx_equal}2 eV and 0.01(less-or-similar sign)sin{sup 2}2{theta}(less-or-similar sign)0.13 at 2{sigma}. Assuming a hierarchy of masses m{sub 1}, m{sub 2}, m{sub 3}<beta} decay and neutrinoless double-{beta} decay are, respectively, between about 0.06 and 0.49 and between about 0.003 and 0.07 eV at 2{sigma}. We also consider the possibility of reconciling the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data with different mixings in the neutrino and antineutrino sectors. We find a 2.6{sigma} indication of a mixing angle asymmetry.

  14. Time reversal violation in radiative beta decay: experimental plans

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; McNeil, J.; Anholm, M.; Gorelov, A.; Melconian, D.; Ashery, D.

    2017-01-01

    Some explanations for the excess of matter over antimatter in the universe involve sources of time reversal violation (TRV) in addition to the one known in the standard model of particle physics. We plan to search for TRV in a correlation between the momenta of the beta, neutrino, and the radiative gamma sometimes emitted in nuclear beta decay. Correlations involving three (out of four) momenta are sensitive at lowest order to different TRV physics than observables involving spin, such as electric dipole moments and spin-polarized beta decay correlations. Such experiments have been done in radiative kaon decay, but not in systems involving the lightest generation of quarks. An explicit low-energy physics model being tested produces TRV effects in the Fermi beta decay of the neutron, tritium, or some positron-decaying isotopes. We will present plans to measure the TRV asymmetry in radiative beta decay of laser-trapped 38mK at better than 0.01 sensitivity, including suppression of background from positron annihilation. Supported by NSERC, D.O.E., Israel Science Foundation. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  15. Searching for Double Beta Decay with the Enriched Xenon Observatory

    SciTech Connect

    Hall, C.; /SLAC

    2007-03-16

    The Enriched Xenon Observatory (EXO) Collaboration is building a series of experiments to search for the neutrinoless double beta decay of {sup 136}Xe. The first experiment, known as EXO-200, will utilize 200 kg of xenon enriched to 80% in the isotope of interest, making it the largest double beta decay experiment to date by one order of magnitude. This experiment is rapidly being constructed, and will begin data taking in 2007. The EXO collaboration is also developing a technique to identify on an event-by-event basis the daughter barium ion of the double beta decay. If successful, this method would eliminate all conventional radioactive backgrounds to the decay, resulting in an ideal experiment. We summarize here the current status of EXO-200 construction and the barium tag R&D program.

  16. Double-beta decay: Some recent results and developments

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.

    A brief review and status of theoretical issues associated with double-beta decay (ββ-decay) is given. The final results of the measurement of 2ν ββ-decay of 100Mo to the first excited 0 + state in 100Ru are presented prior to publication. Corrections to the earlier PNL/USC/ITEP/YPI measurement of 2ν ββ-decay of 76Ge are also given prior to publication. Finally, a status report and first results of the phase-I of the International Germanium Experiment (IGEX) are presented.

  17. Failure of the gross theory of beta decay in neutron deficient nuclei

    DOE PAGES

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less

  18. Nuclear-structure aspects of double beta decay

    SciTech Connect

    Suhonen, Jouni

    2010-11-24

    Neutrinoless double beta (0{nu}{beta}{beta}) decay of nuclei is a process that requires the neutrino to be a massive Majorana particle and thus cannot proceed in the standard model of electro-weak interactions. Recent results of the neutrino-oscillation experiments have produced accurate information on the mixing of neutrinos and their squared mass differences. The 0{nu}{beta}{beta} decay takes place in atomic nuclei where it can be observed, at least in principle, by underground neutrino experiments. The need of nuclei in observation of the 0{nu}{beta}{beta} decay bears two facets: The nucleus serves as laboratory for detection but at the same time its complicated many-nucleon structure interferes strongly with the analysis of the experimental data. The information about the weak-interaction observables, like the neutrino mass, has to be filtered from the data through the nuclear matrix elements (NMEs). Hence, exact knowledge about the NMEs is of paramount importance in the analysis of the data provided by the expensive and time-consuming underground experiments.

  19. MOON for neutrino-less {beta}{beta} decays and {beta}{beta} nuclear matrix elements

    SciTech Connect

    Ejiri, H.

    2009-11-09

    The MOON project aims at spectroscopic 0v{beta}{beta} studies with the v-mass sensitivity of 100-30 meV by measuring two beta rays from {sup 100}Mo and/or {sup 82}Se. The detector is a compact super-module of multi-layer PL scintillator plates. R and D works made by the pro to-type MOON-1 and the small PL plate show the possible energy resolution of around {sigma}{approx}2.2%, as required for the mass sensitivity. Nuclear matrix elements M{sup 2v} for 2v{beta}{beta} are shown to be given by the sum {sigma}{sub L}M{sub k} of the 2v{beta}{beta} matrix elements M{sub k} through intermediate quasi-particle states in the Fermi-surface, where Mi is obtained experimentally by using the GT(J{sup {pi}} = 1{sup +}) matrix elements of M{sub i}(k) and M{sub f}(k) for the successive single-{beta} transitions through the k-th intermediate state.

  20. Beta Decay of 101Sn

    SciTech Connect

    Kavatsyuk, O.; Mazzocchi, C.; Janas, Z.; Banu, A.; Batist, L.; Becker, F.; Blazhev, A.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Jungclaus, A.; Karny, M.; Kavatsyuk, M.; Klepper, O.; Kirchner, R.; La Commara, M.; Miernik, K.; Mukha, I.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2007-01-01

    The {beta} decay of the very neutron-deficient isotope 101Sn was studied at the GSI on-line mass separator using silicon detectors for recording charged particles and germanium detectors for {gamma}-ray spectroscopy. Based on the {beta}-delayed proton data the production cross-section of 101Sn in the 50Cr + 58Ni fusion-evaporation reaction was determined to be about 60nb. The half-life of 101Sn was measured to be 1.9(3)s. For the first time {beta}-delayed {gamma}-rays of 101Sn were tentatively identified, yielding weak evidence for a cascade of 352 and 1065keV transitions in 101In. The results for the 101Sn decay as well as those from previous work on the 103Sn decay are discussed by comparing them to predictions obtained from shell model calculations employing a new interaction in the 88Sr to 132Sn model space.

  1. Project 8 Phase II: Improved beta decay electrons reconstruction

    NASA Astrophysics Data System (ADS)

    Guigue, Mathieu; Project 8 Collaboration

    2017-01-01

    The Project 8 collaboration aims to measure the absolute neutrino mass scale using a cyclotron radiation emission spectroscopy technique on the beta decays of tritium. The second phase of the project will measure a differential spectrum of tritium beta decays and extract the tritium endpoint value with an eV or sub-eV scale precision. Monoenergetic electrons emitted by gaseous 83mKr atoms can be used to determine the coefficient between the cyclotron frequency and the electron energy and to optimize the instrument configuration for the tritium measurement. We present the progress on the processing of the electron cyclotron radiation signal to reconstruct the beta decay spectrum of krypton and tritium.

  2. Neutrino mass spectrum and future beta decay experiments

    NASA Astrophysics Data System (ADS)

    Farzan, Y.; Peres, O. L. G.; Smirnov, A. Yu.

    2001-09-01

    We study the discovery potential of future beta decay experiments on searches for the neutrino mass in the sub-eV range, and, in particular, KATRIN experiment with sensitivity m>0.3 eV. Effects of neutrino mass and mixing on the beta decay spectrum in the neutrino schemes which explain the solar and atmospheric neutrino data are discussed. The schemes which lead to observable effects contain one or two sets of quasi-degenerate states. Future beta decay measurements will allow to check the three-neutrino scheme with mass degeneracy, moreover, the possibility appears to measure the CP-violating Majorana phase. Effects in the four-neutrino schemes which can also explain the LSND data are strongly restricted by the results of Bugey and CHOOZ oscillation experiments: apart from bending of the spectrum and the shift of the end point one expects appearance of small kink of (<2%) size or suppressed tail after bending of the spectrum with rate below 2% of the expected rate for zero neutrino mass. We consider possible implications of future beta decay experiments for the neutrino mass spectrum, the determination of the absolute scale of neutrino mass and for establishing the nature of neutrinos. We show that beta decay measurements in combination with data from the oscillation and double beta decay experiments will allow to establish the structure of the scheme (hierarchical or non-hierarchical), the type of the hierarchy or ordering of states (normal or inverted) and to measure the relative CP-violating phase in the solar pair of states.

  3. The Majorana Neutrinoless Double-beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Guiseppe, Vincente

    2008-04-01

    Neutrinoless double-beta decay searches play a major role in determining the effective Majorana neutrino mass, the Majorana nature of neutrinos, and a lepton violating process. The Majorana experiment proposes to assemble an array of HPGe detectors to search for neutrinoless double-beta decay in ^76Ge. Initially, Majorana aims to construct a prototype system containing 60 kg of Ge detectors to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of the prototype system will be presented. This talk will also discuss material purity, detector optimization, background rejection, identification of rare backgrounds, and other key technologies to be utilized in the Majorana experiment.

  4. Neutrinoless Double Beta Decay in Light of SNO Salt Data

    SciTech Connect

    Murayama, Hitoshi; Pena-Garay, Carlos

    2003-09-11

    In the SNO data from its salt run, probably the most significant result is the consistency with the previous results without assuming the 8B energy spectrum. In addition, they have excluded the maximal mixing at a very high confidence level. This has an important implication on the double beta decay experiments. For the inverted or degenerate mass spectrum, we find bar_ee bar> 0.013 eV at 95percent CL, and the next generation experiments can discriminate Majorana and Dirac neutrinos if the invertedor degenerate mass spectrum will be confirmed by the improvements in cosmology, tritium data beta decay, or long-baseline oscillation experiments.

  5. Beta-decay rates: towards a self-consistent approach

    SciTech Connect

    Borzov, I. N.; Goriely, S.; Pearson, J. M.

    1998-02-15

    An approximation to a self-consistent model of the ground state properties and spin-isospin excitations of neutron-rich nuclides is outlined. The structure of the Gamow-Teller strength functions in stable nuclei and short-lived nuclides undergoing high-energy {beta}-decay is discussed. The results of large-scale calculations of the {beta}-decay rates for spherical and slightly deformed nuclides of relevance to the r-process are analysed and compared with the results of existing global calculations.

  6. {beta}-decay of {sup 23}Al and nova nucleosynthesis

    SciTech Connect

    Saastamoinen, A.; Jokinen, A.; Aeystoe, J.; Trache, L.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Banu, A.; Bentley, M. A.; Jenkins, D. G.; Davinson, T.; Woods, P. J.

    2010-11-24

    We have studied the {beta}-decay of {sup 23}Al with a novel detector setup at the focal plane of the MARS separator at the Texas A and M University to resolve existing controversies about the proton intensities of the IAS in {sup 23}Mg and to determine the absolute proton branching ratios by combining our results to the latest {gamma}-decay data. Experimental technique, results and the relevance for nova nucleosynthesis are discussed.

  7. Branching ratio for sup 10 C superallowed Fermi. beta. decay

    SciTech Connect

    Nagai, Y.; Kunihiro, K.; Toriyama, T.; Harada, S.; Torii, Y.; Yoshida, A. ); Nomura, T.; Tanaka, J. ); Shinozuka, T. )

    1991-01-01

    The branching ratio for {sup 10}C superallowed Fermi {beta} decay has been measured accurately by a newly developed method. The result is 1.473{plus minus}0.007 %. The {ital Ft} value is derived as 3065.4{plus minus}14.7 sec, which is consistent with the {ital Ft} values determined accurately for heavier nuclei and with predictions of conserved vector current hypothesis. The method developed here can be applied to the high precision {beta}-{gamma} spectroscopy.

  8. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. Temple Univ., Philadelphia, PA ); Hoffman, C.M. )

    1993-01-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay [pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon] is predicted by the Standard Model (SM) to be R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.3999[plus minus]0.0005 s[sup [minus]1]. The best experimental number, obtained using in-flight decays, is R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.394 [plus minus] 0.015 s[sup [minus]1]. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  9. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. |; Hoffman, C.M.

    1993-02-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay {pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon} is predicted by the Standard Model (SM) to be R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.3999{plus_minus}0.0005 s{sup {minus}1}. The best experimental number, obtained using in-flight decays, is R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.394 {plus_minus} 0.015 s{sup {minus}1}. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  10. CANDLES for the study of ^48Ca double beta decay

    NASA Astrophysics Data System (ADS)

    Ogawa, Izumi

    2009-10-01

    CANDLES is the project to search for double beta decay (DBD) of ^48Ca by using CaF2 scintillators. The Q-value of ^48Ca, which is the highest (4.27 MeV) among potential DBD nuclei, is far above energies of γ-rays from natural radioactivities (maximum 2.615 MeV from ^208Tl decay), therefore we can naturally expect small backgrounds in the energy region we are interested in. We gave the best lower limit on the half-life of neutrino-less double beta decay of ^48Ca by using CaF2(Eu) detector system, ELEGANT VI though further development is highly desirable to reach the mass region of current interest. We have constructed the prototype detector, CANDLES III in our laboratory (Osaka U.) at sea level and studied the basic performance of the system, including the light collection, position reconstruction and background rejection. We are now moving the detector system to new experimental room (room D) at Kamioka underground laboratory (2700 m.w.e.) to avoid large background originated from cosmic rays. At the same time, we are increasing the total mass of the ^48Ca compared to the one in the prototype detector. 96 (instead of 60 in prototype) CaF2 modules which contains 350 g of ^48Ca are immersed in a liquid scintillator (LS) which acts as an active veto (veto phase). The conversion phase contains wavelength shifter (Bis-MSB) which converts the emission light of CaF2(pure) which has a peak in the UV region to the visible one where the quantum efficiency of the PMTs is high enough (maximum at ˜400 nm) and materials at the optical path have good transparencies. Scintillation lights from both the CaF2 modules and the liquid scintillator in veto phase are viewed by large PMTs (48 x13'' and 14 x17'' tubes). All the detector system described above are contained in a water tank which is 3 m in diameter and 4 m in height. The water tank and a purification system of the LS together with LS storage tanks were installed at room D. The purification system of the LS removes the

  11. Search for the Neutrino Less Double Beta Decay

    SciTech Connect

    Efremenko, Yuri

    2016-07-11

    During the past few years our understanding of neutrino properties has reached a new level, with experiments such as Super-K, SNO, KamLAND, and others obtaining exciting results. Major questions such as “Do neutrinos have mass?” and “Do neutrinos oscillate?” now have positive answers. However, an extensive program of neutrino research remains. Undoubtedly, the most important of these is the question pointed out by the National Research Council in its February 2002 report “Connecting Quarks with the Cosmos”, specifically: What are the masses of neutrinos and how have they shaped the evolution of the Universe? The MAJORANA collaboration has proposed to build the world’s most sensitive one-ton scale experiment to search for neutrino less double beta decay to answer this question. In its initial stage, the collaboration is building a prototype MAJORANA DEMONSTRATOR (MJD) experiment consisting of detectors made out of enriched Ge76 with a total sensitive mass of ~30 kg. This will accomplish two goals. First, it will test not yet confirmed claim for observation of neutrino-less double beta decay. Second, it will establish that the selected technology is capable of extension to a one-ton experiment with sufficient sensitivity to measure neutrino mass mββ down to 10 meV. To achieve the last goal, collaboration must demonstrate that a background level of 1 count per year per 4 keV per ton of detector is achievable. The University of Tennessee (UT) neutrino group has made a major commitment to the MJD. P.I. accepted the responsibility for one of the major tasks of the experiment, “Materials and Assay Task” which is crucial to the achievement of low background levels required for the experiment. In addition, the UT group is committed to construct, commission, and operate the MJD active veto system. Those activities were supported by NP-DOE via program funding for “Search for the Neutrino Less Double Beta Decay” at the University

  12. Majorana neutrino masses and the neutrinoless double-beta decay

    SciTech Connect

    Faessler, A.

    2006-12-15

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in {sup 76}Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.

  13. The Majorana Demonstrator Neutrinoless Double-beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Guiseppe, V. E.

    2012-03-01

    Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in ^76Ge. Our proposed method uses the well-established technique of searching for neutrinoless double-beta decay in high purity Ge-diode radiation detectors that play both roles of source and detector. The use of p-type point contact Ge detectors present advances in background rejection and a significantly lower energy threshold than conventional Ge detectors. The lower energy threshold opens up a broader and exciting physics program including searches for dark matter and axions concurrent with the double-beta decay search. Initially, Majorana is constructing a prototype module to demonstrate the potential of a future 1-tonne experiment. The status and potential physics reach of the Majorana Demonstrator module will be presented.

  14. Forbidden unique beta-decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-30

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that the p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.

  15. The Majorana Double Beta Decay Experiment: Present Status

    SciTech Connect

    Aguayo, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Beene, Jim; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, C. D.; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Phillips II, D. G.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2013-06-01

    The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale 76Ge neutrinoless double-beta decay experiment, an R&D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator

  16. Computer code for double beta decay QRPA based calculations

    SciTech Connect

    Barbero, C. A.; Mariano, A.; Krmpotić, F.; Samana, A. R.; Ferreira, V. dos Santos; Bertulani, C. A.

    2014-11-11

    The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β{sup ±} processes, is extended to include also the nuclear double beta decay.

  17. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  18. Results of the double beta decay experiment NEMO-3

    SciTech Connect

    Tretyak, V. I.; Collaboration: NEMO-3 Collaboration

    2013-12-30

    The double beta decay experiment NEMO-3 has taken data from February 2003 to January 2011. The two-neutrino decay half lives were measured for seven different isotopes ({sup 100}Mo, {sup 82}Se, {sup 116}Cd, {sup 150}Nd, {sup 96}Zr, {sup 48}Ca and {sup 130}Te). No evidence for neutrinoless double beta decay is observed. The 0νββ half-life limits are found to be T{sub 1/2}{sup 0ν}({sup 100}Mo)>1.0×10{sup 24}yr(90%C.L.) and T{sub 1/2}{sup 0ν}({sup 82}Se)>3.2×10{sup 23}yr(90%C.L.)

  19. Searches for massive neutrinos in nuclear beta decay

    SciTech Connect

    Jaros, J.A.

    1992-10-01

    The status of searches for massive neutrinos in nuclear beta decay is reviewed. The claim by an ITEP group that the electron antineutrino mass > 17eV has been disputed by all the subsequent experiments. Current measurements of the tritium beta spectrum limit m{sub {bar {nu}}e} < 10 eV. The status of the 17 keV neutrino is reviewed. The strong null results from INS Tokyo and Argonne, and deficiencies in the experiments which reported positive effects, make it unreasonable to ascribe the spectral distortions seen by Simpson, Hime, and others to a 17keV neutrino. Several new ideas on how to search for massive neutrinos in nuclear beta decay are discussed.

  20. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-04

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

  1. New precision measurements of free neutron beta decay with cold neutrons

    DOE PAGES

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; ...

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  2. Superallowed nuclear beta decay: Precision measurements for basic physics

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.

    2012-11-01

    For 60 years, superallowed 0+→0+ nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision (±0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix (±0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from 10C to 74Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, GV, has been extracted from the data and used to determine the top left element of the CKM matrix, Vud. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  3. Superallowed nuclear beta decay: Precision measurements for basic physics

    SciTech Connect

    Hardy, J. C.

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  4. The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of ⁷⁶Ge

    SciTech Connect

    Xu, W.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W.P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Yu, C. -H.; Yumatov, V.

    2015-05-01

    Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the 0νββ decay of ⁷⁶Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for ⁷⁶Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.

  5. The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of ⁷⁶Ge

    DOE PAGES

    Xu, W.; Abgrall, N.; Avignone, F. T.; ...

    2015-05-01

    Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors,more » to search for the 0νββ decay of ⁷⁶Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for ⁷⁶Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment.« less

  6. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  7. Beta Decay Studies of Short Lived Barium Isotopes

    NASA Astrophysics Data System (ADS)

    Bendall, Charles Skipwith

    The half-lives and relative intensities of several short lived neutron rich isotopes, with atomic numbers between 54 and 57, produced in the spontaneous fission of californium-252 were determined. This was accomplished from the study of the time variation of the K X-ray yields of these isotopes. A transport system which allowed us to study isotopes with half-lives less than 10 seconds was developed. Mass assignments were made by comparing the experimental values of the half-lives with known values. A beta K X-ray coincidence technique was used to obtain the barium beta spectrum in coincidence with lanthanum K X -rays. A Kurie plot was performed on the spectrum to determine the beta groups. The probable origin of each beta group was determined through a comparison of the relative intensities of the isotopes and beta groups. Four beta groups probably from the decay of Ba-145 were revealed. The end point energies of these beta groups are 3870 (+OR-) 432 keV, 2772 (+OR-) 112 keV, 1894 (+OR-) 58 keV, and 746 (+OR-) 38 keV. The three lowest energy groups have not been observed before.

  8. SPRT Analysis of Anomalies in Tritium Beta Decay Spectrum

    NASA Astrophysics Data System (ADS)

    Goldman, T.; Stephenson, G. J., Jr.

    1997-10-01

    The experimentally observed deviations from the Kurie plot near the endpoint of Tritium beta decay are opposite to those expected for the case of massive neutrinos. We reexamine(O. Kofoed-Hansen, Phil. Mag. 42), 1448 (1951). the possibility that these deviations are due to new hypoweak interactions. We find that enhancement above the massless neutrino beta spectrum does occur for all cases (scalar, pseudoscalar, tensor or right-handed currents), although it apparently cannot be large enough to explain the data and be consistent with other experimental constraints. Bounds on the strength of these non-standard model interactions are derived.

  9. First NEXT prototypes for double-beta decay search

    NASA Astrophysics Data System (ADS)

    Yahlali, Nadia; Irastorza, Igor G.; NEXT Collaboration

    2011-02-01

    The NEXT collaboration aims at building a 100 kg high-pressure Xenon gas TPC enriched in 136Xe isotope, to measure its two double-beta decay modes and to explore the degenerate hierarchy of the neutrino mass. The high-pressure Xenon gas offers the possibility to record the event energy with near-intrinsic resolution using electroluminescence, as well as the event track and topology patterns. These are the key features of a robust double-beta decay experiment which are presently being investigated in the first NEXT prototypes, the so-called NEXT0 and NEXT1. In this paper, the prototypes being developed at IFIC and University of Zaragoza are described and preliminary results are outlined.

  10. Extra dimensions and neutrinoless double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Góźdź, Marek; Kamiński, Wiesław A.; Faessler, Amand

    2005-05-01

    The neutrinoless double beta decay is one of the few phenomena, belonging to the nonstandard physics, which is extensively being sought for in experiments. In the present paper the link between the half-life of the neutrinoless double beta decay and theories with large extra dimensions is explored. The use of the sensitivities of currently planned 0ν2β experiments: DAMA, CANDLES, COBRA, DCBA, CAMEO, GENIUS, GEM, MAJORANA, MOON, CUORE, EXO, and XMASS, gives the possibility for a nondirect “experimental” verification of various extra dimensional scenarios. We discuss also the results of the Heidelberg-Moscow Collaboration. The calculations are based on the Majorana neutrino mass generation mechanism in the Arkani-Hamed-Dimopoulos-Dvali model.

  11. Charge-exchange reactions and nuclear matrix elements for {beta}{beta} decay

    SciTech Connect

    Frekers, D.

    2009-11-09

    Charge-exchange reactions of (n, p) and (p, n) type at intermediate energies are a powerful tool for the study of nuclear matrix element in {beta}{beta} decay. The present paper reviews some of the most recent experiments in this context. Here, the (n, p) type reactions are realized through (d, {sup 2}He), where {sup 2}He refers to two protons in a singlet {sup 1}S{sub 0} state and where both of these are momentum analyzed and detected by the same spectrometer and detector. These reactions have been developed and performed exclusively at KVI, Groningen (NL), using an incident deuteron energy of 183 MeV. Final state resolutions of about 100 keV have routinely been available. On the other hand, the ({sup 3}He, t) reaction is of (p, n) type and was developed at the RCNP facility in Osaka (JP). Measurements with an unprecedented high resolution of 30 keV at incident energies of 420 MeV are now readily possible. Using both reaction types one can extract the Gamow-Teller transition strengths B(GT{sup +}) and B(GT{sup -}), which define the two ''legs'' of the {beta}{beta} decay matrix elements for the 2v{beta}{beta} decay The high resolution available in both reactions allows a detailed insight into the excitations of the intermediate odd-odd nuclei and, as will be shown, some unexpected features are being unveiled.

  12. MeV neutrinos in double {beta} decay

    SciTech Connect

    Zuber, K.

    1997-08-01

    The effect of Majorana neutrinos in the MeV mass range on the double {beta} decay of various isotopes is studied on pure phenomenological arguments. By using only experimental half-life data, limits on the mixing parameter U{sub eh}{sup 2} of the order 10{sup {minus}7} can be derived. Also the possible achievements of upcoming experiments and some consequences are outlined. {copyright} {ital 1997} {ital The American Physical Society}

  13. Beta Decay: A Physics Garden of Earthly Delights

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. Hamish

    2014-03-01

    From the beginning, beta decay has tormented and delighted us with puzzles and enlightenment. A significant part of our present understanding of subatomic physics has emerged from the experimental and theoretical struggle with its mysteries. We reflect on several of the epic victories in this struggle, and look ahead to where ongoing research might lead us in the understanding of fundamental symmetries and neutrinos. Research supported under DOE grant DE-FG02-97ER41020.

  14. The Majorana Neutrinoless Double-Beta Decay Program

    NASA Astrophysics Data System (ADS)

    Guiseppe, Vincente

    2014-09-01

    Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, containing 40 kg (30 kg enriched in 76Ge) of Ge detectors, is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals are to demonstrate the required background and scalability of a Ge-based, tonne-scale experiment. The status and potential physics reach of the Majorana Demonstrator experiment will be presented. Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The Majorana Collaboration is assembling an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, containing 40 kg (30 kg enriched in 76Ge) of Ge detectors, is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota. The initial goals are to demonstrate the required background and scalability of a Ge-based, tonne-scale experiment. The status and potential physics reach of the Majorana Demonstrator experiment will be presented. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle and Nuclear Astrophysics Program of the National Science Foundation and the Russian Foundation for Basic Research.

  15. Beta-Decay Study of ^{150}Er, ^{152}Yb, and ^{156}Yb: Candidates for a Monoenergetic Neutrino Beam Facility

    SciTech Connect

    Estevez Aguado, M. E.; Algora, A.; Rubio, B.; Bernabeu, J.; Nacher, E.; Tain, J. L.; Gadea, A.; Agramunt, J.; Burkard, K.; Hueller, W.; Doring, J.; Kirchner, R.; Mukha, I.; Plettner, C.; Roeckl, E.; Grawe, H.; Collatz, R.; Hellstrom, M.; Cano-Ott, D.; Karny, M.; Janas, Z.; Gierlik, M.; Plochocki, A.; Rykaczewski, Krzysztof Piotr; Batist, L.; Moroz, F.; Wittman, V.; Blazhev, A.; Valiente, J. J.; Espinoza, C.

    2011-01-01

    The beta decays of ^{150}Er, ^{152}Yb, and ^{156}Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied, the EC decay proceeds mainly to a single state in the daughter nucleus.

  16. {beta}-decay in neutron-deficient Hg, Pb, and Po isotopes

    SciTech Connect

    Moreno, O.; Sarriguren, P.; Alvarez-Rodriguez, R.; Guerra, E. Moya de

    2006-05-15

    The effect of nuclear deformation on the energy distributions of the Gamow-Teller strength is studied in neutron-deficient Hg, Pb, and Po even isotopes. The theoretical framework is based on a self-consistent deformed Skyrme Hartree-Fock mean field with pairing correlations between like nucleons in BCS approximation and residual spin-isospin interactions treated in the proton-neutron quasiparticle random-phase approximation. After a systematic study of the Gamow-Teller strength distributions in the low-excitation-energy region, relevant for {beta}{sup +} decay, we have identified the best candidates to look for deformation signatures in their {beta}{sup +}-decay patterns. {beta}{sup +} half-lives and total Gamow-Teller strengths B(GT{sup {+-}}) are analyzed as well.

  17. Extended operator expansion method for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Kadowaki, O.; Klapdor-Kleingrothaus, H. V.; Muto, K.; Oda, T.

    1995-03-01

    Reliable calculations of nuclear matrix elements are a prerequisite for the determination of the effective neutrino mass and other particle physics parameters from neutrinoless double beta decay. Here, the operator expansion method is improved by including Coulomb, tensor and central interactions simultaneously. Furthermore, the formalism of the OEM is extended to those matrix elements necessary to extract the right-handed parameters < λ > and < η > from 0 νββ decay. OEM includes the dependence of the nuclear matrix elements on the intermediate states implicitly and can therefore be understood as a step beyond the closure approximation. Numerical studies are carried out for the isotope76Ge combining the OEM expressions with ground-state wave functions calculated within a proton-neutron quasiparticle Random Phase Approximation (pn-QRPA) model. The influence and relative importance of central, tensor and Coulomb interactions is investigated. Within the OEM, contributions from the Coulomb force are found to be negligible in 0 νββ decay, while the tensor force leads to a moderate change of the results, of the order of (10 30)%, giving a better agreement between sets of calculations which employ different NN-interactions. Generally, results of the OEM+QRPA calculation are similar to previous calculations of 0 νββ decay matrix elements, indicating that 0 νββ decay is not sensitive to model approximations and might therefore be more accurately calculated than the strongly suppressed 2 νββ decay matrix elements.

  18. Experiments on the origin of molecular chirality by parity non-conservation during beta-decay

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1974-01-01

    Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta-decay, and their resulting circularly polarized bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. The historical background to this subject is briefly reviewed. Our experiments involve subjecting a number of racemic and optically active amino acid samples to a beta-radiation source for a period of 1.34 years (total dose: 411 Mrads), then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography.

  19. Beta Decay Study of Neutron-rich Magnesium

    NASA Astrophysics Data System (ADS)

    Ash, John; Rajabali, Mustafa; Griffin Collaboration

    2015-10-01

    Within the ``island of inversion'' around the N = 20 shell gap, isotopes of magnesium, and aluminum deviate from the expected closed-shell structure. Particles promoted across the N = 20 shell gap result in a lower energy deformed ground state configuration rather than the expected spherical configuration. An experiment was conducted at TRIUMF laboratory in the summer of 2015 to study the decay of ``island of inversion'' isotopes 33 , 34 , 35Mg and the structure of the respective daughter nuclei. The isotopes of interest were produced by a proton beam from TRIUMF's 500 MeV cyclotron impacting on a UCx target. The magnesium decays populated states along the decay chain in Al, Si, P, and S isotopes. The new GRIFFIN spectrometer in the ISAC-I facility was used to detect the gamma rays. Two sets of scintillators, one for detecting the beta particles (SCEPTAR) and the other for detecting beta-delayed neutrons (DESCANT), were also used in conjunction with GRIFFIN. The GRIFFIN data were energy calibrated and partially analyzed for this project. New algorithms were developed for the analysis. Preliminary results for new transitions detected in 34Mg as well as the half lives obtained will be presented in their current form. This research was supported by the Tennessee Tech research office.

  20. The Nuclear and Particle Physics of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2014-03-01

    Fortuitous properties of nuclei allow us to isolate and study the rare second-order weak process of double beta decay. In particular, the decay channel in which a final state of two electrons and no neutrinos is produced - neutrinoless double beta decay - provides our best test of lepton number conservation and the Majorana mass of the electron neutrino. I will describe the connections between this process and the charge conjugation properties of the neutrino, including the possibility that the presence of both Dirac and Majorana masses accounts for the anomalous scale of neutrino masses. The extraordinary progress made over the past two decades has prepared the way for next-generation experiments that will probe Majorana masses at levels where nonzero rates may be found, given what we now know about neutrino mass splittings. I will describe some of the heroic efforts underway to develop detectors of unprecedented size, radiopurity, depth, and thus sensitivity. Work supported by the Office of Science, US DOE.

  1. New techniques and results in {sup 76}Ge double-beta decay

    SciTech Connect

    Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H.; Avignone, F.T.

    1991-09-01

    Several methods of lowering the background in germanium double-beta decay experiments are discusses. A technique for increasing confidence in double-beta decay measurements by variation of detector enrichment is demonstrated in the case of two-neutrino decay mode of {sup 76}Ge. The impact of cosmic ray spallation in low-background isotopically enriched germanium detectors is examined.

  2. New techniques and results in sup 76 Ge double-beta decay

    SciTech Connect

    Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H. ); Avignone, F.T. . Dept. of Physics)

    1991-09-01

    Several methods of lowering the background in germanium double-beta decay experiments are discusses. A technique for increasing confidence in double-beta decay measurements by variation of detector enrichment is demonstrated in the case of two-neutrino decay mode of {sup 76}Ge. The impact of cosmic ray spallation in low-background isotopically enriched germanium detectors is examined.

  3. First results on double {beta}-decay modes of Cd, Te, and Zn Isotopes

    SciTech Connect

    Bloxham, T.; Freer, M.; Boston, A.; Nolan, P.; Dawson, J.; Reeve, C.; Wilson, J. R.; Zuber, K.; Dobos, D.; Goessling, C.; Kiel, H.; Muenstermann, D.; Oehl, S.; Fox, S. P.; Fulton, B. R.; McGrath, J.; Wadsworth, R.; Harrison, P. F.; Morgan, B.; Ramachers, Y.

    2007-08-15

    Four 1-cm{sup 3} CdZnTe semiconductor detectors were operated in the Gran Sasso National Laboratory to explore the feasibility of such devices for double {beta}-decay searches as proposed for the COBRA experiment. The research involved background studies accompanied by measurements of energy resolution performed at the surface. Energy resolutions sufficient to reduce the contribution of two-neutrino double {beta}-decay events to a negligible level for a large-scale experiment have already been achieved and further improvements are expected. Using activity measurements of contaminants in all construction materials a background model was developed with the help of Monte Carlo simulations and major background sources were identified. A total exposure of 4.34 kg{center_dot}days of underground data have been accumulated allowing a search for neutrinoless double {beta}-decay modes of seven isotopes found in CdZnTe. Half-life limits (90% C.L.) are presented for decays to ground and excited states. Four improved lower limits have been obtained, including zero neutrino double electron capture transitions of {sup 64}Zn and {sup 120}Te to the ground state, which are 1.19x10{sup 17} years and 2.68x10{sup 15} years, respectively.

  4. Neutrino Mass from Beta Decay of the Free Neutron

    NASA Astrophysics Data System (ADS)

    Tegen, R.; Miller, H. G.

    We calculate the beta decay rate of the free neutron including effects due to (i) a neutrino mass around 1 eV, (ii) deviations from the leptonic V-A structure, (iii) nucleon form factors F1,2V (q2), GA(q2), and (iv) W- propagation. At the end-point energies linear neutrino mass effects in n -> p + e- + ¯ {ν }e are almost exclusively kinematical. If the neutrino spectrum is (almost) degenerate, neutrino oscillations cannot uniquely determine the mass of the neutrino, and direct mass determinations become necessary. The traditional Kurie plot and a partially integrated decay rate are found to be sensitive to a neutrino mass between 1 eV and 3 eV.

  5. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    SciTech Connect

    Abgrall, N.; Aguayo, Estanislao; Avignone, Frank T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, C.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-06-01

    The MAJORANA DEMONSTRATOR will search for the neutrinoless double-beta (ββ(0ν)) decay of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. The DEMONSTRATOR is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the DEMONSTRATOR and the details of its design.

  6. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    SciTech Connect

    Abgrall, N.; Aguayo, Estanislao; Avignone, III, F. T.; Barabash, A.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Laferriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Steele, David; Strain, J.; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Williams, T.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-01-01

    The Majorana Demonstrator will search for the neutrinoless double-beta (ββ (0ν)) decay of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino. TheDemonstrator is being assembled at the 4850-foot level of the SanfordUnderground Research Facility in Lead, SouthDakota. The array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the Demonstrator and the details of its design.

  7. The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

    DOE PAGES

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; ...

    2014-01-01

    Tmore » he M ajorana D emonstrator will search for the neutrinoless double-beta ( β β 0 ν ) decay of the isotope Ge with a mixed array of enriched and natural germanium detectors.he observation of this rare decay would indicate that the neutrino is its own antiparticle, demonstrate that lepton number is not conserved, and provide information on the absolute mass scale of the neutrino.he D emonstrator is being assembled at the 4850-foot level of the Sanford Underground Research Facility in Lead, South Dakota.he array will be situated in a low-background environment and surrounded by passive and active shielding. Here we describe the science goals of the D emonstrator and the details of its design. « less

  8. {beta}-delayed proton decay of {sup 69}Kr

    SciTech Connect

    Xu, X.J.; Huang, W.X.; Ma, R.C.; Gu, Z.D.; Yang, Y.F.; Wang, Y.Y.; Dong, C.F.; Xu, L.L.

    1997-02-01

    The nuclide {sup 69}Kr with T{sub z}={minus}3/2, A=4n+1 produced in the {sup 40}Ca({sup 32}S,3n) reaction has been observed via {beta}-delayed proton emission by using pulsed-beam technique. A single proton group at a laboratory energy of 4.07{plus_minus}0.05 MeV with half-life of 32{plus_minus}10 ms was observed for the first time, corresponding to decay of the T=3/2 isobaric analog state in {sup 69}Br to the ground state of {sup 68}Se. Combining this result with a Coulomb displacement energy calculation yields a mass excess for {sup 69}Kr of {minus}32.15{plus_minus}0.30 MeV. The partial decay scheme of {sup 69}Kr is proposed. {copyright} {ital 1997} {ital The American Physical Society}

  9. MOON (Mo Observatory Of Neutrinos) for double beta decay

    NASA Astrophysics Data System (ADS)

    Nomachi, M.; Doe, P.; Ejiri, H.; Elliott, S. R.; Engel, J.; Finger, M.; Formaggio, J. A.; Fushimi, K.; Gehman, V.; Gorin, A.; Greenfield, M.; Hazama, R.; Ichihara, K.; Ikegami, Y.; Ishii, H.; Itahashi, T.; Kavitov, P.; Kekelidze, V.; Kuroda, K.; Kutsalo, V.; Manouilov, I.; Matsuoka, K.; Nakamura, H.; Ogama, T.; Para, A.; Rielage, K.; Rjazantsev, A.; Robertson, R. G. H.; Shichijo, Y.; Shima, T.; Shimada, Y.; Shirkov, G.; Sissakian, A.; Sugaya, Y.; Titov, A.; Vatulin, V.; Vilches, O. E.; Voronov, V.; Wilkerson, J. F.; Will, D. I.; Yoshida, S.

    2005-01-01

    The MOON (Molybdenum Observatory Of Neutrinos) project aims at studies of double beta decays with a high sensitivity of ˜0.03 eV and real-time studies of low-energy solar neutrinos. Two β rays from 100Mo are measured in coincidence for the 0νββ studies. The inverse β rays from solar neutrino captures of 100Mo are measured in delayed coincidence with the following β decay of 100Tc. Measurements with good energy resolution and good position resolution enable one to select true signals. A prototype MOON detector (MOON 1) is now under development. The present report describes briefly the outline of the MOON project and the status of MOON 1.

  10. On improvements of Double Beta Decay using FQTDA Model

    NASA Astrophysics Data System (ADS)

    de Oliveira, L.; Samana, A. R.; Krmpotic, F.; Mariano, A. E.; Barbero, C. A.

    2015-07-01

    The Quasiparticle Tamm-Dancoff Approximation (QTDA) is applied to describe the nuclear double beta decay with two neutrinos. Several serious inconveniences found in the Quasiparticle Random Phase Approximation (QRPA) are not present in the QTDA, as such as the ambiguity in treating the intermediary states, and further approximations necessary for evaluation of the nuclear matrix elements (NMEs) or, the extreme sensitivity of NME with the ratio between the pn and pp + nn pairings. Some years ago, the decay 48Ca → 48Ti was discussed within the particle-hole limit of QTDA. We found some mismatch in the numerical calculations when the full QTDA was being implemented, and a new performance in the particle-hole limit of QTDA is required to guarantee the fidelity of the approximation.

  11. On decay constants and orbital distance to the Sun—part II: beta minus decay

    NASA Astrophysics Data System (ADS)

    Pommé, S.; Stroh, H.; Paepen, J.; Van Ammel, R.; Marouli, M.; Altzitzoglou, T.; Hult, M.; Kossert, K.; Nähle, O.; Schrader, H.; Juget, F.; Bailat, C.; Nedjadi, Y.; Bochud, F.; Buchillier, T.; Michotte, C.; Courte, S.; van Rooy, M. W.; van Staden, M. J.; Lubbe, J.; Simpson, B. R. S.; Fazio, A.; De Felice, P.; Jackson, T. W.; Van Wyngaardt, W. M.; Reinhard, M. I.; Golya, J.; Bourke, S.; Roy, T.; Galea, R.; Keightley, J. D.; Ferreira, K. M.; Collins, S. M.; Ceccatelli, A.; Verheyen, L.; Bruggeman, M.; Vodenik, B.; Korun, M.; Chisté, V.; Amiot, M.-N.

    2017-02-01

    Claims that proximity to the Sun causes variations of decay constants at the permille level have been investigated for beta-minus decaying nuclides. Repeated activity measurements of 3H, 14C, 60Co, 85Kr, 90Sr, 124Sb, 134Cs, 137Cs, and 154Eu sources were performed over periods of 259 d up to 5 decades at various nuclear metrology institutes. Residuals from the exponential decay curves were inspected for annual oscillations. Systematic deviations from a purely exponential decay curve differ in amplitude and phase from one data set to another and appear attributable to instabilities in the instrumentation and measurement conditions. Oscillations in phase with Earth’s orbital distance to the Sun could not be observed within 10-4-10-5 range precision. The most stable activity measurements of β - decaying sources set an upper limit of 0.003%-0.007% to the amplitude of annual oscillations in the decay rate. There are no apparent indications for systematic oscillations at a level of weeks or months.

  12. Values of the phase space factors for double beta decay

    SciTech Connect

    Stoica, Sabin Mirea, Mihai

    2015-10-28

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  13. Spectroscopic Studies of Double Beta Decays and MOON

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2007-10-01

    This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0νββ) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0νββ experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0νββ studies with the ν-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin ββ source film.

  14. Double Beta Decays and Neutrinos - Experiments and MOON -

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2008-01-01

    This is a brief review of the present and future experiments of neutrino-less double beta decays (0νββ) and the MOON (Mo Observatory Of Neutrinos) project. High sensitivity 0νββ experiments are unique and realistic probes for studying the Majorana nature of neutrinos and the absolute mass scale as suggested by neutrino oscillation experiments. MOON aims at spectroscopic 0νββ studies with the ν-mass sensitivity of 100-30 meV by means of a super ensemble of multilayer modules of scintillator plates and tracking detector planes.

  15. Bonner Prize Talk -- First Laboratory Observation of Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Moe, Michael

    2013-04-01

    Although we are awash in neutrinos, we remain ignorant of some of their fundamental properties. We don't know their masses. We don't know whether ``anti-neutrinos'' are really distinct particles. Double beta (ββ) decay offers a handle on these questions if we can observe the energy spectrum of the two emitted electrons, and determine whether or not they share their energy with two neutrinos. Seeing neutrinoless (0ν) decay would solve some enduring puzzles. The power of the process to elucidate the neutrino was recognized in the 1930's, but ββ decay would be exceedingly rare and difficult to detect. Unsuccessful laboratory searches had been going on for 25 years when the UC Irvine group began its first experiment with a cloud chamber in 1972. After some background for the non-expert, and a snapshot of the theoretical and experimental milieu at the time, the talk will begin with the reasons for choosing a cloud chamber, and the taming of its balky and idiosyncratic behavior. The talk will end with the first definitive observation of two-neutrino (2ν)ββ decay of ^82Se in the vastly superior time projection chamber (TPC) in 1987. Discouragement through the tortuous 15-year interval was relieved by occasional victories. Some I will illustrate with revealing cloud-chamber photographs. We learned many things from this primitive device, and after seven years we isolated an apparent ββ decay signal. But the efficiency of the trigger was small, and difficult to pin down. Estimating 2.2%, we were way low. The resulting ``short'' ^82Se half-life of 1 x 10^19 years was suspect. New technology came to the rescue with the invention of the TPC. Experience with the cloud chamber guided our design of a TPC specifically for ββ decay. The TPC was built from scratch. Its long, steep learning curve was also punctuated with little triumphs. A memorable moment was the first turn-on of a portion of the chamber. So long ago, this all seems rather quaint, but through ample use of

  16. Short-baseline electron neutrino disappearance, tritium beta decay, and neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo; Laveder, Marco

    2010-09-01

    We consider the interpretation of the MiniBooNE low-energy anomaly and the gallium radioactive source experiments anomaly in terms of short-baseline electron neutrino disappearance in the framework of 3+1 four-neutrino mixing schemes. The separate fits of MiniBooNE and gallium data are highly compatible, with close best-fit values of the effective oscillation parameters Δm2 and sin⁡22ϑ. The combined fit gives Δm2≳0.1eV2 and 0.11≲sin⁡22ϑ≲0.48 at 2σ. We consider also the data of the Bugey and Chooz reactor antineutrino oscillation experiments and the limits on the effective electron antineutrino mass in β decay obtained in the Mainz and Troitsk tritium experiments. The fit of the data of these experiments limits the value of sin⁡22ϑ below 0.10 at 2σ. Considering the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data as a statistical fluctuation, we perform a combined fit which gives Δm2≃2eV and 0.01≲sin⁡22ϑ≲0.13 at 2σ. Assuming a hierarchy of masses m1, m2, m3≪m4, the predicted contributions of m4 to the effective neutrino masses in β decay and neutrinoless double-β decay are, respectively, between about 0.06 and 0.49 and between about 0.003 and 0.07 eV at 2σ. We also consider the possibility of reconciling the tension between the neutrino MiniBooNE and gallium data and the antineutrino reactor and tritium data with different mixings in the neutrino and antineutrino sectors. We find a 2.6σ indication of a mixing angle asymmetry.

  17. Internal Energy Loss of the Electrons Ejected in Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Drukarev, E. G.; Amusia, M. Ya.; Chernysheva, L. V.

    2017-01-01

    The excitations of the electron shell in neutrinoless double beta decay shifts the limiting energy available for ejected electrons. We present the general equations for this shift and make computations for the decays of two nuclei—germanium and xenon.

  18. Neutrino oscillation constraints on neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.; Giunti, C.; Kim, C. W.; Monteno, M.

    1998-06-01

    We have studied the constraints imposed by the results of neutrino oscillation experiments on the effective Majorana mass \\|\\| that characterizes the contribution of Majorana neutrino masses to the matrix element of neutrinoless double-beta decay. We have shown that in a general scheme with three Majorana neutrinos and a hierarchy of neutrino masses (which corresponds to the standard seesaw mechanism) the results of neutrino oscillation experiments imply rather strong constraints on the parameter \\|\\|. From the results of the first reactor long-baseline experiment CHOOZ and the Bugey experiment it follows that \\|\\|<~3×10-2 eV if Δm2<~2 eV2 (Δm2 is the largest mass-squared difference). Hence, we conclude that the observation of neutrinoless double-beta decay with a probability that corresponds to \\|\\|>~10-1 eV would be a signal for a nonhierarchical neutrino mass spectrum and/or nonstandard mechanisms of lepton number violation.

  19. NuDot: Search for neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Santana, Jesse

    2015-10-01

    NuDot is a prototype, liquid scintillator detector, to demonstrate that the separation of directional Cherenkov light from isotropic scintillation light is possible using sub-nanosecond photodetectors. NuDot is currently being tested on a small scale before ramping up to a one-metric ton prototype in the next three years. A proof-of-concept setup for separating the light as well as calibrating the PMTs' timing has been designed. The setup consist of two LEDs, the first of which will mimic the cherenkov light while the second represents the scintillating light. NuDot's main application is the search for neutrinoless double beta decay, but it could also be used to reduce backgrounds in studies of geo-neutrinos, solar neutrinos, supernovae neutrinos and neutrino interactions. By being sensitive to the Cherenkov light a detector will have directionality for events and increase it's energy resolution- these two effects can provide methods to veto backgrounds- which then allow for a better analysis of rare phenomena such as neutrinoless double beta decay.

  20. Capturing relic neutrinos with {beta}- and double {beta}-decaying nuclei

    SciTech Connect

    Hodak, Rastislav; Kovalenko, Sergey; Simkovic, Fedor

    2009-11-09

    Neutrinos are probably one of the most important structural constituents of the Universe. The Big Bang Theory predicts that the significant component of them is formed by the cosmic neutrino background, an analogues of the big bang relic photons comprising the cosmic microwave background radiation, which has been measured with amazing accuracy. Properties of the relic neutrino background are closely related to the ones of the cosmic microwave radiation. Relic neutrinos pervade space, but their temperature is extremely small, being of the order of 0.1 meV. Although belonging to the most abundant particles of the Universe, the relic neutrinos evade direct detection so far. This is because the low-energy neutrinos interact only very weakly with matter. In this contribution, we explore the feasibility to detect the cosmic neutrino background by means of {beta}-decaying ({sup 3}H and {sup 187}Re) and double beta decaying ({sup 100}Mo) nuclei. In addition, we address the question whether double relic neutrino capture on nuclei can be an obstacle for observation of neutrinoless double {beta}-decay.

  1. An update on the neutrinoless double beta decay search at Cuoricino

    NASA Astrophysics Data System (ADS)

    Gutierrez, Thomas D.

    2004-10-01

    We present a status report on the neutrinoless double beta (0ν2β) decay search efforts at Cuoricino, a bolometric experiment located at the Gran Sasso Laboratory in Italy. In particular, we provide an update on the ongoing hardware development and parallel analysis efforts at LBNL. Cuoricino consists of a single tower of 62 TeO2 crystals ( ˜ 40 kg), which serve as both the source and detector for the 0ν2β decays. We also discuss the proposed CUORE (Cryogenic Underground Observatory for Rare Events) experiment. Similar in concept to Cuoricino, CUORE will consist of 1000 TeO2 crystals having a total mass of approximately 760 kg. CUORE will provide more statistics and, along with various anticipated technical improvements, higher sensitivity to 0ν2β decays than Cuoricino. This work is supported by the US Department of Energy.

  2. Gamow-Teller {beta}{sup +} decay of deformed nuclei near the proton drip line

    SciTech Connect

    Frisk, F.; Hamamoto, I.; Zhang, X.Z. |

    1995-11-01

    Using a quasiparticle Tamm-Dancoff approximation (TDA) based on deformed Hartree-Fock (HF) calculations with Skyrme interactions, the distribution of the Gamow-Teller (GT) {beta}{sup +} decay strength is estimated for the HF local minima of even-even deformed nuclei near the proton drip line in the region of 28{lt}{ital Z}{lt}66. The distribution often depends sensitively on the nuclear shape (namely, oblate or prolate). In the region of {ital Z}{lt}50 the possibility of observing {beta}-delayed proton emission depends sensitively on the excess of {ital Z} over {ital Z}={ital N}. In the region of {ital Z}{gt}50 almost the entire estimated GT strength is found to lie below the ground states of the even-even mother nuclei, and the observation of the total GT strength by {beta}-delayed charged-particle(s) emission will be of essential importance.

  3. The neutrinoless double beta decay from a modern perspective

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2002-04-01

    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. From the elementary particle point of view it pops up in almost every model, giving rise, among others, to the following mechanisms: (a) The traditional contributions like the light neutrino mass mechanism as well as the jL- jR leptonic interference ( λ and η terms). (b) The exotic R-parity violating supersymmetric (SUSY) contributions. In this scheme, the currents are only left handed and the intermediate particles normally are very heavy. There exists, however, the possibility of light intermediate neutrinos arising from the combination of V-A and P-S currents at the quark level. This leads to the same structure as the above λ term. Similar considerations apply to its sister lepton and muon number violating muon to positron conversion in the presence of nuclei. Anyway, regardless of the dominant mechanism, the observation of neutrinoless double betas decay, which is the most important of the two from an experimental point of view, will severely constrain the existing models and will signal that the neutrinos are massive Majorana particles. From the nuclear physics point of view it is challenging, because: (1) The nuclei, which can undergo double beta decay, have a complicated nuclear structure. (2) The energetically allowed transitions are suppressed (exhaust a small part of the entire strength). (3) Since in some mechanisms the intermediate particles are very heavy, one must cope with the short distance behavior of the transition operators. Thus novel effects, like the double beta decay of pions in flight between nucleons, have to be considered. In SUSY models this mechanism is more important than the standard two nucleon mechanism. (4) The intermediate momenta involved are quite high (about 100 MeV/c ). Thus, one has to take into account possible momentum-dependent terms of the nucleon current, like the modification of the axial current due to

  4. MOON for neutrino-less double beta decays. Majorana neutrinos by spectroscopic studies of double beta decays

    NASA Astrophysics Data System (ADS)

    Ejiri, H.; Doe, P.; Elliott, S. R.; Engel, J.; Finger, M., Jr.; Finger, M.; Fushimi, K.; Gehman, V.; Greenfield, M.; Hazama, R.; Kavitov, P.; Kekelidze, V.; Nakamura, H.; Nomachi, M.; Robertson, R. G. H.; Shima, T.; Slunecka, M.; Shirkov, G.; Sissakian, A.; Titov, A.; Umehara, S.; Vaturin, V.; Voronov, V.; Wilkerson, J. F.; Will, D. I.; Yoshida, S.; Vrba, V.

    2008-08-01

    The MOON (Majorana/Mo Observatory Of Neutrinos) project aims at studies of the Majorana nature of the neutrino ( ν) and the ν-mass spectrum by spectroscopic experiments of neutrino-less double beta decays (0 νββ) with the ν-mass sensitivity of < m {/ν m }> = 100-30 meV. The solid scintillator option of the MOON detector is a super ensemble of multi-layer modules, each being composed by PL scintillator plates and position-sensitive detector planes with good overall energy resolution of σ ≈ 2% at the Q ββ ≈ 3 MeV. Thin ββ source films are interleaved between the detector planes. High localization of the two β tracks enables one to select true signals and reject BG ones. The multi-layer structure of the detector makes it realistic to build a compact ton-scale detector. MOON with detector ≠ ββ source is used for studying 0 νββ decays from 100Mo, 82Se and other ββ isotopes with large Q ββ . Real-time exclusive measurements of low energy solar neutrinos can be made by observing inverse β rays from solar- ν captures of 100Mo in delayed coincidence with the subsequent β decay of 100Tc.

  5. Beta decay rates of neutron-rich nuclei

    SciTech Connect

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-10-15

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  6. Development of Micromegas for neutrinoless double beta decay searches

    NASA Astrophysics Data System (ADS)

    Tomás, A.; Carmona, J. M.; Cebrián, S.; Dafni, T.; Ferrer-Ribas, E.; Galán, J.; Giomataris, I.; Gómez, H.; Gorodetzky, P.; Iguaz, F. J.; Irastorza, I. G.; Jeanneau, F.; Luzón, G.; Morales, J.; Papaevangelou, T.; Rodríguez, A.; Ruz, J.; Salin, P.; Seguí, L.; Villar, J. A.

    2009-11-01

    The present paper is a summary of experimental tests performed with microbulk Micromegas for application in a neutrinoless double beta decay experiment based in a xenon TPC. No critical limitation related with high pressure has been detected for Micromegas, which has been tested up to 10 bar. No significant differences have been found between low energy X-rays and high energy alpha tracks regarding ionization yield and electronic transparency of Micromegas mesh. Using 5.5 MeV alphas in argon-isobutane mixtures, values as low as 1.8% FWHM have been obtained, with possible evidence that better resolutions are achievable. These results seems independent of pressure (probed up to 4.5 bar) or gas mixture (microbulks have run in xenon without quencher). The imperative necessity of high quality gas led to start on a new TPC and MPGD dedicated lab at Zaragoza.

  7. Beta decay and the origins of biological chirality - Experimental results

    NASA Technical Reports Server (NTRS)

    Gidley, D. W.; Rich, A.; Van House, J.; Zitzewitz, P. W.

    1982-01-01

    Preliminary experimental results are presented of an investigation of the possible role of preferential radiolysis by electrons emitted in the beta decay of radionuclides, a parity-nonconserving process, in the universal causation of the optical activity of biological compounds. Experiments were designed to measure the asymmetry in the production of triplet positronium upon the bombardment of an amino acid powder target by a collimated beam of positrons as positron helicity or target chirality is reversed. No asymmetry down to a level of 0.0007 is found in experiments on the D and L forms of cystine and tryptophan, indicating an asymmetry in positronium formation cross section of less than 0.01, while an asymmetry of 0.0031 is found for leucine, corresponding to a formation cross section asymmetry of about 0.04

  8. Radiopurity control in the NEXT-100 double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Álvarez, V.; Bandac, I.; Bettini, A.; Borges, F. I. G. M.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Egorov, M.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Gil, A.; Goldschmidt, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Miller, T.; Moiseenko, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; da Luz, H. Natal; Navarro, G.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; de Solórzano, A. Ortiz; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Segui, L.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Vázquez, D.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J. T.; Yahlali, N.

    2013-08-01

    An extensive material screening and selection process is underway in the construction of the "Neutrino Experiment with a Xenon TPC" (NEXT), intended to investigate neutrinoless double beta decay using a high-pressure xenon gas TPC filled with 100 kg of Xe enriched in 136Xe. Determination of the radiopurity levels of the materials is based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterráneo de Canfranc (Spain) and also on Glow Discharge Mass Spectrometry. Materials to be used in the shielding, pressure vessel, electroluminescence and high voltage components and energy and tracking readout planes have been already taken into consideration. The measurements carried out are presented, describing the techniques and equipment used, and the results obtained are shown, discussing their implications for the NEXT experiment.

  9. Superallowed Nuclear Beta Decay: A Window on the Weak Interaction

    SciTech Connect

    Hardy, J. C.

    2008-01-24

    Measurements on superallowed 0{sup +}{yields}0{sup +} nuclear beta transitions currently provide the most demanding test of the Conserved Vector Current (CVC) hypothesis and the most precise value for the up-down element, V{sub ud}, of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Both are sensitive probes for physics beyond the Standard Model. Analysis of the experimental results depends on small radiative and isospin-symmetry-breaking corrections whose uncertainties now dominate those from experiment. Recent experiments have been focusing on tests of these corrections with a view to reducing their uncertainties. An overview is presented together with a description of measurements at Texas A and M on the superallowed decay of {sup 34}Ar.

  10. Measurement of Vud with 0+→0+ nuclear beta decays

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.; Towner, I. S.

    2013-10-01

    Results from superallowed 0+→0+ nuclear beta decays today provide the best value for Vud, with an uncertainty of ±0.02%. Some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from 10C to 74Rb constitute a very robust data set. Excellent consistency among the average results for all 13 transitions - an expected consequence of the conservation of vector current (CVC) - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin-symmetry breaking. With CVC consistency established, the value of the vector coupling constant, GV, has been extracted from the data and used to determine |Vud| = 0.97425 (22).

  11. Radiopurity control in the NEXT-100 double beta decay experiment

    SciTech Connect

    Álvarez, V.; Cárcel, S.; Cervera, A.; Díaz, J.; Ferrario, P.; Gil, A.; Gómez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martín-Albo, J.; Martínez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodríguez, J.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; and others

    2013-08-08

    An extensive material screening and selection process is underway in the construction of the 'Neutrino Experiment with a Xenon TPC' (NEXT), intended to investigate neutrinoless double beta decay using a high-pressure xenon gas TPC filled with 100 kg of Xe enriched in {sup 136}Xe. Determination of the radiopurity levels of the materials is based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterráneo de Canfranc (Spain) and also on Glow Discharge Mass Spectrometry. Materials to be used in the shielding, pressure vessel, electroluminescence and high voltage components and energy and tracking readout planes have been already taken into consideration. The measurements carried out are presented, describing the techniques and equipment used, and the results obtained are shown, discussing their implications for the NEXT experiment.

  12. First neutrinoless double beta decay results from CUORE-0

    SciTech Connect

    Gironi, L. Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Ferri, E.; Gotti, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sala, E.; Sisti, M.; Terranova, F.; Zanotti, L.; Alduino, C.; and others

    2015-10-28

    The CUORE-0 experiment, a 52 bolometer array searching for neutrinoless double beta decay from {sup 130}Te, has started taking data in spring 2013 underground at the Laboratori Nazionali del Gran Sasso (LNGS). The excellent results obtained in terms of energy resolution and background level allowed this experiment to reach the sensitivity of Cuoricino in approximately half the runtime. Combining CUORE-0 data (9.8 kg·yr exposure of {sup 130}Te) with the 19.75 kg·yr exposure of the Cuoricino experiment, we obtain the most stringent limit to date on the half-life of this isotope (T{sub 1/2} > 4.0 × 10{sup 24} yr). In this article, we review the results from CUORE-0 and discuss the status and the physics potential of CUORE, a 19 times larger bolometer array that plans to begin operations by end of this year.

  13. {beta}-delayed proton decays near the proton drip line

    SciTech Connect

    Xu, S.-W.; Li, Z.-K.; Xie, Y.-X.; Pan, Q.-Y.; Huang, W.-X.; Wang, X.-D.; Yu, Y.; Xing, Y.-B.; Shu, N.-C.; Chen, Y.-S.; Xu, F.-R.; Wang, K.

    2005-05-01

    We briefly reviewed and summarized the experimental study on {beta}-delayed proton decays published by our group over the last 8 years, namely the experimental observation of {beta}-delayed proton decays of nine new nuclides in the rare-earth region near the proton drip line and five nuclides in the mass 90 region with N{approx}Z by utilizing the p-{gamma} coincidence technique in combination with a He-jet tape transport system. In addition, important technical details of the experiments were provided. The experimental results were compared to the theoretical predictions of some nuclear models, resulting in the following conclusions. (1) The experimental half-lives for {sup 85}Mo, {sup 92}Rh, as well as the predicted 'waiting point' nuclei {sup 89}Ru and {sup 93}Pd were 5-10 times longer than the macroscopic-microscopic model predictions of Moeller et al. [At. Data Nucl. Data Tables 66,131(1997)]. These data considerably influenced the predictions of the mass abundances of the nuclides produced in the rp process. (2) The experimental assignments of spin and parity for the drip-line nuclei {sup 142}Ho and {sup 128}Pm could not be well predicted by any of the nuclear models. Nevertheless, the configuration-constrained nuclear potential-energy surfaces calculated by means of a Woods-Saxon-Strutinsky method could reproduce the assignments. (3) The ALICE code overestimated by one or two orders of magnitude the production-reaction cross sections of the nine studied rare-earth nuclei, while the HIVAP code overestimated them by approximately one order of magnitude.

  14. The empirical connection between (p,n) cross sections and beta decay transition strengths

    SciTech Connect

    Taddeucci, T.N.

    1988-01-01

    A proportionality is assumed to exist between 0/degree/ (p,n) cross sections and the corresponding beta decay transition strengths. The validity of this assumption is tested by comparison of measured (p,n) cross sections and analogous beta decay strengths. Distorted waves impulse approximation calculations also provide useful estimates of the accuracy of the proportionality relationship. 14 refs., 10 figs.

  15. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    SciTech Connect

    Montaner Piza, A.; Tain, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marin, E.; Rice, S.; Rubio, B.

    2013-06-10

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  16. Sensitivity of NEXT-100 to neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Martín-Albo, J.; Muñoz Vidal, J.; Ferrario, P.; Nebot-Guinot, M.; Gómez-Cadenas, J. J.; Álvarez, V.; Azevedo, C. D. R.; Borges, F. I. G.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Fernandes, L. M. P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Henriques, C. A. O.; Hernando Morata, J. A.; Herrero, V.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; Yepes-Ramírez, H.

    2016-05-01

    NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta (0 νββ) decay of 136Xe. The detector possesses two features of great value for 0 νββ searches: energy resolution better than 1% FWHM at the Q value of 136Xe and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most 4 × 10-4 counts keV-1 kg-1 yr-1. Accordingly, the detector will reach a sensitivity to the 0 νββ-decay half-life of 2.8 × 1025 years (90% CL) for an exposure of 100 kg·year, or 6.0 × 1025 years after a run of 3 effective years. [Figure not available: see fulltext.

  17. Superallowed fermi beta decay and Coulomb mixing in nuclei

    SciTech Connect

    Hardy, J. C.; Towner, I. S.

    1999-09-02

    Superallowed 0{sup +}{yields}0{sup +} nuclear beta decay provides a direct measure of the weak vector coupling constant, G{sub v}. We survey current world data on the nine accurately determined transitions of this type, which range from the decay of {sup 10}C to that of {sup 54}Co, and demonstrate that the results confirm conservation of the weak vector current (CVC) but differ at the 98% confidence level from the unitarity condition for the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and conclude that there are no evident defects although the Coulomb correction, {delta}{sub C}, depends sensitively on nuclear structure and thus needs to be constrained independently. The potential importance of a result in disagreement with unitarity, clearly indicates the need for further work to confirm or deny the discrepancy. We examine the options and recommend priorities for new experiments and improved calculations. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible with existing facilities. (c) 1999 American Institute of Physics.

  18. The beta decay asymmetry parameter of /sup 35/Ar

    SciTech Connect

    Garnett, J.D.

    1987-11-01

    The beta decay asymmetry parameter for /sup 35/Ar = /sup 35/Cl + e/sup +/ + nu/sub e/ has been remeasured in order to resolve a long standing puzzle. Previous asymmetry measurements, when combined with the comparative half-life, yield a value for the vector coupling constant, G/sub v/, that is in serious disagreement with the accepted value. We produced polarized /sup 35/Ar by a (p,n) reaction on /sup 35/Cl using the polarized proton beam provided by Lawrence Berkeley Laboratory's 88-Inch Cyclotron. The polarization of the /sup 35/Ar was determined by measuring the asymmetry of the positrons produced in /sup 35/Ar decay to the first excited state in /sup 35/Cl (branching ratio = 1.3%) in coincidence with a 1219.4 keV gamma ray. Our result, A/sub 0/ = 0.49 +- 0.10, combined with the comparative half-life yields a value for G/sub v/ in agreement with the accepted value.

  19. Forbidden beta decays of {sup 96}Zr and {sup 115}In: Implications for neutrino physics

    SciTech Connect

    Mustonen, M. T.; Suhonen, J.

    2009-11-09

    We summarize our theoretical results for two nuclides of interest for the double-beta decay and neutrino mass studies: {sup 96}Zr and {sup 115}In.The double-beta decay of {sup 96}Zr competes with three highly-forbidden beta-decay channels. Our microscopic nuclear-structure calculations imply that the half-life of the first-order beta-decay channels is an order of magnitude longer than that of the double-beta decay.In the work of C. T. Cattadori et al. it was discovered that {sup 115}In can beta decay to the first excited state of {sup 115}Sn. It was also suggested that this decay might provide a supplementary way of accessing the neutrino mass. The recent half-life measurement carried out in the underground laboratory HADES confirms the existence and refines the half-life of this decay channel. At the same time the precision mass measurements made at the University of Jyvaeskylae yield the record-setting ultra-low Q value of 0.35(17) keV. Our theoretical analysis of this decay suggests that atomic effects could play an important role in relating the measured half-life to the measured Q value.

  20. Decoding {beta}-decay systematics: A global statistical model for {beta}{sup -} half-lives

    SciTech Connect

    Costiris, N. J.; Mavrommatis, E.; Gernoth, K. A.; Clark, J. W.

    2009-10-15

    Statistical modeling of nuclear data provides a novel approach to nuclear systematics complementary to established theoretical and phenomenological approaches based on quantum theory. Continuing previous studies in which global statistical modeling is pursued within the general framework of machine learning theory, we implement advances in training algorithms designed to improve generalization, in application to the problem of reproducing and predicting the half-lives of nuclear ground states that decay 100% by the {beta}{sup -} mode. More specifically, fully connected, multilayer feed-forward artificial neural network models are developed using the Levenberg-Marquardt optimization algorithm together with Bayesian regularization and cross-validation. The predictive performance of models emerging from extensive computer experiments is compared with that of traditional microscopic and phenomenological models as well as with the performance of other learning systems, including earlier neural network models as well as the support vector machines recently applied to the same problem. In discussing the results, emphasis is placed on predictions for nuclei that are far from the stability line, and especially those involved in r-process nucleosynthesis. It is found that the new statistical models can match or even surpass the predictive performance of conventional models for {beta}-decay systematics and accordingly should provide a valuable additional tool for exploring the expanding nuclear landscape.

  1. Development of detector technologies for neutron beta decay measurements

    NASA Astrophysics Data System (ADS)

    Choi, Jin Ha; Cude-Woods, Chris; Young, Albert; Los Alamos UCN Collaboration Collaboration

    2016-09-01

    In the past year we have developed two detector technologies for neutron beta decay measurements. The first is designed specifically to detect the recoil proton from neutron decay. In particular, the PERKEO III experiments planned for the Institut Laue Langevin require detectors with active area greater than about 600 cm2 area to achieve the targeted statistical sensitivity. We have developed an implementation of transmission foil detectors utilizing free standing foils of roughly 100 nm thickness and 700 cm2 area, coated with LiF converting crystal. These foils are placed in an accelerating electric field geometry to first accelerate the protons to 30 kV and then convert them to an electron shower which can be detected with conventional semiconductor or scintillator detectors. We've also begun development of technology that is designed to detect charged particles from neutron-capture reaction on 10B. The UCNtau experiment at the Los Alamos National Laboratories requires non-magnetic neutron sensors that can be used to measure the density of neutrons in a magnetic trap. We are employing a multilayer surface detector recently developed at Los Alamos for the UCN flux monitoring, adapting it for a compact, 1 cm2 detector and ultralow dark rates. The detector consists of 10B on ZnS scintillating sheet that will be adhered to both faces of an acrylic plate with scintillating optical fibers embedded into it. The optical fibers will be coupled to 2, Hamamatsu micro-PMTs for coincident detection of a neutron event.

  2. Testing CVC and CKM Unitarity via superallowed nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.; Towner, I. S.; Park, H. I.; Iacob, V. E.; Chen, L.; Horvat, V.; Nica, N.; Bencomo, M.

    2015-05-01

    Currently, the most restrictive test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is anchored by nuclear beta decay. Precise measurements of the ft-values for superallowed beta transitions between analog 0+ states are used to determine GV, the vector coupling constant; this, in turn, yields Vud, the up-down quark-mixing element of the CKM matrix. The determination of a transition's ft-value requires the measurement of three quantities: its Q value, branching ratio and parent half-life. To achieve 0.1% precision on the final result, each of these quantities must be measured to substantially better precision, for which special techniques have had to be developed. A new survey and analysis of world data reveals that there are now fourteen such transitions with ft-values known to ˜ 0.1% precision or better, and that they span a wide range of nuclear masses, from 10C, the lightest parent, to 74Rb, the heaviest. Of particular interest is the recent completion of the first mirror pair of 0+ → 0+ transitions, 38Ca → 38mK and 38mK → 38Ar, which provides a valuable constraint on the calculated isospin-symmetry-breaking corrections needed to derive GV from the experimental data. As anticipated by the Conserved Vector Current hypothesis, CVC, all fourteen transitions yield consistent values for GV. The value of Vud derived from their average makes it by far the most precisely known element of the CKM matrix, which, when combined with the other top-row elements, Vus and Vub, leads to the most demanding test available of the unitarity of that matrix. Since CKM unitarity is a key pillar of the Electroweak Standard Model, this test is of fundamental significance.

  3. LUCIFER: scintillating bolometers for neutrinoless double-beta decay searches

    NASA Astrophysics Data System (ADS)

    Pattavina, Luca

    2014-09-01

    In the field of fundamental particle physics, the nature of the neutrino, if it is a Dirac or a Majorana particle, plays a crucial role not only in neutrino physics, but also in the overall framework of fundamental particle interactions and in cosmology. Neutrinoless double-beta decay (0vDBD) is the key tool for the investigation of this nature. Experimental techniques based on the calorimetric approach with cryogenic particle detectors have demonstrated suitability for the investigation of rare nuclear processes, profiting from excellent energy resolution and scalability to large masses. Unfortunately, the most relevant issue is related to background suppression. In fact, bolometers being fully-active detectors struggle to reach extremely low background level. The LUCIFER project aims to deploy the first array of enriched scintillating bolometers. Thanks to the double read-out - heat and scintillation light produced by scintillating bolometers - a highly efficient background identification and rejection is guaranteed, leading to a background-free experiment. We show the potential of such technology in ZnMoO4 and ZnSe prototypes. We describe the current status of the project, including results of the recent R&D activity.

  4. Beta decay studies around doubly magic 78Ni

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof

    2007-11-01

    The main motivations to study very neutron rich nuclei in the ^ 78Ni region are related to the evolution of nuclear structure and to the path of nucleosynthesis within rapid neutron capture. In particular, neutrons filling g9/2 orbital between ^68Ni and ^78Ni affect spin-orbit splitting of proton single-particle states. An increasing beta- delayed neutron emission probabilities are changing the isobaric distributions of nuclei involved in the r-process. The report on the recent results on the decay of most neutron- rich isotopes of copper and gallium [1] will be presented. These proton-induced ^238U fission products were produced and studied at Holifield Radioactive Ion Beam Facility at Oak Ridge using a ``ranging-out'' method [2] for postaccelerated beams purification. In collaboration with Jeff Winger and Sergey Iliushkin, Mississippi State University; Carl Gross and Dan Shapira, ORNL; Carrol Bingham, UTK; Robert Grzywacz, ORNL; Chiara Mazzocchi, Sean Liddick, Steven Padgett, and Mustafa Rajabali, UTK; Jon Batchelder, UNIRIB-ORAU; Edward Zganjar and Andreas Piechaczek, LSU; Christopher Goodin and Joseph Hamilton, Vanderbilt University; and Wojciech Krolas, JIHIR Oak Ridge.[1] J. Winger et al., contr. to INPC, Japan, June 2007[2] C.J. Gross et al., EPJ A 25, s01, 115 (2005)

  5. Neutrinoless Double Beta Decay from a Modern Perspective

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2002-04-01

    Neutrinoless double beta decay is important both from the particle and nuclear physics point of view. From the elementary particle point of view it pops up everywhere , giving rise to the following: The light and heavy neutrino average mass, the right handed λ and η couplings, the SUSY R-parity breaking lepton violating parameter as well as that arising from physics in extra dimensions (branes) etc. Regardless of the dominant mechanism its observation will signal that the neutrinos are massive Majorana particles. From the nuclear physics point of view it is challenging because: 1) The relevant nuclei have complicated nuclear structure. 2) The energetically allowed transitions are suppressed . 3) The intermediate particles in some mechanisms are so heavy that the short distance behavior must be tackled. 4) The momentum dependent terms of the nucleon current cannot be ignored. Taking such effects into account the nuclear matrix elements for A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 have become reliable. From the presently available experimental limits on the half-lives, new limits on the relevant lepton violating parameters have been extracted imposing stringent constraints on the fashionable particle models.

  6. Search for double beta decay of 106Cd in the TGV-2 experiment

    NASA Astrophysics Data System (ADS)

    Rukhadze, N. I.; Brudanin, V. B.; Egorov, V. G.; Klimenko, A. A.; Kovalik, A.; Kouba, P.; Piquemal, F.; Rozov, S. V.; Rukhadze, E.; Salamatin, A. V.; Šimkovic, F.; Shitov, Yu A.; Štekl, I.; Timkin, V. V.; Yakushev, E. A.

    2016-05-01

    A new experimental run of searching for double beta decay of 106Cd was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the TGV-2 spectrometer, consisting of 32 planar type HPGe detectors with a total sensitive volume of ~400 cm3. 16 foils of 106Cd with an enrichment of 99.57% and a total mass of ~ 23.2 g were inserted between the entrance windows of face-to-face detectors. The limit on 2vEC/EC decay of 106Cd - T1/2 > 3.7 × 1020 y at 90% C.F was obtained from the preliminary calculation of experimental data accumulated for 8198 h of measurement. The limits on the resonance OvEC/EC decay of 106Cd were obtained from the measurement of ~23.2 g of 106Cd with the low-background HPGe spectrometer Obelix lasted 395 h -T1/2 (KF, 2741 keV) > 0.9 × 1020 y and T1/2 (KK, 2718 keV) > 1.4 × 1020 y at 90% C.L.

  7. Beta-decay spectroscopy relevant to the r-process nucleosynthesis

    SciTech Connect

    Nishimura, Shunji; Collaboration: RIBF Decay Collaboration

    2012-11-12

    A scientific program of beta-decay spectroscopy relevant to r-process nucleosynthesis has been started using high intensity U-beam at the RIBF. The first results of {beta}-decay half-lives of very neutron-rich Kr to Tc nuclides, all of which lie close to the r-process path, suggest a systematic enhancement of the the {beta}-decay rates of the Zr and Nb isotopes around A110 with respect to the predictions of the deformed quasiparticle-random-phase-approximation model (FRDM + QRPA). An impact of the results on the astrophysical r-process is discussed together with the future perspective of the {beta}-decay spectroscopy with the EURICA.

  8. Experimental study of double-{beta} decay modes using a CdZnTe detector array

    SciTech Connect

    Dawson, J. V.; Goessling, C.; Koettig, T.; Muenstermann, D.; Rajek, S.; Schulz, O.; Janutta, B.; Zuber, K.; Junker, M.; Reeve, C.; Wilson, J. R.

    2009-08-15

    An array of sixteen 1 cm{sup 3} CdZnTe semiconductor detectors was operated at the Gran Sasso Underground Laboratory (LNGS) to further investigate the feasibility of double-{beta} decay searches with such devices. As one of the double-{beta} decay experiments with the highest granularity the 4x4 array accumulated an overall exposure of 18 kg days. The setup and performance of the array is described. Half-life limits for various double-{beta} decay modes of Cd, Zn, and Te isotopes are obtained. No signal has been found, but several limits beyond 10{sup 20} years have been performed. They are an order of magnitude better than those obtained with this technology before and comparable to most other experimental approaches for the isotopes under investigation. An improved limit for the {beta}{sup +}/EC decay of {sup 120}Te is given.

  9. Absolute mass of neutrinos and the first unique forbidden {beta} decay of {sup 187}Re

    SciTech Connect

    Dvornicky, Rastislav; Simkovic, Fedor; Muto, Kazuo; Faessler, Amand

    2011-04-15

    The planned rhenium {beta}-decay experiment, called the ''Microcalorimeter Arrays for a Rhenium Experiment'' (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which will take commissioning data in 2011 and will proceed for 5 years. We present the energy distribution of emitted electrons for the first unique forbidden {beta} decay of {sup 187}Re. It is found that the p-wave emission of electron dominates over the s wave. By assuming mixing of three neutrinos, the Kurie function for the rhenium {beta} decay is derived. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed {beta} decay of {sup 3}H.

  10. A Search for Lorentz-Violation in Double Beta Decay with EXO-200

    NASA Astrophysics Data System (ADS)

    Johnson, Tessa; EXO-200 Collaboration

    2015-10-01

    The Standard-Model Extension (SME) framework assumes Lorentz-violation at the Planck scale, a result of certain theories uniting quantum mechanics to General Relativity. Lorentz-violating operators are added to the current Standard Model, potentially producing effects that could be observed on a macroscopic scale, for instance altering the standard spectrum of double beta decay. The EXO-200 experiment uses 175 kg of enriched liquid xenon to search for neutrinoless double beta decay in 136Xe, and the low background and high precision of the experiment create a good platform to search for other phenomena in double beta decay. The results of a search for deviations to the two-neutrino double beta decay spectrum of 136Xe that would indicate neutrino coupling to a Lorentz-violating operator in the SME are presented.

  11. 0{nu}{beta}{beta}-decay nuclear matrix elements with self-consistent short-range correlations

    SciTech Connect

    Simkovic, Fedor; Faessler, Amand; Muether, Herbert; Rodin, Vadim; Stauf, Markus

    2009-05-15

    A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0{nu}{beta}{beta}) of {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 128}Te, {sup 130}Te, and {sup 136}Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elements for the 0{nu}{beta}{beta} decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0{nu}{beta}{beta}-decay matrix elements.

  12. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    SciTech Connect

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for the contribution of

  13. Sense and sensitivity of double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Gómez-Cadenas, J. J.; Martín-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muñoz, J.; Novella, P.; Poves, A.

    2011-06-01

    The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, mββ. In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a ``physics-motivated range'' (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and ββ isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that 136Xe-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.

  14. Neutrinoless double beta decay in the left-right symmetric models for linear seesaw

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong

    2016-09-01

    In a class of left-right symmetric models for linear seesaw, a neutrinoless double beta decay induced by the left- and right-handed charged currents together will only depend on the breaking details of left-right and electroweak symmetries. This neutrinoless double beta decay can reach the experimental sensitivities if the right-handed charged gauge boson is below the 100TeV scale.

  15. Molecular effects in the neutrino mass determination from beta-decay of the tritium molecule

    SciTech Connect

    Fackler, O.; Jeziorski, B.; Kolos, W.; Szalewicz, K.; Monkhorst, H.J.; Mugge, M.

    1986-03-01

    Molecular final state energies and transition probabilities have been computed for beta-decay of the tritium molecule. The results are of sufficient accuracy to make a determination of the electron neutrino rest mass with an error not exceeding a few tenths of an electron volt. Effects of approximate models of tritium beta-decay on the neutrino mass determination are discussed. 14 refs., 3 figs., 1 tab.

  16. Second unique forbidden {beta} decay of {sup 115}In and neutrino mass

    SciTech Connect

    Dvornicky, R.; Simkovic, F.

    2011-12-16

    The measurement of the electron spectrum in {beta} decays close to the end point provides a robust direct determination of the values of neutrino masses. The most sensitive experiments use tritium and rhenium {beta} decays because these transitions have low Q value. Recent measurement with Penning traps established that the {beta} decay of {sup 115}In(9/2{sup +}) to the first excited state of {sup 115}Sn(3/2{sup +}) is a transition with the smallest Q value among {beta} decays. The decay is associated with a change of spin and parity {Delta}J{sup {pi}} = 3{sup +} ({Delta}L = 2, {Delta}S = 1) of nucleus, i.e., classified as unique second forbidden {beta} decay. Our investigation shows that in this transition electrons are predominantly emitted in d{sub 5/2} partial waves. In addition, it is found that the Kurie function associated with this transition near the end point within a good accuracy reflects a behavior the Kurie function of superallowed {beta} transitions.

  17. Gamow-Teller strength distributions for {beta}{beta}-decaying nuclei within continuum quasiparticle random-phase approximation

    SciTech Connect

    Igashov, S. Yu.; Urin, M. H.; Rodin, Vadim; Faessler, Amand

    2011-04-15

    An isospin-self-consistent pn-continuum-QRPA approach is formulated and applied to describe the Gamow-Teller strength distributions for {beta}{beta}-decaying open-shell nuclei. Calculation results obtained for the pairs of nuclei {sup 76}Ge-Se, {sup 100}Mo-Ru, {sup 116}Cd-Sn, and {sup 130}Te-Xe are compared with available experimental data.

  18. Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48Ca with the NEMO-3 detector

    NASA Astrophysics Data System (ADS)

    Arnold, R.; Augier, C.; Bakalyarov, A. M.; Baker, J. D.; Barabash, A. S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Calvez, S.; Cascella, M.; Cerna, C.; Cesar, J. P.; Chapon, A.; Chauveau, E.; Chopra, A.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Fajt, L.; Filosofov, D.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Hodák, R.; Huber, A.; Hubert, P.; Hugon, C.; Jullian, S.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lalanne, D.; Lang, K.; Lebedev, V. I.; Lemière, Y.; Le Noblet, T.; Liptak, Z.; Liu, X. R.; Loaiza, P.; Lutter, G.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Nowacki, F.; Ohsumi, H.; Pahlka, R. B.; Perrot, F.; Piquemal, F.; Povinec, P.; Přidal, P.; Ramachers, Y. A.; Remoto, A.; Reyss, J. L.; Richards, B.; Riddle, C. L.; Rukhadze, E.; Rukhadze, N. I.; Saakyan, R.; Salazar, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štekl, I.; Suhonen, J.; Sutton, C. S.; Szklarz, G.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vanushin, I.; Vilela, C.; Vorobel, V.; Waters, D.; Zhukov, S. V.; Žukauskas, A.; NEMO-3 Collaboration

    2016-06-01

    The NEMO-3 experiment at the Modane Underground Laboratory investigates the double-beta decay of 48Ca. Using 5.25 yr of data recorded with a 6.99 g sample of 48Ca, approximately 150 double-beta decay candidate events are selected with a signal-to-background ratio greater than 3. The half-life for the two-neutrino double-beta decay of 48Ca is measured to be T1/2 2 ν=[6. 4-0.6+0.7(stat)-0.9 +1.2(syst ) ]×1 019 yr . A search for neutrinoless double-beta decay of 48Ca yields a null result, and a corresponding lower limit on the half-life is found to be T1/2 0 ν>2.0 ×1 022 yr at 90% confidence level, translating into an upper limit on the effective Majorana neutrino mass of ⟨mβ β⟩<6.0 - 26 eV , with the range reflecting different nuclear matrix element calculations. Limits are also set on models involving Majoron emission and right-handed currents.

  19. Structure of {sup 81}Ga populated from the {beta}{sup -} decay of {sup 81}Zn

    SciTech Connect

    Paziy, V.; Mach, H.; Fraile, L. M.; Olaizola, B.; Udias, J. M.; Aprahamian, A.; Bucher, B.; Bernards, C.; Briz, J. A.; Chiara, C. J.; Dlouhy, Z.; Gheorghe, I.; Ghita, D.; Lica, R.; Marginean, N.; Marginean, R.; Stanoiu, M.; Stroe, L.; Hoff, P.; Koester, U.; and others

    2013-06-10

    We report on the results of the {beta}-decay of {sup 81}Zn. The experiment was performed at the CERN ISOLDE facility in the framework of a systematic ultra-fast timing investigation of neutron-rich nuclei populated in the decay of Zn. The present analysis included {beta}-gated {gamma}-ray singles and {gamma}-{gamma} coincidences from the decay of {sup 81}Zn to {sup 81}Ga and leads to a new and much more extensive level scheme of {sup 81}Ga. A new half-life of {sup 81}Zn is provided.

  20. Observation of Two-Neutrino Double-Beta Decay in Xe-136 with EXO-200

    SciTech Connect

    Ackerman, N.; Aharmim, B.; Auger, M.; Auty, D.J.; Barbeau, P.S.; Barry, K.; Bartoszek, L.; Beauchamp, E.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cleveland, B.; Conley, R.; Conti, E.; Cook, J.; Cook, S.; Coppens, A.; Counts, I.; Craddock, W.; Daniels, T.; /more authors..

    2012-09-14

    We report the observation of two-neutrino double-beta decay in {sup 136}Xe with T{sub 1/2} = 2.11 {+-} 0.04(stat) {+-} 0.21(syst) x 10{sup 21} yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for {sup 136}Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

  1. LBL/UCSB /sup 76/Ge double beta decay experiment: first results

    SciTech Connect

    Goulding, F.S.; Cork, C.P.; Landis, D.A.; Luke, P.N.; Madden, N.W.; Malone, D.F.; Pehl, R.H.; Smith, A.R.; Caldwell, D.O.; Eisberg, R.M.

    1984-10-01

    A paper given at the IEEE Nuclear Science Symposium last year presented the scientific justification for this experiment and discussed the design of the detector system. At the present time two of the dual detector systems (i.e., four out of a final total of eight detectors) are operating in the complete active/passive shield in the low background laboratory at LBL. Early results (1620 h) of an experiment using two detectors yield a limit of 4 x 10/sup 22/ years (68% confidence) for the half life of the neutrinoless double beta decay (..beta beta../sub o nu/) of /sup 76/Ge. Although this experiment was carried out above ground, the result approaches those achieved by other groups in deep underground laboratories. Based on studies of the origins of background in our system, we hope to reach a limit of 3 x 10/sup 23/ years (or more) in a two month/four detector experiment to be carried out soon in an underground facility.

  2. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    SciTech Connect

    Dolinski, Michelle Jean

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  3. Nuclear matrix elements of the double beta decay for mass around 80

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Naotaka; Higashiyama, Koji; Teruya, Eri

    2014-09-01

    In nature there are 30 kinds of nuclei which are expected to have double beta decays. Among them ten nuclei are actually observed for the neutrino double beta decays. Still no observation is made for the neutrinoless double beta decays (0 νββ) . The 0 νββ decay is expected to occur only when neutrinos have masses and they are Majorana particles. In that respect observation of 0 νββ is to determine whether neutrinos are Majorana particles or not. In theoretical side in order to estimate the half life of 0 νββ determination of the nuclear matrix elements are essential. They were calculated in many theoretical frameworks, but the results are not consistent in various models. In this study we carry out shell model calculations for 82Se and 82Kr nuclei. After obtaining the wavefunctions, we calculate the nuclear matrix elements. For comparison we make pair truncated shell model calculations.

  4. Occupancies of individual orbits, and the nuclear matrix element of the {sup 76}Ge neutrinoless {beta}{beta} decay

    SciTech Connect

    Menendez, J.; Poves, A.

    2009-10-15

    We discuss the variation of the nuclear matrix element (NME) for the neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 76}Ge when the wave functions are constrained to reproduce the experimental occupancies of the two nuclei involved in the transition. In the interacting shell model description the value of the NME is enhanced about 15% compared to previous calculations, whereas in the QRPA the NME's are reduced by 20%-30%. This diminishes the discrepancies between both approaches. In addition, we discuss the effect of the short-range correlations on the NME in light of the recently proposed parametrizations based on a consistent renormalization of the 0{nu}{beta}{beta} transition operator.

  5. Nuclear and particle physics aspects of the 2{nu}{beta}{beta}-decay of {sup 150}Nd

    SciTech Connect

    Dvornicky, R.; Simkovic, F.; Faessler, A.

    2007-10-12

    A discussion is given on possible realization of the Single State Dominance (SSD) hypothesis in the case of the two-neutrino double beta decay (2{nu}{beta}{beta}-decay) of {sup l50}Nd with 1{sup -} ground state of the intermediate nucleus. We conclude that the SSD hypothesis is expected to be ruled out by precision measurement of differential characteristics of this process in running NEMO 3 or planed SuperNEMO experiments unlike some unknown low-lying 1{sup +} state of {sup 150}Pm does exist. This problem can be solved via (d,{sup 2}He) charge-exchange experiment on {sup l50}Sm. Further, we address the question about possible violation of the Pauli exclusion principle for neutrinos and its consequences for the energy distributions of the 2{nu}{beta}{beta}-decay of {sup l50}Nd. This phenomenon might be a subject of interest of NEMO 3 and SuperNEMO experiments as well.

  6. Measurement of sin(2beta) in Tree-dominated B^0-Decays and Ambiguity Removal

    SciTech Connect

    Lacker, Heiko

    2007-03-05

    The most recent results from the B-factories on the time-dependent CP asymmetries measured in B{sup 0}-decays mediated by b {yields} c{bar c}s quark-transitions are reviewed. The Standard Model interpretation of the results in terms of the parameter sin 2{beta} leads to a four-fold ambiguity on the unitarity triangle {beta} which can be reduced to a two-fold ambiguity by measuring the sign of the parameter cos 2{beta}. The results on cos 2{beta} obtained so far are reviewed.

  7. Measurement of Sin(2beta) in Tree Dominated B0 Decays And Ambiguity Removal

    SciTech Connect

    Lacker, H.; /Dresden, Tech. U.

    2007-11-20

    The most recent results from the B-factories on the time-dependent CP asymmetries measured in B{sup 0}-decays mediated by b {yields} c{bar c}s quark-transitions are reviewed. The Standard Model interpretation of the results in terms of the parameter sin 2{beta} leads to a four-fold ambiguity on the unitarity triangle {beta} which can be reduced to a two-fold ambiguity by measuring the sign of the parameter cos 2{beta}. The results on cos2{beta} obtained so far are reviewed.

  8. Beta-decay properties of 25 Si and 26 P

    NASA Astrophysics Data System (ADS)

    Thomas, J.-C.; Achouri, L.; Äystö, J.; Béraud, R.; Blank, B.; Canchel, G.; Czajkowski, S.; Dendooven, P.; Ensallem, A.; Giovinazzo, J.; Guillet, N.; Honkanen, J.; Jokinen, A.; Laird, A.; Lewitowicz, M.; Longour, C.; Oliveira Santos, F.; Peräjärvi, K.; Stanoiu, M.

    2004-09-01

    The β-decay properties of the neutron-deficient nuclei 25Si and 26P have been investigated at the GANIL/LISE3 facility by means of charged-particle and γ-ray spectroscopy. The decay schemes obtained and the Gamow-Teller strength distributions are compared to shell-model calculations based on the USD interaction. B(GT) values derived from the absolute measurement of the β-decay branching ratios give rise to a quenching factor of the Gamow-Teller strength of 0.6. A precise half-life of 43.7 (6) ms was determined for 26P, the β-(2)p decay mode of which is described.

  9. Investigaton of the beta strength function at high energy: gamma-ray spectroscopy of the decay of 5. 3-s /sup 84/As to /sup 84/Se

    SciTech Connect

    Henry, E.A; Lien, O.G. III; Meyer, R.A.

    1981-06-01

    The beta strength function up to approximately 8.6 MeV for the system /sup 84/As(..beta../sup -/)/sup 84/Se was investigated. It was found that it is not possible to satisfactorily describe S/sub ..beta../ by a statistical model. From the /sup 84/As decay scheme an experimental beta strength function was deduced. Additional information on the beta transition intensity is obtained from the gross coincidence spectra of individual gamma rays. In total these data suggest that the experimental beta strength function above 6.8 MeV is significantly lower than that calculated using a statistical model. Features in the gross coincidence spectra also suggest that a significant bump appears in the experimental beta strength function at approximately 6.5 MeV.

  10. Results from the Cuoricino (Zero-Neutrino Double Beta) Decay Experiment

    SciTech Connect

    Arnaboldi, C; Artusa, D R; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Brofferio, C; Bucci, C; Capelli, S; Carbone, L; Cebrian, S; Clemenza, M; Cremonesi, O; Creswick, R J; de Ward, A; Didomizio, S D; Dolinski, M J; Farach, H A; Fiorini, E; Frossati, G; Giachero, A; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Maruyama, R H; McDonald, R J; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Olivieri, E; Pallavicini, M; Palmieri, E; Pasca, E; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Sangiorgio, S; Sisti, M; Smith, A R; Torres, L; Ventura, G; Vignati, M

    2007-12-20

    Recent results from the CUORICINO {sup 130}Te zero-neutrino double-beta (0v{beta}{beta}) decay experiment are reported. CUORICINO is an array of 62 tellurium oxide (TeO{sub 2}) bolometers with an active mass of 40.7 kg. It is cooled to {approx}8 mK by a dilution refrigerator shielded from environmental radioactivity and energetic neutrons. It is running in the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, Italy. These data represent 11.83 kg y or 90.77 mole-years of {sup 130}Te. No evidence for 0v{beta}{beta}-decay was observed and a limit of T{sub 1/2}{sup 0v} ({sup 130}Te) {ge} 3.0 x 10{sup 24} y (90% C.L.) is set. This corresponds to upper limits on the effective mass, , between 0.19 and 0.68eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of 0v{beta}{beta}-decay by H.V. Klapdor-Kleingrothaus and his co-workers. The experiment continues to acquire data.

  11. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    SciTech Connect

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.

  12. Observation of the acceleration by an electromagnetic field of nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    2008-02-01

    Measurements are reported of the acceleration of the first-forbidden beta decay of 137Cs by exposure to intense, low-frequency electromagnetic fields. Two separate experiments were done: one in a coaxial cavity, and the other in a coaxial transmission line. The first showed an increase in the beta decay rate of (6.8±3.2)×10-4 relative to the natural rate, and the other resulted in an increase of (6.5±2.0)×10- 4. In addition, a Fourier analysis of the rate of 662 keV gamma emission following from the beta decay in the standing-wave experiment showed a clear indication of the frequency with which the external field was switched on and off. A simultaneously detected gamma emission from a placebo nucleus showed no such peak.

  13. Self-consistent approach to beta decay and delayed neutron emission

    NASA Astrophysics Data System (ADS)

    Borzov, I. N.

    2016-11-01

    A brief overview of the recent self-consistent studies of nuclear beta decay is given including the relativistic quasi-particle random-phase approximation or QRPA and Finite Amplitude Method. The results of our self-consistent continuum QRPA model based on the density functional description of the ground states are presented. They are in a good agreement with the recent experimental beta-decay half-lives and delayed neutron emission branchings for the nuclei approaching (and beyond) the neutron closed shells N = 50 near 78Ni and N = 82 near 132Sn. A comparison with the recent calculations from relativistic QRPA model, Finite Amplitude Method and semi-microscopic finite-range droplet model is performed. An importance of the quasi-particle phonon coupling is stressed for the description of the beta decay and delayed multi-neutron emission rates. A strategy of extending our approach to the deformed nuclei and the open problems are discussed.

  14. Precision theoretical analysis of neutron radiative beta decay

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Berdnikov, Ya. A.

    2017-02-01

    In the Standard Model of electroweak interactions and in the tree approximation we calculate the rate and branching ratio of the neutron radiative β- decay with one real photon emission by taking into account the contributions of the weak magnetism and proton recoil to order 1 /mp of the large proton mass mp expansion. We find that the obtained contributions of the weak magnetism and proton recoil increase the rate and branching ratio of the neutron radiative β- decay by about 0.70%. This is large compared with the contribution of the weak magnetism and proton recoil of about 0.16% to the rate of the neutron β- decay, calculated in Phys. Rev. D 88, 073002 (2013), 10.1103/PhysRevD.88.073002.

  15. Maria Goeppert Mayer's work on beta-decay and pairing, and its relevance today

    NASA Astrophysics Data System (ADS)

    Moszkowski, Steven

    2013-04-01

    Maria Goeppert Mayer's work on beta-decay and pairing is not as well known as her Nobel Prize winning work on the nuclear shell model, but it attests to her wide range of accomplishments. Her paper on double beta decay was the first one written on the subject. Later she also worked on the application of beta decay as a test of the nuclear shell model. Due to its very long half-life, double beta-decay was not found experimentally until the 1980's. This involves emission of two neutrinos along with the two electrons. However, in principle it is also possible to have double beta decay with no neutrinos, a process which was identified about 10 years ago, though this is still quite controversial. Currently, there are several groups working on this problem, which has significant implications for particle physics and for cosmology. It was known from the earliest days of nuclear physics that nuclei with even Z and even N are more stable than others due to the pairing effect. Indeed, all nuclei in which double beta-decay is looked for are even-even and this would not be possible were it not for pairing. In MGM's paper on pairing, published shortly after the ones on the magic numbers and role of spin-orbit coupling, she used a very simplified zero range nuclear interaction. There has been considerable work on pairing in the meantime. It is still an open problem how to understand the details of how pairing works in nuclei, in terms of realistic nucleon-nucleon interactions.

  16. On decay constants and orbital distance to the Sun—part III: beta plus and electron capture decay

    NASA Astrophysics Data System (ADS)

    Pommé, S.; Stroh, H.; Paepen, J.; Van Ammel, R.; Marouli, M.; Altzitzoglou, T.; Hult, M.; Kossert, K.; Nähle, O.; Schrader, H.; Juget, F.; Bailat, C.; Nedjadi, Y.; Bochud, F.; Buchillier, T.; Michotte, C.; Courte, S.; van Rooy, M. W.; van Staden, M. J.; Lubbe, J.; Simpson, B. R. S.; Fazio, A.; De Felice, P.; Jackson, T. W.; Van Wyngaardt, W. M.; Reinhard, M. I.; Golya, J.; Bourke, S.; Roy, T.; Galea, R.; Keightley, J. D.; Ferreira, K. M.; Collins, S. M.; Ceccatelli, A.; Verheyen, L.; Bruggeman, M.; Vodenik, B.; Korun, M.; Chisté, V.; Amiot, M.-N.

    2017-02-01

    The hypothesis that seasonal changes in proximity to the Sun cause variation of decay constants at permille level has been tested for radionuclides disintegrating through electron capture and beta plus decay. Activity measurements of 22Na, 54Mn, 55Fe, 57Co, 65Zn, 82+85Sr, 90Sr, 109Cd, 124Sb, 133Ba, 152Eu, and 207Bi sources were repeated over periods from 200 d up to more than four decades at 14 laboratories across the globe. Residuals from the exponential nuclear decay curves were inspected for annual oscillations. Systematic deviations from a purely exponential decay curve differ from one data set to another and appear attributable to instabilities in the instrumentation and measurement conditions. Oscillations in phase with Earth’s orbital distance to the sun could not be observed within 10-4-10-5 range precision. The most stable activity measurements of β + and EC decaying sources set an upper limit of 0.006% or less to the amplitude of annual oscillations in the decay rate. There are no apparent indications for systematic oscillations at a level of weeks or months.

  17. A decay total absorption spectrometer for DESPEC at FAIR

    NASA Astrophysics Data System (ADS)

    Tain, J. L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M. D.; Montaner-Pizá, A.; Rubio, B.; Valencia, E.; Cano-Ott, D.; Gelletly, W.; Martinez, T.; Mendoza, E.; Podolyák, Zs.; Regan, P.; Simpson, J.; Smith, A. J.; Strachan, J.

    2015-12-01

    This paper presents the design of a total absorption γ-ray spectrometer for the determination of β-decay intensity distributions of exotic nuclear species at the focal plane of the FAIR-NUSTAR Super Fragment Separator. The spectrometer is a key instrument in the DESPEC experiment and the proposed implementation follows extensive design studies and prototype tests. Two options were contemplated, based on NaI(Tl) and LaBr3:Ce inorganic scintillation crystals respectively. Monte Carlo simulations and technical considerations determined the optimal configurations consisting of sixteen 15 × 15 × 25cm3 crystals for the NaI(Tl) option and one hundred and twenty-eight 5.5 × 5.5 × 11cm3 crystals for the LaBr3:Ce option. Minimization of dead material was crucial for maximizing the spectrometer full-energy peak efficiency. Module prototypes were build to verify constructional details and characterize their performance. The measured energy and timing resolution was found to agree rather well with estimates based on simulations of scintillation light transport and collection. The neutron sensitivity of the spectrometer, important when measuring β-delayed neutron emitters, was investigated by means of Monte Carlo simulations.

  18. Optimization of the Transport Shield for Neutrinoless Double Beta-decay Enriched Germanium

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Reid, Douglas J.; Fast, James E.

    2012-04-15

    This document presents results of an investigation of the material and geometry choice for the transport shield of germanium, the active detector material used in 76Ge neutrinoless double beta decay searches. The objective of this work is to select the optimal material and geometry to minimize cosmogenic production of radioactive isotopes in the germanium material. The design of such a shield is based on the calculation of the cosmogenic production rate of isotopes that are known to cause interfering backgrounds in 76Ge neutrinoless double beta decay searches.

  19. Tracking electrons from double beta decay - How far can you push the TPC?

    NASA Astrophysics Data System (ADS)

    Moe, M. K.; Nelson, M. A.; Vient, M. A.

    New results are reported from time-projection-chamber measurements of the double beta decay of 100Mo and 150Nd. A previously-observed high-energy anomaly has been eliminated by improved energy resolution. Kurie plots of the two-neutrino spectra show end-point energies close to the reported parent-daughter mass differences. The 150Nd source has produced a new direct-counting 90% confidence neutrino-majoron coupling limit of < gν, χ> < 7.0 × 10 -5. The strengths and weaknesses of the TPC, and the feasibility of a larger TPC for neutrinoless double beta decay are discussed.

  20. Determination of the weak magnetism matrix element in {sup 14}C beta decay

    SciTech Connect

    Zeuli, A.R.; Ahmad, I.; Coulter, K.P.; Greene, J.P.; Schiffer, J.P.; Freedman, S.J.; Fujikawa, B.K.; Mortara, J.L.

    1993-10-01

    Higher order beta decay matrix elements, such as weak magnetism, will introduce small departures (a shape factor) from the allowed beta decay electron energy spectrum. The value of the weak magnetism matrix element is predicted by the Conserved Vector Current (CVC) hypothesis and an experimental determination of the weak magnetism matrix element can be interpreted as a test of CVC. We have determined the weak magnetism matrix element from the {sup 14}C shape factor, which was measured using an apparatus incorporating a high resolution solid state detector and a super conducting solenoid. The results of our measurement will be presented.

  1. The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay

    SciTech Connect

    Phillips, D.; Aguayo Navarrete, Estanislao; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Esterline, James H.; Fast, James E.; Fields, N.; Finnerty, P.; Fraenkle, Florian; Gehman, Victor; Giovanetti, G. K.; Green, Matthew P.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keller, C.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; LaRoque, B. H.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Poon, Alan; Perumpilly, Gopakumar; Prior, Gersende; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Wolfe, B. A.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.

    2012-12-01

    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the Majorana Experiment, known as the Demonstrator, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the Demonstrator is to validate whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak.

  2. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    SciTech Connect

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  3. [sup 223]Ra levels fed in the [sup 223]Fr [beta] decay

    SciTech Connect

    Abdul-Hadi, A.; Barci, V.; Weiss, B.; Maria, H.; Ardisson, G. ); Hussonnois, M.; Constantinescu, O. )

    1993-01-01

    The [sup 223]Fr [beta] decay was reinvestigated using high-resolution single [gamma] spectrometry as well as [gamma]-[gamma] coincidence techniques. For single [gamma]-spectra measurements, radiochemically pure [sup 223]Fr sources were obtained by chromatographic separation from a 75 MBq activity [sup 227]Ac parent source and continuously purified of [sup 223]Ra and daughters. The analysis of the [gamma] spectra of 30 sources showed the existence of 131 [gamma] lines, of which 87 are reported for the first time in the [sup 223]Fr [beta] decay although many of them are observed following the [sup 227]Th [alpha] decay. The [sup 223]Fr half-life was remeasured and found to be [ital T][sub 1/2]=22.00[plus minus]0.07 min. [gamma]-[gamma]-[ital t] coincidence measurements were also carried out with [sup 223]Fr purified sources. The [sup 223]Ra level scheme was built on the basis of our [gamma] data, as well as [sup 227]Th [alpha]-decay data. Among the 32 excited [sup 223]Ra levels, of which 22 were also known from [sup 227]Th [alpha] decay, 13 are newly reported from [sup 223]Fr [beta] decay. Low energy levels ([ital E][lt]400 keV) may be classified as parity doublet bands according to the predictions of the reflection asymmetric rotor model. Above a 700 keV gap, a coexistence of symmetric and asymmetric shapes including both static and dynamic octupole correlations is suggested.

  4. Beta Decay Spectroscopy of Neutron-Rich Nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Lorusso, G.; Nishimura, S.; Baba, H.; Doornenbal, P.; Isobe, T.; Söderström, P.-A.; Browne, F.; Daido, R.; Yifan, F.; Nishibata, H.; Yagi, A.; Gey, G.; Li, Z.; Wu, J.; Lubos, D.; Moschner, K.; Patel, Z.; Rice, S.; Sinclair, L.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Xu, Z. Y.; Yoshinaga, K.

    2015-11-01

    The development of a high intensity 238U beam at the Radioactive Isotope Beam Factory (RIBF) has opened a new opportunity to explore exotic regions of the nuclear chart that were not accessible before. Along with beam development, the installation of the high efficiency γ-detector EURICA has made β-decay spectroscopy measurements of these regions possible, and a large international effort named the EURICA project has been launched to take advantage of this new opportunity.

  5. On Double-Beta Decay Half-Life Time Systematics

    SciTech Connect

    Pritychenko, B.

    2010-04-14

    Recommended 2{beta}(2{nu}) half-life values and their systematics were analyzed in the framework of a simple empirical approach. T{sub 1/2}{sup 2{nu}} {approx} 1/E{sup 8} trend has been observed for {sup 128,130}Te recommended values. This trend was used to predict T{sub 1/2}{sup 2{nu}} for all isotopes of interest. Current results were compared with other theoretical and experimental works.

  6. Parametric instability of a monochromatic Alfven wave: Perpendicular decay in low beta plasma

    SciTech Connect

    Gao, Xinliang; Lu, Quanming; Shan, Lican; Wang, Shui; Li, Xing

    2013-07-15

    Two-dimensional hybrid simulations are performed to investigate the parametric decay of a monochromatic Alfven wave in low beta plasma. Both the linearly and left-hand polarized pump Alfven waves are considered in the paper. For the linearly polarized pump Alfven wave, either a parallel or obliquely propagating wave can lead to the decay along the perpendicular direction. Initially, the parametric decay takes place along the propagating direction of the pump wave, and then the decay occurs in the perpendicular direction. With the increase of the amplitude and the propagating angle of the pump wave (the angle between the propagating direction of the pump wave and the ambient magnetic field), the spectral range of the excited waves becomes broad in the perpendicular direction. But the effects of the plasma beta on the spectral range of the excited waves in perpendicular direction are negligible. However, for the left-hand polarized pump Alfven wave, when the pump wave propagates along the ambient magnetic field, the parametric decay occurs nearly along the ambient magnetic field, and there is no obvious decay in the perpendicular direction. Significant decay in the perpendicular direction can only be found when the pump wave propagates obliquely.

  7. Pions in nuclei and manifestations of supersymmetry in neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Kovalenko, Sergey; Šimkovic, Fedor

    1998-12-01

    We examine the pion realization of the short-ranged supersymmetric (SUSY) mechanism of neutrinoless double beta decay (0νββ decay). It originates from the R-parity violating quark-lepton interactions of the SUSY extensions of the standard model of the electroweak interactions. We argue that pions are dominant SUSY mediators in 0νββ decay. The corresponding nuclear matrix elements for potentially 0νββ-decaying isotopes are calculated within the proton-neutron renormalized quasiparticle random-phase approximation (pn-RQRPA). We define those isotopes which are most sensitive to the SUSY signal and provide an outlook on the present experimental situation with the 0νββ-decay searches for SUSY. Upper limits on the R-parity violating first-generation Yukawa coupling λ'111 are derived from various 0νββ experiments.

  8. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    SciTech Connect

    Bellini, F.

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  9. Beta Decay of the Proton-Rich Nuclei 102Sn and 104Sn

    SciTech Connect

    Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Brown, B. A.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Rykaczewski, Krzysztof Piotr; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2006-01-01

    The {beta} decays of {sup 102}Sn and {sup 104}Sn were studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). For {sup 104}Sn, with three new {beta}-delayed {gamma}-rays identified, the total Gamow-Teller strength (BGT) value of 2.7(3) was obtained. For {sup 102}Sn, the {gamma}-{gamma} coincidence data were collected for the first time, allowing us to considerably extend the decay scheme. This scheme was used to unfold the TAS data and to deduce a BGT value of 4.2(8) for this decay. This result is compared to shell model predictions, yielding a hindrance factor of 3.6(7) in agreement with those obtained previously for {sup 98}Cd and {sup 100}In. Together with the latter two, {sup 102}Sn completes the triplet of Z {le} 50, N {ge} 50 nuclei with two proton holes, one proton hole and one neutron particle, and two neutron particles with respect to the doubly magic {sup 100}Sn core.

  10. Neutrinoless double beta decay with Xe-136 in BOREXINO and the BOREXINO Counting Test Facility

    NASA Astrophysics Data System (ADS)

    Caccianiga, B.; Giammarchi, M. G.

    2000-08-01

    This article discusses the methods and sensitivity for a double beta decay experiment based on the Xe-136 candidate for BOREXINO or the BOREXINO Counting Test Facility. Different background assumptions and experimental configurations are studied, assuming a data obtaining period of one year. The related experimental problems are discussed, and summary tables containing the sensitivity estimates for the various configurations are presented.

  11. Nuclear structure relevant to neutrinoless double beta decay candidate {sup 130}Te and other recent results

    SciTech Connect

    Kay, B. P.

    2013-12-30

    We have undertaken a series of single-nucleon and pair transfer reaction measurements to help constrain calculations of the nuclear matrix elements for neutrinoless double beta decay. In this talk, a short overview of measurements relevant to the {sup 130}Te→{sup 130}Xe system is given. Brief mention is made of other recent and forthcoming results.

  12. Status of the Battelle-Carolina /sup 76/Ge double beta decay experiment

    SciTech Connect

    Moore, R.S.; Avignone, F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1983-09-01

    A new detector for the measurement of /sup 76/Ge double beta decay is described. The detector system will consist of a 1440 cm/sup 3/ mosaic Ge detector with anticoincidence shielding, and the experiment will be performed deep underground. 12 references. (WHK)

  13. About some of the theoretical approaches used in double-beta decay calculations

    SciTech Connect

    Civitarese, O.

    2007-10-12

    The calculations of nuclear matrix elements, corresponding to nuclear double beta decay transitions, rely upon several approximations. The impact of these approximations upon final estimations of the nuclear matrix elements is illustrated. We pay attention to mean field (symmetry violations) and to approximate diagonalizations (pn-QRPA, renormalized pn-QRPA and fully renormalized pn-QRPA)

  14. About some of the theoretical approaches used in double-beta decay calculations

    NASA Astrophysics Data System (ADS)

    Civitarese, O.

    2007-10-01

    The calculations of nuclear matrix elements, corresponding to nuclear double beta decay transitions, rely upon several approximations. The impact of these approximations upon final estimations of the nuclear matrix elements is illustrated. We pay attention to mean field (symmetry violations) and to approximate diagonalizations (pn-QRPA, renormalized pn-QRPA and fully renormalized pn-QRPA).

  15. Decay constants of heavy-light pseudoscalars: Results at. beta. = 6. 3

    SciTech Connect

    Bernard, C.; Heard, C.M. . Dept. of Physics); Labrenz, J.; Soni, A. )

    1992-01-01

    A lattice calculation of the pseudoscalar decay constant for heavy-light mesons is reported. Emphasis is placed on preliminary results obtained using wall-source propagators at {beta} = 6.3. The previously-observed discrepancy between the static and conventional approaches appears to be much reduced.

  16. Decay constants of heavy-light pseudoscalars: Results at {beta} = 6.3

    SciTech Connect

    Bernard, C.; Heard, C.M.; Labrenz, J.; Soni, A.

    1992-01-01

    A lattice calculation of the pseudoscalar decay constant for heavy-light mesons is reported. Emphasis is placed on preliminary results obtained using wall-source propagators at {beta} = 6.3. The previously-observed discrepancy between the static and conventional approaches appears to be much reduced.

  17. Paul trapping of radioactive 6He+ ions and direct observation of their beta decay.

    PubMed

    Fléchard, X; Liénard, E; Méry, A; Rodríguez, D; Ban, G; Durand, D; Duval, F; Herbane, M; Labalme, M; Mauger, F; Naviliat-Cuncic, O; Thomas, J C; Velten, Ph

    2008-11-21

    We demonstrate that abundant quantities of short-lived beta unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy 6He+ (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10(8) ions have been stored over a measuring period of six days, and about 10(5) decay coincidences between the beta particles and the 6Li++ recoiling ions have been recorded. The technique can be extended to other short-lived species, opening new possibilities for trap assisted decay experiments.

  18. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  19. Sharpening Low-Energy, Standard-Model Tests via Correlation Coefficients in Neutron {beta} Decay

    SciTech Connect

    Gardner, S.; Zhang, C.

    2001-06-18

    The correlation coefficients a , A , and B in neutron {beta} decay are proportional to the ratio of the axial-vector-to-vector weak coupling constants, g{sub A}/g{sub V} , to leading recoil order. With the advent of the next generation of neutron-decay experiments, the recoil-order corrections to these expressions become experimentally accessible, admitting a plurality of standard model (SM) tests. The measurement of both a and A , e.g., allows one to test the conserved-vector-current (CVC) hypothesis and to search for second-class currents (SCC) independently. The anticipated precision of these measurements suggests that the bounds on CVC violation and SCC from studies of nuclear {beta} decay can be qualitatively bettered.

  20. Magnetic tracking detector DCBA/MTD for neutrinoless double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Ishihara, Nobuhiro; DCBA Collaboration

    2012-07-01

    Magnetic tracking detector is being developed at KEK for neutrinoless double beta decay experiments. Drift Chamber Beta-ray Analyzer (DCBA) is an R&D program to confirm the detection principle of the magnetic tracking detector. A prototype called DCBA-T2 has been constructed and operated to investigate its energy resolution and operation problems. Another new prototype DCBA-T3 is now under construction to improve the energy resolution and the amount of decay source. On the basis on DCBA-T2&T3, we have designed a future project temporarily called Magnetic Tracking Detector (MTD). One module of MTD will be able to accommodate a lot of decay source, so that several ten modules will give us a chance to investigate the effective neutrino mass down to 30 meV.

  1. The next generation neutrinoless double-beta decay experiment nEXO

    NASA Astrophysics Data System (ADS)

    MacLellan, Ryan; nEXO Collaboration

    2017-01-01

    The nEXO Collaboration is actively engaged in R&D towards a very large detector for neutrinoless double beta decay of 136Xe. The nEXO detector is rooted in the current EXO-200 program, which has reached a sensitivity for the half-life of the decay of 1 . 9 ×1025 y with an exposure of 99.8 kg-y. The baseline nEXO design assumes 5 tonnes of liquid xenon, enriched in the mass 136 isotope, within a large monolithic time projection chamber. The initial goal for nEXO is a neutrinoless double-beta decay half-life sensitivity of 1 ×1028 y, covering the inverted neutrino mass hierarchy with 5 years of data. We present the conceptual nEXO detector design, the current status of R&D efforts, and the physics case for the experiment.

  2. Beta-decay half-lives and level ordering of 102m,gRh.

    PubMed

    Shibata, M; Satoh, Y; Itoh, S; Yamamoto, H; Kawade, K; Kasugai, Y; Ikeda, Y

    1998-12-01

    Beta-decay half-lives of the ground state and an isomer of 102Rh have been determined 207.3(17) d and 3,742(10) y, respectively, by gamma-ray decay curves following each beta-decay. It has been found that a state (2-) which has a shorter half-life (207.3 d) is the ground state from the result that the half-life of the 41.9 keV isomeric gamma-transition was equal to 3.742 y. It has also been confirmed that the 41.9 keV transition is certainly an isomeric transition with X-gamma coincidence measurement.

  3. Beta-Decay and Delayed Neutron Emission of Very Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Borzov, I. N.

    2014-09-01

    Extended self-consistent beta-decay model has been applied for beta-decay rates and delayed multi-neutron emission probabilities of quasi-spherical neutron-rich isotopes. The Gamow-Teller and first-forbidden decays are treated within the coordinate-space formalism of the continuum QRPA based on the density functional theory description of the ground state. A new set of the Fayans density functional parameters (DF3a) have been employed giving a better spin-orbit splitting due to a stronger tensor term. A provision has been included to fix the odd particle in the proper orbit (before variation). This accounts for ground-state spin inversion effect which has been shown to exist in the region of the most neutron-rich doubly-magic nucleus 78Ni.

  4. Radiative Beta Decay for Studies of CP Violation

    NASA Astrophysics Data System (ADS)

    Gardner, Susan; He, Daheng

    2013-10-01

    A triple-product correlation in the radiative β decay rate of neutrons or of nuclei, characterized by the kinematical variable, where, e.g., n (p) --> p (p') +e- (le) + νe (lν) + γ (k) , can be generated by the pseudo-Chern-Simons term found by Harvey, Hill, and Hill as a consequence of the baryon vector current anomaly and SU(2)L ×U(1)Y gauge invariance at low energies. The correlation probes the imaginary part of its coupling constant, so that its observation at anticipated levels of sensitivity would reflect the presence of sources of CP violation beyond the standard model. We compute the size of the asymmetry in n --> pe-νe γ decay in chiral effective theory, compare it with the computed background from standard-model final-state interactions, and consider the new physics scenarios which would be limited by its experimental study. Work supported in part by the U.S. Department of Energy Office of Nuclear Physics under contract no. DE-FG02-96ER40989.

  5. Very Low Energy Protons From the Beta Decay of Proton Rich Nuclei For Nuclear Astrophysics

    SciTech Connect

    Simmons, E.; Trache, L.; Banu, A.; McCleskey, M.; Roeder, B.; Spiridon, A.; Tribble, R. E.; Saastamoinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Lotay, G. J.

    2010-03-01

    We have developed a new experimental technique to measure very low energy protons from beta-delayed p-decay of proton-rich nuclei produced and separated with the MARS recoil spectrometer at TAMU. Recently we have investigated the beta-delayed p-decays of {sup 23}Al and {sup 31}Cl and obtained information on the resonances in the reactions {sup 22}Na(p,gamma){sup 23}Mg and {sup 30}P(p,gamma){sup 31}S, respectively. These reactions are important in explosive H-burning in Novae. A simple setup consisting of a telescope made of a thin double sided Si strip detector (p-detector) backed or sandwiched between two thick Si detectors (beta-detectors) was designed. We studied two different p-detectors and found that the thinner detectors with a small cell size are best to measure proton energies as low as 2-300 keV.

  6. Active and sterile neutrino mass effects on beta decay spectra

    SciTech Connect

    Boillos, Juan Manuel; Moya de Guerra, Elvira

    2013-06-10

    We study the spectra of the emitted charged leptons in charge current weak nuclear processes to analyze the effect of neutrino masses. Standard active neutrinos are studied here, with masses of the order of 1 eV or lower, as well as sterile neutrinos with masses of a few keV. The latter are warm dark matter (WDM) candidates hypothetically produced or captured as small mixtures with the active neutrinos. We compute differential decay or capture rates spectra in weak charged processes of different nuclei ({sup 3}H, {sup 187}Re, {sup 107}Pd, {sup 163}Ho, etc) using different masses of both active and sterile neutrinos and different values of the mixing parameter.

  7. Non-collapsing renormalized QRPA with proton-neutron pairing for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Simkovic, F.; Schwieger, J.; Veselský, M.; Pantis, G.; Faessler, Amand

    1997-02-01

    Using the renormalized quasiparticle random phase approximation (RQRPA), we calculate the light neutrino mass mediated mode of neutrinoless double beta decay (0νββ-decay) of 76Ge, 100Mo, 128Te and 130Te. Our results indicate that the simple quasiboson approximation is not good enough to study the 0νββ-decay, because its solutions collapse for physical values of gpp. We find that extension of the Hilbert space and inclusion of the Pauli principle in the QRPA with proton-neutron pairing, allows us to extend our calculations beyond the point of collapse, for physical values of the nuclear force strength. As a consequence one might be able to extract more accurate values on the effective neutrino mass by using the best available experimental limits on the half-life of 0νββ-decay.

  8. A measurement of the 2 neutrino double beta decay rate of tellurium-130 in the CUORICINO experiment

    NASA Astrophysics Data System (ADS)

    Kogler, Laura Katherine

    CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2nubetabeta). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of ˜10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2nubetabeta rate. The enriched crystals contained a total of ˜350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130-enriched crystals. Residual backgrounds in the subtracted spectrum were fit using spectra generated by Monte-Carlo simulations of natural radioactive contaminants located in and on the crystals. The 2nubetabeta half-life was measured to be T1/2 = [9.81 +/- 0.96(stat) +/- 0.49(syst)] x 1020 y.

  9. Investigation of excited states in 47Ca through a high-statistics beta-decay study

    NASA Astrophysics Data System (ADS)

    Smith, Jenna; Griffin Collaboration

    2015-10-01

    Recent developments in nuclear many-body calculation methods have extended the application of ab initio interactions to the calcium isotopes (e.g. Refs.). Detailed nuclear data for these isotopes are necessary to evaluate the many-body calculation methods and to test the predictive power of the interactions. Transfer reactions from 48Ca have identified many excited states of 47Ca, but only four states have been identified in previous beta-decay experiments. High-statistics beta-decay studies using modern detection systems can provide detailed information on level energies, branching ratios, and spin/parity assignments, while comparison to other population methods can yield information about the structure of these states. A recent experiment at TRIUMF-ISAC used the GRIFFIN spectrometer to investigate the levels populated by beta decay in more detail. The decay scheme has been considerably extended and angular correlations between cascading gamma-ray transitions allow spin and parity assignments to be made for some of the observed excited states. An overview of the experimental apparatus as well as a discussion of the results from preliminary analysis will be presented.

  10. Measurement of the asymmetry parameter in the {beta}-decay of {sup 35}Ar

    SciTech Connect

    Converse, A.; Haeberli, W.; Miller, M.

    1992-12-01

    The authors measured the asymmetry parameter, A{sub o}, for the beta decay of {sup 35}Ar to test the CVC hypothesis. Theory predicts A{sub o} =0.420{plus_minus}0.007 for the ground state decay of {sup 35}Ar. While early measurements disagree with this prediction (A{sub o}=0.22{plus_minus}0.03), a recent experiment gave A{sub o}= 0.49{plus_minus}0.10. The polarized sample was produced by {sup 35}Cl(p,n){sup 35}Ar, with the polarization deduced from the asymmetry in the decay to the first excited state of {sup 35}Cl. Excited state decays were identified by coincidences between {beta}`s and {gamma}`s observed in Ge detectors. The present experiment used a pure Cl{sub 2} target, higher beam current (80 nA vs. 5nA), and higher beam polarization (70% vs. 50%). Preliminary analysis of the data yields the value A{sub o} = 0.42{plus_minus}0.03. The error is dominated by the statistical uncertainty.

  11. The COBRA experiment - Status and prospects on the search of neutrinoless double beta-decay

    NASA Astrophysics Data System (ADS)

    Zatschler, S.

    2015-10-01

    The Cadmium-Zinc-Telluride 0-ν Double Beta Research Apparatus (COBRA) [1] is a next-generation experiment searching for the existence of neutrinoless double beta-decay (0νββ-decay). The observation of 0νββ-decay would be an unambiguous sign for physics beyond the Standard Model such as lepton number violating processes and would prove the Majorana character of neutrinos. Furthermore, the study of 0νββ-decay could probe the absolute neutrino mass and allows for the identification of the neutrino mass hierarchy realized in nature assuming light Majorana neutrino exchange. Currently a demonstrator setup at the underground facility LNGS (Italy) built of 4×4×4 coplanar grid (CPG) detectors collects high quality low background physics data with FADC pulse shape sampling. The detectors are made of natural abundant CdZnTe (CZT), which is a commercially available room temperature semiconductor. It contains several double beta isotopes, the most promising of which is 116Cd with a Q-value of 2813.5 keV - which is well above the highest naturally occurring prominent γ-lines.

  12. The COBRA experiment – Status and prospects on the search of neutrinoless double beta-decay

    SciTech Connect

    Zatschler, S.

    2015-10-28

    The Cadmium-Zinc-Telluride 0-ν Double Beta Research Apparatus (COBRA) [1] is a next-generation experiment searching for the existence of neutrinoless double beta-decay (0νββ-decay). The observation of 0νββ-decay would be an unambiguous sign for physics beyond the Standard Model such as lepton number violating processes and would prove the Majorana character of neutrinos. Furthermore, the study of 0νββ-decay could probe the absolute neutrino mass and allows for the identification of the neutrino mass hierarchy realized in nature assuming light Majorana neutrino exchange. Currently a demonstrator setup at the underground facility LNGS (Italy) built of 4×4×4 coplanar grid (CPG) detectors collects high quality low background physics data with FADC pulse shape sampling. The detectors are made of natural abundant CdZnTe (CZT), which is a commercially available room temperature semiconductor. It contains several double beta isotopes, the most promising of which is {sup 116}Cd with a Q-value of 2813.5 keV – which is well above the highest naturally occurring prominent γ-lines.

  13. The DCBA/MTD Experiments for Neutrinoless Double Beta Decay Search

    NASA Astrophysics Data System (ADS)

    Iwase, H.; Kakuno, H.; Ishihara, N.; Kawai, M.; Kondou, Y.; Makida, Y.; Iwai, G.; Ohama, T.; Takahashi, K.; Yamada, Y.; Inagaki, T.; Kato, Y.; Tanaka, K.; Tonooka, M.; Kitamura, S.; Sumiyoshi, T.; Tajima, T.; Ishizuka, T.; Ito, R.; Tamura, N.; Nakano, I.; Nagasaka, Y.; Sakamoto, Y.; Teramoto, Y.

    Both experiments Drift Chamber Beta-ray Analyzer and Magnetic Tracking Detector (DCBA/MTD) aim at searches for neutrinoless double beta decay (0νββ) in several nuclei. If 0νββ would be observed, Majorana nature of neutrino would be confirmed. This means that the See-saw mechanism would be supported and Leptogenesis would be hopeful in early universe. And also the half-life measurement of 0νββ would determine the absolute mass scale of neutrinos. DCBA can obtain four-momentum of each beta-ray so that not only the energy of two beta-rays each, but also the angular correlations are measured directly. Since the method has a large number of new experimental techniques, DCBA has been placed as an R&D experiment for a future large scale experiment MTD. This paper describes the present status of DCBA and the design of MTD.

  14. Two-neutrino double-[beta] decay measurement of [sup 100]Mo

    SciTech Connect

    Dassie, D.; Eschbach, R.; Hubert, F.; Hubert, P.; Isaac, M.C.; Izac, C.; Leccia, F.; Mennrath, P.; Vareille, A. ); Longuemare, C.; Mauger, F. ); Danevich, F.; Kouts, V.; Tretyak, V.I.; Vassilyev, Y.; Zdesenko, Y. ); Barabash, A.S.; Kornoukov, V.N.; Lepikhin, Y.B.; Umatov, V.I.; Vanushin, I.A. ); Augier, C.; Blum, D.; Campagne, J.E.; Jullian, S.; Lalanne, D.; Laplanche, F.; Natchez, F.; Pichenot, G.; Szklarz, G. ); Arnold, R.; Guyonnet, J.L.; Lamhamdi, T.; Linck, I.; Piquemal, F.; Scheibling, F.

    1995-03-01

    From data accumulated over 6140 h with 172 g of enriched molybdenum (1.18 mol yr of [sup 100]Mo) with the NEMO 2 detector in the Frejus Underground Laboratory, a clear [beta][beta]2[nu] signal (1433 events) is observed, leading to a half-life [ital T][sub 1/2]=0.95[plus minus]0.04(stat)[plus minus]0.09(syst) 10[sup 19] yr. The experimental two-electron energy spectrum and the two-electron angular distribution are in agreement with the expected ones. Limits for [beta][beta]0[nu] decays to the ground state, excited states (2[sub 1][sup +] and 0[sub 1][sup +]), and also with Majoron emission are given.

  15. Unique decay process: {beta}-delayed emission of a proton and a neutron by the {sup 11}Li halo nucleus

    SciTech Connect

    Baye, D.; Descouvemont, P.; Tursunov, E. M.

    2010-11-15

    The neutron-rich {sup 11}Li halo nucleus is unique among nuclei with known separation energies in its ability to emit a proton and a neutron in a {beta}-decay process. The branching ratio toward this rare decay mode is evaluated within a three-body model for the initial bound state and with Coulomb three-body final scattering states. The branching ratio should be comprised between two extreme cases, i.e., a lower bound 6x10{sup -12} obtained with a pure Coulomb wave and an upper bound 5x10{sup -10} obtained with a plane wave. A simple model with modified Coulomb waves provides plausible values between 0.8x10{sup -10} and 2.2x10{sup -10}, with most probable total energies of the proton and neutron between 0.15 and 0.3 MeV.

  16. Beta Decay Half-Life of 84Mo

    NASA Astrophysics Data System (ADS)

    Stoker, J. B.; Mantica, P. F.; Bazin, D.; Bickley, A.; Becerril, A.; Crawford, H.; Cruse, K.; Estrade, A.; Mosby, M.; Guess, C. J.; Hitt, G. W.; Lorusso, G.; Matos, M.; Meharchand, R.; Minamisono, K.; Montes, F.; Pereira, J.; Perdikakis, G.; Pinter, J. S.; Schatz, H.; Vredevoogd, J.; Zegers, R. G. T.

    2008-10-01

    The β-decay half-life ^84Mo governs leakage out of the Zr-Nb cycle, a high temperature rp-process endpoint in x-ray binaries [1]. Treatment of the background and the poor statistics accumulated during the previous half-life measurement leave questions about statistical and systematic errors. We have remeasured the half-life of ^84Mo using a concerted setup of the NSCL β-Counting System [3] and 16 detectors from the Segmented Germanium Array [4]. We will report the half-life for ^84Mo, deduced using 40 times the previous sample size. The application of the NSCL RF Fragment Separator to remove unwanted isotopes, and hence reduce background for the half-life measurement, will also be discussed. [1] H. Schatz et al., Phys. Rep. 294, 167 1998 [2] P. Kienle et al., Prog. Part. Nuc. Phys. 46, 73 2001 [3] J. Prisciandaro et al., NIM A 505, 140 2003 [4] W. Mueller et al., NIM A 466, 492 2001 [5] D. Gorelov et al. PAC 2005, Knoxville, TN, May 16-20

  17. Purification of lanthanides for double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Polischuk, O. G.; Barabash, A. S.; Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Tretyak, V. I.

    2013-08-01

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain 238U, 226Ra and 232,228Th typically on the level of ˜ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO2, Nd2O3 and Gd2O3. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxide by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R&D of the methods to remove the pollutions with improved efficiency is in progress.

  18. Purification of lanthanides for double beta decay experiments

    SciTech Connect

    Polischuk, O. G.; Barabash, A. S.; Belli, P.; Bernabei, R.; Boiko, R. S.; Danevich, F. A.; Mokina, V. M.; Poda, D. V.; Tretyak, V. I.; Cappella, F.; Incicchitti, A.; Cerulli, R.; Laubenstein, M.; Nisi, S.

    2013-08-08

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxide by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.

  19. Dominance of Pion Exchange in {ital {ital R}}-Parity-Violating Supersymmetric Contributions to Neutrinoless Double Beta Decay

    SciTech Connect

    Faessler, A.; Kovalenko, S.; Simkovic, F.; Schwieger, J.; Kovalenko, S.; Simkovic, F.; Simkovic, F.

    1997-01-01

    We present a new contribution of the R-parity-violating (R/{sub p}) supersymmetry (SUSY) to neutrinoless double beta decay (0{nu}{beta}{beta}) via the pion exchange between decaying neutrons. The pion coupling to the final state electrons is induced by the R/{sub p} SUSY interactions. We have found this pion-exchange mechanism to dominate over the conventional two-nucleon one. The latter corresponds to direct interaction between quarks from two decaying neutrons without any light hadronic mediator like {pi} meson. The constraints on the certain R/{sub p} SUSY parameters are extracted from the current experimental 0{nu}{beta}{beta}-decay half-life limit. These constraints are significantly stronger than those previously known or expected from the ongoing accelerator experiments. {copyright} {ital 1997} {ital The American Physical Society}

  20. Experimental study of {beta}-delayed proton decay of {sup 23}Al for nucleosynthesis in novae

    SciTech Connect

    Saastamoinen, A.; Aeystoe, J.; Trache, L.; Banu, A.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B. T.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Bentley, M. A.; Davinson, T.; Woods, P. J.

    2011-04-15

    The {beta}-delayed {gamma} and proton decay of {sup 23}Al has been studied with an alternative detector setup at the focal plane of the momentum achromat recoil separator MARS at Texas A and M University. We could detect protons down to an energy of 200 keV and determine the corresponding branching ratios. Contrary to results of previous {beta}-decay studies, no strong proton intensity from the decay of the isobaric analog state (IAS) of the {sup 23}Al ground state at E{sub x}=7803 keV in {sup 23}Mg was observed. Instead we assign the observed low-energy group E{sub p,c.m.}=206 keV to the decay from a state that is 16 keV below the IAS. We measured both proton and gamma branches from the decay of this state at E{sub x}=7787 keV in {sup 23}Mg, which is a very rare case in the literature. Combining our data with its measured lifetime, we determine its resonance strength to be {omega}{gamma}=1.4{sub -0.4}{sup +0.5} meV. The value is in agreement with older direct measurements, but disagrees with a recent direct measurement. This state is the most important resonance for the radiative proton capture {sup 22}Na(p,{gamma}){sup 23}Mg in some astrophysical environments, such as novae.

  1. Online Data Quality and Bad Interval Detection for the CUORE Neutrinoless Double Beta Decay Search

    NASA Astrophysics Data System (ADS)

    Welliver, Bradford; Cuore Collaboration

    2016-09-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a large neutrinoless double beta decay (0 νββ) search being installed underground at the Laboratori Nazionali del Gran Sasso (LNGS). 0 νββ searches can address fundamental questions about the nature of the neutrino, such as whether it is a Dirac or MAJORANA fermion, its mass scale, and may provide insight into the observed matter-antimatter asymmetry in the universe. CUORE is the largest array of bolometer instrumented crystals in the world, nineteen times larger than the previous implementation used in CUORE-0, and contains a total of 988 TeO2 crystals with a mass of 741kg and is expected to achieve a sensitivity on the 130Te 0 νββ half-life of T1 / 2 = 9 . 5 x 1025 years (90 % C.L.) after 5 years of operation. The large number of individual crystals in CUORE presents challenges for monitoring data quality and the determination of bad intervals of time in detector operation. We will discuss the work being performed to provide expanded online detector quality monitoring tools as well as the development of automated algorithms to test and identify periods of abnormal behavior across all of the individual detectors.

  2. The beta-decay properties in the vicinity of 78Ni

    NASA Astrophysics Data System (ADS)

    Borzov, Ivan

    2011-10-01

    The beta-decay properties of neutron-rich Cu to Ga nuclei in the vicinity of the doubly magic 78Ni have been calculated within the density-functional approach plus continuum QRPA (DF+CQRPA). The framework allows for a fully microscopic description of the Gamow-Teller (GT) and first forbidden (FF) transitions between dsgh and fpp shells. The new theoretical predictions are compared with our previous ones, with the standard FRDM calculations and recent experimental data. Of particular importance are new high quality gamma ray spectroscopy data obtained for Zn to Ga isotopes with N > 50 at Holifield Radioactive Ion Beam Facility (HRIBF). In 78Ni region, the half-lives calculated with blocking of the odd-proton on the 1pf5/2-orbital agrees with the data better than the ones with no blocking as well as the ones from standard FRDM calculations used for the r-process modeling. The high-energy first forbidden transitions in the nuclei with N > 50 populating low lying excited levels in the daughter nuclei produce a strong impact on the total half- lives and especially on the delayed neutron emission. The effect of reduction of the Pn-values compared to the pure GT- approximation in N > 50 isotopes will be discussed. This work was supported by JIHIR (ORNL, Oak Ridge).

  3. Experimental study of {sup 113}Cd {beta} decay using CdZnTe detectors

    SciTech Connect

    Goessling, C.; Kiel, H.; Muenstermann, D.; Oehl, S.; Junker, M.; Zuber, K.

    2005-12-15

    A search for the fourfold forbidden {beta} decay of {sup 113}Cd has been performed with CdZnTe semiconductors. With 0.86 kg {center_dot} d of statistics a half-life for the decay of T{sub 1/2}=[8.2{+-}0.2(stat.){sub -1.0}{sup +0.2}(sys.)]x10{sup 15} yr has been obtained. This is in good agreement with published values. A comparison of the spectral shape with the one given on the Table of Isotopes Web page shows a severe deviation.

  4. Measurement of the asymmetry parameter for sup 29 P. beta. decay

    SciTech Connect

    Masson, G.S.; Quin, P.A. )

    1990-09-01

    The asymmetry parameter for the ground state, mirror decay of polarized {sup 29}P has been measured. The {sup 29}P were produced with the {sup 28}Si({rvec d},{ital p}) reaction, and the sample polarization was determined from a simultaneous measurement of the asymmetry for the pure Gamow-Teller transition to the first excited state in {sup 29}Si at 1.27 MeV. The result, {ital A}{sub g.s.}=0.681{plus minus}0.086, is in good agreement with the {ital V}{minus}{ital A} theory of nuclear {beta} decay.

  5. Proton branching ratios in the {beta}-delayed proton decay of {sup 87}Mo

    SciTech Connect

    Huang, W.X.; Ma, R.C.; Xu, X.J.; Xu, S.W.; Xie, Y.X.; Li, Z.K.; Ge, Y.X.; Wang, Y.Y.; Wang, C.F.; Zhang, T.M.; Sun, X.F.; Jin, G.M.; Luo, Y.X.

    1997-08-01

    The nuclide {sup 87}Mo with A=4n+3 and T{sub z}=3/2 was reinvestigated via its {beta}-delayed proton decay with p-{gamma} coincidence. The proton branching ratios in the decay of {sup 87}Mo populating the first 2{sup +}, 4{sup +}, and 6{sup +} excited states in {sup 86}Zr have been measured to be (11{plus_minus}6){percent}, (2{plus_minus}1){percent}, and (2{plus_minus}1){percent}, respectively, which revise the previous results. {copyright} {ital 1997} {ital The American Physical Society}

  6. Shell-model calculations of beta-decay rates for s- and r-process nucleosyntheses

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Mathews, G. J.; Bloom, S. D.

    1985-10-01

    Examples of large-basis shell-model calculations of Gamow-Teller (BETA)-decay properties of specific interest in the astrophysical s- and r- processes are presented. Numerical results are given for: (1) the GT-matrix elements for the excited state decays of the unstable s-process nucleus Tc-99; and (2) the GT-strength function for the neutron-rich nucleus Cd-130, which lies on the r-process path. The results are discussed in conjunction with the astrophysics problems.

  7. Search for Neutrinoless Double-Beta Decay in Xe136 with EXO-200

    NASA Astrophysics Data System (ADS)

    Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cleveland, B.; Cook, S.; Daniels, T.; Danilov, M.; Davis, C. G.; Delaquis, S.; deVoe, R.; Dobi, A.; Dolinski, M. J.; Dolgolenko, A.; Dunford, M.; Fairbank, W., Jr.; Farine, J.; Feldmeier, W.; Fierlinger, P.; Franco, D.; Giroux, G.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hall, K.; Hargrove, C.; Herrin, S.; Hughes, M.; Johnson, A.; Johnson, T. N.; Karelin, A.; Kaufman, L. J.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Leonard, F.; Mackay, D.; MacLellan, R.; Marino, M.; Mong, B.; Montero Díez, M.; Müller, A. R.; Neilson, R.; Nelson, R.; Odian, A.; Ostrovskiy, I.; O'Sullivan, K.; Ouellet, C.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Pushkin, K.; Rowson, P. C.; Russell, J. J.; Sabourov, A.; Sinclair, D.; Slutsky, S.; Stekhanov, V.; Tolba, T.; Tosi, D.; Twelker, K.; Vogel, P.; Vuilleumier, J.-L.; Waite, A.; Walton, T.; Weber, M.; Wichoski, U.; Wodin, J.; Wright, J. D.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.

    2012-07-01

    We report on a search for neutrinoless double-beta decay of Xe136 with EXO-200. No signal is observed for an exposure of 32.5 kg yr, with a background of ˜1.5×10-3kg-1yr-1keV-1 in the ±1σ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay T1/20νββ(Xe136)>1.6×1025yr (90% C.L.), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.

  8. Search for neutrinoless double-beta decay in 136Xe with EXO-200.

    PubMed

    Auger, M; Auty, D J; Barbeau, P S; Beauchamp, E; Belov, V; Benitez-Medina, C; Breidenbach, M; Brunner, T; Burenkov, A; Cleveland, B; Cook, S; Daniels, T; Danilov, M; Davis, C G; Delaquis, S; deVoe, R; Dobi, A; Dolinski, M J; Dolgolenko, A; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Fierlinger, P; Franco, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Hall, C; Hall, K; Hargrove, C; Herrin, S; Hughes, M; Johnson, A; Johnson, T N; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K S; Leonard, D S; Leonard, F; Mackay, D; MacLellan, R; Marino, M; Mong, B; Montero Díez, M; Müller, A R; Neilson, R; Nelson, R; Odian, A; Ostrovskiy, I; O'Sullivan, K; Ouellet, C; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rowson, P C; Russell, J J; Sabourov, A; Sinclair, D; Slutsky, S; Stekhanov, V; Tolba, T; Tosi, D; Twelker, K; Vogel, P; Vuilleumier, J-L; Waite, A; Walton, T; Weber, M; Wichoski, U; Wodin, J; Wright, J D; Yang, L; Yen, Y-R; Zeldovich, O Ya

    2012-07-20

    We report on a search for neutrinoless double-beta decay of 136Xe with EXO-200. No signal is observed for an exposure of 32.5 kg yr, with a background of ∼1.5×10(-3)  kg(-1) yr(-1)  keV(-1) in the ±1σ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay T(1/2)(0νββ)(136Xe)>1.6×10(25)  yr (90% C.L.), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.

  9. SNO+ status and plans for double beta decay search and other neutrino studies

    NASA Astrophysics Data System (ADS)

    Andringa, S.; SNO+ Collaboration

    2016-01-01

    SNO+ is a multi-purpose Neutrino Physics experiment, succeeding to the Sudbury Neutrino Observatory by replacing heavy water with liquid scintillator, which can also be loaded with large quantities of double-beta decaying isotope. The scientific goals of SNO+ are the search for neutrinoless double-beta decay, the study of solar neutrinos and of anti-neutrinos from nuclear reactors and the Earth's natural radioactivity, as well as supernovae neutrinos. The installation of the detector at SNOLAB is being completed and commissioning has already started with a dry run. The detector will soon be filled with water and, later, with scintillator. Here we highlight the main detector developments and address the several Physics analysis being prepared for the several planned SNO+ runs.

  10. First search for Lorentz and C P T violation in double beta decay with EXO-200

    NASA Astrophysics Data System (ADS)

    Albert, J. B.; Barbeau, P. S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Díaz, J. S.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W.; Farine, J.; Feyzbkhsh, S.; Feldmeier, W.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Homiller, S.; Hughes, M.; Jewell, M. J.; Jiang, X. S.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Retiére, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Twelker, K.; Vuilleumier, J.-L.; Vogel, P.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wood, J.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; EXO-200 Collaboration

    2016-04-01

    A search for Lorentz- and C P T -violating signals in the double beta decay spectrum of 136Xe has been performed using an exposure of 100 kg .yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of -2.65 ×10-5 GeV <âof(3 )<7.60 ×10-6 GeV (90% C.L.) is placed on the relevant coefficient within the Standard-Model Extension (SME). This is the first experimental study of the effect of the SME-defined oscillation-free and momentum-independent neutrino coupling operator on the double beta decay process.

  11. New Technique for Barium Daughter Ion Identification in a Liquid Xe-136 Double Beta Decay Experiment

    SciTech Connect

    Fairbank, William

    2016-06-08

    This work addresses long-standing issues of fundamental interest in elementary particle physics. The most important outcome of this work is a new limit on neutrinoless double beta decay. This is an extremely rare and long-sought-after type of radioactive decay. If discovered, it would require changes in the standard model of the elementary constituents of matter, and would prove that neutrinos and antineutrinos are the same, a revolutionary concept in particle physics. Neutrinos are major components of the matter in the universe that are so small and so weakly interacting with other matter that their masses have not yet been discovered. A discovery of neutrinoless double beta decay could help determine the neutrino masses. An important outcome of the work on this project was the Colorado State University role in operating the EXO-200 neutrinoless double beta decay experiment and in analysis of the data from this experiment. One type of double beta decay of the isotope 136Xe, the two-neutrino variety, was discovered in this work. Although the other type of double beta decay, the neutrinoless variety, was not yet discovered in this work, a world’s best sensitivity of 1.9x1025 year half-life was obtained. This result rules out a previous claim of a positive result in a different isotope. This work also establishes that the masses of the neutrinos are less than one millionth of that of electrons. A unique EXO-200 analysis, in which the CSU group had a leading role, has established for the first time ever in a liquid noble gas the fraction of daughter atoms from alpha and beta decay that are ionized. This result has important impact on other pending studies, including nucleon decay and barium tagging. Novel additional discoveries include multiphoton ionization of liquid xenon with UV pulsed lasers, which may find application in calibration of future noble liquid detectors, and studies of association and dissociation reactions of Ba

  12. First results of a search for double beta decay of {sup 100}Mo with the NEMO 2 detector

    SciTech Connect

    NEMO Collaboration

    1993-06-15

    Double beta decay of {sup 100}Mo (172g) is studied with the NEMO 2 detector in the Frejus Underground Laboratory. The experiment has now accumulated 2485 hours of data taking. A clear signal of 380 events for 2{beta}2{nu} decay has been obtained corresponding to a half-life of T{sub {1/2}} = 1.0 {plus_minus} 0.08 (syst.) 10{sup 19} y. Limits are presented for 2{beta}(0{nu}, {chi}), 2{beta}0{nu} (ground state and excited states 2{sub 1}{sup +} and 0{sub 1}{sup +}). The experiment will run til October 1993.

  13. Electron Shake-up and Shake-off Following 6He Beta Decay

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva; Drake, G. W. F.

    2016-03-01

    Probabilities for electron shake-up and shake-off are calculated as relaxation processes following the beta decay of 6He to form 6Li, including corrections due to nuclear recoil. Within the sudden approximation, it is found that the correction due to nuclear recoil is nearly an order of magnitude less than that measured by Carlson et al. Phys. Rev. 129, 2220 (1963).

  14. Are massive Majorana neutrinos canceling each other in neutrinoless double-. beta. decay

    SciTech Connect

    Vergados, J.D.

    1983-12-01

    The possibility of various massive Majorana neutrinos canceling each other in neutrinoless double-..beta.. decay is examined. It is shown that if all neutrino eigenmasses are less than 10 MeV such a cancellation persists in the hadronic medium if initially present at the elementary (gauge) level. The same is true for neutrino mass greater than 10 GeV. In all other cases, such a cancellation will require a conspiracy between particle and nuclear physics.

  15. Mass and beta decay of the N = Z isotope {sup 68}Se

    SciTech Connect

    Blumenthal, D.J.; Davids, C.N.; Lister, C.J.

    1995-08-01

    An experiment to measure the mass and beta decay of the N = Z nuclide {sup 68}Se was performed. The properties of {sup 68}Se are important for determining the abundance of proton-rich nuclei such as {sup 60}Ni and {sup 64}Zn, which are thought to be formed in the alpha-rich freezeout stage of a giant star. The abundances of the even-even N = Z nuclei such as {sup 60}Zn, {sup 64}Ge, and {sup 68}Se depend on the competition between ({alpha},{gamma}) and ({gamma},{alpha}) reactions, whose rates depend sensitively on the reaction Q-values. In addition, the half-life of {sup 68}Se is important in determining the path of the explosive rp-process, since reactions such as (p,{gamma}) must compete with beta decay in order to push the rp path to heavier nuclei. Using the moving tape collector system and the {sup 12}C({sup 58}Ni,2n){sup 68}Se reaction at 200 MeV, recoils were mass-selected by a slit at the FMA focal plane and implanted into the tape. After a 50-second collection period, the accumulated activity was moved to the counting position between two Ge gamma-ray detectors or a plastic scintillator beta detector and a Ge detector. The half-life of {sup 68}Se was determined to be 37 {plus_minus} 5 s, in agreement with other measurements. Gamma-gamma and beta-gamma coincidence data are under analysis, to produce the decay scheme and the electron capture decay energy.

  16. Five Sample Proposals for Next Generation Neutrinoless Double-Beta Decay Experiments

    NASA Astrophysics Data System (ADS)

    Avignone, F. T., III; King, G. S., III

    2005-06-01

    Five next generation zero-neutrino double-beta decay experimental proposals are discussed. They propose to utilize cryogenic, ionization, time-projection chamber, and tracking chamber techniques. The representative experiments are: CUORE/CUORICINO, EXO, Majorana, MOON, and NEMO. We make no claim that this selection of experiments is the best or in any way a complete listing. It is limited by the available space.

  17. 31Cl beta decay and the 30P31S reaction rate in nova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bennett, Michael; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; NSCL e12028 Collaboration

    2016-03-01

    The 30P31S reaction rate is critical for modeling the final isotopic abundances of ONe nova nucleosynthesis, identifying the origin of presolar nova grains, and calibrating proposed nova thermometers. Unfortunately, this rate is essentially experimentally unconstrained because the strengths of key 31S proton capture resonances are not known, due to uncertainties in their spins and parities. Using a 31Cl beam produced at the National Superconducting Cyclotron Laboratory, we have populated several 31S states for study via beta decay and devised a new decay scheme which includes updated beta feedings and gamma branchings as well as multiple states previously unobserved in 31Cl beta decay. Results of this study, including the unambiguous identification due to isospin mixing of a new l = 0 , Jπ = 3 /2+ 31S resonance directly in the middle of the Gamow Window, will be presented, and significance to the evaluation of the 30P31S reaction rate will be discussed. Work supported by U.S. Natl. Sci. Foundation (Grants No. PHY-1102511, PHY-1404442, PHY-1419765, and PHY-1431052); U.S. Dept. of Energy, Natl. Nucl. Security Administration (Award No. DE-NA0000979); Nat. Sci. and Eng. Research Council of Canada.

  18. The {beta}-Decay Properties of Scissors Mode 1{sup +} States in {sup 164}Er

    SciTech Connect

    Yildirim, Z.; Kuliev, A.; Ozkan, S.; Guliyev, E.

    2008-11-11

    The beta decay properties of collective I{sup {pi}}K = 1{sup +}1 states in doubly even deformed {sup 164}Er nuclei are investigated in the framework of the rotational invariant random-phase approximation. It is shown that an essential decrease of the rate of the allowed {beta}-decay to the excited 1{sup +}-states as compared with that to the ground state may be due to the orbital nature of the states. The model Hamiltonian includes restoring rotational invariance of the deformed single particle Hamiltonian forces and the spin-spin interactions. The analytical expressions for the Gamov-Teller (G-T) and Fermi (F) decay matrix elements are derived. The single-particle energies were obtained from the Warsaw deformed Woods-Saxon potential with deformation parameter {delta}{sub 2} = 0.24. The numerical results for {beta}{sup +} transition from {sup 164}Tm to {sup 164}Er indicate the importance of using rotational invariant Hamiltonian to explain experimental data.

  19. Cold equation of state in a strong magnetic field - Effects of inverse beta-decay

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Shapiro, Stuart L.

    1991-01-01

    The influence of a high magnetic field (B is greater than 10 exp 12 G) on the degenerate matter equation of state appropriate to a neutron star is studied. The regime dominated by relativistic electrons up to the neutron drip density is highlighted. The equilibrium matter composition and equation of state, allowing for inverse beta-decay. Two different equilibrium models are determined: an ideal neutron-proton-electron (npe) gas and the more realistic model of Baym, Pethick, and Sutherland (1971) consisting of a Coulomb lattice of heavy nuclei embedded in an electron gas. For a sufficiently high field strength, the magnetic field has an appreciable effect, changing the adiabatic index of the matter and the nuclear transition densities. The influence of a strong field on some simple nonequilibrium processes, including beta-decay and inverse beta-decay (electron capture) is also considered. The effects produced by the magnetic field are mainly due to the changes in the transverse electron quantum orbits and the allowed electron phase space induced by the field.

  20. Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Jones, B. J. P.; McDonald, A. D.; Nygren, D. R.

    2016-12-01

    Background rejection is key to success for future neutrinoless double beta decay experiments. To achieve sensitivity to effective Majorana lifetimes of ~ 1028 years, backgrounds must be controlled to better than 0.1 count per ton per year, beyond the reach of any present technology. In this paper we propose a new method to identify the birth of the barium daughter ion in the neutrinoless double beta decay of 136Xe. The method adapts Single Molecule Fluorescent Imaging, a technique from biochemistry research with demonstrated single ion sensitivity. We explore possible SMFI dyes suitable for the problem of barium ion detection in high pressure xenon gas, and develop a fiber-coupled sensing system with which we can detect the presence of bulk Ba++ ions remotely. We show that our sensor produces signal-to-background ratios as high as 85 in response to Ba++ ions when operated in aqueous solution. We then describe the next stage of this R&D program, which will be to demonstrate chelation and fluorescence in xenon gas. If a successful barium ion tag can be developed using SMFI adapted for high pressure xenon gas detectors, the first essentially zero background, ton-scale neutrinoless double beta decay technology could be realized.

  1. An experimental investigation of double beta decay of /sup 100/Mo

    SciTech Connect

    Dougherty, B.L.

    1988-11-17

    New limits on half-lives for several double beta decay modes of /sup 100/Mo were obtained with a novel experimental system which included thin source films interleaved with a coaxial array of windowless silicon detectors. Segmentation and timing information allowed backgrounds originating in the films to be studied in some detail. Dummy films containing /sup 96/Mo were used to assess remaining backgrounds. With 0.1 mole years of /sup 100/Mo data collected, the lower half-life limits at 90% confidence were 2.7 /times/ 10/sup 18/ years for decay via the two-neutrino mode, 5.2 /times/10/sup 19/ years for decay with the emission of a Majoron, and 1.6 /times/ 10/sup 20/ years and 2.2 /times/ 10/sup 21/ years for neutrinoless 0/sup +/ ..-->.. 2/sup +/ and 0/sup +/ ..-->.. 0/sup +/ transitions, respectively. 50 refs., 38 figs., 11 tabs.

  2. {beta}-decay half-lives and {beta}-delayed neutron emission probabilities of nuclei in the region A < or approx. 110, relevant for the r process

    SciTech Connect

    Pereira, J.; Galaviz, D.; Matos, M.; Montes, F.; Hennrich, S.; Kessler, R.; Schertz, F.; Aprahamian, A.; Quinn, M.; Woehr, A.; Arndt, O.; Pfeiffer, B.; Becerril, A.; Elliot, T.; Estrade, A.; Lorusso, G.; Schatz, H.; Kratz, K.-L.; Mantica, P. F.; Moeller, P.

    2009-03-15

    Measurements of {beta}-decay properties of A < or approx. 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr, and {sup 111}Mo, along with {beta}-delayed neutron emission probabilities of {sup 104}Y, {sup 109,110}Mo and upper limits for {sup 105}Y, {sup 103-107}Zr, and {sup 108,111}Mo have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these nuclei.

  3. Towards a Precise Energy Calibration of the CUORE Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Dally, Adam G.

    The mass of the neutrino may hold the key to many problems in cosmology and astrophysics. The observation of neutrino oscillations shows that neutrinos have mass, which was something that was not accounted for in the Standard Model of particle physics. This thesis covers topics relating to measuring the value of neutrino mass directly using bolometers. The first section will discuss the neutrino mass and different experiments for measuring the mass using bolometers. The mass of the neutrino can be measured directly from beta-decay or inferred from observation of neutrinoless double beta decay (0nubetabeta). In this work I present Monte Carlo and analytic simulation of the MARE experiment including, pile-up and energy resolution effects. The mass measurement limits of a micro-calorimeter experiments as it relates to the quantity of decays measured is provided. A similar simulation is preformed for the HolMES experiment. The motivation is to determine the sensitivity of such experiments and the detector requirements to reach the goal sensitivity. Another possible method for determining the neutrino mass is to use neutrinoless double beta decay. The second section will cover the Cryogenic Underground Observatory for Rare Events (CUORE) detector calibration system (DCS). CUORE is a neutrinoless double beta decay (0nubetabeta) experiment with an active mass of 206 kg of 130Te. The detector consists of 988 TeO2 bolometers operating at 10 mK. The signature of 0 nubetabeta decay is an excess of events at the Q-value of 2528 keV. Understanding the energy response is critical for event identification, but this presents many challenges. Calibration is necessary to associate a known energy from a gamma with a voltage pulse from the detector. The DCS must overcome many design challenges. The calibration source must be placed safely and reliable within the detector. The temperature of the detector region of the cryostat must not be changed during calibration. To achieve this

  4. Spectral distance decay: Assessing species beta-diversity by quantile regression

    USGS Publications Warehouse

    Rocchinl, D.; Nagendra, H.; Ghate, R.; Cade, B.S.

    2009-01-01

    Remotely sensed data represents key information for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance may allow us to quantitatively estimate how beta-diversity in species changes with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological datasets are characterized by a high number of zeroes that can add noise to the regression model. Quantile regression can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this paper, we used ordinary least square (ols) and quantile regression to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.05) considering both ols and quantile regression. Nonetheless, ols regression estimate of mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when spectral distance approaches zero, was very low compared with the intercepts of upper quantiles, which detected high species similarity when habitats are more similar. In this paper we demonstrated the power of using quantile regressions applied to spectral distance decay in order to reveal species diversity patterns otherwise lost or underestimated by ordinary least square regression. ?? 2009 American Society for Photogrammetry and Remote Sensing.

  5. Measurement of the {beta}{sup +} and Orbital Electron-Capture Decay Rates in Fully Ionized, Hydrogenlike, and Heliumlike {sup 140}Pr Ions

    SciTech Connect

    Litvinov, Yu. A.; Geissel, H.; Winckler, N.; Knoebel, R.; Litvinov, S. A.; Scheidenberger, C.; Bosch, F.; Beckert, K.; Brandau, C.; Dimopoulou, C.; Hess, S.; Kozhuharov, C.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Prochazka, A.; Reuschl, R.; Steck, M.; Stoehlker, T.; Trassinelli, M.

    2007-12-31

    We report on the first measurement of the {beta}{sup +} and orbital electron-capture decay rates of {sup 140}Pr nuclei with the simplest electron configurations: bare nuclei, hydrogenlike, and heliumlike ions. The measured electron-capture decay constant of hydrogenlike {sup 140}Pr{sup 58+} ions is about 50% larger than that of heliumlike {sup 140}Pr{sup 57+} ions. Moreover, {sup 140}Pr ions with one bound electron decay faster than neutral {sup 140}Pr{sup 0+} atoms with 59 electrons. To explain this peculiar observation one has to take into account the conservation of the total angular momentum, since only particular spin orientations of the nucleus and of the captured electron can contribute to the allowed decay.

  6. Total Absorption Spectroscopy of the 137Xe, 137I, and 92Rb β-Decays

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Fijałkowska, A.; Karny, M.; Rykaczewski, K. P.; Wolińska-Cichocka, M.; Goetz, K. C.; Grzywacz, R. K.; Gross, C. J.; Miernik, K.; Stracener, D.

    2015-10-01

    The NaI(Tl) based Modular Total Absorption Spectrometer (MTAS) was constructed to measure improved β-decay feeding patterns from neutron-rich nuclei. It is difficult to measure β-decay feeding intensities with high precision γ-ray measurements due to the low efficiency of high precision detectors. There are several important applications of improved measurements of β-decay feeding patterns by total absorption spectroscopy; improve understanding of elemental abundances in the universe, help with stockpile stewardship, contribute to understanding of underlying nuclear structure, and improve β-decay feeding measurements to calculate accurately the νe spectra needed to evaluate precisely reactor neutrino measurements. We present β-decay feeding results for two ``priority one'' measurements, 137Xe and 137I, and for 92Rb, which is a large individual contributor to the νe uncertainty of the reactor anomaly. In addition to β- γ decays, 137I has a β-neutron decay channel which is measurable in MTAS. We will demonstrate techniques for analyzing MTAS γ-decay data. We will also describe β and neutron spectroscopy in MTAS. This work was supported by the US DOE by Award No. DE-FG02- 96ER40978 and by US DOE, Office of Nuclear Physics.

  7. Search for Neutrinoless Double-Beta Decay of with CUORE-0

    DOE PAGES

    Alfonso, K.; Artusa, D.  R.; F. T. Avignone; ...

    2015-09-03

    We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of 130Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1 ± 0.3 keV FWHM and 0.058 ± 0.004 (stat.) ± 0:002 (syst.) counts/(keV kg yr), respectively. The median 90% C.L. lower-limit sensitivity of the experiment is 2.9 x 1024 yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130Te and place a Bayesian lower bound on the decay half-life, T0more » $$_1$$1/2 > 2.7 x 1024 yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of 130Te from the Cuoricino experiment we obtain T0$$_1$$1/2 > 4.0 x 1024 yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mββ < 270 - 760 meV.« less

  8. The Physics of Ultracold Neutrons and Fierz Interference in Beta Decay

    NASA Astrophysics Data System (ADS)

    Hickerson, Kevin Peter

    In the first component of this thesis, we investigate the physics of ultacold neutrons (UCN). UCN are neutrons so cold they can be stored inside of material, magnetic and gravitational bottles. Using this property we use UCN nonimaging optics to design a type of reflector that directs UCN upward in to vertical paths. Next we examine UCN passing through thin, multilayered foils. In the remaining sections we investigate the so-called Fierz interference term of free neutron beta decay, denoted bn. It is theorized that contributions to scalar and tensor interactions from physics beyond the Standard Model could be detectable in the spectrum of neutron beta decay, manifest as a nonzero value for bn. We investigate three techniques for measuring bn. The first is to use the primordial helium abundance fraction and compare that to predictive Big Bang nucleosynthesis calculations. Second we extract bn from the spectral shape generated by the 2010 data set of the UCNA experiment. Third, we discuss progress toward constructing the UCNb experimental prototype. We present the design of this new experiment that uses the UCN source at LANSCE for measuring bn, in which UCN are guided into a shielded 4π calorimeter where they are stored and decay. From Big Bang nucleosynthesis we can place the limit 0.021 < bn < 0.277 (90% C.L.) on the neutron Fierz term and from the UCNA 2010 data we set -0.044 < bn < 0.218 (90% C.L.).

  9. Beta spectrum of unique first-forbidden decays as a novel test for fundamental symmetries

    NASA Astrophysics Data System (ADS)

    Glick-Magid, Ayala; Mishnayot, Yonatan; Mukul, Ish; Hass, Michael; Vaintraub, Sergey; Ron, Guy; Gazit, Doron

    2017-04-01

    Within the Standard Model, the weak interaction of quarks and leptons is characterized by certain symmetry properties, such as maximal breaking of parity and favored helicity. These are related to the V - A structure of the weak interaction. These characteristics were discovered by studying correlations in the directions of the outgoing leptons in nuclear beta decays. Presently, correlation measurements in nuclear beta decays are intensively studied to probe for signatures for deviations from these couplings, which are an indication of Beyond Standard Model physics. We show that the structure of the energy spectrum of emitted electrons in unique first-forbidden β-decays is sensitive to the symmetries of the weak interaction, and thus can be used as a novel probe of physics beyond the standard model. Furthermore, the energy spectrum gives constraints both in the case of right and left couplings of the new beyond standard model currents. We show that a measurement with modest energy resolution of ≈ 20 keV is expected to lead to new constraints on beyond the standard model interactions with tensor couplings.

  10. Observation of Two-Neutrino Double-Beta Decay in Xe136 with the EXO-200 Detector

    NASA Astrophysics Data System (ADS)

    Ackerman, N.; Aharmim, B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Barry, K.; Bartoszek, L.; Beauchamp, E.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cleveland, B.; Conley, R.; Conti, E.; Cook, J.; Cook, S.; Coppens, A.; Counts, I.; Craddock, W.; Daniels, T.; Danilov, M. V.; Davis, C. G.; Davis, J.; Devoe, R.; Djurcic, Z.; Dobi, A.; Dolgolenko, A. G.; Dolinski, M. J.; Donato, K.; Dunford, M.; Fairbank, W., Jr.; Farine, J.; Fierlinger, P.; Franco, D.; Freytag, D.; Giroux, G.; Gornea, R.; Graham, K.; Gratta, G.; Green, M. P.; Hägemann, C.; Hall, C.; Hall, K.; Haller, G.; Hargrove, C.; Herbst, R.; Herrin, S.; Hodgson, J.; Hughes, M.; Johnson, A.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kuchenkov, A.; Kumar, A.; Kumar, K. S.; Leonard, D. S.; Leonard, F.; Leport, F.; Mackay, D.; MacLellan, R.; Marino, M.; Martin, Y.; Mong, B.; Montero Díez, M.; Morgan, P.; Müller, A. R.; Neilson, R.; Nelson, R.; Odian, A.; O'Sullivan, K.; Ouellet, C.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Pushkin, K.; Rivas, A.; Rollin, E.; Rowson, P. C.; Russell, J. J.; Sabourov, A.; Sinclair, D.; Skarpaas, K.; Slutsky, S.; Stekhanov, V.; Strickland, V.; Swift, M.; Tosi, D.; Twelker, K.; Vogel, P.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Waite, A.; Waldman, S.; Walton, T.; Wamba, K.; Weber, M.; Wichoski, U.; Wodin, J.; Wright, J. D.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.

    2011-11-01

    We report the observation of two-neutrino double-beta decay in Xe136 with T1/2=2.11±0.04(stat)±0.21(syst)×1021yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for Xe136. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

  11. Observation of two-neutrino double-beta decay in 136Xe with the EXO-200 detector.

    PubMed

    Ackerman, N; Aharmim, B; Auger, M; Auty, D J; Barbeau, P S; Barry, K; Bartoszek, L; Beauchamp, E; Belov, V; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Cleveland, B; Conley, R; Conti, E; Cook, J; Cook, S; Coppens, A; Counts, I; Craddock, W; Daniels, T; Danilov, M V; Davis, C G; Davis, J; deVoe, R; Djurcic, Z; Dobi, A; Dolgolenko, A G; Dolinski, M J; Donato, K; Dunford, M; Fairbank, W; Farine, J; Fierlinger, P; Franco, D; Freytag, D; Giroux, G; Gornea, R; Graham, K; Gratta, G; Green, M P; Hägemann, C; Hall, C; Hall, K; Haller, G; Hargrove, C; Herbst, R; Herrin, S; Hodgson, J; Hughes, M; Johnson, A; Karelin, A; Kaufman, L J; Koffas, T; Kuchenkov, A; Kumar, A; Kumar, K S; Leonard, D S; Leonard, F; LePort, F; Mackay, D; MacLellan, R; Marino, M; Martin, Y; Mong, B; Díez, M Montero; Morgan, P; Müller, A R; Neilson, R; Nelson, R; Odian, A; O'Sullivan, K; Ouellet, C; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rivas, A; Rollin, E; Rowson, P C; Russell, J J; Sabourov, A; Sinclair, D; Skarpaas, K; Slutsky, S; Stekhanov, V; Strickland, V; Swift, M; Tosi, D; Twelker, K; Vogel, P; Vuilleumier, J-L; Vuilleumier, J-M; Waite, A; Waldman, S; Walton, T; Wamba, K; Weber, M; Wichoski, U; Wodin, J; Wright, J D; Yang, L; Yen, Y-R; Zeldovich, O Ya

    2011-11-18

    We report the observation of two-neutrino double-beta decay in (136)Xe with T(1/2) = 2.11 ± 0.04(stat) ± 0.21(syst) × 10(21) yr. This second-order process, predicted by the standard model, has been observed for several nuclei but not for (136)Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrinoless double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale.

  12. A measurement of the 2 neutrino double beta decay rate of Te-130 in the CUORICINO experiment

    SciTech Connect

    Kogler, Laura K.

    2011-11-30

    CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2vββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of 10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2vββ rate. The enriched crystals contained a total of 350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals. Residual backgrounds in the subtracted spectrum were fit using spectra generated by Monte-Carlo simulations of natural radioactive contaminants located in and on the crystals. The 2vββ half-life was measured to be T2v1/2 = [9.81± 0.96(stat)± 0.49(syst)] x1020 y.

  13. {beta} decay of the 21/2{sup +} isomer in {sup 93}Mo and level structure of {sup 93}Nb

    SciTech Connect

    Hori, T.; Masue, T.; Odahara, A.; Kura, K.; Tajiri, K.; Shimoda, T.; Fukuchi, T.; Suzuki, T.; Wakabayashi, Y.; Gono, Y.; Ogawa, K.

    2009-09-15

    The {gamma} rays associated with {beta} decay of the 21/2{sup +} isomer in {sup 93}Mo (E{sub x}=2.425 MeV, T{sub 1/2}=6.85 h) were measured with a selective sensitivity to long-lived isomer decays. A new 1262-keV transition was found in the {gamma}-{gamma} coincidence measurement, and it was attributed to a transition in {sup 93}Nb, which is the daughter nucleus of the {beta} decay of the {sup 93}Mo isomer, from the 2.753- to the 1.491-MeV levels. Accurate {gamma}-ray intensity balances have determined the {beta}-decay intensity from the {sup 93}Mo isomer to the 2.753-MeV level in {sup 93}Nb and placed no appreciable intensity for the previously reported {beta}-decay branching to the 2.180-MeV level, for which a recent in-beam {gamma}-ray experiment assigned to be I{sup {pi}} = 17/2{sup -}. Based on the {gamma}-ray intensities from the 2.753-MeV level, spin-parity assignment of this level was revised from 21/2{sup +} to 19/2{sup +}. The observed {beta}-decay intensity and the spin-parity assignment were explained by the jj-coupling shell model calculations.

  14. Total beta-globin gene deletion has high frequency in Filipinos

    SciTech Connect

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    1994-09-01

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5 of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].

  15. Time Modulation of the {beta}{sup +}-Decay Rate of H-Like {sup 140}Pr{sup 58+} Ions

    SciTech Connect

    Ivanov, A. N.; Kryshen, E. L.; Pitschmann, M.; Kienle, P.

    2008-10-31

    Recent experimental data at GSI on the rates of the number of daughter ions, produced by the nuclear K-shell electron capture (EC) decays of the H-like ions {sup 140}Pr{sup 58+} and {sup 142}Pm{sup 60+}, suggest that they are modulated in time with periods T{sub EC}{approx_equal}7 sec and amplitudes a{sub EC}{approx_equal}0.20. Since it is known that these ions are unstable also under the nuclear positron ({beta}{sup +}) decays, we study a possible time dependence of the nuclear {beta}{sup +}-decay rate of the H-like {sup 140}Pr{sup 58+} ion. We show that the time dependence of the {beta}{sup +}-decay rate of the H-like {sup 140}Pr{sup 58+} ion as well as any H-like heavy ions cannot be observed.

  16. Background constrains of the SuperNEMO experiment for neutrinoless double beta-decay searches

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.

    2017-02-01

    The SuperNEMO experiment is a new generation of experiments dedicated to the search for neutrinoless double beta-decay, which if observed, would confirm the existence of physics beyond the Standard Model. It is based on the tracking and calorimetry techniques, which allow the reconstruction of the final state topology, including timing and kinematics of the double beta-decay transition events, offering a powerful tool for background rejection. While the basic detection strategy of the SuperNEMO detector remains the same as of the NEMO-3 detector, a number of improvements were accomplished for each of detector main components. Upgrades of the detector technologies and development of low-level counting techniques ensure radiopurity control of construction parts of the SuperNEMO detector. A reference material made of glass pellets has been developed to assure quality management and quality control of radiopurity measurements. The first module of the SuperNEMO detector (Demonstrator) is currently under construction in the Modane underground laboratory. No background event is expected in the neutrinoless double beta-decay region in 2.5 years of its operation using 7 kg of 82Se. The half-life sensitivity of the Demonstrator is expected to be >6.5·1024 y, corresponding to an effective Majorana neutrino mass sensitivity of |0.2-0.4| eV (90% C.L.). The full SuperNEMO experiment comprising of 20 modules with 100 kg of 82Se source should reach an effective Majorana neutrino mass sensitivity of |0.04-0.1| eV, and a half-life limit 1·1026 y.

  17. Disentangling the various Mechanisms of neutrinoless double beta decay to extract the neutrino mass

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2011-12-01

    It is well known that there exist many mechanisms that may contribute to neutrinoless double beta decay. By exploiting the fact that the associated nuclear matrix elements are target dependent we show that, given definite experimental results on a sufficient number of targets, one can determine or sufficiently constrain all lepton violating parameters including the mass term. As a specific example we show that, given the observation of the 0νββ-decay in three different nuclei, e.g. 76Ge, 100Mo and 130Te, and assuming just three active lepton number violating parameters, e.g. light and heavy neutrino mass mechanisms in left handed currents as well as R-parity breaking SUSY mechanism, one may determine all lepton violating parameters, provided that they are relatively real.

  18. Double beta decays into excited states in 110Pd and 102Pd

    NASA Astrophysics Data System (ADS)

    Lehnert, B.; Andreotti, E.; Degering, D.; Hult, M.; Laubenstein, M.; Wester, T.; Zuber, K.

    2016-11-01

    A search for double beta decays of {}110{Pd} and {}102{Pd} into excited states of the daughter nuclides has been performed using three ultra-low background gamma-spectrometry measurements in the Felsenkeller laboratory, Germany, the HADES laboratory, Belgium and at the LNGS, Italy. The combined Bayesian analysis of the three measurements sets improved half-life limits for the 2νββ and 0νββ decay modes of the {2}1+, {0}1+ and {2}2+ transitions in {}110{Pd} to 2.9\\cdot {10}20 yr, 4.0\\cdot {10}20 yr and 3.0\\cdot {10}20 yr, respectively, and in {}102{Pd} to 7.6\\cdot {10}18 yr, 8.8\\cdot {10}18 yr and 1.4\\cdot {10}19 yr, respectively, with 90% credibility.

  19. Production and beta decay of rp-process nuclei 96Cd, 98In, and 100Sn.

    PubMed

    Bazin, D; Montes, F; Becerril, A; Lorusso, G; Amthor, A; Baumann, T; Crawford, H; Estrade, A; Gade, A; Ginter, T; Guess, C J; Hausmann, M; Hitt, G W; Mantica, P; Matos, M; Meharchand, R; Minamisono, K; Perdikakis, G; Pereira, J; Pinter, J; Portillo, M; Schatz, H; Smith, K; Stoker, J; Stolz, A; Zegers, R G T

    2008-12-19

    The beta-decay properties of the N=Z nuclei 96Cd, 98In, and 100Sn have been studied. These nuclei were produced at the National Superconducting Cyclotron Laboratory by fragmenting a 120 MeV/nucleon 112Sn primary beam on a Be target. The resulting radioactive beam was filtered in the A1900 and the newly commissioned Radio Frequency Fragment Separator to achieve a purity level suitable for decay studies. The observed production cross sections of these nuclei are lower than predicted by factors of 10-30. The half-life of 96Cd, which was the last experimentally unknown waiting point half-life of the astrophysical rp process, is 1.03_{-0.21};{+0.24} s. The implications of the experimental T_{1/2} value of 96Cd on the abundances predicted by rp process calculations and the origin of A=96 isobars such as 96Ru are explored.

  20. A Novel Approach to β-delayed Neutron Spectroscopy Using the Beta-decay Paul Trap

    NASA Astrophysics Data System (ADS)

    Scielzo, N. D.; Yee, R. M.; Bertone, P. F.; Buchinger, F.; Caldwell, S. A.; Clark, J. A.; Czeszumska, A.; Deibel, C. M.; Greene, J. P.; Gulick, S.; Lascar, D.; Levand, A. F.; Li, G.; Norman, E. B.; Padgett, S.; Pedretti, M.; Perez Galvan, A.; Savard, G.; Segel, R. E.; Sharma, K. S.; Sternberg, M. G.; Van Schelt, J.; Zabransky, B. J.

    2014-06-01

    A new approach to β-delayed neutron spectroscopy has been demonstrated that circumvents the many limitations associated with neutron detection by instead inferring the decay branching ratios and energy spectra of the emitted neutrons by studying the nuclear recoil. Using the Beta-decay Paul Trap, fission-product ions were trapped and confined to within a 1-mm3 volume under vacuum using only electric fields. Results from recent measurements of 137I+ and plans for development of a dedicated ion trap for future experiments using the intense fission fragment beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory are summarized. The improved nuclear data that can be collected is needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship.

  1. A Novel Approach to β-delayed Neutron Spectroscopy Using the Beta-decay Paul Trap

    SciTech Connect

    Scielzo, N.D.; Yee, R.M.; Bertone, P.F.; Buchinger, F.; Caldwell, S.A.; Clark, J.A.; Czeszumska, A.; Deibel, C.M.; Greene, J.P.; Gulick, S.; Lascar, D.; Levand, A.F.; and others

    2014-06-15

    A new approach to β-delayed neutron spectroscopy has been demonstrated that circumvents the many limitations associated with neutron detection by instead inferring the decay branching ratios and energy spectra of the emitted neutrons by studying the nuclear recoil. Using the Beta-decay Paul Trap, fission-product ions were trapped and confined to within a 1-mm{sup 3} volume under vacuum using only electric fields. Results from recent measurements of {sup 137}I{sup +} and plans for development of a dedicated ion trap for future experiments using the intense fission fragment beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory are summarized. The improved nuclear data that can be collected is needed in many fields of basic and applied science such as nuclear energy, nuclear astrophysics, and stockpile stewardship.

  2. On the origin of biological chirality via natural beta-decay

    NASA Technical Reports Server (NTRS)

    Noyes, H. P.; Bonner, W. A.; Tomlin, J. A.

    1977-01-01

    An hypothesis to account for the chirality (handedness) of some biological molecules is given. Experimental evidence suggests that longitudinally polarized electrons having the chirality of terrestrial beta-decay electrons remove dextro-leucine from a racemic mixture. If, by a similar mechanism, the terrestrial environment provided more levo- than dextro-amino acids, that would account for the chirality now observed in organic molecules. An isotope of potassium has been proposed as the natural beta-emitter responsible for biomolecular chirality; however, Carbon 14 may be an even more plausible candidate. Ready availability of the carbon isotope in the terrestrial environment of 4.5 aeons ago, and the role of leucine in protein synthesis indicate that these two agents may have been chief factors in the evolution of biomolecular chirality. Suggestions for further research in this area are made.

  3. Superconducting solenoid magnet of the DCBA-T3 experiment searching for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Kawai, M.; Kondou, Y.; Makida, Y.; Haruyama, T.; Ishihara, N.; Kobayashi, Y.; Iwai, G.; Iwase, H.; Ohama, T.; Takahashi, K.; Yamada, Y.; Kato, Y.; Tanaka, K.; Tonooka, M.; Kitamura, S.; Ishikawa, T.; Igarashi, H.; Kakuno, H.; Sumiyoshi, T.; Tajima, T.; Ishizuka, T.; Ito, R.; Tamura, N.

    2014-03-01

    The experiment of neutrinoless double beta decay (0ν β β) is the only realistic method for investigating the Majorana nature and the absolute mass scale of neutrinos. An R&D project called Drift Chamber Beta-ray Analyzer (DCBA) has been developing a magnetic tracking detector for 0ν β β experiments at KEK. A superconducting solenoid magnet (SCSM) has been constructed to produce a uniform magnetic field for the prototype test facility called DCBA-T3. The results of SCSM test runs are described, as well as its design studies. Since the SCSM is a prototype magnet for a future detector temporarily called Magnetic Tracking Detector (MTD), it is essential to understand its long-term operation. The experience of about two years of operation is also described.

  4. Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review

    NASA Astrophysics Data System (ADS)

    Engel, Jonathan; Menéndez, Javier

    2017-04-01

    The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up their efforts as ton-scale experiments have begun to look feasible. Here we review past and recent work on the matrix elements in a wide variety of nuclear models and discuss work that will be done in the near future. Ab initio nuclear-structure theory, which is developing rapidly, holds out hope of more accurate matrix elements with quantifiable error bars.

  5. Beta decay and isomer spectroscopy in the 132Sn region: New results from EURICA

    NASA Astrophysics Data System (ADS)

    Jungclaus, A.; Taprogge, J.; Simpson, G. S.; Gey, G.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Söderström, P.-A.; Sumikama, T.; Xu, Z.; Baba, H.; Browne, F.; Fukuda, N.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Suzuki, H.; Takeda, H.; Vajta, Z.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Bönig, S.; Daugas, J.-M.; Drouet, F.; Gernhäuser, R.; Ilieva, S.; Kröll, T.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Nishibata, H.; Orlandi, R.; Steiger, K.; Wendt, A.

    2014-09-01

    The first EURICA campaign with high intensity Uranium beams took place at RIKEN in November/December 2012. Within this campaign experiment NP1112-RIBF85 was performed dedicated to the study of the isomeric and beta decays of neutron-rich Cd, In, Sn and Sb isotopes towards and beyond the N=82 neutron shell closure. In this contribution we will first provide information about the status of the analysis of the extensive data set obtained in this experiment and close with a short outlook.

  6. Many-body correlations of QRPA in nuclear matrix elements of double-beta decay

    SciTech Connect

    Terasaki, J.

    2015-10-28

    We present two new ideas on the quasiparticle random-phase approximation (QRPA) approach for calculating nuclear matrix elements of double-beta decay. First, it is necessary to calculate overlaps of the QRPA states obtained on the basis of the ground states of different nuclei. We calculate this overlap using quasiboson vacua as the QRPA ground states. Second, we show that two-particle transfer paths are possible to use for the calculation under the closure approximation. A calculation is shown for {sup 150}Nd→{sup 150}Sm using these two new ideas, and their implication is discussed.

  7. Limit on electron neutrino mass from observation of the beta decay of molecular tritium

    SciTech Connect

    Wilkerson, J.F.; Bowles, T.J.; Friar, J.L.; Robertson, R.G.H.; Stephenson, G.J. Jr.; Wark, D.L. ); Knapp, D.A. )

    1990-01-01

    We report the most sensitive upper limit set on the mass of the electron antineutrino. The upper limit of 9.4 eV (95% confidence level) was obtained from a study of the shape of the beta decay spectrum of free molecular tritium. Achieving such a level of sensitivity required precise determinations of all processes that modify the shape of the observed spectrum. This result is in clear disagreement with a reported value for the mass of 26(5) eV. 30 refs., 3 figs., 2 tabs.

  8. Limit on. nu. sub e mass from observation of the. beta. decay of molecular tritium

    SciTech Connect

    Robertson, R.G.H.; Bowles, T.J.; Stephenson, G.J. Jr.; Wark, D.L.; Wilkerson, J.F. ); Knapp, D.A. )

    1991-08-19

    We report the most sensitive direct upper limit set on the mass {ital m}{sub {nu}} of the electron antineutrino. Our measurements of the shape of the {beta} decay spectrum of free molecular tritium yield, under the assumption of no new physics other than that of mass, a central value for {ital m}{sub {nu}}{sup 2} of {minus}147{plus minus}68{plus minus}41 eV{sup 2}, which corresponds to an upper limit of 9.3 eV (95% confidence level) on {ital m}{sub {nu}}. The result is in clear disagreement with a reported value of 26(5) eV.

  9. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    SciTech Connect

    Moggi, N.; Artusa, D. R.; F. T. Avignone; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Datskov, V.; Dell’oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Morganti, S.; Napolitano, T.; Nisi, S.; C. Nones; Norman, E. B.; Nucciotti, A.; O’Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zucchelli, S.; Fabbri, F.; Giacomelli, P.

    2015-03-24

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  10. Neutrinoless double-beta decay search with CUORE and CUORE-0 experiments

    DOE PAGES

    Moggi, N.; Artusa, D. R.; F. T. Avignone; ...

    2015-03-24

    The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for the neutrinoless double-beta decays. Observation of the process would unambiguously establish that neutrinos are Majorana particles and provide information on their absolute mass scale hierarchy. CUORE is now under construction and will consist of an array of 988 TeO2 crystal bolometers operated at 10 mK, but the first tower (CUORE-0) is already taking data. The experimental techniques used will be presented as well as the preliminary CUORE-0 results. The current status of the full-mass experiment and its expected sensitivity will then be discussed.

  11. Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review.

    PubMed

    Engel, Jonathan; Menéndez, Javier

    2017-04-01

    The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up their efforts as ton-scale experiments have begun to look feasible. Here we review past and recent work on the matrix elements in a wide variety of nuclear models and discuss work that will be done in the near future. Ab initio nuclear-structure theory, which is developing rapidly, holds out hope of more accurate matrix elements with quantifiable error bars.

  12. MOON for symmetry studies of neutrinos by double beta decays and neutrino nuclear responses

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2010-11-01

    Neutrino-less double beta decays (0νββ) are used for high sensitivity studies of symmetry properties of neutrinos such as the Majorana nature of neutrinos, the absolute mass scale, the CP at the lepton sector, and others. Neutrino nuclear responses (0νββ nuclear matrix elements) are crucial for extracting these neutrino properties from 0νββ experiments. This is a brief report of the present status of MOON (spectroscopic 0νββ experiment) with the ν-mass sensitivity of 100-30 meV, and experimental ways to study the neutrino nuclear responses.

  13. Comparison of the pn quasiparticle RPA and shell model for Gamow-Teller beta and double-beta decays

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Brown, B. Alex

    1993-06-01

    We examine the validity of the pn quasiparticle RPA (pnQRPA) as a model for calculating β+ and 2νββ Gamow-Teller decays by making a comparison of the pnQRPA with a large-basis shell-model calculation within the 0f1p shell. We employ A=46 nuclei (those with six valence nucleons) for this comparison. Our comparison includes the decay matrix elements summed over final states, the strength distributions, and, for the first time, the coherent transition matrix elements (CTME). The pnQRPA overestimates the total β+ and 2νββ matrix elements. There are large differences in the shape of the spectra as well as in the CTME between the pnQRPA and shell-model results. Empirical improvements for the pnQRPA are discussed.

  14. Beta-decay half-lives and beta-delayed neutron emisison probabilities of nuclei in the region A. 110, relevant for the r-process

    SciTech Connect

    Moller, Peter; Pereira, J; Hennrich, S; Aprahamian, A; Arndt, O; Becerril, A; Elliot, T; Estrade, A; Galaviz, D; Kessler, R; Kratz, K - L; Lorusso, G; Mantica, P F; Matos, M; Montes, F; Pfeiffer, B; Schatz, F; Schnorrenberger, L; Smith, E; Stolz, A; Quinn, M; Walters, W B; Wohr, A

    2009-01-01

    Measurements of the {beta}-decay properties of A {approx}< 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory, at Michigan State University. {beta}-decay half-lives for {sup 105}Y, {sup 106,107}Zr and {sup 108,111}Mo, along with ,B-delayed neutron emission probabilities of 104Y, 109,11OMo and upper limits for 105Y, 103-107Zr and 108,111 Mo have been measured for the first time. Studies on the basis of the quasi-random phase approximation are used to analyze the ground-state deformation of these nuclei.

  15. Studies on the double-{beta} decay nucleus {sup 64}Zn using the (d,{sup 2}He) reaction

    SciTech Connect

    Grewe, E.-W.; Baeumer, C.; Dohmann, H.; Frekers, D.; Hollstein, S.; Rakers, S.; Thies, J. H.; Harakeh, M. N.; Berg, A. M. van den; Woertche, H. J.; Johansson, H.; Martinez-Pinedo, G.; Petermann, I.; Sieja, K.; Simon, H.; Langanke, K.; Nowacki, F.; Popescu, L.; Savran, D.; Zilges, A.

    2008-06-15

    The (d,{sup 2}He) charge-exchange reaction on the double-{beta} decay ({beta}{beta}) nucleus {sup 64}Zn has been studied at an incident energy of 183 MeV. The two protons in the {sup 1}S{sub 0} state (indicated as {sup 2}He) were both momentum analyzed and detected simultaneously by the BBS magnetic spectrometer and its position-sensitive detector. {sup 2}He spectra with a resolution of about 115 keV (FWHM) have been obtained allowing identification of many levels in the residual nucleus {sup 64}Cu with high precision. {sup 64}Zn is one of the rare cases undergoing a {beta}{beta} decay in {beta}{sup +} direction. In the experiment presented here, Gamow-Teller (GT{sup +}) transition strengths have been extracted. Together with the GT{sup -} transition strengths from {sup 64}Ni({sup 3}He,t) data to the same intermediate nucleus {sup 64}Cu, the nuclear matrix elements of the {beta}{beta} decay of {sup 64}Zn have been evaluated. Finally, the GT{sup {+-}} distributions are compared with shell-model calculations and a critical assessment is given of the various residual interactions presently employed for the pf shell.

  16. Search for double beta decay of 116Cd with enriched 116CdWO4 crystal scintillators (Aurora experiment)

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; d'Angelo, S.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Shlegel, V. N.; Tretyak, V. I.; Umatov, V. I.

    2016-05-01

    The Aurora experiment to investigate double beta decay of 116 Cd with the help of 1.162 kg cadmium tungstate crystal scintillators enriched in 116 Cd to 82% is in progress at the Gran Sasso Underground Laboratory. The half-life of 116 Cd relatively to the two neutrino double beta decay is measured with the highest up-to-date accuracy T1/2 = (2.62 ± 0.14) × 1019 yr. The sensitivity of the experiment to the neutrinoless double beta decay of 116 Cd to the ground state of 116 Sn is estimated as T1/2 ≥ 1.9 × 1023 yr at 90% CL, which corresponds to the effective Majorana neutrino mass limit (mv) ≤ (1.2 — 1.8) eV. New limits are obtained for the double beta decay of 116 Cd to the excited levels of 116 Sn, and for the neutrinoless double beta decay with emission of majorons.

  17. Status Update of the Majorana Demonstrator Neutrinoless Double Beta Decay Experiment

    SciTech Connect

    Gruzko, Julieta; Rielage, Keith Robert; Xu, Wenqin; Elliott, Steven Ray; Massarczyk, Ralph; Goett, John Jerome III; Chu, Pinghan

    2015-11-10

    Neutrinoless double beta decay searches play a major role in determining neutrino properties, in particular the Majorana or Dirac nature of the neutrino and the absolute scale of the neutrino mass. The consequences of these searches go beyond neutrino physics, with implications for Grand Unification and leptogenesis. The Majorana Collaboration is assembling a low-background array of high purity Germanium (HPGe) detectors to search for neutrinoless double-beta decay in 76Ge. The Majorana Demonstrator, which is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota, will contain 44 kg (30 kg enriched in 76Ge) of HPGe detectors. Its primary goal is to demonstrate the scalability and background required for a tonne-scale Ge experiment. This is accomplished via a modular design and projected background of less than 3 cnts/tonne-yr in the region of interest. The experiment is currently taking data with the first of its enriched detectors.

  18. The AMoRE: Search for neutrinoless double beta decay of {sup 100}Mo

    SciTech Connect

    Park, HyangKyu

    2015-10-28

    The AMoRE (Advanced Mo-based Rare process Experiment) collaboration is using calcium molybdate ({sup dep48}Ca {sup 100}MoO{sub 4}) crystals enriched in {sup 100}Mo and depleted in {sup 48}Ca to search for neutrinoless double-beta decay (DBD) of {sup 100}Mo using at the underground laboratory in Korea. Metallic magnetic calorimeters operating a milliKelvin temperatures are used as temperature sensors to measure heat and light signals from the crystals. The simultaneous and fast detection capabilities for both phonons and photons, and their excellent energy resolution provide powerful methods for identifying DBD signals and rejecting background events, which are mainly due to random coincidences between two uncorrelated two-neutrino-double-beta decays of {sup 100}Mo. The AMoRE-Pilot experiment that is currently underway uses a 1.5 kg, five-element array of {sup dep48}Ca {sup 100}MoO{sub 4} crystals. The ultimate goal is a ∼200 kg array of crystals and a half-life sensitivity of order 10{sup 26} years, which will access the inverted hierarchy region for effective Majorana neutrino masses, i.e., 0.02 to 0.05 eV. In this talk, we present recent progress on the development of low-background calcium molybdate detectors and results from room- and milli-Kelvin temperatures. Sensitivities based on GEANT4 simulations that incorporate measured background are reported.

  19. The AMoRE: Search for neutrinoless double beta decay of 100Mo

    NASA Astrophysics Data System (ADS)

    Park, HyangKyu

    2015-10-01

    The AMoRE (Advanced Mo-based Rare process Experiment) collaboration is using calcium molybdate (dep48Ca 100MoO4) crystals enriched in 100Mo and depleted in 48Ca to search for neutrinoless double-beta decay (DBD) of 100Mo using at the underground laboratory in Korea. Metallic magnetic calorimeters operating a milliKelvin temperatures are used as temperature sensors to measure heat and light signals from the crystals. The simultaneous and fast detection capabilities for both phonons and photons, and their excellent energy resolution provide powerful methods for identifying DBD signals and rejecting background events, which are mainly due to random coincidences between two uncorrelated two-neutrino-double-beta decays of 100Mo. The AMoRE-Pilot experiment that is currently underway uses a 1.5 kg, five-element array of dep48Ca 100MoO4 crystals. The ultimate goal is a ˜200 kg array of crystals and a half-life sensitivity of order 1026 years, which will access the inverted hierarchy region for effective Majorana neutrino masses, i.e., 0.02 to 0.05 eV. In this talk, we present recent progress on the development of low-background calcium molybdate detectors and results from room- and milli-Kelvin temperatures. Sensitivities based on GEANT4 simulations that incorporate measured background are reported.

  20. Status and future prospect of 48Ca double beta decay search in CANDLES

    NASA Astrophysics Data System (ADS)

    Iida, T.; Nakajima, K.; Ajimura, S.; Batpurev, T.; Chan, W. M.; Fushimi, K.; Hazama, R.; Kakubata, H.; Khai, B. T.; Kishimoto, T.; Li, X.; Maeda, T.; Masuda, A.; Matsuoka, K.; Morishita, K.; Nakatani, N.; Nomachi, M.; Noshiro, S.; Ogawa, I.; Ohata, T.; Osumi, H.; Suzuki, K.; Tamagawa, Y.; Tesuno, K.; Trang, V. T. T.; Uehara, T.; Umehara, S.; Yoshida, S.

    2016-05-01

    The observation of neutrino-less double beta decay (0vßß) would be the most practical way to prove the Majorana nature of the neutrino and lepton number violation. CANDLES studies 48Ca double beta decay using CaF2 scintillator. The main advantage of 48Ca is that it has the highest Q-value (4.27 MeV) among all the isotope candidates for 0vßß. The CANDLES III detector is currently operating with 300kg CaF2 crystals in the Kamioka underground observatory, Japan. In 2014, a detector cooling system and a magnetic cancellation coil was installed with the aim to increase light emission of CaF2 scintillator and photo-electron collection efficiency of the photo-multipliers. After this upgrade, light yield was increased to 1000 p.e./MeV which is 1.6 times larger than before. According to data analysis and simulation, main background source in CANDLES is turned out to be high energy external gamma-ray originating neutron capture on the surrounding materials, so called (n,γ). Upgrading the detector by installing neutron and gamma-ray shield can reduce the remaining main backgrounds by two order magnitude. In this report, we discuss the detail of (n,γ) and background reduction by additional shielding.

  1. The Current Status of Precision Superallowed Fermi {beta}-Decay Measurements at TRIUMF-ISAC

    SciTech Connect

    Leach, K. G.

    2011-06-28

    Recent experimental work at the TRIUMF-ISAC radioactive ion-beam facility in Vancouver Canada, has produced several new results related to precise experimental tests of fundamental symmetries. The nature of these programs range from campaigns using existing setups, to the development of new apparats to further the experimental reach. One of the primary goals has been the investigation of superallowed Fermi {beta}-decay, and its relation to Standard Model tests of CVC and CKM unitarity The extraction of experimental {beta}-decay ft values requires the measurement of three quantities: the half-life, the superallowed branching ratio, and the parent-daughter mass difference. TRIUMF-ISAC has the ability to measure each of these values with very high precision, using a gas-proportional-counter, the 8{pi}{gamma}-ray spectrometer, and TITAN, respectively. This report focuses on the recent experimental progress of the superallowed program, as well as highlighting some results from the successful halo-nucleus mass-measurement program at TITAN.

  2. Cryogenic detectors for dark matter search and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Münster, Andrea; Schönert, Stefan; Willers, Michael

    2017-02-01

    The search for the neutrinoless double beta decay and the direct search for dark matter particles are amongst the most fundamental questions in astroparticle physics and cosmology. To achieve a high sensitivity, detectors with an excellent energy resolution and highly efficient particle identification capabilities are required. In recent years, cryogenic particle detectors have become one of the driving technologies in these fields. Future direct dark matter search experiments aim to improve the sensitivity for low mass dark matter particles (≲ 10 GeV /c2) down to the neutrino floor and the next generation of neutrinoless double beta decay experiments aims to improve the sensitivity on the half-life to ∼1026 -1027 years, corresponding to the parameter space predicted for the inverted mass ordering and degenerate mass range. To achieve these goals, significant improvements in detector performance and in radiopurity are required and both classes of experiments can benefit from the strong synergies in the fields of detector development and in the production of high purity single-crystals.

  3. Extracting Majorana properties from strong bounds on neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Ge, Shao-Feng; Lindner, Manfred

    2017-02-01

    Assuming that neutrinos are Majorana particles, we explore what information can be inferred from future strong limits (i.e. nonobservation) for neutrinoless double beta decay. Specifically we consider the case where the mass hierarchy is normal and the different contributions to the effective mass ⟨m ⟩e e partly cancel. We discuss how this fixes the two Majorana C P phases simultaneously from the Majorana triangle and how it limits the lightest neutrino mass m1 within a narrow window. The two Majorana C P phases are in this case even better determined than in the usual case for larger ⟨m ⟩ee. We show that the uncertainty in these predictions can be significantly reduced by the complementary measurement of reactor neutrino experiments, especially the medium baseline version JUNO/RENO-50. We also estimate the necessary precision on ⟨m ⟩ee to infer nontrivial Majorana C P phases and the upper limit ⟨m ⟩ee≲1 meV sets a target for the design of future neutrinoless double beta decay experiments.

  4. The Majorana Demonstrator: A search for neutrinoless double-beta decay of germanium-76

    SciTech Connect

    Elliott, S. R.; Boswell, M.; Goett, J.; Rielage, K.; Ronquest, M. C.; Xu, W.; Abgrall, N.; Chan, Y-D.; Hegai, A.; Martin, R. D.; Mertens, S.; Poon, A. W. P.; Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A.; and others

    2013-12-30

    The MAJORANA collaboration is searching for neutrinoless double beta decay using {sup 76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ∼1 count/t-y or lower in the region of the signal. The MAJORANA collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the DEMONSTRATOR, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ∼30 kg will be enriched to 87% in {sup 76}Ge. The DEMONSTRATOR is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the DEMONSTRATOR is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.

  5. Low energy photon mimic of the tritium beta decay energy spectrum

    NASA Astrophysics Data System (ADS)

    Malabre-O'Sullivan, Neville

    Tritium is a radioactive hydrogen isotope that is typically produced via neutron interaction with heavy water (D2O), producing tritiated water (DTO). As a result of this, tritium accounts for roughly a third of all occupational exposures at a CANDU type nuclear power plant. This identifies a need to study the biological effects associated with tritium (and low energy electrons in general). However, there are complications regarding the dosimetry of tritium, as well as difficulties in handling and using tritium for the purposes of biophysics experiments. To avoid these difficulties, an experiment has been proposed using photons to mimic the beta decay energy spectrum of tritium. This would allow simulation of the radiation properties of tritium, so that a surrogate photon source can be used for biophysics experiments. Through experimental and computational means, this work has explored the use of characteristic x-rays of various materials to modify the output spectrum of an x-ray source, such that it mimics the tritium beta decay spectrum. Additionally, the resultant primary electron spectrum generated in water from an x-ray source was simulated. The results from this research have indicated that the use of characteristic x-rays is not a viable method for simulating a tritium source. Also, the primary electron spectrum generated in water shows some promise for simulating tritium exposure, however further work must be done to investigate the slowing down electron spectrum. Keywords: Tritium, MCNP, low energy electrons, biophysics, characteristic x-rays.

  6. Matrix elements for the ground-state to ground-state 2{nu}{beta}{sup -}{beta}{sup -} decay of Te isotopes in a hybrid model

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2010-01-15

    Theoretical matrix elements, for the ground-state to ground-state two-neutrino double-{beta}-decay mode (2{nu}{beta}{sup -}{beta}{sup -}gs->gs) of {sup 128,130}Te isotopes, are calculated within a formalism that describes interactions between neutrons in a superfluid phase and protons in a normal phase. The elementary degrees of freedom of the model are proton-pair modes and pairs of protons and quasineutrons. The calculation is basically a parameter-free one, because all relevant parameters are fixed from the phenomenology. A comparison with the available experimental data is presented.

  7. Search for Neutrinoless Double-Beta Decay of with CUORE-0

    SciTech Connect

    Alfonso, K.; Artusa, D.  R.; F. T. Avignone; Azzolini, O.; Balata, M.; Banks, T.  I.; Bari, G.; Beeman, J.  W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Caminata, A.; Canonica, L.; Cao, X.  G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R.  J.; Cushman, J.  S.; Dafinei, I.; Dally, A.; Dell’Oro, S.; Deninno, M.  M.; Di Domizio, S.; Di Vacri, M.  L.; Drobizhev, A.; Ejzak, L.; Fang, D.  Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Freedman, S.  J.; Fujikawa, B.  K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Gutierrez, T.  D.; Haller, E.  E.; Han, K.; Hansen, E.; Heeger, K.  M.; Hennings-Yeomans, R.; Hickerson, K.  P.; Huang, H.  Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu.  G.; Lim, K.  E.; Liu, X.; Ma, Y.  G.; Maino, M.; Martinez, M.; Maruyama, R.  H.; Mei, Y.; Moggi, N.; Morganti, S.; Nisi, S.; C. Nones; Norman, E.  B.; Nucciotti, A.; O’Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J.  L.; Pagliarone, C.  E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N.  D.; Sisti, M.; Smith, A.  R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wagaarachchi, S.  L.; Wang, B.  S.; Wang, H.  W.; Wielgus, L.; Wilson, J.; Winslow, L.  A.; Wise, T.; Zanotti, L.; Zarra, C.; Zhang, G.  Q.; Zhu, B.  X.; Zucchelli, S.

    2015-09-03

    We report the results of a search for neutrinoless double-beta decay in a 9.8 kg yr exposure of 130Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest are 5.1 ± 0.3 keV FWHM and 0.058 ± 0.004 (stat.) ± 0:002 (syst.) counts/(keV kg yr), respectively. The median 90% C.L. lower-limit sensitivity of the experiment is 2.9 x 1024 yr and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of 130Te and place a Bayesian lower bound on the decay half-life, T0$_1$1/2 > 2.7 x 1024 yr at 90% C.L. Combining CUORE-0 data with the 19.75 kg yr exposure of 130Te from the Cuoricino experiment we obtain T0$_1$1/2 > 4.0 x 1024 yr at 90% C.L. (Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, mββ < 270 - 760 meV.

  8. Nuclear-Structure Data Relevant to Neutinoless-Double-Beta-Decay Matrix Elements

    NASA Astrophysics Data System (ADS)

    Kay, Benjamin

    2015-10-01

    An observation of neutrinoless double beta decay is one of the most exciting prospects in contemporary physics. It follows that calculations of the nuclear matrix elements for this process are of high priority. The change in the wave functions between the initial and final states of the neutrinoless-double-beta-decay candidates 76Ge-->76Se, 100Mo-->100Ru, 130Te-->130Xe, and 136Xe-->136Ba have been studied with transfer reactions. The data are focused on the change in the occupancies of the valence orbitals in the ground states as two neutrons decay into two protons. The results set a strict constraint on any theoretical calculations describing this rearrangement and thus on the magnitude of the nuclear matrix elements for this process, which currently exhibit uncertainties at the factor of 2-4 level. Prior to these measurements there were limited experimental data were available A = 76 and 100 systems, and very limited data for the A = 130 and 136 systems, in a large part due to the gaseous Xe isotopes involved. The uncertainties on most of these data are estimated to range from 0.1-0.3 nucleons. The program started with the A = 76 system, with subsequent calculations, modified to reproduce the experimental occupancies, exhibiting a significant reduction in the discrepancy between various models. New data are available for the A = 100 , 130, and 136 systems. I review the program, making detailed comparisons between the latest theoretical calculations and the experimental data where available. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357.

  9. Searching for Neutrinoless Double-Beta Decay of 130 Te with CUORE

    DOE PAGES

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; ...

    2015-01-01

    Neumore » trinoless double-beta (0 ν β β ) decay is a hypothesized lepton-number-violating process that offers the only known means of asserting the possible Majorana nature of neutrino mass. The Cryogenic Underground Observatory for Rare Events (CUORE) is an upcoming experiment designed to search for 0 ν β β decay of 130 Te using an array of 988 TeO 2 crystal bolometers operated at 10 mK. The detector will contain 206 kg of 130 Te and have an average energy resolution of 5 keV; the projected 0 ν β β decay half-life sensitivity after five years of livetime is 1.6 × 10 26  y at 1 σ (9.5 × 10 25  y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meV (50–130 meV). In this paper, we review the experimental techniques used in CUORE as well as its current status and anticipated physics reach.« less

  10. Neutrinoless double beta decay in LRSM with natural type-II seesaw dominance

    NASA Astrophysics Data System (ADS)

    Pritimita, Prativa; Dash, Nitali; Patra, Sudhanwa

    2016-10-01

    We present a detailed discussion on neutrinoless double beta decay within a class of left-right symmetric models where neutrino mass originates by natural type-II seesaw dominance. The spontaneous symmetry breaking is implemented with doublets, triplets and bidoublet scalars. The fermion sector is extended with an extra sterile neutrino per generation that helps in implementing the seesaw mechanism. The presence of extra particles in the model exactly cancels type-I seesaw and allows large value for Dirac neutrino mass matrix M D . The key feature of this work is that all the physical masses and mixing are expressed in terms of neutrino oscillation parameters and lightest neutrino mass thereby facilitating to constrain light neutrino masses from 0ν ββ decay. With this large value of M D new contributions arise due to; i) purely left-handed current via exchange of heavy right- handed neutrinos as well as sterile neutrinos, ii) the so called λ and η diagrams. New physics contributions also arise from right-handed currents with right-handed gauge boson W R mass around 3 TeV. From the numerical study, we find that the new contributions to 0 νββ decay not only saturate the current experimental bound but also give lower limit on absolute scale of lightest neutrino mass and favor NH pattern of light neutrino mass hierarchy.

  11. A realistic model of neutrino masses with a large neutrinoless double beta decay rate

    NASA Astrophysics Data System (ADS)

    del Aguila, Francisco; Aparici, Alberto; Bhattacharya, Subhaditya; Santamaria, Arcadi; Wudka, Jose

    2012-05-01

    The minimal Standard Model extension with the Weinberg operator does accommodate the observed neutrino masses and mixing, but predicts a neutrinoless double beta (0 νββ) decay rate proportional to the effective electron neutrino mass, which can be then arbitrarily small within present experimental limits. However, in general 0 νββ decay can have an independent origin and be near its present experimental bound; whereas neutrino masses are generated radiatively, contributing negligibly to 0 νββ decay. We provide a realization of this scenario in a simple, well defined and testable model, with potential LHC effects and calculable neutrino masses, whose two-loop expression we derive exactly. We also discuss the connection of this model to others that have appeared in the literature, and remark on the significant differences that result from various choices of quantum number assignments and symmetry assumptions. In this type of models lepton flavor violating rates are also preferred to be relatively large, at the reach of foreseen experiments. Interestingly enough, in our model this stands for a large third mixing angle, {{si}}{{{n}}^{{2}}}{θ_{{{13}}}}{˜}}}{ > }}0.00{8} , when μ→ eee is required to lie below its present experimental limit.

  12. Theoretical uncertainties in the nuclear matrix elements of neutrinoless double beta decay: The transition operator

    SciTech Connect

    Menéndez, Javier

    2013-12-30

    We explore the theoretical uncertainties related to the transition operator of neutrinoless double-beta (0νββ) decay. The transition operator used in standard calculations is a product of one-body currents, that can be obtained phenomenologically as in Tomoda [1] or Šimkovic et al. [2]. However, corrections to the operator are hard to obtain in the phenomenological approach. Instead, we calculate the 0νββ decay operator in the framework of chiral effective theory (EFT), which gives a systematic order-by-order expansion of the transition currents. At leading orders in chiral EFT we reproduce the standard one-body currents of Refs. [1] and [2]. Corrections appear as two-body (2b) currents predicted by chiral EFT. We compute the effects of the leading 2b currents to the nuclear matrix elements of 0νββ decay for several transition candidates. The 2b current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calculations.

  13. Majorana Neutrino Masses by Spectroscopic Studies of Double Beta Decays and Moon

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    This is a brief review of spectroscopic studies of neutrino-less double beta decays (0νββ) and the MOON (Mo Observatory Of Neutrinos) project. It aims at studying the Majorana nature of neutrinos and the mass spectrum by spectroscopic studies of 0νββ with ν-mass sensitivity of ≈ 30 meV. The solid scintillator option of the MOON detector is a super ensemble of multi-layer modules, each being composed by a scintillator plate and two tracking detector planes. Thin ββ source films are interleaved between the detector planes. High localization of the two β tracks enables one to select true signals and reject BG ones by spatial and time correlation analyses. MOON with detector ≠ ββ source is used for studying 0νββ decays from 100Mo, 82Se and other ββ isotopes with large nuclear sensitivity (large Qββ). Real-time exclusive measurements of low energy solar neutrinos can also be made by observing inverse β rays from solar-ν captures of 100Mo in delayed coincidence with the subsequent β decay of 100Tc.

  14. Realistic fission models, new beta-decay half-lives and the r-process in neutron star mergers

    SciTech Connect

    Shibagaki, S.; Kajino, T.; Chiba, S.; Lorusso, G.; Nishimura, S.; Mathews, G. J.

    2014-05-02

    Almost half of heavy nuclei beyond iron are considered to be produced by rapid neutron capture process (r-process). This process occurs in the neutron-rich environment such as core-collapse supernovae or neutron star mergers, but the main production site is still unknown. In the r-process of neutron star mergers, nuclear fission reactions play an important role. Also beta-decay half-lives of magic nuclei are crucial for the r-process. We have carried out r-process nucleosynthesis calculations based upon new theoretical estimates of fission fragment distributions and new beta-decay half-lives for N=82 nuclei measured at RIBF-RIKEN. We investigate the effect of nuclear fission on abundance patterns in the matter ejected from neutron star mergers with two different fission fragment mass distributions. We also discuss how the new experimental beta-decay half-lives affect the r-process.

  15. Study of Weak Interactions with Beta-Alpha Angular Correlations and the Positive Beta Decay of NITROGEN-18 and OXYGEN-14.

    NASA Astrophysics Data System (ADS)

    Hernandez, Ana Maria

    1982-03-01

    A (beta)-(alpha) angular correlation measuring device has been designed and constructed. The apparatus will be used in a future experiment to measure the (beta)(E(,0) = 5.455 MeV) and (alpha)(2.148 MeV) directional correlation in the decay of ('20)Na as a function of the (beta) energy. Two (alpha) detectors and sixteen telescopic (beta) detectors allow for the simultaneous measurement of (beta)-(alpha) coincidences at 0(DEGREES), 25(DEGREES), 45(DEGREES), 65(DEGREES), 90(DEGREES), 115(DEGREES), 135(DEGREES), and 180(DEGREES) and their symmetrical counterparts with respect to the 0(DEGREES) (--->) 180(DEGREES) direction. A circulating gas system transports the ('20)Na activity produced by the ('20)Ne(p,n)('20)Na reaction to a shielded counting area. The angular correlation effect to be measured is small and amounts to only about 1% of the main, isotropic component of the decay. The high symmetry of the apparatus as well as the use of appropriate geometrical corrections provide the necessary high accuracy. Adequate statistics may be obtained in reasonable times. In addition, two different simpler but interesting experiments were carried out; one is the (beta)('+) decay of ('18)Ne and the other is the (beta) decay of ('14)O. The ('18)Ne (--->) ('18)F (beta) decay was studied by measuring the ('18)F de-excitation (gamma) rays relative intensities. Compton suppression shielding and magnetic positron deflection were used in order to improve the (gamma) spectrum from the ('18)F de-excitation states. The intensity of the O('-) (1081 keV) de-excitation (gamma) ray relative to the 1042 keV de-excitation was found to be (2.97 (+OR -) 0.22) x 10('-2)%. An absolute (beta) branch I(,(beta)) = (2.14 (+OR-) 0.26) x 10('-3)% and ft = (0.99 (+OR-) 0.12) x 10('7) sec for the O('+) (--->) O('-) (beta) decay branch were deduced. This value together with the existing upper limit on the parity mixing of the O('+), O('-) doublet in ('18)F allow the evaluation of the strength of the PNO

  16. {beta} decay of proton-rich nucleus {sup 23}Al and astrophysical consequences

    SciTech Connect

    Iacob, V. E.; Zhai, Y.; Al-Abdullah, T.; Fu, C.; Hardy, J. C.; Nica, N.; Park, H. I.; Tabacaru, G.; Trache, L.; Tribble, R. E.

    2006-10-15

    We present the first study of the {beta} decay of {sup 23}Al undertaken with pure samples. The study was motivated by nuclear astrophysics questions. Pure samples of {sup 23}Al were obtained from the momentum achromat recoil separator (MARS) of Texas A and M University, collected on a fast tape-transport system, and moved to a shielded location where {beta} and {beta}-{gamma} coincidence measurements were made. We deduced {beta} branching ratios and log ft values for transitions to states in {sup 23}Mg, and from them determined unambiguously the spin and parity of the {sup 23}Al ground state to be J{sup {pi}}=5/2{sup +}. We discuss how this excludes the large increases in the radiative proton capture cross section for the reaction {sup 22}Mg(p,{gamma}){sup 23}Al at astrophysical energies, which were implied by claims that the spin and parity is J{sup {pi}}=1/2{sup +}. The log ft for the Fermi transition to its isobaric analog state (IAS) in {sup 23}Mg is also determined for the first time. This IAS and a state 16 keV below it are observed, well separated in the same experiment for the first time. We can now solve a number of inconsistencies in the literature, exclude strong isospin mixing claimed before, and obtain a new determination of the resonance strength. Both states are resonances in the {sup 22}Na(p,{gamma}){sup 23}Mg reaction at energies important in novae. The reactions {sup 22}Mg(p,{gamma}){sup 23}Al and {sup 22}Na(p,{gamma}){sup 23}Mg have both been suggested as possible candidates for diverting some of the flux in oxygen-neon novae explosions from the A=22 into the A=23 mass 0011cha.

  17. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE PAGES

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; ...

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  18. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    SciTech Connect

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  19. Thiabendazole resistance and mutations in the beta-tubulin gene of Penicillium expansum strains isolated from apples and pears with blue mold decay.

    PubMed

    Cabañas, Romualdo; Castellá, Gemma; Abarca, M Lourdes; Bragulat, M Rosa; Cabañes, F Javier

    2009-08-01

    Penicillium expansum is the causal agent of blue mold rot, a postharvest decay of stored fruits. This fungus also produces the mycotoxins patulin and citrinin. Control of P. expansum still relies mainly on the use of fungicides such as thiabendazole. Since its introduction, resistant strains have been reported. The aim of this work was to investigate the thiabendazole resistance and mutations in the beta-tubulin gene of P. expansum strains isolated from apples and pears with blue mold decay from Spain. A total of 71 strains of P. expansum were scored for resistance to thiabendazole and the beta-tubulin gene was sequenced. Out of 71 strains, 37 were sensitive and 34 were resistant to thiabendazole. Regarding the beta-tubulin gene sequence, 10 different genetic types were determined, with a 99.7-100% similarity. When the amino acid sequence was deduced, five different amino acid sequences were found. All except one of the sensitive strains lacked mutations in the region sequenced. Of the 34 resistant strains, only eight had mutations that involved the residues 198 and 240. All the strains with mutations at position 198 always corresponded to resistant isolates. However, a high percentage of resistant strains had no mutations in the region of the beta-tubulin gene sequenced, and so other mechanisms may be involved in thiabendazole resistance.

  20. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  1. A search for neutrinoless double beta decay of [sup 130]Te with a low temperature calorimeter

    SciTech Connect

    Alessandrello, A. ); Brofferio, C. ); Camin, D.V.; Cremonesi, O.; Gervasio, G.; Fiorini, E.; Giuliani, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L. )

    1992-02-05

    Possible impacts of the bolometric technique on Neutrinoless Double Beta Decay (0[nu]-DVD) search are discussed. In this approach, the performances of two TeO[sub 2] low temperature calorimeters with masses of 73 g and 340 g are reported: the FWHM resolutions are respectively 6 keV and 20 keV at 2614 keV. The operation of these detectors in a low background environment in the Gran Sasso underground laboratory has allowed to set a limit on the half-life of [sup 130]Te 2[nu]-DBD of about 2.5[times]10[sup 21] and to study the residual radioactive background components.

  2. Average and recommended half-life values for two neutrino double beta decay: Upgrade-2013

    SciTech Connect

    Barabash, A. S.

    2013-12-30

    All existing positive results on two neutrino double beta decay in different nuclei were analyzed. Using the procedure recommended by the Particle Data Group, weighted average values for half-lives of {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 100}Mo−{sup 100}Ru (0{sub 1}{sup +}), {sup 116}Cd, {sup 130}Te, {sup 136}Xe, {sup 150}Nd, {sup 150}Nd−{sup 150}Sm (0{sub 1}{sup +}) and {sup 238}U were obtained. Existing geochemical data were analyzed and recommended values for half-lives of {sup 128}Te and {sup 130}Ba are proposed. I recommend the use of these results as the most currently reliable values for half-lives.

  3. Experimental evidence for beta-decay as a source of chirality by enantiomer analysis

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1984-01-01

    Earlier experiments testing the Vester-Ulbricht beta-decay hypothesis for the origin of molecular chirality are reviewed, followed by descriptions of experiments involving attempted asymmetric radiolysis of DL-amino acids using quantitative gas chromotography as a probe for optical activity. The radiation sources included Sr-90-Y-90, C-14, and P-32 Bremsstrahlen, longitudinally polarized electrons from a linear accelerator and longitudinally polarized protons from a cyclotron. With the possible exception of the linear accelerator irradiations, these experiments failed to produce g.c.-detectable enantiomeric excesses, even at 50-70 percent gross radiolysis. Thus no unambiguous support for the Vester-Ulbricht hypothesis is found in any of the attempted asymmetric radiolyses performed to date. Radioracemization, a possible reason for these failures, is discussed.

  4. Beta decay and the origin of biologial chirality - New experimental results

    NASA Technical Reports Server (NTRS)

    Van House, J.; Rich, A.; Zitzewitz, P. W.

    1984-01-01

    The hypothetical connection developed by Vester and Ulbricht (1959), between the handedness of beta particles in radioactive decay and the (L) sign of biologial chirality is investigated in a radiolysis experiment. The experiment measured the predicted asymmetry in the formation triplet or 'ortho-' positronium (oPs) in amino acid enantiomers by low energy positrons under conditions of helicity reversal. The positrons were focused on amino acid powder samples. By measuring the time between positron arrival and emission of gamma rays, long-lived oPs were separated from other species. It is found that the asymmetry in leucine (0.8 x 10 to the -4th) is consistent with the theoretical prediction of 10 to the -6th. Neither the experimental limits nor the theoretical estimates are found to rule out a mechanism like that described by Vester and Ulbricht as the cause of the sign of the observed chiral polarization.

  5. Early results from the Battelle-Carolina /sup 76/Ge double-beta-decay project

    SciTech Connect

    Brodzinski, R.L.; Avignone, F.T.; Brown, D.P.; Evans, J.C.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1982-10-01

    A search for no-neutrino double beta decay of /sup 76/Ge using an anticoincidence shielded Ge spectrometer is reported. A new lower limit of T/sub 1/2/ greater than or equal to 1.7 x 10/sup 22/ y at a 90% CL was determined using a maximum likelihood analysis on a 5 keV wide energy bin centered at 2041 keV. Combining this result with the shell model calculations of Haxton, Stephenson and Strottman, we obtain average m/sub nu/ less than or equal to 10 eV and parallel eta parallel less than or equal to 2.4 x 10/sup -5/.

  6. Early results from the Battelle-Carolina /sup 76/Ge double beta decay project

    SciTech Connect

    Avignone, F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1983-01-01

    A search for no-neutrino double beta decay of /sup 76/Ge using an anticoincidence shielded Ge spectrometer is reported. A new lower limit of T/sub 1/2/ greater than or equal to 1.7 x 10/sup 22/ y at a 90% CL was determined using a maximum likelihood analysis on a 5 keV wide energy bin centered at 2041 keV. Combining this result with the shell model calculations of Haxton, Stephenson and Strottman, we obtain anti m/sub nu/ less than or equal to 10 eV and absolute value eta less than or equal to 2.4 x 10/sup -5/.

  7. Standard-Model Tests with Superallowed {beta} Decay: Nuclear Data Applied to Fundamental Physics

    SciTech Connect

    Hardy, J.C.

    2005-05-24

    The study of superallowed nuclear {beta} decay currently provides the most precise and convincing confirmation of the conservation of the vector current (CVC) and is a key component of the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, a basic pillar of the Electroweak Standard Model. Experimentally, the Q-value, half-life, and branching ratio for superallowed transitions must be determined with a precision better than 0.1%. This demands metrological techniques be applied to short-lived ({approx}1 s) activities and that strict standards be employed in surveying the body of world data. The status of these fundamental studies is summarized and recent work described.

  8. Present and future of double-beta decay searches with bolometric detectors

    NASA Astrophysics Data System (ADS)

    Cardani, L.

    2016-01-01

    Thanks to the excellent energy resolution, high efficiency and versatility, bolometric detectors are primed for the search of neutrinoless double-beta decay (0 ν DBD). The most advanced bolometric experiment, CUORE, is studying the 0 ν DBD of 130Te using a 741kg array of TeO2 crystals. CUORE points to a 90% CL sensitivity on the half-life of 0 ν DBD of 9.5×1025 yr in 5yr, corresponding to an upper limit on the neutrino Majorana mass of 50-130meV. This sensitivity will allow to touch, but not to explore, the region corresponding to the inverted hierarchy mass scenario. In this document I present the status of CUORE and the possible upgrades of the bolometric technology in view of a next generation experiment.

  9. Measuring the beta-neutrino angular correlation in the 6 He decay

    NASA Astrophysics Data System (ADS)

    Bagdasarova, Yelena; Garicia, Alejandro; Hong, Ran; Sternberg, Matthew; Storm, Derek; Swanson, Erik; Wauters, Frederik; Zumwalt, David; Leredde, Arnaud; Bailey, Kevin; Mueller, Peter; O'Connor, Thomas P.; Flechard, Xavier; Lienard, Etienne; Naviliat-Cuncic, Oscar

    2015-04-01

    We have set up an experiment to determine the electron-antineutrino correlation from 6 He decay with the aim of searching for tensor currents in the electroweak interaction, which would constitute physics beyond the Standard Model. Our setup consists of a 6 He production target connected to a laser cooling and magneto-optical trapping system which confines the atoms in a small region surrounded by detectors. The detection system entails a combination of a multiwire proportional chamber and scintillator (for the beta) plus an electric field guide and a microchannel plate detector (for the Li recoil ions). I will give an overview of the setup, a summary of expected systematic uncertainties, and the current status of the experiment. This work is supported by DOE, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11357 and DE-FG02-97ER41020.

  10. Shell-Model Calculations of Two-Nucleon Tansfer Related to Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Brown, Alex

    2013-10-01

    I will discuss theoretical results for two-nucleon transfer cross sections for nuclei in the regions of 48Ca, 76Ge and 136Xe of interest for testing the wavefuntions used for the nuclear matrix elements in double-beta decay. Various reaction models are used. A simple cluster transfer model gives relative cross sections. Thompson's code Fresco with direct and sequential transfer is used for absolute cross sections. Wavefunctions are obtained in large-basis proton-neutron coupled model spaces with the code NuShellX with realistic effecive Hamiltonians such as those used for the recent results for 136Xe [M. Horoi and B. A. Brown, Phys. Rev. Lett. 110, 222502 (2013)]. I acknowledge support from NSF grant PHY-1068217.

  11. Experimental evidence for beta-decay as a source of chirality by enantiomer analysis.

    PubMed

    Bonner, W A

    1984-01-01

    Earlier experiments testing the Vester-Ulbricht beta-decay hypothesis for the origin of molecular chirality are reviewed, followed by descriptions of our own experiments involving attempted asymmetric radiolysis of DL-amino acids using quantitative gas chromotography as a probe for optical activity. Our radiation sources included 90Sr-90Y, 14C and 32P Bremsstrahlen, longitudinally polarized electrons from a linear accelerator and longitudinally polarized protons from a cyclotron. With the possible exception of the linear accelerator irradiations, these experiments failed to produce g.c.-detectable enantiomeric excesses, even at 50-70% gross radiolysis. We thus find no unambiguous support for the Vester-Ulbricht hypothesis in any of the attempted asymmetric radiolyses performed to date. Radioracemization, a possible reason for these failures, is discussed.

  12. Determination of the direction to a source of antineutrinos via inverse beta decay in Double Chooz

    NASA Astrophysics Data System (ADS)

    Nikitenko, Ya.

    2016-11-01

    To determine the direction to a source of neutrinos (and antineutrinos) is an important problem for the physics of supernovae and of the Earth. The direction to a source of antineutrinos can be estimated through the reaction of inverse beta decay. We show that the reactor neutrino experiment Double Chooz has unique capabilities to study antineutrino signal from point-like sources. Contemporary experimental data on antineutrino directionality is given. A rigorous mathematical approach for neutrino direction studies has been developed. Exact expressions for the precision of the simple mean estimator of neutrinos' direction for normal and exponential distributions for a finite sample and for the limiting case of many events have been obtained.

  13. A Measurement of the Electron-Antineutrino Correlation in Free Neutron Beta Decay

    NASA Astrophysics Data System (ADS)

    Komives, Alexander; aCORN Collaboration

    2016-09-01

    The aCORN Collaboration has analyzed data taken on the NG-6 beamline at the NIST (National Institute of Standards and Technology) Center for Neutron Research and achieved the most precise measurement to date of the angular correlation (a-coefficient) between the electron and antineutrino emitted in free neutron beta decay. Such a measurement provides a test of the Electroweak Standard Model and, with the neutron lifetime, a determination of the weak vector and axial vector coupling constants that does not require a precise determination of the neutron polarization. aCORN employs a novel asymmetry method that leads to smaller systematic uncertainties compared to previous experiments that obtained the a-coefficient from the shape of the recoil proton energy spectrum. A brief description of the aCORN method, apparatus, result, and systematic effects will be presented. This work supported by NSF, NIST and DOE.

  14. AXEL-a high pressure xenon gas TPC for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Nakamura, Kiseki; Ichikawa, Atsuko K.; Nakaya, Tsuyoshi; Minamino, Akihiro; Ban, Sei; Yanagita, Saori; Tanaka, Shunsuke; Hirose, Masanori; Sekiya, Hiroyuki; Ueshima, Kota; Miuchi, Kentaro

    2017-02-01

    To search for neutrinoless double beta decay, we have started developing a high pressure xenon gas time projection chamber as the AXEL (A Xenon ElectroLuminescence detector) project since 2014. We proposed a new scheme to measure energy deposit using electroluminescence lights to achieve high energy resolution, large mass and strong background rejection power. Important performances of compositions of our new readout scheme are shown: electric field simulation, VUV sensitivity of MPPC in high pressure gaseous xenon, response of MPPC for large amount of photons. To demonstrate as a whole system, we constructed a small prototype detector using 64 MPPCs filled with 4 bar xenon gas. Result of measurement with a 57Co gamma-ray source are shown.

  15. First array of enriched Zn^{82}Se bolometers to search for double beta decay

    NASA Astrophysics Data System (ADS)

    Artusa, D. R.; Balzoni, A.; Beeman, J. W.; Bellini, F.; Biassoni, M.; Brofferio, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Di Domizio, S.; di Vacri, M. L.; Ferroni, F.; Gironi, L.; Giuliani, A.; Gotti, C.; Keppel, G.; Maino, M.; Mancuso, M.; Martinez, M.; Morganti, S.; Nagorny, S.; Nastasi, M.; Nisi, S.; Nones, C.; Orio, F.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.; Zolotarova, A.

    2016-07-01

    The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in ^{82}Se, the Zn^{82}Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn^{82}Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.

  16. Spin dipole nuclear matrix elements for double beta decay nuclei by charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, H.; Frekers, D.

    2016-11-01

    Spin dipole (SD) strengths for double beta-decay (DBD) nuclei were studied experimentally for the first time by using measured cross sections of (3He, t) charge-exchange reactions (CERs). Then SD nuclear matrix elements (NMEs) {M}α ({{SD}}) for low-lying 2- states were derived from the experimental SD strengths by referring to the experimental α = GT (Gamow-Teller) and α = F (Fermi) strengths. They are consistent with the empirical NMEs M({{SD}}) based on the quasi-particle model with the empirical effective SD coupling constant. The CERs are used to evaluate the SD NME, which is associated with one of the major components of the neutrino-less DBD NME.

  17. MOON for double beta decays and X-rays from WIMP nuclear interactions

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2006-07-01

    Neutrino-less double beta decays (0νββ) and direct observation of cold dark matter (DM) are of great interest for studying fundamental properties of neutrinos and weakly interacting massive particles (WIMPs). These are crucial for particle physics and cosmology beyond the standard electro-weak theory. The present seminar in the Erice neutrino school reports briefly (1) the effective neutrino mass studied by 0νββ, (2) the unique features and the present status of MOON (Molybdenum Observatory Of Neutrinos) for high-sensitivity 0νββ studies with 100Mo in the quasi-degenerate and inverted hierarchy regions, and (3) the direct detection of WIMPs by measuring atomic X-rays following inner-shell ionization by WIMPs nuclear interactions. The MOON project is carried out in collaboration with the MOON collaboration, and the X-ray work from WIMPs is done with Ch.C. Moustakidis and J.D. Vergados.

  18. Nuclear responses for double-beta decays by hadron, photon, and neutrino probes and MOON experiment

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2006-05-01

    Neutrino-less double-beta decays (0νββ) with the mass sensitivities of the solar and atmospheric ν masses are of great interest for studying the Majorana nature of neutrinos and the absolute mass spectrum as suggested by recent ν oscillation experiments. Here nuclear responses (nuclear matrix elements) for 0νββ are crucial. They are well studied experimentally by using charge-exchange, photo-nuclear and neutrino reactions. MOON(Mo Observatory Of Neutrinos) is a high sensitivity 0νβ β experiment with the mass sensitivity of an order of 30 meV. Experimental studies of the nuclear responses and the present status of MOON are briefly discussed.

  19. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    NASA Astrophysics Data System (ADS)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  20. {beta}{sup +} decay and cosmic-ray half-lives of {sup 143}Pm and {sup 144}Pm

    SciTech Connect

    Hindi, M.M.; da Cruz, M.T.F.; Larimer, R.M.; Lesko, K.T.; Norman, E.B.; Sur, B. |; Champagne, A.E.

    1993-04-12

    The positron decay partial half-lives of {sup 143}Pm and {sup 144}Pm are needed to assess the viability of elemental Pm as a cosmic-ray clock. We have conducted experiments to measure the {beta}{sup +} branches of these isotopes; we find {beta}{sup +} branches of these isotopes; we find {beta}{sup +} branches of <5.7 {times}10{sup {minus}8} for {sup 143}Pm and <8{times}10{sup {minus} 7} for {sup 144}Pm. Through these branches are a factor of 20 lower than the previous experimental limits, the resulting partial half-lives are still too uncertain to permit any firm conclusions.

  1. [beta][sup +] decay and cosmic-ray half-lives of [sup 143]Pm and [sup 144]Pm

    SciTech Connect

    Hindi, M.M. . Dept. of Physics); da Cruz, M.T.F.; Larimer, R.M.; Lesko, K.T.; Norman, E.B. ); Sur, B. Queen's Univ., Kingston, ON . Dept. of Physics); Champagne, A.E. . Dept. of Physics and A

    1993-04-12

    The positron decay partial half-lives of [sup 143]Pm and [sup 144]Pm are needed to assess the viability of elemental Pm as a cosmic-ray clock. We have conducted experiments to measure the [beta][sup +] branches of these isotopes; we find [beta][sup +] branches of these isotopes; we find [beta][sup +] branches of <5.7 [times]10[sup [minus]8] for [sup 143]Pm and <8[times]10[sup [minus] 7] for [sup 144]Pm. Through these branches are a factor of 20 lower than the previous experimental limits, the resulting partial half-lives are still too uncertain to permit any firm conclusions.

  2. Precision long-term measurements of beta-decay-rate ratios in a controlled environment

    NASA Astrophysics Data System (ADS)

    Bergeson, S. D.; Peatross, J.; Ware, M. J.

    2017-04-01

    We report on measurements of relative beta-decay rates of Na-22, Cl-36, Co-60, Sr-90, Cs-137 monitored for more than one year. The radioactive samples are mounted in an automated sample changer that sequentially positions the five samples in turn, with high spatial precision, in front of each of four Geiger-Müller tubes. The sample wheel, detectors, and associated electronics are housed inside a sealed chamber held at constant absolute pressure, humidity, and temperature to isolate the experiment from environmental variations. The statistical uncertainty in the count rate approaches a few times 0.01% with two weeks of averaging. Other sources of error are on a similar scale. The data are analyzed in variety of ways, comparing count rates of the various samples on one or more detectors, and comparing count rates of a particular sample across multiple detectors. We observe no statistically significant variations in the ratios of decay rates, either annual or at higher-frequency, at a level above 0.01%.

  3. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    DOE PAGES

    Artusa, D. R.; Azzolini, O.; Balata, M.; ...

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capablemore » of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.« less

  4. The Majorana Demonstrator Neutrinoless Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; Majorana Collaboration

    2016-03-01

    Neutrinoless double beta decay searches play a major role in determining neutrino properties. The Majorana Collaboration is constructing an ultra-low background, modular high-purity Ge detector array to search for this decay in 76Ge. Located at the 4850-ft level of the Sanford Underground Research Facility, the Demonstrator detector assembly has the goal to show that it is possible to achieve background rates necessary for future ton-scale experiments. The talk will give a short introduction to the experiment, an overview of the achievements made in detector construction, data analysis and simulation. After the first commissioning phase last year with more than half of the detectors in their final configuration, the current status of the Demonstrator will be presented in this talk as well as plans for the future. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.

  5. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors

    SciTech Connect

    Artusa, D. R.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Cai, X. Z.; Camacho, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chiesa, D.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Datskov, V.; Biasi, A. De; Deninno, M. M.; Domizio, S. Di; Vacri, M. L. di; Ejzak, L.; Fang, D. Q.; Farach, H. A.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Goett, J.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kolomensky, Yu. G.; Li, Y. L.; Ligi, C.; Liu, X.; Ma, Y. G.; Maiano, C.; Maino, M.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Napolitano, T.; Nisi, S.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Wielgus, L.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zarra, C.; Zhu, B. X.

    2014-10-15

    Neutrinoless double beta decay (0νββ) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of neutrinos. In this paper we review the status and outlook for bolometric 0νββ decay searches. We summarize recent advances in background suppression demonstrated using bolometers with simultaneous readout of heat and light signals. We simulate several configurations of a future CUORE-like bolometer array which would utilize these improvements and present the sensitivity reach of a hypothetical next-generation bolometric0νββ experiment. We demonstrate that a bolometric experiment with the isotope mass of about 1 ton is capable of reaching the sensitivity to the effective Majorana neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the so-called inverted neutrino mass hierarchy region. In conclusion, we highlight the main challenges and identify priorities for an R&D program addressing them.

  6. The heating of nova ejecta by radioactive decays of the beta-unstable nuclei

    NASA Technical Reports Server (NTRS)

    Pistinner, Shlomi; Shaviv, Giora; Starrfield, Sumner

    1994-01-01

    Recent nucleosynthesis and hydrodynamic calculations of the consequences of accretion onto massive ONeMg white dwarf stars show that under certain circumstances significant amounts of the beta-unstable nuclei can be produced and ejected by the resulting explosion. We use these calculations as a guide in order to obtain the conditions under which the heating of the ejected material by the nonthermal electrons and positrons produced by the decays of the beta-unstable nuclei is sufficient to overcome the cooling from adiabatic expansion and lead to the production of X-ray-emitting coronal gas. These conditions are as follows: (1) a mass fraction for Na-22 of the order of 10(exp -3) or greater, (2) an expansion velocity in the range approximately 10(exp 2) - 10(exp 3) km/s, (3) a photospheric radius of approximately 10(exp 14) cm, (4) if the density distribution in the atmosphere satisfies a power law, then the exponent must be less than 3 for heating to overcome adiabatic cooling. Both the simulations of the outburst and the model atmosphere fits to the observed energy distributions, however, imply that the exponent is greater than or = 3 during the early phases of the outburst. Nevertheless, for a value of the exponent of 2, we predict the time when hot coronal gas can form during the expansion phases of the envelope.

  7. Structures of {sup 201}Po and {sup 205}Rn from EC/{beta}{sup +}-decay studies

    SciTech Connect

    Deo, A. Y.; Podolyak, Zs.; Walker, P. M.; Farrelly, G.; Gelletly, W.; Algora, A.; Rubio, B.; Agramunt, J.; Estevez, E.; Fraile, L. M.; Al-Dahan, N.; Alkhomashi, N.; Briz, J. A.; Maira, A.; Herlert, A.; Koester, U.; Singla, S.

    2010-02-15

    Several low-lying excited states in {sub 86}{sup 205}Rn{sub 119} and {sub 84}{sup 201}Po{sub 117} were identified for the first time following EC/{beta}{sup +} decay of {sup 205}Fr and {sup 201}At, respectively, using {gamma}-ray and conversion electron spectroscopy at the CERN isotope separator on-line (ISOLDE) facility. The EC/{beta}{sup +} branch from {sup 205}Fr was measured to be 1.5(2)%. The excited states of the daughter nuclei are understood in terms of the odd nucleon coupling to the neighboring even-even core. The neutron single-particle energies of the p{sub 3/2} orbital relative to the f{sub 5/2} ground state in {sup 205}Rn, and the f{sub 5/2} orbital relative to the p{sub 3/2} ground state in {sup 201}Po, were determined to be 31.4(2) and 5.7(3) keV, respectively. We tentatively identify a (13/2){sup +} isomeric level at 657.1(5) keV in {sup 205}Rn. The systematic behavior of the (13/2){sup +} and (3/2){sup -} levels is also discussed.

  8. Experiments on the origin of molecular chirality by parity non-conservation during beta-decay

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1973-01-01

    Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta decay, and their resulting circularly polarized Bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. Experiments involve subjecting a number of racemic and optically active amino acid samples to irradiation in a 61700 Ci90SR-90Y beta radiation source for a period of 1.34 years, then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography. In the cases of D,L-leucine, norleucine, norvaline and proline as solids, of D,L-leucine in solution and of D,L-tyrosine in alkaline solution no optical rotation was observed during CRD measurements in the 250-630 nm spectral region. While slight differences were noted in the percent radiolysis of solid D- (12.7%) and L-leucine (16.2%) as determined by GC, no enrichment of either enantiomer was found.

  9. An investigation of proton pair correlations relevant to the neutrinoless double beta decay of 76Ge

    NASA Astrophysics Data System (ADS)

    Ticehurst, David R.

    The observation of neutrinoless double beta decay (0nubetabeta ) would demonstrate that the neutrino is a Majorana particle and allow determination of its mass by comparing the measured decay rate to the calculated rate. The main uncertainty in the calculation of the 0 nubetabeta rate is due to uncertainties in the nuclear structure models used in the computation of the nuclear matrix elements for the decay process. This project tested the validity of using wavefunctions for the nuclear states involved in the 0nubetabeta process that are based on a first-order application of the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In the BCS approximation, most of the strength for two-nucleon transfer reactions should be for transitions to the 0 + ground state of the final nucleus (i.e., little strength should go to the 0+ excited states). This experiment measured the strength to the first 0+ excited state for the 74Ge( 3He,n)76Se and 76Ge( 3He,n)78Se reactions relative to the strength for transition to the 0+ ground state in selenium. For both nuclei, and at 3He beam energies of 15 and 21 MeV, the observed relative strength for transfer to the first 0+ excited state was less than 13%. This result supports the validity of using the BCS approximation to describe the ground state of both 76Se and 78Se and is consistent with the results of recent ( 3He,n) cross section measurements on 74Ge and 76Ge. In addition, the magnitude and shape of the measured angular distributions suggest that contribution of the sequential two-nucleon transfer process, which is an indicator of long-range nucleon-nucleon correlations, is over-predicted by the DWBA code FRESCO.

  10. Double Beta Decay in Xenon-136. Measuring the Neutrino-Emitting Mode and Searching for Majoron-Emitting Modes

    SciTech Connect

    Herrin, Steven

    2013-06-01

    Observations of neutrino flavor oscillations have demonstrated that neutrinos have mass. Since the discovery of these oscillations, much progress has been made at mea- suring the neutrino mass-squared differences and lepton mixing angles that character- ize them. However, the origin and absolute scale of neutrino masses remain unknown. Unique among fermions, neutrinos can be Majorana particles, which could provide an explanation for neutrino masses. Discovery of a hypothetical process known as neutrinoless double beta decay would show that neutrinos are Majorana particles and determine the mass scale for neutrinos. The Enriched Xenon Observatory (EXO) is a series of experiments searching for the neutrinoless double beta decay of 136Xe. The first experiment, EXO-200, began operation in 2011 and makes use of 200 kg of xenon enriched to 80.6% in 136Xe. The analysis presented here makes use of data from EXO-200 to obtain a more precise measurement of the half-life for the two-neutrino-emitting mode of double beta decay than previously reported. The analysis also sets limits on the half-lives for exotic, Majoron-emitting modes of neutrinoless double beta decay. Data from EXO-200 is also used to produce a measurement of the cosmic muon flux at the WIPP under- ground site where EXO-200 is located.

  11. Pattern recognition techniques to reduce backgrounds in the search for the {sup 136}Xe double beta decay with gaseous TPCs

    SciTech Connect

    Iguaz, F. J.; Cebrián, S.; Dafni, T.; Gómez, H.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Segui, L.; Tomas, A.

    2013-08-08

    The observation of the neutrinoless double beta decay may provide essential information on the nature of neutrinos. Among the current experimental approaches, a high pressure gaseous TPC is an attractive option for the search of double beta decay due to its good energy resolution and the detailed topological information of each event. We present in this talk a detailed study of the ionization topology of the {sup 136}Xe double beta decay events in a High Pressure Xenon TPC, as well as that of the typical competing backgrounds. We define some observables based on graph theory concepts to develop automated discrimination algorithms. Our criteria are able to reduce the background level by about three orders of magnitude in the region of interest of the {sup 136}Xe Q{sub ββ} for a signal acceptance of 40%. This result provides a quantitative assessment of the benefit of topological information offered by gaseous TPCs for double beta decay search, and proves that it is a promising feature in view of future experiments in the field. Possible ideas for further improvement in the discrimination algorithms and the dependency of these results with the gas diffusion and readout granularity will be also discussed.

  12. MOON for a next-generation neutrino-less double-beta decay experiment: Present status and perspective

    SciTech Connect

    Shima, T.; Doe, P.J.; Ejiri, H.; Elliot, S.R.; Engel, J.; Finger, M.; Finger, M.; Fushimi, K.; Gehman, V.M.; Greenfield, M.B.; Hazama, R.; /Hiroshima U. /NIRS, Chiba

    2008-01-01

    The performance of the MOON detector for a next-generation neutrino-less double-beta decay experiment was evaluated by means of the Monte Carlo method. The MOON detector was found to be a feasible solution for the future experiment to search for the Majorana neutrino mass in the range of 100-30 meV.

  13. MOON for a next-generation neutrino-less double-beta decay experiment; present status and perspective

    NASA Astrophysics Data System (ADS)

    Shima, T.; Doe, P. J.; Ejiri, H.; Elliot, S. R.; Engel, J.; Finger, M.; Finger, M., Jr.; Fushimi, K.; Gehman, V. M.; Greenfield, M. B.; Hazama, R.; Imaseki, H.; Kavitov, P.; Kekelidze, V. D.; Kitamura, H.; Matsuoka, K.; Nakamura, H.; Nomachi, M.; Para, A.; Robertson, R. G. H.; Slunecka, M.; Shirkov, G. D.; Sissakian, A. N.; Titov, A. I.; Uchihori, Y.; Umehara, S.; Vaturin, V.; Voronov, V. V.; Wilkerson, J. F.; Will, D. I.; Yasuda, K.; Yoshida, S.

    2008-07-01

    The performance of the MOON detector for a next-generation neutrino-less double-beta decay experiment was evaluated by means of the Monte Carlo method. The MOON detector was found to be a feasible solution for the future experiment to search for the Majorana neutrino mass in the range of 100-30 meV.

  14. The Search for 17-KEV Neutrino Emission in the Beta-Decay Spectrum of SULFUR-35.

    NASA Astrophysics Data System (ADS)

    Berman, Gregg Evan

    For this work, the electron momentum spectrum resulting from the beta-decay of ^{35}S, ^{35}{rm S} to ^ {35}{rm Cl} + {rm e }^- + |nu_{rm e}quad (E_0 - m_{e} = 167 {rm keV, T}_{1/2 } = 87.4 {rm days}), has been measured in order to search for the presence of 17-keV electron neutrino emission. Originally observed by J. Simpson in 1985, evidence supporting a 1% 17-keV neutrino branch in the decay spectra of ^3 H, ^{35}S, ^{63}Ni, ^{55 }Fe, ^{14}C and ^{71}Ge has since been reported. However, other groups observing these nuclei have not seen any evidence of 17-keV neutrino emission, and very stringent limits ruling out a 1% branch have been published. Therefore, an important goal of this work is to reduce and/or understand experimental systematic errors that can mask or mimic the effects of a 17-keV neutrino. This ^{35}S spectrum measurement was performed using Princeton's extensively renovated, iron-free, intermediate-image, magnetic spectrometer. To ensure radio-chemical purity, the ^{35 }S source was prepared by ion-implantation using an isotope separator. To accurately determine the overall response of the spectrometer, electron data was accumulated over the very wide energy range of 40-167 keV. In addition, a detailed study of the spectrometer response using various ^{111}In calibration sources was undertaken, and the effects of source positioning and background magnetic fields have been explored. Furthermore, new computer codes for electron orbit raytracing and Monte-Carlo simulations have been developed to help further study the response of the spectrometer as well as to predict the effects of electron backscattering in both the source and detector substrates. To analyze the experimental data for the presence of a 17-keV neutrino branch, the measured ^ {35}S spectrum was convolved with the overall response of the spectrometer, and then fit by least -squares reduction to a theoretical beta -decay shape that allows heavy-neutrino mixing. The results show that the

  15. (Beta)-decay experiments and the unitarity of the CKM matrix

    SciTech Connect

    Garrett, P E

    2005-12-01

    The goal of this project was to perform very precise measurements of super-allowed Fermi {beta} decay in order to investigate a possible non-unitarity in the CKM matrix of the Standard Model of particle physics. Current data from 9 precisely measured {beta} decays indicated that the sum-of-squares of the first row of the CKM matrix differs from 1.0 at the 2.2{sigma} (or 98% confidence) level. If true, it would be the first firm indication of physics beyond the Standard Model--the model that has been the backbone of the worldwide physics community for more than 30 years. The physics goal of the project was to test and constrain the calculated correction factors that must be applied to the experimental data by performing measurements at the TRIUMF radioactive ion beam facility ISAC. Accurate and precise (precision goal >99.9%) half lives and decay branching ratios were measured for nuclei where different sets of calculated corrections give divergent results thereby allowing us to determine which theory, if any, gives the correct result. The LLNL contribution was to design and build the data acquisition system that will enable the experiments, and to provide theoretical calculations necessary for the interpretation of the results. The first planned measurement was {sup 34}Ar, to be followed by {sup 62}Ga and {sup 74}Rb. However, there were major problems in creating a suitable, intense beam of radioactive {sup 34}Ar. The collaboration decided to proceed with measurements on {sup 62}Ga and {sup 18}Ne. These experiments were performed in a series of measurements in the summer and fall of 2004. The LLNL team also is leading the effort to perform measurements on {sup 66}As and {sup 70}Br that are expected during 2006-2008. While the definitive experiments to meet the goals of the LDRD were not conducted during the funding period, the involvement in the radioactive program at TRIUMF has lead to a number of new initiatives, and has attracted new staff to LLNL. This LDRD has

  16. Precise branching-ratio measurement for the superallowed Fermi beta decay of 34Ar at NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Kinno, Shumpei; Himac H312 Collaboration

    2014-09-01

    The precise measurement of the ft values for superallowed Fermi beta decays is a valuable tool to explore weak interactions. The resulting ft values can confirm the CVC hypothesis, the unitarity of CKM matrix, and the existence of large isospin-symmetry breaking. Recently, the mirror superallowed Fermi beta decays, 38Ca --> 38mK and 38mK --> 38Ar, have been reported as a sensitive test of the isospin-symmetry breaking. In order to study the mirror superallowed Fermi beta decays in A = 34 systems, the precise measurement for the branching ratios of 34Ar emitter has been performed.The experiment was carried out at NIRS-HIMAC. The secondary beam including 34Ar was produced with the projectile fragmentation of a 500-MeV/u 36Ar beam on a CH2 target. The secondary beam was separated and identified by passing through the secondary beam line. After decreasing the beam energy with an Al degrader of variable thickness, the beam was implanted in the center of a 6-mm thick GSO scintillator surrounded by four clover Ge detectors. The beta and gamma rays were detected by the GSO stopper and the clover Ge detectors, respectively. By analyzing the beta- and gamma-rays energy and time spectra, the branching ratios of 34Ar have been determined.

  17. Monte Carlo Simulations of Scattering and Energy Loss in Beta Decay for the Nab and UCNB Experiments

    NASA Astrophysics Data System (ADS)

    Wexler, Jonathan; Nab Collaboration; UCNB Collaboration

    2017-01-01

    Measurements of beta decay spectra are sensitive to both Standard Model physics and modifications of the Standard Model through extraction of correlation parameters. Extraction of these parameters requires accurate energy reconstruction of measured particles stemming a precise understanding of the energy loss. Simulations of neutron decay products in a magnetic spectrometer, per the design of the UCNB and Nab experiments, and energy collection in thick, segmented silicon wafer detectors have been performed to probe the effects of silicon dead layers, sub-threshold events, bremsstrahlung in order to generate Monte Carlo corrections from the simulated spectra. In addition, simulations with sources implanted on foils allow characterization of the detector response and performing fundamental weak interaction studies, such as measuring the beta spectra from 45Ca decays. We present an overview of simulations for the UCNB and Nab experiments as well as the current status of the Monte Carlo corrections.

  18. Calibration and optimization of the Project 8 Phase II apparatus toward a tritium beta decay spectrum measurement

    NASA Astrophysics Data System (ADS)

    Guigue, Mathieu; Project 8 Collaboration

    2016-09-01

    The Project 8 collaboration aims to measure the absolute neutrino mass scale using a Cyclotron Radiation Emission Spectroscopy technique on the beta decays of tritium. With the recent developments achieved in the Phase II of the experiment such as a molecular tritium gas handling system and a larger effective decay volume, we will be able to measure the differential-energy spectrum of tritium beta decays for the very first time and be sensitive to extract the tritium endpoint value on an eV or sub-eV scale. The measured frequency of monoenergetic electrons emitted by gaseous metastable Krypton 83 atoms can be used as an energy calibration and to optimize the instrument configuration for the tritium measurement. Here we present the status of this calibration procedure and the tritium data-taking plan.

  19. Nd loaded liquid scintillator to search for 150Nd neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Barabanov, I.; Bezrukov, L.; Cattadori, C.; Danilov, N.; di Vacri, A.; Ianni, A.; Nisi, S.; Ortica, F.; Romani, A.; Salvo, C.; Smirnov, O.; Yanovich, E.

    2008-11-01

    The 150Nd is considered one of the most attractive candidate for searching neutrinoless double beta (0νββ-) decay, thanks to its high Q-value (3.367 MeV), that makes the external background issue less significative respect to other isotopes, and favorable computed matrix elements. The isotopic abundance of this isotope in natural neodimium is only 5.6% and up to now, it has been investigated only in low mass experiments. The next step is to increase the sensitivity of the experiments using larger mass of neodymium (10 ton-1 kton). This could be possible with a Nd loaded liquid scintillator (LS). At the Gran Sasso National Laboratory (LNGS), a joint INFN (Istituto Nazionale di Fisica Nucleare) and INR (Institute for Nuclear Research of Moscow) working group has been carrying out since 2001 an R&D activity aiming to develop organic liquid scintillators (LS) doped with metals. The achieved know-how and the satisfactory results obtained both with In and Gd allowed to face the development and production of Nd doped LS. The development of metal doped LS is challenging because the metal has to be embedded in a proper organic system that makes it soluble in an organic solvent minimizing the impact of the metal-organic compound on the optical and scintillation properties of the LS. A further challenge in the case of Nd is the presence of absorption bands of this element in the optical region with a transparent region around 400 nm, which is about at the maximum of the scintillator emission spectrum. A 2.5 1 Nd loaded LS has been produced diluting an originally developed Nd-Carboxylic (Nd-CBX) salt in pseudocumene (PC), the solvent of the Borexino liquid scintillator. The measured light yield, at [Nd] = 6.5 g/1 and [PPO] = 1.5 g/1, is ~ 75% of pure PC at the same fluor concentration (~ 10000 ph/MeV). The Nd doped LS has been tested in a 2 1 quartz cell (wrapped by VM2000 reflector film) having dimensions 5x5x100 cm3. The light propagates in the cell by total internal

  20. CANDLES project for the study of neutrino-less double beta decay of 48Ca

    NASA Astrophysics Data System (ADS)

    Yoshida, Sei

    2014-09-01

    There is, presently, strong evidence that neutrinos undergo flavor oscillations,and hence must have finite masses. Neutrino-less double beta (0 νββ) decay measurement offers a realistic opportunity to establish the Majorana nature of neutrinos and gives the absolute scale of the effective neutrino mass. CANDLES is the project to search for 0 νββ decay of 48Ca. A distinctive characteristic of 48Ca is the highest Q value (4.3 MeV) among 0 νββ isotopes. Therefore it enables us to measure 0 νββ decay signals in background free contribution. The CANDLES system consists of undoped CaF2 scintillators (CaF2),liquid scintillator (LS), and large photomultiplier tubes (PMTs). A large number of CaF2 crystals in the form of 10 cm cubes are immersed in the LS. Scintillating CaF2 crystals work as an active source detector for 0 νββ decay of 48Ca, together with LS as a multi-purpose detector component to both reject backgrounds and to propagate scintillation photons. PMTs are placed around the LS vessel to detect photons from both scintillators. The simple design concept of CANDLES enables us to increase the 48Ca source amount. 48Ca enrichment is also effective for the high sensitive measurement, because natural abundance of 48Ca is very low (0.19%). We have studied 48Ca enrichment and succeeded in obtaining enriched 48Ca although it is a small amount. Now we have developed the CANDLES III system, which contained with 300kg CaF2 crystals without enrichment, at the Kamioka underground laboratory. New light collection system was installed in 2012, and accordingly photo-coverage has been enlarged by about 80%. Further improvement will be expected in 2014 by installing a detector cooling system in order to increase light emission from CaF2 crystals. The detail of the latest CANDLES III (U.G.) system and its performance will be presented. Recently, we found that gamma rays from neutron captures on materials surrounding detector could be dominant background. These

  1. Description of the 2{nu}{nu}{beta}{beta} decay within a fully renormalized proton-neutron quasiparticle random-phase approximation approach with a restored gauge symmetry

    SciTech Connect

    Raduta, C. M.; Raduta, A. A.

    2010-12-15

    A many-body Hamiltonian involving the mean field for a projected spherical single-particle basis, the pairing interactions for alike nucleons, and the dipole-dipole proton-neutron interactions in the particle-hole (ph) channel and the ph dipole pairing potential is treated by the projected gauge fully renormalized proton-neutron quasiparticle random phase approximation approach. The resulting wave functions and energies for the mother and daughter nuclei are used to calculate the 2{nu}{beta}{beta} decay rate and the process half-life. For illustration, the formalism is applied for the decay {sup 100}Mo{yields}{sup 100}Ru. The calculated half-life is in agreement with the corresponding experimental data. The Ikeda sum rule is obeyed.

  2. High-precision {beta} decay half-life measurements of proton-rich nuclei for testing the CVC hypothesis

    SciTech Connect

    Kurtukian-Nieto, T. [Centre d'Etudes Nucleaires de Bordeaux-Gradignan , Universite Bordeaux 1, CNRS Collaboration: NEX Group of CENBG

    2011-11-30

    The experimental study of super-allowed nuclear {beta} decays serves as a sensitive probe of the conservation of the weak vector current (CVC) and allows tight limits to be set on the presence of scalar or right-handed currents. Once CVC is verified, it is possible to determine the V{sub ud} element of the CKM quark-mixing matrix. Similarly, the study of nuclear mirror {beta} decays allows to arrive at the same final quantity V{sub ud}. Whereas dedicated studies of 0{sup +}{yields}0{sup +} decays are performed for several decades now, the potential of mirror transitions was only rediscovered recently. Therefore, it can be expected that important progress is possible with high-precision studies of different mirror {beta} decays. In the present piece of work the half-life measurements performed by the CENBG group of the proton-rich nuclei {sup 42}Ti, {sup 38-39}Ca, {sup 30-31}S and {sup 29}P are summarised.

  3. A search for double beta decays of 136Xe to the excited state of 136Ba with EXO-200

    NASA Astrophysics Data System (ADS)

    Yen, Yung-Ruey; EXO-200 Collaboration

    2015-10-01

    EXO-200 is one of the most sensitive searches for neutrinoless double beta decay of 136Xe in the world. The experiment uses 110 kg of active enriched liquid xenon in an ultralow background time projection chamber installed at the Waste Isolation Pilot Plant, a salt mine with a 1600 m water equivalent overburden. This detector has demonstrated excellent energy resolution and background rejection capabilities. While the experiment is designed to search for the double beta decays of 136Xe to the ground state of 136Ba, transitions to the excited states of 136Ba are also plausible. The ββ 2 ν decay to the first 0+ excited state of the daughter nuclei has been observed for 100Mo and 150Nd; this particular transition for 136Xe has a theoretical lifetime on the order of 1025 year, which is right around the sensitivity of EXO-200. We present the results from the search of double beta decays to the excited state using two years of EXO-200 data.

  4. On the measurement of the electron-neutrino correlation in neutron beta decay

    SciTech Connect

    Bowman, J. D.

    2004-01-01

    A new approach to the measurement of A, the electron-neutrino correlation, in neutron beta decay is presented. A precise measurement of A can lead to a precise determination of G{sub A}/G{sub V}. Coincidences between electrons and protons are detected in a field-expansion spectrometer. Both electrons and protons are detected in segmented Si detectors. The spectrometer configuration has a long, {approx} 1 meter, drift distance for the proton. The electron energy and time of flight between the electron and proton are measured. We show that by sorting the data on proton time of flight and electron energy, A can be determined with a statistical accuracy of {approx} 5.1/{radical}n, where n is the number of decays observed. The approach has a number of advantages. Thin-dead-layer segmented Si detectors are commercially available. There are no material apertures to determine the acceptance of the apparatus. The charged particles interact only with electric and magnetic fields before striking the detectors. Coincident detection of electrons and protons reduces backgrounds, and allows the in situ determination of backgrounds. In the analysis, it is not necessary to sort on the relative electron and proton direction and hence electron back scattering does not cause systematic uncertainties. A time of flight spectrum is obtained for each electron energy. Different parts of the spectra have different sensitivities to A. The parts of the spectra that are insensitive to A can be used to verify the accuracy of the electric and magnetic field determinations.

  5. Scintillating bolometric technique for the neutrino-less double beta decay search: The LUCIFER/CUPID-0 experiment

    NASA Astrophysics Data System (ADS)

    Casali, N.; Artusa, D. R.; Bellini, F.; Biassoni, M.; Brofferio, C.; Bucci, C.; Camacho, A.; Capelli, S.; Cardani, L.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Cruciani, A.; D'Addabbo, A.; Dafinei, I.; Domizio, S. Di; Vacri, M. L. di; Ferroni, F.; Gironi, L.; Gotti, C.; Keppel, G.; Maino, M.; Martinez, M.; Morganti, S.; Nagorny, S.; Orlandi, D.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Pozzi, S.; Pirro, S.; Previtali, E.; Puiu, A.; Rusconi, C.; Schäffner, K.; Tomei, C.; Vignati, M.

    2017-02-01

    CUPID is a proposed future tonne-scale bolometric neutrino-less double beta decay (0 νββ) experiment to probe the Majorana nature of neutrinos and discover lepton number violation in the so-called inverted hierarchy region of the neutrino mass. In order to improve the sensitivity with respect to the current bolometric experiments, the source mass must be increased and the backgrounds in the region of interest must be dramatically reduced. The background suppression can be achieved discriminating β / γ against α events by means of the different light yield produced in the interactions within a scintillating bolometer. The increase in the number of 0 νββ emitters demands for crystals grown with enriched material. LUCIFER/CUPID-0, the first demonstrator of CUPID, aims at running the first array of enriched scintillating Zn82Se bolometers (total mass of about 7 kg of 82Se) with a background level as low as 10-3 counts/(keV kg y) in the energy region of interest. We present the results of the first measurement performed on three Zn82Se enriched scintillating bolometers operated deep underground in the Hall C of the Laboratori Nazionali del Gran Sasso.

  6. Analysis of the {sup 6}He {beta} decay into the {alpha}+d continuum within a three-body model

    SciTech Connect

    Tursunov, E.M.; Baye, D.; Descouvemont, P.

    2006-01-15

    The {beta}-decay process of the {sup 6}He halo nucleus into the {alpha}+d continuum is studied in a three-body model. The {sup 6}He nucleus is described as an {alpha}+n+n system in hyperspherical coordinates on a Lagrange mesh. The convergence of the Gamow-Teller matrix element requires the knowledge of wave functions up to about 30 fm and of hypermomentum components up to K=24. The shape and absolute values of the transition probability per time and energy units of a recent experiment can be reproduced very well with an appropriate {alpha}+d potential. A total transition probability of 1.6x10{sup -6} s{sup -1} is obtained in agreement with that experiment. Halo effects are shown to be very important because of a strong cancellation between the internal and halo components of the matrix element, as observed in previous studies. The forbidden bound state in the {alpha}+d potential is found essential to reproduce the order of magnitude of the data. Comments are made on R-matrix fits.

  7. High Resolution Charge Exchange Reaction and Analogous {beta}-decay for the Study of Gamow-Teller Transition Strengths

    SciTech Connect

    Fujita, Y.; Rubio, B.

    2007-06-13

    Isospin symmetry is expected for the Tz = {+-}1 {yields} 0 isobaric analogous transitions in isobars with mass number A, where Tz is the z component of isospin T. Assuming this symmetry, strengths of analogous Gamow-Teller (GT) transitions within A = 50 isobars were determined from a high energy-resolution Tz = + 1 {yields} 0, 50Cr(3He,t)50Mn study at 0 deg. in combination with the decay Q-value and lifetime from the Tz = -1 {yields} 0, 50Fe{yields}50Mn {beta} decay. This method can be applied to other pf-shell nuclei and can be used to study GT strengths of astrophysical interest.

  8. Analysis of beta-decay data acquired at the Physikalisch-Technische Bundesanstalt: Evidence of a solar influence

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Steinitz, G.; Fischbach, E.; Parkhomov, A.; Scargle, J. D.

    2016-11-01

    According to an article entitled Disproof of solar influence on the decay rates of 90Sr/90Y by Kossert and Nähle of the Physikalisch-Technische Bundesanstalt (PTB) [1], the PTB measurements show no evidence of variability. We show that, on the contrary, those measurements reveal strong evidence of variability, including an oscillation at 11 year-1 that is suggestive of an influence of internal solar rotation. An analysis of radon beta-decay data acquired at the Geological Survey of Israel (GSI) Laboratory for the same time interval yields strong confirmation of this oscillation.

  9. [beta][sup +] decay and cosmic-ray half-lives of [sup 143]Pm and [sup 144]Pm

    SciTech Connect

    Hindi, M.M.; Champagne, A.E.; da Cruz, M.T.F.; Larimer, R.; Lesko, K.T.; Norman, E.B.; Sur, B. Department of Physics, Princeton University, Princeton, New Jersey 08544 Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )

    1994-08-01

    The positron decay partial half-lives of [sup 143]Pm and [sup 144]Pm are needed to assess the viability of elemental Pm as a cosmic-ray clock. We have conducted experiments to measure the [beta][sup +] branches of these isotopes; we find [beta][sup +] branches of [lt]5.7[times]10[sup [minus]6]% for [sup 143]Pm and [lt]8[times]10[sup [minus]5]% for [sup 144]Pm. Although these branches are a factor of 20 lower than the previous experimental limits, the resulting partial half-lives are still too uncertain to permit any firm conclusions.

  10. The MAJORANA DEMONSTRATOR: A search for neutrinoless double-beta decay of germanium-76

    NASA Astrophysics Data System (ADS)

    Schubert, Alexis; Majorana Collaboration

    2011-04-01

    Observation of neutrinoless double-beta decay (0 νββ) could determine whether the neutrino is a Majorana particle and may provide information on neutrino mass. The MAJORANA Collaboration will search for 0 νββ of 76Ge in an array of germanium detectors enriched to 86% in 76Ge. Germanium detectors are a well-understood technology and have the benefits of excellent energy resolution, a high Q-value, and the ability to act as source and detector. The p-type point contact germanium detectors chosen by the MAJORANA Collaboration provide low noise, low energy threshold, and some ability to distinguish between the signal and background events. MAJORANA is constructing the DEMONSTRATOR, which will be used to conduct research and development toward a tonne-scale Ge experiment. The DEMONSTRATOR will be installed deep underground and will contain 40 kg of Ge deployed in an ultra-low-background shielded environment. Research supported by DOE under contracts DE-AC05-00OR22725 and DE-FG02-97ER41020.

  11. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    SciTech Connect

    Cebrián, S.; Dafni, T.; González-Díaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzón, G.; Ortiz de Solórzano, A.; Villar, J. A.; Álvarez, V.; Cárcel, S.; Cervera, A.; Díaz, J.; Ferrario, P.; Gómez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; López-March, N. [Instituto de Física Corpuscular, CSIC & Universitat de València, C and others

    2015-08-17

    The ”Neutrino Experiment with a Xenon TPC” (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in {sup 136}Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.

  12. Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Cebrián, S.; Pérez, J.; Bandac, I.; Labarga, L.; Álvarez, V.; Barrado, A. I.; Bettini, A.; Borges, F. I. G. M.; Camargo, M.; Cárcel, S.; Cervera, A.; Conde, C. A. N.; Conde, E.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Fernández, M.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Laing, A.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez-Lema, G.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Ortiz de Solórzano, A.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J. T.; Yahlali, N.

    2015-05-01

    The ``Neutrino Experiment with a Xenon Time-Projection Chamber'' (NEXT) is intended to investigate the neutrinoless double beta decay of 136Xe, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection process is underway to control the radiopurity levels of the materials to be used in the experimental set-up of NEXT. The detector design combines the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. Separate energy and tracking readout planes are based on different sensors: photomultiplier tubes for calorimetry and silicon multi-pixel photon counters for tracking. The design of a radiopure tracking plane, in direct contact with the gas detector medium, was specially challenging since the needed components like printed circuit boards, connectors, sensors or capacitors have typically, according to available information in databases and in the literature, activities too large for experiments requiring ultra-low background conditions. Here, the radiopurity assessment of tracking readout components based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterr&aposaneo de Canfranc (Spain) is described. According to the obtained results, radiopure enough printed circuit boards made of kapton and copper, silicon photomultipliers and other required components, fulfilling the requirement of an overall background level in the region of interest of at most 8×10-4 counts keV-1 kg-1 y-1, have been identified.

  13. Development of liquid scintillator containing a zirconium complex for neutrinoless double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka; Ogawa, Izumi

    2013-12-01

    An organic liquid scintillator containing a zirconium complex has been developed for a new neutrinoless double beta decay experiment. In order to produce a detector that has good energy resolution (4% at 2.5 MeV) and low background (0.1 counts/(t·year)) and that can monitor tons of target isotope, we chose a zirconium β-diketone complex having high solubility (over 10 wt%) in anisole. However, the absorption peak of the diketone ligand overlaps with the luminescence of anisole. Therefore, the light yield of the liquid scintillator decreases in proportion to the concentration of the complex. To avoid this problem, we synthesized a β-keto ester complex introducing -OC3H7 or -OC2H5 substituent groups in the β-diketone ligand, which shifted the absorption peak to around 245 nm, which is shorter than the emission peak of anisole (275 nm). However, the shift of the absorption peak depends on the polarity of the scintillation solvent. Therefore we must choose a low polarity solvent for the liquid scintillator. We also synthesized a Zr-ODZ complex, which has a high quantum yield (30%) and good emission wavelength (425 nm) with a solubility 5 wt% in benzonitrile. However, the absorption peak of the Zr-ODZ complex was around 240 nm. Therefore, it is better to use the scintillation solvent which has shorter luminescence wavelength than that of the aromatic solvent.

  14. GraXe, graphene and xenon for neutrinoless double beta decay searches

    SciTech Connect

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.; Vidal, J. Muñoz; Guinea, F.; Fogler, M.M.; Katsnelson, M.I. E-mail: paco.guinea@icmm.csic.es E-mail: katsnel@sci.kun.nl E-mail: francesc.monrabal@ific.uv.es

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  15. Radon and material radiopurity assessment for the NEXT double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Cebrián, S.; Pérez, J.; Bandac, I.; Labarga, L.; Álvarez, V.; Barrado, A. I.; Bettini, A.; Borges, F. I. G. M.; Camargo, M.; Cárcel, S.; Cervera, A.; Conde, C. A. N.; Conde, E.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Fernández, M.; Ferrario, P.; Freitas, E. D. C.; Fernandes, L. M. P.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Morata, J. A. Hernando; Herrera, D. C.; Irastorza, I. G.; Laing, A.; Liubarsky, I.; López-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Martínez-Lema, G.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; de Solórzano, A. Ortiz; Aparicio, J. L. Pérez; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J. T.; Yahlali, N.

    2015-08-01

    The "Neutrino Experiment with a Xenon TPC" (NEXT), intended to investigate the neutrinoless double beta decay using a high-pressure xenon gas TPC filled with Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires ultra-low background conditions demanding an exhaustive control of material radiopurity and environmental radon levels. An extensive material screening process is underway for several years based mainly on gamma-ray spectroscopy using ultra-low background germanium detectors in Canfranc but also on mass spectrometry techniques like GDMS and ICPMS. Components from shielding, pressure vessel, electroluminescence and high voltage elements and energy and tracking readout planes have been analyzed, helping in the final design of the experiment and in the construction of the background model. The latest measurements carried out will be presented and the implication on NEXT of their results will be discussed. The commissioning of the NEW detector, as a first step towards NEXT, has started in Canfranc; in-situ measurements of airborne radon levels were taken there to optimize the system for radon mitigation and will be shown too.

  16. The contribution of light Majorana neutrinos to neutrinoless double beta decay and cosmology

    SciTech Connect

    Dell’Oro, S.; Marcocci, S.; Viel, M.; Vissani, F.

    2015-12-11

    Cosmology is making impressive progress and it is producing stringent bounds on the sum of the neutrino masses Σ, a parameter of great importance for the current laboratory experiments. In this letter, we exploit the potential relevance of the analysis of Palanque-Delabrouille et al. to the neutrinoless double beta decay (0νββ) search. This analysis indicates small values for the lightest neutrino mass, since the authors find Σ<84 meV at 1σ C.L., and provides a 1σ preference for the normal hierarchy. The allowed values for the Majorana effective mass, probed by 0νββ, turn out to be <75 meV at 3σ C.L. and lower down to less than 20 meV at 1σ C.L. . If this indication is confirmed, the impact on the 0νββ experiments will be tremendous since the possibility of detecting a signal will be out of the reach of the next generation of experiments.

  17. A Solution to Inductive Power Coupling in a Time-Cycled Atom Trap for Beta Decay

    NASA Astrophysics Data System (ADS)

    Lawrence, Liam; Behr, John; Anholm, Melissa; McNeil, James

    2016-09-01

    The TRINAT group at TRIUMF uses lasers and magnetic fields to confine, cool, and polarize a cloud of beta-decaying neutral alkali atoms to test weak force asymmetry. To alternate between trapping and polarizing the atoms, the trapping magnetic field must be switched on and off. This time-changing magnetic field, created by a pair of co-axial coils, produces eddy currents-and consequentially resistive heating-in nearby conductors. This heating may cause undesirable effects, including damage to the delicate pellicle mirrors which are to be used in future experiments. Previously, the current waveform in the coils consisted of two periods of a sinusoid during the on time of the trapping field (this reduces leftover field from eddy currents during the polarization time). We have calculated the relative power coupled to the pellicle mirror mount for various waveforms, and determined that using half a period of a lower-frequency sinusoid couples an order of magnitude less power than the original waveform, and approximately 2 times less than a trapezoidal wave. We measured the lifetime of the trap subject to this new waveform and found it is possible to achieve a lifetime comparable to that of a continuous trap, our best result differing by less than 5 percent.

  18. Deformed shell model results for neutrinoless double beta decay of nuclei in A = 60 - 90 region

    NASA Astrophysics Data System (ADS)

    Sahu, R.; Kota, V. K. B.

    2015-03-01

    Nuclear transition matrix elements (NTME) for the neutrinoless double beta decay (Oνββ or OνDBD) of 70Zn, 80Se and 82Se nuclei are calculated within the framework of the deformed shell model (DSM) based on Hartree-Fock (HF) states. For 70Zn, jj44b interaction in 2p3/2, 1f5/2, 2p1/2 and 1g9/2 space with 56Ni as the core is employed. However, for 80Se and 82Se nuclei, a modified Kuo interaction with the above core and model space are employed. Most of our calculations in this region were performed with this effective interaction. However, jj44b interaction has been found to be better for 70Zn. The above model space was used in many recent shell model (SM) and interacting boson model (IBM) calculations for nuclei in this region. After ensuring that DSM gives good description of the spectroscopic properties of low-lying levels in these three nuclei considered, the NTME are calculated. The deduced half-lives with these NTME, assuming neutrino mass is 1 eV, are 1.1 × 1026, 2.3 × 1027 and 2.2 × 1024 yr for 70Zn, 80Se and 82Se, respectively.

  19. The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Detwiler, J. A.; Finnerty, P.; Kröninger, K.; Lenz, D.; Liu, J.; Marino, M. G.; Martin, R.; Nguyen, K. D.; Pandola, L.; Schubert, A. G.; Volynets, O.; Zavarise, P.

    2012-07-01

    The Gerda and Majorana experiments will search for neutrinoless double-beta decay of 76Ge using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both Gerda and Majorana.

  20. Sensitivity of the LUX detector to the possible neutrinoless double beta decay of 134Xe

    NASA Astrophysics Data System (ADS)

    Pease, Evan; The LUX Collaboration Collaboration

    2017-01-01

    The Large Underground Xenon (LUX) detector is a 370-kg liquid xenon (LXe) time-projection chamber designed primarily for the direct detection of weakly-interacting massive particles (WIMPs), a leading dark matter candidate. LUX operates on the 4850-foot level of the Sanford Underground Research Facility in Lead, SD. The unenriched xenon of LUX contains the natural 10.4% abundance of the isotope 134Xe, a candidate for the lepton-number-violating process of neutrinoless double beta (0 νββ) decay. If observed, this process would confirm the existence of massive Majorana neutrinos and would be a possible path to the measurement of neutrino mass and other studies of new weak-interaction physics. Given its xenon mass and the length of exposure for the LUX detector, there is an opportunity to improve upon the T1 / 2 > 5 . 8 ×1022 yr sensitivity of the 6.5-kg DAMA experiment (enriched to 17.1%134Xe) from 2002 (Bernabei, et al., Phys. Lett. B 527, 182-186, 2002.). Building upon previous LUX measurements of the energy resolution and signal yields up to 662 keV, this talk will go over the response of the LUX detector at 826 keV, the 134Xe Q-value, and the current status of the LUX 134Xe 0 νββ analysis.

  1. Neutron capture cross-section studies of Tellurium isotopes for neutrinoless double beta decay applications

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, Werner

    2014-09-01

    The CUORE detector at Gran Sasso, aimed at searching for neutrinoless double-beta decay of 130Te, employs an array of TeO2 bolometer modules. To understand and identify the contribution of muon and (α,n) induced neutrons to the CUORE background, fast neutron cature cross-section data of the tellurium isotopes 126Te, 128Te and 130Te have been measured with the activation method at eight different energies in the neutron energy range 0.5-7.5 MeV. Plastic pill boxes of diameter 1.6 cm and width 1 cm containing Te were irradiated with mono-energetic neutrons produced via the 3H(p,n)3He and 2H(d,n)3He reactions. The cross-sections were determined relative to the 197Au(n, γ)198Au and 115In(n,n')115m In standard cross sections. The activities of the products were measured using 60% lead-shielded HPGe detectors at TUNL's low background counting facility. The present results are compared with the evaluated data from TENDL-2012, ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0, as well as with literature data.

  2. GraXe, graphene and xenon for neutrinoless double beta decay searches

    NASA Astrophysics Data System (ADS)

    Gómez-Cadenas, J. J.; Guinea, F.; Fogler, M. M.; Katsnelson, M. I.; Martín-Albo, J.; Monrabal, F.; Muñoz Vidal, J.

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in 136XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the 136XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope 136XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  3. Double-beta decay in pn-QRPA model with isospin and SU(4) symmetry constraints

    NASA Astrophysics Data System (ADS)

    Krmpotić, F.; Sharma, S. Shelly

    1994-05-01

    The transition matrix elements for the 0 + → 0 + double-beta decays are calculated for 48Ca, 76Ge, 82Se, 100Mo, 128Te and 130Te nuclei, using a δ-interaction. As a guide, to fix the particle-particle interaction strengths, we exploit the fact that the missing symmetries of the mean-field approximation are restored in the random phase approximation by the residual interaction. Thus, the T = 1, S = 0 and T = 0, S = 1 coupling strengths have been estimated by invoking the partial restoration of the isospin and Wigner SU(4) symmetries, respectively. When this recipe is strictly applied, the calculation is consistent with the experimental limit for the 2ν lifetime of 48Ca and it also correctly reproduces the 2ν lifetime of 82Se. In this way, however, the two-neutrino matrix elements for the remaining nuclei are either underestimated (for 76Ge and 100Mo) or overestimated (for 128Te and 130Te) approximately by a factor of 3. With a comparatively small variation (< 10%) of the spin-triplet parameter, near the value suggested by the SU(4) symmetry, it is possible to reproduce the measured T 2ν{1}/{2} all the cases. The upper limit for the effective neutrino mass, as obtained from the theoretical estimates of 0ν matrix elements, is < m> ˜- 1 eV. The dependence of the nuclear matrix elements on the size of the configuration space has been also analyzed.

  4. Precise Branching Ratios to Unbound 12C States from 12N and 12B (beta)-Decays

    SciTech Connect

    Hyldegaard, S; Forssen, C; Alcorta, M; Barker, F C; Bastin, B; Borge, M G; Boutami, R; Brandenburg, S; Buscher, J; Dendooven, P; Diget, C A; Van Duppen, P; Eronen, T; Fox, S; Fulton, B R; Fynbo, H U; Huikari, J; Huyse, M; Jeppesen, H B; Jokinen, A; Jonson, B; Jungmann, K; Kankainen, A; Kirsebom, O; Madurga, M; Moore, I; Navratil, P; Nilsson, T; Nyman, G; Onderwater, G G; Penttila, H; Perajarvi, K; Raabe, R; Riisager, K; Rinta-Antila, S; Rogachevskiy, A; Saastamoinen, A; Sohani, M; Tengblad, O; Traykov, E; Vary, J P; Wang, Y; Wilhelmsen, K; Wilschut, H W; Aysto, J

    2008-08-20

    Two complementary experimental techniques have been used to extract precise branching ratios to unbound states in {sup 12}C from {sup 12}N and {sup 12}B {beta}-decays. In the first the three {alpha}-particles emitted after {beta}-decay are measured in coincidence in separate detectors, while in the second method {sup 12}N and {sup 12}B are implanted in a detector and the summed energy of the three {alpha}-particles is measured directly. For the narrow states at 7.654 MeV (0{sup +}) and 12.71 MeV (1{sup +}) the resulting branching ratios are both smaller than previous measurements by a factor of {approx_equal} 2. The experimental results are compared to no-core shell model calculations with realistic interactions from chiral perturbation theory, and inclusion of three-nucleon forces is found to give improved agreement.

  5. a Measurement of the Beta Decay Asymmetry of Neon -19 as a Test of the Standard Model

    NASA Astrophysics Data System (ADS)

    Jones, Gordon Lyman

    We have performed an accurate measurement of the parity-violating beta asymmetry of ^{19 }Ne decay. This asymmetry can be calculated in the standard electro-weak model using the measured ft value for ^{19}Ne and a value of G_{V}V_{ud }, where G_{V} is the Fermi coupling constant and V_{ud } is the u-d element of the Cabibbo-Kobayashi -Maskawa mass mixing matrix. The asymmetry is particularly sensitive to the existence of right-handed weak currents. In addition, if we assume that right-handed currents do not exist, the ^{19}Ne asymmetry and ft value provide an independent measurement of G _{V}V_{ud}.. The zero energy intercept of the asymmetry was measured to be A_0=-{0.0360} _sp{-0.0006}{+0.0008}+/-0.0003. The errors are systematic and statistical, respectively. The measured value is in good agreement with the value predicted by the standard model together with the ft values for ^{19}Ne decay and the 0^+ to 0^+ decays (A_0=-{0.0361}+/-0.0007). However, the value of V_{ud } derived from the measured asymmetry, the ^{19}Ne ft value, and mu decay violates unitarity by 1.5 sigma.. The slope of the asymmetry as a function of beta energy was measured to be {dAover dE }=(-{4.2}+/-0.7+/-0.8) times 10^{-3}/MeV. The standard model prediction for the slope is -3.5(1) times 10^{-3}/MeV. The slope is sensitive to second class currents which are not present in the standard model. The implied value of the second class form factor, d^ {II} is -60 +/- 54 +/- 60 which is consistent with the standard model value of 0. The beta asymmetry was measured from the difference in the beta emission rate parallel to and anti-parallel to the polarization of the decaying ^{19 }Ne. Polarized ^{19} Ne atoms were trapped in a thin walled cell at the center of a solenoidal magnetic field. Positrons from ^{19}Ne beta decay spiraled along the magnetic field lines and were detected in Si(Li) detectors at either end of the solenoid. The asymmetry was determined from the ratio of the rates in these two

  6. Double-beta decay investigation with highly pure enriched [Formula: see text]Se for the LUCIFER experiment.

    PubMed

    Beeman, J W; Bellini, F; Benetti, P; Cardani, L; Casali, N; Chiesa, D; Clemenza, M; Dafinei, I; Domizio, S Di; Ferroni, F; Gironi, L; Giuliani, A; Gotti, C; Laubenstein, M; Maino, M; Nagorny, S; Nisi, S; Nones, C; Orio, F; Pagnanini, L; Pattavina, L; Pessina, G; Piperno, G; Pirro, S; Previtali, E; Rusconi, C; Schäffner, K; Tomei, C; Vignati, M

    The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of [Formula: see text]Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched [Formula: see text]Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched [Formula: see text]Se metal, measured with a high-purity germanium detector at the Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of [Formula: see text]Th, [Formula: see text]U and [Formula: see text]U are respectively: [Formula: see text]61, [Formula: see text]110 and [Formula: see text]74 [Formula: see text]Bq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the [Formula: see text]Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of [Formula: see text]Se to 0[Formula: see text], 2[Formula: see text] and 2[Formula: see text] excited states of [Formula: see text]Kr of 3.4[Formula: see text]10[Formula: see text], 1.3[Formula: see text]10[Formula: see text] and 1.0[Formula: see text]10[Formula: see text] y, respectively, with a 90 % C.L.

  7. Dilepton bounds on left-right symmetry at the LHC run II and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner

    2016-11-01

    In the light of the new 13 TeV dilepton data set with 3.2 fb-1 integrated luminosity from the ATLAS Collaboration, we derive limits on the Z‧ mass in the context of left-right symmetric models and exploit the complementarity with dijet and lljj data, as well as neutrinoless double beta decay. We keep the ratio of the left- and right-handed gauge coupling free in order to take into account different patterns of left-right symmetry breaking. By combining the dielectron and dimuon data we can exclude Z‧ masses below 3 TeV for gR =gL, and for gR ∼ 1 we rule out masses up to ∼ 4 TeV. Those comprise the strongest direct bounds on the Z‧ mass from left-right models up to date. We show that in the usual plane of right-handed neutrino and charged gauge boson mass, dilepton data can probe a region of parameter space inaccessible to neutrinoless double beta decay and lljj studies. Lastly, through the mass relation between WR and Z‧ we present an indirect bound on the lifetime of neutrinoless double beta decay using dilepton data. Our results prove that the often ignored dilepton data in the context of left-right models actually provide important complementary limits.

  8. Quest for Neutrinoless Double Beta Decay of 130Te with the CUORE Detector

    NASA Astrophysics Data System (ADS)

    O'Donnell, Thomas; Cuore Collaboration

    2013-10-01

    The CUORE experiment, in the advanced stages of construction at Laboratori Nazionali del Gran Sasso (LNGS), aims to search for 0 νββ decay of 130Te with unprecedented sensitivity: T1/ 2 0 ν = 9 . 5 ×1025 yr at 90 % C.L. The detector will consist of 19 towers, each comprising 13 planes of four, 125 cm3, cubic TeO2 crystals. This amounts to a total mass of 206 kg of 130Te. When cooled to an operating temperature of ~ 10 mK such crystals function as highly sensitive bolometers with energy resolution better than 5 keV demonstrated near the 0 νββ decay Q-value (2527.518 +/- 0.013 keV). In this talk I will describe the expected reach of CUORE considering the rigorous cleaning, materials handling, and ultra-pure assembly techniques developed by the collaboration. I will also report on the status of CUORE-0, a single CUORE-like tower where many of these background mitigation techniques were deployed during assembly. CUORE-0 represents a new 0 νββ experiment which is already operating at LNGS and will surpass the sensitivity of the previous generation experiment (Cuoricino) before CUORE begins operating.

  9. I. Atomic Effects in Tritium Beta-Decay II. Muon to Electron Conversion in Atoms.

    NASA Astrophysics Data System (ADS)

    Wampler, Kevin Dean

    I. The final-state, atomic effects in the low energy end of the tritium beta decay spectrum are studied in detail. I treat the instantaneous, two-electron repulsion in the final state, effectively to all orders in perturbation theory, by solving the eigenvalue problem with a discretized and truncated form of the Hamiltonian. I find that these effects fail to explain the distortion in the spectrum observed by Simpson (Phys. Rev. Lett. 54, 649 (1985)). Simpson attributed this distortion to the admixture of a heavy mass antineutrino in the outgoing electron antineutrino state. In fact, the final-state Coulomb effects enhance the distortion. This calculation clears up some of the ambiguities of other theoretical analyses based on considerations of screening functions and perturbation theory. II. I present a phenomenological study of separate lepton number violating muon to electron conversion in atoms. Previous work on this process has concentrated on elastic transitions where the nucleus remains in the ground state. I present an analysis of the branching ratios of inelastic to elastic transitions. This analysis uses realistic muon wavefunctions and electron plane waves. A multipole analysis is used for the nuclear matrix elements. The particular case of ^{32}S is studied in detail. It is found that, if anomalous muon capture occurs, the coherent (ground-state to ground-state) transition dominates the rate, if this transition is allowed by the coupling constants. However, incoherent (excited state) transitions could be significant in some cases, particularly if coupling to the nuclear pseudo-scalar current occurs, and would permit one to obtain stringent limits on the corresponding couplings that mediate muon number violation.

  10. A binding energy study of the Atomic Mass Evaluation 2012 and an updated beta-decay study of neutron-rich 74Cu

    NASA Astrophysics Data System (ADS)

    Tracy, James L., Jr.

    multiple newly-placed excited states up to 6.8 MeV. The progression of simulated Total Absorption gamma-ray Spectroscopy (TAGS) based on known levels and beta feeding values from previous measurements to this evaluation are presented and demonstrate the need for a TAGS measurement of this isotope to gain a more complete understanding of its decay scheme.

  11. Corrections for Exchange and Screening Effects in Low-energy Beta Decays

    SciTech Connect

    Mougeot, X. Bé, M.-M.; Bisch, C.; Loidl, M.

    2014-06-15

    The beta spectra of {sup 241}Pu and {sup 63}Ni have been recently measured using metallic magnetic calorimeters. This powerful experimental technique allows theoretical beta spectra calculations to be tested at low energy with an accuracy never before achievable. Their comparison with classical beta calculations exhibits a significant deviation below 4 keV for {sup 241}Pu and 8 keV for {sup 63}Ni. The atomic exchange effect explains the main part of this deviation in the {sup 63}Ni beta spectrum. This effect has a significant contribution, equivalent to the magnitude of the screening, in the {sup 241}Pu beta spectrum.

  12. Direct measurement of the total decay width of the top quark.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-11-15

    We present a measurement of the total decay width of the top quark using events with top-antitop quark pair candidates reconstructed in the final state with one charged lepton and four or more hadronic jets. We use the full Tevatron run II data set of sqrt[s]=1.96  TeV proton-antiproton collisions recorded by the CDF II detector. The top quark mass and the mass of the hadronically decaying W boson are reconstructed for each event and compared with distributions derived from simulated signal and background samples to extract the top quark width (Γtop) and the energy scale of the calorimeter jets with in situ calibration. For a top quark mass Mtop=172.5  GeV/c2, we find 1.10<Γtop<4.05  GeV at 68% confidence level, which is in agreement with the standard model expectation of 1.3 GeV and is the most precise direct measurement of the top quark width to date.

  13. The Majorana Demonstrator: Progress towards showing the feasibility of a 76Ge neutrinoless double-beta decay experiment

    SciTech Connect

    Finnerty, P.; Aguayo, Estanislao; Amman, M.; Avignone, Frank T.; Barabash, Alexander S.; Barton, P. J.; Beene, Jim; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Collar, J. I.; Combs, Dustin C.; Cooper, R. J.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S. R.; Esterline, James H.; Fast, James E.; Fields, N.; Fraenkle, Florian; Galindo-Uribarri, A.; Gehman, Victor M.; Giovanetti, G. K.; Green, M.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, Reyco; Hoppe, Eric W.; Horton, Mark; Howard, Stanley; Howe, M. A.; Johnson, R. A.; Keeter, K.; Kidd, M. F.; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; Looker, Q.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Merriman, Jason H.; Miller, M. L.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; Overman, Nicole R.; Perumpilly, Gopakumar; Phillips, David; Poon, Alan; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Steele, David; Strain, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vetter, Kai; Vorren, Kris R.; Wilkerson, J. F.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-03-24

    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0*) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a lowbackground environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 counts tonne -1 year-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0; and performing a direct search for lightWIMPs (3-10 GeV/c2).

  14. TRINAT apparatus for measurements of correlations from the beta decay of magneto-optically trapped polarized alkali atoms

    NASA Astrophysics Data System (ADS)

    Gorelov, Alexandre; Behr, J. A.; Kurchaninov, L.; Olchanski, K.; Smale, S.; Behling, S.; Melconian, D.; Fenker, B.; Mehlman, M.; Shilding, P. D.; Anholm, M.; Ashery, D.; Gwinner, G.; Trinat Collaboration

    2013-10-01

    Measurements of correlations from beta decay of highly polarized atoms from MOT requires a fast transition between trapping and polarization/measurement cycles to reduce an unwanted expansion of decaying atoms. To achieve this, we have developed an apparatus employing AC MOT, which required placing high-current and low-inductance coils of magnetic quadrupole inside the stainless steel vacuum vessel and allowed us to reduce a time gap between trapping and measurement cycles (the quadrupole magnetic field in the trap region has to become less than 50 mG) to less than 100 μs. The nuclear detection system consists of an electrostatic spectrometer of recoiling ions and shake-off electrons with MCP based detectors in back-to-back geometry as well as two scintillator based β - telescopes, normal to the MCP-MCP axis. This system allowed us to successfully measure the beta asymmetry in the β+ decay of polarized 37K atoms with significantly reduced backgrounds. Time-varying magnetic field from the AC MOT and stationary guiding electric field allowed us to probe the energy distribution of the shakeoff electrons in the range 5 -30 eV. NSERC, NRC through TRIUMF, DOE ER40773 and ER41747, State of Texas, Israel Science Foundation.

  15. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    SciTech Connect

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro E-mail: saito@stelab.nagoya-u.ac.jp

    2014-10-10

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  16. The {sup 150}Nd({sup 3}He,t) and {sup 150}Sm(t,{sup 3}He) reactions with applications to {beta}{beta} decay of {sup 150}Nd

    SciTech Connect

    Guess, C. J.; Brown, B. A.; Deaven, J. M.; Hitt, G. W.; Meharchand, R.; Zegers, R. G. T.; Adachi, T.; Fujita, H.; Hatanaka, K.; Hirota, K.; Ishikawa, D.; Matsubara, H.; Okamura, H.; Ong, H. J.; Suzuki, T.; Tamii, A.; Yosoi, M.; Zenihiro, J.; Akimune, H.; Algora, A.

    2011-06-15

    The {sup 150}Nd({sup 3}He,t) reaction at 140 MeV/u and {sup 150}Sm(t,{sup 3}He) reaction at 115 MeV/u were measured, populating excited states in {sup 150}Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) {beta}{beta} decay of {sup 150}Nd to {sup 150}Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of the quasiparticle random-phase approximation, which is one of the main methods employed for estimating the half-life of the neutrinoless {beta}{beta} decay (0{nu}{beta}{beta}) of {sup 150}Nd. The present results thus provide useful information on the neutrino responses for evaluating the 0{nu}{beta}{beta} and 2{nu}{beta}{beta} matrix elements. The 2{nu}{beta}{beta} matrix element calculated from the Gamow-Teller transitions through the lowest 1{sup +} state in the intermediate nucleus is maximally about half that deduced from the half-life measured in 2{nu}{beta}{beta} direct counting experiments, and at least several transitions through 1{sup +} intermediate states in {sup 150}Pm are required to explain the 2{nu}{beta}{beta} half-life. Because Gamow-Teller transitions in the {sup 150}Sm(t,{sup 3}He) experiment are strongly Pauli blocked, the extraction of Gamow-Teller strengths was complicated by the excitation of the 2({h_bar}/2{pi}){omega}, {Delta}L=0, {Delta}S=1 isovector spin-flip giant monopole resonance (IVSGMR). However, the near absence of Gamow-Teller transition strength made it possible to cleanly identify this resonance, and the strength observed is consistent with the full exhaustion of the non-energy-weighted sum rule for the IVSGMR.

  17. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments Database

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  18. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    SciTech Connect

    Park, HyangKyu

    2015-08-17

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of {sup 100}Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders.

  19. Electron-capture branch of {sup 100}Tc and tests of nuclear wave functions for double-{beta} decays.

    SciTech Connect

    Sjue, S. K. L.; Melconian, D.; Garcia, A.; Ahmad, I.; Algora, A.; Aysto, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Hoedl, S.; Kankainen, A.; Kessler, T.; Moore, I. D.; Naabe, F.; Penttila, H.; Rahaman, S.; Saastamoinen, A.; Swanson, H. E.; Weber, C.; Triambak, S.; Deryckx, K.; Physics; Univ. of Washington; Texas A&M Univ.; Univ. of Valencia; Hungarian Academy of Sciences; Univ. of Jyvaskyla; Univ. of Michigan

    2008-12-30

    We present a measurement of the electron-capture branch of {sup 100}Tc. Our value, B(EC) = (2.6 {+-} 0.4) x 10{sup -5}, implies that the {sup 100}Mo neutrino absorption cross section to the ground state of {sup 100}Tc is roughly 50% larger than previously thought. Disagreement between the experimental value and QRPA calculations relevant to double-{beta} decay matrix elements persists. We find agreement with previous measurements of the 539.5- and 590.8-keV {gamma}-ray intensities.

  20. Comparative tests of isospin-symmetry-breaking corrections to superallowed 0{sup +}{yields}0{sup +} nuclear {beta} decay

    SciTech Connect

    Towner, I. S.; Hardy, J. C.

    2010-12-15

    We present a test with which to evaluate the calculated isospin-symmetry-breaking corrections to superallowed 0{sup +}{yields}0{sup +} nuclear {beta} decay. The test is based on the corrected experimental Ft values being required to satisfy conservation of the vector current (CVC). When applied to six sets of published calculations, the test demonstrates quantitatively that only one set, the one based on the shell model with Saxon-Woods radial wave functions, provides satisfactory agreement with CVC. This test can easily be applied to any sets of calculated correction terms that are produced in future.

  1. MOON for spectroscopic studies of double beta decays and the present status of the MOON-1 prototype detector

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Ejiri, H.; Fushimi, K.; Ichihara, K.; Matsuoka, K.; Nomachi, M.; Hazama, R.; Umehara, S.; Yoshida, S.; Ogama, T.; Sakiuchi, T.; Hai, V. H.; Sugaya, Y.; Moon Collaboration

    2006-05-01

    The MOON (Molybdenum Observatory Of Neutrinos) project, as an extension of ELEGANT V, aims at spectroscopic studies of double beta decays from 100Mo with a sensitivity of the Majorana neutrino mass around 30 meV. Measurements with good energy and position resolutions enable one to select true signals and to reject background ones. A prototype MOON detector (MOON Phase-1A) with 142 g 100Mo was built and is running at the Oto underground laboratory. The present report describes briefly the outline of the MOON project and the present status of MOON-1.

  2. Measurement of time-dependent CP asymmetries and constraints on sin(2beta+gamma) with partial reconstruction of B0-->D*-/+pi+/- decays.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Diberder, F Le; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; SafaiTehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-06-25

    We present a measurement of time-dependent CP-violating asymmetries in decays of neutral B mesons to the final states D(*-/+)pi(+/-), using approximately 82x10(6) BBmacr; events recorded by the BABAR experiment at the PEP-II e(+)e(-) storage ring. Events containing these decays are selected with a partial reconstruction technique, in which only the high-momentum pi(+/-) from the B decay and the low-momentum pi(-/+) from the D(*-/+) decay are used. We measure the amplitude of the asymmetry to be -0.063+/-0.024(stat)+/-0.014(syst) and compute bounds on |sin((2beta+gamma)|.

  3. Measurements of sin2{beta} at BABAR with charmonium and penguin decays

    SciTech Connect

    George, Katherine

    2006-07-11

    This article summarises measurements of time-dependent CP asymmetries in decays of neutral B mesons to charmonium, open-charm and gluonic penguin-dominated charmless final states. Unless otherwise stated, these measurements are based on a sample of approximately 230 million {upsilon}(4S){yields} BB(bar sign) decays collected by the BABAR detector at the PEP-II asymmetric-energy B -factory.

  4. Measurements of sin2beta at BaBar with Charmonium and Penguin Decays

    SciTech Connect

    George, Katherine A.; /Liverpool U.

    2005-12-14

    This article summarizes measurements of time-dependent CP asymmetries in decays of neutral B mesons to charmonium, open-charm and gluonic penguin-dominated charmless final states. Unless otherwise stated, these measurements are based on a sample of approximately 230 million {Upsilon}(4S) {yields} B{bar B} decays collected by the BABAR detector at the PEP-II asymmetric-energy B-factory.

  5. ({sup 3}He,t) reaction on the double {beta} decay nucleus {sup 48}Ca and the importance of nuclear matrix elements

    SciTech Connect

    Grewe, E.-W.; Frekers, D.; Rakers, S.; Baeumer, C.; Dohmann, H.; Thies, J.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Botha, N. T.; Fujita, H.; Hatanaka, K.; Nakanishi, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Negret, A.; Popescu, L.; Neveling, R.

    2007-11-15

    High-resolution ({sup 3}He,t) measurements on the double {beta}-decay ({beta}{beta}) nucleus {sup 48}Ca have been performed at RCNP (Osaka, Japan) to determine Gamow-Teller (GT{sup -}) transitions to the nucleus {sup 48}Sc, which represents the intermediate nucleus in the second-order perturbative description of the {beta}{beta} decay. At a bombarding energy of E{sub {sup 3}He}=420 MeV an excitation energy resolution of 40 keV was achieved. The measurements were performed at two angle positions of the Grand Raiden Spectrometer (GRS): 0 deg. and 2.5 deg. The results of both settings were combined to achieve angular distributions, by which the character of single transitions could be determined. To characterize the different multipoles, theoretical angular distributions for states with J{sup {pi}}=1{sup +},2{sup +},2{sup -}, and 3{sup +} were calculated using the distorted-wave Born approximation (DWBA) Code DW81. The GT{sup -} strength was extracted up to E{sub x}=7 MeV and combined with corresponding GT{sup +} strength deduced from the {sup 48}Ti(d,{sup 2}He){sup 48}Sc data to calculate the low-energy part of the {beta}{beta}-decay matrix element for the {sup 48}Ca 2{nu}{beta}{beta} decay. We show that after applying trivial momentum corrections to the ({sup 3}He,t) spectrum, the two reaction probes (p,n) and ({sup 3}He,t) reveal a spectral response to an impressively high degree of similarity in the region of low momentum transfer.

  6. Neutron-induced Backgrounds in 134Xe for Large-Scale Neutrinoless Double-Beta Decay Experiments

    NASA Astrophysics Data System (ADS)

    Moriguchi, Nina; Kidd, Mary; Tornow, Werner

    2016-09-01

    136Xe is used in large neutrinoless double-beta (0 νββ) decay experiments, such as KamLAND- Zen and EXO 200. Though highly purified, 136Xe still contains a significant amount of 134Xe. Recently, a new nuclear energy level was found in 134Xe. If 134Xe decays from this proposed excited state, it will emit a 2485.7 keV gamma ray. Because this energy lies near the region of interest of 136Xe νββ decay experiments (Q value 2457.8 keV), it could make a significant contribution to the background. A purified gaseous sample of 134Xe will be irradiated with neutrons of an incident energy of 4.0 MeV at Triangle Universities Nuclear Laboratory and monitored with high-purity germanium detectors. The spectra obtained from these detectors will be analyzed for the presence of the 2581 keV gamma ray. We will report on the status of this experiment. Future plans include expanding this measurement to higher initial neutron energies. Tennesse Tech University CISE Grant program.

  7. Systematics of Evaluated Half-lives of Double-beta Decay

    SciTech Connect

    Pritychenko, B.

    2014-06-15

    A new evaluation of 2β-decay half lives and their systematics is presented. These data extend the previous evaluation and include the analysis of all recent measurements. The nuclear matrix elements for 2β-decay transitions in 12 nuclei have been extracted. The recommended values are compared with the large-scale shell-model, QRPA calculations, and experimental data. A T{sub 1/2}{sup 2ν}∼1/E{sup 8} systematic trend has been observed for recommended {sup 128,130}Te values. This trend indicates similarities for nuclear matrix elements in Te nuclei and was predicted for 2β(2ν)-decay mode. The complete list of results is available online at (http://www.nndc.bnl.gov/bbdecay/)

  8. Precision measurement of the radiative beta decay of the free neutron

    NASA Astrophysics Data System (ADS)

    Gentile, Thomas; RDK Collaboration, II

    2017-01-01

    A continuous spectrum of photons is emitted in the decay of the free neutron. We present the results of the RDK II experiment, in which radiative photons were detected in coincidence with the electrons and protons from neutron decay. The experiment was performed on the NG-6 fundamental physics neutron beam line at the National Institute of Standards and Technology Center for Neutron Research using two different photon detector arrays. An annular array of bismuth germanium oxide scintillators detected photons with energies between 14 keV and 782 keV and an array of large area avalanche photodiodes directly detected photons with energies between 0.4 keV and 14 keV . This experiment represents the first precision test of the shape of the photon energy spectrum from neutron radiative decay and a substantially improved determination of the branching ratio over a broad range of photon energies.

  9. Measurement of the CP-Violating Phase beta_s in B0s -> J/Psi Phi Decays with the CDF II Detector

    SciTech Connect

    Aaltonen, T.; et al.

    2012-04-01

    We present a measurement of the \\CP-violating parameter \\betas using approximately 6500 $\\BsJpsiPhi$ decays reconstructed with the CDF\\,II detector in a sample of $p\\bar p$ collisions at $\\sqrt{s}=1.96$ TeV corresponding to 5.2 fb$^{-1}$ integrated luminosity produced by the Tevatron Collider at Fermilab. We find the \\CP-violating phase to be within the range $\\betas \\in [0.02, 0.52] \\cup [1.08, 1.55]$ at 68% confidence level where the coverage property of the quoted interval is guaranteed using a frequentist statistical analysis. This result is in agreement with the standard model expectation at the level of about one Gaussian standard deviation. We consider the inclusion of a potential $S$-wave contribution to the $\\Bs\\to J/\\psi K^+K^-$ final state which is found to be negligible over the mass interval $1.009 < m(K^+K^-)<1.028 \\gevcc$. Assuming the standard model prediction for the \\CP-violating phase \\betas, we find the \\Bs decay width difference to be $\\deltaG = 0.075 \\pm 0.035\\,\\textrm{(stat)} \\pm 0.006\\,\\textrm{(syst)} \\ps$. We also present the most precise measurements of the \\Bs mean lifetime $\\tau(\\Bs) = 1.529 \\pm 0.025\\,\\textrm{(stat)} \\pm 0.012\\,\\textrm{(syst)}$ ps, the polarization fractions $|A_0(0)|^2 = 0.524 \\pm 0.013\\,\\textrm{(stat)} \\pm 0.015\\,\\textrm{(syst)}$ and $|A_{\\parallel}(0)|^2 = 0.231 \\pm 0.014\\,\\textrm{(stat)} \\pm 0.015\\,\\textrm{(syst)}$, as well as the strong phase $\\delta_{\\perp}= 2.95 \\pm 0.64\\,\\textrm{(stat)} \\pm 0.07\\,\\textrm{(syst)} \\textrm{rad}$. In addition, we report an alternative Bayesian analysis that gives results consistent with the frequentist approach.

  10. Measurement of the two-neutrino double-beta decay half-life of ^{130}Te with the CUORE-0 experiment

    NASA Astrophysics Data System (ADS)

    Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Feintzeig, J.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Napolitano, T.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.

    2017-01-01

    We report on the measurement of the two-neutrino double-beta decay half-life of ^{130}Te with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO_2, the half-life is determined to be T_{1/2}^{2ν } = [8.2 ± 0.2 (stat.) ± 0.6 (syst.)] × 10^{20} year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the ^{130}Te neutrinoless double-beta decay region of interest.

  11. New branching ratio measurement of the pion beta - decay. pi. /sup +/. -->. pi. /sup 0/ + e/sup +/ + nu/sub e/

    SciTech Connect

    Gaille, F.C.

    1983-01-01

    A new measurement of the branching ratio R of the pion beta-decay mode ..pi../sup +/..--> pi../sup 0/ + e/sup +/ + nu/sub e/ was made at the High Energy Pion channel P/sup 3/ of the LAMPF accelerator at Los Alamos. The measurement used a completely new ''decay-in-flight technique'' which differs from all the previous experiments based on a ''decay-at-rest technique''. The two gamma rays from the decay of the neutral pion ..pi../sup 0/ were detected in coincidence using a modified version of the LAMPF ..pi../sup 0/ spectrometer. The number of analyzed pion beta-decay events (after background subtraction) was 1127.14 +/- 33.92. Great care was taken to make an accurate measurement of the absolute number of charged pions in the beam and yielded (2.1457 +/- 0.0223) X 10/sup 14/. A Monte Carlo program was then used to simulate the pion beta-decay process and the response of the apparatus to this decay. The resulting value of the pion beta-decay branching ratio R = GAMMA(..pi../sup +/..--> pi../sup 0/ + e/sup +/ + nu/sub e/)/GAMMA(..pi../sup +/..-->..all) is R/sub EXP/ = (1.021 +/- 0.039) X 10/sup -8/, whereas the current CVC theory predicts R/sub THE/ = (1.047 +/- 0.008) X 10/sup -8/. Within the uncertainties, the experimental and theoretical values agree. Thus, the newly measured value of R is consistent with the theory and CVC hypothesis.

  12. Neutron total scattering study of the delta and beta phases of Bi2O3.

    PubMed

    Hull, Stephen; Norberg, Stefan T; Tucker, Matthew G; Eriksson, Sten G; Mohn, Chris E; Stølen, Svein

    2009-10-28

    The highly disordered structure of the delta phase of Bi2O3, which possesses the highest known oxide-ion conductivity, has been studied using neutron powder diffraction. A detailed analysis of data collected at 1033(3) K using Rietveld refinement indicates that the time-averaged structure of delta-Bi2O3 can be described using the accepted model of a disordered, anion-deficient fluorite structure in space group Fm3m. However, reverse Monte Carlo modelling of the total (Bragg plus diffuse) scattering demonstrates that the local anion environment around the Bi3+ resembles the distorted square pyramidal arrangement found within the stable alpha and metastable beta phases at ambient temperature, which is characteristic of the cation's 6s2 lone-pair configuration. Similarities between the structures of the highly disordered delta phase and the ambient temperature metastable beta phase are used to support this assignment and assess the validity of previous structural models based on short-range ordering of vacancies within the cubic lattice of delta-Bi2O3.

  13. Methods for measuring the surface tritium inside TFTR using beta decay

    SciTech Connect

    Zweben, S.J.; Johnson, D.; Hill, K. . Plasma Physics Lab.)

    1994-01-01

    Three potential methods for measuring the surface tritium content of the TFTR vacuum vessel are described, each based on a different technique for measuring the in situ beta emission from tritium. These methods should be able to provide both a local and a global assessment of the tritium content within the top [approx] 1[mu]m of the inner wall surface.

  14. The nature of massive neutrinos and multiple mechanisms in neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Meroni, Aurora

    2015-11-01

    Determining the nature -Dirac or Majorana- of massive neutrinos is one of the most pressing and challenging problems in the field of neutrino physics. We discuss how one can possibly extract information on the couplings, if any, which might be involved in (ββ)_{0ν}-decay using a multi-isotope approach. We investigate as well the potential of combining data on the half-lives of nuclides with largely different Nuclear Matrix Elements such as 136Xe and of one or more of the four nuclei 76Ge, 82Se, 100Mo and 130Te, for discriminating between different pairs of noninterfering or interfering mechanisms of (ββ)_{0ν}-decay. The case studies do not extend to the evaluation of the theoretical uncertainties of the results, due to the nuclear matrix elements calculations and other causes.

  15. Influence of the tritium beta(-) decay on low-temperature thermonuclear burn-up in deuterium-tritium mixtures

    PubMed

    Frolov

    2000-09-01

    Low-temperature (Tbeta(-) decay significantly complicates thermonuclear burn-up in deuterium-tritium mixtures.

  16. New limits on the neutrino mass, lepton conservation, and no-neutrino double beta decay of /sup 76/Ge

    SciTech Connect

    Avignone, F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.

    1983-03-07

    A continuing search for the no-neutrino mode of the double beta decay of /sup 76/Ge has resulted in a new lower limit T/sub 1/2//sup 0nu/ > or =1.7 x 10/sup 22/ yr. This value corresponds to a 90% confidence level determined with a maximum-likelihood analysis of the energy interval 2041 +- 2 keV. Combined with recent shell-model calculations, the data imply m/sub ..nu../< or =10 eV and a limit on lepton nonconservation Vertical BaretaVertical Bar< or =2.4 x 10/sup -5/. In the context of the shell model, the data imply that the electron neutrino is not a Majorana mass eigenstate.

  17. The MAJORANA DEMONSTRATOR: An R&D project towards a tonne-scale germanium neutrinoless double-beta decay search

    SciTech Connect

    Aalseth, Craig E; Amman, M; Amsbaugh, John F; Avignone, F. T.; Back, Henning O; Barabash, A; Barbeau, Phil; Beene, Jim; Bergevin, M; Bertrand, F; Boswell, M; Brudanin, V; Bugg, William; Burritt, Tom H; Chan, Yuen-Dat; Collar, J I; Cooper, R J; Creswick, R; Detwiler, Jason A; Doe, P J; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H; Elliott, Steven R; Ely, James H; Esterline, James H; Farach, H A; Fast, James E; Fields, N; Finnerty, P; Fujikawa, Brian; Fuller, Erin S; Gehman, Victor; Giovanetti, G K; Guiseppe, Vincente; Gusey, K; Hallin, A L; Hazama, R; Henning, Reyco; Hime, Andrew; Hoppe, Eric W; Hossbach, Todd W; Howe, M A; Johnson, R A; Keeter, K; Keillor, Martin E; Keller, C; Kephart, Jeremy D; Kidd, Mary; Kochetov, Oleg; Konovalov, S; Kouzes, Richard T; Lesko, Kevin; Leviner, L; Loach, J C; Luke, P; MacMullin, S; Marino, Michael G; Mei, Dong-Ming; Miley, Harry S; Miller, M; Mizouni, Leila K; Montoya, A; Myers, A W; Nomachi, Masaharu; Odom, Brian; Orrell, John L; Phillips, D; Poon, Alan; Prior, Gersende; Qian, J; Radford, D C; Rielage, Keith; Robertson, R G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P; Schubert, Alexis G; Shima, T; Shirchenko, M; Strain, J; Thomas, K; Thompson, Robert C; Timkin, V; Tornow, W; Van Wechel, T D; Vanyushin, I; Vetter, Kai; Warner, Ray A; Wilkerson, J; Wouters, Jan; Yakushev, E; Young, A; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C L; Zimmerman, S

    2009-12-17

    The MAJORANA collaboration is pursuing the development of the so-called MAJORANA DEMONSTRATOR. The DEMONSTRATOR is intended to perform research and development towards a tonne-scale germanium-based experiment to search for the neutrinoless double-beta decay of 76Ge. The DEMONSTRATOR can also perform a competitive direct dark matter search for light WIMPs in the 1-10GeV/c2 mass range. It will consist of approximately 60 kg. of germanium detectors in an ultra-low background shield located deep underground at the Sanford Underground Laboratory in Lead, SD. The DEMONSTRATOR will also perform background and technology studies, and half of the detector mass will be enriched germanium. This talk will review the motivation, design, technology and status of the Demonstrator.

  18. The MAJORANA DEMONSTRATOR: An R and D project towards a tonne-scale germanium neutrinoless double-beta decay search

    SciTech Connect

    Aalseth, C. E.; Ely, J.; Fast, J. E.; Fuller, E.; Hoppe, E. W.; Keillor, M.; Kouzes, R. T.; Miley, H. S.; Orrell, J. L.; Thompson, R.; Warner, R.; Amman, M.; Bergevin, M.; Chan, Y.-D.; Detwiler, J. A.; Fujikawa, B.; Loach, J. C.; Luke, P. N.; Poon, A. W. P; Prior, G.

    2009-12-17

    The MAJORANA collaboration is pursuing the development of the so-called MAJORANA DEMONSTRATOR. The DEMONSTRATOR is intended to perform research and development towards a tonne-scale germanium-based experiment to search for the neutrinoless double-beta decay of {sup 76}Ge. The DEMONSTRATOR can also perform a competitive direct dark matter search for light WIMPs in the 1-10 GeV/c{sup 2} mass range. It will consist of approximately 60 kg of germanium detectors in an ultra-low background shield located deep underground at the Sanford Underground Laboratory in Lead, SD. The DEMONSTRATOR will also perform background and technology studies, and half of the detector mass will be enriched germanium. This talk will review the motivation, design, technology and status of the Demonstrator.

  19. Extending two Higgs doublet models for two-loop neutrino mass generation and one-loop neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Gu, Pei-Hong

    2017-02-01

    We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.

  20. Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays

    SciTech Connect

    Acosta, D.; The CDF Collaboration TITLE=Measuremen

    2005-03-13

    Using 180 pb{sup -1} of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters {Lambda} and {lambda}{sub 1} used to relate the B meson semileptonic branching ratio to the CKM matrix element |V{sub cb}|.

  1. BaBar: sin(2beta) with Charmless and Radiative Decays

    SciTech Connect

    Dujmic, Denis; /SLAC

    2006-02-27

    We present new measurements of time-dependent CP-violation parameters in hadronic penguin decays: B{sup 0} {yields} K{sup +}K{sup -}K{sub L}{sup 0}, K{sub S}{sup 0}{pi}{sup 0}{pi}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}, {omega}K{sub L}{sup 0}, and a radiative penguin decay B{sup 0} {yields} K{sub S}{sup 0}{pi}{sup 0}{gamma} in a dataset of around 230 {center_dot} 10{sup 6} B{bar B} pairs collected by the BABAR detector at the asymmetric B Factory at SLAC. These CP asymmetry measurements probe for amplitudes beyond the Standard Model in loop-dominated decays of neutral B mesons. While we find a puzzling deviation of CP-asymmetry parameters from predicted values, a full confirmation still awaits more data.

  2. Recoil effects due to electron shake-off following the beta decay of 6 He

    NASA Astrophysics Data System (ADS)

    Drake, Gordon W. F.; Schulhoff, Eva

    2016-05-01

    There are currently several experiments in progress to search for new physics beyond the Standard Model by high precision studies of angular correlations in the β decay of the helium isotope 6He to form 6Li +e- +νe. After the β decay process, the atomic electrons of 6 Li+ adjust to the sudden change of nuclear charge from 2 to 3. We calculate the probabilities for electron shake-up and shake-off, including recoil effects, by the use of a Stieltjes imaging representation of the final states. A variety of sum rules provides tight consistency checks on the accuracy of the results. Results obtained previously indicate that there is a 7 σ disagreement between theory and experiment for the additional nuclear recoil induced by the emission of atomic shake-off electrons. This disagreement will be further studied, and the results extended to the 1 s 2 p3 P and metastable 1 s 2 s3 S states as initial states of 6 He before β-decay. Research supported by the Natural Sciences and Engineering Research Council of Canada.

  3. Improved limit on the mass of. nu. sub e from the beta decay of molecular tritium

    SciTech Connect

    Bowles, T.J.; Robertson, R.G.H.; Wark, D.L.; Wilkerson, J.F.; Stephenson, G.J.; Friar, J.L. ); Knapp, D.A. )

    1990-01-01

    We report a new upper limit of 13.4 eV (95% confidence level) on the mass of the electron antineutrino from a study of the shape of the beta spectrum of free molecular tritium. This result appears to be inconsistent with a reported value for the mass of 26(5) eV. The electron neutrino is evidently not massive enough to close the universe by itself. 21 refs., 1 fig., 2 tabs.

  4. {beta} decay of {sup 11}Li into {sup 9}Li and a deuteron within a three-body model

    SciTech Connect

    Baye, D.; Tursunov, E. M.; Descouvemont, P.

    2006-12-15

    The {beta}-decay process of the {sup 11}Li halo nucleus into {sup 9}Li and d is studied in a three-body model. The {sup 11}Li nucleus is described as a {sup 9}Li+n+n system in hyperspherical coordinates on a Lagrange mesh. Various {sup 9}Li+d potentials involving a forbidden state, a physical bound state, and a resonance near 0.25 MeV in the s wave are compared. With an added surface absorption, they are compatible with elastic scattering data. The transition probability per time unit is quite sensitive to the location of the resonance. For a fixed resonance location, it does not depend much on the potential choice at variance with the {sup 6}He delayed deuteron decay. The calculated transition probability per time unit is larger than the experimental value but the difference can be explained by a slightly higher resonance location and/or by absorption from the {sup 9}Li+d final channel.

  5. LUMINEU: a search for neutrinoless double beta decay based on ZnMoO4 scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Armengaud, E.; Arnaud, Q.; Augier, C.; Benoît, A.; Benoît, A.; Boiko, L. Bergé S.; Bergmann, T.; Blümer, J.; Broniatowski, A.; Brudanin, V.; Camus, P.; Cazes, A.; Chapellier, M.; Charlieux, F.; Chernyak, D. M.; Coron, N.; Coulter, P.; Danevich, F. A.; de Boissiére, T.; Decourt, R.; De Jesus, M.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Eitel, K.; Enss, C.; Filosofov, D.; Fleischmann, A.; Foerster, N.; Fourches, N.; Gascon, J.; Gastaldo, L.; Gerbier, G.; Giuliani, A.; Gray, D.; Gros, M.; Hehn, L.; Henry, S.; Hervé, S.; Heuermann, G.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kéfélian, C.; Kleifges, M.; Kluck, H.; Kobychev, V. V.; Koskas, F.; Kozlov, V.; Kraus, H.; Kudryavtsev, V. A.; Le Sueur, H.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Menshikov, A.; Nasonov, S. G.; Navick, X.-F.; Nones, C.; Olivieri, E.; Pari, P.; Paul, B.; Penichot, Y.; Pessina, G.; Piro, M. C.; Plantevin, O.; Poda, D. V.; Redon, T.; Robinson, M.; Rodrigues, M.; Rozov, S.; Sanglard, V.; Schmidt, B.; Scorza, S.; Shlegel, V. N.; Siebenborn, B.; Strazzer, O.; Tcherniakhovski, D.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vagneron, L.; Vasiliev, Ya V.; Velazquez, M.; Viraphong, O.; Walker, R. J.; Weber, M.; Yakushev, E.; Zhang, X.; Zhdankov, V. N.

    2016-05-01

    The LUMINEU is designed to investigate the possibility to search for neutrinoless double beta decay in 100 Mo by means of a large array of scintillating bolometers based on ZnMoO4 crystals enriched in 100 Mo. High energy resolution and relatively fast detectors, which are able to measure both the light and the heat generated upon the interaction of a particle in a crystal, are very promising for the recognition and rejection of background events. We present the LUMINEU concepts and the experimental results achieved aboveground and underground with large-mass natural and enriched crystals. The measured energy resolution, the α/β discrimination power and the radioactive internal contamination are all within the specifications for the projected final LUMINEU sensitivity. Simulations and preliminary results confirm that the LUMINEU technology can reach zero background in the region of interest (around 3 MeV) with exposures of the order of hundreds kgxyears, setting the bases for a next generation 0v2β decay experiment capable to explore the inverted hierarchy region of the neutrino mass pattern.

  6. Evaluation of radioactive background rejection in 76Ge neutrino-lessdouble-beta decay experiments using a highly segmented HPGe detector

    SciTech Connect

    Chan, Yuen-Dat; Campbell, D.B.; Vetter, K.; Henning, R.; Lesko, K.; Chan, Y.D.; Poon, A.W.P.; Perry, M.; Hurley, D.; Smith, A.R.

    2007-02-05

    A highly segmented coaxial HPGe detector was operated in a low background counting facility for over 1 year to experimentally evaluate possible segmentation strategies for the proposed Majorana neutrino-less double-beta decay experiment. Segmentation schemes were evaluated on their ability to reject multi-segment events while retaining single-segment events. To quantify a segmentation scheme's acceptance efficiency the percentage of peak area due to single segment events was calculated for peaks located in the energy region 911-2614 keV. Single interaction site events were represented by the double-escape peak from the 2614 keV decay in {sup 208}Tl located at 1592 keV. In spite of its prototypical nature, the detector performed well under realistic operating conditions and required only minimal human interaction. Though the energy resolution for events with interactions in multiple segments was impacted by inter-segment cross-talk, the implementation of a cross-talk correlation matrix restored acceptable resolution. Additionally, simulations utilizing the MaGe simulation package were performed and found to be in good agreement with experimental observations verifying the external nature of the background radiation.

  7. Deformed shell model results for neutrinoless positron double beta decay of nuclei in the A = 60-90 region

    NASA Astrophysics Data System (ADS)

    Sahu, R.; Srivastava, P. C.; Kota, V. K. B.

    2013-09-01

    Nuclear transition matrix elements (NTME) for neutrinoless positron double beta decay (0νβ+β+ and 0νβ+EC) of 64Zn, 74Se, 78Kr and 84Sr nuclei, which are in the A = 60-90 region, are calculated within the framework of the deformed shell model (DSM) based on Hartree-Fock states. For 64Zn, GXPF1A interaction in 1f7/2, 2p3/2, 1f5/2 and 2p1/2 space with 40Ca as the core is employed. Similarly for 74Se, 78Kr and 84Sr nuclei, 56Ni is taken as the inert core employing a modified Kuo interaction in 2p3/2, 1f5/2, 2p1/2 and 1g9/2 space. After ensuring that the DSM gives a good description of the spectroscopic properties of low-lying levels in the four nuclei considered, the NTME are calculated. The half-lives deduced with these NTME, assuming the neutrino mass is 1 eV, are smallest for 78Kr with the half-life for β+EC decay being ˜1027 yr. For all others, the half-lives are in the range of ˜1028-1029 yr.

  8. Production and {beta} Decay of rp-Process Nuclei {sup 96}Cd, {sup 98}In, and {sup 100}Sn

    SciTech Connect

    Bazin, D.; Baumann, T.; Ginter, T.; Hausmann, M.; Minamisono, K.; Pereira, J.; Portillo, M.; Stolz, A.; Montes, F.; Matos, M.; Perdikakis, G.; Schatz, H.; Smith, K.; Becerril, A.; Lorusso, G.; Amthor, A.; Estrade, A.; Gade, A.; Crawford, H.; Mantica, P.

    2008-12-19

    The {beta}-decay properties of the N=Z nuclei {sup 96}Cd, {sup 98}In, and {sup 100}Sn have been studied. These nuclei were produced at the National Superconducting Cyclotron Laboratory by fragmenting a 120 MeV/nucleon {sup 112}Sn primary beam on a Be target. The resulting radioactive beam was filtered in the A1900 and the newly commissioned Radio Frequency Fragment Separator to achieve a purity level suitable for decay studies. The observed production cross sections of these nuclei are lower than predicted by factors of 10-30. The half-life of {sup 96}Cd, which was the last experimentally unknown waiting point half-life of the astrophysical rp process, is 1.03{sub -0.21}{sup +0.24} s. The implications of the experimental T{sub 1/2} value of {sup 96}Cd on the abundances predicted by rp process calculations and the origin of A=96 isobars such as {sup 96}Ru are explored.

  9. Decays of /sup 22/Al and /sup 26/P: discovery of beta-delayed two-proton radioactivity

    SciTech Connect

    Cable, M.D.

    1983-02-01

    A helium-jet system and the /sup 24/Mg(/sup 3/He,p4n)/sup 22/Al and /sup 28/Si(/sup 3/He,p4n)/sup 26/P reactions have been used to discover the only known odd-odd, T/sub Z/ = -2 nuclides, /sup 22/Al(t/sub 1/2/ approx. 70ms) and /sup 26/P(t/sub 1/2/ approx. 20 ms). Observations of beta-delayed protons from each isotope (laboratory energies 7.839 +- 0.015 MeV and 8.149 +- 0.021 MeV for /sup 22/Al and 7.269 +- 0.015 MeV and 6.827 +- 0.050 MeV for /sup 26/P) established the existence of these nuclides and provided a measurement of the mass excesses of the lowest T = 2 states in their beta decay daughters, /sup 22/Mg and /sup 26/Si (13.650 +- 0.015 MeV and 5.936 +- 0.015 MeV, respectively). Measurement of these masses confirmed that these T = 2 states were unbound to two-proton emission as had been predicted theoretically.

  10. Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC

    NASA Astrophysics Data System (ADS)

    Renner, J.; Cervera, A.; Hernando, J. A.; Imzaylov, A.; Monrabal, F.; Muñoz, J.; Nygren, D.; Gomez-Cadenas, J. J.

    2015-12-01

    We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0νββ) decay experiments using a high-pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0νββ decay of 136Xe) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0νββ decay (0Qββ). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign of the curvature can be determined at several points along these tracks, and such information can be used to separate signal (0νββ) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (about 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0νββ experiments, aiming to fully explore the inverse hierarchy of neutrino masses.

  11. 2\\beta + \\gamma from B^0 to D^\\mp K^0 \\pi^\\pm Decays at BaBar: aSimulation Study

    SciTech Connect

    Polci, Francesco; Schune, Marie-Helene; Stocchi, Achille; /Orsay, LAL

    2007-04-16

    The authors present the results of a simulation study to perform the extraction of 2{beta} + {gamma} from B{sup 0} {yields} D{sup {-+}}K{sup 0}{pi}{sup {+-}} decays through a time-dependent Dalitz analysis of BaBar data.

  12. Beta-decay of proton-rich nucleus ^23Al and astrophysical consequences

    NASA Astrophysics Data System (ADS)

    Zhai, Y. J.; Iacob, V. E.; Al-Abdullah, T.; Fu, C.; Hardy, J. C.; Nica, N.; Park, H. I.; Tabacaru, G.; Trache, L.; Tribble, R. E.

    2006-04-01

    We will present the results of a β-decay study that was motivated by a nuclear astrophysics problem. For the first time γ-rays have been observed following the β decay of pure samples of ^23Al. We used the ^1H(^24Mg,2n)^23Al reaction and the MARS recoil separator of Texas A&M University. β and β-γ coincidence measurements were made with a fast tape-transport system and β and γ-ray detectors. The experiment allowed us to measure β branching ratios and deduce logft values for transitions to 14 final states in ^23Mg, including the isobaric analog state, and from them to determine unambigously the spin and parity of ^23Al ground state to be J^π=5/2^+. We will discuss how this excludes the large increase in the radiative proton-capture cross section for the reaction ^22Mg(p,γ)^23Al at astrophysical energies which was implied by claims that the spin and parity is J^π=1/2^+ [1,2], claims that motivated this study in the first place. The reaction is possible candidate to explain why space-based gamma-ray telescopes do not observe γ-rays from the decay of long-lived ^22Na formed in ONe novae explosions [3]: a larger cross section would be required to divert significant flux from the A=22 into the A=23 mass chain. [1] X. Z. Cai et al, Phys. Rev. C 65, 024610 (2002). [2] H.-Y. Zhang et al., Chin. Phys. Lett. 19, 1599 (2002). [3] M. Wiescher et al., Astrophys. J. 343, 352 (1989).

  13. Study of the double beta decays of 96Ru and 104Ru.

    PubMed

    Andreotti, Erica; Hult, Mikael; Marissens, Gerd; de Orduña, Raquel González; Vermaercke, Peter

    2012-09-01

    In this work we present new improved experimental limits for the partial half-lives of the double beta processes of (96)Ru and (104)Ru, obtained by means of a γ-ray spectrometry measurement. A disc of metallic Ru of natural isotopic abundance was sandwiched between two HPGe-detectors in the 225 m deep underground laboratory HADES. After 108 days of measurement, the lower bounds for the partial half-lives were up to 6.9×10(19) yr for (96)Ru and 1.9×10(20) yr for (104)Ru.

  14. Study of excited states of {sup 31}S through beta-decay of {sup 31}Cl for nucleosynthesis in ONe novae

    SciTech Connect

    Saastamoinen, A.; Jokinen, A.; Aeystoe, J.; Trache, L.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Banu, A.; Bentley, M. A.; Davinson, T.; Woods, P. J.

    2011-11-30

    We have produced an intense and pure beam of {sup 31}Cl with the MARS Separator at the Texas A and M University and studied {beta}-decay of {sup 31}Cl by implanting the beam into a novel detector setup, capable of measuring {beta}-delayed protons and {gamma}-rays simultaneously. From our data, we have established decay scheme of {sup 31}Cl, found resonance energies with 1 keV precision, have measured its half-life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.

  15. Search for neutrinoless double-beta decay of Mo 100 with the NEMO-3 detector

    SciTech Connect

    John D. Baker; A. J. Caffrey

    2014-06-01

    We report the results of a search for the neutrinoless double-ß decay (0?ßß ) of Mo 100 , using the NEMO-3 detector to reconstruct the full topology of the final state events. With an exposure of 34.7??kg·y , no evidence for the 0?ßß signal has been found, yielding a limit for the light Majorana neutrino mass mechanism of T 1/2 (0?ßß)>1.1×10 24 years (90% C.L.) once both statistical and systematic uncertainties are taken into account. Depending on the nuclear matrix elements this corresponds to an upper limit on the Majorana effective neutrino mass of ?m ? ?<0.3–0.9??eV (90% C.L.). Constraints on other lepton number violating mechanisms of 0?ßß decays are also given. Searching for high-energy double electron events in all suitable sources of the detector, no event in the energy region [3.2–10] MeV is observed for an exposure of 47??kg·y .

  16. Gamow-Teller strength in the beta decay of mirror nuclides

    NASA Astrophysics Data System (ADS)

    Honkanen, J.; ńystö, J.; Koponen, V.; Taskinen, P.; Eskola, K.; Messelt, S.; Ogawa, K.

    1987-12-01

    Distribution of the Gamow-Teller strength has been studied both experimentally and theoretically in the f7/2 shell mirror nuclides over a wide energy range. Experimental studies were performed using light ion induced reactions and the He-jet transport method or the ion-guide on-line isotope separation, IGISOL. Several transitions were observed to excited states in the decays of 43Ti and 51Fe and some in the decays of 47Cr, 49Mn, 43Co and 55Ni. Theoretical calculations were made by a shell model code using fn7/2+(P3/2, f5/2, P1/2)1 shell space. The β-feeding has been predicted for all transitions up to about 4 MeV excitation in each daughter nucleus. The quenching of the Gamow-Teller strength has been studied by comparing the experimental strength with the calculation. The formation of the giant Gamow-Teller resonance has been studied theoretically as a function of the mass number.

  17. Beta decay of 125Sb and level structures in 125Te

    NASA Astrophysics Data System (ADS)

    Sainath, M.; Venkataramaniah, K.; Sood, P. C.

    1999-08-01

    The decay of 2.76y 125 Sb to levels of 125 Te has been studied using an HPGe de-tector for gamma-ray and a mini orange electron spectrometer for conversion electron measure-ments. We identify 38 transitions in this decay, including 13 gamma rays and 4 conversion electron lines being reported for the first time. New results also include E1 multipolarity assignments to 3 newly observed transitions and M-shell conversion coefficient for the 109 keV M4 transition. A revised 125 Te level scheme is constructed using Ritz combination principle. While confirming the existence of 10 well established levels below 700 keV excitation, we introduce 3 other levels at 402.0, 538.6 and 652.9 keV. Interpretation of the observed levels in terms of various theoretical approaches is briefly discussed. The newly introduced 538.6 keV (1/2 + ) and 652.9 keV (3/2 + ) levels are seen as the two missing members of the (s1Ä 2 + ) and (d3Ä 2 + ) sextuplet in the quasiparticle-phonon coupling scheme.

  18. Final report: Accelerated beta decay for disposal of fission fragment wastes

    SciTech Connect

    Reiss, Howard R.

    2000-03-06

    The fundamental theory of the interaction of intense, low-frequency electromagnetic fields with certain radioactive nuclei has been fully formulated. The nuclei are of the type that exists in high-level radioactive wastes that are end products of the production of energy from nuclear fission. The basic physical mechanisms that underlie the coupling of the applied field to the nucleus have been identified. Both the basic theory and numerical predictions that stem from it support the conclusion that high-level radioactive wastes can be disposed of by substantially accelerating the rate of radioactive decay. Some old experiments on the acceleration of this type of radioactivity, with results that were not understood at the time, have been re-examined. Their interpretation is now clear, and the experiments are found to be in agreement with the theory.

  19. Complexation of imazalil with beta-cyclodextrin, residue uptake, persistence, and activity against penicillium decay in citrus fruit following postharvest dip treatments.

    PubMed

    Schirra, Mario; Delogu, Giovanna; Cabras, Paolo; Angioni, Alberto; D'hallewin, Guy; Veyrat, Ana; Marcos, Jose F; Candelas, Luis González

    2002-11-06

    A method for the inclusion of imazalil (IMZ) in the beta-cyclodextrin (betaCD), structural characterization of the inclusion complex and its antifungal activity against Penicillium digitatum and P. italicum assessed by in vitro and in vivo tests are reported. According to the starting stoichiometry of betaCD with respect to IMZ, an equimolar ratio beta-cyclodextrin-IMZ (betaCD-IMZ) was detected by (1)H NMR. In vitro assays showed that the freshly prepared betaCD-IMZ was as effective as IMZ, although 1- and 4-day-old betaCD-IMZ mixtures were more effective. Studies on Star Ruby grapefruit showed no significant differences in residue uptake between treatments with an IMZ commercially available fungicide (Deccozil) or betaCD-IMZ when equal active ingredient (a.i.) concentrations (250 mg/L) and dip temperatures (20 or 50 degrees C) were used. By contrast, treatments of Tarocco oranges and Di Massa lemons with 250 mg/L betaCD-IMZ at 50 degrees C produced significant differences in residue uptake in comparison with 250 mg/L Deccozil treatments at 50 degrees C. The a.i. degradation rate in grapefruit during postquarantine and simulated marketing period (SMP) at 20 degrees C was not affected by the type of formulation used, whether at 20 or 50 degrees C. Conversely, IMZ in oranges and lemons had greater persistence when applied at 50 degrees C. All fungicide treatments showed a comparable efficacy against decay in grapefruit and oranges, whereas treatment in lemons at 250 mg/L a.i. of heated fungicides had higher suppressive effects against decay than unheated chemicals having equal a.i. concentrations and comparable activity at 1200 mg/L IMZ at 20 degrees C.

  20. Chemical and physical consequences of. cap alpha. and. beta. /sup -/ decay in the solid state

    SciTech Connect

    Young, J.P.; Haire, R.G.; Peterson, J.R.; Ensor, D.D.

    1984-01-01

    Interesting chemical and structural phenomena can occur when radioactive materials are stored in the solid state. Extensive studies have been made of both the chemical and physical status of progeny species that result from the ..cap alpha.. or ..beta.. /sup -/ day of actinide ions in several different compounds. The samples have been both initially pure actinide compounds - halides, oxides, etc. and actinides incorporated into other non-radioactive host materials, for example lanthanide halides. In general, the oxidation state of the actinide progeny is controlled by the oxidation state of its parent (a result of heredity). The structure of the progeny compound seems to be controlled by its host (a result of environment). These conclusions are drawn from solid state absorption spectral studies, and where possible, from x-ray diffraction studies of multi-microgram sized samples. 13 references, 4 figures, 4 tables.

  1. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  2. Study of Rare B Meson Decays Related to the CKM Angle Beta at BaBar

    SciTech Connect

    Ulmer, Keith; /Amherst Coll.

    2007-06-06

    This study reports measurements of the branching fractions of B meson decays to {eta}{prime}K{sup +}, {eta}{prime}K{sup 0}, {omega}{pi}{sup +}, {omega}K{sup +}, and {omega}K{sup 0}. Charge asymmetries are measured for the charged modes and the time-dependent CP-violation parameters S and C are measured for the neutral modes. The results are based on a data sample of 347 fb{sup -1} containing 383 million B{bar B} pairs recorded by the BABAR detector at the PEP-II asymmetric-energy e+e- storage ring located at the Stanford Linear Accelerator Center. Statistically significant signals are observed for all channels with the following results: B(B{sup +} {yields} {eta}{prime}K{sup +}) = (70.0{+-}1.5{+-}2.8)x10{sup -6}, B(B{sup 0} {yields} {eta}{prime}K{sup 0}) = (66.6{+-}2.6{+-}2.8)x10{sup -6}, B(B{sup +} {yields} {omega}{pi}{sup +}) = (6.7{+-}0.5{+-}0.4)x10{sup -6}, B(B{sup +} {yields} {omega}K{sup +}) = (6.3{+-}0.5{+-}0.3)x10-6, and B(B{sup 0} {yields} ?K0) = (5.6{+-}0.8{+-}0.3)x10-6, where the first uncertainty is statistical and the second is systematic. We measure A{sub ch}({eta}{prime}K{sup +}) = +0.010{+-}0.022{+-}0.006, A{sub ch}({omega}{pi}{sup +}) = -0.02{+-}0.08{+-}0.01, A{sub ch}({omega}K{sup +}) = -0.01{+-}0.07{+-}0.01, S{sub {eta}{prime}K{sup 0}{sub S}} = 0.56{+-}0.12{+-}0.02, C{sub {eta}{prime}K{sup 0}{sub S}} = -0.24 {+-} 0.08 {+-} 0.03, S{sub {omega}{prime}K{sup 0}{sub S}} = 0.62+0.25 -0.29 {+-} 0.02, and C{sub {omega}{prime}K{sup 0}{sub S}} = -0.39+0.25 -0.24 {+-} 0.03. The result in S{sub {eta}{prime}K{sup 0}{sub S}} contributes to the published measurement from BABAR, which differs from zero by 5.5 standard deviations and is the first observation of mixing-induced CP-violation in a charmless B decay.

  3. Gaseous time projection chambers for rare event detection: results from the T-REX project. I. Double beta decay

    SciTech Connect

    Irastorza, I.G.; Aznar, F.; Castel, J. E-mail: faznar@unizar.es [Grupo de Física Nuclear y Astropartículas, Departamento de Física Teórica, Universidad de Zaragoza, C and others

    2016-01-01

    As part of the T-REX project, a number of R and D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the double beta decay (DBD) of {sup 136}Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ∼ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ∼ 3% FWHM @ Q{sub ββ}. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ∼ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two

  4. Two-neutrino double-beta decay of 150Nd to excited final states

    NASA Astrophysics Data System (ADS)

    Kidd, Mary; Esterline, James; Finch, Sean; Tornow, Werner

    2013-10-01

    This study yields the first detection of the coincidence gamma rays from the 01+excited state of 150Sm. These gamma rays have energies of 333.97 keV and 406.52 keV, and are emitted in coincidence through a 01+--> 21+--> 0gs+transition. The enriched Nd2O3 sample obtained from Oak Ridge National Laboratory consists of 40.13 g 150Nd. This sample was observed for 642.8 days at the Kimballton Underground Research Facility, producing 21.6 net events in the region of interest. This count rate gives a half life of T1 / 2 = 1 .07-0.25+0.45 (stat) +/- 0 . 07 (syst .) years, which agrees within uncertainties with another recent measurement in which no coincidence was employed. Lower limits were also obtained for decays to higher excited final states. Finally, the nuclear matrix element was extracted from this half life with a value of 0.0232-0.0037+0.0032. This work was supported in part by the US Department of Energy, Office of Nuclear Physics under grant No. DE-FG02-97ER41033.

  5. Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal beta-N-acetylglucosaminidases.

    PubMed

    Yang, You; Li, Yao; Yu, Biao

    2009-09-02

    TMG-chitotriomycin, a potent and selective inhibitor of the beta-N-acetylglucosaminidases that possesses an unique N,N,N-trimethyl-d-glucosamine (TMG) residue, is revised to be the TMG-beta-(1-->4)-chitotriose instead of the originally proposed alpha-anomer via its total synthesis, for which a highly convergent approach was developed in which the sterically demanding (1-->4)-glycosidic linkages are efficiently constructed by the Au(I)-catalyzed glycosylation protocol with glycosyl o-hexynylbenzoates as donors.

  6. Ultralow-background study of neutrinoless double. beta. decay of /sup 76/Ge; new limit on the Majorana mass of. nu. /sub e/

    SciTech Connect

    Avignone F.T. III; Brodzinski, R.L.; Brown, D.P.; Evans J.C. Jr.; Hensley, W.K.; Miley, H.S.; Reeves, J.H.; Wogman, N.A.

    1985-05-27

    A lower limit of 1.16 x 10/sup 23/ yr (1sigma) is reported for the half-life of no-neutrino ..beta../sup -/..beta../sup -/ decay of /sup 76/Ge which results from 3763 h of counting with an ultralow-background, 135-cm/sup 3/ prototype detector located 1438 m underground. A limit of 1.7 x 10/sup 23/ yr (1sigma) results from the best combination of our data with that from other experiments. Straightforward application of shell-model matrix elements to this limit implies that <3.2 eV (1sigma).

  7. Simulation studies of muon-produced background events deep underground and consequences for double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; Majorana Collaboration

    2015-10-01

    Cosmic radiation creates a significant background for low count rate experiments. The Majorana demonstrator experiment is located at the Sanford Underground Research Facility at a depth of 4850ft below the surface but it can still be penetrated by cosmic muons with initial energies above the TeV range. The interaction of muons with the rock, the shielding material in the lab and the detector itself can produce showers of secondary particles, like fast neutrons, which are able to travel through shielding material and can produce high-energy γ-rays via capture or inelastic scattering. The energy deposition of these γ rays in the detector can overlap with energy region of interest for the neutrino-less double beta decay. Recent studies for cosmic muons penetrating the Majorana demonstrator are made with the Geant4 code. The results of these simulations will be presented in this talk and an overview of the interaction of the shower particles with the detector, shielding and veto system will be given. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. Supported by U.S. Department of Energy through the LANL/LDRD Program.

  8. Inelastic neutron scattering studies of Ge-76 and Se-76: relevance to neutrinoless double-beta decay

    SciTech Connect

    Crider, Ben; Peters, Erin; Ross, T.J.; McEllistrem, M; Prados-Estevez, F.; Allmond, James M; Vanhoy, J.R.; Yates, S.W.

    2015-01-01

    Inelastic neutron scattering measurements were performed at the University of Kentucky Accelerator Laboratory on enriched Ge-76 and Se-76 scattering samples. From measurements at incident neutron energies from 2.0 to 4.0 MeV, many new levels were identified and characterized in each nucleus; level lifetimes, transition probabilities, multipole mixing ratios, and other properties were determined. In addition, gamma-ray cross sections for the Ge-76(n,n'gamma) reaction were measured at neutron energies up to 5.0 MeV, with the goal of determining the cross sections of gamma rays in 2040-keV region, which corresponds to the region of interest in the neutrinoless double beta decay of Ge-76. Gamma rays from the three strongest branches from the 3952-keV level were observed, but the previously reported 2041-keV gamma ray was not. Population cross sections across the range of incident neutron energies were determined for the 3952-keV level, resulting in a cross section of similar to 0.1 mb for the 2041-keV branch using the previously determined branching ratios. Beyond this, the data from these experiments indicate that previously unreported gamma rays from levels in Ge-76 can be found in the 2039-keV region.

  9. Energy levels of {sup 249}Bk populated in the {alpha} decay of {sub 99}{sup 253}Es and {beta}{sup -} decay of {sub 96}{sup 249}Cm

    SciTech Connect

    Ahmad, I.; Kondev, F.G.; Moore, E.F.; Carpenter, M.P.; Chasman, R.R.; Greene, J.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Hoff, R.W.; Evans, J.E.; Lougheed, R.W.; Porter, C.E.; Felker, L.K.

    2005-05-01

    The level structure of {sup 249}Bk has been investigated by measuring the {gamma}-ray spectra of an extremely pure {sup 253}Es sample obtained by milking this nuclide from {sup 253}Cf source material produced in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Additional information on the {sup 249}Bk levels was obtained from the {beta}{sup -}-decay study of {sup 249}Cm, produced by neutron irradiation of {sup 248}Cm. Using the results of the present study together with the data from previous {sup 248}Cm({alpha},t) and {sup 248}Cm({sup 3}He,d) reactions, the following single-particle states have been identified in {sup 249}Bk: 7/2{sup +}[633], 0.0 keV; 3/2{sup -}[521], 8.78 keV; 1/2{sup +}[400], 377.55 keV; 5/2{sup +}[642], 389.17 keV; 1/2{sup -}[530], 569.20 keV; 1/2{sup -}[521], 643.0 keV; 5/2{sup -}[523], 672.9 keV; and 9/2{sup +}[624], 1075.1 keV. Four vibrational bands were identified at 767.9, 932.2, 1150.7, and 1223.0 keV with tentative assignments of {l_brace}7/2{sup +} [633] x1{sup -}{r_brace}9/2{sup -}, {l_brace}7/2{sup +} [633] x 0{sup -}{r_brace}7/2{sup -}, {l_brace}7/2{sup +} [633] x 1{sup -}{r_brace}5/2{sup -}, and {l_brace}7/2{sup +} [633] x 0{sup +}{r_brace}7/2{sup +}, respectively. A band at 899.9 keV was observed in {gamma}-{gamma} coincidence measurements and given a tentative spin assignment of 3/2. It is possibly associated with a 2{sup -} phonon coupled to the ground state, with configuration {l_brace}7/2{sup +} [633] x 2{sup -}{r_brace}3/2{sup -}. Three levels at 624.3, 703.5, and 769.1 keV were assigned spins of 5/2, 7/2, and 9/2, respectively. These could be the members of the 3/2{sup +} [651] band, expected in this energy region.

  10. Experimental-Series Parameters for the Decay of Multigroup Beta and Gamma Spectra from 0.1 to 1000 Seconds After a Fission Burst

    DTIC Science & Technology

    1978-11-01

    applying a known neutron - flux history to multigroup cross sections taken from ENDF/B. In the present application to essentially instantaneous fission we have...AFWL-TR-78-4 AFWL-TR- (2EYEL 78-4 EXPERIMENTAL SERIES PARAMETERS FOR THE DECAY OF MULTIGROUP BETA AND GAMMA SSPECTRA FROM 0.1 TO 1000 SECONDS AFTER A...1.) November 1978 t LLJ - Final Report Approved for public release; distribution unlimited. -D DC B AIR FORCE WEAPONS LABORATORY Air Force Systems

  11. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Nygren, D.; Oliveira, C.; Renner, J.

    2015-11-01

    Liquid Xe TPCs are among the most popular choices for double beta decay and WIMP dark matter searches. Gaseous Xe has intrinsic advantages when compared to Liquid Xe, specifically, tracking capability and better energy resolution for double beta decay searches. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which are expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). These features may provide better tracking and energy resolution for double-beta decay searches. They are also expected to enhance columnar recombination for nuclear recoils, which can be used for searches for WIMP dark matter with directional sensitivity. We constructed a test ionization chamber and successfully measured scintillation and ionization yields at high precision with various Xe and TMA mixtures and pressures. We observed the Penning effect and an increase in recombination with the addition of TMA. However, many undesired features for dark matter searches, such as strong suppression of the scintillation light and no sign of recombination light, were also found. This work has been carried out within the context of the NEXT collaboration.

  12. Liquid chromatographic determination of total and beta-N-oxalyl-L-alpha,beta-diaminopropionic acid in lathyrus sativus seeds using both refractive index and bioelectrochemical detection.

    PubMed

    Yigzaw, Y; Larsson, N; Gorton, L; Ruzgas, T; Solomon, T

    2001-09-21

    A further improved chromatographic method for the simultaneous determination of the total amount of ODAP, selectively the amount of its neurotoxic form, beta-ODAP, and free L-glutamate in raw Lathyrus sativus (grass pea) seed samples is described using post-column refractive index in combination with bioelectrochemical detection. The biosensor is based on crosslinking horseradish peroxidase (HRP) and an Os-containing mediating polymer with poly(ethyleneglycol)(400) diglycidyl ether (PEGDGE), forming an inner hydrogel layer and then immobilising L-glutamate oxidase (GlOx) as an outer layer on top of a graphite electrode. Addition of polyethylenimine (PEI) to the hydrogel is believed to have sensitivity and stability enhancing effect on the biosensor. The double-layer approach in the biosensor construction avoided direct electrical wiring of GlOx and resulted in a higher sensitivity of 4.6 mA/M cm2 with respect to beta-ODAP and a wider linear range (1-250 microM) for both L-glutamate and beta-ODAP when compared with a single-layer approach where GlOx, HRP, and Os-polymer are crosslinked together. The limit of detection for the chromatographic-biosensor system was found to be 2 microM with respect to beta-ODAP and 0.7 microM with respect to L-glutamate. The refractive index detection on-line with the biosensor enabled full control of the chromatographic system for the determination of the total amount of ODAP, selectively the amount of beta-ODAP and L-glutamate. Ten grass pea samples have been collected from Lathyrism prone areas of Ethiopia to test the applicability of the presently developed analytical system for real sample analysis. The toxin levels of grass pea collections were determined in an aqueous extracts and ranged from 0.52 to 0.76%, dry mass basis. Comparison of results of an established spectrophotometric assay and that of the present system has shown an extraordinary degree of agreement as revealed by parallel "t" test (90% confidence limit). The

  13. Properties of low-lying intruder states in {sup 34}Al and {sup 34}Si populated in the beta-decay of {sup 34}Mg

    SciTech Connect

    Lică, R.; Grévy, S. [CENBG, Université de Bordeaux, CNRS Desagne, Ph. [IPHC, Université de Strasbourg, IN2P3 and others

    2015-02-24

    The results of the IS530 experiment at ISOLDE revealed new information concerning several nuclei close to the N ≈ 20 'Island of Inversion' - {sup 34}Mg, {sup 34}Al, {sup 34}Si. The half-life of {sup 34}Mg was found to be three times larger than the adopted value (63(1) ms instead of 20(10) ms). The beta-gamma spectroscopy of {sup 34}Mg performed for the first time in this experiment, led to the first experimental level scheme for {sup 34}Al, also showing that the full beta strength goes through the predicted 1{sup +} isomer in {sup 34}Al [1] and/or excited states that deexcite to it. The subsequent beta-decay of the 1{sup +} isomer in {sup 34}Al allowed the observation of new gamma lines in {sup 34}Si, (tentatively) associated with low-spin high-energy excited states previously unobserved.

  14. Experimental setup and commissioning baseline study in search of time-variations in beta-decay half-lives

    NASA Astrophysics Data System (ADS)

    Goddard, Braden; Hitt, George W.; Solodov, Alexander A.; Bridi, Dorian; Isakovic, A. F.; El-Khazali, Reyad; Abulail, Ayman

    2016-03-01

    Recently there have been a number of investigations into whether the decay constant of a radioactive isotope can be influenced by external factors, such as the Earth-Sun distance or Solar flare activity. Positive claims suggest that annual oscillations of ~0.1% and accelerations of ~0.4% in the relative activity of beta-emitters coincide with the Earth-Sun distance and solar flare activity, respectively. Results from replication experiments have so far been conflicting. The main criticism of the measurements used to trace and quantify these effects is that the data is of poor quality or limited in scope. Data have often been collected as part of short duration weekly calibration measurements, measured with a single type of low precision detector, only using one isotope, and having no environmental conditions information (temperature, pressure, humidity) accompanying the radiation measurements. This paper describes the setup of a series of counting experiments commissioned for addressing these criticisms. Six dedicated detector systems (four different types) measuring six different isotopes (14C, 54Mn, 60Co, 90Sr, 204Tl, and 226Ra) have been continuously collecting source activity synchronously with environmental data for a period of one month (April 2014). The results of this baseline commissioning study show that there are correlations between activity and environmental conditions for some detector types which are then quantified. The results also show that the one sigma counting uncertainties in all the detectors are less than 0.024% for a given 24 h period. After accounting for propagated uncertainties from corrections against correlations with environmental data, the ability to resolve 0.1% activity changes varies, from 8 min to 1.6 days, depending on the specific detector. All six experiments therefore, will have sufficient precision over the upcoming year to scrutinize claims of both annual activity oscillations and solar flare activity changes.

  15. Shell-model calculations of isovector electromagnetic transitions and Gamow-Teller beta decays in the N~=28 region

    NASA Astrophysics Data System (ADS)

    Yokoyama, Atsushi; Horie, Hisashi

    1988-08-01

    Isovector E2 and M1 transitions from isobaric analog states of the N=29 isotones to low-lying states in the N=28 isotones are discussed by making use of the shell model. The fn-17/2j and the fn7/2+fn-17/2j configurations are assumed for the N=29 and N=28 isotones, respectively, where j denotes one of the p3/2, p1/2, and f5/2 orbits. First, the model space is restricted to j=p3/2 only, and it is extended to include all the p3/2, p1/2, and f5/2 orbits, in order to study stepwise the role of the various wave function components. For the isovector E2 transitions, it is confirmed that the major components of the wave functions play a decisive role for the allowed transitions in the single-particle shell model and the use of the good isospin wave functions is indispensable for the forbidden ones. For the isovector M1 transitions, it is shown that the spin-nonflip f7/2-->f7/2 transition, which is introduced by the neutron-excited components in the wave functions of the N=28 isotones, plays a very significant role: It gives rise to the important cancellation which is responsible for the strong suppression of the M1 transition strength in comparison with the simple shell-model prediction, and it becomes the leading term in the l- and j-forbidden M1 transitions. Similar discussion holds for the Gamow-Teller beta decays between the levels of the N=28 and N=29 nuclei.

  16. Predictions for the Majorana CP violation phases in the neutrino mixing matrix and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Girardi, I.; Petcov, S. T.; Titov, A. V.

    2016-10-01

    We obtain predictions for the Majorana phases α21 / 2 and α31 / 2 of the 3 × 3 unitary neutrino mixing matrix U = Ue† Uν, Ue and Uν being the 3 × 3 unitary matrices resulting from the diagonalisation of the charged lepton and neutrino Majorana mass matrices, respectively. We focus on forms of Ue and Uν permitting to express α21 / 2 and α31 / 2 in terms of the Dirac phase δ and the three neutrino mixing angles of the standard parametrisation of U, and the angles and the two Majorana-like phases ξ21 / 2 and ξ31 / 2 present, in general, in Uν. The concrete forms of Uν considered are fixed by, or associated with, symmetries (tri-bimaximal, bimaximal, etc.), so that the angles in Uν are fixed. For each of these forms and forms of Ue that allow to reproduce the measured values of the three neutrino mixing angles θ12, θ23 and θ13, we derive predictions for phase differences (α21 / 2 -ξ21 / 2), (α31 / 2 -ξ31 / 2), etc., which are completely determined by the values of the mixing angles. We show that the requirement of generalised CP invariance of the neutrino Majorana mass term implies ξ21 = 0 or π and ξ31 = 0 or π. For these values of ξ21 and ξ31 and the best fit values of θ12, θ23 and θ13, we present predictions for the effective Majorana mass in neutrinoless double beta decay for both neutrino mass spectra with normal and inverted ordering.

  17. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    SciTech Connect

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz; Peña-Garay, C. E-mail: jmalbos@ific.uv.es E-mail: penya@ific.uv.es

    2013-03-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm{sub ν} = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m{sub ββ} involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.

  18. Comparative Analyses of Brookhaven National Laboratory Nuclear Decay Measurements and Super-Kamiokande Solar Neutrino Measurements: Neutrinos and Neutrino-Induced Beta-Decays as Probes of the Deep Solar Interior

    NASA Astrophysics Data System (ADS)

    Sturrock, P. A.; Fischbach, E.; Scargle, J. D.

    2016-12-01

    An experiment carried out at the Brookhaven National Laboratory over a period of almost 8 years acquired 364 measurements of the beta-decay rates of a sample of {}^{32}Si and, for comparison, of a sample of {}^{36}Cl. The experimenters reported finding " small periodic annual deviations of the data points from an exponential decay … of uncertain origin". We find that power-spectrum and spectrogram analyses of these datasets show evidence not only of the annual oscillations, but also of transient oscillations with frequencies near 11 year-1 and 12.5 year-1. Similar analyses of 358 measurements of the solar neutrino flux acquired by the Super-Kamiokande neutrino observatory over a period of about 5 years yield evidence of an oscillation near 12.5 year-1 and another near 9.5 year-1. An oscillation near 12.5 year-1 is compatible with the influence of rotation of the radiative zone. We suggest that an oscillation near 9.5 year-1 may be indicative of rotation of the solar core, and that an oscillation near 11 year-1 may have its origin in a tachocline between the core and the radiative zone. Modulation of the solar neutrino flux may be attributed to an influence of the Sun's internal magnetic field by the Resonant Spin Flavor Precession (RSFP) mechanism, suggesting that neutrinos and neutrino-induced beta decays can provide information about the deep solar interior.

  19. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGES

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; ...

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  20. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  1. Separating double-beta decay events from solar neutrino interactions in a kiloton-scale liquid scintillator detector by fast timing

    NASA Astrophysics Data System (ADS)

    Elagin, Andrey; Frisch, Henry J.; Naranjo, Brian; Ouellet, Jonathan; Winslow, Lindley; Wongjirad, Taritree

    2017-03-01

    We present a technique for separating nuclear double beta decay (ββ -decay) events from background neutrino interactions due to 8B decays in the sun. This background becomes dominant in a kiloton-scale liquid-scintillator detector deep underground and is usually considered as irreducible due to an overlap in deposited energy with the signal. However, electrons from 0 νββ -decay often exceed the Cherenkov threshold in liquid scintillator, producing photons that are prompt and correlated in direction with the initial electron direction. The use of large-area fast photodetectors allows some separation of these prompt photons from delayed isotropic scintillation light and, thus, the possibility of reconstructing the event topology. Using a simulation of a 6.5 m radius liquid scintillator detector with 100 ps resolution photodetectors, we show that a spherical harmonics analysis of early-arrival light can discriminate between 0 νββ -decay signal and 8B solar neutrino background events on a statistical basis. Good separation will require the development of a slow scintillator with a 5 ns risetime.

  2. Initial stages of beta-amyloid Aβ1-40 and Aβ1-42 oligomerization observed using fluorescence decay and molecular dynamics analyses of tyrosine

    NASA Astrophysics Data System (ADS)

    Amaro, Mariana; Kubiak-Ossowska, Karina; Birch, David J. S.; Rolinski, Olaf J.

    2013-03-01

    The development of Alzheimer’s disease is associated with the aggregation of the beta-amyloid peptides Aβ1-40 and Aβ1-42. It is believed that the small oligomers formed during the early stages of the aggregation are neurotoxic and involved in the process of neurodegeneration. In this paper we use fluorescence decay measurements of beta-amyloid intrinsic fluorophore tyrosine (Tyr) and molecular dynamics (MD) simulations to study the early stages of oligomer formation for the Aβ1-40 and Aβ1-42 peptides in vitro. We demonstrate that the lifetime distributions of the amyloid fluorescence decay efficiently describe changes in the complex Tyr photophysics during the peptide aggregation and highlight the differences in aggregation performance of the two amyloids. Tyr fluorescence decay is found to be a more sensitive sensor of Aβ1-40 aggregation than Aβ1-42 aggregation. The MD simulation of the peptide aggregation is compared with the experimental data and supports a four-rotamer model of Tyr.

  3. Background-free beta-decay half-life measurements by in-trap decay and high-resolution MR-ToF mass analysis

    NASA Astrophysics Data System (ADS)

    Wolf, R. N.; Atanasov, D.; Blaum, K.; Kreim, S.; Lunney, D.; Manea, V.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Zuber, K.

    2016-06-01

    In-trap decay in ISOLTRAP's radiofrequency quadrupole (RFQ) ion beam cooler and buncher was used to determine the lifetime of short-lived nuclides. After various storage times, the remaining mother nuclides were mass separated from accompanying isobaric contaminations by the multi-reflection time-of-flight mass separator (MR-ToF MS), allowing for a background-free ion counting. A feasibility study with several online measurements shows that the applications of the ISOLTRAP setup can be further extended by exploiting the high resolving power of the MR-ToF MS in combination with in-trap decay and single-ion counting.

  4. Search for Majoron-emitting modes of double-beta decay of Xe 136 with EXO-200

    NASA Astrophysics Data System (ADS)

    Albert, J. B.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; DeVoe, R.; Delaquis, S.; Didberidze, T.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W.; Farine, J.; Feldmeier, W.; Fierlinger, P.; Fudenberg, D.; Giroux, G.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Herrin, S.; Hughes, M.; Jewell, M. J.; Jiang, X. S.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Leonard, F.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Nelson, R.; Odian, A.; Ostrovskiy, I.; Ouellet, C.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Rivas, A.; Rowson, P. C.; Rozo, M. P.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tosi, D.; Tsang, R.; Twelker, K.; Vogel, P.; Vuilleumier, J.-L.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; EXO-200 Collaboration

    2014-11-01

    EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of Xe 136 . Here, we report on a search for various Majoron-emitting modes based on 100 kg yr exposure of Xe 136 . A lower limit of T1/2 Xe 136 >1.2 ×1024 yr at 90% C.L. on the half-life of the spectral index =1 Majoron decay was obtained, corresponding to a constraint on the Majoron-neutrino coupling constant of |⟨gee M⟩|<(0.8 - 1.7 )×10-5 .

  5. Intermediate Nuclear Structure for 2v 2{beta} Decay of {sup 48}Ca Studied by (p, n) and (n, p) Reactions at 300 MeV

    SciTech Connect

    Sakai, H.; Yako, K.

    2009-08-26

    Angular distributions of the double differential cross sections for the {sup 48}Ca(p,n) and the {sup 48}Ti(n,p) reactions were measured at 300 MeV. A multipole decomposition technique was applied to the spectra to extract the Gamow-Teller (GT) transition strengths. In the (n, p) spectrum beyond 8 MeV excitation energy extra B(GT{sup +}) strengths which are not predicted by the shell model calculation. This extra B(GT{sup +}) strengths significantly contribute to the nuclear matrix element of the 2v2{beta}-decay.

  6. Limits of Majorana neutrino mass from combined analysis of data from 76Ge and 136Xe neutrinoless double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Klimenko, A. A.; Rumyantseva, N. S.

    2017-01-01

    We present effective Majorana neutrino mass limits < m ββ> obtained from the joint analysis of the recently published results of 76Ge and 136Xe neutrinoless double beta decay (0νββ) experiments, which was carried out by using the Bayesian calculations. Nuclear matrix elements (NMEs) used for the analysis are taken from the works, in which NMEs of 76Ge and 136Xe were simultaneously calculated. This reduced systematic errors connected with NME calculation techniques. The new effective Majorana neutrino mass limits < m ββ> less than [85.4-197.0] meV are much closer to the inverse neutrino mass hierarchy region.

  7. The decays of three top contributors to the reactor ve high-energy spectrum, 92Rb, 96gsY, and 142Cs, studied with total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rasco, Bertis; MTAS Collaboration

    2016-09-01

    We report total absorption spectroscopy measurements of 92Rb, 96gsY, and 142Cs β decays, which are the most important contributors to the high energy ve spectral shape in nuclear reactors. The measurements were performed with the NaI(Tl) based Modular Total Absorption Spectrometer (MTAS). MTAS was constructed specifically to measure improved β-decay feeding patterns from neutron-rich nuclei, because it is difficult to measure β-decay feeding intensities with high energy precision γ-ray measurements due to the low efficiency of high precision detectors. Besides the impact to the high energy ve spectral shape in nuclear reactors, there are several other important applications of improved measurements of β-decay feeding patterns by total absorption spectroscopy; improve understanding of elemental abundances in the universe, help with stockpile stewardship, contribute to understanding of underlying nuclear structure, and improve measurements of decay heat. We will demonstrate some of the techniques for analyzing MTAS γ-decay data. This research was also sponsored by the Office of Nuclear Physics, U. S. Department of Energy under Contracts DE-AC05-00OR22725, DE-FG02-96ER40983, DE-FG02-96ER40978, and by the Polish National Science Center under Contract UMO-2013/08/T/ST2/00624.

  8. Splicing and 3' end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs.

    PubMed

    Neu-Yilik, G; Gehring, N H; Thermann, R; Frede, U; Hentze, M W; Kulozik, A E

    2001-02-01

    Premature translation termination codons are common causes of genetic disorders. mRNAs with such mutations are degraded by a surveillance mechanism termed nonsense-mediated decay (NMD), which represents a phylogenetically widely conserved post-transcriptional mechanism for the quality control of gene expression. How NMD-competent mRNPs are formed and specified remains a central question. Here, we have used human beta-globin mRNA as a model system to address the role of splicing and polyadenylation for human NMD. We show that (i) splicing is an indispensable component of the human beta-globin NMD pathway, which cannot be compensated for by exonic beta-globin 'failsafe' sequences; (ii) the spatial requirements of human beta-globin NMD, as signified by the maximal distance of the nonsense mutation to the final exon-exon junction, are less constrained than in yeast; and (iii) non-polyadenylated mRNAs with a histone 3' end are NMD competent. Thus, the formation of NMD-competent mRNP particles critically depends on splicing but does not require the presence of a poly(A) tail.

  9. Investigating shape evolution and the emergence of collectivity through the synergy of Coulomb excitation and beta decay

    SciTech Connect

    Allmond, James M

    2016-01-01

    The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.

  10. Measurement of the CP Violating Phase $\\boldsymbol{\\sin(2\\beta_{s})}$ using $\\boldsymbol{B^{0}_{s}\\rightarrow J/\\psi\\phi}$ Decays at CDF

    SciTech Connect

    Pueschel, Elisa

    2010-05-01

    A B0 s meson can oscillate into its anti-particle, the $\\bar{B}$0 s meson, before decaying. CP violation in this system is made possible by the presence of amplitudes from both mixed and unmixed B0 s meson decays. The CP violating phase βs appears in the interference between the decay amplitudes. The quantity sin(2βs) is expected to be small in the standard model. Thus, measuring a large value for sin(2βs) would be an unequivocal sign of new physics participation in the B0 s mixing loop diagram. In this thesis, we present a latest measurement of sin(2βs), using 5.2 fb-1 of data collected at CDF from p$\\bar{p}$ collisions at a center of mass energy of √s=1.96 TeV. A time-dependent angular analysis, with the production flavor of the B0 s meson identified with flavor tagging methods, is used to extract sin(2βs) from ~6500 B0 s→ J/ψφ decays. Other parameters of interest, such as the B0 s lifetime and the decay width difference between the heavy and light B0 s mass eigenstates are determined to high precision. Also, the effect of potential contributions to the final state from B0 s → J/ψf0 and B0 s→ J/ψK+K- decays is considered for the first time. We present 68% and 95% confidence regions in the βs plane. The probability that the observed central value is a fluctuation of the data from the standard model expected value of βs is calculated to be 44%. The observed confidence region shows better agreement with the standard model prediction than previous measurements.

  11. Measurement of time-dependent CP asymmetries in B0-->D(*)+/-pi-/+ decays and constraints on sin(2beta+gamma).

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Tehrani, F Safai; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-06-25

    We present a measurement of CP-violating asymmetries in fully reconstructed B0-->D(*)+/-pi-/+ decays in approximately 88 x 10(6) upsilon(4S)-->BBmacr; decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. From a time-dependent maximum-likelihood fit we obtain the following for the CP-violating parameters: a=-0.022+/-0.038 (stat)+/-0.020 (syst), a*=-0.068+/-0.038 (stat)+/-0.020 (syst), c(lep)=+0.025+/-0.068 (stat)+/-0.033 (syst), and c*(lep)=+0.031+/-0.070 (stat)+/-0.033 (syst). Using other measurements and theoretical assumptions we interpret the results in terms of the angles of the Cabibbo-Kobayashi-Maskawa unitarity triangle, and find |sin((2beta+gamma)|>0.69 at 68% confidence level. We exclude the hypothesis of no CP violation [sin(2beta+gamma)=0] at 83% confidence level.

  12. Measurement of scintillation and ionization yield with high-pressure gaseous mixtures of Xe and TMA for improved neutrinoless double beta decay and dark matter searches

    NASA Astrophysics Data System (ADS)

    Nakajima, Y.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nygren, D. R.; Oliveira, C. A. B.; Renner, J.

    2016-03-01

    The gaseous Xenon(Xe) time projection chamber (TPC) is an attractive detector technique for neutrinoless double beta decay and WIMP dark matter searches. While it is less dense compared to Liquid Xe detectors, it has intrinsic advantages in tracking capability and better energy resolution. The performance of gaseous Xe can be further improved by molecular additives such as trimethylamine(TMA), which is expected to (1) cool down the ionization electrons, (2) convert Xe excitation energy to TMA ionizations through Penning transfer, and (3) produce scintillation and electroluminescence light in a more easily detectable wavelength (300 nm). In order to test the feasibility of the performance improvements with TMA, we made the first direct measurement of Penning and fluorescence transfer efficiency with gaseous mixtures of Xe and TMA. While we observed a Penning transfer efficiency up to ~35%, we found strong suppression of primary scintillation light with TMA. We also found that the primary scintillation light with Xe and TMA mixture can be well characterized by ~3% fluorescence transfer from Xe to TMA, with further suppression due to TMA self-quenching. No evidence of the scintillation light produced by recombination of TMA ions was found. This strong suppression of scintillation light makes dark matter searches quite challenging, while the possibility of improved neutrinoless double beta decay searches remains open. This work has been carried out within the context of the NEXT collaboration.

  13. Investigations of the ground-state hyperfine atomic structure and beta decay measurement prospects of 21Na with improved laser trapping techniques

    SciTech Connect

    Rowe, Mary Anderson

    1999-05-01

    This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21Na to the experiment. Efficient manipulation of the 21Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21Na. She measured the 3S1/2(F=1,m=0)-3S1/2(F=2,m=0) atomic level splitting of 21Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.

  14. Combining data from high-energy pp-reactions and neutrinoless double-beta decay: Limits on the mass of the right-handed boson

    NASA Astrophysics Data System (ADS)

    Civitarese, Osvaldo; Suhonen, Jouni; Zuber, Kai

    2016-10-01

    From the recently established lower-limits on the nonobservability of the neutrinoless double-beta decay of 76Ge (GERDA collaboration) and 136Xe (EXO-200 and KamLAND-Zen collaborations), combined with the ATLAS and CMS data, we extract limits for the left-right (LR) mixing angle, ζ, of the SU(2)L ×SU(2)R electroweak Hamiltonian. For the theoretical analysis, which is a model dependent, we have adopted a minimal extension of the Standard Model (SM) of Electroweak Interactions belonging to the SU(2)L ×SU(2)R representation. The nuclear-structure input of the analysis consists of a set of matrix elements and phase-space factors, and the experimental lower-limits for the half-lives. The other input are the ATLAS and CMS cross-section measurements of the pp-collisions into two-jets and two-leptons, performed at the large hadron collider (LHC). Our analysis yields the limit ζ < 10-3 for MR > 3TeV, by combining the model-dependent limits extracted from the double-beta-decay measurements and those extracted from the results of the CMS and ATLAS measurements.

  15. Evidence for Gamow-Teller Decay of ^{78}Ni Core from Beta-Delayed Neutron Emission Studies.

    PubMed

    Madurga, M; Paulauskas, S V; Grzywacz, R; Miller, D; Bardayan, D W; Batchelder, J C; Brewer, N T; Cizewski, J A; Fijałkowska, A; Gross, C J; Howard, M E; Ilyushkin, S V; Manning, B; Matoš, M; Mendez, A J; Miernik, K; Padgett, S W; Peters, W A; Rasco, B C; Ratkiewicz, A; Rykaczewski, K P; Stracener, D W; Wang, E H; Wolińska-Cichocka, M; Zganjar, E F

    2016-08-26

    The β-delayed neutron emission of ^{83,84}Ga isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the β decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed β decay to ^{78}Ni core-excited states in ^{83,84}Ge favored by shell effects. We developed shell model calculations in the proton fpg_{9/2} and neutron extended fpg_{9/2}+d_{5/2} valence space using realistic interactions that were used to understand measured β-decay lifetimes. We conclude that enhanced, concentrated β-decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense β-delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models.

  16. Evidence for Gamow-Teller Decay of 78Ni Core from Beta-Delayed Neutron Emission Studies

    NASA Astrophysics Data System (ADS)

    Madurga, M.; Paulauskas, S. V.; Grzywacz, R.; Miller, D.; Bardayan, D. W.; Batchelder, J. C.; Brewer, N. T.; Cizewski, J. A.; Fijałkowska, A.; Gross, C. J.; Howard, M. E.; Ilyushkin, S. V.; Manning, B.; Matoš, M.; Mendez, A. J.; Miernik, K.; Padgett, S. W.; Peters, W. A.; Rasco, B. C.; Ratkiewicz, A.; Rykaczewski, K. P.; Stracener, D. W.; Wang, E. H.; Wolińska-Cichocka, M.; Zganjar, E. F.

    2016-08-01

    The β -delayed neutron emission of Ga,8483 isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the β decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed β decay to 78Ni core-excited states in Ge,8483 favored by shell effects. We developed shell model calculations in the proton f p g9 /2 and neutron extended f p g9 /2+d5 /2 valence space using realistic interactions that were used to understand measured β -decay lifetimes. We conclude that enhanced, concentrated β -decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense β -delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models.

  17. Radioactive decay.

    PubMed

    Groch, M W

    1998-01-01

    When a parent radionuclide decays to its daughter radionuclide by means of alpha, beta, or isomeric transition, the decay follows an exponential form, which is characterized by the decay constant lambda. The decay constant represents the probability per unit time that a single radioatom will decay. The decay equation can be used to provide a useful expression for radionuclide decay, the half-life, the time when 50% of the radioatoms present will have decayed. Radiotracer half-life has direct implications in nuclear imaging, radiation therapy, and radiation safety because radionuclide half-life affects the ability to evaluate tracer kinetics and create appropriate nuclear images and also affects organ, tumor, and whole-body radiation dose. The number of radioatoms present in a sample is equal to the activity, defined as the number of transitions per unit time, divided by the decay constant; the mass of radioatoms present in a sample can be calculated to determine the specific activity (activity per unit mass). The dynamic relationship between the number of parent and daughter atoms present over time may lead to radioactive equilibrium, which takes two forms--secular and transient--and has direct relevance to generator-produced radionuclides.

  18. Herman Feshbach Prize in Theoretical Nuclear Physics Xiangdong Ji, University of Maryland PandaX-III: high-pressure gas TPC for Xe136 neutrinoless double beta decay at CJPL

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong; PandaX-III Collaboration

    2016-03-01

    The PandaX-III in China's Jinping Underground Lab is a new neutrinoless double beta decay experiment using Xe136 high-pressure gas TPC. The first phase of the experiment uses a 4 m3 gas detector with symmetric Micromegas charge readout planes. The gas TPC allows full reconstruction of the event topology, capable of distinguishing the two electron events from gamma background with high confidence level. The energy resolution can reach about 3% FWHM at the beta decay Q-value. The detector construction and the experimental lab is currently under active development. In this talk, the current status and future plan are reported.

  19. Beta-delayed proton emission from 20Mg

    NASA Astrophysics Data System (ADS)

    Lund, M. V.; Andreyev, A.; Borge, M. J. G.; Cederkäll, J.; De Witte, H.; Fraile, L. M.; Fynbo, H. O. U.; Greenlees, P. T.; Harkness-Brennan, L. J.; Howard, A. M.; Huyse, M.; Jonson, B.; Judson, D. S.; Kirsebom, O. S.; Konki, J.; Kurcewicz, J.; Lazarus, I.; Lica, R.; Lindberg, S.; Madurga, M.; Marginean, N.; Marginean, R.; Marroquin, I.; Mihai, C.; Munch, M.; Nacher, E.; Negret, A.; Nilsson, T.; Page, R. D.; Pascu, S.; Perea, A.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Riisager, K.; Rotaru, F.; Sotty, C.; Stanoiu, M.; Tengblad, O.; Turturica, A.; Van Duppen, P.; Vedia, V.; Wadsworth, R.; Warr, N.

    2016-10-01

    Beta-delayed proton emission from 20 Mg has been measured at ISOLDE, CERN, with the ISOLDE Decay Station (IDS) setup including both charged-particle and gamma-ray detection capabilities. A total of 27 delayed proton branches were measured including seven so far unobserved. An updated decay scheme, including three new resonances above the proton separation energy in 20 Na and more precise resonance energies, is presented. Beta-decay feeding to two resonances above the Isobaric Analogue State (IAS) in 20 Na is observed. This may allow studies of the 4032.9(2.4)keV resonance in 19 Ne through the beta decay of 20 Mg, which is important for the astrophysically relevant reaction 15O( α, γ)19Ne . Beta-delayed protons were used to obtain a more precise value for the half-life of 20 Mg, 91.4(1.0)ms.

  20. WLS R&D for the detection of noble gas scintillation at LBL: seeing the light from neutrinos, to dark matter, to double beta decay

    NASA Astrophysics Data System (ADS)

    Gehman, V. M.

    2013-09-01

    Radiation detectors with noble gasses as the active medium are becoming increasingly common in experimental programs searching for physics beyond the standard model. Nearly all of these experiments rely to some degree on collecting scintillation light from noble gasses. The VUV wavelengths associated with noble gas scintillation mean that most of these experiments use a fluorescent material to shift the direct scintillation light into the visible or near UV band. We present an overview of the R&D program at LBL related to noble gas detectors for neutrino physics, double beta decay, and dark matter. This program ranges from precise measurements of the fluorescence behavior of wavelength shifting films, to the prototyping of large are VUV sensitive light guides for multi-kiloton detectors.

  1. Methylation of thymine and uracil with free methyl cations formed due to beta-decay of tritiated methane: possible implication in mutagenesis and carcinogenesis.

    PubMed

    Korsakov, M V; Bystrova, M O; Mironiuk, T A; Sinotova, E N; Ivin, B A; Nefedov, V D; Likhachev, A J

    1989-05-01

    Exposure of solid thymine and uracil at room temperature to free methyl cations, produced due to beta-decay of tritiated methane, resulted in formation of their 1-, O2-, 3-, O4-, and 6-methyl derivatives. In addition, uracil formed a 5-methyl derivative (thymine); tritium-containing thymine and uracil were also detected. Both thymine and uracil formed predominantly unidentified products which resulted presumably from their oligomerization. Incubation at -195 degrees C did not markedly change the pattern of reaction products. Aqueous-ammonia solutions of these pyrimidines formed methylated derivatives and considerable amounts of methanol and tritiated water. The possible implication of these reactions in mutagenic and carcinogenic effects of tritium-substituted hydrocarbons is discussed.

  2. Unified description of the double {beta} decay to the first quadrupole phonon state in spherical and deformed nuclei

    SciTech Connect

    Raduta, C. M.; Raduta, A. A.

    2007-10-15

    The Gamow-Teller transition operator is written as a polynomial in the dipole proton-neutron and quadrupole charge-conserving quasiparticle random-phase approximation boson operators, using the prescription of the boson expansion technique. Then, the 2{nu}{beta}{beta} process ending on the first 2{sup +} state in the daughter nucleus is allowed through one-, two-, and three-boson states describing the odd-odd intermediate nucleus. The approach uses a single particle basis that is obtained by projecting out the good angular momentum from an orthogonal set of deformed functions. The basis for mother and daughter nuclei may have different deformations. The GT transition amplitude as well as the half-lives were calculated for 18 transitions. Results are compared with the available data as well as with the predictions obtained with other methods.

  3. Observation of B0-->omega K0, B+-->eta pi+, and B+-->eta K+ and study of related decays.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Lee, C L; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, K R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2004-02-13

    We present measurements of branching fractions and charge asymmetries for seven B-meson decays with an eta, eta', or omega meson in the final state. The data sample corresponds to 89x10(6) BB pairs produced from e(+)e(-) annihilation at the Upsilon(4S) resonance. We measure the following branching fractions in units of 10(-6): B(B+-->eta pi(+))=5.3+/-1.0+/-0.3, B(B+-->eta K+)=3.4+/-0.8+/-0.2, B(B0-->eta K0)=2.9+/-1.0+/-0.2 (<5.2, 90% C.L.), B(B+-->eta(')pi(+))=2.7+/-1.2+/-0.3 (<4.5, 90% C.L.), B(B+-->omega pi(+))=5.5+/-0.9+/-0.5, B(B+-->omega K+)=4.8+/-0.8+/-0.4, and B(B0-->omega K0)=5.9(+1.6)(-1.3)+/-0.5. The charge asymmetries are A(ch)(B+-->eta pi(+))=-0.44+/-0.18+/-0.01, A(ch)(B+-->eta K+)=-0.52+/-0.24+/-0.01, A(ch)(B+-->omega pi(+))=0.03+/-0.16+/-0.01, and A(ch)(B+-->omega K+)=-0.09+/-0.17+/-0.01.

  4. TeO[Formula: see text] bolometers with Cherenkov signal tagging: towards next-generation neutrinoless double-beta decay experiments.

    PubMed

    Casali, N; Vignati, M; Beeman, J W; Bellini, F; Cardani, L; Dafinei, I; Di Domizio, S; Ferroni, F; Gironi, L; Nagorny, S; Orio, F; Pattavina, L; Pessina, G; Piperno, G; Pirro, S; Rusconi, C; Schäffner, K; Tomei, C

    CUORE, an array of 988 TeO[Formula: see text] bolometers, is about to be one of the most sensitive experiments searching for neutrinoless double-beta decay. Its sensitivity could be further improved by removing the background from [Formula: see text] radioactivity. A few years ago it was pointed out that the signal from [Formula: see text]s can be tagged by detecting the emitted Cherenkov light, which is not produced by [Formula: see text]s. In this paper we confirm this possibility. For the first time we measured the Cherenkov light emitted by a CUORE crystal, and found it to be 100 eV at the [Formula: see text]-value of the decay. To completely reject the [Formula: see text] background, we compute that one needs light detectors with baseline noise below 20 eV RMS, a value which is 3-4 times smaller than the average noise of the bolometric light detectors we are using. We point out that an improved light detector technology must be developed to obtain TeO[Formula: see text] bolometric experiments able to probe the inverted hierarchy of neutrino masses.

  5. Food products containing free tall oil-based phytosterols and oat beta-glucan lower serum total and LDL cholesterol in hypercholesterolemic adults.

    PubMed

    Maki, Kevin C; Shinnick, Fred; Seeley, Marlyn A; Veith, Patricia E; Quinn, Laura C; Hallissey, Pamela J; Temer, Arlene; Davidson, Michael H

    2003-03-01

    This randomized, double-blind, controlled trial evaluated the influence of low fat, low saturated fat food products that contained free tall oil-based phytosterols (TOP) and oat beta-glucan (from whole oats and bran concentrate) on serum lipid concentrations in adults with mild-to-moderate hypercholesterolemia. After a 5-wk National Cholesterol Education Program Step I diet lead-in period, 112 subjects incorporated one of two treatments into their diets for 6 wk: food products (cereal, snack bar and beverage) that provided 1.8 g TOP and 2.8 g beta-glucan/d and contained < or =3.0 g total fat and < or =1.0 g saturated fat (TOP/beta-glucan treatment) or similar control foods. The serum LDL cholesterol response from baseline to the end of study was significantly larger in the TOP/beta-glucan treated group than in the control group, in which there was no change (-3.7 vs. 0.4%; P = 0.013). Likewise, total cholesterol decreased in the TOP/beta-glucan treatment group and did not change significantly in the controls (-2.3 vs. 0.8%; P = 0.043). Serum HDL cholesterol and triglyceride responses did not differ between the groups. The results of this trial suggest that consumption of a group of low fat, TOP and beta-glucan- containing foods is a useful adjunct in the dietary management of hypercholesterolemia.

  6. Searches for massive neutrino emission in 14C beta and 55Fe electron-capture decays

    SciTech Connect

    Wietfeldt, Fred Eberhardt

    1994-05-01

    In 1985 Simpson reported evidence for the emission of a 17 keV mass neutrino in a small fraction of tritium beta decays. An experimental controversy ensued in which a number of both positive and negative results were reported. The beta spectrum of 14C was collected in a unique 14C-doped planar germanium detector and a distortion was observed that initially confirmed Simpson`s result. Further tests linked this distortion to a splitting of the collected charge between the central detector and the surrounding guard ring in a fraction of the events. A second 14C measurement showed no evidence for emission of a 17 keV mass neutrino. In a related experiment, a high statistics electron-capture internal-bremsstrahlung photon spectrum of 55Fe was collected with a coaxial germanium detector. A local search for departures from a smooth shape near the endpoint was performed, using a second-derivative technique. An upper limit of 0.65% (95% C.L.) for the mixing Of a neutrino in the mass range 5--25 keV was established. The upper limit on the mixing of a 17 keV mass neutrino was 0.14% (95% C.L.).

  7. Study of Rare B-Meson Decays Related to the CPObservable sin(2beta+gamma) at the BABAR Experiment

    SciTech Connect

    Orimoto, Toyoko Jennifer

    2006-01-01

    This study reports the observation of the decays B0→D$*+\\atop{s}$π- and B0→D(*)-K+ in a sample of 230 x 106 Y(4S) → B$\\bar{B}$ events collected with the BABAR detector at the PEP-II asymmetric-energy e+e- storage ring, located at the Stanford Linear Accelerator Center. The branching fractions β(B0 → D$+\\atop{S}$π-) = (1.3 ± 0.3 (stat) ± 0.2 (syst)) x 10-5, β(B0 → D$+\\atop{S}$K+) = (2.5 ± 0.4 (stat) ± 0.4 (syst)) x 10-5, β(B0→D$*+\\atop{s}$π-) = (2.8 ± 0.6 (stat) ± 0.5 (syst)) x 10-5, and β(B0→D(*)-K+) = (2.0 ± 0.5 (stat) ± 0.4 (syst)) x 10-5 are measured. The significance of the measurements to differ from zero are 5, 9, 6, and 5 standard deviations, respectively. This is a first observation of the decaysB+→D$*+\\atop{s}$π- and B0→D(*)-K+. These results may potentially be useful in determining the CP asymmetry parameter sin(2β + γ) in the decays B0→D$*+\\atop{s}$π-.

  8. Analysis of Electron and Antineutrino Energy Spectra from Fissile Samples under Irradiation based on Gross Theory of Beta-decay

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Tachibana, T.; Chiba, S.

    2016-06-01

    We applied the gross theory of β-decay to calculate the reactor electron and antineutrino ({{{bar ν }}{e}}) spectra emitted from 235,238U and 239,241Pu by summing up all the contributions from a large number of decaying fission-products (FPs). We make it clear what kinds of transition types and FP nuclides are important to shape the lepton spectra. After taking the ambiguity in the current data for fission yields and Qβ-values into account, we suggested a possibility that the high-energy part of the widely referred electron-spectra by Schreckenbach et al., almost only one experimental data set available now, might possibly be too low. Arguments on a special role of the odd(Z)-odd(N) nuclides and on the consistency between U-238 and other fissiles in the experimental data lead to the importance of a new and independent measurement of electron energy spectra which could be converted into the reactor {{{bar ν }}{e}} spectra.

  9. Measurements of the CKM Angle Beta in CharmlessLoop-dominated B Meson Decays at BaBar

    SciTech Connect

    Lazzaro, Alfio

    2006-10-18

    We report on preliminary measurements of time-dependent CP-violation asymmetries in charmless neutral B meson decays to K{sup +}K{sup -}K{sup 0} including resonant decays {phi}K{sup 0} and f{sub 0}(980)K{sup 0}, {eta}{prime}K{sup 0}, {pi}{sup 0}K{sub S}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}K{sub S}{sup 0}, K{sub S}{sup 0}K{sub S}{sup 0}, {rho}{sup 0}K{sub S}{sup 0}, {omega}{sub S}{sup 0}. The results are obtained from a data sample of up to 347 million B{bar B} pairs produced by e{sup +}e{sup -} annihilation at the {Upsilon}(4S) resonance collected with the BABAR detector at the PEP-II asymmetric-energy B-meson Factory at SLAC.

  10. Total Antioxidant Capacity in beta-thalassemia: A systematic review and meta-analysis of case-control studies.

    PubMed

    Manafikhi, Husseen; Drummen, Gregor; Palmery, Maura; Peluso, Ilaria

    2017-02-01

    Total Antioxidant Capacity (TAC), a biomarker measuring the antioxidant potential of body fluids, including redox synergistic interactions, is influenced by the presence of products of catabolism such as bilirubin (BR) and uric acid (UA). Hyperuricaemia and increased BR levels were observed in thalassemia. In order to evaluate the differences in TAC values between thalassemic patients and healthy subjects, we performed a systematic review and meta-analysis of case-control studies. After the exclusion of data deemed unsuitable for meta-analysis inclusion and a study imputed of bias by Trim-and-fill analysis, mean difference (MD) and confidence intervals 95% (CI 95%) were calculated by the random effect model for beta-thalassemia major (BTM) (1351 subjects: 770 thalassemic and 581 controls, from 15 studies) and Trait (BTT) or Hemoglobin E (BTE) (475 subjects: 165 thalassemic and 310 controls, from 5 studies). Despite the differences in clinical symptoms and severity, similar decreased levels of TAC were found in BTM [MD -0.22 (-0.35 -0.09) p<0.001] and BTT or BTE [MD -0.22 (-0.44 -0.01) p<0.05]. In conclusion, UA and BR interference on TAC suggests that corrected TAC and in particular the UA-independent TAC, considering the prominent influence of UA, might be the better approach to evaluate body antioxidant status.

  11. Improving the physics impact of next-generation 76Ge neutrinoless double-beta decay experiments

    SciTech Connect

    Hossbach, Todd W.

    2009-01-01

    It was shown that segmentation and pulse-shape discrimination can improve the discovery sensitivity of a next-gen 0vBB-decay experiment by 90%. - However, when practical aspects are considered (such as instrumenting each segment with front-end electronics), the discovery sensitivity is decreased by 19%. - This has extremely important consequences to proposed next-gen experiments since the two active collaborations have strongly advocated the use of segmented detectors for all or part of the experiment. - New germanium detector technology, currently under development, has demonstrated excellent multi-site background rejection capabilities without the complexity of segmentation or complicated PSD algorithms. - The physically-segmented p-type germanium detector technology has proven to be a useful and practical tool in modern nuclear physics. The PSEG technology deserves further development as it has the potential for use in a variety of applications.

  12. Indoor/outdoor radon decay products associated aerosol particle-size distributions and their relation to total number concentrations.

    PubMed

    Moriizumi, Jun; Yamada, Shinya; Xu, Yang; Matsuki, Satoru; Hirao, Shigekazu; Yamazawa, Hiromi

    2014-07-01

    The activity size distributions of indoor and outdoor radioactive aerosol associated with short-lived radon decay products were observed at Nagoya, Japan, for some periods from 2010 to 2012, following the indoor observation by Mostafa et al. [Mostafa, A. M. A., Tamaki, K., Moriizumi, J., Yamazawa, H. and Iida, T. The weather dependence of particle size distribution of indoor radioactive aerosol associated with radon decay products. Radiat. Prot. Dosim. 146: (1-3), 19-22 (2011)]. The tendency of smaller indoor activity median aerodynamic diameter (AMAD) after rainfalls showed in the previous study was not consistently obtained, while the consistent tendency of less indoor radioactive particles with diameters in the accumulation mode was observed again after rainfalls. The indoor aerosols showed activity size distributions similar to the outdoor ones. Non-radioactive aerosol particle concentrations measured with a laser particle counter suggested a somewhat liner relationship with AMAD.

  13. Recoil effect on beta-decaying in vivo generators, interpreted for (103)Pd/(103m)Rh.

    PubMed

    Szucs, Zoltan; van Rooyen, Johann; Zeevaart, Jan Rijn

    2009-01-01

    The use of Auger emitters as potential radiopharmaceuticals is being increasingly investigated. One of the radionuclides of interest is (103m)Rh, which can be produced from (103)Ru or (103)Pd in an in vivo generator. A potential problem, however, is the recoil of the (103m)Rh out of the carrier molecule and even out of the target cell. In order to determine the likelihood of this happening in the (103)Pd/(103m)Rh, case calculations were made to prove that this does not happen. The equations were generalised for all radionuclides with an atomic mass of 10-240 as a tool for determining the recoil threshold of any beta-emitting radionuclide.

  14. Investigation of double beta decay of {sup 116}Cd with the help of enriched {sup 116}CdWO{sub 4} crystal scintillators

    SciTech Connect

    Polischuk, O. G. Tretyak, V. I.; Barabash, A. S.; Konovalov, S. I.; Umatov, V. I.; Belli, P.; Bernabei, R.; D’Angelo, S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Laubenstein, M.; Chernyak, D. M.; Danevich, F. A.; Kobychev, V. V.; Mokina, V. M.; Incicchitti, A.; Poda, D. V.; Shlegel, V. N.; Vasiliev, Ya. V.

    2015-10-28

    An experiment to search for 2β processes in {sup 116}Cd with the help of enriched (to 82%) cadmium tungstate crystal scintillators is in progress at the Gran Sasso National Laboratory of the INFN (LNGS, Italy). After 11074 h of data taking in the last configuration, the preliminary estimate for the half-life of 116Cd relatively to 2ν2β decay is T{sub 1/2} = [2.52 ± 0.02(stat.) ± 0.14(syst.)] × 10{sup 19} yr. By using the data of previous stages of the experiment with a similar level of background (≈ 0.1 counts/(keV kg yr) in the energy interval 2.7 – 2.9 MeV; the total time of measurements is 19770 h) we have obtained a new limit on the 0ν2β decay of {sup 116}Cd to the ground state of {sup 116}Sn: T{sub 1/2} ≥ 1.9 × 10{sup 23} yr at 90% C.L. New limits on different 2β processes in {sup 116}Cd (decays with majorons, transitions to the excited levels) are obtained on the level of T{sub 1/2} ≥ 10{sup 20} – 10{sup 22} yr.

  15. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process →Li+6He6+e-+ν¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 σ disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae μ from the apparent 0.6% used in the experiments to 0.09%.

  16. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    DOE PAGES

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; ...

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We foundmore » that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.« less

  17. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy.

    PubMed

    Hoover, Andrew S; Bond, Evelyn M; Croce, Mark P; Holesinger, Terry G; Kunde, Gerd J; Rabin, Michael W; Wolfsberg, Laura E; Bennett, Douglas A; Hays-Wehle, James P; Schmidt, Dan R; Swetz, Daniel; Ullom, Joel N

    2015-04-07

    We have developed a new category of sensor for measurement of the (240)Pu/(239)Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the (240)Pu/(239)Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.

  18. Measurement of the 240Pu/239Pu mass ratio using a transition-edge-sensor microcalorimeter for total decay energy spectroscopy

    SciTech Connect

    Hoover, Andrew S.; Bond, Evelyn M.; Croce, Mark P.; Holesinger, Terry G.; Kunde, Gerd J.; Rabin, Michael W.; Wolfsberg, Laura E.; Bennett, Douglas A.; Hays-Wehle, James P.; Schmidt, Dan R.; Swetz, Daniel; Ullom, Joel N.

    2015-02-27

    In this study, we have developed a new category of sensor for measurement of the 240Pu/239Pu mass ratio from aqueous solution samples with advantages over existing methods. Aqueous solution plutonium samples were evaporated and encapsulated inside of a gold foil absorber, and a superconducting transition-edge-sensor microcalorimeter detector was used to measure the total reaction energy (Q-value) of nuclear decays via heat generated when the energy is thermalized. Since all of the decay energy is contained in the absorber, we measure a single spectral peak for each isotope, resulting in a simple spectral analysis problem with minimal peak overlap. We found that mechanical kneading of the absorber dramatically improves spectral quality by reducing the size of radioactive inclusions within the absorber to scales below 50 nm such that decay products primarily interact with atoms of the host material. Due to the low noise performance of the microcalorimeter detector, energy resolution values of 1 keV fwhm (full width at half-maximum) at 5.5 MeV have been achieved, an order of magnitude improvement over α-spectroscopy with conventional silicon detectors. We measured the 240Pu/239Pu mass ratio of two samples and confirmed the results by comparison to mass spectrometry values. These results have implications for future measurements of trace samples of nuclear material.

  19. Decay Data Evaluation Project (DDEP): evaluation of the main 233Pa decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2006-01-01

    The results of a decay data evaluation are presented for 233Pa (beta-) decay to nuclear levels in 233U. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2005.

  20. Beta and gamma decay heat measurements between 0.1s - 50,000s for neturon fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Progress report, June 1, 1992--December 31, 1994

    SciTech Connect

    Schier, W.A.; Couchell, G.P.

    1997-05-01

    In the investigations reported here, a helium-jet/tape-transport system was used for the rapid transfer of fission products to a low-background environment where their aggregate beta and gamma-ray spectra were measured as a function of delay time after neutron induced fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Beta and gamma-ray energy distributions have been deduced for delay times as short as 0.2 s and extending out to 100,000s. Instrumentation development during the initial phase of the project included: (1) assembly and characterization of a NaI(Tl) spectrometer for determining aggregate gamma-ray energy distributions, (2) development and characterization of a beta spectrometer (having excellent gamma-ray rejection) for measuring aggregate beta-particle energy distributions, (3) assembly and characterization of a Compton-suppressed HPGe spectrometer for determining gamma-ray intensities of individual fission products to deduce fission-product yields. Spectral decomposition and analysis codes were developed for deducing energy distributions from measured aggregate beta and gamma spectra. The aggregate measurements in the time interval 0.2 - 20s after fission are of special importance since in this region data from many short-lived nuclei are missing and summation calculations in this region rely on model calculations for a large fraction of their predicted beta and gamma decay heat energy spectra. Comparison with ENDF/B-VI fission product data was performed in parallel with the measurements through a close collaboration with Dr. T. England at LANL, assisted by one of our graduate students. Such aggregate measurements provide tests of the Gross Theory of beta decay used to calculated missing contributions to this data base. Fission-product yields deduced from the HPGe studies will check the accuracy of the semi-empirical Gaussian dispersion model used presently by evaluators in the absence of measured yields.

  1. Direct bound on the total decay width of the top quark in pp collisions at sqrt[s]=1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2009-01-30

    We present the first direct experimental bound on the total decay width of the top quark, Gamma(t), using 955 pb(-1) of the Tevatron's pp collisions recorded by the Collider Detector at Fermilab. We identify 253 top-antitop pair candidate events. The distribution of reconstructed top quark mass from these events is fitted to templates representing different values of the top quark width. Using a confidence interval based on likelihood-ratio ordering, we extract an upper limit at 95% C.L. of Gamma(t)<13.1 GeV for an assumed top quark mass of 175 GeV/c(2).

  2. Direct Bound on the Total Decay Width of the Top Quark in p pmacr Collisions at s=1.96TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M. G.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzurri, P.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Copic, K.; Cordelli, M.; Cortiana, G.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C. S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlok, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner-Kuhr, J.; Wagner, W.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-01-01

    We present the first direct experimental bound on the total decay width of the top quark, Γt, using 955pb-1 of the Tevatron’s p pmacr collisions recorded by the Collider Detector at Fermilab. We identify 253 top-antitop pair candidate events. The distribution of reconstructed top quark mass from these events is fitted to templates representing different values of the top quark width. Using a confidence interval based on likelihood-ratio ordering, we extract an upper limit at 95% C.L. of Γt<13.1GeV for an assumed top quark mass of 175GeV/c2.

  3. First total synthesis of a natural product containing a chiral, beta-diketone: synthesis and stereochemical reassignment of siphonarienedione and siphonarienolone.

    PubMed

    Calter, Michael A; Liao, Wensheng

    2002-11-06

    The first total syntheses of siphonarienolone and siphonarienedione are described. The development of a stereoselective synthesis of beta-diketones facilitated the synthesis of the latter compound. The synthesis of the structures proposed for the natural products afforded compounds whose spectral data did not match those of the natural products. However, the synthesis of compounds isomeric to the proposed structures at C(4) and C(5) afforded compounds identical to the natural products, thereby reassigning the stereochemistry of the natural products.

  4. The A=96 system in ββ decay

    SciTech Connect

    Alanssari, M.

    2015-10-28

    Properties of the single and double beta decays of {sup 96}Zr are discussed. It is argued that the single beta decay can provide important information to the neutrinoless variant of β β decay, as it provides a test of theories aimed at calculating the nuclear matrix elements (NME) for both decays. An experimental extraction of the NME for the single β decay requires a measurement of the decay Q-value and half-life. It is shown that the present Q-value of the {sup 96}Zr single β decay is insufficiently well known and requires a re-measurement, preferentially using high-precision ion traps. We also describe the geochemical method to determine the total half-life of {sup 96}Zr, from which to set a limit on the single β -decay half-life at a level of ≈15 × 10{sup 19}yr. Further, the geochemical analysis will allow setting a limit on a rather exotic quadruple β decay of {sup 96}Zr.

  5. Charged lepton flavour violcxmation and neutrinoless double beta decay in left-right symmetric models with type I+II seesaw

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Dasgupta, Arnab

    2016-07-01

    We study the new physics contributions to neutrinoless double beta decay (0 νββ) half-life and lepton flavour violation (LFV) amplitude within the framework of the minimal left-right symmetric model (MLRSM). Considering all possible new physics contributions to 0 νββ and charged lepton flavour violation μ → eγ , μ → 3 e in MLRSM, we constrain the parameter space of the model from the requirement of satisfying existing experimental bounds. Assuming the breaking scale of the left-right symmetry to be O (1) TeV accessible at ongoing and near future collider experiments, we consider the most general type I+II seesaw mechanism for the origin of tiny neutrino masses. Choosing the relative contribution of the type II seesaw term allows us to calculate the right handed neutrino mass matrix as well as Dirac neutrino mass matrix as a function of the model parameters, required for the calculation of 0νββ and LFV amplitudes. We show that such a general type I+II seesaw structure results in more allowed parameter space compared to individual type I or type II seesaw cases considered in earlier works. In particular, we show that the doubly charged scalar masses M Δ are allowed to be smaller than the heaviest right handed neutrino mass M N from the present experimental bounds in these scenarios which is in contrast to earlier results with individual type I or type II seesaw showing M Δ > M N .

  6. Estimation of benchmark dose as the threshold levels of urinary cadmium, based on excretion of total protein, {beta} {sub 2}-microglobulin, and N-acetyl-{beta}-D-glucosaminidase in cadmium nonpolluted regions in Japan

    SciTech Connect

    Kobayashi, Etsuko . E-mail: ekoba@faculty.chiba-u.jp; Suwazono, Yasushi; Uetani, Mirei; Inaba, Takeya; Oishi, Mitsuhiro; Kido, Teruhiko; Nishijo, Muneko; Nakagawa, Hideaki; Nogawa, Koji

    2006-07-15

    Previously, we investigated the association between urinary cadmium (Cd) concentration and indicators of renal dysfunction, including total protein, {beta} {sub 2}-microglobulin ({beta} {sub 2}-MG), and N-acetyl-{beta}-D-glucosaminidase (NAG). In 2778 inhabitants {>=}50 years of age (1114 men, 1664 women) in three different Cd nonpolluted areas in Japan, we showed that a dose-response relationship existed between renal effects and Cd exposure in the general environment without any known Cd pollution. However, we could not estimate the threshold levels of urinary Cd at that time. In the present study, we estimated the threshold levels of urinary Cd as the benchmark dose low (BMDL) using the benchmark dose (BMD) approach. Urinary Cd excretion was divided into 10 categories, and an abnormality rate was calculated for each. Cut-off values for urinary substances were defined as corresponding to the 84% and 95% upper limit values of the target population who have not smoked. Then we calculated the BMD and BMDL using a log-logistic model. The values of BMD and BMDL for all urinary substances could be calculated. The BMDL for the 84% cut-off value of {beta} {sub 2}-MG, setting an abnormal value at 5%, was 2.4 {mu}g/g creatinine (cr) in men and 3.3 {mu}g/g cr in women. In conclusion, the present study demonstrated that the threshold level of urinary Cd could be estimated in people living in the general environment without any known Cd-pollution in Japan, and the value was inferred to be almost the same as that in Belgium, Sweden, and China.

  7. Morbidity and mortality reduction by supplemental vitamin A or beta-carotene in CBA mice given total-body gamma-radiation

    SciTech Connect

    Seifter, E.; Rettura, G.; Padawer, J.; Stratford, F.; Weinzweig, J.; Demetriou, A.A.; Levenson, S.M.

    1984-11-01

    Male CBA mice received graded doses (450-750 rad) of total-body gamma-radiation (TBR) from a dual-beam /sup 137/Cs irradiator. Commencing directly after TBR, 2 days later, or 6 days later, groups of mice received supplemental vitamin A (Vit A) or beta-carotene (beta-Car), compounds previously found to reduce radiation disease in mice subjected to partial-body X-irradiation. Given directly after TBR, supplemental Vit A decreased mortality, evidenced by increases in the radiation dose required to kill 50% of the mice within 30 days (LD50/30). In one experiment, Vit A increased the LD50/30 from 555 to 620 rad; in another experiment, Vit A increased the dose from 505 to 630 rad. Similarly, in a third experiment, supplemental beta-Car increased the LD50/30 from 510 to 645 rad. Additionally, each compound increased the survival times, even of those mice that died within 30 days. In addition to reduction of mortality and prolongation of survival time, supplemental Vit A moderated weight loss, adrenal gland hyperemia, thymus involution, and lymphopenia--all signs of radiation toxicity. Delaying the supplementation for 2 days after irradiation did not greatly reduce the efficacy of Vit A; however, delaying supplementation for 6 days decreased its effect almost completely.

  8. Results of experiments devoted to searches for 2K capture on {sup 78}Kr and for the double-beta decay of {sup 136}Xe with the aid of proportional counters

    SciTech Connect

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Zhantudueva, Dj. A.; Kazalov, V. V.; Kuz'minov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Efendiev, K. V.; Yakimenko, S. P.

    2013-09-15

    A brief description of two low-background setups deployed at the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences) and intended for searches for two types of double-beta decay of inert-gas isotopes-2K capture on {sup 78}Kr and the double-beta decay of {sup 136}Xe-is given. The two setups in question have similar structures and employ identical large high-pressure copper proportional counters as detectors. Upon a treatment of data from measurements with krypton samples differing in the content of the isotope {sup 78}Kr, the spectrum for an enriched sample revealed an excess of events at a statistical-significance level of about two standard deviations (2{sigma}). If one attributes this excess to 2K(2{nu}) capture on {sup 78}Kr, the respective half-life is T{sub 1/2} = 1.4{sub -0.7}{sup +2.3} Multiplication-Sign 10{sup 22} yr at a 90% C.L. A treatment of data from measurements with xenon samples differing in content of the isotope {sup 136}Xe led to the appearance of an excess of events in the spectrum for an enriched sample at a statistical-significance level of about 2.2{sigma}. If one assumes that this excess is due to the two-neutrino double-beta decay of {sup 136}Xe, then the respective half-life is T{sub 1/2} = 5.8{sub -1.8}{sup +4.7} Multiplication-Sign 10{sup 21} yr.

  9. Beta Decay Study of the T{sub z}=−2{sup 56}Zn Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei

    SciTech Connect

    Rubio, B.; Orrigo, S.E.A.; Kucuk, L.; Montaner-Pizá, A.; Fujita, Y.; Fujita, H.; Blank, B.; Adachi, T.; Agramunt, J.; Algora, A.; Ascher, P.; Cáceres, L.; France, G. de; Gerbaux, M.; Giovinazzo, J.; Grevy, S. [CENBG, Université Bordeaux 1, UMR 5797 CNRS and others

    2014-06-15

    This paper concerns the experimental study of the β decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β-delayed gammas, β-delayed protons and the exotic β-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T{sub z}=−2 nucleus {sup 56}Zn has been studied in detail. Information from the β-delayed protons and β-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in {sup 56}Co, the mirror nucleus of {sup 56}Cu.

  10. Beta and gamma decay heat measurements between 0.1s--50,000s for neutron fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Final report, June 1, 1992--December 31, 1996

    SciTech Connect

    Schier, W. A.; Couchell, G. P.

    1996-01-01

    This is a final reporting on the composition of separate beta and gamma decay heat measurements following neutron fission of {sup 235}U and {sup 238}U and {sup 239}Pu and on cumulative and independent yield measurements of fission products of {sup 235}U and {sup 238}U. What made these studies unique was the very short time of 0.1 s after fission that could be achieved by incorporating the helium jet and tape transport system as the technique for transporting fission fragments from the neutron environment of the fission chamber to the low-background environment of the counting area. This capability allowed for the first time decay heat measurements to extend nearly two decades lower on the logarithmic delay time scale, a region where no comprehensive aggregate decay heat measurements had extended to. This short delay time capability also allowed the measurement of individual fission products with half lives as short as 0.2s. The purpose of such studies was to provide tests both at the aggregate level and at the individual nuclide level of the nation`s evaluated nuclear data file associated with fission, ENDF/B-VI. The results of these tests are in general quite encouraging indicating this data base generally predicts correctly the aggregate beta and aggregate gamma decay heat as a function of delay time for {sup 235}U, {sup 238}U and {sup 239}Pu. Agreement with the measured individual nuclide cumulative and independent yields for fission products of {sup 235}U and {sup 238}U was also quite good although the present measurements suggest needed improvements in several individual cases.

  11. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  12. ISOLDE decay station for decay studies of interest in astrophysics and exotic nuclei

    NASA Astrophysics Data System (ADS)

    Fynbo, Hans; Kirseboom, Oliver S.; Tengblad, Olof

    2017-04-01

    We report on studies of the beta-decays of 31Ar, {}{20,21}Mg, and 16N performed at the ISOLDE decay station (IDS) at CERN. These studies illustrate how beta-decays measured with the IDS can be used to extract information of astrophysical interest, or to study the structure and decay mechanism of exotic nuclei. We discuss the specific implementation of the IDS designed for this type of studies including detector setups and data acquisition.

  13. High-pressure Xenon Gas Electroluminescent TPC Concept for Simultaneous Searches for Neutrino-less Double Beta Decay & WIMP Dark Matter

    NASA Astrophysics Data System (ADS)

    Nygren, David

    2013-04-01

    Xenon is an especially attractive candidate for both direct WIMP and 0- decay searches. Although the current trend has exploited the liquid phase, gas phase xenon offers some remarkable performance advantages for energy resolution, topology visualization, and discrimination between electron and nuclear recoils. The NEXT-100 experiment, now beginning construction in the Canfranc Underground Laboratory, Spain, will operate at 12 bars with 100 kg of ^136Xe for the 0- decay search. I will describe recent results with small prototypes, indicating that NEXT-100 can provide about 0.5% FWHM energy resolution at the decay 2457.83 keV Q-value, as well as rejection of -rays by topology. However, sensitivity goals for WIMP dark matter and 0- decay searches indicate the need for ton-scale active masses; NEXT-100 provides the springboard to reach this scale with xenon gas. I describe a scenario for performing both searches in a single high-pressure ton-scale xenon gas detector, without significant compromise to either. In addition, -- even in a single, ton-scale, high-pressure xenon gas TPC, an intrinsic sensitivity to the nuclear recoil direction may exist -- plausibly offering an advance of more than two orders of magnitude relative to current low-pressure TPC concepts. I argue that, in an era of deepening fiscal austerity, such a dual-purpose detector may be possible, at acceptable cost, within the time frame of interest, and deserves our collective attention.

  14. Synthesis of a highly fluorescent beta-diketone-europium chelate and its utility in time-resolved fluoroimmunoassay of serum total thyroxine.

    PubMed

    Wu, Feng-Bo; Han, Shi-Quan; Zhang, Chao; He, You-Feng

    2002-11-15

    A new highly fluorescent beta-diketone-europium chelate was synthesized and employed as a tracer to develop a time-resolved fluoroimmunoassay (TRFIA) for detection of serum total thyroxine (T4). The tetradentate beta-diketone chelator, 1,10-bis(thiophene-2'-yl)-4,4,5,5,6,6,7,7-octafluorodecane-1,3,8,10-tetraone (BTOT), was structurally composed of two units of thenoyltrifluoroacetone (TTA) derivatives but expressed fluorescence that was greatly enhanced, as compared to the original TTA molecules, in the presence of excess amount of Eu3+. The luminescence properties of the europium chelate of BTOT werestudied in aqueous solution. Chlorosulfonylation of BTOT afforded 1, 10-bis(5'-chlorosulfo-thiophene-2'-yl)-4,4,5,5,6,6,7,7-octafluorodecane-1,3,8,10-tetraone (BCTOT), which could be coupled to proteins (i.e., streptavidin or the BSA-T4 conjugate) and used as a tracer for TRFIA. Although the BCTOT-Eu complex could be detected at a very low level (approximately 1.07 x 10(-12) mol/L) in buffered aqueous solution (50 mmoVLTris-HCl; pH, 8.0), the application of the chelate label in direct serum T4 TRFIA experienced a problem of matrix interference, which was probably caused by some unknown chelating components in the samples as a result of the fact that the fluorescence of the BCTOT-Eu chelate was prone to quenching or enhancement by some chelating reagents. To remove this problem, an indirect serum T4 TRFIA was proposed with the use of BCTOT-Eu-labeled streptavidin (SA) as signal generation reagent. The concentrations of T4 in 27 human serums were determined by indirect T4 TRFIA, and the assay results correlated well with those obtained by commercial Coming-CLIA (r = 0.955) and Wallac-DELFIA (r 0.965).

  15. Investigation of the nuclear structure of 33Al through beta-decay of 33Mg to probe the island of inversion

    NASA Astrophysics Data System (ADS)

    Zidar, Tammy; Griffin Collaboration

    2016-09-01

    Away from the valley of stability, some nuclei have been found to have ground state properties that are different than those naively expected from the nuclear shell model. Around the ``island of inversion'', N = 20 closed shell nucleus 32Mg has large ground state deformations occur in association with intruder configurations from the f7 / 2 shell. The nuclear structure of transitional nuclei, in which the normal and intruder configurations compete, can be used to inform theoretical models used to explain the inversion mechanism. 32Mg is known to have a deformed ground-state configuration, while 34Si displays a normal one. In the present work we studied the intermediate 33Al through the β-decay of 33Mg to clarify conflicting previous results regarding its structure. 33Mg was delivered to the GRIFFIN high-purity germanium γ-ray spectrometer coupled with the SCEPTAR plastic scintillator β particle detector. High efficiency of the GRIFFIN detector provides new γ- γ coincidences to elucidate the excited state structure of 33Al, and its capability to detect weak transitions has provided β-decay branching ratios for the 33Mg -> 33Al -> 33Si decay chain. The Canadian Foundation for Innovation, The National Research Council of Canada and the Natural Sciences and Engineering Research Council of Canada.

  16. Neutron Decay Electron Injection into the Magnetosphere.

    DTIC Science & Technology

    1982-03-01

    Generation No adequate theories exist to accurately describe the electron energy and angular distributions from neutron decay. Some beta spectra of thermal ...angular probability functions for specific neutron energies. A beta spectrum of thermal 6 neutrons measured in 1951 by Robson (Ref 9:352) was fit with a...Figure 1 shows Robson’s thermal neutron decay beta spectrum with his curve fit for the data. Since no information was available on the C3 CDi 0 C-) 0

  17. Decays of the Three Top Contributors to the Reactor ν[over ¯]_{e} High-Energy Spectrum, ^{92}Rb, ^{96gs}Y, and ^{142}Cs, Studied with Total Absorption Spectroscopy.

    PubMed

    Rasco, B C; Wolińska-Cichocka, M; Fijałkowska, A; Rykaczewski, K P; Karny, M; Grzywacz, R K; Goetz, K C; Gross, C J; Stracener, D W; Zganjar, E F; Batchelder, J C; Blackmon, J C; Brewer, N T; Go, S; Heffron, B; King, T; Matta, J T; Miernik, K; Nesaraja, C D; Paulauskas, S V; Rajabali, M M; Wang, E H; Winger, J A; Xiao, Y; Zachary, C J

    2016-08-26

    We report total absorption spectroscopy measurements of ^{92}Rb, ^{96gs}Y, and ^{142}Cs β decays, which are the most important contributors to the high energy ν[over ¯]_{e} spectral shape in nuclear reactors. These three β decays contribute 43% of the ν[over ¯]_{e} flux near 5.5 MeV emitted by nuclear reactors. This ν[over ¯]_{e} energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of ^{238}U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β-decay pattern that is similar to recent measurements of ^{92}Rb, with a ground-state to ground-state β feeding of 91(3)%. We verify the ^{96gs}Y ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β-decay feedings of ^{142}Cs, reducing the β feeding to ^{142}Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν[over ¯]_{e} flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%.

  18. Decays of the Three Top Contributors to the Reactor ν¯e High-Energy Spectrum, 92Rb, Ygs96 , and 142Cs, Studied with Total Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Wolińska-Cichocka, M.; Fijałkowska, A.; Rykaczewski, K. P.; Karny, M.; Grzywacz, R. K.; Goetz, K. C.; Gross, C. J.; Stracener, D. W.; Zganjar, E. F.; Batchelder, J. C.; Blackmon, J. C.; Brewer, N. T.; Go, S.; Heffron, B.; King, T.; Matta, J. T.; Miernik, K.; Nesaraja, C. D.; Paulauskas, S. V.; Rajabali, M. M.; Wang, E. H.; Winger, J. A.; Xiao, Y.; Zachary, C. J.

    2016-08-01

    We report total absorption spectroscopy measurements of 92Rb, Ygs96 , and 142Cs β decays, which are the most important contributors to the high energy ν¯e spectral shape in nuclear reactors. These three β decays contribute 43% of the ν¯e flux near 5.5 MeV emitted by nuclear reactors. This ν¯e energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of 238U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β -decay pattern that is similar to recent measurements of 92Rb, with a ground-state to ground-state β feeding of 91(3)%. We verify the Ygs96 ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β -decay feedings of 142Cs, reducing the β feeding to 142Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν¯e flux between 5 and 7 MeV, the maximum excess increases from ˜10 % to ˜12 %.

  19. Analysis of beta-decay rates for Ag 108, Ba 133, Eu 152, Eu 154, Kr 85, Ra 226, and Sr 90, measured at the Physikalisch-Technische Bundesanstalt from 1990 to 1996

    SciTech Connect

    Sturrock, P. A.; Fischbach, E.; Jenkins, J.

    2014-10-10

    We present the results of an analysis of measurements of the beta-decay rates of Ag 108, Ba 133, Eu 152, Eu 154, Kr 85, Ra 226, and Sr 90 acquired at the Physikalisch-Technische Bundesanstalt from 1990 through 1995. Although the decay rates vary over a range of 165 to 1 and the measured detector current varies over a range of 19 to 1, the detrended and normalized count rate measurements exhibit a sinusoidal annual variation with amplitude in the small range 0.068%-0.088% (mean 0.081%, standard deviation 0.0072%, a rejection of the zero-amplitude hypothesis) and phase-of-maximum in the small range 0.062-0.083 (January 23 to January 30). In comparing these results with those of other related experiments that yield different results, it may be significant that this experiment, at a standards laboratory, seems to be unique in using a 4π detector. These results are compatible with a solar influence, and do not appear to be compatible with an experimental or environmental influence. It is possible that Ba 133 measurements are also subject to a non-solar (possibly cosmic) influence.

  20. Increased total TAU but not amyloid-beta(42) in cerebrospinal fluid correlates with short-term memory impairment in Alzheimer's disease.

    PubMed

    Lin, Yuh-Te; Cheng, Jiin-Tsuey; Yao, Yun-Chin; Juo; Lo, Yuk-Keung; Lin, Ching-Hwung; Ger, Luo-Ping; Lu, Pei-Jung

    2009-01-01

    Given the need for tools for early and accurate diagnosis, prediction of disease progression, and monitoring efficacy of therapeutic agents for AD, the study of cerebrospinal fluid (CSF) biomarkers has become a rapidly growing field of research. Several studies have reported conflicting data regarding the relationships between CSF biomarkers and dementia severity. In this study, we have focused on the identification of CSF biomarkers and their correlations with the impairment of different cognitive domains measured using the Cognitive Abilities Screening Instrument (CASI). Patients with AD (n=28), non-AD dementia (n=16), other neurological disorders (OND, n=14), and healthy controls (HC, n=21) were enrolled. Our results revealed significantly higher CSF total tau (t-tau) and lower amyloid-beta(42) levels in AD patients compared with those in HC and OND groups. Moreover, our data show that CSF t-tau levels, but not Abeta(42) levels, have an inverse correlation with the score of short-term memory in CASI for patients with AD (Spearman: r=-0.444; p=0.018). This data might indicate that the higher CSF t-tau level is associated with more NFT pathology and more severe impairment of short-term memory in AD patients.