Sample records for beta di ketonate

  1. Unlocking the chemotherapeutic potential of beta-aminovinyl ketones and related compounds.

    PubMed

    Gaber, Hatem M; Bagley, Mark C

    2009-07-01

    The role of beta-aminovinyl ketones as synthetic intermediates has been well categorised, but recent developments have shown an interesting array of applications and new chemotherapeutic potential, both in the preparation of biologically active heterocycles and as pharmacophores in their own right.Medicinal chemists are accustomed to using the products of Knoevenagel-type condensations as auxiliaries for the synthesis of N-containing heteroaromatic compounds. One such example of these chemical building blocks are beta-aminovinyl ketones-valuable synthetic intermediates that have been used in the preparation of pyridines, pyrimidines, pyrazoles, and many other heterocyclic motifs. This review highlights their recent use in the synthesis of biologically active targets as part of drug discovery programmes and in natural product synthesis. However, it is becoming increasingly evident that the enaminone motif may serve as a therapeutic pharmacophore in its own right. This review highlights the range of biological responses that beta-aminovinyl ketones elicit, including as antitumour, antibacterial, and anticonvulsant agents. Thus, with a broad spectrum of biological properties and as versatile chemical intermediates, it is clear that beta-aminovinyl ketones offer great potential in the search for new chemotherapeutic agents.

  2. Engineering ..beta..-Oxidation in Yarrowia lipolytica for Methyl Ketone Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez i Nogue, Violeta; Ramirez, Kelsey J; Singer, Christine

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal ..beta..-oxidation by chromosomal deletion of pot1 resulted in themore » biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C13-C23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones.« less

  3. Highly stereoselective three-component reactions of phenylselenomagnesium bromide, acetylenic sulfones, and saturated aldehydes/ketones or alpha,beta-unsaturated enals or enones.

    PubMed

    Huang, Xian; Xie, Meihua

    2002-12-13

    beta-Phenylseleno-alpha-tolylsulfonyl-substituted alkenes were synthesized via the three-component conjugate-nucleophilic addition of acetylenic sulfones, phenylselenomagnesium bromide, and carbonyl compounds, such as aldehydes, aliphatic ketones, or alpha,beta-unsaturated enals or enones. The reaction is highly regio- and stereoselective with moderate to good yields. Functionalized allylic alcohols were obtained in the case of aldehydes and aliphatic ketones. In the case of alpha,beta-unsaturated enones, functionalized allylic alcohols or functionalized gamma,delta-unsaturated ketones were obtained, depending on the structures of the ketones.

  4. Synthesis of 2-acyl-1,4-diketones via the diacylation of {alpha},{beta}-unsaturated ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N.S.; Yu, S.; Kabalka, G.W.

    1998-08-17

    The first example of a diacylation of the carbon-carbon double bond in {alpha},{beta}-unsaturated ketones is described. The reaction of acylcyanocuprate reagents with {alpha},{beta}-unsaturated ketones, followed by C-acylation, produces 2-acyl-1,4-diketones in good yields (50--89%). The 1,4-addition of organocuprate reagents to conjugated enones, followed by trapping of the enolate intermediates with various electrophiles, is one of the most useful synthetic reactions. However, to the best of the authors` knowledge, 1,4-acylation followed by trapping of the enolate intermediates with acid chloride has not been reported.

  5. Bacterial production of methyl ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Harry R.; Goh, Ee-Been

    The present invention relates to methods and compositions for increasing production of methyl ketones in a genetically modified host cell that overproduces .beta.-ketoacyl-CoAs through a re-engineered .beta.-oxidation pathway and overexpresses FadM.

  6. Artificial photosynthesis of. beta. -ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Yasuhiro; Aida, Takuzo; Inoue, Shohei

    1989-04-12

    Photochemical fixation of carbon dioxide is of much interest in connection with biological photosynthesis by green plants as well as from the viewpoint of carbon resource utilization. One of the important steps in the assimilation of carbon dioxide is the carboxylation of a carbonyl compound into ketocarboxylic acid, where the reaction proceeds via an enolate species as reactive intermediate. For example, in four carbon (C{sub 4}) pathway and Crassulacean acid metabolism (CAM) processes, pyruvate is converted with the aid of ATP into phosphoenolpyruvate, which is subsequently carboxylated to give oxaloacetate by the action of pyruvate carboxylase. In relation to thismore » interesting biological process, some artificial systems have been exploited for the synthesis of {beta}-ketocarboxylic acid derivatives from carbon dioxide and ketones using nucleophiles such as metal carbonates, thiazolates, phenolates, alkoxides, and strong organic as well as inorganic basis, which promote the enolization of ketones in the intermediate step. We wish to report here a novel, visible light-induced fixation of carbon dioxide with the enolate complex of aluminum porphyrin, giving {beta}-ketocarboxylic acid under mild conditions.« less

  7. Microwave-assisted synthesis of 3,6-di(pyridin-2-yl)pyridazines: unexpected ketone and aldehyde cycloadditions.

    PubMed

    Hoogenboom, Richard; Moore, Brian C; Schubert, Ulrich S

    2006-06-23

    3,6-Di(pyridin-2-yl)pyridazines are an interesting class of compounds because of their metal-coordinating ability resulting in the self-assembly into [2x2] gridlike metal complexes with copper(I) or silver(I) ions. These and other substituted pyridazines can be prepared by the inverse-electron-demand Diels-Alder reactions between acetylenes and 1,2,4,5-tetrazines. In this contribution, the effect of (superheated) microwave conditions on these generally slow cycloadditions is described. The cycloaddition of acetylenes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine could be accelerated from several days reflux in toluene or N,N-dimethylformamide to several hours in dichloromethane at 150 degrees C. In addition, the unexpected cycloaddition of the enol tautomers of various ketones and aldehydes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine is described in detail providing an alternative route for the synthesis of (substituted) pyridazines.

  8. Formal [4+2] cycloaddition of di-tert-butyl 2-ethoxycyclobutane-1,1-dicarboxylate with ketones or aldehydes and tandem lactonization.

    PubMed

    Okado, Ryohei; Nowaki, Aya; Matsuo, Jun-Ichi; Ishibashi, Hiroyuki

    2012-01-01

    A catalytic amount of tin(IV) chloride catalyzed formal [4+2] cycloaddition reaction of di-tert-butyl 2-ethoxycyclobutane-1,1-carboxylate with ketones or aldehydes to give diethyl 6-ethoxydihydro-2H-pyran-3,3(4H)-dicarboxylates, whereas two equivalents of trimethylsilyl triflate promoted tandem [4+2] cycloaddition and lactonization to afford 3-oxo-2,6-dioxabicyclo[2.2.2]octane-4-carboxylate esters.

  9. Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission.

    PubMed

    Thio, L L; Wong, M; Yamada, K A

    2000-01-25

    To determine the effect of the ketone bodies beta-hydroxybutyrate (betaHB) and acetoacetate (AA) on excitatory and inhibitory neurotransmission in the mammalian CNS. The ketogenic diet is presumed to be an effective anticonvulsant regimen for some children with medically intractable seizures. However, its mechanism of action remains a mystery. According to one hypothesis, ketone bodies have anticonvulsant properties. The authors examined the effect of betaHB and AA on excitatory and inhibitory synaptic transmission in rat hippocampal-entorhinal cortex slices and cultured hippocampal neurons. In cultured neurons, their effect was also directly assayed on postsynaptic receptor properties. Finally, their ability to prevent spontaneous seizures was determined in a hippocampal-entorhinal cortex slice model. betaHB and AA did not alter synaptic transmission in these models. The anticonvulsant properties of the ketogenic diet do not result from a direct effect of ketone bodies on the primary voltage and ligand gated ion channels mediating excitatory or inhibitory neurotransmission in the hippocampus.

  10. Adsorptive effects of di-tri-octahedral smectite on Clostridium perfringens alpha, beta, and beta-2 exotoxins and equine colostral antibodies.

    PubMed

    Lawler, Jacquelin Boggs; Hassel, Diana M; Magnuson, Roberta J; Hill, Ashley E; McCue, Patrick M; Traub-Dargatz, Josie L

    2008-02-01

    To determine the adsorptive capability of di-tri-octahedral smectite (DTOS) on Clostridium perfringens alpha, beta, and beta-2 exotoxins and equine colostral antibodies. 3 C perfringens exotoxins and 9 colostral samples. Alpha, beta, and beta-2 exotoxins were individually co-incubated with serial dilutions of DTOS or bismuth subsalicylate, and the amount of toxin remaining after incubation was determined via toxin-specific ELISAs. Colostral samples from healthy mares were individually co-incubated with serial dilutions of DTOS, and colostral IgG concentrations were determined via single radial immunodiffusion assay. Di-tri-octahedral smectite decreased the amount of each C perfringens exotoxin in co-incubated samples in a dose-dependent manner and was more effective than bismuth subsalicylate at reducing exotoxins in vitro. Decreases in the concentration of IgG were detected in samples of colostrum that were combined with DTOS at 1:4 through 1:16 dilutions, whereas no significant decrease was evident with DTOS at the 1:32 dilution. Di-tri-octahedral smectite effectively adsorbed C perfringens exotoxins in vitro and had a dose-dependent effect on the availability of equine colostral antibodies. Results suggested that DTOS may be an appropriate adjunctive treatment in the management of neonatal clostridiosis in horses. In vivo studies are necessary to fully assess the clinical efficacy of DTOS treatment.

  11. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke

    PubMed Central

    Yin, Junxiang; Han, Pengcheng; Tang, Zhiwei; Liu, Qingwei; Shi, Jiong

    2015-01-01

    Stroke is one of the leading causes of death. Growing evidence indicates that ketone bodies have beneficial effects in treating stroke, but their underlying mechanism remains unclear. Our previous study showed ketone bodies reduced reactive oxygen species by using NADH as an electron donor, thus increasing the NAD+/NADH ratio. In this study, we investigated whether mitochondrial NAD+-dependent Sirtuin 3 (SIRT3) could mediate the neuroprotective effects of ketone bodies after ischemic stroke. We injected mice with either normal saline or ketones (beta-hydroxybutyrate and acetoacetate) at 30 minutes after ischemia induced by transient middle cerebral artery (MCA) occlusion. We found that ketone treatment enhanced mitochondria function, reduced oxidative stress, and therefore reduced infarct volume. This led to improved neurologic function after ischemia, including the neurologic score and the performance in Rotarod and open field tests. We further showed that ketones' effects were achieved by upregulating NAD+-dependent SIRT3 and its downstream substrates forkhead box O3a (FoxO3a) and superoxide dismutase 2 (SOD2) in the penumbra region since knocking down SIRT3 in vitro diminished ketones' beneficial effects. These results provide us a foundation to develop novel therapeutics targeting this SIRT3-FoxO3a-SOD2 pathway. PMID:26058697

  12. Ketone body metabolism and its defects.

    PubMed

    Fukao, Toshiyuki; Mitchell, Grant; Sass, Jörn Oliver; Hori, Tomohiro; Orii, Kenji; Aoyama, Yuka

    2014-07-01

    Acetoacetate (AcAc) and 3-hydroxybutyrate (3HB), the two main ketone bodies of humans, are important vectors of energy transport from the liver to extrahepatic tissues, especially during fasting, when glucose supply is low. Blood total ketone body (TKB) levels should be evaluated in the context of clinical history, such as fasting time and ketogenic stresses. Blood TKB should also be evaluated in parallel with blood glucose and free fatty acids (FFA). The FFA/TKB ratio is especially useful for evaluation of ketone body metabolism. Defects in ketogenesis include mitochondrial HMG-CoA synthase (mHS) deficiency and HMG-CoA lyase (HL) deficiency. mHS deficiency should be considered in non-ketotic hypoglycemia if a fatty acid beta-oxidation defect is suspected, but cannot be confirmed. Patients with HL deficiency can develop hypoglycemic crises and neurological symptoms even in adolescents and adults. Succinyl-CoA-3-oxoacid CoA transferase (SCOT) deficiency and beta-ketothiolase (T2) deficiency are two defects in ketolysis. Permanent ketosis is pathognomonic for SCOT deficiency. However, patients with "mild" SCOT mutations may have nonketotic periods. T2-deficient patients with "mild" mutations may have normal blood acylcarnitine profiles even in ketoacidotic crises. T2 deficient patients cannot be detected in a reliable manner by newborn screening using acylcarnitines. We review recent data on clinical presentation, metabolite profiles and the course of these diseases in adults, including in pregnancy.

  13. Ketones block amyloid entry and improve cognition in an Alzheimer's model.

    PubMed

    Yin, Jun Xiang; Maalouf, Marwan; Han, Pengcheng; Zhao, Minglei; Gao, Ming; Dharshaun, Turner; Ryan, Christopher; Whitelegge, Julian; Wu, Jie; Eisenberg, David; Reiman, Eric M; Schweizer, Felix E; Shi, Jiong

    2016-03-01

    Sporadic Alzheimer's disease (AD) is responsible for 60%-80% of dementia cases, and the most opportune time for preventive intervention is in the earliest stage of its preclinical phase. As traditional mitochondrial energy substrates, ketone bodies (ketones, for short), beta-hydroxybutyrate, and acetoacetate, have been reported to provide symptomatic improvement and disease-modifying activity in epilepsy and neurodegenerative disorders. Recently, ketones are thought as more than just metabolites and also as endogenous factors protecting against AD. In this study, we discovered a novel neuroprotective mechanism of ketones in which they blocked amyloid-β 42, a pathologic hallmark protein of AD, entry into neurons. The suppression of intracellular amyloid-β 42 accumulation rescued mitochondrial complex I activity, reduced oxidative stress, and improved synaptic plasticity. Most importantly, we show that peripheral administration of ketones significantly reduced amyloid burden and greatly improved learning and memory ability in a symptomatic mouse model of AD. These observations provide us insights to understand and to establish a novel therapeutic use of ketones in AD prevention. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Benzoyl radicals from (hetero)aromatic aldehydes. Decatungstate photocatalyzed synthesis of substituted aromatic ketones.

    PubMed

    Ravelli, Davide; Zema, Michele; Mella, Mariella; Fagnoni, Maurizio; Albini, Angelo

    2010-09-21

    Benzoyl radicals are generated directly from (hetero)aromatic aldehydes upon tetrabutylammonium decatungstate ((n-Bu(4)N)(4)W(10)O(32)), TBADT) photocatalysis under mild conditions. In the presence of alpha,beta-unsaturated esters, ketones and nitriles radical conjugate addition ensues and gives the corresponding beta-functionalized aryl alkyl ketones in moderate to good yields (stereoselectively in the case of 3-methylene-2-norbornanone). Due to the mild reaction conditions the presence of various functional groups on the aromatic ring is tolerated (e.g. methyl, methoxy, chloro). The method can be applied to hetero-aromatic aldehydes whether electron-rich (e.g. thiophene-2-carbaldehyde) or electron-poor (e.g. pyridine-3-carbaldehyde).

  15. Enantioselective Reduction of Ketones Catalyzed by Rare-Earth Metals Complexed with Phenoxy Modified Chiral Prolinols.

    PubMed

    Song, Peng; Lu, Chengrong; Fei, Zenghui; Zhao, Bei; Yao, Yingming

    2018-06-01

    Enantioselective reduction of ketones and α,β-unsaturated ketones by pinacolborane (HBpin) has been well-established by using chiral rare-earth metal catalysts with phenoxy modified prolinols. A number of highly optically active alcohols were obtained from reduction of simple ketones catalyzed by ytterbium complex 1 [L 4 Yb(L 4 H)] (H 2 L 4 = ( S)-2- tert-butyl-6-((2-(hydroxydiphenylmethyl)pyrrolidin-1-yl)methyl)phenol). Moreover, α,β-unsaturated ketones were selectively reduced to a wide range of chiral allylic alcohols with excellent yields, high enantioselectivity, and complete chemoselectivity, catalyzed by a single component chiral ytterbium complex 2 [L 1 Yb(L 1 H)] (H 2 L 1 = ( S)-2,4-di- tert-butyl-6-((2-(hydroxydiphenylmethyl)pyrrolidin-1-yl)methyl)phenol).

  16. Ketones urine test

    MedlinePlus

    Ketone bodies - urine; Urine ketones; Ketoacidosis - urine ketones test; Diabetic ketoacidosis - urine ketones test ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ...

  17. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrn, Marianne; Calvin, Melvin

    1965-12-01

    Using infra-red spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and {beta}-ketoesters reacting with oxygen 18 enriched water. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophylls a and b and chlorophyll derivatives.

  18. Nickel-catalyzed cycloadditions of unsaturated hydrocarbons, aldehydes, and ketones.

    PubMed

    Tekavec, Thomas N; Louie, Janis

    2008-04-04

    The nickel-catalyzed cycloaddition of unsaturated hydrocarbons and carbonyls is reported. Diynes and enynes were used as coupling partners. Carbonyl substrates include both aldehdyes and ketones. Reactions of diynes and aldehydes afforded the [3,3] electrocyclic ring-opened tautomers, rather than pyrans, in high yields. The cycloaddition reaction of enynes and aldehydes afforded two distinct products. A new carbon-carbon bond is formed, prior to a competitive beta-hydrogen elimination of a nickel alkoxide, between the carbonyl carbon and either one of the carbons of the olefin or the alkyne. The steric hindrance of the enyne greatly affected the chemoselectivity of the cycloaddition of enynes and aldehydes. In some cases, dihydropyran was also formed. The scope of the cycloaddition reaction was expanded to include the coupling of enynes and ketones. No beta-hydrogen elimination was observed in cycloaddition reaction of enynes and ketones. Instead, C-O bond-forming reductive elimination occurred exclusively to afford dihydropyrans in excellent yields. In all cases, complete chemoselectivity was observed; only dihydropyrans where the carbonyl carbon forms a carbon-carbon bond with a carbon of the olefin, rather than of the alkyne, were observed. All cycloaddition reactions occur at room temperature and employ nickel catalysts bearing the hindered 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or its saturated analogue, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolin-2-ylidene (SIPr).

  19. Silica gel promotes reductions of aldehydes and ketones by N-heterocyclic carbene boranes.

    PubMed

    Taniguchi, Tsuyoshi; Curran, Dennis P

    2012-09-07

    N-Heterocyclic carbene boranes (NHC-boranes) such as 1,3-dimethylimidazol-2-ylidine trihydridoborane (diMe-Imd-BH(3)) serve as practical hydride donors for the reduction of aldehydes and ketones in the presence of silica gel. Primary and secondary alcohols are formed in good yields under ambient conditions. Aldehydes are selectively reduced in the presence of ketones. One, two, or even all three of the boron hydrides can be transferred. The process is attractive because all the components are stable and easy to handle and because both the reaction and isolation procedures are convenient.

  20. The interconversion and disposal of ketone bodies in untreated and injured post-absorptive rats.

    PubMed

    Barton, R N

    1973-11-01

    [3-(14)C]Acetoacetate and beta-hydroxy[3-(14)C]butyrate were used to investigate the kinetics of ketone body metabolism in rats 3h after bilateral hind-limb ischaemia and in controls, both groups being in the post-absorptive state and in a 20 degrees C environment. Calculations were carried out as described by Heath & Barton (1973) and the following conclusions were reached. 1. In both injured and control rats, the rates of irreversible disposal (extrahepatic utilization) of beta-hydroxybutyrate and acetoacetate were proportional within experimental error to their blood concentrations up to at least 0.4mm (the maximum found in these rats), implying that they were determined, via these concentrations, by the rates of production by the liver. 2. Conversion of blood beta-hydroxybutyrate into blood acetoacetate took place mainly in the liver, but the reverse process occurred mainly in extrahepatic tissues. 3. The ;metabolic clearance rate' (the volume of blood which, if completely cleared of substrate in unit time, would give a disposal rate equal to that in the whole animal) was calculated for beta-hydroxybutyrate and acetoacetate. Comparison with the cardiac output showed that in control rats the proportion of circulating beta-hydroxybutyrate extracted was lower than that of acetoacetate, clearance of which appeared almost complete. After injury both metabolic clearance rates decreased, probably because of the lower cardiac output. 4. After injury, because the average blood concentrations of ketone bodies, especially acetoacetate, were higher, the mean total rate of disposal also increased. Assuming complete oxidation, the mean contribution of ketone bodies to the whole body O(2) consumption rose from 7 to 15%.

  1. Ketones blood test

    MedlinePlus

    Acetone bodies; Ketones - serum; Nitroprusside test; Ketone bodies - serum; Ketones - blood; Ketoacidosis - ketones blood test ... fat cells break down in the blood. This test is used to diagnose ketoacidosis . This is a ...

  2. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    PubMed

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Pyrrolidinyl-camphor derivatives as a new class of organocatalyst for direct asymmetric Michael addition of aldehydes and ketones to beta-nitroalkenes.

    PubMed

    Ting, Ying-Fang; Chang, Chihliang; Reddy, Raju Jannapu; Magar, Dhananjay R; Chen, Kwunmin

    2010-06-18

    Practical and convenient synthetic routes have been developed for the synthesis of a new class of pyrrolidinyl-camphor derivatives (7 a-h). These novel compounds were screened as catalysts for the direct Michael addition of symmetrical alpha,alpha-disubstituted aldehydes to beta-nitroalkenes. When this asymmetric transformation was catalyzed by organocatalyst 7 f, the desired Michael adducts were obtained in high chemical yields, with high to excellent stereoselectivities (up to 98:2 diastereomeric ratio (d.r.) and 99 % enantiomeric excess (ee)). The scope of the catalytic system was expanded to encompass various aldehydes and ketones as the donor sources. The synthetic application was demonstrated by the synthesis of a tetrasubstituted-cyclohexane derivative from (S)-citronellal, with high stereoselectivity.

  4. Cerebral utilization of glucose, ketone bodies and oxygen in starving infant rats and the effect of intrauterine growth retardation.

    PubMed

    Dahlquist, G

    1976-10-01

    Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate and oxygen and brain DNA content was measured at 20 days of age in intrauterine growth retarded (IUGR) rats and normal littermates after 48 and 72 h of starvation. Cerebral blood flow (CBF) was measured with labeled microspheres in other comparable groups of IUGR and control rats. CBF was similar in IUGR and normal littermates (0.57+/-0.09 and 0.58+/-0.10 ml/min respectively). After 48 h of starvation, arterial glucose was significantly lower in IUGR than control animals but the arterial concentrations of ketone bodies were similar. After 48 h of starvation, cerebral arteriovenous difference of beta-hydroxybutyrate was significantly higher in control than IUGR rats also when expressed per mg brain DNA as was the fractional uptake of D-beta-hydroxybutyrate. After 72 h of starvation, arterial concentrations of ketone bodies were significantly lower in IUGR rats than controls but the fractional uptake of D-beta-hydroxybutyrate was increased compared to IUGR rats starved for 48 h. The average percentage of calculated total substrate uptake (mumol/min) accounted for by ketone bodies increased in control animals from 31.1% after 48 h of starvation to 41.0% after 72 h of starvation. In IUGR rats these percentage values were 26.5 and 25.7 respectively. After 72 h of starvation the fraction of total cerebral uptake of substrates accounted for by ketone bodies was significantly higher in control that IUGR rats. As total cerebral uptake of substrates was similar between IUGR and control animals it is concluded that IUGR rats are more dependent on glucose as a substrate for the brain during starvation.

  5. A Cu(I)-Catalyzed C-H α-Amination of Aryl Ketones. Direct Synthesis of Imidazolinones

    PubMed Central

    Zhao, Baoguo; Du, Haifeng; Shi, Yian

    2009-01-01

    This paper describes an α-amination process of aryl ketones using CuCl as catalyst and di-tert-butyldiaziridinone as the nitrogen source. A variety of imidazolinone derivatives are prepared in moderate yields under mild conditions. A possible catalytic cycle is proposed for this reaction. PMID:19402696

  6. Doubly Vinylogous Aldol Reaction of Furoate Esters with Aldehydes and Ketones.

    PubMed

    Hartwig, William T; Sammakia, Tarek

    2017-01-06

    The use of bulky Lewis acids, aluminum tris(2,6-diphenylphenoxide) (ATPH) and aluminum tris(2,6-di-2-naphthylphenoxide) (ATNP), in the doubly vinylogous aldol reaction between methyl-5-methyl-2-furoate and aldehydes or ketones is described. These reactions proceed smoothly and in high yields with both enolizable and non-enolizable substrates. This C-C bond-forming reaction enables a new bond construction for the synthesis of functionalized furans.

  7. Raspberry Ketone

    MedlinePlus

    ... raspberry ketone solution to the scalp might increase hair growth in people with hair loss. Male pattern baldness ( ... raspberry ketone solution to the scalp might increase hair growth in people with male pattern baldness Obesity. Early ...

  8. Value of point-of-care ketones in assessing dehydration and acidosis in children with gastroenteritis.

    PubMed

    Levy, Jason A; Waltzman, Mark; Monuteaux, Michael C; Bachur, Richard G

    2013-11-01

    Children with gastroenteritis often develop dehydration with metabolic acidosis. Serum ketones are frequently elevated in this population. The goal was to determine the relationship between initial serum ketone concentration and both the degree of dehydration and the magnitude of acidosis. This was a secondary analysis of a prospective trial of crystalloid administration for rapid rehydration. Children 6 months to 6 years of age with gastroenteritis and dehydration were enrolled. A point-of-care serum ketone (beta-hydroxybutyrate) concentration was obtained at the time of study enrollment. The relationship between initial serum ketone concentration and a prospectively assigned and previously validated clinical dehydration score, and serum bicarbonate concentration, was analyzed. A total of 188 patients were enrolled. The median serum ketone concentration was elevated at 3.1 mmol/L (interquartile range [IQR] = 1.2 to 4.6 mmol/L), and the median dehydration score was consistent with moderate dehydration. A significant positive relationship was found between serum ketone concentration and the clinical dehydration score (Spearman's rho = 0.22, p = 0.003). Patients with moderate dehydration had a higher median serum ketone concentration than those with mild dehydration (3.6 mmol/L vs. 1.4 mmol/L, p = 0.007). Additionally, the serum ketone concentration was inversely correlated with serum bicarbonate concentration (ρ = -0.26, p < 0.001). Children with gastroenteritis and dehydration have elevated serum ketone concentrations that correlate with both degree of dehydration and magnitude of metabolic acidosis. Point-of-care serum ketone measurement may be a useful tool to inform management decisions at the point of triage or in the initial evaluation of children with gastroenteritis and dehydration. © 2013 by the Society for Academic Emergency Medicine.

  9. Ketone Bodies in Epilepsy

    PubMed Central

    McNally, Melanie A.; Hartman, Adam L.

    2014-01-01

    Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders. PMID:22268909

  10. Ketone bodies in epilepsy.

    PubMed

    McNally, Melanie A; Hartman, Adam L

    2012-04-01

    Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  11. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes.

    PubMed

    Blázquez, C; Woods, A; de Ceballos, M L; Carling, D; Guzmán, M

    1999-10-01

    The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.

  12. Highly efficient Cu(I)-catalyzed oxidation of alcohols to ketones and aldehydes with diaziridinone.

    PubMed

    Zhu, Yingguang; Zhao, Baoguo; Shi, Yian

    2013-03-01

    A novel and efficient Cu(I)-catalyzed oxidation of alcohols has been achieved with di-tert-butyldiaziridinone as the oxidant under mild conditions. A wide variety of primary and secondary alcohols with various functional groups can be oxidized to aldehydes and ketones in high yields. The reaction proceeds under neutral conditions making it compatible with acid- or base-sensitive substrates, and it is amenable to gram scale.

  13. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions.

    PubMed

    Haces, María L; Hernández-Fonseca, Karla; Medina-Campos, Omar N; Montiel, Teresa; Pedraza-Chaverri, José; Massieu, Lourdes

    2008-05-01

    Ketone bodies play a key role in mammalian energy metabolism during the suckling period. Normally ketone bodies' blood concentration during adulthood is very low, although it can rise during starvation, an exogenous infusion or a ketogenic diet. Whenever ketone bodies' levels increase, their oxidation in the brain rises. For this reason they have been used as protective molecules against refractory epilepsy and in experimental models of ischemia and excitotoxicity. The mechanisms underlying the protective effect of these compounds are not completely understood. Here, we studied a possible antioxidant capacity of ketone bodies and whether it contributes to the protection against oxidative damage induced during hypoglycemia. We report for the first time the scavenging capacity of the ketone bodies, acetoacetate (AcAc) and both the physiological and non-physiological isomers of beta-hydroxybutyrate (D- and L-BHB, respectively), for diverse reactive oxygen species (ROS). Hydroxyl radicals (.OH) were effectively scavenged by D- and L-BHB. In addition, the three ketone bodies were able to reduce cell death and ROS production induced by the glycolysis inhibitor, iodoacetate (IOA), while only D-BHB and AcAc prevented neuronal ATP decline. Finally, in an in vivo model of insulin-induced hypoglycemia, the administration of D- or L-BHB, but not of AcAc, was able to prevent the hypoglycemia-induced increase in lipid peroxidation in the rat hippocampus. Our data suggest that the antioxidant capacity contributes to protection of ketone bodies against oxidative damage in in vitro and in vivo models associated with free radical production and energy impairment.

  14. Sulphur and oxygen sequestration of n-C37 and n-C38 unsaturated ketones in an immature kerogen and the release of their carbon skeletons during early stages of thermal maturation

    USGS Publications Warehouse

    Koopmans, M.P.; Schaeffer-Reiss, C.; De Leeuw, J. W.; Lewan, M.D.; Maxwell, J.R.; Schaeffer, P.; Sinninghe, Damste J.S.

    1997-01-01

    Sedimentary rock from the Gessoso-solfifera Formation (Messinian) in the Vena del Gesso Basin (northern Italy) containing immature (Ro = 0.25%) S-rich organic matter was artificially matured by hydrous pyrolysis at temperatures from 160 to 330??C for 72 h to study the diagenetic fate of n-C37 and n-C38 di-and tri-unsaturated methyl and ethyl ketones (alkenones) biosynthesised by several prymnesiophyte algae. During early diagenesis, the alkenones are incorporated into the kerogen by both sulphur and oxygen cross-linking as indicated by chemical degradation experiments with the kerogen of the unheated sample. Heating at temperatures between 160 and 260??C, which still represents early stages of thermal maturation, produces large amounts (up to 1 mg/g TOC) of S-bound, O-bound, and both S-and O-bound n-C37 and n-C38 skeletons, saturated n-C37 and n-C38 methyl, ethyl, and mid-chain ketones, C37 and C38 mid-chain 2,5-di-n-alkylthiophenes, C37 and C38 1,2-di-n-alkylbenzenes, and C37 and C38 n-alkanes. With increasing thermal maturation, three forms of the n-C37 and n-C38 skeletons are relatively stable (saturated hydrocarbons, 1,2-di-n-alkylbenzenes and saturated ketones), whereas the S-and O-bound skeletons are relatively labile. These results suggest that in natural situations saturated ketones with an n-C37 and n-C38 skeleton can be expected as well as the corresponding hydrocarbons. Copyright ?? 1997 Elsevier Science Ltd.

  15. Sulphur and oxygen sequestration of n-C 37 and n-C 38 unsaturated ketones in an immature kerogen and the release of their carbon skeletons during early stages of thermal maturation

    NASA Astrophysics Data System (ADS)

    Koopmans, Martin P.; Schaeffer-Reiss, Christine; de Leeuw, Jan W.; Lewan, Michael D.; Maxwell, James R.; Schaeffer, Philippe; Sinninghe Damsté, Jaap S.

    1997-06-01

    Sedimentary rock from the Gessoso-solfifera Formation (Messinian) in the Vena del Gesso Basin (northern Italy) containing immature ( Ro = 0.25%) S-rich organic matter was artificially matured by hydrous pyrolysis at temperatures from 160 to 330°C for 72 h to study the diagenetic fate of n-C 37 and n-C 38 di- and tri-unsaturated methyl and ethyl ketones (alkenones) biosynthesised by several prymnesiophyte algae. During early diagenesis, the alkenones are incorporated into the kerogen by both sulphur and oxygen cross-linking as indicated by chemical degradation experiments with the kerogen of the unheated sample. Heating at temperatures between 160 and 260°C, which still represents early stages of thermal maturation, produces large amounts (up to 1 mg/g TOC) of S-bound, O-bound, and both S- and O-bound n-C 37 and n-C 38 skeletons, saturated n-C 37 and n-C38 methyl, ethyl, and mid-chain ketones, C 37 and C 38 mid-chain 2,5-di- n-alkylthiophenes, C 37 and C 38 1,2-di- n-alkylbenzenes, and C 37 and C 38n-alkanes. With increasing thermal maturation, three forms of the n-C 37 and n-C 38 skeletons are relatively stable (saturated hydrocarbons, 1,2-di- n-alkylbenzenes and saturated ketones), whereas the S- and O-bound skeletons are relatively labile. These results suggest that in natural situations saturated ketones with an n-C 37 and n-C 38 skeleton can be expected as well as the corresponding hydrocarbons.

  16. Simple one-pot conversion of aldehydes and ketones to enals.

    PubMed

    Valenta, Petr; Drucker, Natalie A; Bode, Jeffrey W; Walsh, Patrick J

    2009-05-21

    A simple and efficient method to convert aldehydes into alpha,beta-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH(3).SMe(2) generates tris(ethoxyvinyl) borane. Transmetalation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride, the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure.

  17. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    PubMed

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  18. Highly Efficient Cu(I)-Catalyzed Oxidation of Alcohols to Ketones and Aldehydes with Diaziridinone

    PubMed Central

    Zhu, Yingguang; Zhao, Baoguo

    2013-01-01

    A novel and efficient Cu(I)-catalyzed oxidation of alcohols has been achieved with di-tert-butyldiaziridinone as oxidant under mild conditions. A wide variety of primary and secondary alcohols with various functional groups can be oxidized to aldehydes and ketones in high yields. The reaction proceeds under neutral conditions making it compatible with acid or base-sensitive substrates, and it is amenable to gram scale. PMID:23413952

  19. Ketones and Human Performance.

    PubMed

    Scott, Jonathan M; Deuster, Patricia A

    Everyone is seeking nutritional strategies that might benefit performance. One approach receiving much attention is ketones, or ketosis. Ketones are very simple compounds made of hydrogen, carbon, and oxygen, and ketosis is a metabolic state whereby the body uses predominantly ketones. Ketosis can be achieved by fasting for longer than 72 hours or by following a very lowcarbohydrate, high-fat diet (ketogenic diet) for several days to weeks. Alternatively, ketone supplements purportedly induce ketosis rapidly and do not require strict adherence to any specific type of diet; however, much of the touted benefits are anecdotal. A potential role for ketosis as a performance enhancer was first introduced in 1983 with the idea that chronic ketosis without caloric restriction could preserve submaximal exercise capability by sparing glycogen or conserving the limited carbohydrate stores. Few human studies on the effects of a ketogenic diet on performance have yielded positive results, and most studies have yielded equivocal or null results, and a few negative results. Many questions about ketones relevant to Special Operations Forces (SOF) remain unanswered. At present, a ketogenic diet and/or a ketone supplement do not appear confer performance benefits for SOF. Instead, Operators should engage with their unit dietitian to develop individualized nutritional strategies based on unique mission requirements. The authors review the concept of a ketogenic diet, describe some potential benefits and risks of ketosis, review the performance literature and how to measure ketone status, and then summarize the landscape in 2017. 2017.

  20. Ambient Temperature Synthesis of High Enantiopurity N-Protected Peptidyl Ketones by Peptidyl Thiol Ester–Boronic Acid Cross-Coupling

    PubMed Central

    Yang, Hao; Li, Hao; Wittenberg, Rüdiger; Egi, Masahiro; Huang, Wenwei; Liebeskind, Lanny S.

    2009-01-01

    α-Amino acid thiol esters derived from N-protected mono-, di-, and tripeptides couple with aryl, π-electron-rich heteroaryl, or alkenyl boronic acids in the presence of stoichiometric Cu(I) thiophene-2-carboxylate (CuTC) and catalytic Pd2(dba)3/triethylphosphite to generate the corresponding N-protected peptidyl ketones in good to excellent yields and in high enantiopurity. Triethylphosphite plays a key role as a supporting ligand by mitigating an undesired palladium-catalyzed decarbonylation-β-elimination of the α-amino thiol esters. The peptidyl ketone synthesis proceeds at room temperature under non-basic conditions and demonstrates a high tolerance to functionality. PMID:17263394

  1. Exogenous Ketone Supplements Reduce Anxiety-Related Behavior in Sprague-Dawley and Wistar Albino Glaxo/Rijswijk Rats

    PubMed Central

    Ari, Csilla; Kovács, Zsolt; Juhasz, Gabor; Murdun, Cem; Goldhagen, Craig R.; Koutnik, Andrew P.; Poff, Angela M.; Kesl, Shannon L.; D’Agostino, Dominic P.

    2016-01-01

    Nutritional ketosis has been proven effective for seizure disorders and other neurological disorders. The focus of this study was to determine the effects of ketone supplementation on anxiety-related behavior in Sprague-Dawley (SPD) and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. We tested exogenous ketone supplements added to food and fed chronically for 83 days in SPD rats and administered sub-chronically for 7 days in both rat models by daily intragastric gavage bolus followed by assessment of anxiety measures on elevated plus maze (EPM). The groups included standard diet (SD) or SD + ketone supplementation. Low-dose ketone ester (LKE; 1,3-butanediol-acetoacetate diester, ~10 g/kg/day, LKE), high dose ketone ester (HKE; ~25 g/kg/day, HKE), beta-hydroxybutyrate-mineral salt (βHB-S; ~25 g/kg/day, KS) and βHB-S + medium chain triglyceride (MCT; ~25 g/kg/day, KSMCT) were used as ketone supplementation for chronic administration. To extend our results, exogenous ketone supplements were also tested sub-chronically on SPD rats (KE, KS and KSMCT; 5 g/kg/day) and on WAG/Rij rats (KE, KS and KSMCT; 2.5 g/kg/day). At the end of treatments behavioral data collection was conducted manually by a blinded observer and with a video-tracking system, after which blood βHB and glucose levels were measured. Ketone supplementation reduced anxiety on EPM as measured by less entries to closed arms (sub-chronic KE and KS: SPD rats and KSMCT: WAG/Rij rats), more time spent in open arms (sub-chronic KE: SPD and KSMCT: WAG/Rij rats; chronic KSMCT: SPD rats), more distance traveled in open arms (chronic KS and KSMCT: SPD rats) and by delayed latency to entrance to closed arms (chronic KSMCT: SPD rats), when compared to control. Our data indicates that chronic and sub-chronic ketone supplementation not only elevated blood βHB levels in both animal models, but reduced anxiety-related behavior. We conclude that ketone supplementation may represent a promising anxiolytic strategy through a

  2. Clinical review: Ketones and brain injury

    PubMed Central

    2011-01-01

    Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury. PMID:21489321

  3. Ketones as directing groups in photocatalytic sp3 C–H fluorination† †Electronic supplementary information (ESI) available. CCDC 1556373, 1556374 and 1556555. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc02703f

    PubMed Central

    Bume, Desta Doro; Pitts, Cody Ross; Ghorbani, Fereshte; Harry, Stefan Andrew; Capilato, Joseph N.; Siegler, Maxime A.

    2017-01-01

    The ubiquitous ketone carbonyl group generally deactivates substrates toward radical-based fluorinations, especially sites closest to it. Herein, ketones are used instead to direct aliphatic fluorination using Selectfluor, catalytic benzil, and visible light. Selective β- and γ-fluorination are demonstrated on rigid mono-, di-, tri-, and tetracyclic (steroidal) substrates employing both cyclic and exocyclic aliphatic ketones as directing groups. PMID:29147517

  4. Ketone bodies as signaling metabolites

    PubMed Central

    Newman, John C.; Verdin, Eric

    2014-01-01

    Traditionally, the ketone body β-hydroxybutyrate (βOHB) has been looked upon as a carrier of energy from liver to peripheral tissues during fasting or exercise. However, βOHB also signals via extracellular receptors and acts as an endogenous inhibitor of histone deacetylases (HDACs). These recent findings support a model in which βOHB functions to link the environment, in this case the diet, and gene expression via chromatin modifications. Here, we review the regulation and functions of ketone bodies, the relationship between ketone bodies and calorie restriction, and the implications of HDAC inhibition by the ketone body βOHB in the modulation of metabolism, and diseases of aging. PMID:24140022

  5. Facile Rearrangement of 3-Oxoalkyl Radicals is Evident in Low-Temperature Gas-Phase Oxidation of Ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheer, Adam M.; Welz, Oliver; Sasaki, Darryl Y.

    The pulsed photolytic chlorine-initiated oxidation of methyl-tert-butyl ketone (MTbuK), di-tert-butyl ketone (DTbuK), and a series of partially deuterated diethyl ketones (DEK) is studied in the gas phase at 8 Torr and 550–650 K. Products are monitored as a function of reaction time, mass, and photoionization energy using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. The results establish that the primary 3-oxoalkyl radicals of those ketones, formed by abstraction of a hydrogen atom from the carbon atom in γ-position relative to the carbonyl oxygen, undergo a rapid rearrangement resulting in an effective 1,2-acyl group migration, similar to that inmore » a Dowd–Beckwith ring expansion. Without this rearrangement, peroxy radicals derived from MTbuK and DTbuK cannot undergo HO2 elimination to yield a closed-shell unsaturated hydrocarbon coproduct. However, not only are these coproducts observed, but they represent the dominant oxidation channels of these ketones under the conditions of this study. For MTbuK and DTbuK, the rearrangement yields a more stable tertiary radical, which provides the thermodynamic driving force for this reaction. Even in the absence of such a driving force in the oxidation of partially deuterated DEK, the 1,2-acyl group migration is observed. Quantum chemical (CBS-QB3) calculations show the barrier for gas-phase rearrangement to be on the order of 10 kcal mol–1. The MTbuK oxidation experiments also show several minor channels, including β-scission of the initial radicals and cyclic ether formation.« less

  6. Ketone body metabolism and cardiovascular disease

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.

    2013-01-01

    Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451

  7. Influence of sulfur oxidation state and steric bulk upon trifluoromethyl ketone (TFK) binding kinetics to carboxylesterases and fatty acid amide hydrolase (FAAH)

    PubMed Central

    Wheelock, Craig E.; Nishi, Kosuke; Ying, Andy; Jones, Paul D.; Colvin, Michael E.; Olmstead, Marilyn M.; Hammock, Bruce D.

    2009-01-01

    Carboxylesterases metabolize numerous exogenous and endogenous ester-containing compounds including the chemotherapeutic agent CPT-11, anti-influenza viral agent oseltamivir and many agrochemicals. Trifluoromethyl ketone (TFK)-containing compounds with a sulfur atom beta to the ketone moiety are some of the most potent carboxylesterase and amidase inhibitors identified to date. This study examined the effects of alkyl chain length (i.e., steric effects) and sulfur oxidation state upon TFK inhibitor potency (IC50) and binding kinetics (ki). The selective carboxylesterase inhibitor benzil was used as a non-TFK containing control. These effects were examined using two commercial esterases (porcine and rabbit liver esterase) and two human recombinant esterases (hCE-1 and hCE-2) as well as human recombinant fatty acid amide hydrolase (FAAH). In addition, the inhibition mechanism was examined using a combination of 1H NMR, X-ray crystallography and ab initio calculations. Overall, the data show that while sulfur oxidation state profoundly affects both inhibitor potency and binding kinetics, the steric effects dominate and override the contributions of sulfur oxidation. In addition, the data suggest that inclusion of a sulfur atom beta to the ketone contributes an increase (~5-fold) in inhibitor potency due to effects upon ketone hydration and/or intramolecular hydrogen bond formation. These results provide further information on the nature of the TFK binding interaction and will be useful in increasing our understanding of this basic biochemical process. PMID:18023188

  8. EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE

    DOEpatents

    Seaborg, G.T.

    1961-08-01

    A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

  9. The performance of a glucose-ketone meter in the diagnosis of diabetic ketoacidosis in patients with type 2 diabetes in the emergency room.

    PubMed

    Voulgari, Christina; Tentolouris, Nicholas

    2010-07-01

    Diabetic ketoacidosis (DKA) is a serious metabolic complication. One of its precipitating causes is insulin omission. DKA requires early diagnosis and strict glucose control, which increases the use of glucose meters in the Emergency Room (ER). We aimed to determine the performance of a glucose-ketone meter in the diagnosis of DKA. From 450 type 2 diabetes mellitus insulin-treated patients attending the ER with a capillary glucose level >13.9 mmol/L, 50 patients (26 men and 24 women, mean age 60.2 +/- 8.2 years) had DKA. Capillary glucose and beta-hydroxybutyrate (beta-OHB) were measured with the Precision-Xtra device (Abbott Laboratories, Abingdon, UK). Serum glucose and biochemical parameters were measured on an automatic analyzer; serum beta-OHB was determined using an enzymatic end-point spectrophotometric method. Urine ketones were determined using a semiquantitative assay (Ketodiastix, Bayer Diagnostics, Stoke Poges, Slough, UK). Serum and capillary beta-OHB values were highly correlated (r = 0.99, P < 0.001), and the mean difference between them was 0.49 mmol/L (95% confidence interval [CI], 0.35-0.95 mmol/L; P = 0.81). Similarly, serum and capillary glucose values were significantly correlated (r = 0.86, P < 0.001), and the mean difference between them was 0.43 mmol/L (95% CI, 0.82-0.93 mmol/L; P = 0.71). Patients with DKA were inadequately treated with insulin and missed clinic appointments: 80% of patients with DKA compared to 20% of patients without DKA. In all cases, DKA was attributed to insulin omission. Capillary ketonemia (beta-OHB >3.0 mmol/L) had the highest performance (sensitivity 99.87%, specificity 92.89%, positive predictive value 92.89%) for the diagnosis of DKA compared with serum ketonemia (sensitivity 90.45%, specificity 88.65%, positive predictive value 87.76%) or ketonuria (sensitivity 89.89%, specificity 52.73%, positive predictive value 41.87%). Implementation of measures such as home glucose and ketone monitoring can possibly

  10. Decarboxylative aldol reactions of allyl beta-keto esters via heterobimetallic catalysis.

    PubMed

    Lou, Sha; Westbrook, John A; Schaus, Scott E

    2004-09-22

    Mild and selective heterobimetallic-catalyzed decarboxylative aldol reactions involving allyl beta-keto esters have been developed. The reaction is promoted by Pd(0)- and Yb(III)-DIOP complexes at room temperature and involves the in situ formation of a ketone enolate from allyl beta-keto esters followed by addition of the enolate to aldehydes. The reaction is a new example of heterobimetallic catalysis in which the optimized reaction conditions require the addition of both metals.

  11. A Bio-Catalytic Approach to Aliphatic Ketones

    PubMed Central

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P.; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals. PMID:22416247

  12. A bio-catalytic approach to aliphatic ketones.

    PubMed

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid "Bio-Catalytic conversion" approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals.

  13. 40 CFR 721.4568 - Methylpolychloro aliphatic ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methylpolychloro aliphatic ketone. 721... Substances § 721.4568 Methylpolychloro aliphatic ketone. (a) Chemical substance and significant new uses... ketone (PMN No. P-91-1321) is subject to reporting under this section for the significant new uses...

  14. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    PubMed

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cerebral Ketone Metabolism During Development and Injury

    PubMed Central

    Prins, Mayumi L.

    2011-01-01

    Cerebral metabolism of ketones is a normal part of the process of brain development. While the mature brain relies on glucose as a primary fuel source, metabolism of ketone bodies remains an alternative energy source under conditions of starvation. The neuroprotective properties of brain ketone metabolism make this alternative substrate a viable therapeutic option for various pathologies. Since the ability to revert to utilizing ketones as an alternative substrate is greatest in the younger post-weaned brain, this particular therapeutic approach remains an untapped resource particularly for pediatric pathological conditions. PMID:22104087

  16. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury.

    PubMed

    Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra

    2010-04-23

    The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  17. Volatilization of ketones from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1982-01-01

    The overall mass-transfer coefficients for the volatilization from water of acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured simultaneously with the oxygen-absorption coefficient in a laboratory stirred water bath. The liquid-film and gas-film coefficients of the two-film model were determined for the ketones from the overall coefficients, and both film resistances were important for volatilization of the ketones.The liquid-film coefficients for the ketones varied with the 0.719 power of the molecular-diffusion coefficient, in agreement with the literature. The liquid-film coefficients showed a variable dependence on molecular weight, with the dependence ranging from the −0.263 power for acetone to the −0.378 power for 2-octanone. This is in contrast with the literature where a constant −0.500 power dependence on the molecular weight is assumed.The gas-film coefficients for the ketones showed no dependence on molecular weight, in contrast with the literature where a −0.500 power is assumed.

  18. Ketone bodies as epigenetic modifiers.

    PubMed

    Ruan, Hai-Bin; Crawford, Peter A

    2018-07-01

    Ketone body metabolism is a dynamic and integrated metabolic node in human physiology, whose roles include but extend beyond alternative fuel provision during carbohydrate restriction. Here we discuss the most recent observations suggesting that ketosis coordinates cellular function via epigenomic regulation. Ketosis has been linked to covalent modifications, including lysine acetylation, methylation, and hydroxybutyrylation, to key histones that serve as dynamic regulators of chromatin architecture and gene transcription. Although it remains to be fully established whether these changes to the epigenome are attributable to ketone bodies themselves or other aspects of ketotic states, the regulated genes mediate classical responses to carbohydrate restriction. Direct regulation of gene expression may occur in-vivo via through ketone body-mediated histone modifications during adherence to low-carbohydrate diets, fasting ketosis, exogenous ketone body therapy, and diabetic ketoacidosis. Additional convergent functional genomics, metabolomics, and proteomics studies are required in both animal models and in humans to identify the molecular mechanisms through which ketosis regulates nuclear signaling events in a myriad of conditions relevant to disease, and the contexts in which the benefits of ketosis might outweigh the risks.

  19. Ketone-DNA: a versatile postsynthetic DNA decoration platform.

    PubMed

    Dey, S; Sheppard, T L

    2001-12-13

    [reaction: see text] A general strategy for the functional diversification of DNA oligonucleotides under physiological conditions was developed. We describe the synthesis of DNA molecules bearing ketone ports (ketone-DNA) and the efficient postsynthetic decoration of ketone-DNA with structurally diverse aminooxy compounds.

  20. Novel ketone diet enhances physical and cognitive performance

    PubMed Central

    Murray, Andrew J.; Knight, Nicholas S.; Cole, Mark A.; Cochlin, Lowri E.; Carter, Emma; Tchabanenko, Kirill; Pichulik, Tica; Gulston, Melanie K.; Atherton, Helen J.; Schroeder, Marie A.; Deacon, Robert M. J.; Kashiwaya, Yoshihiro; King, M. Todd; Pawlosky, Robert; Rawlins, J. Nicholas P.; Tyler, Damian J.; Griffin, Julian L.; Robertson, Jeremy; Veech, Richard L.; Clarke, Kieran

    2016-01-01

    Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson’s disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.—Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance. PMID:27528626

  1. Ketone EC50 values in the Microtox test.

    PubMed

    Chen, H F; Hee, S S

    1995-03-01

    The Microtox EC50 values for the following ketones are reported in the following homologous series: straight chain methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hepatonone, 2-octanone, 2-decanone, and 2-tridecanone); methyl ketones substituted at one alpha carbon (3-methyl-2-butanone; 3,3-dimethyl-2-butanone); methyl substituted at two alpha carbons (2,4-dimethyl-3-pentanone; 2,2,4,4-tetramethyl-3-pentanone); phenyl groups replacing methyl in acetone (acetophenone; benzophenone); methyl groups substituted at the alpha carbons of cyclohexanone; and 2,3- 2,4-, and 2,5-hexanediones, most for the first time. While there were linear relationships between log EC50 and MW for the straight chain methyl ketones, and for methyl substitution at the alpha carbon for methyl ketones, there were no other linear relationships. As molecular weight increased, the EC50 values of soluble ketones decreased; as distance between two carbonyl groups decreased so too did EC50 values. Thus, for the ketones the geometry around the carbonyl group is an important determinant of toxicity as well as MW, water solubility, and octanol/water coefficient.

  2. Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate.

    PubMed

    Valdebenito, Rocío; Ruminot, Iván; Garrido-Gerter, Pamela; Fernández-Moncada, Ignacio; Forero-Quintero, Linda; Alegría, Karin; Becker, Holger M; Deitmer, Joachim W; Barros, L Felipe

    2016-10-01

    The effectiveness of ketogenic diets and intermittent fasting against neurological disorders has brought interest to the effects of ketone bodies on brain cells. These compounds are known to modify the metabolism of neurons, but little is known about their effect on astrocytes, cells that control the supply of glucose to neurons and also modulate neuronal excitability through the glycolytic production of lactate. Here we have used genetically-encoded Förster Resonance Energy Transfer nanosensors for glucose, pyruvate and ATP to characterize astrocytic energy metabolism at cellular resolution. Our results show that the ketone body beta-hydroxybutyrate strongly inhibited astrocytic glucose consumption in mouse astrocytes in mixed cultures, in organotypic hippocampal slices and in acute hippocampal slices prepared from ketotic mice, while blunting the stimulation of glycolysis by physiological and pathophysiological stimuli. The inhibition of glycolysis was paralleled by an increased ability of astrocytic mitochondria to metabolize pyruvate. These results support the emerging notion that astrocytes contribute to the neuroprotective effect of ketone bodies. © The Author(s) 2015.

  3. Availability of neurotransmitter glutamate is diminished when beta-hydroxybutyrate replaces glucose in cultured neurons.

    PubMed

    Lund, Trine M; Risa, Oystein; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2009-07-01

    Ketone bodies serve as alternative energy substrates for the brain in cases of low glucose availability such as during starvation or in patients treated with a ketogenic diet. The ketone bodies are metabolized via a distinct pathway confined to the mitochondria. We have compared metabolism of [2,4-(13)C]beta-hydroxybutyrate to that of [1,6-(13)C]glucose in cultured glutamatergic neurons and investigated the effect of neuronal activity focusing on the aspartate-glutamate homeostasis, an essential component of the excitatory activity in the brain. The amount of (13)C incorporation and cellular content was lower for glutamate and higher for aspartate in the presence of [2,4-(13)C]beta-hydroxybutyrate as opposed to [1,6-(13)C]glucose. Our results suggest that the change in aspartate-glutamate homeostasis is due to a decreased availability of NADH for cytosolic malate dehydrogenase and thus reduced malate-aspartate shuttle activity in neurons using beta-hydroxybutyrate. In the presence of glucose, the glutamate content decreased significantly upon activation of neurotransmitter release, whereas in the presence of only beta-hydroxybutyrate, no decrease in the glutamate content was observed. Thus, the fraction of the glutamate pool available for transmitter release was diminished when metabolizing beta-hydroxybutyrate, which is in line with the hypothesis of formation of transmitter glutamate via an obligatory involvement of the malate-aspartate shuttle.

  4. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  5. Engineering of bacterial methyl ketone synthesis for biofuels.

    PubMed

    Goh, Ee-Been; Baidoo, Edward E K; Keasling, Jay D; Beller, Harry R

    2012-01-01

    We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C₁₁ to C₁₅ (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications.

  6. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to reporting...

  7. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to reporting...

  8. Homologation Reaction of Ketones with Diazo Compounds.

    PubMed

    Candeias, Nuno R; Paterna, Roberta; Gois, Pedro M P

    2016-03-09

    This review covers the addition of diazo compounds to ketones to afford homologated ketones, either in the presence or in the absence of promoters or catalysts. Reactions with diazoalkanes, aryldiazomethanes, trimethylsilyldiazomethane, α-diazo esters, and disubstituted diazo compounds are covered, commenting on the complex regiochemistry of the reaction and the nature of the catalysts and promoters. The recent reports on the enantioselective version of ketone homologation reactions are gathered in one section, followed by reports on the use of cyclic ketones ring expansion in total synthesis. Although the first reports of this reaction appeared in the literature almost one century ago, the recent achievements, in particular, for the asymmetric version, forecast the development of new breakthroughs in the synthetically valuable field of diazo chemistry.

  9. Ketone bodies and two-compartment tumor metabolism

    PubMed Central

    Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2012-01-01

    We have previously suggested that ketone body metabolism is critical for tumor progression and metastasis. Here, using a co-culture system employing human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts, we provide new evidence to directly support this hypothesis. More specifically, we show that the enzymes required for ketone body production are highly upregulated within cancer-associated fibroblasts. This appears to be mechanistically controlled by the stromal expression of caveolin-1 (Cav-1) and/or serum starvation. In addition, treatment with ketone bodies (such as 3-hydroxy-butyrate, and/or butanediol) is sufficient to drive mitochondrial biogenesis in human breast cancer cells. This observation was also validated by unbiased proteomic analysis. Interestingly, an MCT1 inhibitor was sufficient to block the onset of mitochondrial biogenesis in human breast cancer cells, suggesting a possible avenue for anticancer therapy. Finally, using human breast cancer tumor samples, we directly confirmed that the enzymes associated with ketone body production (HMGCS2, HMGCL and BDH1) were preferentially expressed in the tumor stroma. Conversely, enzymes associated with ketone re-utilization (ACAT1) and mitochondrial biogenesis (HSP60) were selectively associated with the epithelial tumor cell compartment. Our current findings are consistent with the “two-compartment tumor metabolism” model. Furthermore, they suggest that we should target ketone body metabolism as a new area for drug discovery, for the prevention and treatment of human cancers. PMID:23082721

  10. In vitro biosynthesis of 17 alpha,20 alpha,20 beta-dihydroxy-4-pegnen-3-one by the ovaries, testes, and head kidneys of the Atlantic salmon Salmo salar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangalang, G.B.; Freeman, H.C.

    Ovaries, testes, and head kidneys of sexually mature Atlantic salmon, Salmo salar, biosynthesized 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17 alpha,20 beta-diOHP) from equimolar amounts of (/sup 3/H)pregnenolone plus (4-/sup 14/C)progesterone in vitro. The /sup 3/H:/sup 14/C isotope ratios of steroid metabolites indicated that the biosynthetic pathways to 17 alpha,20 beta-diOHP in the testes differed from those observed in the ovaries and head kidneys. (4-/sup 14/C)progesterone appeared to be the principal precursor of 17 alpha,20 beta-diOHP in the testes, whereas both precursors were efficiently biotransformed to 17 alpha,20 beta-diOPH in the ovaries and head kidneys. 17 alpha-Hydroxy-4-pregnen-3-one (17 alpha-OHP) was the immediate precursormore » to 17 alpha,20 beta-diOHP in all tissues. However, appreciable amounts of 17 alpha,20 beta-diOHP accumulated in vitro in the testes only in the presence of exogenous (/sup 14/C)progesterone. Incubation of the testes, ovaries, and head kidneys with (/sup 14/C)pregnenolone resulted in high yields of 17 alpha,20 beta-diOHP in the ovaries and head kidneys but no detectable amounts of the steroid in the testes. The results confirm that progesterone is the favored precursor to 17 alpha,20 beta-diOHP in the testes. The results also suggest that the head kidneys may be an excellent cellular source of 17 alpha,20 beta-diOHP in both male and female. Atlantic salmon and may play an important role in the sexual maturation process in this fish. It is suggested that biosynthetic control mechanism affecting 17 alpha,20 beta-diOHP synthesis and/or spermiation and ovulation may differ in male and female Atlantic salmon.« less

  11. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production.

    PubMed

    Hanko, Erik K R; Denby, Charles M; Sànchez I Nogué, Violeta; Lin, Weiyin; Ramirez, Kelsey J; Singer, Christine A; Beckham, Gregg T; Keasling, Jay D

    2018-05-28

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal β-oxidation by chromosomal deletion of pot1 resulted in the biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C 13 -C 23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors

    PubMed Central

    Kim, Do Young; Vallejo, Johana; Rho, Jong M

    2010-01-01

    Abstract Ketones have previously shown beneficial effects in models of neurodegenerative disorders, particularly against associated mitochondrial dysfunction and cognitive impairment. However, evidence of a synaptic protective effect of ketones remains lacking. We tested the effects of ketones on synaptic impairment induced by mitochondrial respiratory complex (MRC) inhibitors using electrophysiological, reactive oxygen species (ROS) imaging and biochemical techniques. MRC inhibitors dose-dependently suppressed both population spike (PS) and field potential amplitudes in the CA1 hippocampus. Pre-treatment with ketones strongly prevented changes in the PS, whereas partial protection was seen in the field potential. Rotenone (Rot; 100 nmol/L), a MRC I inhibitor, suppressed synaptic function without altering ROS levels and PS depression by Rot was unaffected by antioxidants. In contrast, antioxidant-induced PS recovery against the MRC II inhibitor 3-nitropropionic acid (3-NP; 1 mmol/L) was similar to the synaptic protective effects of ketones. Ketones also suppressed ROS generation induced by 3-NP. Finally, ketones reversed the decreases in ATP levels caused by Rot and 3-NP. In summary, our data demonstrate that ketones can preserve synaptic function in CA1 hippocampus induced by MRC dysfunction, likely through an antioxidant action and enhanced ATP generation. PMID:20374433

  13. Colorimetric Recognition of Aldehydes and Ketones.

    PubMed

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2009-09-03

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones.

  15. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  16. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  17. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions

    PubMed Central

    Tarr, James C.; Johnson, Jeffrey S.

    2009-01-01

    Lanthanum tricyanide efficiently catalyzes a benzoin-type coupling between acyl silanes and ketones. Yields range from moderate to excellent over a broad substrate scope encompassing aryl, alkyl, electron-rich, and sterically hindered ketones. PMID:19655731

  18. Is there an astrocyte-neuron ketone body shuttle?

    PubMed

    Guzmán, M; Blázquez, C

    2001-01-01

    Ketone bodies can replace glucose as the major source of brain energy when glucose becomes scarce. Although it is generally assumed that the liver supplies extrahepatic tissues with ketone bodies, recent evidence shows that astrocytes are also ketogenic cells. Moreover, the partitioning of fatty acids between ketogenesis and ceramide synthesis de novo might control the survival/death decision of neural cells. These findings support the notion that astrocytes might supply neurons with ketone bodies in situ, and raise the possibility that astrocyte ketogenesis is a cytoprotective pathway.

  19. Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through KATP Channels

    PubMed Central

    Kim, Do Young; Abdelwahab, Mohammed G.; Lee, Soo Han; O’Neill, Derek; Thompson, Roger J.; Duff, Henry J.; Sullivan, Patrick G.; Rho, Jong M.

    2015-01-01

    Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels. PMID:25848768

  20. Investigation of crystalline morphology in poly (ether ether ketone) using dielectric relaxation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalika, D.S.; Krishnaswamy, R.K.

    1993-12-31

    The relaxation behavior of poly (ether ether ketone) [PEEK] has been investigated using dielectric relaxation spectroscopy; the glass-rubber ({alpha}) relaxation and a sub-glass ({beta}) relaxation were examined for the amorphous material and both cold-crystallized and melt-crystallized specimens. Analysis of the data using the Cole-Cole modification of the Debye equation allowed determination of the dielectric relaxation strength and relaxation broadening parameter for both transitions as a function of material crystallization history. The crystallized specimens displayed a positive offset in isochronal loss temperature for both the {alpha} and {beta} relaxations, with the {alpha} relaxation broadened significantly. The measured dipolar response was interpretedmore » using a three-phase morphological model encompassing a crystalline phase, a mobile amorphous phase, and a rigid amorphous phase. Determination of phase fractions based on dipolar mobilization across the glass-rubber relaxation revealed a finite rigid amorphous phase fraction for both the cold-crystallized specimens which was relatively insensitive to thermal history and degree of crystallinity (W{sub RAP}40.20).« less

  1. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  2. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  3. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  4. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  5. Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.

    2017-11-01

    Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.

  6. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    USDA-ARS?s Scientific Manuscript database

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  7. Biomarkers, ketone bodies, and the prevention of Alzheimer's disease.

    PubMed

    VanItallie, Theodore B

    2015-03-01

    Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (Aβ) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACH) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Ketone Bodies and Exercise Performance: The Next Magic Bullet or Merely Hype?

    PubMed

    Pinckaers, Philippe J M; Churchward-Venne, Tyler A; Bailey, David; van Loon, Luc J C

    2017-03-01

    Elite athletes and coaches are in a constant search for training methods and nutritional strategies to support training and recovery efforts that may ultimately maximize athletes' performance. Recently, there has been a re-emerging interest in the role of ketone bodies in exercise metabolism, with considerable media speculation about ketone body supplements being routinely used by professional cyclists. Ketone bodies can serve as an important energy substrate under certain conditions, such as starvation, and can modulate carbohydrate and lipid metabolism. Dietary strategies to increase endogenous ketone body availability (i.e., a ketogenic diet) require a diet high in lipids and low in carbohydrates for ~4 days to induce nutritional ketosis. However, a high fat, low carbohydrate ketogenic diet may impair exercise performance via reducing the capacity to utilize carbohydrate, which forms a key fuel source for skeletal muscle during intense endurance-type exercise. Recently, ketone body supplements (ketone salts and esters) have emerged and may be used to rapidly increase ketone body availability, without the need to first adapt to a ketogenic diet. However, the extent to which ketone bodies regulate skeletal muscle bioenergetics and substrate metabolism during prolonged endurance-type exercise of varying intensity and duration remains unknown. Therefore, at present there are no data available to suggest that ingestion of ketone bodies during exercise improves athletes' performance under conditions where evidence-based nutritional strategies are applied appropriately.

  9. 27 CFR 21.118 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  10. 27 CFR 21.118 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  11. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  12. Inborn errors of ketogenesis and ketone body utilization.

    PubMed

    Sass, Jörn Oliver

    2012-01-01

    Ketone bodies acetoacetate and 3-hydroxy-n-butyric acid are metabolites derived from fatty acids and ketogenic amino acids such as leucine. They are mainly produced in the liver via reactions catalyzed by the ketogenic enzymes mitochondrial 3-hydroxy-3-methylglutary-coenzyme A synthase and 3-hydroxy-3-methylglutary-coenzyme A lyase. After prolonged starvation, ketone bodies can provide up to two-thirds of the brain's energy requirements. The rate-limiting enzyme of ketone body utilization (ketolysis) is succinyl-coenzyme A:3-oxoacid coenzyme A transferase. The subsequent step of ketolysis is catalyzed by 2-methylactoacetyl-coenzyme A thiolase, which is also involved in isoleucine catabolism. Inborn errors of metabolism affecting those four enzymes are presented and discussed in the context of differential diagnoses. While disorders of ketogenesis can present with hypoketotic hypoglycemia, inborn errors of ketolysis are characterized by metabolic decompensations with ketoacidosis. If those diseases are considered early and appropriate treatment is initiated without delay, patients with inborn errors of ketone body metabolism often have a good clinical outcome.

  13. The (non)sense of routinely analysing beta-hydroxybutyric acid in forensic toxicology casework.

    PubMed

    Sadones, Nele; Lambert, Willy E; Stove, Christophe P

    2017-05-01

    Beta-hydroxybutyric acid (BHB) is a ketone body which is generated from fatty acids as an alternative energy source when glucose is not available. Determination of this compound may be relevant in the forensic laboratory as ketoacidosis - an elevated level of ketone bodies - may contribute to the cause of death. In this study, we aimed at determining the relevance of routinely implementing BHB analysis in the forensic toxicological laboratory, as BHB analysis typically requires an additional workload. We therefore performed an unbiased retrospective analysis of BHB in 599 cases, comprising 553 blood, 232 urine and 62 vitreous humour samples. Cases with BHB concentrations above 100mg/L (in blood, urine and/or vitreous humour) were invariably associated with elevated levels of acetone, another ketone body, the detection of which is already implemented in most forensic laboratories using the gas chromatographic procedure for ethanol quantification. Our retrospective analysis did not reveal any positive case that had been missed initially and confirms that BHB analysis can be limited to acetone positive cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Et3B-mediated radical-polar crossover reaction for single-step coupling of O,Te-acetal, α,β-unsaturated ketones, and aldehydes/ketones.

    PubMed

    Kamimura, Daigo; Urabe, Daisuke; Nagatomo, Masanori; Inoue, Masayuki

    2013-10-04

    Et3B-mediated three-component coupling reactions between O,Te-acetal, α,β-unsaturated ketones, and aldehydes/ketones were developed. Et3B promoted the generation of the potently reactive bridgehead radical from the O,Te-acetal of the trioxaadamantane structure and converted the α-carbonyl radical of the resultant two-component adduct to the boron enolate, which then underwent a stereoselective aldol reaction with the aldehyde/ketone. This powerful, yet mild, radical-polar crossover reaction efficiently connected the hindered linkages between the three units and selectively introduced three new stereocenters.

  15. Asymmetric epoxidation of unsaturated ketones catalyzed by heterobimetallic rare earth-lithium complexes bearing phenoxy-functionalized chiral diphenylprolinolate ligand.

    PubMed

    Qian, Qinqin; Tan, Yufang; Zhao, Bei; Feng, Tao; Shen, Qi; Yao, Yingming

    2014-09-05

    Four novel heterobimetallic complexes [REL2]{[(THF)3Li]2(μ-Cl)} stabilized by chiral phenoxy-functionalized prolinolate (RE = Yb (1), Y (2), Sm (3), Nd (4), H2L = (S)-2,4-di-tert-butyl-6-[[2-(hydroxydiphenylmethyl)pyrrolidin-1-yl]methyl]phenol have been synthesized and characterized. These readily available complexes are highly active in catalyzing the epoxidation of α,β-unsaturated ketones, while the enantioselectivity varies according to the ionic radii of the rare earth center. A series of chalcone derivatives were converted to chiral epoxides in 80 → 99% ee at 0 °C using TBHP as the oxidant in the presence of 10 mol % of 1.

  16. Water-enhanced solvation of organic solutes in ketone and ester solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Brunt, V. van; King, C.J.

    1994-05-01

    Previous research has shown that the solubilities of dicarboxylic acids in certain electron-donor solvents are substantially increased in the presence of water. Information on solubilities, liquid-liquid equilibria and maximum-boiling ternary azeotropes was screened so as to identify other systems where codissolved water appears to enhance solvation of organic solutes in solvents. Several carboxylic acids, an alcohol, diols, and phenols were selected for examination as solutes in ketone and ester solvents. Effects of water upon solute solubilities and volatilities were measured. Results showed that water-enhanced solvation is greatest for carboxylic acids. Solute activity coefficients decreased by factors of 2--3, 6--8, andmore » 7--10 due to the presence of water for mono-, di and tricarboxylic acids, respectively. Activity coefficients decreased by a factor of about 1.5 for ethanol and 1,2-propanediol as solutes. Water-enhanced solvation of phenols is small, when existent.« less

  17. Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones.

    PubMed

    Xu, Qing; Chen, Jianhui; Tian, Haiwen; Yuan, Xueqin; Li, Shuangyan; Zhou, Chongkuan; Liu, Jianping

    2014-01-03

    Direct dehydrative α-alkylation reactions of ketones with alcohols are now realized under simple, practical, and green conditions without using external catalysts. These catalyst-free autocatalyzed alkylation methods can efficiently afford useful alkylated ketone or alcohol products in a one-pot manner and on a large scale by CC bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein-Pondorf-Verley-Oppenauer-type redox processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. IRIS Toxicological Review of Methyl Ethyl Ketone (2003 Final)

    EPA Science Inventory

    EPA announced the release of the final report, Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS). The updated Summary for Methyl Ethyl Ketone and accompanying toxicological review have been added to the IRIS Database....

  19. Low dielectric fluorinated poly(phenylene ether ketone) film and coating

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.

  20. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    Methyl ethyl ketone ( MEK ) ( CASRN 78 - 93 - 3 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  1. Methyl isobutyl ketone (MIBK)

    Integrated Risk Information System (IRIS)

    Methyl Isobutyl Ketone ( MIBK ) ; CASRN 108 - 10 - 1 ; Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  2. Advanced selective non-invasive ketone body detection sensors based on new ionophores

    NASA Astrophysics Data System (ADS)

    Sathyapalan, A.; Sarswat, P. K.; Zhu, Y.; Free, M. L.

    2014-12-01

    New molecules and methods were examined that can be used to detect trace level ketone bodies. Diseases such as type 1 diabetes, childhood hypo-glycaemia-growth hormone deficiency, toxic inhalation, and body metabolism changes are linked with ketone bodies concentration. Here we introduce, selective ketone body detection sensors based on small, environmentally friendly organic molecules with Lewis acid additives. Density functional theory (DFT) simulation of the sensor molecules (Bromo-acetonaphthone tungstate (BANT) and acetonaphthophenyl ether propiono hydroxyl tungstate (APPHT)), indicated a fully relaxed geometry without symmetry attributes and specific coordination which enhances ketone bodies sensitivity. A portable sensing unit was made in which detection media containing ketone bodies at low concentration and new molecules show color change in visible light as well as unique irradiance during UV illumination. RGB analysis, electrochemical tests, SEM characterization, FTIR, absorbance and emission spectroscopy were also performed in order to validate the ketone sensitivity of these new molecules.

  3. Enantioselective Organocatalytic α-Fluorination of Cyclic Ketones

    PubMed Central

    Kwiatkowski, Piotr; Beeson, Teresa D.; Conrad, Jay C.

    2011-01-01

    The first highly enantioselective α-fluorination of ketones using organocatalysis has been accomplished. The long-standing problem of enantioselective ketone α-fluorination via enamine activation has been overcome via high-throughput evaluation of a new library of amine catalysts. The optimal system, a primary amine functionalized Cinchona alkaloid, allows the direct and asymmetric α-fluorination of a variety of carbo- and heterocyclic substrates. Furthermore, this protocol also provides diastereo-, regio- and chemoselective catalyst control in fluorinations involving complex carbonyl systems. PMID:21247133

  4. Direct α-alkylation of ketones with alcohols in water.

    PubMed

    Xu, Guoqiang; Li, Qiong; Feng, Jiange; Liu, Qiang; Zhang, Zuojun; Wang, Xicheng; Zhang, Xiaoyun; Mu, Xindong

    2014-01-01

    The direct α-alkylation of ketones with alcohols has emerged as a new green protocol to construct C-C bonds with H2 O as the sole byproduct. In this work, a very simple and convenient Pd/C catalytic system for the direct α-alkylation of ketones with primary alcohols in pure water is developed. Based on this catalytic system, aqueous mixtures of dilute acetone, 1-butanol, and ethanol (mimicking ABE fermentation products) can be directly transformed into C5 -C11 or longer-chain ketones and alcohols, which are precursors to fuels. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies.

    PubMed

    Greene, Amanda E; Todorova, Mariana T; Seyfried, Thomas N

    2003-08-01

    Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.

  6. On the Metabolism of Exogenous Ketones in Humans

    PubMed Central

    Stubbs, Brianna J.; Cox, Pete J.; Evans, Rhys D.; Santer, Peter; Miller, Jack J.; Faull, Olivia K.; Magor-Elliott, Snapper; Hiyama, Satoshi; Stirling, Matthew; Clarke, Kieran

    2017-01-01

    Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB. Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P < 0.001), which returned to baseline within 3–4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was <1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P < 0.001), but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12) or a continuous nasogastric infusion (n = 4) to maintain blood D-βHB concentrations greater than 1 mM. Both drinks and

  7. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  8. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics

    PubMed Central

    Puchalska, Patrycja; Crawford, Peter A.

    2017-01-01

    Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states, and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, recent observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations. PMID:28178565

  9. Annual Progress Report on the Research Program of the United States Army Medical Research Institute of Infectious Diseases on Medical Defense against Biological Agents for Fiscal Year 1981

    DTIC Science & Technology

    1981-10-01

    R. Di Luzio. 1980. Glucan -induced enhancement of host resistance to selected infectious diseases. Infect. Immun. 30:51-57. 3. Vezza, A. C., P. Cash...pathway of beta -oxidation to produce ketones. When infused as a 3 or 6% solution along with the 48% branched-chaia mixture, this compound had a hypnotic...dent Staff Physician 27:37-42. 9. Beisel, W. R. 1981. Impact of infectious disease upon fat metabolism and immune functions. Cancer Res. 41:3797-3798

  10. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    ERIC Educational Resources Information Center

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  11. Extractive recovery of phenol and p-alkylphenols from aqueous solutions with hydrophobic ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenman, Ya.I.; Ermolaeva, T.N.; Podolina, E.A.

    1994-03-10

    Aliphatic and cyclic hydrophobic ketones were used for extractive recovery of phenol and p-alkylphenols from aqueous solutions, giving a 95-98% extraction of toxicants under the recommended conditions. The extracting agents were cyclohexanone, methylcyclohexanone, butyl methyl ketone, and isobutyl methyl ketone.

  12. Microwave-assisted synthesis of 5-aminopyrazol-4-yl ketones and the p38(MAPK) inhibitor RO3201195 for study in Werner syndrome cells.

    PubMed

    Bagley, Mark C; Davis, Terence; Dix, Matthew C; Murziani, Paola G S; Rokicki, Michal J; Kipling, David

    2008-07-01

    5-Aminopyrazol-4-yl ketones are prepared rapidly and efficiently using microwave dielectric heating from beta-ketonitriles by treatment with N,N'-diphenylformamidine followed by heterocyclocondensation by irradiation with a hydrazine. The inhibitory activity of RO3201195 prepared by this methodology was confirmed in hTERT-immortalized HCA2 and WS dermal fibroblasts at 200nM concentration, both by ELISA and immunoblot assay, and displays excellent kinase selectivity for p38alpha MAPK over the related stress-activated kinase JNK.

  13. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain.

    PubMed

    Martin, Pamela M; Gopal, Elangovan; Ananth, Sudha; Zhuang, Lina; Itagaki, Shiro; Prasad, Balakrishna M; Smith, Sylvia B; Prasad, Puttur D; Ganapathy, Vadivel

    2006-07-01

    SMCT1 is a sodium-coupled (Na(+)-coupled) transporter for l-lactate and short-chain fatty acids. Here, we show that the ketone bodies, beta-d-hydroxybutyrate and acetoacetate, and the branched-chain ketoacid, alpha-ketoisocaproate, are also substrates for the transporter. The transport of these compounds via human SMCT1 is Na(+)-coupled and electrogenic. The Michaelis constant is 1.4 +/- 0.1 mm for beta-d-hydroxybutyrate, 0.21 +/- 0.04 mm for acetoacetate and 0.21 +/- 0.03 mm for alpha-ketoisocaproate. The Na(+) : substrate stoichiometry is 2 : 1. As l-lactate and ketone bodies constitute primary energy substrates for neurons, we investigated the expression pattern of this transporter in the brain. In situ hybridization studies demonstrate widespread expression of SMCT1 mRNA in mouse brain. Immunofluorescence analysis shows that SMCT1 protein is expressed exclusively in neurons. SMCT1 protein co-localizes with MCT2, a neuron-specific Na(+)-independent monocarboxylate transporter. In contrast, there was no overlap of signals for SMCT1 and MCT1, the latter being expressed only in non-neuronal cells. We also demonstrate the neuron-specific expression of SMCT1 in mixed cultures of rat cortical neurons and astrocytes. This represents the first report of an Na(+)-coupled transport system for a major group of energy substrates in neurons. These findings suggest that SMCT1 may play a critical role in the entry of l-lactate and ketone bodies into neurons by a process driven by an electrochemical Na(+) gradient and hence, contribute to the maintenance of the energy status and function of neurons.

  14. Stereoselective Borylative Ketone-Diene Coupling

    PubMed Central

    Cho, Hee Yeon; Yu, Zhiyong; Morken, James P.

    2011-01-01

    In the presence of catalytic Ni(cod)2 and P(t-Bu)3, ketones, dienes, and B2(pin)2 undergo a stereoselective multicomponent coupling reaction. Upon oxidation, the reaction furnishes 1,3-diols as the major reaction product. PMID:21905748

  15. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    PubMed

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  16. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  17. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    PubMed

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P < 0.0001). During the 2-h glucose clamps, insulin levels were twofold higher (31 vs 16 mU·L, P < 0.01) and glucose uptake 32% faster (1.66 vs 1.26 g·kg, P < 0.001). The ketone drink increased by 61 g, the total glucose infused for 2 h, from 197 to 258 g, and muscle glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P < 0.05) than after the control drink. In the presence of constant high glucose concentrations, a ketone ester drink increased endogenous insulin levels, glucose uptake, and muscle glycogen synthesis.

  18. Electronic Interactions of Michler's Ketone with DNA Bases in Synthetic Hairpins.

    PubMed

    Jalilov, Almaz S; Young, Ryan M; Eaton, Samuel W; Wasielewski, Michael R; Lewis, Frederick D

    2015-01-01

    The mechanism and dynamics of photoinduced electron transfer in two families of DNA hairpins possessing Michler's ketone linkers have been investigated by means of steady state and time-resolved transient absorption and emission spectroscopies. The excited state behavior of the diol linker employed in hairpin synthesis is similar to that of Michler's ketone in methanol solution. Hairpins possessing only a Michler's ketone linker undergo fast singlet state charge separation and charge recombination with an adjacent purine base, attributed to well-stacked ground state conformations, and intersystem crossing to the triplet state, attributed to poorly stacked ground state conformations. The failure of the triplet to undergo electron transfer reactions on the 7 ns time scale of our measurements is attributed to the low triplet energy and reduction potential of the twisted triplet state. Hairpins possessing both a Michler's ketone linker and a perylenediimide base surrogate separated by four base pairs undergo photoinduced hole transport from the diimide to Michler's ketone upon excitation of the diimide. The efficiency of hole transport is dependent upon the sequence of the intervening purine bases. © 2014 The American Society of Photobiology.

  19. Uptake of aldehydes and ketones at typical indoor concentrations by houseplants.

    PubMed

    Tani, Akira; Hewitt, C Nicholas

    2009-11-01

    The uptake rates of low-molecular weight aldehydes and ketones by peace lily (Spathiphyllum clevelandii) and golden pothos (Epipremnum aureum) leaves at typical indoor ambient concentrations (10(1)-10(2) ppbv) were determined. The C3-C6 aldehydes and C4-C6 ketones were taken up by the plant leaves, but the C3 ketone acetone was not. The uptake rate normalized to the ambient concentration C(a) ranged from 7 to 19 mmol m(-2) s(-1) and from 2 to 7 mmol m(-2) s(-1) for the aldehydes and ketones, respectively. Longer-term fumigation results revealed that the total uptake amounts were 30-100 times as much as the amounts dissolved in the leaf, suggesting that volatile organic carbons are metabolized in the leaf and/or translocated through the petiole. The ratio of the intercellular concentration to the external (ambient) concentration (C(i)/C(a)) was significantly lower for most aldehydes than for most ketones. In particular, a linear unsaturated aldehyde, crotonaldehyde, had a C(i)/C(a) ratio of approximately 0, probably because of its highest solubility in water.

  20. Gas-film coefficients for the volatilization of ketones from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1986-01-01

    Volatilization is a significant process in determining the fate of many organic compounds in streams and rivers. Quantifying this process requires knowledge of the mass-transfer coefficient from water, which is a function of the gas-film and liquid-film coefficients. The gas-film coefficient can be determined by measuring the flux for the volatilization of pure organic liquids. Volatilization fluxes for acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured in the laboratory over a range of temperatures. Gas-film coefficients were then calculated from these fluxes and from vapor pressure data from the literature. An equation was developed for predicting the volatilization flux of pure liquid ketones as a function of vapor pressure and molecular weight. Large deviations were found for acetone, and these were attributed to the possibility that acetone may be hydrogen bonded. A second equation for predicting the flux as a function of molecular weight and temperature resulted in large deviations for 4methyl-2-pentanone. These deviations were attributed to the branched structure of this ketone. Four factors based on the theory of volatilization and relating the volatilization flux or rate to the vapor pressure, molecular weight, temperature, and molecular diffusion coefficient were not constant as suggested by the literature. The factors generally increased with molecular weight and with temperature. Values for acetone corresponded to ketones with a larger molecular weight, and the acetone factors showed the greatest dependence on temperature. Both of these results are characteristic of compounds that are hydrogen bonded. Relations from the literature commonly used for describing the dependence of the gas-film coefficient on molecular weight and molecular diffusion coefficient were not applicable to the ketone gas-film coefficients. The dependence on molecular weight and molecular diffusion coefficient was in

  1. Stereoselective borylative ketone-diene coupling.

    PubMed

    Cho, Hee Yeon; Yu, Zhiyong; Morken, James P

    2011-10-07

    In the presence of catalytic Ni(cod)(2) and P(t-Bu)(3), ketones, dienes, and B(2)(pin)(2) undergo a stereoselective multicomponent coupling reaction. Upon oxidation, the reaction furnishes 1,3-diols as the major reaction product. © 2011 American Chemical Society

  2. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation

    PubMed Central

    Evans, Mark; Cogan, Karl E.

    2016-01-01

    Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911

  3. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer

    PubMed Central

    Poff, AM; Ari, C; Arnold, P; Seyfried, TN; D’Agostino, DP

    2014-01-01

    Cancer cells express an abnormal metabolism characterized by increased glucose consumption owing to genetic mutations and mitochondrial dysfunction. Previous studies indicate that unlike healthy tissues, cancer cells are unable to effectively use ketone bodies for energy. Furthermore, ketones inhibit the proliferation and viability of cultured tumor cells. As the Warburg effect is especially prominent in metastatic cells, we hypothesized that dietary ketone supplementation would inhibit metastatic cancer progression in vivo. Proliferation and viability were measured in the highly metastatic VM-M3 cells cultured in the presence and absence of β-hydroxybutyrate (βHB). Adult male inbred VM mice were implanted subcutaneously with firefly luciferase-tagged syngeneic VM-M3 cells. Mice were fed a standard diet supplemented with either 1,3-butanediol (BD) or a ketone ester (KE), which are metabolized to the ketone bodies βHB and acetoacetate. Tumor growth was monitored by in vivo bioluminescent imaging. Survival time, tumor growth rate, blood glucose, blood βHB and body weight were measured throughout the survival study. Ketone supplementation decreased proliferation and viability of the VM-M3 cells grown in vitro, even in the presence of high glucose. Dietary ketone supplementation with BD and KE prolonged survival in VM-M3 mice with systemic metastatic cancer by 51 and 69%, respectively (p < 0.05). Ketone administration elicited anticancer effects in vitro and in vivo independent of glucose levels or calorie restriction. The use of supplemental ketone precursors as a cancer treatment should be further investigated in animal models to determine potential for future clinical use. PMID:24615175

  4. Gallium (III) triflate catalyzed efficient Strecker reaction of ketones and their fluorinated analogs

    PubMed Central

    Prakash, G. K. Surya; Mathew, Thomas; Panja, Chiradeep; Alconcel, Steevens; Vaghoo, Habiba; Do, Clement; Olah, George A.

    2007-01-01

    The synthesis of α-aminonitriles and their fluorinated analogs has been carried out in high yield and purity by the Strecker reaction from the corresponding ketones and amines with trimethylsilyl cyanide using gallium triflate in dichloromethane. Monofluoro-, difluro-, or trifluoromethyl groups can be incorporated into the α-aminonitrile product by varying the nature of the fluorinated ketones. Study with various fluorinated and nonfluorinated ketones reveals that the choice of proper catalyst and the solvent system (suitable metal triflates as a catalyst and dichloromethane as a solvent) plays the key role in the direct Strecker reactions of ketones. PMID:17360416

  5. Rhodium Catalyzed Intramolecular C-H Insertion of α-Aryl-α-diazo Ketones

    PubMed Central

    Taber, Douglass F.; Tian, Weiwei

    2011-01-01

    Direct diazo transfer proceeds smoothly with α-aryl ketones. The derived α-aryl-α-diazo ketones cyclize efficiently with Rh catalysis to give the corresponding α-aryl cyclopentanones. PMID:17385917

  6. Acyl hydrazides as acyl donors for the synthesis of diaryl and aryl alkyl ketones.

    PubMed

    Akhbar, Ahmed R; Chudasama, Vijay; Fitzmaurice, Richard J; Powell, Lyn; Caddick, Stephen

    2014-01-21

    In this communication we describe a novel strategy for the formation of valuable diaryl and aryl alkyl ketones from acyl hydrazides. A wide variety of ketones are prepared and the mild reaction conditions allow for the use of a range of functionalities, especially in the synthesis of diaryl ketones.

  7. The Failing Heart Relies on Ketone Bodies as a Fuel.

    PubMed

    Aubert, Gregory; Martin, Ola J; Horton, Julie L; Lai, Ling; Vega, Rick B; Leone, Teresa C; Koves, Timothy; Gardell, Stephen J; Krüger, Marcus; Hoppel, Charles L; Lewandowski, E Douglas; Crawford, Peter A; Muoio, Deborah M; Kelly, Daniel P

    2016-02-23

    Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure. © 2016 American Heart Association, Inc.

  8. ESR, electrochemical and cyclodextrin-inclusion studies of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives

    NASA Astrophysics Data System (ADS)

    Olea-Azar, C.; Abarca, B.; Norambuena, E.; Opazo, L.; Jullian, C.; Valencia, S.; Ballesteros, R.; Chadlaoui, M.

    2008-11-01

    The electron spin resonance (ESR) spectra of free radicals obtained by electrolytic reduction of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives were measured in dimethylsulfoxide (DMSO). The hyperfine patterns indicate that the spin density delocalization is dependent of the rings presented in the molecule. The electrochemistry of these compounds was characterized using cyclic voltammetry, in DMSO as solvent. When one carbonyl is present in the molecule one step in the reduction mechanism was observed while two carbonyl are present two steps were detected. The first wave was assigned to the generation of the correspondent free radical species, and the second wave was assigned to the dianion derivatives. The phase-solubility measurements indicated an interaction between molecules selected and cyclodextrins in water. These inclusion complexes are 1:1 with βCD, and HP-βCD. The values of Ks showed a different kind of complexes depending on which rings are included. AM1 and DFT calculations were performed to obtain the optimized geometries, theoretical hyperfine constants, and spin distributions, respectively. The theoretical results are in complete agreement with the experimental ones.

  9. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...

  10. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...

  11. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...

  12. Monocarboxylate transporter 1 deficiency and ketone utilization.

    PubMed

    van Hasselt, Peter M; Ferdinandusse, Sacha; Monroe, Glen R; Ruiter, Jos P N; Turkenburg, Marjolein; Geerlings, Maartje J; Duran, Karen; Harakalova, Magdalena; van der Zwaag, Bert; Monavari, Ardeshir A; Okur, Ilyas; Sharrard, Mark J; Cleary, Maureen; O'Connell, Nuala; Walker, Valerie; Rubio-Gozalbo, M Estela; de Vries, Maaike C; Visser, Gepke; Houwen, Roderick H J; van der Smagt, Jasper J; Verhoeven-Duif, Nanda M; Wanders, Ronald J A; van Haaften, Gijs

    2014-11-13

    Ketoacidosis is a potentially lethal condition caused by the imbalance between hepatic production and extrahepatic utilization of ketone bodies. We performed exome sequencing in a patient with recurrent, severe ketoacidosis and identified a homozygous frameshift mutation in the gene encoding monocarboxylate transporter 1 (SLC16A1, also called MCT1). Genetic analysis in 96 patients suspected of having ketolytic defects yielded seven additional inactivating mutations in MCT1, both homozygous and heterozygous. Mutational status was found to be correlated with ketoacidosis severity, MCT1 protein levels, and transport capacity. Thus, MCT1 deficiency is a novel cause of profound ketoacidosis; the present work suggests that MCT1-mediated ketone-body transport is needed to maintain acid-base balance.

  13. Iridium-Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic α-Alkoxy Ketones

    DOE PAGES

    Jiang, Xingyu; Chen, Wenyong; Hartwig, John F.

    2016-04-01

    The asymmetric alkylation of acyclic ketones is a longstanding challenge in organic synthesis. Here, are the diastereoselective and enantioselective allylic substitutions with acyclic α-alkoxy ketones catalyzed by a metallacyclic iridium complex to form products with contiguous stereogenic centers derived from the nucleophile and electrophile. These reactions occur between allyl methyl carbonates and unstabilized copper(I) enolates generated in situ from acyclic α-alkoxy ketones. The resulting products can be readily converted into enantioenriched tertiary alcohols and tetrahydrofuran derivatives without erosion of enantiomeric purity.

  14. Iridium-Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic α-Alkoxy Ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xingyu; Chen, Wenyong; Hartwig, John F.

    The asymmetric alkylation of acyclic ketones is a longstanding challenge in organic synthesis. Here, are the diastereoselective and enantioselective allylic substitutions with acyclic α-alkoxy ketones catalyzed by a metallacyclic iridium complex to form products with contiguous stereogenic centers derived from the nucleophile and electrophile. These reactions occur between allyl methyl carbonates and unstabilized copper(I) enolates generated in situ from acyclic α-alkoxy ketones. The resulting products can be readily converted into enantioenriched tertiary alcohols and tetrahydrofuran derivatives without erosion of enantiomeric purity.

  15. Enantioselective synthesis of 2,2-disubstituted terminal epoxides via catalytic asymmetric Corey-Chaykovsky epoxidation of ketones.

    PubMed

    Sone, Toshihiko; Yamaguchi, Akitake; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2012-02-07

    Catalytic asymmetric Corey-Chaykovsky epoxidation of various ketones with dimethyloxosulfonium methylide using a heterobimetallic La-Li(3)-BINOL complex (LLB) is described. The reaction proceeded smoothly at room temperature in the presence of achiral phosphine oxide additives, and 2,2-disubstituted terminal epoxides were obtained in high enantioselectivity (97%-91% ee) and yield ( > 99%-88%) from a broad range of methyl ketones with 1-5 mol% catalyst loading. Enantioselectivity was strongly dependent on the steric hindrance, and other ketones, such as ethyl ketones and propyl ketones resulted in slightly lower enantioselectivity (88%-67% ee).

  16. Iodine-catalyzed sp³ C-H bond activation by selenium dioxide: synthesis of diindolylmethanes and di(3-indolyl)selanides.

    PubMed

    Naidu, P Seetham; Majumder, Swarup; Bhuyan, Pulak J

    2015-11-01

    An efficient reaction protocol was developed for the synthesis of several diindolylmethane derivatives via the [Formula: see text] C-H bond activation of aryl methyl ketones by [Formula: see text] and indoles in the presence of catalytic amounts of [Formula: see text] at 80 [Formula: see text] using dioxane as solvent. Unexpectedly, an interesting class of di(3-indolyl)selenide compounds was isolated when the reaction was carried out at room temperature.

  17. A first principles analysis of the hydrogenation of C1C4 aldehydes and ketones over Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Nishant K.; Neurock, Matthew

    The structure and degree of substitution of C₁–C₄ oxygenate molecules can influence their chemisorption and reactivity on metal surfaces. Gradient-corrected periodic density functional theory calculations were carried out to analyze alkyl substituent effects on the hydrogenation of C₁–C₄ aldehydes and ketones to their corresponding alcohols. All of these aldehydes along with acetone were found to adsorb in a di-ση1η2(C,O) mode onto the Ru(0001) surface and result in rehybridization of the C=O bond. Steric hindrance from two alkyl substituents on the carbonyl backbone of methyl ethyl ketone (MEK), however, prevents it from binding di-ση1η2(C,O). It adsorbs instead atop a Ru atommore » in an g1(O) configuration through its oxygen atom. Hydrogenation of both aldehydes and ketones can occur through either a hydroxy or an alkoxy mechanism. The hydroxy route proceeds via the formation of the hydroxyalkyl intermediate R₁R₂C*OH by the addition of hydrogen to the oxygen of the carbonyl, whereas the alkoxy mechanism proceeds by the addition of hydrogen to the carbon end to form the alkoxy intermediate R₂CHO*). DFT calculations indicate that the activation barrier for the initial addition of hydrogen to the carbon to form the C–H bond in the alkoxy mechanism is independent of the substituent groups that are attached to the carbon center as these groups are oriented away from the surface in the transition state and thus have little influence on the activation energies. The activation barriers for the addition of hydrogen to the oxygen of the carbonyl to form the O–H bond in the hydroxy mechanism, however, was found to linearly correlate with the binding energy of the hydroxyalkyl intermediate that forms. This trend can be explained through the Brønsted–Evans–Polanyi relationship and the fact that both the hydroxyalkyl products and carbonyl reactants interact via their carbon centers and are correlated with one another. All of the carbonyls

  18. Phosphine-catalyzed cycloadditions of allenic ketones: new substrates for nucleophilic catalysis.

    PubMed

    Wallace, Debra J; Sidda, Rachel L; Reamer, Robert A

    2007-02-02

    A range of phosphine-catalyzed cycloaddition reactions of allenic ketones have been studied, extending the scope of these processes from the more widely used 2,3-butadienoates to allow access to a number of synthetically useful products. Reaction of allenyl methyl ketone 4 with exo-enones afforded spirocyclic compounds in good regioselectivity and promising enantioselectivity via a [2 + 3] cycloaddtion. Aromatic allenyl ketones undergo a phosphine-promoted dimerization to afford functionalized pyrans, leading to a formal [2 + 4] Diels-Alder product, but did not react in the [2 + 3] cycloaddition. The results from other reactions that had found utility with 2,3-butadienoates are also reported.

  19. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    NASA Astrophysics Data System (ADS)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  20. Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes.

    PubMed

    Zhao, Xiaohu; Liu, Delong; Xie, Fang; Liu, Yangang; Zhang, Wanbin

    2011-03-21

    Palladium-catalyzed asymmetric allylic alkylation of ketones, via enamines generated in situ as nucleophiles, were carried out smoothly with chiral metallocene-based P,N-ligands. Under the same conditions, however, reactions of aldehydes could hardly be observed. Subsequently, this obstacle was resolved by using chiral metallocene-based P,P-ligands. Both ketones and aldehydes afforded excellent enantioselectivities with up to 98% ee and 94% ee, respectively.

  1. Evidence for hypothalamic ketone body sensing: impact on food intake and peripheral metabolic responses in mice.

    PubMed

    Carneiro, Lionel; Geller, Sarah; Fioramonti, Xavier; Hébert, Audrey; Repond, Cendrine; Leloup, Corinne; Pellerin, Luc

    2016-01-15

    Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis. Copyright © 2016 the American Physiological Society.

  2. Interaction of gabaergic ketones with model membranes: A molecular dynamics and experimental approach.

    PubMed

    Miguel, Virginia; Sánchez-Borzone, Mariela E; García, Daniel A

    2018-08-01

    γ-Aminobutyric-acid receptor (GABA A -R), a membrane intrinsic protein, is activated by GABA and modulated by a wide variety of recognized drugs. GABA A -R is also target for several insecticides which act by recognition of a non-competitive blocking site. Mentha oil is rich in several ketones with established activity against various insects/pests. Considering that mint ketones are highly lipophilic, their action mechanism could involve, at least in part, a non-specific receptor modulation by interacting with the surrounding lipids. In the present work, we studied in detail the effect on membranes of five cyclic ketones present in mint plants, with demonstrated insecticide and gabaergic activity. Particularly, we have explored their effect on the organization and dynamics of the membrane, by using Molecular Dynamics (MD) Simulation studies in a bilayer model of DPPC. We performed free diffusion MD and obtained spatially resolved free energy profiles of ketones partition into bilayers based on umbrella sampling. The most favored location of ketones in the membrane corresponded to the lower region of the carbonyl groups. Both hydrocarbon chains were slightly affected by the presence of ketones, presenting an ordering effect for the methylene groups closer to the carbonyl. MD simulations results were also contrasted with experimental data from fluorescence anisotropy studies which evaluate changes in membrane fluidity. In agreement, these assays indicated that the presence of ketones between lipid molecules induced an enhancement of the intermolecular interaction, increasing the molecular order throughout the bilayer thickness. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer’s Disease

    PubMed Central

    Cunnane, Stephen C.; Courchesne-Loyer, Alexandre; Vandenberghe, Camille; St-Pierre, Valérie; Fortier, Mélanie; Hennebelle, Marie; Croteau, Etienne; Bocti, Christian; Fulop, Tamas; Castellano, Christian-Alexandre

    2016-01-01

    We propose that brain energy deficit is an important pre-symptomatic feature of Alzheimer’s disease (AD) that requires closer attention in the development of AD therapeutics. Our rationale is fourfold: (i) Glucose uptake is lower in the frontal cortex of people >65 years-old despite cognitive scores that are normal for age. (ii) The regional deficit in brain glucose uptake is present in adults <40 years-old who have genetic or lifestyle risk factors for AD but in whom cognitive decline has not yet started. Examples include young adult carriers of presenilin-1 or apolipoprotein E4, and young adults with mild insulin resistance or with a maternal family history of AD. (iii) Regional brain glucose uptake is impaired in AD and mild cognitive impairment (MCI), but brain uptake of ketones (beta-hydroxybutyrate and acetoacetate), remains the same in AD and MCI as in cognitively healthy age-matched controls. These observations point to a brain fuel deficit which appears to be specific to glucose, precedes cognitive decline associated with AD, and becomes more severe as MCI progresses toward AD. Since glucose is the brain’s main fuel, we suggest that gradual brain glucose exhaustion is contributing significantly to the onset or progression of AD. (iv) Interventions that raise ketone availability to the brain improve cognitive outcomes in both MCI and AD as well as in acute experimental hypoglycemia. Ketones are the brain’s main alternative fuel to glucose and brain ketone uptake is still normal in MCI and in early AD, which would help explain why ketogenic interventions improve some cognitive outcomes in MCI and AD. We suggest that the brain energy deficit needs to be overcome in order to successfully develop more effective therapeutics for AD. At present, oral ketogenic supplements are the most promising means of achieving this goal. PMID:27458340

  4. Anxiolytic Effect of Exogenous Ketone Supplementation Is Abolished by Adenosine A1 Receptor Inhibition in Wistar Albino Glaxo/Rijswijk Rats.

    PubMed

    Kovács, Zsolt; D'Agostino, Dominic P; Ari, Csilla

    2018-01-01

    Anxiety disorders are one of the most common mental health problems worldwide, but the exact pathophysiology remains largely unknown. It has been demonstrated previously that administration of exogenous ketone supplement KSMCT (ketone salt/KS + medium chain triglyceride/MCT oil) by intragastric gavage for 7 days decreased the anxiety level in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. To investigate the potential role of the adenosinergic system in the pathomechanism of anxiety we tested whether the inhibition of adenosine A 1 receptors (A 1 Rs) influence the anxiolytic effect of the exogenous ketone supplement. As A 1 Rs may mediate such an effect, in the present study we used a specific A 1 R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine) to test whether it modulates the anxiolytic effect of sub-chronically (7 days) applied KSMCT in the previously tested animal model by using elevated plus maze (EPM) test. We administered KSMCT (2.5 g/kg/day) alone by intragastric gavage and in combination with intraperitoneally (i.p.) injected of DPCPX in two doses (lower: 0.15 mg/kg, higher: 0.25 mg/kg). Control groups represented i.p saline and water gavage with or without i.p. DPCPX administration (2.5 g/kg/day). After treatments, the level of blood glucose and beta-hydroxybutyrate (βHB), as well as body weight were recorded. KSMCT alone significantly increased the time spent in the open arms and decreased the time spent in the closed arms, supporting our previous results. Injection of lower dose of DPCPX decreased, while higher dose of DPCPX abolished the effect of KSMCT administration on EPM. Blood βHB levels were significantly increased after administration of KSMCT, while DPCPX did not change the KSMCT induced increase in blood βHB levels. These results demonstrate that A 1 R inhibition modified (decreased) the anti-anxiety effect of KSMCT administration implying that the adenosinergic system, likely via A 1 Rs, may modulate the

  5. Exposure to di(n-butyl)phthalate and benzo(a)pyrene alters IL-1{beta} secretion and subset expression of testicular macrophages, resulting in decreased testosterone production in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Shanjun; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing 400038; Key Laboratory of High Altitude Physiology and High Altitude Disease, PLA, Chongqing 400038

    Di(n-butyl)phthalate (DBP) and benzo(a)pyrene (BaP) are environmental endocrine disruptors that are potentially hazardous to humans. These chemicals affect testicular macrophage immuno-endocrine function and testosterone production. However, the underlying mechanisms for these effects are not fully understood. It is well known that interleukin-1 beta (IL-1{beta}), which is secreted by testicular macrophages, plays a trigger role in regulating Leydig cell steroidogenesis. The purpose of this study was to reveal the effects of co-exposure to DBP and BaP on testicular macrophage subset expression, IL-1{beta} secretion and testosterone production. Adult male Sprague-Dawley rats were randomly divided into seven groups; two groups received DBP plusmore » BaP (DBP + BaP: 50 + 1 or 250 + 5 mg/kg/day) four groups received DBP or BaP alone (DBP: 50 or 250 mg/kg/day; BaP: 1 or 5 mg/kg/day), and one group received vehicle alone (control). After co-exposure for 90 days, the relative expression of macrophage subsets and their functions changed. ED2{sup +} testicular macrophages (reactive with a differentiation-related antigen present on the resident macrophages) were activated and IL-1{beta} secretion was enhanced. DBP and BaP acted additively, as demonstrated by greater IL-1{beta} secretion relative to each compound alone. These observations suggest that exposure to DBP plus BaP exerted greater suppression on testosterone production compared with each compound alone. The altered balance in the subsets of testicular macrophages and the enhanced ability of resident testicular macrophages to secrete IL-1{beta}, resulted in enhanced production of IL-1{beta} as a potent steroidogenesis repressor. This may represent an important mechanism by which DBP and BaP repress steroidogenesis.« less

  6. Versatile Alkylation of (Hetero)Aryl Iodides with Ketones via β-C(sp3)-H Activation.

    PubMed

    Zhu, Ru-Yi; Liu, Luo-Yan; Park, Han Seul; Hong, Kai; Wu, Yongwei; Senanayake, Chris H; Yu, Jin-Quan

    2017-11-15

    We report Pd(II)-catalyzed β-C(sp 3 )-H (hetero)arylation of a variety of ketones using a commercially available 2,2-dimethyl aminooxyacetic acid auxiliary. Facile installation and removal of the auxiliary as well as its superior scope for both ketones and (hetero)aryl iodides overcome the significant limitations of the previously reported β-C(sp 3 )-H arylation of ketones. The ready availability of ketones renders this reaction a broadly useful method for alkyl-(hetero)aryl coupling involving both primary and secondary alkyls.

  7. THE PRODUCTS OF THE CYCLIZING DEHYDRATION OF 1-BETA-PHENYLETHYLCYCLOHEXANOL-1 AND THE SYNTHESIS OF SPIROCYCLOHEXANE-1,1-INDANONE-3.

    PubMed

    Levitz, M; Perlman, D; Bogert, M T

    1939-08-04

    (1) Spirocyclohexane-1,1-indanone (VI) has been found among the oxidation products of the hydrocarbon mixture which results when 1-beta-phenylethylcyclohexanol-1 is dehydrated, or when 1-beta-phenylethylcyclohexene is cyclized by aluminum trichloride, and its constitution has been proved by synthesis (2) Its oxime melts at 137-137.8 degrees (corr.). The oxime of m.p. 187.5 degrees , reported by Cook et al. therefore must be derived from some other ketone, perhaps the trans-ketoöctahydrophenanthrene, since we were unable to isolate any oxime of m.p. 177 degrees , the figure which they reported for this compound.

  8. Photochemical Production of Aldehydes and Ketones from Petroleum Films on Seawater

    NASA Astrophysics Data System (ADS)

    Tarr, M. A.; Rebet, K.; Monin, L.; Bastian, G.

    2016-02-01

    While numerous reports have demonstrated that sunlight results in oxygenation of petroleum in environmental systems, few details are available regarding the specific mechanisms of these reactions. Previous studies have not been able to identify specific chemicals formed when oil is subjected to photochemical transformation. In this study, we have utilized several petroleum samples to investigate the formation of aldehyde and ketone photoproducts. These samples included oil from the MC252 well (source of the Deepwater Horizon spill), surrogate oil provided by BP to represent the MC252 oil, and residual fuel oil (NIST 2717a). Thin films of oil ( 100 μm) were placed over water and irradiated with a solar simulator for the equivalent of 1.5-12 days. After irradiation, the water was carefully separated from the oil and derivatized with 2,4-dinitrophenylhydrazine, a selective derivatization agent for aldehydes and ketones. The derivatized material was then analyzed by HPLC. Additional analysis by electrospray MS was also performed, and absorbance and fluorescence spectra of the underivatized aqueous phase were recorded. For all oils, exposure to sunlight resulted in release of aldehydes and ketones to the aqueous phase. The amount of released photoproducts was proportional to the length of solar exposure, but no production was seen for dark controls. Despite some similarities, the pattern of product formation varied from oil to oil. Addition of dispersant (Corexit 9500a or 9527a) resulted in larger amounts of aldehydes and ketones detected in the aqueous phase after solar irradiation of the oil. Electrospray mass spectrometry was utilized in an attempt to provide structural information about the aldehydes and ketones formed. Results of this study demonstrate that aldehydes and ketones are important photoproducts resulting from solar irradiation of oil on water. These products will affect the transport and bioavailability of oil spilled in aquatic systems.

  9. Methodology for in situ protection of aldehydes and ketones using trimethylsilyl trifluoromethanesulfonate and phosphines: selective alkylation and reduction of ketones, esters, amides, and nitriles.

    PubMed

    Yahata, Kenzo; Minami, Masaki; Yoshikawa, Yuki; Watanabe, Kei; Fujioka, Hiromichi

    2013-01-01

    A methodology for selective transformations of ketones, esters, Weinreb amides, and nitriles in the presence of aldehydes has been developed. The use of a combination of PPh(3)-trimethylsilyl trifluoromethanesulfonate (TMSOTf) promotes selective transformation of aldehydes to their corresponding, temporarily protected, O,P-acetal type phosphonium salts. Because, hydrolytic work-up following ensuing reactions of other carbonyl moieties in the substrates liberates the aldehyde moiety, a sequence involving aldehyde protection, transformation of other carbonyl groups, and deprotection can be accomplished in a one-pot manner. Furthermore, the use of PEt(3) instead of PPh(3) enables ketones to be converted in situ to their corresponding O,P-ketal type phosphonium salts and, consequently, selective transformations of esters, Weinreb amides, and nitriles in the presence of ketones can be performed. This methodology is applicable to various dicarbonyl compounds, including substrates that possess heteroaromatic skeletons and hydroxyl protecting groups.

  10. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    PubMed Central

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  11. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease.

    PubMed

    Van der Auwera, Ingrid; Wera, Stefaan; Van Leuven, Fred; Henderson, Samuel T

    2005-10-17

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-beta (Abeta) deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Starting at three months of age, two groups of female transgenic mice carrying the "London" APP mutation (APP/V717I) were fed either, a standard diet (SD) composed of high carbohydrate/low fat chow, or a ketogenic diet (KD) composed of very low carbohydrate/high saturated fat chow for 43 days. Animals fed the KD exhibited greatly elevated serum ketone body levels, as measured by beta-hydroxybutyrate (3.85 +/- 2.6 mM), compared to SD fed animals (0.29 +/- 0.06 mM). In addition, animals fed the KD lost body weight (SD 22.2 +/- 0.6 g vs. KD 17.5 +/- 1.4 g, p = 0.0067). In contrast to earlier studies, the brief KD feeding regime significantly reduced total brain Abeta levels by approximately 25%. Despite changes in ketone levels, body weight, and Abeta levels, the KD diet did not alter behavioral measures. Previous studies have suggested that diets rich in cholesterol and saturated fats increased the deposition of Abeta and the risk of developing AD. Here we demonstrate that a diet rich in saturated fats and low in carbohydrates can actually reduce levels of Abeta. Therefore, dietary strategies aimed at reducing Abeta levels should take into account interactions of dietary components and the metabolic outcomes, in particular, levels of carbohydrates, total calories, and presence of ketone bodies should be considered.

  12. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...

  13. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...

  14. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...

  15. Engineering E. coli for simultaneous glucose–xylose utilization during methyl ketone production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xi; Goh, Ee-Been; Beller, Harry R.

    Previously, we developed an E. coli strain that overproduces medium-chain methyl ketones for potential use as diesel fuel blending agents or as flavors and fragrances. To date, the strain's performance has been optimized during growth with glucose. However, lignocellulosic biomass hydrolysates also contain a substantial portion of hemicellulose-derived xylose, which is typically the second most abundant sugar after glucose. Commercialization of the methyl ketone-producing technology would benefit from the increased efficiency resulting from simultaneous, rather than the native sequential (diauxic), utilization of glucose and xylose. In this study, genetic manipulations were performed to alleviate carbon catabolite repression in our mostmore » efficient methyl ket one-producing strain. A strain engineered for constitutive expression of xylF and xylA (involved in xylose transport and metabolism) showed synchronized glucose and xylose consumption rates. However, this newly acquired capability came at the expense of methyl ketone titer, which decreased fivefold. Further efforts were made to improve methyl ketone production in this strain, and we found that two strategies were effective at enhancing methyl ketone titer: (1) chromosomal deletion of pgi (glucose-6-phosphate isomerase) to increase intracellular NADPH supply and (2) downregulation of CRP (cAMP receptor protein) expression by replacement of the native RBS with an RBS chosen based upon mutant library screening results. Combining these strategies resulted in the most favorable overall phenotypes for simultaneous glucose-xylose consumption without compromising methyl ketone titer at both 1 and 2% total sugar concentrations in shake flasks. This work demonstrated a strategy for engineering simultaneous utilization of C 6 and C 5 sugars in E. coli without sacrificing production of fatty acid-derived compounds.« less

  16. Engineering E. coli for simultaneous glucose–xylose utilization during methyl ketone production

    DOE PAGES

    Wang, Xi; Goh, Ee-Been; Beller, Harry R.

    2018-01-27

    Previously, we developed an E. coli strain that overproduces medium-chain methyl ketones for potential use as diesel fuel blending agents or as flavors and fragrances. To date, the strain's performance has been optimized during growth with glucose. However, lignocellulosic biomass hydrolysates also contain a substantial portion of hemicellulose-derived xylose, which is typically the second most abundant sugar after glucose. Commercialization of the methyl ketone-producing technology would benefit from the increased efficiency resulting from simultaneous, rather than the native sequential (diauxic), utilization of glucose and xylose. In this study, genetic manipulations were performed to alleviate carbon catabolite repression in our mostmore » efficient methyl ket one-producing strain. A strain engineered for constitutive expression of xylF and xylA (involved in xylose transport and metabolism) showed synchronized glucose and xylose consumption rates. However, this newly acquired capability came at the expense of methyl ketone titer, which decreased fivefold. Further efforts were made to improve methyl ketone production in this strain, and we found that two strategies were effective at enhancing methyl ketone titer: (1) chromosomal deletion of pgi (glucose-6-phosphate isomerase) to increase intracellular NADPH supply and (2) downregulation of CRP (cAMP receptor protein) expression by replacement of the native RBS with an RBS chosen based upon mutant library screening results. Combining these strategies resulted in the most favorable overall phenotypes for simultaneous glucose-xylose consumption without compromising methyl ketone titer at both 1 and 2% total sugar concentrations in shake flasks. This work demonstrated a strategy for engineering simultaneous utilization of C 6 and C 5 sugars in E. coli without sacrificing production of fatty acid-derived compounds.« less

  17. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    PubMed Central

    Pinzon, Neissa M.; Aukema, Kelly G.; Gralnick, Jeffrey A.; Wackett, Lawrence P.

    2011-01-01

    ABSTRACT A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone production as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. PMID:21712420

  18. Effects of iron-containing minerals on hydrothermal reactions of ketones

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  19. Detection of Ketones by a Novel Technology: Dipolar Proton Transfer Reaction Mass Spectrometry (DP-PTR-MS)

    NASA Astrophysics Data System (ADS)

    Pan, Yue; Zhang, Qiangling; Zhou, Wenzhao; Zou, Xue; Wang, Hongmei; Huang, Chaoqun; Shen, Chengyin; Chu, Yannan

    2017-05-01

    Proton transfer reaction mass spectrometry (PTR-MS) has played an important role in the field of real-time monitoring of trace volatile organic compounds (VOCs) due to its advantages such as low limit of detection (LOD) and fast time response. Recently, a new technology of proton extraction reaction mass spectrometry (PER-MS) with negative ions OH- as the reagent ions has also been presented, which can be applied to the detection of VOCs and even inorganic compounds. In this work, we combined the functions of PTR-MS and PER-MS in one instrument, thereby developing a novel technology called dipolar proton transfer reaction mass spectrometry (DP-PTR-MS). The selection of PTR-MS mode and PER-MS mode was achieved in DP-PTR-MS using only water vapor in the ion source and switching the polarity. In this experiment, ketones (denoted by M) were selected as analytes. The ketone (molecular weight denoted by m) was ionized as protonated ketone [M + H]+ [mass-to-charge ratio ( m/z) m + 1] in PTR-MS mode and deprotonated ketone [M - H]- ( m/z m - 1) in PER-MS mode. By comparing the m/z value of the product ions in the two modes, the molecular weight of the ketone can be positively identified as m. Results showed that whether it is a single ketone sample or a mixed sample of eight kinds of ketones, the molecular weights can be detected with DP-PTR-MS. The newly developed DP-PTR-MS not only maintains the original advantages of PTR-MS and PER-MS in sensitive and rapid detection of ketones, but also can estimate molecular weight of ketones.

  20. An easy one-pot synthesis of diverse 2,5-di(2-pyridyl)pyrroles: a versatile entry point to metal complexes of functionalised, meridial and tridentate 2,5-di(2-pyridyl)pyrrolato ligands.

    PubMed

    McSkimming, Alex; Diachenko, Vera; London, Rachel; Olrich, Kiara; Onie, C Jessica; Bhadbhade, Mohan M; Bucknall, Martin P; Read, Roger W; Colbran, Stephen B

    2014-09-01

    A wide variety of 2,5-di(2-pyridyl)pyrroles (dppHs) substituted at the C3 and C4 positions of the pyrrole core were obtained by direct condensation of a 2-pyridylcarboxaldehyde (2 equiv), an α-methylene ketone with at least one electron-withdrawing substituent and ammonium acetate. A novel 2,5-di(1,10-phenanthrolin-2-yl)pyrrole was also characterised. The dppHs provide a direct, quick entry to dipyridylpyrrolato (dpp(-) )-metal complexes. The meridial tridentate dpp(-) ligand is a useful anionic analogue of the terpyridyl ligand. The first (dpp)Ru complexes are described; the 3,4-substitution of the central pyrrole significantly perturbs the potentials of the redox processes of these complexes. A [(dpp)Ru(bpy)(MeCN)](+) (bpy=2,2'-bipyridine) complex is an electrocatalyst for the reductive disproportionation of carbon dioxide to carbon monoxide and the carbonate ion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinzon, NM; Aukema, KG; Gralnick, JA

    A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone productionmore » as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high

  2. Ketone bodies and brain glutamate and GABA metabolism.

    PubMed

    Daikhin, Y; Yudkoff, M

    1998-01-01

    The effects of ketone bodies on brain metabolism of glutamate and GABA were studied in three different systems: synaptosomes, cultured astrocytes and the whole animal. In synaptosomes the addition of either acetoacetate or 3-OH-butyrate was associated with diminished consumption of glutamate via transamination to aspartate and increased formation of labelled GABA from either L-[2H5-2,3,3,4, 4]glutamine or L-[15N]glutamine. There was no effect of ketone bodies on synaptosomal GABA transamination. An increase of total forebrain GABA and a diminution of aspartate was noted when mice were injected intraperitoneally with 3-OH-butyrate. In cultured astrocytes the addition of acetoacetate to the medium was associated with a significantly enhanced rate of citrate production and with a diminution in the rate of conversion of [15N]glutamate to [15N]aspartate. These data are consistent with the hypothesis that the metabolism of ketone bodies to acetyl-CoA results in a diminution of the pool of brain oxaloacetate, which is consumed in the citrate synthetase reaction (oxaloacetate + acetyl-CoA --> citrate). As less oxaloacetate is available to the aspartate aminotransferase reaction, thereby lowering the rate of glutamate transamination, more glutamate becomes accessible to the glutamate decarboxylase pathway, thereby favoring the synthesis of GABA.

  3. Emission of volatile aldehydes and ketones from wood pellets under controlled conditions.

    PubMed

    Arshadi, Mehrdad; Geladi, Paul; Gref, Rolf; Fjällström, Pär

    2009-11-01

    Different qualities of biofuel pellets were made from pine and spruce sawdust according to an industrial experimental design. The fatty/resin acid compositions were determined by gas chromatography-mass spectrometry for both newly produced pellets and those after 2 and 4 weeks of storage. The aldehydes/ketones compositions were determined by high performance liquid chromatography at 0, 2, and 4 weeks. The designs were analyzed for the response variables: total fatty/resin acids and total aldehydes/ketones. The design showed a strong correlation between the pine fraction in the pellets and the fatty/resin acid content but the influence decreased over storage time. The amount of fatty/resin acids decreased approximately 40% during 4 weeks. The influence of drying temperature on the aldehyde/ketone emission of fresh pellets was also shown. The amounts of emitted aldehydes/ketones generally decreased by 45% during storage as a consequence of fatty/resin acid oxidation. The matrices of individual concentrations were subjected to multivariate data analysis. This showed clustering of the different experimental runs and demonstrated the important mechanism of fatty/resin acid conversion.

  4. Field validation of the dnph method for aldehydes and ketones. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, G.S.; Steger, J.L.

    1996-04-01

    A stationary source emission test method for selected aldehydes and ketones has been validated. The method employs a sampling train with impingers containing 2,4-dinitrophenylhydrazine (DNPH) to derivatize the analytes. The resulting hydrazones are recovered and analyzed by high performance liquid chromatography. Nine analytes were studied; the method was validated for formaldehyde, acetaldehyde, propionaldehyde, acetophenone and isophorone. Acrolein, menthyl ethyl ketone, menthyl isobutyl ketone, and quinone did not meet the validation criteria. The study employed the validation techniques described in EPA method 301, which uses train spiking to determine bias, and collocated sampling trains to determine precision. The studies were carriedmore » out at a plywood veneer dryer and a polyester manufacturing plant.« less

  5. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Deletion of methyl ethyl ketone from... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air pollutants. The substance methyl ethyl ketone (MEK, 2-Butanone) (CAS Number 78-93-3) is deleted from the list...

  6. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of methyl ethyl ketone from... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air pollutants. The substance methyl ethyl ketone (MEK, 2-Butanone) (CAS Number 78-93-3) is deleted from the list...

  7. Photoredox activation for the direct β-arylation of ketones and aldehydes.

    PubMed

    Pirnot, Michael T; Rankic, Danica A; Martin, David B C; MacMillan, David W C

    2013-03-29

    The direct β-activation of saturated aldehydes and ketones has long been an elusive transformation. We found that photoredox catalysis in combination with organocatalysis can lead to the transient generation of 5π-electron β-enaminyl radicals from ketones and aldehydes that rapidly couple with cyano-substituted aryl rings at the carbonyl β-position. This mode of activation is suitable for a broad range of carbonyl β-functionalization reactions and is amenable to enantioselective catalysis.

  8. Solvation of Esters and Ketones in Supercritical CO2.

    PubMed

    Kajiya, Daisuke; Imanishi, Masayoshi; Saitow, Ken-ichi

    2016-02-04

    Vibrational Raman spectra for the C═O stretching modes of three esters with different functional groups (methyl, a single phenyl, and two phenyl groups) were measured in supercritical carbon dioxide (scCO2). The results were compared with Raman spectra for three ketones involving the same functional groups, measured at the same thermodynamic states in scCO2. The peak frequencies of the Raman spectra of these six solute molecules were analyzed by decomposition into the attractive and repulsive energy components, based on the perturbed hard-sphere theory. For all solute molecules, the attractive energy is greater than the repulsive energy. In particular, a significant difference in the attractive energies of the ester-CO2 and ketone-CO2 systems was observed when the methyl group is attached to the ester or ketone. This difference was significantly reduced in the solute systems with a single phenyl group and was completely absent in those with two phenyl groups. The optimized structures among the solutes and CO2 molecules based on quantum chemical calculations indicate that greater attractive energy is obtained for a system where the oxygen atom of the ester is solvated by CO2 molecules.

  9. KETONES INHIBIT MITOCHONDRIAL PRODUCTION OF REACTIVE OXYGEN SPECIES PRODUCTION FOLLOWING GLUTAMATE EXCITOTOXICITY BY INCREASING NADH OXIDATION

    PubMed Central

    Maalouf, Marwan; Sullivan, Patrick G.; Davis, Laurie; Kim, Do Young; Rho, Jong M.

    2007-01-01

    Dietary protocols that increase serum levels of ketones, such as calorie restriction and the ketogenic diet, offer robust protection against a multitude of acute and chronic neurological diseases. The underlying mechanisms, however, remain unclear. Previous studies have suggested that the ketogenic diet may reduce free radical levels in the brain. Thus, one possibility is that ketones may mediate neuroprotection through antioxidant activity. In the present study, we examined the effects of the ketones β-hydroxybutyrate and acetoacetate on acutely dissociated rat neocortical neurons subjected to glutamate excitotoxicity using cellular electrophysiological and single-cell fluorescence imaging techniques. Further, we explored the effects of ketones on acutely isolated mitochondria exposed to high levels of calcium. A combination of β-hydroxybutyrate and acetoacetate (1 mM each) decreased neuronal death and prevented changes in neuronal membrane properties induced by 10 μM glutamate. Ketones also significantly decreased mitochondrial production of reactive oxygen species and the associated excitotoxic changes by increasing NADH oxidation in the mitochondrial respiratory chain, but did not affect levels of the endogenous antioxidant glutathione. In conclusion, we demonstrate that ketones reduce glutamate-induced free radical formation by increasing the NAD+/NADH ratio and enhancing mitochondrial respiration in neocortical neurons. This mechanism may, in part, contribute to the neuroprotective activity of ketones by restoring normal bioenergetic function in the face of oxidative stress. PMID:17240074

  10. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo

    PubMed Central

    Chowdhury, Golam MI; Jiang, Lihong; Rothman, Douglas L; Behar, Kevin L

    2014-01-01

    The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-13C2]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (VacCoA-kbN) and pyruvate (VpdhN), and the glutamate-glutamine cycle (Vcyc) were determined by metabolic modeling of 13C label trapped in major brain amino acid pools. VacCoA-kbN increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (VtcaN), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons. PMID:24780902

  11. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo.

    PubMed

    Chowdhury, Golam M I; Jiang, Lihong; Rothman, Douglas L; Behar, Kevin L

    2014-07-01

    The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-(13)C₂]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (V(acCoA-kbN)) and pyruvate (V(pdhN)), and the glutamate-glutamine cycle (V(cyc)) were determined by metabolic modeling of (13)C label trapped in major brain amino acid pools. V(acCoA-kbN) increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (V(tcaN)), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons.

  12. Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats.

    PubMed

    Iwata, Kinuyo; Kinoshita, Mika; Yamada, Shunji; Imamura, Takuya; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro

    2011-03-01

    Uncontrolled type 1 diabetes leads to hyperphagia and severe ketosis. This study was conducted to test the hypothesis that ketone bodies act on the hindbrain as a starvation signal to induce diabetic hyperphagia. Injection of an inhibitor of monocarboxylate transporter 1, a ketone body transporter, into the fourth ventricle normalized the increase in food intake in streptozotocin (STZ)-induced diabetic rats. Blockade of catecholamine synthesis in the hypothalamic paraventricular nucleus (PVN) also restored food intake to normal levels in diabetic animals. On the other hand, hindbrain injection of the ketone body induced feeding, hyperglycemia, and fatty acid mobilization via increased sympathetic activity and also norepinephrine release in the PVN. This result provides evidence that hyperphagia in STZ-induced type 1 diabetes is signaled by a ketone body sensed in the hindbrain, and mediated by noradrenergic inputs to the PVN.

  13. Synthesis of α-Halo-α,α-Difluoromethyl Ketones by a Trifluoroacetate Release/Halogenation Protocol

    PubMed Central

    John, Jinu P.; Colby, David A.

    2011-01-01

    Three series of α-halo-α,α-difluoromethyl ketones are prepared from highly α-fluorinated gem-diols by exploiting the facile release of trifluoroacetate, followed by immediate trapping of the liberated α,α-difluoroenolate with an electrophilic chlorine, bromine, or iodine source. The products are typically isolated in good yields, even in the case of sensitive, α-iodo-α,α-difluoromethyl ketones. Also, we demonstrate that an α-iodo-α,α-difluoromethyl ketone will participate in a copper-promoted reaction to forge a new carbon–carbon bond. PMID:21995668

  14. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions and Kinetic Resolution of Resultant α-Silyloxyketones

    PubMed Central

    Tarr, James C.

    2010-01-01

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic α-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant α-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction. PMID:20392127

  15. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions and kinetic resolution of resultant alpha-silyloxyketones.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2010-05-21

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic alpha-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant alpha-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction.

  16. Photoredox Activation for the Direct β-Arylation of Ketones and Aldehydes

    PubMed Central

    Pirnot, Michael T.; Rankic, Danica A.; Martin, David B. C.; MacMillan, David W. C.

    2013-01-01

    The direct β-activation of saturated aldehydes and ketones has long been an elusive transformation. We found that photoredox catalysis in combination with organocatalysis can lead to the transient generation of 5π-electron β-enaminyl radicals from ketones and aldehydes that rapidly couple with cyano-substituted aryl rings at the carbonyl β-position. This mode of activation is suitable for a broad range of carbonyl β-functionalization reactions and is amenable to enantioselective catalysis. PMID:23539600

  17. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  18. GC-MS analysis of volatile compounds of Perilla frutescens Britton var. Japonica accessions: Morphological and seasonal variability.

    PubMed

    Ghimire, Bimal Kumar; Yoo, Ji Hye; Yu, Chang Yeon; Chung, Ill-Min

    2017-07-01

    To investigate the composition of volatile compounds in the different accessions of Perilla frutescens (P. frutescens) collected from various habitats of China and Japan. In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography-mass spectrometry (GC-MS) analysis. Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone (PK) type, perilla ketone, myristicin (PM) type, perilla ketone, unknown (PU) type, perilla ketone, beta-caryophyllene, myristicine (PB) type, perilla ketone, myristicin, unknown (PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene (PEMB) type, and the perilla ketone, limonene, beta-cryophyllene, myristicin (L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  19. Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones.

    PubMed

    Jing, Yuanyuan; Daniliuc, Constantin G; Studer, Armido

    2014-09-19

    Direct conversion of primary and secondary alcohols into the corresponding α-chloro aldehydes and α-chloro ketones using trichloroisocyanuric acid, serving both as stoichiometric oxidant and α-halogenating reagent, is reported. For primary alcohols, TEMPO has to be added as an oxidation catalyst, and for the transformation of secondary alcohols (TEMPO-free protocol), MeOH as an additive is essential to promote chlorination of the intermediary ketones.

  20. Comparative performance assessment of point-of-care testing devices for measuring glucose and ketones at the patient bedside.

    PubMed

    Ceriotti, Ferruccio; Kaczmarek, Ewa; Guerra, Elena; Mastrantonio, Fabrizio; Lucarelli, Fausto; Valgimigli, Francesco; Mosca, Andrea

    2015-03-01

    Point-of-care (POC) testing devices for monitoring glucose and ketones can play a key role in the management of dysglycemia in hospitalized diabetes patients. The accuracy of glucose devices can be influenced by biochemical changes that commonly occur in critically ill hospital patients and by the medication prescribed. Little is known about the influence of these factors on ketone POC measurements. The aim of this study was to assess the analytical performance of POC hospital whole-blood glucose and ketone meters and the extent of glucose interference factors on the design and accuracy of ketone results. StatStrip glucose/ketone, Optium FreeStyle glucose/ketone, and Accu-Chek Performa glucose were also assessed and results compared to a central laboratory reference method. The analytical evaluation was performed according to Clinical and Laboratory Standards Institute (CLSI) protocols for precision, linearity, method comparison, and interference. The interferences assessed included acetoacetate, acetaminophen, ascorbic acid, galactose, maltose, uric acid, and sodium. The accuracies of both Optium ketone and glucose measurements were significantly influenced by varying levels of hematocrit and ascorbic acid. StatStrip ketone and glucose measurements were unaffected by the interferences tested with exception of ascorbic acid, which reduced the higher level ketone value. The accuracy of Accu-Chek glucose measurements was affected by hematocrit, by ascorbic acid, and significantly by galactose. The method correlation assessment indicated differences between the meters in compliance to ISO 15197 and CLSI 12-A3 performance criteria. Combined POC glucose/ketone methods are now available. The use of these devices in a hospital setting requires careful consideration with regard to the selection of instruments not sensitive to hematocrit variation and presence of interfering substances. © 2014 Diabetes Technology Society.

  1. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats

    PubMed Central

    Ruderman, Neil B.; Ross, Peter S.; Berger, Michael; Goodman, Michael N.

    1974-01-01

    1. The effects of starvation and diabetes on brain fuel metabolism were examined by measuring arteriovenous differences for glucose, lactate, acetoacetate and 3-hydroxybutyrate across the brains of anaesthetized fed, starved and diabetic rats. 2. In fed animals glucose represented the sole oxidative fuel of the brain. 3. After 48h of starvation, ketone-body concentrations were about 2mm and ketone-body uptake accounted for 25% of the calculated O2 consumption: the arteriovenous difference for glucose was not diminished, but lactate release was increased, suggesting inhibition of pyruvate oxidation. 4. In severe diabetic ketosis, induced by either streptozotocin or phlorrhizin (total blood ketone bodies >7mm), the uptake of ketone bodies was further increased and accounted for 45% of the brain's oxidative metabolism, and the arteriovenous difference for glucose was decreased by one-third. The arteriovenous difference for lactate was increased significantly in the phlorrhizin-treated rats. 5. Infusion of 3-hydroxybutyrate into starved rats caused marked increases in the arteriovenous differences for lactate and both ketone bodies. 6. To study the mechanisms of these changes, steady-state concentrations of intermediates and co-factors of the glycolytic pathway were determined in freeze-blown brain. 7. Starved rats had increased concentrations of acetyl-CoA. 8. Rats with diabetic ketosis had increased concentrations of fructose 6-phosphate and decreased concentrations of fructose 1,6-diphosphate, indicating an inhibition of phosphofructokinase. 9. The concentrations of acetyl-CoA, glycogen and citrate, a potent inhibitor of phosphofructokinase, were increased in the streptozotocin-treated rats. 10. The data suggest that cerebral glucose uptake is decreased in diabetic ketoacidosis owing to inhibition of phosphofructokinase as a result of the increase in brain citrate. 11. The inhibition of brain pyruvate oxidation in starvation and diabetes can be related to the

  2. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    PubMed

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.

  3. Palladium-catalyzed, pyrrolidine-mediated arylmethylation of ketones and aldehydes with coumarinyl(methyl) acetates.

    PubMed

    Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A

    2012-09-14

    We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates.

  4. Raspberry Ketone Trifluoroacetate, a new attractant for the Queensland fruit fly (Bactrocera tryoni (Froggatt))

    USDA-ARS?s Scientific Manuscript database

    The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...

  5. Organocatalytic C-H bond arylation of aldehydes to bis-heteroaryl ketones.

    PubMed

    Toh, Qiao Yan; McNally, Andrew; Vera, Silvia; Erdmann, Nico; Gaunt, Matthew J

    2013-03-13

    An organocatalytic aldehyde C-H bond arylation process for the synthesis of complex heteroaryl ketones has been developed. By exploiting the inherent electrophilicity of diaryliodonium salts, we have found that a commercial N-heterocyclic carbene catalyst promotes the union of heteroaryl aldehydes and these heteroaromatic electrophile equivalents in good yields. This straightforward catalytic protocol offers access to ketones bearing a diverse array of arene and heteroarene substituents that can subsequently be converted into molecules displaying structural motifs commonly found in medicinal agents.

  6. Grasshopper ketone 3-O-primveroside from Sinocrassula indica.

    PubMed

    Xie, Hai-Hui; Yoshikawa, Masayuki

    2012-01-01

    A new megastigmane glycoside, grasshopper ketone 3-O-primveroside (1), was isolated from the methanolic extract of the whole herbs of Sinocrassula indica (Crassulaceae). Its structure was elucidated on the basis of spectral and chemical evidence.

  7. Asymmetric Direct 1,2-Addition of Aryl Grignard Reagents to Aryl Alkyl Ketones.

    PubMed

    Osakama, Kazuki; Nakajima, Makoto

    2016-01-15

    The enantioselective addition of Grignard reagents to ketones was promoted by a BINOL derivative bearing alkyl chains at the 3,3'-positions. This is the first asymmetric direct aryl Grignard addition to ketones reported to date. A variety of tertiary diaryl alcohols could be obtained in high yields and enantioselectivities without using any other metal source.

  8. Palladium-catalyzed, pyrrolidine-mediated arylmethylation of ketones and aldehydes with coumarinyl(methyl) acetates†

    PubMed Central

    Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A.

    2012-01-01

    We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates. PMID:22832549

  9. Efficient Domino Hydroformylation/Benzoin Condensation: Highly Selective Synthesis of α-Hydroxy Ketones.

    PubMed

    Dong, Kaiwu; Sang, Rui; Soule, Jean-Francois; Bruneau, Christian; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-12-07

    An improved domino hydroformylation/benzoin condensation to give α-hydroxy ketones has been developed. Easily available olefins are smoothly converted into the corresponding α-hydroxy ketones in high yields with excellent regioselectivities. Key to success is the use of a specific catalytic system consisting of a rhodium/phosphine complex and the CO2 adduct of an N-heterocyclic carbene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The diagnostic performance of recombinant Trypanosoma cruzi ribosomal P2beta protein is influenced by its expression system.

    PubMed

    Marcipar, Iván S; Olivares, María Laura; Robles, Lucía; Dekanty, Andrés; Marcipar, Alberto; Silber, Ariel M

    2004-03-01

    In the present work, we have determined the effect of expression vectors and their corresponding host bacteria on the antigenic performance of Trypanosoma cruzi P2beta (TcP2beta) full-length recombinant protein. The gene encoding the TcP2beta ribosomal protein was cloned in pMAL-c2 and pET-32a vectors that allow the expression of high levels of soluble fusion proteins. A panel of 32 positive and 32 negative sera was assayed with the purified proteins expressed using pMal-c2 (TcP2beta-MBP) and pET-32a (TcP2beta-TRX) vectors and with MBP and TRX purified from pMAL-c2 and pET-32a vectors, respectively. The antigenic behavior of each TcP2beta recombinant protein differed in the diagnostic performance in terms of DI(+) (93.7 for TcP2beta-MBP vs 100% for TcP2beta-TRX), in DI(-) (90.5 for TcP2beta-MBP vs 100% for TcP2beta-TRX) and in cross-reaction with negative sera. To determine if the higher reactivity of expressed pMAL-c2 protein was due to folding during protein expression or to a steric effect related to the protein adsorption at the titration plate, the reactivity of sera against soluble proteins was assessed by ELISA inhibition assays. As each soluble protein preserved its level of reactivity, we concluded that differences in reactivity were due to intrinsic characteristics of the proteins and not to differences in patterns of adsorption to the plates.

  11. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives.

    PubMed

    Shakhatreh, Muhamad Ali K; Al-Smadi, Mousa L; Khabour, Omar F; Shuaibu, Fatima A; Hussein, Emad I; Alzoubi, Karem H

    2016-01-01

    Several applications of chalcones and their derivatives encouraged researchers to increase their synthesis as an alternative for the treatment of pathogenic bacterial and fungal infections. In the present study, chalcone derivatives were synthesized through cross aldol condensation reaction between 4-( N , N -dimethylamino)benzaldehyde and multiarm aromatic ketones. The multiarm aromatic ketones were synthesized through nucleophilic substitution reaction between 4-hydroxy acetophenone and benzyl bromides. The benzyl bromides, multiarm aromatic ketones, and corresponding chalcone derivatives were evaluated for their activities against eleven clinical pathogenic Gram-positive, Gram-negative bacteria, and three pathogenic fungi by the disk diffusion method. The minimum inhibitory concentration was determined by the microbroth dilution technique. The results of the present study demonstrated that benzyl bromide derivatives have strong antibacterial and antifungal properties as compared to synthetic chalcone derivatives and ketones. Benzyl bromides (1a and 1c) showed high ester activity against Gram-positive bacteria and fungi but moderate activity against Gram-negative bacteria. Therefore, these compounds may be considered as good antibacterial and antifungal drug discovery. However, substituted ketones (2a-b) as well as chalcone derivatives (3a-c) showed no activity against all the tested strains except for ketone (2c), which showed moderate activity against Candida albicans .

  12. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives

    PubMed Central

    Shakhatreh, Muhamad Ali K; Al-Smadi, Mousa L; Khabour, Omar F; Shuaibu, Fatima A; Hussein, Emad I; Alzoubi, Karem H

    2016-01-01

    Several applications of chalcones and their derivatives encouraged researchers to increase their synthesis as an alternative for the treatment of pathogenic bacterial and fungal infections. In the present study, chalcone derivatives were synthesized through cross aldol condensation reaction between 4-(N,N-dimethylamino)benzaldehyde and multiarm aromatic ketones. The multiarm aromatic ketones were synthesized through nucleophilic substitution reaction between 4-hydroxy acetophenone and benzyl bromides. The benzyl bromides, multiarm aromatic ketones, and corresponding chalcone derivatives were evaluated for their activities against eleven clinical pathogenic Gram-positive, Gram-negative bacteria, and three pathogenic fungi by the disk diffusion method. The minimum inhibitory concentration was determined by the microbroth dilution technique. The results of the present study demonstrated that benzyl bromide derivatives have strong antibacterial and antifungal properties as compared to synthetic chalcone derivatives and ketones. Benzyl bromides (1a and 1c) showed high ester activity against Gram-positive bacteria and fungi but moderate activity against Gram-negative bacteria. Therefore, these compounds may be considered as good antibacterial and antifungal drug discovery. However, substituted ketones (2a–b) as well as chalcone derivatives (3a–c) showed no activity against all the tested strains except for ketone (2c), which showed moderate activity against Candida albicans. PMID:27877017

  13. Cooperative catalysis by tertiary amino-thioureas: mechanism and basis for enantioselectivity of ketone cyanosilylation.

    PubMed

    Zuend, Stephan J; Jacobsen, Eric N

    2007-12-26

    The mechanism of the enantioselective cyanosilylation of ketones catalyzed by tertiary amino-thiourea derivatives was investigated using a combination of experimental and theoretical methods. The kinetic analysis is consistent with a cooperative mechanism in which both the thiourea and the tertiary amine of the catalyst are involved productively in the rate-limiting cyanide addition step. Density functional theory calculations were used to distinguish between mechanisms involving thiourea activation of ketone or of cyanide in the enantioselectivity-determining step. The strong correlation obtained between experimental and calculated ee's for a range of substrates and catalysts provides support for the most favorable calculated transition structures involving amine-bound HCN adding to thiourea-bound ketone. The calculations suggest that enantioselectivity arises from direct interactions between the ketone substrate and the amino-acid derived portion of the catalyst. On the basis of this insight, more enantioselective catalysts with broader substrate scope were prepared and evaluated experimentally.

  14. Fatty acid-induced astrocyte ketone production and the control of food intake

    PubMed Central

    Le Foll, Christelle

    2016-01-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where “metabolic sensing neurons” integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. PMID:27122369

  15. Fatty acid-induced astrocyte ketone production and the control of food intake.

    PubMed

    Le Foll, Christelle; Levin, Barry E

    2016-06-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. Copyright © 2016 the American Physiological Society.

  16. Using solubility and Henry`s law constant data for ketones in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaws, C.L.; Sheth, S.D.; Han, M.

    When a chemical spill occurs in water, the extent of chemical contamination is determined by the chemical`s solubility in the water. If contaminated water comes into contact with air, such as in a pond or a storage vessel, the contaminant`s emissions into the air can be determined based upon Henry`s law constant for that particular constituent. A high Henry`s law constant value translates into a greater emissions level. The engineering design and operation of strippers to remove contaminants from water require data for both water solubility and Henry`s law constant. A new correlation developed by researchers at Lamar University providesmore » reliable values down to very, very low concentrations for the solubility of ketones in water. The correlation is based on the boiling point temperature of the ketone and can be used for engineering studies involving health, safety and environmental considerations. Results for water solubility and Henry`s law constant are provided here for a wide variety of ketones. Representative values are about 249,000 parts per million (ppm) per weight (wt) for methyl ethyl ketone (C{sub 4}H{sub 8}O) and 360 ppm/wt for 5-nonanone (C{sub 9}H{sub 18}O).« less

  17. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.; Wentz, Anna E.; André d'Avignon, D.

    2013-01-01

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1+/− mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states. PMID:23233542

  18. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  19. Sequential aldol condensation-transition metal-catalyzed addition reactions of aldehydes, methyl ketones, and arylboronic acids.

    PubMed

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-04-15

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1'-spirobiindane-7,7'-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. © 2011 American Chemical Society

  20. omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of beta-amino acids and amines.

    PubMed

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-04-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.

  1. Raspberry Ketone Protects Rats Fed High-Fat Diets Against Nonalcoholic Steatohepatitis

    PubMed Central

    Wang, Lili; Zhang, Fengqing

    2012-01-01

    Abstract The protective effect of raspberry ketone against nonalcoholic steatohepatitis (NASH) was tested by using a high-fat diet-induced NASH model, and its mechanism was explored. Forty Sprague–Dawley rats with a 1:1 male to female ratio were randomly divided into five groups: the normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), and the raspberry ketone low-dose (0.5%) (RKL) group (n=8), the raspberry ketone middle-dose (1%) (RKM) group (n=8), and the raspberry ketone high-dose (2%) (RKH) group (n=8) fed high-fat diet for 4 weeks. After 8 weeks of experiment, all the rats were sacrificed, and blood lipid parameters (total cholesterol [TC], triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]), liver function parameters (serum alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]), leptin (LEP), free fatty acid (FFA), tumor necrosis factor α (TNF-α), blood glucose (GLU), and insulin (INS) with calculated INS resistance index (IRI) and INS-sensitive index (ISI) were measured in rats. Therefore, we determined the peroxisome proliferator-activated receptor (PPAR)-α activity in liver homogenate and the levels of low-density lipoprotein receptor (LDLR), high-sensitivity C-reactive protein (hs-CRP), adiponection (APN), superoxide dismutase, and malondialdehyde (MDA). The liver tissues of rats in each group were imaged by electron microscopy with hematoxylin–eosin as the staining agent. The levels of TG, TC, LDL-C, ALT, AST, ALP, GLU, INS, IRI, FFA, LEP, TNF-α, MDA, and hs-CRP of MC rats were significantly increased (P<.05, P<.01). Therefore, the levels of HDL-C, ISI, PPAR-α, LDLR, and APN were significantly decreased (P<.05, P<.01). Compared with the MC group, each parameter in the RKL, RKM, and

  2. Raspberry ketone protects rats fed high-fat diets against nonalcoholic steatohepatitis.

    PubMed

    Wang, Lili; Meng, Xianjun; Zhang, Fengqing

    2012-05-01

    The protective effect of raspberry ketone against nonalcoholic steatohepatitis (NASH) was tested by using a high-fat diet-induced NASH model, and its mechanism was explored. Forty Sprague-Dawley rats with a 1:1 male to female ratio were randomly divided into five groups: the normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), and the raspberry ketone low-dose (0.5%) (RKL) group (n=8), the raspberry ketone middle-dose (1%) (RKM) group (n=8), and the raspberry ketone high-dose (2%) (RKH) group (n=8) fed high-fat diet for 4 weeks. After 8 weeks of experiment, all the rats were sacrificed, and blood lipid parameters (total cholesterol [TC], triglycerides [TG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]), liver function parameters (serum alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase [ALP]), leptin (LEP), free fatty acid (FFA), tumor necrosis factor α (TNF-α), blood glucose (GLU), and insulin (INS) with calculated INS resistance index (IRI) and INS-sensitive index (ISI) were measured in rats. Therefore, we determined the peroxisome proliferator-activated receptor (PPAR)-α activity in liver homogenate and the levels of low-density lipoprotein receptor (LDLR), high-sensitivity C-reactive protein (hs-CRP), adiponection (APN), superoxide dismutase, and malondialdehyde (MDA). The liver tissues of rats in each group were imaged by electron microscopy with hematoxylin-eosin as the staining agent. The levels of TG, TC, LDL-C, ALT, AST, ALP, GLU, INS, IRI, FFA, LEP, TNF-α, MDA, and hs-CRP of MC rats were significantly increased (P<.05, P<.01). Therefore, the levels of HDL-C, ISI, PPAR-α, LDLR, and APN were significantly decreased (P<.05, P<.01). Compared with the MC group, each parameter in the RKL, RKM, and RKH groups was

  3. Blood Ketones: Measurement, Interpretation, Limitations, and Utility in the Management of Diabetic Ketoacidosis

    PubMed Central

    Dhatariya, Ketan

    2016-01-01

    Diabetic ketoacidosis (DKA) remains a common medical emergency. Over the last few years, new national guidelines have changed the focus in managing the condition from being glucose-centered to ketone-centered. With the advent of advancing technology and the increasing use of hand-held, point-of-care ketone meters, greater emphasis is placed on making treatment decisions based on these readings. Furthermore, recent warnings about euglycemic DKA occurring in people with diabetes using sodium-glucose co-transporter 2 (SGLT-2) inhibitors urge clinicians to inform their patients of this condition and possible testing options. This review describes the reasons for a change in treating DKA, and outlines the benefits and limitations of using ketone readings, in particular highlighting the difference between urine and capillary readings. PMID:28278308

  4. Ketones in Urine: MedlinePlus Lab Test Information

    MedlinePlus

    ... Association; c1995–2017. DKA (Ketoacidosis) & Ketones; [updated 2015 Mar 18; cited 2017 Mar 19]; [about 3 screens]. Available from: http://www. ... Testing: What You Need to Know; [cited 2017 Mar 19]; [about 3 screens]. Available from: http://www. ...

  5. Bedside ketone determination in diabetic children with hyperglycemia and ketosis in the acute care setting.

    PubMed

    Ham, Melissa R; Okada, Pamela; White, Perrin C

    2004-03-01

    Diabetic ketoacidosis (DKA) is a serious complication of diabetes mellitus marked by characteristic biochemical derangements. Diagnosis and management involve frequent evaluation of these biochemical parameters. Reliable bedside equivalents for these laboratory studies may help reduce the time to treatment and reduce costs. We evaluated the precision and bias of a bedside serum ketone meter in the acute care setting. Serum ketone results using the Precision Xtra glucometer/ketone meter (Abbott Laboratories, MediSense Products Inc., Bedford, MA, USA) correlated strongly with the Children's Medical Center of Dallas' laboratory values within the meter's value range. Meter ketone values steadily decreased during the treatment of DKA as pH and CO(2) levels increased and acidosis resolved. Therefore, the meter may be useful in monitoring therapy for DKA. This meter may also prove useful in identifying patients at risk for DKA in physicians' offices or at home.

  6. Beta-ketothiolase deficiency: An unusual cause of recurrent ketoacidosis.

    PubMed

    Kılıç-Yıldırım, Gonca; Durmuş-Aydoğdu, Sultan; Ceylaner, Serdar; Sass, Jörn Oliver

    2017-01-01

    Kılıç-Yıldırım G, Durmuş-Aydoğdu S, Ceylaner S, Sass JO. Beta-ketothiolase deficiency: An unusual cause of recurrent ketoacidosis. Turk J Pediatr 2017; 59: 471-474. Beta-ketothiolase deficiency (mitochondrial acetoacetyl-CoA thiolase, MAT or T2 deficiency) is a rare autosomal recessive disorder of isoleucine and ketone body metabolism due to acetyl-CoA acetyltransferase-1 (ACAT1) gene mutations. The disease is characterized by recurrent episodes of ketoasidosis which starts with vomiting and followed by dehydration and tachypnea. Here, we present a patient who was admitted to the hospital with severe acidosis and dehydration because of vomiting induced by protein rich nutrient and was diagnosed with MAT deficiency. 3-hydroxy-butyric acid, acetoacetic acid and 3-hydroxy-iso-valeric acid levels were significantly increased and tiglyglycine as trace amount in the urine organic acid analysis of the patient. Genetic analysis for ACAT-1 showed compound heterozygosity for the mutations c.949G > A (p.D317N) and c.951C > T (p.D317D), which both are known to cause exon 10 skipping and to be pathogenic missense mutations.

  7. Aryl Ketone Synthesis via Tandem Orthoplatinated Triarylphosphite-Catalyzed Addition Reactions of Arylboronic Acids with Aldehydes Followed by Oxidation

    PubMed Central

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2010-01-01

    Tandem orthoplatinated triarylphosphite-catalyzed addition reactions of arylboronic acids with aldehydes followed by oxidation to yield aryl ketones is described. 3-Pentanone was identified as a suitable oxidant for the tandem aryl ketone formation reaction. By using microwave energy, aryl ketones were obtained in high yields with the catalyst loading as low as 0.01%. PMID:20849092

  8. Highly enantioselective alpha-aminoxylation of aldehydes and ketones with a polymer-supported organocatalyst.

    PubMed

    Font, Daniel; Bastero, Amaia; Sayalero, Sonia; Jimeno, Ciril; Pericàs, Miquel A

    2007-05-10

    The first catalytic enantioselective alpha-aminoxylation of aldehydes and ketones using an insoluble, polymer-supported organocatalyst (1) derived from trans-4-hydroxyproline is reported (ee: 96-99%). Reaction rates in the aminoxylation of cyclic ketones with 1 are higher than those reported with l-proline. The insoluble nature of 1 simplifies workup conditions and allows catalyst recycling without an apparent decrease in enantioselectivity or yield.

  9. Syn/anti isomerization of 2,4-dinitrophenylhydrazones in the determination of airborne unsymmetrical aldehydes and ketones using 2,4-dinitrophenylhydrazine derivation.

    PubMed

    Binding, N; Müller, W; Witting, U

    1996-10-01

    Aldehydes and ketones readily react with 2,4-dinitrophenylhydrazine (2,4-DNPH) to form the corresponding hydrazones. This reaction has been frequently used for the quantification of airborne carbonyl compounds. Since unsymmetrical aldehydes and ketones are known to form isomeric 2,4-dinitrophenylhydrazones (syn/ anti-isomers), the influence of isomerization on the practicability and accuracy of the 2,4-DNPH-method using 2,4-dinitrophenylhydrazine-coated solid sorbent samplers has been studied with three ketones (methyl ethyl ketone (MEK), methyl isopropyl ketone (MIPK), and methyl isobutyl ketone (MIBK)). With all three ketones the reaction with 2,4-DNPH resulted in mixtures of the isomeric hydrazones which were separated by HPLC and GC and identified by mass spectroscopy and (1)H nuclear magnetic resonance spectroscopy. The isomers show similar chromatographic behaviour in HPLC as well as in GC, thus leading to problems in quantification and interpretation of chromatographic results.

  10. Nickel-Catalyzed Cycloadditions of Unsaturated Hydrocarbons, Aldehydes, and Ketones

    PubMed Central

    Tekavec, Thomas N.

    2014-01-01

    The nickel-catalyzed cycloaddition of unsaturated hydrocarbons and carbonyls is reported. Diynes and enynes were used as coupling partners. Carbonyl substrates include both aldehdyes and ketones. Reactions of diynes and aldehydes afforded the [3, 3] electrocyclic ring-opened tautomers, rather than pyrans, in high yields. The cycloaddition reaction of enynes and aldehydes afforded two distinct products. A new carbon–carbon bond is formed, prior to a competitive β-hydrogen elimination of a nickel alkoxide, between the carbonyl carbon and either one of the carbons of the olefin or the alkyne. The steric hindrance of the enyne greatly affected the chemoselectivity of the cycloaddition of enynes and aldehydes. In some cases, dihydropyran was also formed. The scope of the cycloaddition reaction was expanded to include the coupling of enynes and ketones. No β-hydrogen elimination was observed in cycloaddition reaction of enynes and ketones. Instead, C–O bond-forming reductive elimination occurred exclusively to afford dihydropyrans in excellent yields. In all cases, complete chemoselectivity was observed; only dihydropyrans where the carbonyl carbon forms a carbon–carbon bond with a carbon of the olefin, rather than of the alkyne, were observed. All cycloaddition reactions occur at room temperature and employ nickel catalysts bearing the hindered 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or its saturated analogue, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolin-2-ylidene (SIPr). PMID:18318544

  11. 2'-Deoxy-3,7-dideazaguanosine and related compounds. Synthesis of 6-amino-1-(2-deoxy-beta-D-erythro-pentofuranosyl) and 1-beta-D-arabinofuranosyl-1H-pyrrolo[3,2-c]pyridin-4(5H)-one via direct glycosylation of a pyrrole precursor.

    PubMed Central

    Girgis, N S; Cottam, H B; Larson, S B; Robins, R K

    1987-01-01

    The synthesis of two new analogs of 2'-deoxyguanosine, 6-amino-1-(2-deoxy-beta-D-erythro-pentofuranosyl)-1H-pyrrolo[3,2-c] pyridin-4(5H)-one (8) and 6-amino-1-beta-D-arabinofuranosyl-1H-pyrrolo[3,2-c]-pyridin-4(5H)-one (13) has been accomplished by glycosylation of the sodium salt of ethyl 2-cyanomethyl-1H-pyrrole-3-carboxylate (4c) using 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranose( 5) and 1-chloro-2,3,5-tri-O-benzyl-alpha-D-arabinofuranose (9), respectively. The resulting blocked nucleosides, ethyl 2-cyanomethyl-1-(2-deoxy-3,5-di-O-p-toluoyl-beta-D-erythro- pentofuranosyl)-1H-pyrrole-3-carboxylate (6) and ethyl 2-cyanomethyl-1-(2,3,5-tri-O-benzyl-beta-D-arabinofuranosyl)- 1H-pyrrole-3-carboxylate, were ring closed with hydrazine to form 5-amino-6-hydrazino-1-(2-deoxy-beta-D-erythro-pentofuranosyl)-1H- pyrrolo[3,2-c]-pyridin-4(5H)-one (7) and 5,6-diamino-1-(2,3,5-tri-O-benzyl-beta-D-arabinofuranosyl)-1H- pyrrolo[3,2-c]pyridin-4(5H)-one (11), respectively. Treatment of 7 with Raney nickel provided the 2'-deoxyguanosine analog 8 while reaction of 11 with Raney nickel followed by palladium hydroxide/cyclohexene treatment gave the 2'-deoxyguanosine analog 13. The anomeric configuration of 8 was assigned as beta by proton NMR, while that of 13 was confirmed as beta by single-crystal X-ray analysis of the deblocked precursor ethyl 2-cyanomethyl-1-beta-D-arabinofuranosyl-1H-pyrrole-3-carboxylate (10a). PMID:3593477

  12. Enantioselective Reduction of Ketones and Imines Catalyzed by (CN-Box)Re(V)-Oxo Complexes

    PubMed Central

    Nolin, Kristine A.; Ahn, Richard W.; Kobayashi, Yusuke; Kennedy-Smith, Joshua J.

    2012-01-01

    The development and application of chiral, non-racemic Re(V)-oxo complexes to the enantioselective reduction of prochiral ketones is described. In addition to the enantioselective reduction of prochiral ketones, we report the application of these complexes to (1) a tandem Meyer-Schuster rearrangement/reduction to access enantioenriched allylic alcohols and (2) the enantioselective reduction of imines. PMID:20623567

  13. Effects of Insecticidal Ketones Present in Mint Plants on GABAA Receptor from Mammalian Neurons

    PubMed Central

    Sánchez-Borzone, Mariela Eugenia; Marin, Leticia Delgado; García, Daniel Asmed

    2017-01-01

    Background: The genus Mentha, an important member of the Lamiaceae family, is represented by many species commonly known as mint. The insecticidal activity of Mentha oil and its main components has been tested and established against various insects/pests. Among these, the ketone monoterpenes that are most common in different Mentha species demonstrated insect toxicity, with pulegone being the most active, followed by carvone and menthone. Considering that the GABAA receptor (GABAA-R) is one of the main insecticide targets on neurons, and that pulegone would modulate the insect GABA system, it may be expected that the insecticidal properties of Mentha ketones are mediated by their interaction with this receptor. Objective: In order to discern the pharmacological actions of these products when used as insecticides on mammalian organisms, we evaluated the pharmacologic activity of ketones, commonly present in Mentha plants, on native GABAA-R from rats. Materials and Methods: Determination of ketones effects on allosterically enhanced benzodiazepine binding, using primary cultures of cortical neurons, which express functional receptors and MTT assay to evaluate their cell toxicity. Results: Our results seem to indicate that ketone components of Mentha, with proven repellent or insecticide activity, were able to behave as GABAA-R negative allosteric modulators in murine cells and consequently could exhibit convulsant activity in mammalians. Only pulegone at the highest assayed concentration (2 mM) showed a significant reduction in cell viability after exposure for 24 hr. Conclusion: The present results strongly suggest that the ketone components of Mentha are able to exhibit convulsant activity in mammalian organisms, but functional assays and in vivo experiments would be necessary to corroborate this proposed action. SUMMARY The pharmacological activity of insecticide ketones, commonly present in Mentha plants, was evaluated on native GABAA receptor from mammalian

  14. Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties.

    PubMed

    Amdjadi, Parisa; Nojehdehian, Hanieh; Najafi, Farhood; Ghasemi, Amir; Seifi, Massoud; Dashtimoghadam, Erfan; Fahimipour, Farahnaz; Tayebi, Lobat

    2017-07-01

    Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone-octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications.

  15. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.

    PubMed

    Orozco, Lina M; Renz, Michael; Corma, Avelino

    2016-09-08

    Aldehydes possess relatively high chemical energy, which is the driving force for disproportionation reactions such as Cannizzaro and Tishchenko reactions. Generally, this energy is wasted if aldehydes are transformed into carboxylic acids with a sacrificial oxidant. Here, we describe a cascade reaction in which the surplus energy of the transformation is liberated as molecular hydrogen for the oxidation of heptanal to heptanoic acid by water, and the carboxylic acid is transformed into potentially industrially relevant symmetrical ketones by ketonic decarboxylation. The cascade reaction is catalyzed by monoclinic zirconium oxide (m-ZrO2 ). The reaction mechanism has been studied through cross-coupling experiments between different aldehydes and acids, and the final symmetrical ketones are formed by a reaction pathway that involves the previously formed carboxylic acids. Isotopic studies indicate that the carboxylic acid can be formed by a hydride shift from the adsorbed aldehyde on the metal oxide surface in the absence of noble metals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Activation of liver carnitine palmitoyltransferase-1 and mitochondrial acetoacetyl-CoA thiolase is associated with elevated ketone body levels in the elasmobranch Squalus acanthias.

    PubMed

    Treberg, Jason R; Crockett, Elizabeth L; Driedzic, William R

    2006-01-01

    Elasmobranch fishes are an ancient group of vertebrates that have unusual lipid metabolism whereby storage lipids are mobilized from the liver for peripheral oxidation largely as ketone bodies rather than as nonesterified fatty acids under normal conditions. This reliance on ketones, even when feeding, implies that elasmobranchs are chronically ketogenic. Compared to specimens sampled within 2 d of capture (recently captured), spiny dogfish Squalus acanthias that were held for 16-33 d without apparent feeding displayed a 4.5-fold increase in plasma concentration of d- beta -hydroxybutyrate (from 0.71 to 3.2 mM) and were considered ketotic. Overt activity of carnitine palmitoyltransferase-1 in liver mitochondria from ketotic dogfish was characterized by an increased apparent maximal activity, a trend of increasing affinity (reduced apparent K(m); P=0.09) for l-carnitine, and desensitization to the inhibitor malonyl-CoA relative to recently captured animals. Acetoacetyl-CoA thiolase (ACoAT) activity in isolated liver mitochondria was also markedly increased in the ketotic dogfish compared to recently captured fish, whereas no difference in 3-hydroxy-3-methylglutaryl-CoA synthase activity was found between these groups, suggesting that ACoAT plays a more important role in the activation of ketogenesis in spiny dogfish than in mammals and birds.

  17. Sequential Aldol Condensation – Transition Metal-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids

    PubMed Central

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-01-01

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1′-spirobiindane-7,7′-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. PMID:21417359

  18. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ketones (nonquantitative) test system. 862.1435 Section 862.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  19. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  20. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism

    DOE PAGES

    Bai, Da -Chang; Yu, Fei -Le; Wang, Wan -Ying; ...

    2016-06-10

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of beta-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a ( syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. As a result, mechanisticmore » studies by both experiments and density functional theory ( DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination.« less

  1. Serum Beta Hydroxybutyrate Concentrations in Cats with Chronic Kidney Disease, Hyperthyroidism, or Hepatic Lipidosis.

    PubMed

    Gorman, L; Sharkey, L C; Armstrong, P J; Little, K; Rendahl, A

    2016-01-01

    Ketones, including beta hydroxybutyrate (BHB), are produced in conditions of negative energy balance and decreased glucose utilization. Serum BHB concentrations in cats are poorly characterized in diseases other than diabetes mellitus. Serum BHB concentrations will be increased in cats with chronic kidney disease (CKD), hyperthyroidism (HT), or hepatic lipidosis (HL). Twenty-eight client-owned cats with CKD, 34 cats with HT, and 15 cats with HL; 43 healthy cats. Prospective observational study. Serum BHB concentrations were measured at admission in cats with CKD, HT, and HL, for comparison with a reference interval established using healthy cats. Results of dipstick urine ketone measurement, when available, were compared to BHB measurement. Beta hydroxybutyrate was above the reference interval (<0.11 mmol/L) in 6/28 cats (21%) with CKD, 7/34 cats (20%) with HT, and 11/15 cats (73%) with HL, significantly exceeding the expected 2.5% above the reference interval for healthy cats (P < .001 for all groups). Elevations were mild in CKD and HT groups (median BHB 0.1 mmol/L for both groups, 80th percentile 0.12 and 0.11 mmol/L, respectively), but more marked in HL cats (median BHB 0.2 mmol/L, 80th percentile 0.84 mmol/L). None of 11 cats with increased serum BHB concentration having urine dipstick analysis performed within 24 h of sampling for BHB were ketonuric. Increases in serum BHB concentrations occur in cats with CKD, HT, and HL, and might provide an useful index of catabolism. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Raspberry ketone in food supplements--High intake, few toxicity data--A cause for safety concern?

    PubMed

    Bredsdorff, Lea; Wedebye, Eva Bay; Nikolov, Nikolai Georgiev; Hallas-Møller, Torben; Pilegaard, Kirsten

    2015-10-01

    Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) is marketed on the Internet as a food supplement. The recommended intake is between 100 and 1400 mg per day. The substance is naturally occurring in raspberries (up to 4.3 mg/kg) and is used as a flavouring substance. Toxicological studies on raspberry ketone are limited to acute and subchronic studies in rats. When the lowest recommended daily dose of raspberry ketone (100 mg) as a food supplement is consumed, it is 56 times the established threshold of toxicological concern (TTC) of 1800 μg/day for Class 1 substances. The margin of safety (MOS) based on a NOAEL of 280 mg/kg bw/day for lower weight gain in rats is 165 at 100 mg and 12 at 1400 mg. The recommended doses are a concern taking into account the TTC and MOS. Investigations of raspberry ketone in quantitative structure-activity relationship (QSAR) models indicated potential cardiotoxic effects and potential effects on reproduction/development. Taking into account the high intake via supplements, the compound's toxic potential should be clarified with further experimental studies. In UK the pure compound is regarded as novel food requiring authorisation prior to marketing but raspberry ketone is not withdrawn from Internet sites from this country. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  4. ANALYSIS OF ALDEHYDES AND KETONES IN THE GAS PHASE

    EPA Science Inventory

    The development and testing of a 2,4-dinitrophenylhydrazine-acetonitrile (DNPH-ACN) method for the analysis of aldehydes and ketones in ambient air are described. A discussion of interferences, preparation of calibration standards, analytical testing, fluorescence methods and car...

  5. Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine

    PubMed Central

    Wu, Kun; Huang, Zhiliang; Qi, Xiaotian; Li, Yingzi; Zhang, Guanghui; Liu, Chao; Yi, Hong; Meng, Lingkui; Bunel, Emilio E.; Miller, Jeffrey T.; Pao, Chih-Wen; Lee, Jyh-Fu; Lan, Yu; Lei, Aiwen

    2015-01-01

    Copper-catalyzed aerobic oxidative C–H/N–H coupling between simple ketones and diamines was developed toward the synthesis of a variety of pyrazines. Various substituted ketones were compatible for this transformation. Preliminary mechanistic investigations indicated that radical species were involved. X-ray absorption fine structure experiments elucidated that the Cu(II) species 5 coordinated by two N atoms at a distance of 2.04 Å and two O atoms at a shorter distance of 1.98 Å was a reactive one for this aerobic oxidative coupling reaction. Density functional theory calculations suggested that the intramolecular coupling of cationic radicals was favorable in this transformation. PMID:26601302

  6. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst.

    PubMed

    de Souza, Viviane P; Oliveira, Cristiane K; de Souza, Thiago M; Menezes, Paulo H; Alves, Severino; Longo, Ricardo L; Malvestiti, Ivani

    2016-11-16

    Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  7. Nitrosative stress mediated misfolded protein aggregation mitigated by Na-D-{beta}-hydroxybutyrate intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Rotenone is a model for inducing apoptosis and synphilin-1 accumulation in Parkinson Prime s studies. Black-Right-Pointing-Pointer The metabolite sodium betahydroxybutryate mitigates these effects in SHSY5Y cell lines. Black-Right-Pointing-Pointer Results reveal a novel and innate mechanism to prevent neurodegeneration/cell death. -- Abstract: Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-taggedmore » synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-{beta}-hydroxybutyrate (Na{beta}HB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that Na{beta}HB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.« less

  8. Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with beta-cyclodextrin and chemically modified beta-cyclodextrins.

    PubMed

    Martín, L; León, A; Olives, A I; Del Castillo, B; Martín, M A

    2003-06-13

    The association characteristics of the inclusion complexes of the beta-carboline alkaloids harmane and harmine with beta-cyclodextrin (beta-CD) and chemically modified beta-cyclodextrins such as hydroxypropyl-beta-cyclodextrin (HPbeta-CD), 2,3-di-O-methyl-beta-cyclodextrin (DMbeta-CD) and 2,3,6-tri-O-methyl-beta-cyclodextrin (TMbeta-CD) are described. The association constants vary from 112 for harmine/DMbeta-CD to 418 for harmane/HPbeta-CD. The magnitude of the interactions between the host and the guest molecules depends on the chemical and geometrical characteristics of the guest molecules and therefore the association constants vary for the different cyclodextrin complexes. The steric hindrance is higher in the case of harmine due to the presence of methoxy group on the beta-carboline ring. The association obtained for the harmane complexes is stronger than the one observed for harmine complexes except in the case of harmine/TMbeta-CD. Important differences in the association constants were observed depending on the experimental variable used in the calculations (absolute value of fluorescence intensity or the ratio between the fluorescence intensities corresponding to the neutral and cationic forms). When fluorescence intensity values were considered, the association constants were higher than when the ratio of the emission intensity for the cationic and neutral species was used. These differences are a consequence of the co-existence of acid-base equilibria in the ground and in excited states together with the complexation equilibria. The existence of a proton transfer reaction in the excited states of harmane or harmine implies the need for the experimental dialysis procedure for separation of the complexes from free harmane or harmine. Such methodology allows quantitative results for stoichiometry determinations to be obtained, which show the existence of both 1:1 and 1:2 beta-carboline alkaloid:CD complexes with different solubility properties.

  9. Ketone isosteres of 2-N-acetamidosugars as substrates for metabolic cell surface engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2000-08-22

    Novel chemical reactivity can be engendered on cell surfaces by the metabolic incorporation of unnatural sugars into cell surface glycoconjuagtes. 2-N-Acetamido sugars such as GalNAc and GlcNAc are abundant components of cell surface glycoconjugates, and hence attractive targets for metabolic cell surface engineering. Here we report (1) the synthesis of isosteric analogs bearing a ketone group in place of the N-acetamido group, and (2) evaluation of their metabolic incorporation into mammalian cell surface glycans. A ketone isostere of GalNAc was metabolized by CHO cells through the salvage pathway and delivered to O-linked glycoproteins on the cell surface. Its residence atmore » the core position of O-linked glycans is suggested by studies with a-benzyl GalNAc, an inhibitor of O-linked oligosaccharide extension. A mutant CHO cell line lacking endogenous UDP-GalNAc demonstrated enhanced metabolism of the GalNAc analog, suggesting that competition with native intermediates might limits enzymatic transformation in mammalian cells. A ketone isostere of GlcNAc could not be detected on CHO or human cell surfaces after incubation. Thus, the enzymes in the GlcNAc salvage pathway might be less permissive of unnatural substrates than those comprising the GalNAc salvage pathway. Alternatively, high levels of endogenous GlcNAc derivatives might compete with the ketone isostere and prevent its incorporation into oligosaccharides.« less

  10. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.

    PubMed

    Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2016-08-01

    Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.

  11. Ketone esters increase brown fat in mice and overcome insulin resistance in other tissues in the rat.

    PubMed

    Veech, Richard L

    2013-10-01

    Brown adipose tissue (BAT) is classically activated by sympathetic nervous stimulation resulting from exposure to cold. Feeding a high-fat diet also induces development of brown fat, but is decreased by caloric restriction. Blood ketone bodies, which function as alternative energy substrates to glucose, are increased during caloric restriction. Here we discuss the unexpected observation that feeding an ester of ketone bodies to the mouse, which increases blood ketone body concentrations, results in an activation of brown fat. The mechanism of this activation of brown fat is similar to that occurring from cold exposure in that cyclic adenosine monophosphate (AMP) levels are increased as are levels of the transcription factor cyclic AMP-responsive element-binding protein, which is also increased by ketone ester feeding. Other effects of feeding ketone esters, in addition to their ability to induce brown fat, are discussed such as their ability to overcome certain aspects of insulin resistance and to ameliorate the accumulation of amyloid and phosphorylated tau protein in brain, and improve cognitive function, in a triple transgenic mouse model of Alzheimer's disease. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  12. Rigid Dipeptide Mimics: Synthesis of Enantiopure 5- and 7-Benzyl and 5,7-Dibenzyl Indolizidinone Amino Acids via Enolization and Alkylation of delta-Oxo alpha,omega-Di-[N-(9-(9-phenylfluorenyl))amino]azelate Esters.

    PubMed

    Polyak, Felix; Lubell, William D.

    1998-08-21

    Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance

  13. Process for conversion of levulinic acid to ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Vanessa M.; Dagle, Robert A.

    A method for generating desired platform chemicals from feedstocks such as cellulosic biomass feedstocks containing levulinic acid by decarboxylating a feed stock comprising levulinic acid to generate ketones. This is done by passing a feed stock comprising levulinic acid in a gas phase over a non-precious metal catalyst on a neutral support.

  14. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies.

    PubMed

    Maalouf, Marwan; Rho, Jong M; Mattson, Mark P

    2009-03-01

    Both calorie restriction and the ketogenic diet possess broad therapeutic potential in various clinical settings and in various animal models of neurological disease. Following calorie restriction or consumption of a ketogenic diet, there is notable improvement in mitochondrial function, a decrease in the expression of apoptotic and inflammatory mediators and an increase in the activity of neurotrophic factors. However, despite these intriguing observations, it is not yet clear which of these mechanisms account for the observed neuroprotective effects. Furthermore, limited compliance and concern for adverse effects hamper efforts at broader clinical application. Recent research aimed at identifying compounds that can reproduce, at least partially, the neuroprotective effects of the diets with less demanding changes to food intake suggests that ketone bodies might represent an appropriate candidate. Ketone bodies protect neurons against multiple types of neuronal injury and are associated with mitochondrial effects similar to those described during calorie restriction or ketogenic diet treatment. The present review summarizes the neuroprotective effects of calorie restriction, of the ketogenic diet and of ketone bodies, and compares their putative mechanisms of action.

  15. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury

    PubMed Central

    Prins, Mayumi L.; Matsumoto, Joyce H.

    2014-01-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741

  16. 1,1-Dimetallic reagents for the elaboration of stereoselectively di- or trisubstituted linear substrates.

    PubMed

    Normant, J F

    2001-08-01

    Although gem-dimetallic species have been known for a long time, and reacted once or twice with electrophiles, the allyl zincation of substituted vinyl metals has emerged as a particularly efficient access to such species. This is due to a high face selectivity, in the addition to the C=C bond, which can be governed by vicinal or more remote heteroatoms. This strategy has some aspects in common with the well-known allylations or aldol condensations to carbonyl derivatives. But in the present case, the C=C bond has a low polarity. We present here some examples which lead to di- or polysubstituted linear substrates, of given geometry, where the organodimetallic obtained has been doubly protonated by water. Further elaborations (to alkenes, ketones, etc.) are possible.

  17. Photochemical studies on aromatic γ,δ-epoxy ketones: efficient synthesis of benzocyclobutanones and indanones.

    PubMed

    Shao, Yutian; Yang, Chao; Gui, Weijun; Liu, Yang; Xia, Wujiong

    2012-04-11

    Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction. This journal is © The Royal Society of Chemistry 2012

  18. Sources and concentrations of aldehydes and ketones in indoor environments in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crump, D.R.; Gardiner, D.

    1989-01-01

    Individual aldehydes and ketones can be separated, identified and quantitatively estimated by trapping the 2,4-dinitrophenylhydrazine (DNPH) derivatives and analysis by HPLC. Appropriate methods and detection limits are reported. Many sources of formaldehyde have been identified by this means and some are found to emit other aldehydes and ketones. The application of this method to determine the concentration of these compounds in the atmospheres of buildings is described and the results compared with those obtained using chromotropic acid or MBTH.

  19. One-pot synthesis of β-acetamido ketones using boric acid at room temperature.

    PubMed

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products.

  20. A nickel catalyst for the addition of organoboronate esters to ketones and aldehydes.

    PubMed

    Bouffard, Jean; Itami, Kenichiro

    2009-10-01

    A Ni(cod)(2)/IPr catalyst promotes the intermolecular 1,2-addition of arylboronate esters to unactivated aldehydes and ketones. Diaryl, alkyl aryl, and dialkyl ketones show good reactivity under mild reaction conditions (< or = 80 degrees C, nonpolar solvents, no strong base or acid additives). A dramatic ligand effect favors either carbonyl addition (IPr) or C-OR cross-coupling (PCy(3)) with aryl ether substrates. A Ni(0)/Ni(II) catalytic cycle initiated by the oxidative cyclization of the carbonyl substrate is proposed.

  1. Sulphation of proteochondroitin and 4-methylumbelliferyl beta-D-xyloside-chondroitin formed by mouse mastocytoma cells cultured in sulphate-deficient medium.

    PubMed Central

    Silbert, J E; Sugumaran, G; Cogburn, J N

    1993-01-01

    Mouse mastocytoma cells were cultured in medium containing [3H]GlcN and concentrations of [35S]sulphate varying from 0.01 to 0.5 mM. Intracellular [35S]sulphate incorporation increased severalfold from the lowest concentrations, reaching a maximum at 0.1-0.2 mM, whereas incorporation of [3H]hexosamine remained constant at all sulphate concentrations. Proteo[3H]-chondroitin [35S]sulphate was isolated and incubated with chondroitin ABC lyase, yielding 35S-labelled and/or 3H-labelled delta Di-0S and delta Di-4S disaccharide products. The increasing percentage of delta Di-4S was consistent with the increasing sulphate incorporation at each higher [35S]sulphate concentration. Examination of proteochondroitin [35S]sulphate size by Sepharose CL-6B chromatography indicated a range consistent with various numbers of glycosaminoglycan chains on the protease-resistant serglycin core protein. Alkali-cleaved chondroitin [35S]sulphate products indicated similar size distributions at all sulphate concentrations with no indication of preferential sulphation being related to smaller or larger size. DEAE-cellulose chromatography of [3H]chondroitin [35S]sulphate glycosaminoglycans indicated a random undersulphation as [35S]sulphate concentration was lowered. Addition of 4-methylumbelliferyl beta-D-xyloside to the cultures resulted in a 2-2.5-fold stimulation of [3H]chondroitin [35S]sulphate synthesis with formation of beta-xyloside-[3H]chondroitin [35S]sulphate which was much smaller, as estimated by Sepharose CL-6B chromatography, than the decreased amount of [3H]chondroitin [35S]sulphate derived from proteo[3H]chondroitin [35S]sulphate. Much higher concentrations of sulphate were necessary to produce sulphation of the beta-xyloside-[3H]chondroitin comparable with that of proteo[3H]-chondroitin, as indicated by chondroitin ABC lyase products and DEAE-cellulose chromatography. The specific radioactivities of the [3H]GalN in the proteo[3H]chondroitin [35S]sulphate and beta-xyloside-[3

  2. Metal-free trifluoromethylation of aromatic and heteroaromatic aldehydes and ketones.

    PubMed

    Qiao, Yupu; Si, Tuda; Yang, Ming-Hsiu; Altman, Ryan A

    2014-08-01

    The ability to convert simple and common substrates into fluoroalkyl derivatives under mild conditions remains an important goal for medicinal and agricultural chemists. One representative example of a desirable transformation involves the conversion of aromatic and heteroaromatic ketones and aldehydes into aryl and heteroaryl β,β,β-trifluoroethylarenes and -heteroarenes. The traditional approach for this net transformation involves stoichiometric metals and/or multistep reaction sequences that consume excessive time, material, and labor resources while providing low yields of products. To complement these traditional strategies, we report a one-pot metal-free decarboxylative procedure for accessing β,β,β-trifluoroethylarenes and -heteroarenes from readily available ketones and aldehydes. This method features several benefits, including ease of operation, readily available reagents, mild reaction conditions, high functional-group compatibility, and scalability.

  3. Metal-Free Trifluoromethylation of Aromatic and Heteroaromatic Aldehydes and Ketones

    PubMed Central

    2015-01-01

    The ability to convert simple and common substrates into fluoroalkyl derivatives under mild conditions remains an important goal for medicinal and agricultural chemists. One representative example of a desirable transformation involves the conversion of aromatic and heteroaromatic ketones and aldehydes into aryl and heteroaryl β,β,β-trifluoroethylarenes and -heteroarenes. The traditional approach for this net transformation involves stoichiometric metals and/or multistep reaction sequences that consume excessive time, material, and labor resources while providing low yields of products. To complement these traditional strategies, we report a one-pot metal-free decarboxylative procedure for accessing β,β,β-trifluoroethylarenes and -heteroarenes from readily available ketones and aldehydes. This method features several benefits, including ease of operation, readily available reagents, mild reaction conditions, high functional-group compatibility, and scalability. PMID:25001876

  4. Aliphatic C-C Bond Cleavage in α-Hydroxy Ketones by a Dioxygen-Derived Nucleophilic Iron-Oxygen Oxidant.

    PubMed

    Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K

    2017-03-17

    A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O 2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O 2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One-Pot Synthesis of β-Acetamido Ketones Using Boric Acid at Room Temperature

    PubMed Central

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products. PMID:22666168

  6. Zinc-catalyzed allenylations of aldehydes and ketones.

    PubMed

    Fandrick, Daniel R; Saha, Jaideep; Fandrick, Keith R; Sanyal, Sanjit; Ogikubo, Junichi; Lee, Heewon; Roschangar, Frank; Song, Jinhua J; Senanayake, Chris H

    2011-10-21

    The general zinc-catalyzed allenylation of aldehydes and ketones with an allenyl boronate is presented. Preliminary mechanistic studies support a kinetically controlled process wherein, after a site-selective B/Zn exchange to generate a propargyl zinc intermediate, the addition to the electrophile effectively competes with propargyl-allenyl zinc equilibration. The utility of the methodology was demonstrated by application to a rhodium-catalyzed [4+2] cycloaddition. © 2011 American Chemical Society

  7. Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing-Impaired Leucyl-tRNA Synthetase

    PubMed Central

    Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.

    2011-01-01

    A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197

  8. Enantioselective synthesis of chiral oxazolines from unactivated ketones and isocyanoacetate esters by synergistic silver/organocatalysis.

    PubMed

    Martínez-Pardo, Pablo; Blay, Gonzalo; Muñoz, M Carmen; Pedro, José R; Sanz-Marco, Amparo; Vila, Carlos

    2018-03-15

    A multicatalytic approach that combines a bifunctional Brønsted base-squaramide organocatalyst and Ag + as Lewis acid has been applied in the reaction of unactivated ketones with tert-butyl isocyanoacetate to give chiral oxazolines bearing a quaternary stereocenter. The formal [3+2] cycloaddition provided high yields of the corresponding cis-oxazolines with good diastereoselectivity and excellent enantioselectivity, being applied to aryl-alkyl and alkyl-alkyl ketones.

  9. Cs₂CO₃-Initiated Trifluoro-Methylation of Chalcones and Ketones for Practical Synthesis of Trifluoromethylated Tertiary Silyl Ethers.

    PubMed

    Dong, Cheng; Bai, Xing-Feng; Lv, Ji-Yuan; Cui, Yu-Ming; Cao, Jian; Zheng, Zhan-Jiang; Xu, Li-Wen

    2017-05-18

    It was found that 1,2-trifluoromethylation reactions of ketones, enones, and aldehydes were easily accomplished using the Prakash reagent in the presence of catalytic amounts of cesium carbonate, which represents an experimentally convenient, atom-economic process for this anionic trifluoromethylation of non-enolisable aldehydes and ketones.

  10. Rapid test by liquid chromatography/tandem mass spectrometry to evaluate equine urine reactivity towards 17beta-OH steroids.

    PubMed

    Fidani, Marco; Casagni, Eleonora; Montana, Marco; Pasello, Emanuela; Pecoraro, Chiara; Gambaro, Veniero

    2006-01-01

    Bacteria frequently found in equine urine samples may cause degradation of 17beta-OH steroids. A simple liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed to evaluate the microbiological contamination of equine urine as a marker of poor storage conditions. Norethandrolone was used as the internal standard, and the linearity, sensitivity, precision and accuracy of the method were evaluated. 17beta-OH oxidation was demonstrated for testosterone, nandrolone, trenbolone and boldenone, but did not occur in alpha-epimers such as alpha-boldenone and epitestosterone, demonstrating the stereoselectivity of the reaction. A rapid test was performed by spiking one of the four 17beta-OH steroids in samples of diluted equine urine. The steroids were transformed into their respective ketones in the presence of bacterial activity. The test allows direct injection of diluted samples into the LC/MS system, without the need for prior extraction. Results show that the best method of storage is freezing at -18 degrees C. Urine specimens should be analyzed as soon as possible after thawing. This allows bacterial degradation of equine urine to be arrested temporarily, so that the urine can be used for qualitative or quantitative analysis of 17beta-OH steroids.

  11. Selective hydrosilylation of alkynes and ketones: contrasting reactivity between cationic 3-iminophosphine palladium and nickel complexes.

    PubMed

    Tafazolian, Hosein; Yoxtheimer, Robert; Thakuri, Rajendr S; Schmidt, Joseph A R

    2017-04-19

    The catalytic hydrosilylation of alkynes and ketones has been explored utilizing palladium- and nickel(allyl) complexes supported by 3-iminophosphine ligands. Palladium and nickel demonstrated distinctly different reactivity profiles, with palladium proving very effective for the hydrosilylation of electron-deficient alkynes, while nickel excelled with ketones and internal alkynes. Additionally, in many cases, regioselective hydrosilylation was observed.

  12. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury.

    PubMed

    Prins, Mayumi L; Matsumoto, Joyce H

    2014-12-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Two-carbon homologation of aldehydes and ketones to α,β-unsaturated aldehydes.

    PubMed

    Petroski, Richard J; Vermillion, Karl; Cossé, Allard A

    2011-06-17

    Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched α,β-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde, followed by removal of the dimethylhydrazone protective group with a biphasic mixture of 1 M HCl and petroleum ether. This robust two-step process worked with a variety of aldehydes and ketones. Overall isolated yields of unsaturated aldehyde products ranged from 71% to 86% after the condensation and deprotection steps.

  14. A novel microreactor approach for analysis of ketones and aldehydes in breath.

    PubMed

    Fu, Xiao-An; Li, Mingxiao; Biswas, Souvik; Nantz, Michael H; Higashi, Richard M

    2011-11-21

    We report a fabricated microreactor with thousands of micropillars in channels. Each micropillar surface is chemically functionalized to selectively preconcentrate gaseous ketones and aldehydes of exhaled breath and to enhance ultra-trace, rapid analysis by direct-infusion Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). The micropillar reactive coating contains the quaternary ammonium aminooxy salt 2-(aminooxy)ethyl-N,N,N-trimethylammonium iodide (ATM) for capturing trace carbonyl VOCs by means of an oximation reaction. We demonstrate the utility of this approach for detection of C(1) to C(12) aldehydes and ketones in exhaled breath, but the approach is applicable to any gaseous sample.

  15. Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids.

    PubMed

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Miziorko, Henri M; Levin, Barry E

    2014-04-01

    Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes.

  16. Regulation of Hypothalamic Neuronal Sensing and Food Intake by Ketone Bodies and Fatty Acids

    PubMed Central

    Le Foll, Christelle; Dunn-Meynell, Ambrose A.; Miziorko, Henri M.; Levin, Barry E.

    2014-01-01

    Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes. PMID:24379353

  17. π-Expanded α,β-unsaturated ketones: synthesis, optical properties, and two-photon-induced polymerization.

    PubMed

    Nazir, Rashid; Bourquard, Florent; Balčiūnas, Evaldas; Smoleń, Sabina; Gray, David; Tkachenko, Nikolai V; Farsari, Maria; Gryko, Daniel T

    2015-02-23

    A library of π-expanded α,β-unsaturated ketones was designed and synthesized. They were prepared by a combination of Wittig reaction, Sonogashira reaction, and aldol condensation. It was further demonstrated that the double aldol condensation can be performed effectively for highly polarized styrene- and diphenylacetylene-derived aldehydes. The strategic placement of two dialkylamino groups at the periphery of D-π-A-π-D molecules resulted in dyes with excellent solubility. These ketones absorb light in the region 400-550 nm. Many of them display strong solvatochromism so that the emission ranges from 530-580 nm in toluene to the near-IR region in benzonitrile. Ketones based on cyclobutanone as central moieties display very high fluorescence quantum yields in nonpolar solvents, which decrease drastically in polar media. Photophysical studies of these new functional dyes revealed that they possess an enhanced two-photon absorption cross section when compared with simpler ketone derivatives. Due to strong polarization of the resulting dyes, values of two-photon absorption cross sections on the level of 200-300 GM at 800 nm were achieved, and thanks to that as well as the presence of the keto group, these new two-photon initiators display excellent performance so that the operating region is 5-75 mW in some cases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The inverse problem of brain energetics: ketone bodies as alternative substrates

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Occhipinti, R.; Somersalo, E.

    2008-07-01

    Little is known about brain energy metabolism under ketosis, although there is evidence that ketone bodies have a neuroprotective role in several neurological disorders. We investigate the inverse problem of estimating reaction fluxes and transport rates in the different cellular compartments of the brain, when the data amounts to a few measured arterial venous concentration differences. By using a recently developed methodology to perform Bayesian Flux Balance Analysis and a new five compartment model of the astrocyte-glutamatergic neuron cellular complex, we are able to identify the preferred biochemical pathways during shortage of glucose and in the presence of ketone bodies in the arterial blood. The analysis is performed in a minimally biased way, therefore revealing the potential of this methodology for hypothesis testing.

  19. A rational approach to predict and modulate stereolability of chiral alpha substituted ketones.

    PubMed

    Cirilli, Roberto; Costi, Roberta; Di Santo, Roberto; Gasparrini, Francesco; La Torre, Francesco; Pierini, Marco; Siani, Gabriella

    2009-01-01

    An effective strategy to assess and modulate the stereolability of chiral alpha substituted ketones (C alpha SKs) is presented. The tendency of C alpha SKs to retain or change their configuration in water is analyzed as a function of thermodynamic proton-release attitude of alpha asymmetric atoms inside the structures by linear Brønsted correlations. A molecular modeling procedure was developed to analyze and suggest chemical modifications of C alpha SKs in view to obtain the desired grade of stereochemical stability. The approach was employed to predict the tendency to enantiomerize in water of two ketones (1 and 2) endowed with inhibitory activity against monoamine oxidases (MAOs) and the results were confirmed by experimental kinetics measurements performed in organic medium. As a demonstration of practical potentialities of the approach, four new structures, conceived as simple chemical modifications of 1 and 2, were designed to improve/reduce the stereostability grade of the starting anti-MAO ketones. The possibility to extend easily the procedure to other classes of C-H acids appears of interest.

  20. A Beta Oscillation Network in the Rat Olfactory System During a 2-Alternative Choice Odor Discrimination Task

    PubMed Central

    Beshel, Jennifer

    2010-01-01

    We previously showed that in a two-alternative choice (2AC) task, olfactory bulb (OB) gamma oscillations (∼70 Hz in rats) were enhanced during discrimination of structurally similar odorants (fine discrimination) versus discrimination of dissimilar odorants (coarse discrimination). In other studies (mostly employing go/no-go tasks) in multiple labs, beta oscillations (15–35 Hz) dominate the local field potential (LFP) signal in olfactory areas during odor sampling. Here we analyzed the beta frequency band power and pairwise coherence in the 2AC task. We show that in a task dominated by gamma in the OB, beta oscillations are also present in three interconnected olfactory areas (OB and anterior and posterior pyriform cortex). Only the beta band showed consistently elevated coherence during odor sniffing across all odor pairs, classes (alcohols and ketones), and discrimination types (fine and coarse), with stronger effects in first than in final criterion sessions (>70% correct). In the first sessions for fine discrimination odor pairs, beta power for incorrect trials was the same as that for correct trials for the other odor in the pair. This pattern was not repeated in coarse discrimination, in which beta power was elevated for correct relative to incorrect trials. This difference between fine and coarse odor discriminations may relate to different behavioral strategies for learning to differentiate similar versus dissimilar odors. Phase analysis showed that the OB led both pyriform areas in the beta frequency band during odor sniffing. We conclude that the beta band may be the means by which information is transmitted from the OB to higher order areas, even though task specifics modify dominance of one frequency band over another within the OB. PMID:20538778

  1. Sulfoximine-mediated syntheses of optically active alcohols. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stark, C. J., Jr.

    1978-01-01

    Several routes are described for the production of optically active secondary and tertiary alcohols. In all cases, the asymmetry emanates from the use of (+)-(S)-N,S-dimethyl-S-phenyl-sulfoximine (1) at some point in the variation of the diastereomers. One route relies upon the separation of the diastereomers produced from the condensation of (+)-(S)-(N-methylphenyl-sulfonimidoyl) methyllithium with prochiral aldehydes and ketones. Subsequent carbon-sulfur bond cleavage of the separated diastereomeric beta-hydroxysulfoximines yields optically active alcohols. Alternatively, beta-hydroxysulfoximines were produced from the reduction of chiral beta-ketosulfoximines. The reductions were most successfully achieved with diborane generated externally and bubbled into a toluene solution of the ketone at -78 C. Optically active alcohols were also produced from prochiral ketones by reduction with diborane or lithium aluminum hydride complexes of resolved diastereomers of beta-hydroxysulfoximines.

  2. Leptin controls ketone body utilization in hypothalamic neuron.

    PubMed

    Narishima, Ryota; Yamasaki, Masahiro; Hasegawa, Shinya; Yoshida, Saki; Tanaka, Shinya; Fukui, Tetsuya

    2011-03-03

    Leptin is an appetite-controlling peptide secreted from adipose tissue. Previously, we showed that the gene expression of acetoacetyl-CoA synthetase (AACS), the ketone body-utilizing enzyme for lipid synthesis, was suppressed by leptin deficiency-induced obesity in white adipose tissue. In this study, to clarify the effects of leptin on ketone body utilization in the central nervous system, we examined the effects of leptin signaling on AACS expression. In situ hybridization analysis of ob/ob and db/db mice revealed that AACS mRNA level was reduced by leptin deficiency in the arcuate nucleus (Arc) and ventromedial hypothalamic nucleus (VMH) in hypothalamus but not in other brain regions. Moreover, AACS mRNA level was increased by leptin treatment both in primary cultured neural cells and in N41 neural-like cells. In N41 cells, AACS level was decreased by AMPK inducer but increased by AMPK inhibitor. These results suggest that the up-regulation of AACS expression by leptin is due to the suppression of AMPK activity via neural leptin signaling and that the deficiency of this regulation may be responsible for neurological disorders in central appetite control. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. N-triflylthiophosphoramide catalyzed enantioselective Mukaiyama aldol reaction of aldehydes with silyl enol ethers of ketones.

    PubMed

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-06-04

    The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to the Brønsted acid itself depending on the reaction temperature.

  4. General and mild Ni(0)-catalyzed α-arylation of ketones using aryl chlorides.

    PubMed

    Fernández-Salas, José A; Marelli, Enrico; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2015-03-02

    A general methodology for the α-arylation of ketones using a nickel catalyst has been developed. The new well-defined [Ni(IPr*)(cin)Cl] (1 c) pre-catalyst showed great efficiency for this transformation, allowing the coupling of a wide range of ketones, including acetophenone derivatives, with various functionalised aryl chlorides. This cinnamyl-based Ni-N-heterocyclic carbene (NHC) complex has demonstrated a different behaviour to previously reported NHC-Ni catalysts. Preliminary mechanistic studies suggest a Ni(0)/Ni(II) catalytic cycle to be at play. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low vanadium ion permeabilities of sulfonated poly(phthalazinone ether ketone)s provide high efficiency and stability for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Chen, Liyun; Zhang, Shouhai; Chen, Yuning; Jian, Xigao

    2017-07-01

    A series of novel sulfonated poly(phthalazinone ether ketone)s containing pendant phenyl moieties (SPPEK-Ps) are synthesized and thoroughly characterized. The chemical structures of the polymers are confirmed by 1H NMR and FTIR analysis. The physicochemical properties and single cell performance of SPPEK-P membranes are systematically evaluated, revealing that the membranes are thermally, chemically and mechanically stable. The area resistances of SPPEK-P-90 and SPPEK-P-100 are 0.75 Ω cm2 and 0.34 Ω cm2, respectively. SPPEK-P membranes are impermeable to the bulky hydrated VO2+ ion and exhibited low V3+ ion permeability (SPPEK-P-90, 2.53 × 10-5 cm min-1) (Nafion 115 membrane: 9.0 × 10-4 cm min-1). Tests of SPPEK-P-90 in vanadium redox flow batteries (VRFBs) demonstrate a comparable columbic efficiency (CE) and energy efficiency (EE) to that of Nafion 115, where the CE is 98% and the EE is 83% at 60 mA cm-2. Moreover, the SPPEK-P-90 membrane exhibits stable performance in cell over 100 charge-discharge cycles (∼450 h).

  6. Rhodium-catalyzed 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyl compounds: large accelerating effects of bases and ligands.

    PubMed

    Itooka, Ryoh; Iguchi, Yuki; Miyaura, Norio

    2003-07-25

    The effects of ligands and bases in the rhodium(I)-catalyzed 1,4-addition of arylboronic acids to alpha,beta-unsaturated carbonyl compounds were reinvestigated to carry out the reaction under mild conditions. Rhodium(I) complexes possessing a 1,5-cyclooctadiene (cod) and a hydroxo ligand such as [RhOH(cod)](2) exhibited excellent catalyst activities compared to those of the corresponding rhodium-acac or -chloro complexes and their phosphine derivatives. The reaction was further accelerated in the presence of KOH, thus allowing the 1,4-addition even at 0 degrees C. A cationic rhodium(I)-(R)-binap complex, [Rh(R-binap)(nbd)]BF(4), catalyzed the reaction at 25-50 degrees C in the presence of Et(3)N with high enantioselectivities of up to 99% ee for alpha,beta-unsaturated ketones, 92% for aldehydes, 94% for esters, and 92% for amides.

  7. Oligofluorenes as polymeric model compounds for providing insight into the triplets of ketone and ketylimine derivatives.

    PubMed

    Robert, Patricia; Bolduc, Andréanne; Skene, W G

    2012-09-20

    A series of oligofluorenes ranging between one and three repeating units were prepared as structurally well-defined representative models of polyfluorenes. The photophysics of the oligofluorene models were investigated both by laser flash photolysis and steady-state fluorescence. The effects of the ketone and ketylimine functional groups in the 9-position on the photophysical properties, notably the triplet quantum yield (Φ(TT)) by intersystem crossing and the absolute fluorescence quantum yields (Φ(fl)), were investigated. The singlet depletion method was used to determine both the Φ(TT) and molar absorption coefficients of the observed triplets (ε(TT)). Meanwhile, the absolute Φ(fl) were determined using an integrating sphere. It was found that both the ketone and ketylimine substituents and the degree of oligomerization contributed to quenching the oligofluorene fluorescence. For example, the Φ(fl) was quenched 5-fold with the ketylimine and ketone substituents for the bifluorenyl derivatives compared to their corresponding 9,9-dihexyl bifluorenyl counterparts. Meanwhile, the Φ(fl) quenching increased 14 times with the trifluorenyl ketone and ketylimine derivatives. Measured Φ(TT) values ranged between 22 and 43% for the difluorenyl derivatives with ε(TT) on the order of 13 000 cm(-1) M(-1). The Φ(TT) decreased to <10% concomitant with doubling of the ε(TT) when the degree of oligomerization was increased to 3. A new fluorescence emission at 545 nm formed at low temperatures for the ketone and ketylimine oligofluorene derivatives. The emission intensity was dependent on the temperature, and it disappeared at room temperature.

  8. Role of VMH ketone bodies in adjusting caloric intake to increased dietary fat content in DIO and DR rats.

    PubMed

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Miziorko, Henry M; Levin, Barry E

    2015-05-15

    The objective of this study was to determine the potential role of astrocyte-derived ketone bodies in regulating the early changes in caloric intake of diet induced-obese (DIO) versus diet-resistant (DR) rats fed a 31.5% fat high-energy (HE) diet. After 3 days on chow or HE diet, DR and DIO rats were assessed for their ventromedial hypothalamic (VMH) ketone bodies levels and neuronal ventromedial hypothalamic nucleus (VMN) sensing using microdialysis coupled to continuous food intake monitoring and calcium imaging in dissociated neurons, respectively. DIO rats ate more than DR rats over 3 days of HE diet intake. On day 3 of HE diet intake, DR rats reduced their caloric intake while DIO rats remained hyperphagic. Local VMH astrocyte ketone bodies production was similar between DR and DIO rats during the first 6 h after dark onset feeding but inhibiting VMH ketone body production in DR rats on day 3 transiently returned their intake of HE diet to the level of DIO rats consuming HE diet. In addition, dissociated VMN neurons from DIO and DR rats were equally sensitive to the largely excitatory effects of β-hydroxybutyrate. Thus while DR rats respond to increased VMH ketone levels by decreasing their intake after 3 days of HE diet, this is not the case of DIO rats. These data suggest that DIO inherent leptin resistance prevents ketone bodies inhibitory action on food intake.

  9. Caffeine intake increases plasma ketones: an acute metabolic study in humans.

    PubMed

    Vandenberghe, Camille; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Hennebelle, Marie; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2017-04-01

    Brain glucose uptake declines during aging and is significantly impaired in Alzheimer's disease. Ketones are the main alternative brain fuel to glucose so they represent a potential approach to compensate for the brain glucose reduction. Caffeine is of interest as a potential ketogenic agent owing to its actions on lipolysis and lipid oxidation but whether it is ketogenic in humans is unknown. This study aimed to evaluate the acute ketogenic effect of 2 doses of caffeine (2.5; 5.0 mg/kg) in 10 healthy adults. Caffeine given at breakfast significantly stimulated ketone production in a dose-dependent manner (+88%; +116%) and also raised plasma free fatty acids. Whether caffeine has long-term ketogenic effects or could enhance the ketogenic effect of medium chain triglycerides remains to be determined.

  10. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    PubMed

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.

  11. A reactive and sensitive diffusion sampler for the determination of aldehydes and ketones in ambient air

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Hasegawa, Shuji

    We developed a diffusive sampling device (DSD-carbonyl) for organic carbonyl compounds (aldehydes and ketones) which is suitable for collection and analysis of low concentration levels. This sampling device is composed of three parts, an exposure part made of a porous polytetrafluoroethylene (PPTFE) tube, an analysis part made of polypropylene (PP) tubing and an absorbent part made of 2,4-dinitrophenylhydrazine (DNPH) coated silica gel (DNPH-silica). Aldehydes and ketones diffuse to the DSD-carbonyl through PPTFE-tube by the mechanism of molecular diffusion and react specifically with DNPH to form a stable DNPH-derivatives. Collection is controlled by moving the absorbent from the exposure part to the analysis part by changing the posture of the DSD-carbonyl. DNPH-derivatives were eluted from an analysis part of DSD-carbonyl with acetonitrile directly and analyzed by high performance liquid chromatography (HPLC). The advantages of the DSD-carbonyl are the following: (1) The DSD-carbonyl can be used in a wide range of concentration of aldehydes and ketones in atmosphere, as the DSD-carbonyl exposure part has a variable diffusion area, (2) DNPH-derivatives are eluted from DNPH-silica without contamination of air. (3) The sampler can be applied to active sampling by connecting it with a pump. The limit of detection (LOD) for concentrations of major aldehydes and ketones ranged from 0.072 to 0.13 ppb, and the limit of quantitation (LOQ) ranged from 0.24 to 0.42 ppb. The coefficient variation (CV) for concentrations of major aldehydes and ketones ranged from 2.5 to 3.0% in laboratory air. The DSD-carbonyl method and active sampling method (US EPA method IP-6A) showed a good correlation (formaldehyde, r2=0.995). The uptake rates for formaldehyde, acetaldehyde, and acetone were estimated as 0.078, 0.062 and 0.079 nmol ppb -1 h -1, respectively. It is possible to estimate atmospheric aldehydes and ketones at parts per billion (ppb), with high sensitivity and precision, by

  12. Synthesis and evaluation of N-alkyl-beta-D-glucosylamines on the growth of two wood fungi, Coriolus versicolor and Poria placenta.

    PubMed

    Muhizi, Théoneste; Coma, Véronique; Grelier, Stéphane

    2008-09-22

    Various glucosylamines were synthesized from glucose and different alkyl amine compounds. These amino compounds are beta-D-glucopyranosylamine (GPA), N-ethyl-beta-D-glucopyranosylamine (EtGPA), N-butyl-beta-D-glucopyranosylamine (BuGPA), N-hexyl-beta-D-glucopyranosylamine (HeGPA), N-octyl-beta-D-glucopyranosylamine (OcGPA), N-dodecyl-beta-D-glucopyranosylamine (DoGPA), N-(2-hydroxyethyl)-beta-D-glucopyranosylamine (HEtGPA) and N,N-di(2-hydroxyethyl)-beta-D-glucopyranosylamine (DHEtGPA). They were tested for their antifungal activity against the growth of Coriolus versicolor and Poria placenta. An improvement of the antifungal activity with the increase of alkyl chain length was observed. DoGPA exhibited the best antifungal activity against both strains. It completely inhibited the fungal growth at 0.01x10(-3)molmL(-1) and 0.0075x10(-3)molmL(-1) for C. versicolor and P. placenta, respectively. For other glucosylamines higher concentrations were needed for complete inhibition of fungi.

  13. Catecholamine, Corticosteroid and Ketone Excretion in Exercise and Hypoxia,

    DTIC Science & Technology

    OHCS excretion tended to be higher during the experimental period and subsequently lower overnight during the hypoxia week. Ketosis occurred in two...subjects. In one of these it could be readily related to previous extraneous stress. Excretion of unidentified ketones in overnight urines was sometimes suspected and occurred beyond doubt following gross ketosis . (Author)

  14. Two-Carbon Homologation of Ketones to 3-Methyl Unsaturated Aldehydes

    USDA-ARS?s Scientific Manuscript database

    The usual scheme of two-carbon homologation of ketones to 3-methyl unsaturated aldehydes by Horner-Wadsworth-Emmons condensations with phosphonate esters, such as triethyl-2-phosphonoacetate, involves three steps. The phosphonate condensation step results in extension of the carbon chain by two carb...

  15. An Unconventional Redox Cross Claisen Condensation-Aromatization of 4-Hydroxyprolines with Ketones.

    PubMed

    Tang, Mi; Sun, Rengwei; Li, Hao; Yu, Xinhong; Wang, Wei

    2017-08-18

    Reaction of α-amino acids, particularly prolines and their derivatives with carbonyl compounds via decarboxylative redox process, is a viable strategy for synthesis of structurally diverse nitrogen centered heterocyclics. In these processes, the decarboxylation is the essential driving force for the processes. The realization of the redox process without decarboxylation may offer an opportunity to explore new reactions. Herein, we report the discovery of an unprecedented redox Claisen-type condensation aromatization cascade reaction of 4-substituted 4-hydroxyproline and its esters with unreactive ketones. We found that the use of propionic acid as a catalyst and a co-solvent can change the reaction course. The commonly observed redox decarboxylation and aldol condensation reactions are significantly minimized. Moreover, unreactive ketones can effectively participate in the Claisen condensation reaction. The new reactivity enables a redox cyclization via an unconventional Claisen-type condensation reaction of in situ formed enamine intermediates from ketone precursors with 4-substituted 4-hydroxyproline and its esters as electrophilic acylation partners. Under the reaction conditions, the cascade process proceeds highly regio- and stereoselectively to afford highly synthetically and biologically valued cis-2,3-dihydro-1H-pyrrolizin-1-ones with a broad substrate scope in efficient 'one-pot' operation, whereas such structures generally require multiple steps.

  16. Preparation of unsymmetrical ketones from tosylhydrazones and aromatic aldehydes via formyl C-H bond insertion.

    PubMed

    Allwood, Daniel M; Blakemore, David C; Ley, Steven V

    2014-06-06

    Preparation of ketones by insertion of diazo compounds into the formyl C-H bond of an aldehyde is an attractive procedure, but use of structurally diverse diazo compounds is hampered by preparation and safety issues. A convenient procedure for the synthesis of unsymmetrical ketones from bench-stable tosylhydrazones and aryl aldehydes is reported. The procedure can be performed in one pot from the parent carbonyl compound and needs only a base, with no additional promoters being required.

  17. N-Triflylthiophosphoramide Catalyzed Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ethers of Ketones

    PubMed Central

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-01-01

    The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to Brønsted acid itself depending on the reaction temperature. PMID:20465277

  18. A modified Girard derivatizing reagent for universal profiling and trace analysis of aldehydes and ketones by electrospray ionization tandem mass spectrometry.

    PubMed

    Johnson, David W

    2007-01-01

    4-Hydrazino-N,N,N-trimethyl-4-oxobutanaminium iodide (HTMOB) is a modified Girard derivatizing reagent synthesized to improve the sensitivity of analysis of aldehydes and ketones with electrospray ionization tandem mass spectrometry. Compared with Girard T reagent the measured signal intensity increase is between 3.3 times (succinylacetone) and 7.0 times (17-hydroxyprogesterone). HTMOB is a universal profiling reagent for aldehydes and ketones. A neutral loss of 59 Da scan detects all aldehydes and ketones from acetone to corticosteroids. Applications described include the profiling of ketones, ketoacids and ketodiacids in the urine of children with ketosis and the profiling of long-chain aldehydes incorporated in plasma plasmalogens. Copyright (c) 2007 John Wiley & Sons, Ltd.

  19. Stereospecific 1,4-addition to an alpha,beta-unsaturated steroidal epoxide: syntheses of new 15-oxygenated sterols.

    PubMed

    Parish, E J; Tsuda, M; Schroepfer, G J

    1988-11-01

    3 beta-Benzoyloxy-14 alpha,15 alpha-epoxy-5 alpha-cholest-7-ene (1) is a key intermediate in the synthesis of C-7 and C-15 oxygenated sterols. Treatment of 1 with benzoyl chloride resulted in the formation of 3 beta,15 alpha-bis-benzoyloxy-7 alpha-chloro-5 alpha-cholest-8(14)-ene (2). Reaction of 2 with LiAlH4 or LiAlD4 resulted in the formation of 5 alpha-cholest-7-ene-3 beta,15 alpha-diol (3a) or [14 alpha-2H]5 alpha-cholest-7-ene-3 beta,15 alpha-diol (3b). Diol 3b was selectively oxidized by Ag2CO3/celite to [14 alpha-2H]5 alpha-cholest-7-en-15 alpha-ol-3-one (4). Treatment of 1 with MeMgI/CuI gave 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3 beta,15 alpha-diol (5). Selective oxidation of 5 with pyridinium chlorochromate (PCC)/pyridine or oxidation with PCC resulted in the formation of 7 alpha-methyl-5 alpha-cholest-8(14)-en-3 beta-ol-15-one (6) and 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3,15-dione, respectively. Reduction of 6 with LiAlH4 yielded 5 and 7 alpha-methyl-5 alpha-cholest-8(14)-ene-3 beta,15 beta-diol (6). Reaction of 1 with benzoic acid/pyridine gave 3 beta,7 alpha-bis-benzoyloxy-5 alpha-cholest-8(14)-en-15 alpha-ol (9). Treatment of 9 with LiAlH4 or ethanolic KOH resulted in the formation of 5 alpha-cholest-8(14)-ene-3 beta,7 alpha,15 alpha-triol (10). Dibenzoate 9, upon brief treatment with mineral acid, gave 3 beta-benzoyloxy-5 alpha-cholest-8(14)-ene-15-one (11). Oxidation of 9 with PCC yielded 3 beta,7 alpha-bis-benzoyloxy-5 alpha-cholest-8(14)-ene-15-one (12). Ketone 12 was also prepared by the selective hydride reduction of 5 alpha-cholest-8(14)-en-7 alpha-ol-3,15-dione (13) to give 5 alpha-cholest-8(14)-ene-3 beta,7 alpha-diol-15-one (14), which was then treated with benzoyl chloride to produce 12.

  20. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations.

    PubMed

    Mehta, Meera; Holthausen, Michael H; Mallov, Ian; Pérez, Manuel; Qu, Zheng-Wang; Grimme, Stefan; Stephan, Douglas W

    2015-07-06

    Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Taming Radical Pairs in Nanocrystalline Ketones: Photochemical Syn-thesis of Compounds with Vicinal Stereogenic All-Carbon Quaternary Centers.

    PubMed

    Dotson, Jordan J; Perez-Estrada, Salvador; Garcia-Garibay, Miguel A

    2018-05-29

    Here we describe the use of crystalline ketones to control the fate of the radical pair intermediates generated in the Norrish type I photodecarbonylation reaction to render it a powerful tool in the challenging synthesis of sterically congested carbon-carbon bonds. This methodology makes the synthetically more accessible hexasusbtituted ketones as ideal synthons for the construction of adjacent, all-carbon substituted, stereogenic quaternary stereocenters. We describe here the structural and thermochemical parameters required of the starting ketone in order to react in the solid state. Finally, the scope and scalability of the reaction and its application in the total synthesis of two natural products is described.

  2. Stability of proton-bound clusters of alkyl alcohols, aldehydes and ketones in Ion Mobility Spectrometry.

    PubMed

    Jurado-Campos, Natividad; Garrido-Delgado, Rocío; Martínez-Haya, Bruno; Eiceman, Gary A; Arce, Lourdes

    2018-08-01

    Significant substances in emerging applications of ion mobility spectrometry such as breath analysis for clinical diagnostics and headspace analysis for food purity include low molar mass alcohols, ketones, aldehydes and esters which produce mobility spectra containing protonated monomers and proton-bound dimers. Spectra for all n- alcohols, aldehydes and ketones from carbon number three to eight exhibited protonated monomers and proton-bound dimers with ion drift times of 6.5-13.3 ms at ambient pressure and from 35° to 80 °C in nitrogen. Only n-alcohols from 1-pentanol to 1-octanol produced proton-bound trimers which were sufficiently stable to be observed at these temperatures and drift times of 12.8-16.3 ms. Polar functional groups were protected in compact structures in ab initio models for proton-bound dimers of alcohols, ketones and aldehydes. Only alcohols formed a V-shaped arrangement for proton-bound trimers strengthening ion stability and lifetime. In contrast, models for proton-bound trimers of aldehydes and ketones showed association of the third neutral through weak, non-specific, long-range interactions consistent with ion dissociation in the ion mobility drift tube before arriving at the detector. Collision cross sections derived from reduced mobility coefficients in nitrogen gas atmosphere support the predicted ion structures and approximate degrees of hydration. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A new synthesis of certain 7-(beta-D-ribofuranosyl) and 7-(2-deoxy-beta-D-ribofuranosyl) derivatives of 3-deazaguanine via the sodium salt glycosylation procedure.

    PubMed Central

    Gupta, P K; Robins, R K; Revankar, G R

    1985-01-01

    A facile synthesis of 7-beta-D-ribofuranosyl-3-deazaguanine (1) and certain 8-substituted derivatives of 1 via the sodium salt glycosylation method has been developed. Glycosylation of the sodium salt of methyl 2-chloro(or methylthio)-4(5)-cyanomethylimidazole-5(4)-carboxylate (5 and 13b) with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide (6) gave exclusively methyl 2-chloro(or methylthio)-4-cyanomethyl-1-(2,3, 5-tri-O-benzoyl-beta-D-ribofuranosyl)imidazole-5-carboxylate (7 and 14a), respectively. Ammonolysis of 7 and 14a provided 6-amino-2-chloro(or methylthio)-3-beta-D-ribofuranosylimidazo-[4,5-c]pyridin-4(5H)-one (11 and 17), which on subsequent dehalogenation (or dethiation) gave 1. Similarly, reaction of the sodium salt of 5 and 13b with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranose (8), and ammonolysis of the glycosylated imidazole precursors (9 and 16) gave 6-amino-2-chloro(or methylthio)-3-(2-deoxy-beta-D-erythro-pentofuranosyl) imidazo[4,5-c]-pyridin-4(5H)-one (10a and 15), respectively. Dehalogenation of 10a or dethiation of 15 gave 2'-deoxy-7-beta-D-ribofuranosyl-3-deazaguanine (10b). This procedure provided a direct method of obtaining 10b without the contaminating 9-glycosyl isomer 4. PMID:4022783

  4. Integrated quantification and identification of aldehydes and ketones in biological samples.

    PubMed

    Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer

    2014-05-20

    The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by adding chemical information to MS data. Our strategy is based on rapid autosampler-in-needle-derivatization with p-toluenesulfonylhydrazine (TSH). The resulting TSH-hydrazones are separated by ultrahigh-performance liquid chromatography (UHPLC) and detected by electrospray ionization-quadrupole-time-of-flight (ESI-QqTOF) mass spectrometry using a SWATH (Sequential Window Acquisition of all Theoretical Fragment-Ion Spectra) data-independent high-resolution mass spectrometry (HR-MS) approach. Derivatization makes small, poorly ionizable or retained analytes amenable to reversed phase chromatography and electrospray ionization in both polarities. Negatively charged TSH-hydrazone ions furthermore show a simple and predictable fragmentation pattern upon collision induced dissociation, which enables the chemo-selective screening for unknown aldehydes and ketones via a signature fragment ion (m/z 155.0172). By means of SWATH, targeted and nontargeted application scenarios of the suggested derivatization route are enabled in the frame of a single UHPLC-ESI-QqTOF-HR-MS workflow. The method's ability to simultaneously quantify and identify molecules containing aldehyde and ketone groups is demonstrated using 61 target analytes from various compound classes and a (13)C labeled yeast matrix. The identification of unknowns in biological samples is detailed using the example of indole-3-acetaldehyde.

  5. H3 K79 dimethylation marks developmental activation of the beta-globin gene but is reduced upon LCR-mediated high-level transcription.

    PubMed

    Sawado, Tomoyuki; Halow, Jessica; Im, Hogune; Ragoczy, Tobias; Bresnick, Emery H; Bender, M A; Groudine, Mark

    2008-07-15

    Genome-wide analyses of the relationship between H3 K79 dimethylation and transcription have revealed contradictory results. To clarify this relationship at a single locus, we analyzed expression and H3 K79 modification levels of wild-type (WT) and transcriptionally impaired beta-globin mutant genes during erythroid differentiation. Analysis of fractionated erythroid cells derived from WT/Delta locus control region (LCR) heterozygous mice reveals no significant H3 K79 dimethylation of the beta-globin gene on either allele prior to activation of transcription. Upon transcriptional activation, H3 K79 di-methylation is observed along both WT and DeltaLCR alleles, and both alleles are located in proximity to H3 K79 dimethylation nuclear foci. However, H3 K79 di-methylation is significantly increased along the DeltaLCR allele compared with the WT allele. In addition, analysis of a partial LCR deletion mutant reveals that H3 K79 dimethylation is inversely correlated with beta-globin gene expression levels. Thus, while our results support a link between H3 K79 dimethylation and gene expression, high levels of this mark are not essential for high level beta-globin gene transcription. We propose that H3 K79 dimethylation is destabilized on a highly transcribed template.

  6. D-beta-hydroxybutyrate extends lifespan in C. elegans

    PubMed Central

    Edwards, Clare; Canfield, John; Copes, Neil; Rehan, Muhammad; Lipps, David; Bradshaw, Patrick C.

    2014-01-01

    The ketone body beta-hydroxybutyrate (βHB) is a histone deacetylase (HDAC) inhibitor and has been shown to be protective in many disease models, but its effects on aging are not well studied. Therefore we determined the effect of βHB supplementation on the lifespan of C. elegans nematodes. βHB supplementation extended mean lifespan by approximately 20%. RNAi knockdown of HDACs hda-2 or hda-3 also increased lifespan and further prevented βHB-mediated lifespan extension. βHB-mediated lifespan extension required the DAF-16/FOXO and SKN-1/Nrf longevity pathways, the sirtuin SIR-2.1, and the AMP kinase subunit AAK-2. βHB did not extend lifespan in a genetic model of dietary restriction indicating that βHB is likely functioning through a similar mechanism. βHB addition also upregulated βHB dehydrogenase activity and increased oxygen consumption in the worms. RNAi knockdown of F55E10.6, a short chain dehydrogenase and SKN-1 target gene, prevented the increased lifespan and βHB dehydrogenase activity induced by βHB addition, suggesting that F55E10.6 functions as an inducible βHB dehydrogenase. Furthermore, βHB supplementation increased worm thermotolerance and partially prevented glucose toxicity. It also delayed Alzheimer's amyloid-beta toxicity and decreased Parkinson's alpha-synuclein aggregation. The results indicate that D-βHB extends lifespan through inhibiting HDACs and through the activation of conserved stress response pathways. PMID:25127866

  7. MOON for neutrino-less {beta}{beta} decays and {beta}{beta} nuclear matrix elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejiri, H.

    2009-11-09

    The MOON project aims at spectroscopic 0v{beta}{beta} studies with the v-mass sensitivity of 100-30 meV by measuring two beta rays from {sup 100}Mo and/or {sup 82}Se. The detector is a compact super-module of multi-layer PL scintillator plates. R and D works made by the pro to-type MOON-1 and the small PL plate show the possible energy resolution of around {sigma}{approx}2.2%, as required for the mass sensitivity. Nuclear matrix elements M{sup 2v} for 2v{beta}{beta} are shown to be given by the sum {sigma}{sub L}M{sub k} of the 2v{beta}{beta} matrix elements M{sub k} through intermediate quasi-particle states in the Fermi-surface, where Mimore » is obtained experimentally by using the GT(J{sup {pi}} = 1{sup +}) matrix elements of M{sub i}(k) and M{sub f}(k) for the successive single-{beta} transitions through the k-th intermediate state.« less

  8. Pyrrolidine-mediated direct preparation of (e)-monoarylidene derivatives of homo- and heterocyclic ketones with various aldehydes.

    PubMed

    Gu, Xin; Wang, Xiaoyan; Wang, Fengtian; Sun, Hongbao; Liu, Jie; Xie, Yongmei; Xiang, Mingli

    2014-02-12

    An efficient method for the facile synthesis of (E)-monoarylidene derivatives of homo- and heterocyclic ketones with various aldehydes in the presence of a pyrrolidine organocatalyst has been achieved. A range of α,β-unsaturated ketones were obtained in moderate to high yields (up to 99%). Unlike the Claisen-Schmidt condensation process, the formation of undesired bisarylidene byproducts is not observed. The possible reaction mechanism suggests that the reaction proceeds via a Mannich-elimination sequence.

  9. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, Matthew S.; Hao, Bing; Neurock, Matthew

    The selective hydrogenation of unsaturated ketones (methyl vinyl ketone and benzalacetone) and unsaturated aldehydes (crotonaldehyde and cinnamaldehyde) was carried out with H₂ at 2 bar absolute over Pd/C, Pt/C, Ru/C, Au/C, Au/TiO₂, or Au/Fe₂O₃ catalysts in ethanol or water solvent at 333 K. Comparison of the turnover frequencies revealed Pd/C to be the most active hydrogenation catalyst, but the catalyst failed to produce unsaturated alcohols, indicating hydrogenation of the C=C bond was highly preferred over the C=O bond on Pd. The Pt and Ru catalysts were able to produce unsaturated alcohols from unsaturated aldehydes, but not from unsaturated ketones. Althoughmore » Au/ Fe₂O₃ was able to partially hydrogenate unsaturated ketones to unsaturated alcohols, the overall hydrogenation rate over gold was the lowest of all of the metals examined. First-principles density functional theory calculations were therefore used to explore the reactivity trends of methyl vinyl ketone (MVK) and benzalacetone (BA) hydrogenation over model Pt(111) and Ru(0001) surfaces. The observed selectivity over these metals is likely controlled by the significantly higher activation barriers to hydrogenate the C=O bond compared with those required to hydrogenate the C=C bond. Both the unsaturated alcohol and the saturated ketone, which are the primary reaction products, are strongly bound to Ru and can react further to the saturated alcohol. The lower calculated barriers for the hydrogenation steps over Pt compared with Ru account for the higher observed turnover frequencies for the hydrogenation of MVK and BA over Pt. The presence of a phenyl substituent α to the C=C bond in BA increased the barrier for C=C hydrogenation over those associated with the C=C bond in MVK; however, the increase in barriers with phenyl substitution was not adequate to reverse the selectivity trend.« less

  10. Trifluoromethylation of ketones and aldehydes with Bu₃SnCF₃.

    PubMed

    Sanhueza, Italo A; Bonney, Karl J; Nielsen, Mads C; Schoenebeck, Franziska

    2013-08-02

    The (trifluoromethyl)stannane reagent, Bu3SnCF3, was found to react under CsF activation with ketones and aldehydes to the corresponding trifluoromethylated stannane ether intermediates at room temperature in high yield. Only a mildly acidic extraction (aqueous NH4Cl) is required to release the corresponding trifluoromethyl alcohol products. The protocol is compatible with acid-sensitive functional groups.

  11. Persistence assessment of cyclohexyl- and norbornyl-derived ketones and their degradation products in different OECD screening tests.

    PubMed

    Seyfried, M; van Ginkel, C G; Boschung, A; Miffon, F; Fantini, P; Tissot, E; Baroux, L; Merle, P; Chaintreau, A

    2015-07-01

    The persistence of synthetic cyclohexyl- and norbornyl-derived ketones was assessed by using OECD 301F and 301D biodegradation tests. While cyclohexyl-derived ketones either reached or came close to the pass level (60%) after 60 d, the corresponding norbornyl derivatives yielded significantly less biodegradation (<40%). By analyzing extracts at 60 d, the key degradation products of four norbornyl derivatives were identified. Consistently, 2-bicyclo[2.2.1]heptane carboxylic acid was found as a principal degradation product with minor quantities of bicyclo[2.2.1]heptan-2-one and 2-bicyclo[2.2.1]heptane acetic acid. When the three degradation products were re-synthesized and tested individually for biodegradability, the former two were found to be ultimately biodegradable after 60 d in OECD 301D tests, thus proving non-persistence. Similarly, 2-bicyclo[2.2.1]heptane acetic acid was found to be degraded significantly, albeit with long lag phases exceeding 60 d in the case of freshwater inoculum, then ultimately reaching the pass level. On the other hand, norbornyl ketones were still only partially biodegradable in the same test. We conclude that despite the potential for ultimate biodegradation of norbornyl-derived ketones, current screening tests yield an incomplete picture of their biodegradability, particularly when applying strict OECD criteria. The appearance of long lag phases when re-testing norbornyl ketone degradation products underlines the importance of extending tests to well beyond 28 and even 60 d in the case of freshwater inocula. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light.

    PubMed

    Lin, Lu; Bai, Xiangbin; Ye, Xinyi; Zhao, Xiaowei; Tan, Choon-Hong; Jiang, Zhiyong

    2017-10-23

    The first catalytic asymmetric photoreduction of 1,2-diketones and α-keto ketimines under visible light irradiation is reported. A transition-metal-free synergistic catalysis platform harnessing dicyanopyrazine-derived chromophore (DPZ) as the photoredox catalyst and a non-covalent chiral organocatalyst is effective for these transformations. With the flexible use of a chiral Brønsted acid or base in H + transfer interchange to control the elusive enantioselective protonation, a variety of chiral α-hydroxy ketones and α-amino ketones were obtained with high yields and enantioselectivities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bicyclic tetrapeptide histone deacetylase inhibitors with methoxymethyl ketone and boronic acid zinc-binding groups.

    PubMed

    Islam, Md Nurul; Islam, Md Shahidul; Hoque, Md Ashraful; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru

    2014-12-01

    Histone deacetylase (HDAC) inhibitors are a class of potential therapeutics for the treatment of cancer. Bicyclic tetrapeptides equipped with methoxymethyl ketone and boronic acid as zinc-binding group were designed and synthesized. The inhibitory activities of these compounds were evaluated against HDAC enzymes. The cell-free and cell-based assay data showed that both potency and selectivity changed with the change in zinc-binding group. Boronic acid-based compound showed poor activity whereas methoxymethyl ketone-based compound displayed impressive activity in both cell-free and cell-based conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A Ketone Ester Diet Increases Brain Malonyl-CoA and Uncoupling Proteins 4 and 5 while Decreasing Food Intake in the Normal Wistar Rat*

    PubMed Central

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.

    2010-01-01

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850

  15. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat.

    PubMed

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L

    2010-08-20

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.

  16. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

    PubMed

    Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh

    2011-05-10

    The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

  17. Ketonization of Cuphea oil for the production of 2-undecanone

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...

  18. Beta cell function after weight loss: a clinical trial comparing gastric bypass surgery and intensive lifestyle intervention

    PubMed Central

    Hofsø, D; Jenssen, T; Bollerslev, J; Ueland, T; Godang, K; Stumvoll, M; Sandbu, R; Røislien, J; Hjelmesæth, J

    2011-01-01

    Objective The effects of various weight loss strategies on pancreatic beta cell function remain unclear. We aimed to compare the effect of intensive lifestyle intervention (ILI) and Roux-en-Y gastric bypass surgery (RYGB) on beta cell function. Design One year controlled clinical trial (ClinicalTrials.gov identifier NCT00273104). Methods One hundred and nineteen morbidly obese participants without known diabetes from the MOBIL study (mean (s.d.) age 43.6 (10.8) years, body mass index (BMI) 45.5 (5.6) kg/m2, 84 women) were allocated to RYGB (n=64) or ILI (n=55). The patients underwent repeated oral glucose tolerance tests (OGTTs) and were categorised as having either normal (NGT) or abnormal glucose tolerance (AGT). Twenty-nine normal-weight subjects with NGT (age 42.6 (8.7) years, BMI 22.6 (1.5) kg/m2, 19 women) served as controls. OGTT-based indices of beta cell function were calculated. Results One year weight reduction was 30 % (8) after RYGB and 9 % (10) after ILI (P<0.001). Disposition index (DI) increased in all treatment groups (all P<0.05), although more in the surgery groups (both P<0.001). Stimulated proinsulin-to-insulin (PI/I) ratio decreased in both surgery groups (both P<0.001), but to a greater extent in the surgery group with AGT at baseline (P<0.001). Post surgery, patients with NGT at baseline had higher DI and lower stimulated PI/I ratio than controls (both P<0.027). Conclusions Gastric bypass surgery improved beta cell function to a significantly greater extent than ILI. Supra-physiological insulin secretion and proinsulin processing may indicate excessive beta cell function after gastric bypass surgery. PMID:21078684

  19. Formation of intermediate products during the resonance stepwise polarization of dibenzyl ketone and benzil molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polevoi, A.V.; Matyuk, V.M.; Grigor'eva, G.A.

    1987-07-01

    The processes resulting in the intramolecular redistribution of energy in electronically excited S/sub ..pi pi..*/ states of dibenzyl ketone and benzil molecules have been investigated by laser mass spectrometry. The decisive role of dissociation under the conditions of the resonance stepwise photoionization of these molecules upon excitation by radiation with lambda = 266 nm has been demonstrated. The ionization potentials of the molecules and the appearance potentials of fragment ions from dibenzyl ketone and benzil have been determined on the basis of an analysis of photoionization efficiency curves.

  20. n-BuLi as a highly efficient precatalyst for hydrophosphonylation of aldehydes and unactivated ketones.

    PubMed

    Liu, Chengwei; Zhang, Yu; Qian, Qinqin; Yuan, Dan; Yao, Yingming

    2014-12-05

    It was found for the first time that organic alkali metal compounds serve as highly efficient precatalysts for the hydrophosphonylation reactions of aldehydes and unactivated ketones with dialkyl phosphite under mild conditions. For ketone substrates, a reversible reaction was observed, and the influence of catalyst loading and reaction temperature on the reaction equilibrium was studied in detail. Overall, the hydrophosphonylation reactions catalyzed by 0.1 mol % n-BuLi were completed within 5 min for a broad range of substrates and generated a series of α-hydroxy phosphonates in high yields.

  1. Screening method for inhibitors against formosan subterranean termite beta-glucosidases in vivo.

    PubMed

    Zhu, Betty C R; Henderson, Gregg; Laine, Roger A

    2005-02-01

    Cellulose, a main structural constituent of plants, is the major nutritional component for wood-feeding termites. Enzymatic hydrolysis of cellulose to glucose occurs by the action of cellulases, a mixture of the three major classes of enzymes including endo-1,4-beta-glucanases, exo-1,4-beta-glucanases, and beta-glucosidase. Lower termites, such as the Formosan subterranean termite, Coptotermes formosanus Shiraki, require cellulolytic protozoa to efficiently digest cellulose for survival. Inhibitors developed against any of these cellulase system enzymes would be a potential termite treatment avenue. Our effort was to develop a screening system to determine whether termites could be controlled by administration of cellulase system inhibitors. Some reported compounds such as gluconolactone, conduritol B epoxide, and 1-deoxynojirimycin are potential beta-glucosidase inhibitors, but they have only been tested in vitro. We describe an in vivo method to test the inhibitory ability of the designated chemicals to act on beta-1,4-glucosidases, one member of the cellulase system that is the key step that releases glucose for use as an energy and carbon source for termites. Inhibition in releasing glucose from cellooligosaccharides might be sufficient to starve termites. Fluorescein di-beta-D-glucopyranoside was used as the artificial enzyme substrate and the fluorescent intensity of the reaction product (fluorescein) quantified with an automated fluorescence plate reader. Several known in vitro beta-1,4-glucosidase inhibitors were tested in vivo, and their inhibitory potential was determined. Endogenous and protozoan cellulase activities are both assumed to play a role.

  2. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: aldehydes and ketones.

    PubMed

    Stockton, Amanda M; Tjin, Caroline Chandra; Huang, Grace L; Benhabib, Merwan; Chiesl, Thomas N; Mathies, Richard A

    2010-11-01

    A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼ 15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5-6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Copper-promoted methylene C-H oxidation to a ketone derivative by O2.

    PubMed

    Deville, Claire; McKee, Vickie; McKenzie, Christine J

    2017-01-17

    The methylene group of the ligand 1,2-di(pyridin-2-yl)-ethanone oxime (dpeo) is slowly oxygenated by the O 2 in air under ambient conditions when [Cu(dpeo) 2 ](ClO 4 ) 2 is dissolved in ethanol or acetonitrile. An initial transient ketone product, 2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone, (hidpe) was characterized in the heteroleptic copper(ii) complex [Cu(bpca)(hidpe)](ClO 4 ). The co-ligand in this complex, N-(2'-pyridylcarbonyl)pyridine-2-carboximidate (bpca - ), is derived from a copper-promoted Beckmann rearrangement of hidpe. In the presence of bromide only [Cu(bpca)Br] is isolated. When significant water is present in reaction mixtures copper complexes of dpeo, hidpe and bpca - are not recovered and [Cu(pic) 2 H 2 O] is isolated. This occurs since two equivalents of picolinate are ultimately generated from one equivalent of oxidized and hydrolysed dpeo. The copper-dependent O 2 activation and consequent stoichiometric dpeo C-H oxidation is reminiscent of the previously observed catalysis of dpeo oxidation by Mn(ii) [C. Deville, S. K. Padamati, J. Sundberg, V. McKee, W. R. Browne, C. J. McKenzie, Angew. Chem., Int. Ed., 2016, 55, 545-549]. By contrast dpeo oxidation is not observed during complexation reactions with other late transition metal(ii) ions (M = Fe, Co, Ni, Zn) under aerobic conditions. In these cases bis and tris complexes of bidentate dpeo are isolated in good yields. It is interesting to note that dpeo is not oxidised by H 2 O 2 in the absence of Cu or Mn, suggesting that metal-based oxidants capable of C-H activation are produced from the dpeo-Cu/Mn systems and specifically O 2 . The metastable copper complexes [Cu(dpeo) 2 ](ClO 4 ) 2 and [Cu(bpca)(hidpe)](ClO 4 ), along with [NiX 2 (dpeo) 2 ] (X = Cl, Br), [Ni(dpeo) 3 ](ClO 4 ) 2 , [Co(dpeo) 3 ](ClO 4 ) 3 and the mixed valence complex [Fe III Fe(dpeo-H) 3 (dpeo) 3 ](PF 6 ) 4 , have been structurally characterized.

  4. Synthesis of Trifluoromethylthiolated Alkenes and Ketones by Decarboxylative Functionalization of Cinnamic Acids.

    PubMed

    Pan, Shen; Huang, Yangen; Qing, Feng-Ling

    2016-10-20

    A tunable decarboxylative trifluoromethylthiolation of cinnamic acids with AgSCF 3 was developed to afford trifluoromethylthiolated alkenes or ketones by using transition metal-mediated conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Alcohol, Aldehyde, and Ketone Liberation and Intracellular Cargo Release through Peroxide-Mediated α-Boryl Ether Fragmentation.

    PubMed

    Hanna, Ramsey D; Naro, Yuta; Deiters, Alexander; Floreancig, Paul E

    2016-10-12

    α-Boryl ethers, carbonates, and acetals, readily prepared from the corresponding alcohols that are accessed through ketone diboration, react rapidly with hydrogen peroxide to release alcohols, aldehydes, and ketones through the collapse of hemiacetal intermediates. Experiments with α-boryl acetals containing a latent fluorophore clearly demonstrate that cargo can be released inside cells in the presence of exogenous or endogenous hydrogen peroxide. These experiments show that this protocol can be used for drug activation in an oxidative environment without generating toxic byproducts.

  6. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    PubMed

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  7. Diplogelasinospora grovesii IMI 171018 immobilized in polyurethane foam. An efficient biocatalyst for stereoselective reduction of ketones.

    PubMed

    Quezada, M A; Carballeira, J D; Sinisterra, J V

    2012-05-01

    Diplogelasinospora grovesii has been reported as a very active biocatalyst in the reduction of ketones. Along the text, the properties of this filamentous fungus as an immobilized catalyst are described. For this purpose, several immobilization supports as agar and polyurethane foam were tested. Experimental assays were also performed to test different co-substrates for the regeneration of the required enzyme cofactor. The fungus immobilized in polyurethane foam lead to the most stable and active catalyst. This derivative, using i-PrOH as co-substrate, could be reused at least 18 times without appreciable activity loss (>90% activity remains). Kinetic runs experiments shown that the reduction of cyclohexanone, selected as model substrate, followed a pseudo-first kinetic order and that the rate controlling step was the mass transfer through the cell wall. The deactivation kinetic constants were also determined. The reduction of different chiral ketones showed that the ketone reductase activity followed the Prelog's rule. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effect of hydrothermal carbonization on storage process of woody pellets: Pellets' properties and aldehydes/ketones emission.

    PubMed

    Li, Hui; Wang, Siyuan; Huang, Zhongliang; Yuan, Xingzhong; Wang, Ziliang; He, Rao; Xi, Yanni; Zhang, Xuan; Tan, Mengjiao; Huang, Jing; Mo, Dan; Li, Changzhu

    2018-07-01

    Effect of hydrothermal carbonization (HTC) on the hydrochar pelletization and the aldehydes/ketones emission from pellets during storage was investigated. Pellets made from the hydrochar were stored in sealed apparatuses for sampling. The energy consumption during pelletization and the pellets' properties before/after storage, including dimension, density, moisture content, hardness, aldehyde/ketones emission amount/rate and unsaturated fatty acid amount, were analyzed. Compared with untreated-sawdust-pellets, the hydrochar-pellets required more energy consumption for pelletization, and achieved the improved qualities, resulting in the higher stability degree during storage. The species and amount of unsaturated fatty acids in the hydrochar-pellets were higher than those in the untreated-sawdust-pellets. The unsaturated fatty acids content in the hydrochar-pellets was decreased with increasing HTC temperature. Higher aldehydes/ketones emission amount and rates with a longer emission period were found for the hydrochar-pellets, associated with variations of structure and unsaturated fatty acid composition in pellets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    PubMed

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  10. Poor adherence to ketone testing in patients with Type 1 Diabetes

    USDA-ARS?s Scientific Manuscript database

    Diabetic ketoacidosis (DKA) is an acute, still common, and preventable complication of type 1 diabetes (T1D) associated with increased health care costs, morbidity, and mortality. Clinical recommendations advise self-monitoring of ketones in people with T1D during hyperglycemia and illness to allow ...

  11. Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors

    DOE PAGES

    Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.; ...

    2017-06-21

    We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less

  12. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins.

    PubMed

    Miles-Barrett, Daniel M; Neal, Andrew R; Hand, Calum; Montgomery, James R D; Panovic, Isabella; Ojo, O Stephen; Lancefield, Christopher S; Cordes, David B; Slawin, Alexandra M Z; Lebl, Tomas; Westwood, Nicholas J

    2016-10-25

    Understanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone structures found in isolated organosolv lignins from both Douglas fir and beech woods. Through the use of model compounds combined with HSQC, HMBC and HSQC-TOCSY NMR experiments we demonstrate that, depending on the lignin source, both S and G lignin-bound Hibbert ketone units can be present. We also show that these units can serve as a source of novel mono-aromatic compounds following an additional lignin depolymerisation reaction.

  13. Two-carbon homologation of aldehydes and ketones to a,ß-unsaturated aldehydes

    USDA-ARS?s Scientific Manuscript database

    Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched a,ß-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a...

  14. Ketonization of Model Pyrolysis Oil Solutions in a Plug Flow Reactor over a Composite Oxide of Fe, Ce, and Al

    USDA-ARS?s Scientific Manuscript database

    The stabilization and upgrading of pyrolysis oil requires the neutralization of the acidic components of the oil. The conversion of small organic acids, particularly acetic acid, to ketones is one approach to addressing the instability of the oils caused by low pH. In the ketonization reaction, acet...

  15. Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer

    PubMed Central

    Tsirigos, Aristotelis; Lin, Zhao; Pavlides, Stephanos; Wang, Chengwang; Flomenberg, Neal; Knudsen, Erik S; Howell, Anthony; Pestell, Richard G

    2011-01-01

    Previously, we showed that high-energy metabolites (lactate and ketones) “fuel” tumor growth and experimental metastasis in an in vivo xenograft model, most likely by driving oxidative mitochondrial metabolism in breast cancer cells. To mechanistically understand how these metabolites affect tumor cell behavior, here we used genome-wide transcriptional profiling. Human breast cancer cells (MCF7) were cultured with lactate or ketones, and then subjected to transcriptional analysis (exon-array). Interestingly, our results show that treatment with these high-energy metabolites increases the transcriptional expression of gene profiles normally associated with “stemness”, including genes upregulated in embryonic stem (ES) cells. Similarly, we observe that lactate and ketones promote the growth of bonafide ES cells, providing functional validation. The lactate- and ketone-induced “gene signatures” were able to predict poor clinical outcome (including recurrence and metastasis) in human breast cancer patients. Taken together, our results are consistent with the idea that lactate and ketone utilization in cancer cells promotes the “cancer stem cell” phenotype, resulting in significant decreases in patient survival. One possible mechanism by which high-energy metabolites might induce stemness is by increasing the pool of Acetyl-CoA, leading to increased histone acetylation and elevated gene expression. Thus, our results mechanistically imply that clinical outcome in breast cancer could simply be determined by epigenetics and energy metabolism, rather than by the accumulation of specific “classical” gene mutations. We also suggest that high-risk cancer patients (identified by the lactate/ketone gene signatures) could be treated with new therapeutics that target oxidative mitochondrial metabolism, such as the anti-oxidant and “mitochondrial poison” metformin. Finally, we propose that this new approach to personalized cancer medicine be termed

  16. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    PubMed

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  17. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: Synergetic effect of ligands and barium enolates

    DOE PAGES

    Chen, Wenyong; Chen, Ming; Hartwig, John F.

    2014-10-22

    Here, we report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from ( R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  18. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes

    PubMed Central

    Wen, Miao; Jetter, Reinhard

    2009-01-01

    Arabidopsis wax components containing secondary functional groups were examined (i) to test the biosynthetic relationship between secondary alcohols and ketols and (ii) to determine the regiospecificity and substrate preference of the enzyme involved in ketol biosynthesis. The stem wax of Arabidopsis wild type contained homologous series of C27 to C31 secondary alcohols (2.4 μg cm−2) and C28 to C30 ketones (6.0 μg cm−2) dominated by C29 homologues. In addition, compound classes containing two secondary functional groups were identified as C29 diols (∼0.05 μg cm−2) and ketols (∼0.16 μg cm−2). All four compound classes showed characteristic isomer distributions, with functional groups located between C-14 and C-16. In the mah1 mutant stem wax, diols and ketols could not be detected, while the amounts of secondary alcohols and ketones were drastically reduced. In two MAH1-overexpressing lines, equal amounts of C29 and C31 secondary alcohols were detected. Based on the comparison of homologue and isomer compositions between the different genotypes, it can be concluded that biosynthetic pathways lead from alkanes to secondary alcohols, and via ketones or diols to ketols. It seems plausible that MAH1 is the hydroxylase enzyme involved in all these conversions in Arabidopsis thaliana. PMID:19346242

  19. Ketone bodies protection against HIV-1 Tat-induced neurotoxicity.

    PubMed

    Hui, Liang; Chen, Xuesong; Bhatt, Dhaval; Geiger, Nicholas H; Rosenberger, Thad A; Haughey, Norman J; Masino, Susan A; Geiger, Jonathan D

    2012-07-01

    HIV-1-associated neurocognitive disorder (HAND) is a syndrome that ranges clinically from subtle neuropsychological impairments to profoundly disabling HIV-associated dementia. Not only is the pathogenesis of HAND unclear, but also effective treatments are unavailable. The HIV-1 transactivator of transcription protein (HIV-1 Tat) is strongly implicated in the pathogenesis of HAND, in part, because of its well-characterized ability to directly excite neurons and cause neurotoxicity. Consistent with previous findings from others, we demonstrate here that HIV-1 Tat induced neurotoxicity, increased intracellular calcium, and disrupted a variety of mitochondria functions, such as reducing mitochondrial membrane potential, increasing levels of reactive oxygen species, and decreasing bioenergetic efficiency. Of therapeutic importance, we show that treatment of cultured neurons with ketone bodies normalized HIV-1 Tat induced changes in levels of intracellular calcium, mitochondrial function, and neuronal cell death. Ketone bodies are normally produced in the body and serve as alternative energy substrates in tissues including brain and can cross the blood-brain barrier. Ketogenic strategies have been used clinically for treatment of neurological disorders and our current results suggest that similar strategies may also provide clinical benefits in the treatment of HAND. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  20. 78 FR 21818 - Schedules of Controlled Substances: Placement of Methylone Into Schedule I

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ...- methylenedioxymethamphetamine (MDMA), cathinone and other related substances. The addition of a beta-keto ([beta]-ketone) substituent to the phenethylamine core structure produces a group of substances that have [beta]-keto-phenethylamine as the core structure. Methylone has a [beta]-keto-phenethylamine core structure. Methylone has...

  1. Highly productive CNN pincer ruthenium catalysts for the asymmetric reduction of alkyl aryl ketones.

    PubMed

    Baratta, Walter; Chelucci, Giorgio; Magnolia, Santo; Siega, Katia; Rigo, Pierluigi

    2009-01-01

    Chiral pincer ruthenium complexes of formula [RuCl(CNN)(Josiphos)] (2-7; Josiphos = 1-[1-(dicyclohexylphosphano)ethyl]-2-(diarylphosphano)ferrocene) have been prepared by treating [RuCl(2)(PPh(3))(3)] with (S,R)-Josiphos diphosphanes and 1-substituted-1-(6-arylpyridin-2-yl)methanamines (HCNN; substituent = H (1 a), Me (1 b), and tBu (1 c)) with NEt(3). By using 1 b and 1 c as a racemic mixture, complexes 4-7 were obtained through a diastereoselective synthesis promoted by acetic acid. These pincer complexes, which display correctly matched chiral PP and CNN ligands, are remarkably active catalysts for the asymmetric reduction of alkyl aryl ketones in basic alcohol media by both transfer hydrogenation (TH) and hydrogenation (HY), achieving enantioselectivities of up to 99 %. In 2-propanol, the enantioselective TH of ketones was accomplished by using a catalyst loading as low as 0.002 mol % and afforded a turnover frequency (TOF) of 10(5)-10(6) h(-1) (60 and 82 degrees C). In methanol/ethanol mixtures, the CNN pincer complexes catalyzed the asymmetric HY of ketones with H(2) (5 atm) at 0.01 mol % relative to the complex with a TOF of approximately 10(4) h(-1) at 40 degrees C.

  2. Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral BINOL-derived zincate catalyst.

    PubMed

    Li, Hong; Da, Chao-Shan; Xiao, Yu-Hua; Li, Xiao; Su, Ya-Ning

    2008-09-19

    Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral metal complex is reported for the first time herein. Two novel semicrown chiral ligands 1a and 1b were synthesized from (S)- and (R)-BINOL, respectively, and then employed to catalyze the direct asymmetric aldol addition of aryl ketones to aryl aldehydes. Introduced with 2.0 equiv of diethylzinc, 1b had higher enantioselectivity than 1a. Up to 97% yield and up to 80% enantioselectivity were achieved.

  3. A precursor to the beta-pyranosides of 3-amino-3,6-dideoxy-D-mannose (mycosamine).

    PubMed

    Alais, J; David, S

    1992-06-04

    SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)

  4. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer's disease.

    PubMed

    Newport, Mary T; VanItallie, Theodore B; Kashiwaya, Yoshihiro; King, Michael Todd; Veech, Richard L

    2015-01-01

    Providing ketone bodies to the brain can bypass metabolic blocks to glucose utilization and improve function in energy-starved neurons. For this, plasma ketones must be elevated well above the ≤ 0.2 mM default concentrations normally prevalent. Limitations of dietary methods currently used to produce therapeutic hyperketonemia have stimulated the search for better approaches. Described herein is a new way to produce therapeutic hyperketonemia, entailing prolonged oral administration of a potent ketogenic agent--ketone monoester (KME)--to a patient with Alzheimer's disease dementia and a pretreatment Mini-Mental State Examination score of 12. The patient improved markedly in mood, affect, self-care, and cognitive and daily activity performance. The KME was well tolerated throughout the 20-month treatment period. Cognitive performance tracked plasma β-hydroxybutyrate concentrations, with noticeable improvements in conversation and interaction at the higher levels, compared with predose levels. KME-induced hyperketonemia is robust, convenient, and safe, and the ester can be taken as an oral supplement without changing the habitual diet. Published by Elsevier Inc.

  5. Preparation and Characterization of Various Poly(ether ether ketone) Containing Imidazolium Moiety for Anion Exchange Membrane Fuel Cell Application.

    PubMed

    Lee, Byeol-Nim; Son, Tae Yang; Park, Chi Hoon; Kim, Tae Hyun; Nam, Sang Yong

    2018-09-01

    In this study, various poly(ether ether ketone) were synthesized using three different monomers and the imidazolium group was introduced into synthesized poly(ether ether ketone)s by using substitution reaction. Synthesized polymers were used to prepare anion exchange membranes and to evaluate its properties. Thermal, chemical and structural properties were carried out using thermogravimetric analysis, nuclear magnetic resonance. The anion exchange membranes with different imidazolium moieties were characterized by several different analytical techniques such as water up take, ion exchange capacity, hydroxide conductivity for checking the possibility to apply the anion exchange membrane fuel cell. Consequently, results of characterization were studied to understand the correlation between stabilities of the membrane and functional group and polymer backbone structures. And we confirm membrane performance was improved by increasing imidazolium cation groups.

  6. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    PubMed

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  7. Forging C-C Bonds Through Decarbonylation of Aryl Ketones.

    PubMed

    Somerville, Rosie J; Martin, Ruben

    2017-06-06

    The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The failure of poly (ether ether ketone) in high speed contacts

    NASA Astrophysics Data System (ADS)

    Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.

    1993-04-01

    The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.

  9. Neutrophil chemotaxis in response to TGF-beta isoforms (TGF-beta 1, TGF-beta 2, TGF-beta 3) is mediated by fibronectin.

    PubMed

    Parekh, T; Saxena, B; Reibman, J; Cronstein, B N; Gold, L I

    1994-03-01

    TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta

  10. Determination of hydride affinities of various aldehydes and ketones in acetonitrile.

    PubMed

    Zhu, Xiao-Qing; Chen, Xi; Mei, Lian-Rui

    2011-05-06

    The hydride affinities of 21 typical aldehydes and ketones in acetonitrile were determined by using an experimental method, which is valuable for chemists choosing suitable reducing agents to reduce them. The focus of this paper is to introduce a very facile experimental method, which can be used to determine the hydride affinities of various carbonyl compounds in solution.

  11. Synthesis of a ketone analogue of biotin via the intramolecular Pauson-Khand reaction.

    PubMed

    McNeill, Eric; Chen, Irwin; Ting, Alice Y

    2006-09-28

    We report an improved synthesis of 5-(5-oxohexahydrocyclopenta[c]thiophen-1-yl)pentanoic acid (ketone biotin, 1) based on the intramolecular Pauson-Khand cyclization. The synthesis proceeds in eight steps and in 2.7% overall yield from cyclohexene.

  12. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    PubMed

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  13. Analysis of betaS and betaA genes in a Mexican population with African roots.

    PubMed

    Magaña, María Teresa; Ongay, Zoyla; Tagle, Juan; Bentura, Gilberto; Cobián, José G; Perea, F Javier; Casas-Castañeda, Maricela; Sánchez-López, Yoaly J; Ibarra, Bertha

    2002-01-01

    To investigate the origin of the beta(A) and beta(S) genes in a Mexican population with African roots and a high frequency of hemoglobin S, we analyzed 467 individuals (288 unrelated) from different towns in the states of Guerrero and Oaxaca in the Costa Chica region. The frequency of the sickle-cell trait was 12.8%, which may represent a public health problem. The frequencies of the beta-haplotypes were determined from 350 nonrelated chromosomes (313 beta(A) and 37 beta(S)). We observed 15 different beta(A) haplotypes, the most common of which were haplotypes 1 (48.9%), 2 (13.4%), and 3 (13.4%). The calculation of pairwise distributions and Nei's genetic distance analysis using 32 worldwide populations showed that the beta(A) genes are more closely related to those of Mexican Mestizos and North Africans. Bantu and Benin haplotypes and haplotype 9 were related to the beta(S) genes, with frequencies of 78.8, 18.2, and 3.0%, respectively. Comparison of these haplotypes with 17 other populations revealed a high similitude with the population of the Central African Republic. These data suggest distinct origins for the beta(A) and beta(S) genes in Mexican individuals from the Costa Chica region.

  14. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    NASA Astrophysics Data System (ADS)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  15. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.

    PubMed

    Small, Meagan C; Aytenfisu, Asaminew H; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  16. Characterization of human DHRS4: an inducible short-chain dehydrogenase/reductase enzyme with 3beta-hydroxysteroid dehydrogenase activity.

    PubMed

    Matsunaga, Toshiyuki; Endo, Satoshi; Maeda, Satoshi; Ishikura, Shuhei; Tajima, Kazuo; Tanaka, Nobutada; Nakamura, Kazuo T; Imamura, Yorishige; Hara, Akira

    2008-09-15

    Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and alpha-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C(19)/C(21)-steroids into 3beta-hydroxysteroids. The stereospecific conversion to 3beta-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor alpha ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3beta-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.

  17. Benzofuran ketone dosage-dependent rayless goldenrod (Isocoma pluriflora) toxicosis in a caprine model

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine the dosage of benzofuran ketone compounds (tremetone, 3-hydroxytremetone, dehydrotremetone, and 3-oxyangeloyltremetone) and the duration of exposure to these compounds required to produce clinical signs and the associated pathological changes of rayles ...

  18. Synthesis of a ketone analog of biotin via the intramolecular Pauson-Khand reaction

    PubMed Central

    McNeill, Eric; Chen, Irwin; Ting, Alice Y.

    2008-01-01

    We report an improved synthesis of 5-(5-oxohexahydrocyclopenta[c]thiophen-1-yl)pentanoic acid (ketone biotin, 1) based on the intramolecular Pauson-Khand cyclization. The synthesis proceeds in 8 steps and in 2.7% overall yield from cyclohexene. PMID:16986958

  19. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    PubMed

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  20. Enantioselective, Organocatalytic Reduction of Ketones using Bifunctional Thiourea-Amine Catalysts

    PubMed Central

    Li, De Run; He, Anyu; Falck, J. R.

    2010-01-01

    Prochiral ketones are reduced to enantioenriched, secondary alcohols using catecholborane and a family of air-stable, bifunctional thiourea-amine organocatalysts. Asymmetric induction is proposed to arise from the in situ complexation between the borane and chiral thiourea-amine organocatalyst resulting in a stereochemically biased boronate-amine complex. The hydride in the complex is endowed with enhanced nucleophilicity while the thiourea concomitantly embraces and activates the carbonyl. PMID:20334398

  1. Structures of the SER/THR linked variant oligosaccharides present in equine chorionic gonadotropin (eCG). beta. -subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahl, O.P.; Anumula, K.R.

    1986-05-01

    eCG ..beta..-subunit contains more than 50% carbohydrate and constitutes about 72% of the hormone. O-linked carbohydrate (85%) was separated from the N-linked (15%) by gel filtration of the endoproteinase Lys-C digest. Six O-linked carbohydrate units were released by NaOH/NaB/sup 3/H/sub 4/ treatment. Oligosaccharides were fractionated by gel filtration and paper chromatography. Several oligosaccharides were obtained ranging in size from a sialyl di-saccharide to megalosaccharide with about 50 sugar residues. Methylation analyses and tlc examination of the oligosaccharides after endo- and exoglycosidase digestions and nitrous acid deamination and Smith degradation revealed a core structure of Gal..beta..1-4 GlcNAc..beta..1-6 (Gal ..beta..1-3) GalNAcH/sub 2/more » with poly-N-acetyllactosamine peripheral extensions. Nearly 50% of the oligosaccharides were large and were preferentially extended on 1,6 arm of the GalNAcH/sub 2/ by repeating N-acetyllactosamine units. Furthermore, these oligosaccharides contained branching 1,3,6-linked galactoses giving rise to tri, penta and multiantennary structures.« less

  2. Enzymatic synthesis of dimaltosyl-{beta}-cyclodextrin via a transglycosylation reaction using TreX, a Sulfolobus solfataricus P2 debranching enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hee-Kwon; Cha, Hyunju; Yang, Tae-Joo

    2008-02-01

    Di-O-{alpha}-maltosyl-{beta}-cyclodextrin ((G2){sub 2}-{beta}-CD) was synthesized from 6-O-{alpha}-maltosyl-{beta}-cyclodextrin (G2-{beta}-CD) via a transglycosylation reaction catalyzed by TreX, a debranching enzyme from Sulfolobus solfataricus P2. TreX showed no activity toward glucosyl-{beta}-CD, but a transfer product (1) was detected when the enzyme was incubated with maltosyl-{beta}-CD, indicating specificity for a branched glucosyl chain bigger than DP2. Analysis of the structure of the transfer product (1) using MALDI-TOF/MS and isoamylase or glucoamylase treatment revealed it to be dimaltosyl-{beta}-CD, suggesting that TreX transferred the maltosyl residue of a G2-{beta}-CD to another molecule of G2-{beta}-CD by forming an {alpha}-1,6-glucosidic linkage. When [{sup 14}C]-maltose and maltosyl-{beta}-CD were reactedmore » with the enzyme, the radiogram showed no labeled dimaltosyl-{beta}-CD; no condensation product between the two substrates was detected, indicating that the synthesis of dimaltosyl-{beta}-CD occurred exclusively via transglycosylation of an {alpha}-1,6-glucosidic linkage. Based on the HPLC elution profile, the transfer product (1) was identified to be isomers of 6{sup 1},6{sup 3}- and 6{sup 1},6{sup 4}-dimaltosyl-{beta}-CD. Inhibition studies with {beta}-CD on the transglycosylation activity revealed that {beta}-CD was a mixed-type inhibitor, with a K{sub i} value of 55.6 {mu}mol/mL. Thus, dimaltosyl-{beta}-CD can be more efficiently synthesized by a transglycosylation reaction with TreX in the absence of {beta}-CD. Our findings suggest that the high yield of (G2){sub 2}-{beta}-CD from G2-{beta}-CD was based on both the transglycosylation action mode and elimination of the inhibitory effect of {beta}-CD.« less

  3. Efficient methods for enol phosphate synthesis using carbon-centred magnesium bases.

    PubMed

    Kerr, William J; Lindsay, David M; Patel, Vipulkumar K; Rajamanickam, Muralikrishnan

    2015-10-28

    Efficient conversion of ketones into kinetic enol phosphates under mild and accessible conditions has been realised using the developed methods with di-tert-butylmagnesium and bismesitylmagnesium. Optimisation of the quench protocol resulted in high yields of enol phosphates from a range of cyclohexanones and aryl methyl ketones, with tolerance of a range of additional functional units.

  4. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    PubMed

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  5. Electrical properties of binary mixtures of amino silicone oil and methyl iso butyl ketone

    NASA Astrophysics Data System (ADS)

    Shah, K. N.; Rana, V. A.; Vankar, H. P.

    2018-05-01

    The real and imaginary parts of the dielectric function of the binary mixtures of the methyl iso butyl ketone and amino silicone oil in the frequency range 100 Hz to 2 MHz were measured using precision LCR meter at 305.15 K. The electrical properties such as electrical modulus M*(ω), electrical conductivity σ*(ω) and complex impedance Z*(ω) were calculated using the dielectric function ɛ*(ω). The ionic polarization relaxation time (Τσ) and D.C. conductivity (σdc) were also calculated using electrical properties. The ionic behavior of methyl iso butyl ketone and non-ionic behavior of amino silicone oil are also explained. The electrical parameters are used to gain information about the effect of concentration variation of components of the mixtures on the electrical properties.

  6. New Measurements of Methyl Ethyl Ketone (MEK) Photolysis Rates and Their Relevance to Global Oxidative Capacity

    NASA Astrophysics Data System (ADS)

    Brewer, J.; Ravishankara, A. R.; Mellouki, A.; Fischer, E. V.; Kukui, A.; Véronique, D.; Ait-helal, W.; Leglise, J.; Ren, Y.

    2017-12-01

    Methyl ethyl ketone (MEK) is one of the most abundant ketones in the atmosphere. MEK can be emitted directly into the atmosphere from both anthropogenic and natural sources, and it is also formed during the gas-phase oxidation of volatile organic compounds (VOCs). MEK is lost via reaction with OH, photolysis and deposition to the surface. Similar to the other atmospheric ketones, the photolysis of MEK may represent a source of HOx (OH + HO2) radicals in the upper troposphere. The degradation of MEK also leads to the atmospheric formation of acetaldehyde and formaldehyde. This work presents a new analysis of the temperature dependence of MEK photolysis cross-sections and a quantification of MEK photolysis rates under surface pressures using the CNRS HELIOS outdoor atmospheric chamber (Chambre de simulation atmosphérique à irradiation naturelle d'Orléans; http://www.era-orleans.org/ERA-TOOLS/helios-project.html). Additionally, we use the GEOS-Chem 3-D CTM (version 10-01, www.geos-chem.org) to investigate the impact of these newly measured rates and cross-sections on the global distribution and seasonality of MEK, as well as its importance to the tropospheric oxidative capacity.

  7. Toluidine blue-O is a Nissl bright-field counterstain for lipophilic fluorescent tracers Di-ASP, DiI and DiO.

    PubMed

    Chelvanayagam, D K; Beazley, L D

    1997-03-01

    The stain toluidine blue-O (tol blue), applied to sections of neural tissue, is shown to be compatible with the vivid fluorescent lipophilic neural tracers 4-(4-dihexadecylaminostyryl)-N-methylpyridinium iodide (Di-ASP), 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). As with other Nissl stains, toluidine blue-O fluoresces in the red end of the spectrum but such fluorescence quenches upon binding with tissue. Moreover, progressive staining occurs at concentrations low enough to minimise any background fluorescence attributable to non-specific residence of the stain. The bright yellow Di-ASP and vivid green DiO signals are spectrally removed from the red fluorescence of toluidine blue-O. With toluidine blue-O counterstaining, Di-ASP generally offers contrast superior to that with DiI, however, the latter is improved by viewing in a polarised green bright field. Visible Di-ASP emission, although broad, peaks at a more film-sensitive region of the spectrum than that for DiI, thus reducing the photographic exposure required.

  8. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morant, Marc

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Manganese-catalyzed selective oxidation of aliphatic C-H groups and secondary alcohols to ketones with hydrogen peroxide.

    PubMed

    Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R

    2013-09-01

    An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase.

    PubMed

    Guo, Kunde; Lukacik, Petra; Papagrigoriou, Evangelos; Meier, Marc; Lee, Wen Hwa; Adamski, Jerzy; Oppermann, Udo

    2006-04-14

    Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.

  11. Compound-Specific Carbon Isotope Compositions of Aldehydes and Ketones in the Tagish Lake Meteorite

    NASA Astrophysics Data System (ADS)

    Simkus, D. N.; Aponte, J. C.; Hilts, R. W.; Elsila, J. E.; Herd, C. D. K.

    2016-08-01

    Aldehydes and ketones detected in the Tagish Lake meteorite are highly depleted in 13C, indicating that they are unlikely relic Strecker synthesis precursors. Potential sources for these compounds and the effects of aqueous alteration are discussed.

  12. Bioreduction of α,β-unsaturated ketones and aldehydes by non-conventional yeast (NCY) whole-cells.

    PubMed

    Goretti, Marta; Ponzoni, Chiara; Caselli, Elisa; Marchegiani, Elisabetta; Cramarossa, Maria Rita; Turchetti, Benedetta; Forti, Luca; Buzzini, Pietro

    2011-03-01

    The bioreduction of α,β-unsaturated ketones (ketoisophorone, 2-methyl- and 3-methyl-cyclopentenone) and aldehydes [(S)-(-)-perillaldehyde and α-methyl-cinnamaldehyde] by 23 "non-conventional" yeasts (NCYs) belonging to 21 species of the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma, and Wickerhamomyces was reported. The results highlight the potential of NCYs as whole-cell biocatalysts for selective biotransformation of electron-poor alkenes. A few NCYs exhibited extremely high (>90%) or even total ketoisophorone and 2-methyl-cyclopentenone bioconversion yields via asymmetric reduction of the conjugated CC bond catalyzed by enoate reductases. Catalytic efficiency declined after switching from ketones to aldehydes. High chemoselectivity due to low competing carbonyl reductases was also sometimes observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Cleavage of beta,beta-carotene to flavor compounds by fungi.

    PubMed

    Zorn, H; Langhoff, S; Scheibner, M; Berger, R G

    2003-09-01

    More than 50 filamentous fungi and yeasts, known for de novo synthesis or biotransformation of mono-, sesqui-, tri-, or tetraterpenes, were screened for their ability to cleave beta,beta-carotene to flavor compounds. Ten strains discolored a beta,beta-carotene-containing growth agar, indicating efficient degradation of beta,beta-carotene. Dihydroactinidiolide was formed as the sole conversion product of beta,beta-carotene in submerged cultures of Ganoderma applanatum, Hypomyces odoratus, Kuehneromyces mutabilis, and Trametes suaveolens. When mycelium-free culture supernatants from five species were applied for the conversions, nearly complete degradation of beta,beta-carotene was observed after 12 h. Carotenoid-derived volatile products were detected in the media of Ischnoderma benzoinum, Marasmius scorodonius, and Trametes versicolor. beta-Ionone proved to be the main metabolite in each case, whereas beta-cyclocitral, dihydroactinidiolide, and 2-hydroxy-2,6,6-trimethylcyclohexanone were formed in minor quantities. Using a photometric bleaching test, the beta,beta-carotene cleaving enzyme activities of M. scorodonius were partially characterized.

  14. beta-Hexachlorocyclohexane (beta-HCH)

    Integrated Risk Information System (IRIS)

    beta - Hexachlorocyclohexane ( beta - HCH ) ; CASRN 319 - 85 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Asses

  15. Drude Polarizable Force Field for Aliphatic Ketones and Aldehydes, and their Associated Acyclic Carbohydrates

    PubMed Central

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-01-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF. PMID:28190218

  16. Laboratory Studies of Aedes aegypti Attraction to Ketones, Sulfides, and Primary Chloroalkanes Tested Alone and in Combination with L-Lactic Acid.

    PubMed

    Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R

    2015-03-01

    The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.

  17. STIMULATION OF TARSAL RECEPTORS OF THE BLOWFLY BY ALIPHATIC ALDEHYDES AND KETONES

    PubMed Central

    Chadwick, L. E.; Dethier, V. G.

    1949-01-01

    Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 3-pentanol has been studied in the blowfly Phormia regina Meigen. The data agree with results previously reported for normal alcohols and several series of glycols in showing a logarithmic increase in stimulating effect with increasing chain length. The order of increasing effectiveness among the different species of compounds thus far investigated is the following: polyglycols, diols, secondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal aldehydes. Curves relating the logarithms of threshold concentration to the logarithms of chain length for diols, alcohols, aldehydes, and ketones show inflections in the 3 to 6 carbon range. Above and below the region of inflection the curves are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are of the order of –2; for the lower limbs, about –10. Comparisons of the threshold data with numerical values for molecular weights, molecular areas and volumes, oil-water distribution coefficients, activity coefficients, standard free energies, vapor pressures, boiling points, melting points, dipole moments, dielectric constants, and degree of association are discussed briefly, and it is concluded that none of the comparisons serves to bring the data from the several series and from the two portions of each series into a single homogeneous system. A qualitative comparison with water solubilities shows fewer discrepancies. It is suggested that the existence of a combination of aqueous and lipoid phases at the receptor surface would fit best with what is presently known about the relationship between chemical structure and stimulating effect in contact chemoreception. In this hypothesis the smaller and more highly water-soluble compounds are envisaged as gaining access to the receptors partly through the aqueous phase, the larger molecules predominantly through the lipoid phase. PMID:18114559

  18. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds.

    PubMed

    Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2015-10-01

    Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2016-05-01

    Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Highly efficient and direct heterocyclization of dipyridyl ketone to N,N-bidentate ligands

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Dyers, Leon Jr; Mason, Richard Jr; Amoyaw, Prince; Bu, Xiu R.

    2005-01-01

    [reaction: see text] Reaction of various aromatic aldehydes with 2,2'-dipyridyl ketone and ammonium acetate in hot acetic acid provides ready access to a series of substituted 1-pyridylimidazo[1,5-a]pyridines, a class of ligands possessing an N,N-bidentate feature, in good yields.

  1. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study.

    PubMed

    Courchesne-Loyer, Alexandre; Croteau, Etienne; Castellano, Christian-Alexandre; St-Pierre, Valérie; Hennebelle, Marie; Cunnane, Stephen C

    2017-07-01

    Ketones (principally β-hydroxybutyrate and acetoacetate (AcAc)) are an important alternative fuel to glucose for the human brain, but their utilisation by the brain remains poorly understood. Our objective was to use positron emission tomography (PET) to assess the impact of diet-induced moderate ketosis on cerebral metabolic rate of acetoacetate (CMRa) and glucose (CMRglc) in healthy adults. Ten participants (35 ± 15 y) received a very high fat ketogenic diet (KD) (4.5:1; lipid:protein plus carbohydrates) for four days. CMRa and CMRglc were quantified by PET before and after the KD with the tracers, 11 C-AcAc and 18 F-fluorodeoxyglucose ( 18 F-FDG), respectively. During the KD, plasma ketones increased 8-fold ( p = 0.005) while plasma glucose decreased by 24% ( p = 0.005). CMRa increased 6-fold ( p = 0.005), whereas CMRglc decreased by 20% ( p = 0.014) on the KD. Plasma ketones were positively correlated with CMRa (r = 0.93; p < 0.0001). After four days on the KD, CMRa represented 17% of whole brain energy requirements in healthy adults with a 2-fold difference across brain regions (12-24%). The CMR of ketones (AcAc and β-hydroxybutyrate combined) while on the KD was estimated to represent about 33% of brain energy requirements or approximately double the CMRa. Whether increased ketone availability raises CMR of ketones to the same extent in older people as observed here or in conditions in which chronic brain glucose hypometabolism is present remains to be determined.

  2. The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikariya bifunctional catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dub, Pavel A.; Gordon, John C.

    2016-03-21

    The catalytic hydrogenation of prochiral ketones with second and third-row transition metal complexes bearing chelating chiral ligands containing at least one N–H functionality has achieved unparalleled performance, delivering, in the best cases, chiral alcohols with up to 99.9% ee using extremely small catalyst loadings (~10 -5 mol%). Hence the efficacy of this reaction has closely approached that of natural enzymatic systems and the reaction itself has become one of the most efficient artificial catalytic reactions developed to date. This paper describes the current level of understanding of the mechanism of enantioselective hydrogenation and transfer hydrogenation of aromatic ketones with pioneeringmore » prototypes of bifunctional catalysts, the Noyori and Noyori–Ikariya complexes. Finally, analysis presented herein expands the concept of “metal–ligand cooperation”, redefines the term “cooperative ligand” and introduces “H –/H + outer-sphere hydrogenation” as a novel paradigm in outer-sphere hydrogenation.« less

  3. Tandem nucleophilic addition-Oppenauer oxidation of aromatic aldehydes to aryl ketones with triorganoaluminium reagents.

    PubMed

    Fu, Ying; Yang, Yanshou; Hügel, Helmut M; Du, Zhengyin; Wang, Kehu; Huang, Danfeng; Hu, Yulai

    2013-07-21

    In the presence of pinacolone, the in situ prepared triorganoaluminium reagents reacted with aromatic aldehydes to give ketones in moderate to high yield. We propose that the products are formed via a tandem organoaluminium reagents addition-Oppenauer oxidation sequence.

  4. Allyl transfer to aldehydes and ketones by Brønsted acid activation of allyl and crotyl 1,3,2-dioxazaborolidines.

    PubMed

    Reilly, Maureen K; Rychnovsky, Scott D

    2010-11-05

    Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (type I mechanism).

  5. Mono-(2-ethylhexyl) phthalate (MEHP) regulates glucocorticoid metabolism through 11{beta}-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Dun; Department of Orthopedics, Taizhou Hospital, Wenzhou Medical College, Lin Hai, ZJ 317000; Li, Xing-Wang

    2009-11-13

    Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11{beta}-hydroxysteroid dehydrogenase type 2 (11{beta}-HSD2), not 11{beta}-HSD1, is strongly expressed in murine gonadotrope L{beta}T2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11{beta}-HSD2 enzyme activity in L{beta}T2 cells at as low as 10{sup -7} M. Corticosterone (CORT) atmore » a concentration of 10{sup -6} M significantly inhibited L{beta}T2 cell proliferation after 2-day culture, and 10{sup -6} M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10{sup -5} or 10{sup -4} M MEHP, the minimal concentration of CORT to inhibit the proliferation of L{beta}T2 cells was lowered to 10{sup -7} M, and 10{sup -6} M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11{beta}-HSD2 may have a key role in glucocorticoid metabolism in L{beta}T2 cells. MEHP may participate in the glucocorticoid metabolism in L{beta}T2 cells through inhibition of 11{beta}-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.« less

  6. Sequence swapping does not result in conformation swapping for the beta4/beta5 and beta8/beta9 beta-hairpin turns in human acidic fibroblast growth factor.

    PubMed

    Kim, Jaewon; Lee, Jihun; Brych, Stephen R; Logan, Timothy M; Blaber, Michael

    2005-02-01

    The beta-turn is the most common type of nonrepetitive structure in globular proteins, comprising ~25% of all residues; however, a detailed understanding of effects of specific residues upon beta-turn stability and conformation is lacking. Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold and contains a total of five beta-hairpin structures (antiparallel beta-sheets connected by a reverse turn). beta-Turns related by the characteristic threefold structural symmetry of this superfold exhibit different primary structures, and in some cases, different secondary structures. As such, they represent a useful system with which to study the role that turn sequences play in determining structure, stability, and folding of the protein. Two turns related by the threefold structural symmetry, the beta4/beta5 and beta8/beta9 turns, were subjected to both sequence-swapping and poly-glycine substitution mutations, and the effects upon stability, folding, and structure were investigated. In the wild-type protein these turns are of identical length, but exhibit different conformations. These conformations were observed to be retained during sequence-swapping and glycine substitution mutagenesis. The results indicate that the beta-turn structure at these positions is not determined by the turn sequence. Structural analysis suggests that residues flanking the turn are a primary structural determinant of the conformation within the turn.

  7. [Determination of methyl nonyl ketone in volatile oil from herbs of Houttuynia cordata by GC-MS].

    PubMed

    Yang, Lixin; Zhang, Yongxin; Yi, Hong; Yang, Hua; Zhang, Qiwei

    2010-08-01

    To develop a GC-MS method for the determination of methyl nonyl ketone in the volatile oil from the herbs of Houttuynia cordata. The sample was split in the 240 degrees C injection port, with 20:1 split ratio, and separated on a DB-5 (30 m x 0.25 mm, 0.25 microm film thickness) fused silica column with helium as the carrier gas. The temperature program was as follows: 100 degrees C for 2 min, the 5 degrees C x min(-1) to 150 degrees C, then 15 degrees C x min(-1) to 200 degrees C, and kept for 10 min. The MS transfer line temperature was set to 250 degrees C, the MS source temperature was set to 200 degrees C. The ionization mode was electron ionization (EI) and the selective ion monitor mode was used. A good linear relationship was constructed over the injection amount range of 5.5-110 ng of methyl nonyl ketone. The average recovery was 98.9%, and RSD was 2. 2%. The developed method was sensitive, accurate, and can be used for the determination of methyl nonyl ketone in the volatile oil and for the quality control of H. cordata.

  8. Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil.

    PubMed

    Drese, Jeffrey H; Talley, Anne D; Jones, Christopher W

    2011-03-21

    The fast pyrolysis of biomass is a potential route to the production of liquid biorenewable fuel sources. However, degradation of the bio-oil mixtures due to reaction of oxygenates, such as aldehydes and ketones, reduces the stability of the liquids and can impact long-term storage and shipping. Herein, solid aminosilica adsorbents are described for the selective adsorptive removal of reactive aldehyde and ketone species. Three aminosilica adsorbents are prepared through the reaction of amine-containing silanes with pore-expanded mesoporous silica. A fourth aminosilica adsorbent is prepared through the ring-opening polymerization of aziridine from pore-expanded mesoporous silica. Adsorption experiments with a representative mixture of bio-oil model compounds are presented using each adsorbent at room temperature and 45 °C. The adsorbent comprising only primary amines adsorbs the largest amount of aldehydes and ketones. The overall reactivity of this adsorbent increases with increasing temperature. Additional aldehyde screening experiments show that the reactivity of aldehydes with aminosilicas varies depending on their chemical functionality. Initial attempts to regenerate an aminosilica adsorbent by acid hydrolysis show that they can be at least partially regenerated for further use. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Indium-mediated asymmetric Barbier-type propargylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.

    PubMed

    Haddad, Terra D; Hirayama, Lacie C; Buckley, Jannise J; Singaram, Bakthan

    2012-01-20

    We report a simple, efficient, and general method for the indium-mediated enantioselective propargylation of aromatic and aliphatic aldehydes under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 90%) and enantiomeric excess (up to 95%). The extension of this methodology to ketones demonstrated the need for electrophilic ketones more reactive than acetophenone as the reaction would not proceed with just acetophenone. Using the Lewis acid indium triflate [In(OTf)(3)] induced regioselective formation of the corresponding homoallenic alcohol product from acetophenone. However, this methodology demonstrated excellent chemoselectivity in formation of only the corresponding secondary homopropargylic alcohol product in the presence of a ketone functionality. Investigation of the organoindium intermediates under our reaction conditions shows the formation of allenylindium species, and we suggest that these species contain an indium(III) center. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.

  10. Ion-scale spectral break of solar wind turbulence at high and low beta

    PubMed Central

    Chen, C H K; Leung, L; Boldyrev, S; Maruca, B A; Bale, S D

    2014-01-01

    The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since and the perpendicular ion plasma beta is typically β⊥i∼1. To address this, several exceptional intervals with β⊥i≪1 and β⊥i≫1 were investigated, during which these scales were well separated. It was found that for β⊥i≪1 the break occurs at di and for β⊥i≫1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets. PMID:26074642

  11. Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to α,β-Unsaturated Ketones

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Han, Mengting; Luan, Jie; Xu, Lin; Ding, Yuanhua; Xu, Qing

    2016-07-01

    Cheap, abundant but seldom-employed Ca(OH)2 was found to be an excellent low-loading (5-10 mol%) catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield with high purity, as confirmed by its 1H NMR spectrum.

  12. Improved delivery through biological membranes. XXXL: Solubilization and stabilization of an estradiol chemical delivery system by modified beta-cyclodextrins.

    PubMed

    Brewster, M E; Estes, K S; Loftsson, T; Perchalski, R; Derendorf, H; Mullersman, G; Bodor, N

    1988-11-01

    A dihydropyridine in equilibrium pyridinium salt chemical delivery system (CDS) for estradiol (E2CDS) was complexed with various modified beta-cyclodextrins including hydroxyethyl-beta-cyclodextrin (HECD), hydroxypropyl-beta-cyclodextrin (HPCD), and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (DMCD). Complex formation with all of these cyclodextrins resulted in dramatic increases in the water solubility of E2CDS. Studies on the complex of E2CDS and HPCD (E2CDS-CD) indicated that the encapsulated estrogen was approximately four times more stable than the unmanipulated CDS, producing an estimated half-life of degradation of 4 years compared with 1.2 years for the uncomplexed drug at room temperature. The complexation of E2CDS and HPCD also stabilized the dihydronicotinate in solutions containing potassium ferricyanide. This formulation was shown to be equivalent to E2CDS in dimethyl sulfoxide in delivering the oxidized, estradiol precursor (E2Q+) to the brain, and also produced similar biological responses; these included decreased luteinizing hormone (LH) secretion and a decrease in the rate of weight gain in castrated female rats.

  13. Allyl Transfer to Aldehydes and Ketones by Brønsted Acid Activation of Allyl and Crotyl 1,3,2-Dioxazaborolidines

    PubMed Central

    Reilly, Maureen K.; Rychnovsky, Scott D.

    2010-01-01

    Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (Type I mechanism). PMID:20942379

  14. Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones.

    PubMed

    Wu, Weilong; Liu, Shaodong; Duan, Meng; Tan, Xuefeng; Chen, Caiyou; Xie, Yun; Lan, Yu; Dong, Xiu-Qin; Zhang, Xumu

    2016-06-17

    A series of modular and rich electronic tridentate ferrocene aminophosphoxazoline ligands (f-amphox) have been successfully developed and used in iridium-catalytic asymmetric hydrogenation of simple ketones to afford corresponding enantiomerically enriched alcohols under mild conditions with superb activities and excellent enantioselectivities (up to 1 000 000 TON, almost all products up to >99% ee, full conversion). The resulting chiral alcohols and their derivatives are important intermediates in pharmaceuticals.

  15. A Novel Di-Leucine Motif at the N-Terminus of Human Organic Solute Transporter Beta Is Essential for Protein Association and Membrane Localization.

    PubMed

    Xu, Shuhua; Soroka, Carol J; Sun, An-Qiang; Backos, Donald S; Mennone, Albert; Suchy, Frederick J; Boyer, James L

    2016-01-01

    The heteromeric membrane protein Organic Solute Transporter alpha/beta is the major bile acid efflux transporter in the intestine. Physical association of its alpha and beta subunits is essential for their polarized basolateral membrane localization and function in the transport of bile acids and other organic solutes. We identified a highly conserved acidic dileucine motif (-EL20L21EE) at the extracellular amino-tail of organic solute transporter beta from multiple species. To characterize the role of this protein interacting domain in the association of the human beta and alpha subunits and in membrane localization of the transporter, Leu20 and Leu21 on the amino-tail of human organic solute transporter beta were replaced with alanines by site-directed mutagenesis. Co-immunoprecipitation study in HEK293 cells demonstrated that substitution of the leucine residues with alanines prevented the interaction of the human beta mutant with the alpha subunit. Membrane biotinylation demonstrated that the LL/AA mutant eliminated membrane expression of both subunits. Computational-based modelling of human organic solute transporter beta suggested that the LL/AA mutation substantially alters both the structure and lipophilicity of the surface, thereby not only affecting the interaction with the alpha subunit but also possibly impacting the capacity of the beta subunit to traffick through the cell and interact with the membrane. In summary, our findings indicate that the dileucine motif in the extracellular N-terminal region of human organic solute transporter beta subunit plays a critical role in the association with the alpha subunit and in its polarized plasma membrane localization.

  16. How Cinchona Alkaloid-Derived Primary Amines Control Asymmetric Electrophilic Fluorination of Cyclic Ketones

    PubMed Central

    2015-01-01

    The origin of selectivity in the α-fluorination of cyclic ketones catalyzed by cinchona alkaloid-derived primary amines is determined with density functional calculations. The chair preference of a seven-membered ring at the fluorine transfer transition state is key in determining the sense and level of enantiofacial selectivity. PMID:24967514

  17. Dynamics of beta-cell turnover: evidence for beta-cell turnover and regeneration from sources of beta-cells other than beta-cell replication in the HIP rat.

    PubMed

    Manesso, Erica; Toffolo, Gianna M; Saisho, Yoshifumi; Butler, Alexandra E; Matveyenko, Aleksey V; Cobelli, Claudio; Butler, Peter C

    2009-08-01

    Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.

  18. Inhibin/activin-betaC and -betaE subunits in the Ishikawa human endometrial adenocarcinoma cell line.

    PubMed

    Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis

    2010-08-01

    Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in

  19. Fe-Catalyzed Cycloisomerization of Aryl Allenyl Ketones: Access to 3-Arylidene-indan-1-ones.

    PubMed

    Teske, Johannes; Plietker, Bernd

    2018-04-20

    A cycloisomerization of aryl allenyl ketones to 3-arylidene-indan-1-ones using a cationic Fe-complex as a catalyst is reported. The catalyst opens a synthetically interesting reaction pathway to this surprisingly underrepresented class of indanones that are not accessible using alternative catalytic systems.

  20. Difluoromethyl 2-pyridyl sulfone: a new gem-difluoroolefination reagent for aldehydes and ketones.

    PubMed

    Zhao, Yanchuan; Huang, Weizhou; Zhu, Lingui; Hu, Jinbo

    2010-04-02

    Difluoromethyl 2-pyridyl sulfone, a previously unknown compound, was found to act as a novel and efficient gem-difluoroolefination reagent for both aldehydes and ketones. It was found that the fluorinated sulfinate intermediate in the reaction is relatively stable, which can be observed by (19)F NMR and trapped with CH(3)I.

  1. The effect of RO3201195 and a pyrazolyl ketone P38 MAPK inhibitor library on the proliferation of Werner syndrome cells.

    PubMed

    Bagley, Mark C; Dwyer, Jessica E; Baashen, Mohammed; Dix, Matthew C; Murziani, Paola G S; Rokicki, Michal J; Kipling, David; Davis, Terence

    2016-01-21

    Microwave-assisted synthesis of the pyrazolyl ketone p38 MAPK inhibitor RO3201195 in 7 steps and 15% overall yield, and the comparison of its effect upon the proliferation of Werner Syndrome cells with a library of pyrazolyl ketones, strengthens the evidence that p38 MAPK inhibition plays a critical role in modulating premature cellular senescence in this progeroid syndrome and the reversal of accelerated ageing observed in vitro on treatment with SB203580.

  2. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Costanzo,L.; Drury, J.; Penning, T.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We havemore » determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.« less

  3. Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves.

    PubMed

    Aupperle, H; März, I; Thielebein, J; Schoon, H-A

    2008-01-01

    The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.

  4. Selective regulation of beta 1- and beta 2-adrenoceptors in the human heart by chronic beta-adrenoceptor antagonist treatment.

    PubMed Central

    Michel, M. C.; Pingsmann, A.; Beckeringh, J. J.; Zerkowski, H. R.; Doetsch, N.; Brodde, O. E.

    1988-01-01

    1. In 44 patients undergoing coronary artery bypass grafting, the effect of chronic administration of the beta-adrenoceptor antagonists sotalol, propranolol, pindolol, metoprolol and atenolol on beta-adrenoceptor density in right atria (containing 70% beta 1- and 30% beta 2-adrenoceptors) and in lymphocytes (having only beta 2-adrenoceptors) was studied. 2. beta-Adrenoceptor density in right atrial membranes and in intact lymphocytes was assessed by (-)-[125I]-iodocyanopindolol (ICYP) binding; the relative amount of right atrial beta 1- and beta 2-adrenoceptors was determined by inhibition of ICYP binding by the selective beta 2-adrenoceptor antagonist ICI 118,551 and analysis of the resulting competition curves by the iterative curve fitting programme LIGAND. 3. With the exception of pindolol, all beta-adrenoceptor antagonists increased right atrial beta-adrenoceptor density compared to that observed in atria from patients not treated with beta-adrenoceptor antagonists. 4. All beta-adrenoceptor antagonists increased right atrial beta 1-adrenoceptor density; on the other hand, only sotalol and propranolol also increased right atrial beta 2-adrenoceptor density, whereas metoprolol and atenolol did not affect it and pindolol decreased it. 5. Similarly, in corresponding lymphocytes, only sotalol or propranolol increased beta 2-adrenoceptor density, while metoprolol and atenolol did not affect it and pindolol decreased it. 6. It is concluded that beta-adrenoceptor antagonists subtype-selectively regulate cardiac and lymphocyte beta-adrenoceptor subtypes. The selective increase in cardiac beta 1-adrenoceptor density evoked by metoprolol and atenolol may be one of the reasons for the beneficial effects observed in patients with end-stage congestive cardiomyopathy following intermittent treatment with low doses of selective beta 1-adrenoceptor antagonists. PMID:2902891

  5. The Microwave Spectrum of Methyl Vinyl Ketone Revisited

    NASA Astrophysics Data System (ADS)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-06-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one) from 6 to 18.9 GHz. Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis with XIAM resulted in V3 barrier heights of 433.8(1) and 376.6(2) Cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  6. N-heterocyclic carbene catalysed asymmetric cross-benzoin reactions of heteroaromatic aldehydes with trifluoromethyl ketones.

    PubMed

    Enders, Dieter; Grossmann, André; Fronert, Jeanne; Raabe, Gerhard

    2010-09-14

    A new triazolium salt derived N-heterocyclic carbene catalyses an asymmetric cross-benzoin-type reaction of heteroaromatic aldehydes and various trifluoromethyl ketones in good to excellent yields (69-96%) and moderate to good enantioselectivities (ee = 39-85%). Up to 99% ee can be achieved by recrystallisation.

  7. Synthesis of functionalized chromenes from Meldrum's acid, 4-hydroxycoumarin, and ketones or aldehydes.

    PubMed

    Sabbaghan, Maryam; Yavari, Issa; Hossaini, Zinatossadat

    2010-11-01

    An efficient synthesis of 4-alkyl-4-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-dione or 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones via reaction 4-hydroxycoumarin with Meldrum's acid and ketones or aldehydes is described.

  8. Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides

    NASA Astrophysics Data System (ADS)

    Bechara, William S.; Pelletier, Guillaume; Charette, André B.

    2012-03-01

    The development of efficient and selective transformations is crucial in synthetic chemistry as it opens new possibilities in the total synthesis of complex molecules. Applying such reactions to the synthesis of ketones is of great importance, as this motif serves as a synthetic handle for the elaboration of numerous organic functionalities. In this context, we report a general and chemoselective method based on an activation/addition sequence on secondary amides allowing the controlled isolation of structurally diverse ketones and ketimines. The generation of a highly electrophilic imidoyl triflate intermediate was found to be pivotal in the observed exceptional functional group tolerance, allowing the facile addition of readily available Grignard and diorganozinc reagents to amides, and avoiding commonly observed over-addition or reduction side reactions. The methodology has been applied to the formal synthesis of analogues of the antineoplastic agent Bexarotene and to the rapid and efficient synthesis of unsymmetrical diketones in a one-pot procedure.

  9. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain.

    PubMed

    Lin, Ai-Ling; Zhang, Wei; Gao, Xiaoli; Watts, Lora

    2015-07-01

    Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Solvent, Temperature And Concentration Effects on the Optical Activity of Chiral FIVE-And-SIX Membered Ring Ketones Conformers

    NASA Astrophysics Data System (ADS)

    Al-Basheer, Watheq

    2017-06-01

    Chiral five-and-six membered ring ketones are important molecules that are found in many biological systems and can exist in many possible conformers. In this talk, experimental and computational investigation of solvent, temperature and concentration effects on the circular dichroism (CD) and optical rotation (OR) of (R)-3 -methylcyclohexanone (R3MCH), (R)-3-methylcyclopentanone (R3MCP) and carvone conformers will be discussed. CD and OR measurements of these ketones gaseous samples and in ten common solvents of wide polarity range for different concentrations and sample temperatures were recorded and related to molecular conformation. Density functional theoretical calculations were performed using Gaussian09 at B3LYP functions with aug-cc-pVDZ level of theory. Also, CD and OR spectra for the optimized geometries of the ketones dominant conformers were computed over the ultraviolet and visible region in the gas phase as well as in ten solvents of varying polarity range, and under the umbrella of the polarizable continuum model (PCM). By comparing theoretical and experimental results, few thermodynamic parameters were deduced for the individual equatorial and axial conformers of each molecule in gas phase and in solvation.

  11. Blood ketones are directly related to fatigue and perceived effort during exercise in overweight adults adhering to low-carbohydrate diets for weight loss: a pilot study.

    PubMed

    White, Andrea M; Johnston, Carol S; Swan, Pamela D; Tjonn, Sherrie L; Sears, Barry

    2007-10-01

    Ketogenic diets have been associated with reductions in free-living physical activity, a response that can be counterproductive in individuals trying to lose weight. To explore whether popular low-carbohydrate diets might impact the desire to exercise by raising blood ketone concentrations, fatigue and perceived effort during exercise were compared in untrained, overweight adults adhering to a ketogenic low-carbohydrate diet or to a control diet low in carbohydrate, but not ketogenic (5%, 65%, and 30% or 40%, 30%, and 30% of energy from carbohydrate, fat, and protein, respectively). In this prospective, randomized, 2-week pilot study, all meals and snacks were provided to subjects, and energy intake was strictly controlled to provide approximately 70% of that needed for weight maintenance. At baseline and at the end of week 2, exercise testing was conducted in fasting participants. Weight loss and the reductions in fat mass did not differ by group during the trial. At week 2, blood beta-hydroxybutyrate concentrations were 3.6-fold greater for the ketogenic vs nonketogenic group (P=0.018) and correlated significantly with perceived exercise effort (r2=0.22, P=0.049). Blood beta-hydroxybutyrate was also significantly correlated to feelings of "fatigue" (r=0.458, P=0.049) and to "total mood disturbance" (r=0.551, P=0.015) while exercising. These pilot data indicate that ketogenic, low-carbohydrate diets enhance fatigability and can reduce the desire to exercise in free-living individuals.

  12. Acyclic ketones in the defensive secretion of a "daddy longlegs" (Leiobunum vittatum).

    PubMed

    Meinwald, J; Kluge, A F; Carrel, J E; Eisner, T

    1971-07-01

    The defensive secretion of the "daddy longlegs" Leiobunum vittatum was analyzed and found to contain the acyclic ketones 4-methylheptan-3-one and E-4,6-dimethyl-6-octen-3-one as its major organic components. Although 4-methylheptan-3-one has been found previously as an alarm substance in certain ant genera, the second component, whose structure is confirmed by synthesis, is new.

  13. Use of On-Site GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    DTIC Science & Technology

    2013-11-01

    Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones , PAHs, Haloethers, Chlorinated...SW 8270), Nitrosamines (SW 8270), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270...alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde

  14. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes withmore » intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.« less

  15. Synthesis and insect antifeedant activities of some substituted styryl 3,4-dichlorophenyl ketones

    NASA Astrophysics Data System (ADS)

    Thirunarayanan, G.; Surya, S.; Srinivasan, S.; Vanangamudi, G.; Sathiyendiran, V.

    2010-01-01

    Sixteen substituted styryl 3,4-dichlorophenyl ketones [ (2E)-1-(3,4-dichlorophenyl)-3-phenyl-2-propen-1-ones] were synthesized using eco-friendly benign stereoselective crossed-aldol reaction. They are characterized by their analytical, infrared, NMR and mass spectral data. The insect antifeedant activities of these chalcones were evaluated using Caster semilooper and Achoea janata L.

  16. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes.

    PubMed

    Blaikie, Tom P J; Edge, Julie A; Hancock, Gus; Lunn, Daniel; Megson, Clare; Peverall, Rob; Richmond, Graham; Ritchie, Grant A D; Taylor, David

    2014-11-25

    Previous studies have suggested that breath gases may be related to simultaneous blood glucose and blood ketone levels in adults with type 2 and type 1 diabetes. The aims of this study were to investigate these relationships in children and young people with type 1 diabetes in order to assess the efficacy of a simple breath test as a non-invasive means of diabetes management. Gases were collected in breath bags and measurements were compared with capillary blood glucose and ketone levels taken at the same time on a single visit to a routine hospital clinic in 113 subjects (59 male, age 7 years 11 months-18 years 3 months) with type 1 diabetes. The patients were well-controlled with relatively low concentrations of the blood ketone measured (β hydroxybutyrate, 0-0.4 mmol l(-1)). Breath acetone levels were found to increase with blood β hydroxybutyrate levels and a significant relationship was found between the two (Spearman's rank correlation ρ = 0.364, p < 10(-4)). A weak positive relationship was found between blood glucose and breath acetone (ρ = 0.16, p = 0.1), but led to the conclusion that single breath measurements of acetone do not provide a good measure of blood glucose levels in this cohort. This result suggests a potential to develop breath gas analysis to provide an alternative to blood testing for ketone measurement, for example to assist with the management of type 1 diabetes.

  17. Asymmetric reduction of ketones with catecholborane using 2,6-BODOL complexes of titanium(IV) as catalysts.

    PubMed

    Sarvary, I; Almqvist, F; Frejd, T

    2001-05-18

    Reductions performed with Ti(IV) complexes of ligands based on bicyclo[2.2.2]octane diols 5 and 6 are effective catalysts in the reduction of prochiral ketones to optically active alcohols, with catecholborane as the reducing agent. Methyl ketones are favored and enantiomeric excesses (ee) of < or =98% have been achieved with acetophenone as the substrate. Several other substrates were tested, among them 2-octanone, which gave 2-octanol in 87% ee. Further details of the method were examined, for example, temperature, solvent composition, amount of molecular sieves (4 A), and catecholborane quality, as well as the sensitivity of the ligands towards acids. NMR spectroscopic methods were used to gain some insight into the complexes formed between the ligands and [Ti(OiPr)4]. A dimeric structure is proposed for the pre-catalyst.

  18. Kinetic study of the reaction of the hydroxyl radical (OH) with methyl ethyl ketone (2-butanone) and its deuterated isotopomers at low pressure

    NASA Astrophysics Data System (ADS)

    Liljegren, J. A.; Stevens, P. S.

    2012-12-01

    Methyl ethyl ketone (2-butanone) in the atmosphere comes from a variety of sources. It is produced commercially as an industrial ketone. It can be formed as a result of the OH or Cl-initiated oxidation of C4-C6 alkanes, primarily n-butane, or from the reaction of some alkenes with OH or O3. Biogenic sources include direct emissions from certain plants as well as emissions from decaying plant matter. Methyl ethyl ketone is removed from the atmosphere primarily by its reaction with OH. A product of this reaction includes acetaldehyde, which is a hazardous air pollutant, can further react to produce peroxy acetyl nitrate (PAN), and can be a significant source of free radicals to the atmosphere. The absolute rate constant for the reaction of OH with methyl ethyl ketone has been measured as a function of temperature at low pressure using discharge-flow techniques coupled with laser induced fluorescence (LIF) detection of OH. In addition, measurements of the rate constants for the reactions of OH with two deuterated isotopomers of methyl ethyl ketone, including CD3C(O)CH2CH3 and CH3C(O)CD2CD3, will be presented to gain a better understanding of the mechanism for this reaction. Theoretical studies of the potential energy surface for this reaction suggest that the reaction proceeds through the formation of a hydrogen-bonded pre-reactive complex, similar to that of several other atmospherically relevant oxygenated VOCs such as acetone, acetic acid, and hydroxyacetone.

  19. The interconversion and disposal of ketone bodies in untreated and injured post-absorptive rats

    PubMed Central

    Barton, Roger N.

    1973-01-01

    [3-14C]Acetoacetate and β-hydroxy[3-14C]butyrate were used to investigate the kinetics of ketone body metabolism in rats 3h after bilateral hind-limb ischaemia and in controls, both groups being in the post-absorptive state and in a 20°C environment. Calculations were carried out as described by Heath & Barton (1973) and the following conclusions were reached. 1. In both injured and control rats, the rates of irreversible disposal (extrahepatic utilization) of β-hydroxybutyrate and acetoacetate were proportional within experimental error to their blood concentrations up to at least 0.4mm (the maximum found in these rats), implying that they were determined, via these concentrations, by the rates of production by the liver. 2. Conversion of blood β-hydroxybutyrate into blood acetoacetate took place mainly in the liver, but the reverse process occurred mainly in extrahepatic tissues. 3. The `metabolic clearance rate' (the volume of blood which, if completely cleared of substrate in unit time, would give a disposal rate equal to that in the whole animal) was calculated for β-hydroxybutyrate and acetoacetate. Comparison with the cardiac output showed that in control rats the proportion of circulating β-hydroxybutyrate extracted was lower than that of acetoacetate, clearance of which appeared almost complete. After injury both metabolic clearance rates decreased, probably because of the lower cardiac output. 4. After injury, because the average blood concentrations of ketone bodies, especially acetoacetate, were higher, the mean total rate of disposal also increased. Assuming complete oxidation, the mean contribution of ketone bodies to the whole body O2 consumption rose from 7 to 15%. PMID:4798577

  20. Advanced emissions-speciation methodologies for the auto/oil air-quality improvement research program. 2. Aldehydes, ketones, and alcohols. SAE technical paper series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swarin, S.J.; Loo, J.F.; Chladek, E.

    1992-01-01

    Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air Quality Improvement Research Program to provide emission data for comparison of individual reformulated fuels, individual vehicles, and for air modeling studies. The emission samples are collected in impingers which contain either 2,4-dinitrophenylhydrazine solution for the aldehydes and ketones or deionized water for the alcohols. Subsequent analyses by liquid chromatography for the aldehydes and ketones and gas chromatography for the alcohols utilized auto injectors and computerized data systems which permit high sample throughput with minimalmore » operator intervention. The quality control procedures developed and interlaboratory comparisons conducted as part of the program are also described. (Copyright (c) 1992 Society of Automotive Engineers, Inc.)« less

  1. Synthesis of novel di- and tricationic carbapenems with potent anti-MRSA activity.

    PubMed

    Maruyama, Takahisa; Yamamoto, Yasuo; Kano, Yuko; Kurazono, Mizuyo; Shitara, Eiki; Iwamatsu, Katsuyoshi; Atsumi, Kunio

    2009-01-15

    A new series of 1beta-methyl carbapenems possessing a 6,7-disubstituted imidazo[5,1-b]thiazol-2-yl group directly attached to the C-2 position of the carbapenem nucleus was prepared, and their activities against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. First, a benzyl moiety was introduced at the C-6 position of imidazo[5,1-b]thiazole attached to the carbapenem. These benzylated molecules showed potent anti-MRSA activity, but poor water solubility. In order to overcome this drawback, we designed and synthesized di- and tricationic carbapenems and finally discovered a novel carbapenem (15i), which exhibited excellent anti-MRSA activity and good water solubility.

  2. Endoplasmic reticulum protein targeting of phospholamban: a common role for an N-terminal di-arginine motif in ER retention?

    PubMed

    Sharma, Parveen; Ignatchenko, Vladimir; Grace, Kevin; Ursprung, Claudia; Kislinger, Thomas; Gramolini, Anthony O

    2010-07-09

    Phospholamban (PLN) is an effective inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase, which transports Ca(2+) into the SR lumen, leading to muscle relaxation. A mutation of PLN in which one of the di-arginine residues at positions 13 and 14 was deleted led to a severe, early onset dilated cardiomyopathy. Here we were interested in determining the cellular mechanisms involved in this disease-causing mutation. Mutations deleting codons for either or both Arg13 or Arg14 resulted in the mislocalization of PLN from the ER. Our data show that PLN is recycled via the retrograde Golgi to ER membrane traffic pathway involving COP-I vesicles, since co-immunoprecipitation assays determined that COP I interactions are dependent on an intact di-arginine motif as PLN RDelta14 did not co-precipitate with COP I containing vesicles. Bioinformatic analysis determined that the di-arginine motif is present in the first 25 residues in a large number of all ER/SR Gene Ontology (GO) annotated proteins. Mutations in the di-arginine motif of the Sigma 1-type opioid receptor, the beta-subunit of the signal recognition particle receptor, and Sterol-O-acyltransferase, three proteins identified in our bioinformatic screen also caused mislocalization of these known ER-resident proteins. We conclude that PLN is enriched in the ER due to COP I-mediated transport that is dependent on its intact di-arginine motif and that the N-terminal di-arginine motif may act as a general ER retrieval sequence.

  3. Stereogenic phosphorus-induced diastereoselective formation of chiral carbon during nucleophilic addition of chiral H-P species to aldehydes or ketones.

    PubMed

    Zhang, He; Sun, Yong-Ming; Yao, Lan; Ji, Si-Yu; Zhao, Chang-Qiu; Han, Li-Biao

    2014-05-01

    P,C-stereogenic α-hydroxyl phosphinates or phosphine oxides were prepared from the additions of (RP)-phosphinate to ketones or (RP)-phosphine oxide to aldehydes, respectively, catalyzed by bases at room temperature in up to >99:1 diasteromeric ratio (d.r.P/d.r.C) and 99 % yields. The diastereoselectivity was induced by reversible equilibrium and different stabilities between two diastereomers of adduct, which was caused by the spatial interaction between menthoxyl or menthyl to alkyl groups of aldehydes or ketones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    PubMed

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  5. ULTRASOUND-ASSISTED EPOXIDATION OF OLEFINS AND A,B-UNSATURATED KETONES OVER HYDROTALCITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An efficient ultrasound-assisted epoxidation of olefins and a,B-unsaturated ketones over hydrotacite catalysts in the presence of hydrogen peroxide and acetonitrile is described. This general and selective protocol is relatively fast and is applicable to a wide variety of substra...

  6. Improved cerebral energetics and ketone body metabolism in db/db mice

    PubMed Central

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D

    2016-01-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-13C]glucose, [1,2-13C]acetate or [U-13C]β-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-13C]acetate and [U-13C]β-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism. PMID:28058963

  7. Sviluppi di Ricevitori E di Componentistica Per Banda 3 mm Ad INAF-OA Cagliari

    NASA Astrophysics Data System (ADS)

    Navarrini, Alessandro

    2017-11-01

    L'INAF-OA Cagliari (OACa) sta sviluppando un ricevitore criogenico a basso rumore basato su un mixer SSB (Single Side Band) a superconduttore SIS (Superconductor-Insulator-Superconductor) per la banda 3 mm. Il ricevitore, acquistato da IRAM, è stato fortemente modificato per essere adattato al fuoco Gregoriano di SRT (Sardinia Radio Telescope). Lo strumento è caratterizzato da una nuova criogenia a ciclo chiuso 4 K (per evitare l'uso di elio liquido in antenna), da un nuovo oscillatore locale (di tipo ALMA Banda 3) e da un nuovo sistema di controllo e di monitoraggio basato su schede Raspberry ed Arduino sviluppato ad OACa. Verranno presentati i recenti sviluppi sul ricevitore, inclusi i risultati preliminari della misura della temperatura di rumore, che raggiunge un valore pari a Trec=66 K alla frequenza di 86 GHz, nonostante la criogenia non sia ancora ottimizzata. L'INAF-OACa è coinvolto nel progetto AETHRA (Advanced European Technologies for Heterodyne Receivers for Astronomy) nel quadro del programma Radionet/Horizon2020 per il quale sta contribuendo al WP1 (Work Package 1). Lo scopo del WP1 è di sviluppare e costruire un dimostratore di un array di ricevitori a doppia polarizzazione per la banda 3 mm basato su amplificatori criogenici a basso rumore (LNA) in tecnologia a semiconduttore MMIC. Nell'ambito del WP1 l'OACa ha in carico il progetto di un OrthomodeTransducer (OMT) in guida d'onda o in tecnologia planare per la banda 72-116 GHz che sia integrabile con amplificatori MMICs ed adatto all'integrazione in un array da installare nel piano focale di un radiotelescopio. Verranno presentati i design preliminari degli OMT per AETHRA, che sono basati su prototipi sviluppati in passato da OACa.

  8. Syntheses of calix[4]pyrroles by amberlyst-15 catalyzed cyclocondensations of pyrrole with selected ketones.

    PubMed

    Chauhan, Shive Murat Singh; Garg, Bhaskar; Bisht, Tanuja

    2007-11-09

    A facile and efficient protocol is reported for the synthesis of calix[4]pyrroles and N-confused calix[4]pyrroles in moderate to excellent yields by reaction of dialkyl or cycloalkyl ketones with pyrrole catalyzed by reusable Amberlyst(TM)-15 under eco-friendly conditions.

  9. Electrosynthesis of enaminones directly from methyl ketones and amines with nitromethane as a carbon source.

    PubMed

    Xu, Kun; Zhang, Zhenlei; Qian, Peng; Zha, Zhenggen; Wang, Zhiyong

    2015-07-14

    An efficient and mechanistically different method for the electrosynthesis of enaminone directly from methyl ketones, amines and nitromethane was developed. This transition-metal-free method proceeded at room temperature to give a wide array of enaminones in one step, utilizing nitromethane as the carbon source.

  10. A FACILE ONE-POT SYNTHESIS OF β-KETO SULFONES FROM KETONES UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    An easy solvent-free method is described for the conversion of ketones into β-keto sulfones in high yields that involves in situ generation of α-tosyloxyketones followed by nucleophilic substitution with sodium arene sulfinate in presence of tetra-butylammonium bromide at ...

  11. 5Beta,6beta-epoxy-17-oxoandrostan-3beta-yl acetate and 5beta,6beta-epoxy-20-oxopregnan-3beta-yl acetate.

    PubMed

    Pinto, Rui M A; Salvador, Jorge A R; Paixão, José A

    2008-05-01

    In the title compounds, C(21)H(30)O(4), (I), and C(23)H(34)O(4), (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis-(5beta,10beta)-fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5beta,6beta-epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree-Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.

  12. β-Keto esters from ketones and ethyl chloroformate: a rapid, general, efficient synthesis of pyrazolones and their antimicrobial, in silico and in vitro cytotoxicity studies

    PubMed Central

    2013-01-01

    Background Pyrazolones are traditionally synthesized by the reaction of β-keto esters with hydrazine and its derivatives. There are methods to synthesize β-keto esters from esters and aldehydes, but these methods have main limitation in varying the substituents. Often, there are a number of methods such as acylation of enolates in which a chelating effect has been employed to lock the enolate anion using lithium and magnesium salts; however, these methods suffer from inconsistent yields in the case of aliphatic acylation. There are methods to synthesize β-keto esters from ketones like caboxylation of ketone enolates using carbon dioxide and carbon monoxide sources in the presence of palladium or transition metal catalysts. Currently, the most general and simple method to synthesize β-keto ester is the reaction of dimethyl or ethyl carbonate with ketone in the presence of strong bases which also requires long reaction time, use of excessive amount of reagent and inconsistent yield. These factors lead us to develop a simple method to synthesize β-keto esters by changing the base and reagent. Results A series of β-keto esters were synthesized from ketones and ethyl chloroformate in the presence of base which in turn are converted to pyrazolones and then subjected to cytotoxicity studies towards various cancer cell lines and antimicrobial activity studies towards various bacterial and fungal strains. Conclusion The β-keto esters from ethyl chloroformate was successfully attempted, and the developed method is simple, fast and applicable to the ketones having the alkyl halogens, protecting groups like Boc and Cbz that were tolerated and proved to be useful in the synthesis of fused bicyclic and tricyclic pyrazolones efficiently using cyclic ketones. Since this method is successful for different ketones, it can be useful for the synthesis of pharmaceutically important pyrazolones also. The synthesized pyrazolones were subjected to antimicrobial, docking and

  13. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction.

    PubMed

    Zeng, Mingfei; Cao, Huachuan

    2018-04-15

    Short chain fatty acids (SCFA) and ketone bodies recently emerged as important physiological relevant metabolites because of their association with microbiota, immunology, obesity and other metabolic states. They were commonly analyzed by GC-MS with long run time and laborious sample preparation. In this study we developed a novel LC-MS/MS method using fast derivatization coupled with liquid-liquid extraction to detect SCFA and ketone bodies in plasma and feces. Several different derivatization reagents were evaluated to compare the efficiency, the sensitivity and chromatographic separation of structural isomers. O‑benzylhydroxylamine was selected for its superior overall performance in reaction time and isomeric separation that allowed the measurement of each SCFAs and ketone bodies free from interferences. The derivatization procedure is facile and reproducible in aqueous-organic medium, which abolished the evaporation procedure hampering the analysis of volatile short chain acids. Enhancement in sensitivity remarkably improved the detection limit of SCFA and ketone bodies to sub-fmol level. This novel method was applied to quantify these metabolites in fecal and plasma samples from lean and DIO mouse. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones

    PubMed Central

    Shibahara, Fumitoshi; Bower, John F.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, isoprene couples to benzylic and aliphatic alcohols 1a–1g to deliver β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. Under identical conditions, aldehydes 2a–2g couple to isoprene to provide an identical set of β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. As demonstrated by the coupling of butadiene, myrcene and 1,2-dimethylbutadiene to representative alcohols 1b, 1c and 1e, diverse acyclic dienes participate in transfer hydrogenative coupling to form β,γ-unsaturated ketones. In all cases, complete branch-regioselectivity is observed and, with the exception of adduct 3j, isomerization to the conjugated enone is not detected. Thus, formal intermolecular diene hydroacylation is achieved from the alcohol or aldehyde oxidation level. In earlier studies employing a related ruthenium catalyst, acyclic dienes were coupled to carbonyl partners from the alcohol or aldehyde oxidation level to furnish branched homoallylic alcohols. Thus, under transfer hydrogenative coupling conditions, all oxidations levels of substrate (alcohol or aldehyde) and product (homoallyl alcohol or β,γ-unsaturated ketone) are accessible. PMID:18841895

  15. Ion-scale spectral break of solar wind turbulence at high and low beta

    DOE PAGES

    Chen, C. H. K.; Leung, L.; Boldyrev, S.; ...

    2014-11-25

    Here, the power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since d i=ρ i/ √ β ⊥i and the perpendicular ion plasma beta is typically β ⊥i~1. To address this, several exceptional intervals with β ⊥i<<1 and β ⊥i>>1 were investigated, during whichmore » these scales were well separated. It was found that for β⊥i<<1 the break occurs at di and for β ⊥i>>1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.« less

  16. Late quaternary Mediterranean sapropels. III. Assessment of source of input and palaeotemperature as derived from biological markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ten Haven, H.L.; Baas, M.; Kroot, M.

    1987-04-01

    Sources of input contributing to the organic matter of four different Mediterranean sapropels (S/sub 1/, S/sub 5/, S/sub 6/, S/sub 7/) are inferred from the relative distributions of terrigenous and marine biological markers in these Quaternary deposits. The relative terrigenous contribution does not vary significantly. Within the marine contribution there is a significant compositional variation. A contribution from dinoflagellates is relatively important in the S/sub 1/ sapropel, whereas sapropels S/sub 6/ and S/sub 7/ are characterized by a relatively large contribution from prymnesiophyte algae and planktonic cyanobacteria. The abundance of diatoms in sapropel S/sub 5/, as deduced from microscopic observations,more » is probably reflected by a high concentration of loliolide. Variations in sea-surface water temperatures can be deduced from the relative abundance of di- and triunsaturated C/sub 37/ ketones and from the relative abundance of esterified 27-nor-24-methylcholesta-5,22E-dien-3..beta..-ol and cholesta-5,22E-dien-3..beta..-ol. These two molecular temperature indices are consistent with the delta /sup 18/O record and with the pollen record of the sapropels investigated.« less

  17. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters.

    PubMed

    Böhme, Alexander; Thaens, Diana; Schramm, Franziska; Paschke, Albrecht; Schüürmann, Gerrit

    2010-12-20

    A recently introduced chemoassay has been used to determine second-order rate constants of the electrophile-nucleophile reaction of 15 α,β-unsaturated aldehydes with glutathione. The respective kGSH values vary for more than 3 orders of magnitude, and are within the range determined previously for 31 α,β-unsaturated ketones and esters. Structure-reactivity analyses yield distinct relationships between kGSH and structural features of the compounds. Moreover, increasing kGSH increases the aldehyde toxicity toward ciliates in terms of 48 h-EC50 values (effective concentration yielding 50% growth inhibition of Tetrahymena pyriformis within 48 h). A respective log-log regression equation including both kGSH and the octanol/water partition coefficient, Kow, yields a squared correlation coefficient of 0.96. Comparative analysis with corresponding data for 15 ketones and 16 esters reveals systematic differences between the three compound classes with regard to the individual contributions of hydrophobicity and electrophilic reactivity to aquatic toxicity. The former is particularly pronounced for aldehydes, while the ester toxicity is largely governed by reactivity, with ketones showing an intermediate pattern that is more similar to the one of esters than of aldehydes. It follows that within the Michael acceptor domain of α,β-unsaturated carbonyls, a distinction between aldehydes and nonaldehydic derivatives appears necessary when employing electrophilic reactivity as a component for the quantitative prediction of their reactive toxicity toward aquatic organisms.

  18. Effect of carbonates/phosphates as nucleophilic catalysts in dimethylformamide for efficient cyanosilylation of aldehydes and ketones

    PubMed Central

    Prakash, G. K. Surya; Vaghoo, Habiba; Panja, Chiradeep; Surampudi, Vijayalakshmi; Kultyshev, Roman; Mathew, Thomas; Olah, George A.

    2007-01-01

    Cyanosilylation of aldehydes and aliphatic ketones can be carried out in dimethylformamide even without the use of any catalyst. In the presence of nucleophilic catalysts such as carbonate and phosphate salts, the reaction rate is significantly enhanced. PMID:17360603

  19. Studies of Azetidin-2-one as a Reactive Enolate Synthon of β-Alanine for Condensations with Aldehydes and Ketones.

    PubMed

    Williams, David R; Donnell, Andrew F; Kammler, David C; Ward, Sarah A; Taylor, Levin

    2016-11-04

    Studies describe formation of the lithium enolate of N-(4-methoxybenzyloxy)azetidin-2-one (1) and characterization of representative aldol reactions with aldehydes and ketones. Diastereoselectivity features the production of anti-aldol adducts from α,β-unsaturated ketones and α-branched aliphatic aldehydes. The stereoselectivity is rationalized via closed, six-membered transition-state arrangements leading to the formation of Felkin-Anh and anti-Felkin products. Examples illustrate the direct incorporation of monocyclic β-lactams into a variety of molecular architectures. The utility of 1 as an enolate synthon of homoglycine (β-alanine) is illustrated by the efficient synthesis of novel β-amino acid derivatives, including complex 4-hydroxy-2-pyridinones.

  20. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less

  1. Pinoresinol-4,4'-di-O-beta-D-glucoside from Valeriana officinalis root stimulates calcium mobilization and chemotactic migration of mouse embryo fibroblasts.

    PubMed

    Do, Kee Hun; Choi, Young Whan; Kim, Eun Kyoung; Yun, Sung Ji; Kim, Min Sung; Lee, Sun Young; Ha, Jung Min; Kim, Jae Ho; Kim, Chi Dae; Son, Beung Gu; Kang, Jum Soon; Khan, Ikhlas A; Bae, Sun Sik

    2009-06-01

    Lignans are major constituents of plant extracts and have important pharmacological effects on mammalian cells. Here we showed that pinoresinol-4,4'-di-O-beta-D-glucoside (PDG) from Valeriana officinalis induced calcium mobilization and cell migration through the activation of lysophosphatidic acid (LPA) receptor subtypes. Stimulation of mouse embryo fibroblast (MEF) cells with 10 microM PDG resulted in strong stimulation of MEF cell migration and the EC(50) was about 2 microM. Pretreatment with pertussis toxin (PTX), an inhibitor of G(i) protein, completely blocked PDG-induced cell migration demonstrating that PDG evokes MEF cell migration through the activation of the G(i)-coupled receptor. Furthermore, pretreatment of MEF cells with Ki16425 (10 microM), which is a selective antagonist for LPA(1) and LPA(3) receptors, completely blocked PDG-induced cell migration. Likewise, PDG strongly induced calcium mobilization, which was also blocked by Ki16425 in a dose-dependent manner. Prior occupation of the LPA receptor with LPA itself completely blocked PDG-induced calcium mobilization. Finally, PDG-induced MEF cell migration was attenuated by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor such as LY294002. Cells lacking downstream mediator of PI3K such as Akt1 and Akt2 (DKO cells) showed loss of PDG-induced migration. Re-expression of Akt1 (but not Akt2) completely restored PDG-induced DKO cell migration. Given these results, we conclude that PDG is a strong inducer of cell migration. We suggest that the pharmacological action of PDG may occur through the activation of an LPA receptor whereby activation of PI3K/Akt signaling pathway mediates PDG-induced MEF cell migration.

  2. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    PubMed

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  3. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-01-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions. PMID:27671606

  4. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-09-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions.

  5. Optical activities of steroid ketones - Elucidation of the octant rule

    NASA Astrophysics Data System (ADS)

    Hatanaka, Masashi; Sayama, Daisuke; Miyasaka, Makoto

    2018-07-01

    Theoretical calculations of optical activities in steroid ketones are presented by using modern semi-empirical PM7 wavefunctions. Both circular dichroism (CD) and specific rotation, which is proportional to optical rotation dispersion (ORD), are well simulated, and signs of the Cotton effect at the most long-wavelength region are fully in accordance with the experimental results. The good accordance is related to the octant rule, which is deduced within the framework of the perturbation theory. Our treatment is promising to predict the signs of the Cotton effect of large molecules, and thus, the absolute configurations can also be grasped without demanding procedures.

  6. beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.

    PubMed

    Nicolas, P; Hammonds, R G; Li, C H

    1984-05-01

    Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone.

  7. beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.

    PubMed Central

    Nicolas, P; Hammonds, R G; Li, C H

    1984-01-01

    Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone. PMID:6328494

  8. A Simple One-pot Conversion of Aldehydes and Ketones to Enals

    PubMed Central

    Valenta, Petr; Drucker, Natalie A.; Bode, Jeffrey W.; Walsh, Patrick J.

    2009-01-01

    A simple and efficient method to convert aldehydes into α,β-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH3•SMe2 generates tris(ethoxyvinyl) borane. Transmetallation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure. PMID:19419211

  9. Acyclic Ketones in the Defensive Secretion of a “Daddy Longlegs” (Leiobunum vittatum)

    PubMed Central

    Meinwald, J.; Kluge, A. F.; Carrel, J. E.; Eisner, T.

    1971-01-01

    The defensive secretion of the “daddy longlegs” Leiobunum vittatum was analyzed and found to contain the acyclic ketones 4-methylheptan-3-one and E-4,6-dimethyl-6-octen-3-one as its major organic components. Although 4-methylheptan-3-one has been found previously as an alarm substance in certain ant genera, the second component, whose structure is confirmed by synthesis, is new. PMID:5283937

  10. The allylation reactions of aromatic aldehydes and ketones with tin dichloride in water.

    PubMed

    Bian, Yan-Jiang; Xue, Wei-Li; Yu, Xu-Guang

    2010-01-01

    The allylation reactions of aromatic aldehydes and ketones were carried out in 31-86% yield using SnCl(2)-H(2)O system under ultrasound irradiation at r.t. for 5h. The reactions in the same system gave homoallyl alcohols in 21-84% yield with stirring at r.t. for 24h. Compared with traditional stirring methods, ultrasonic irradiation is more convenient and efficient.

  11. Synthesis of 2-Ethenylcyclopropyl Aryl Ketones via Intramolecular SN2-like Displacement of an Ester.

    PubMed

    Jung, Michael E; Sun, Daniel L; Dwight, Timothy A; Yu, Peiyuan; Li, Wei; Houk, K N

    2016-10-07

    The efficient synthesis of trans-2-ethenylcyclopropyl aryl ketones via an intramolecular S N 2-like displacement of an allylic ester is reported. A novel 1,5-acyl shift process is also observed that contributes to the product mixture. Theoretical calculations provide a rationale for the observed product ratio.

  12. Highly Enantioselective Three-Component Direct Mannich Reactions of Unfunctionalized Ketones Catalyzed by Bifunctional Organocatalysts

    PubMed Central

    Guo, Qunsheng; Zhao, John Cong-Gui

    2013-01-01

    A highly stereoselective three-component direct Mannich reaction between aromatic aldehydes, p-toluenesulfonamide, and unfunctionalized ketones was achieved through an enolate mechanism for the first time with a bifunctional quinidine thiourea catalyst. The corresponding N-tosylated β-aminoketones were obtained in high yields and excellent diastereo- and enantioselectivities (up to >99:1 dr and >99% ee). PMID:23343472

  13. Mitoketoscins: Novel mitochondrial inhibitors for targeting ketone metabolism in cancer stem cells (CSCs)

    PubMed Central

    Ozsvari, Bela; Sotgia, Federica; Simmons, Katie; Trowbridge, Rachel; Foster, Richard; Lisanti, Michael P.

    2017-01-01

    Previous studies have now well-established that epithelial cancer cells can utilize ketone bodies (3-hydroxybutyrate and aceto-acetate) as mitochondrial fuels, to actively promote tumor growth and metastatic dissemination. The two critical metabolic enzymes implicated in this process are OXCT1 and ACAT1, which are both mitochondrial proteins. Importantly, over-expression of OXCT1 or ACAT1 in human breast cancer cells is sufficient to genetically drive tumorigenesis and/or lung metastasis, validating that they indeed behave as metabolic “tumor promoters”. Here, we decided to target these two enzymes, which give cancer cells the ability to recycle ketone bodies into Acetyl-CoA and, therefore, to produce increased ATP. Briefly, we used computational chemistry (in silico drug design) to select a sub-set of potentially promising compounds that spatially fit within the active site of these enzymes, based on their known 3D crystal structures. These libraries of compounds were then phenotypically screened for their effects on total cellular ATP levels. Positive hits were further validated by metabolic flux analysis. Our results indicated that four of these compounds effectively inhibited mitochondrial oxygen consumption. Two of these compounds also induced a reactive glycolytic phenotype in cancer cells. Most importantly, using the mammosphere assay, we showed that these compounds can be used to functionally inhibit cancer stem cell (CSC) activity and propagation. Finally, our molecular modeling studies directly show how these novel compounds are predicted to bind to the active catalytic sites of OXCT1 and ACAT1, within their Coenzyme A binding site. As such, we speculate that these mitochondrial inhibitors are partially mimicking the structure of Coenzyme A. Thus, we conclude that OXCT1 and ACAT1 are important new therapeutic targets for further drug development and optimization. We propose that this new class of drugs should be termed “mitoketoscins”, to reflect

  14. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics.

    PubMed

    Liu, Qihai; Cen, Lian; Yin, Shuo; Chen, Lei; Liu, Guangpeng; Chang, Jiang; Cui, Lei

    2008-12-01

    This study investigated the in vitro effects of akermanite, a new kind of Ca-, Mg-, Si-containing bioceramic, on the attachment, proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). Parallel comparison of the cellular behaviors of hASCs on the akermanite was made with those on beta-tricalcium phosphate (beta-TCP). Scanning electron microscope (SEM) observation and fluorescent DiO labeling were carried out to reveal the attachment and growth of hASCs on the two ceramic surfaces, while the quantitative assay of cell proliferation with time was detected by DNA assay. Osteogenic differentiation of hASCs cultured on the akermanite and beta-TCP was assayed by ALP expression and osteocalcin (OCN) deposition, which was further confirmed by Real-time PCR analysis for markers of osteogenic differentiation. It was shown that hASCs attached and spread well on the akermanite as those on beta-TCP, and similar proliferation behaviors of hASCs were observed on the two ceramics. Both of them exhibited good compatibility to hASCs with only minor cytotoxicity as compared with the tissue culture plates. Interestingly, the osteogenic differentiation of hASCs could be enhanced on the akermanite compared with that on the beta-TCP when the culture time was extended to approximately 10 days. Thus, it can be ascertained that akermanite ceramics may serve as a potential scaffold for bone tissue engineering.

  15. Biaxial deformation behaviour of poly-ether-ether-ketone

    NASA Astrophysics Data System (ADS)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  16. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less

  17. Nicholas DiOrio | NREL

    Science.gov Websites

    Engineering Intern, NREL, Golden, CO, 2013 Featured Publications N. DiOrio, A. Dobos, S. Janzou, A. Nelson and Renewable Energy Laboratory, Golden, CO. N. DiOrio, A. Dobos and S. Janzou. 2015. "Economic Analysis . C. Christensen, J. Maguire, J. Burch, N. DiOrio. "Simplified Solar Water Heater Simulation

  18. Electron Impact Ion Fragmentation Pathways of Peracetylated C-glycoside Ketones Derived from Cyclic 1,3-diketones

    USDA-ARS?s Scientific Manuscript database

    Monosaccharide C-glycoside ketones have been prepared by aqueous-based Knoevenagel condensation of isotopically-labeled and unlabeled aldoses with cyclic diketones, 5,5-dimethyl-1,3-cyclohexanedione (dimedone) and 1,3-cyclohexanedione (1,3-CHD). The reaction products and their corresponding acetyla...

  19. AE activity during transient beta drops in high poloidal beta discharges

    NASA Astrophysics Data System (ADS)

    Huang, J.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Qian, J. P.; Pan, C. K.; Li, G. Q.; Heidbrink, W. W.; Garofalo, A. M.; McClenaghan, J.

    2016-10-01

    Enhanced AE activity has been observed during transient beta drops in high poloidal beta DIII-D discharges with internal transport barriers (ITBs). These drops in beta are believed to be caused by n=1 external kink modes. In some discharges, beta recovers within 200 ms but, in others, beta stays suppressed. A typical discharge has βP 3, qmin 3, and q95 12. The drop in beta affects both fast ions and thermal particles, and a drop is also observed in the density and rotation. The enhanced AE activity follows the instability that causes the beta drop, is largest at the lowest beta, and subsides as beta recovers. MHD stability analysis is planned. A database study of the plasma conditions associated with the collapse will be also presented. Supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC05-06OR23100, and by the National Natural Science Foundation of China 11575249, and the National Magnetic Confinement Fusion Program of China No. 2015GB110005.

  20. Selective synthesis of secondary amines by Pt nanowire catalyzed reductive amination of aldehydes and ketones with ammonia.

    PubMed

    Qi, Fenqiang; Hu, Lei; Lu, Shuanglong; Cao, Xueqin; Gu, Hongwei

    2012-10-07

    The process of the reductive amination of aldehydes or ketones in the presence of ammonia using unsupported ultra-thin Pt nanowires has been developed. This catalytic system shows high activity and selectivity under mild reaction conditions.

  1. Inhibition of GSK-3beta ameliorates hepatic ischemia-reperfusion injury through GSK-3beta/beta-catenin signaling pathway in mice.

    PubMed

    Xia, Yong-Xiang; Lu, Ling; Wu, Zheng-Shan; Pu, Li-Yong; Sun, Bei-Cheng; Wang, Xue-Hao

    2012-06-01

    Glycogen synthase kinase (GSK)-3beta/beta-catenin signaling regulates ischemia-reperfusion (I/R)-induced apoptosis and proliferation, and inhibition of GSK-3beta has beneficial effects on I/R injury in the heart and the central nervous system. However, the role of this signaling in hepatic I/R injury remains unclear. The present study aimed to investigate the effects and mechanism of GSK-3beta/beta-catenin signaling in hepatic I/R injury. Male C57BL/6 mice (weighing 22-25 g) were pretreated with either SB216763, an inhibitor of GSK-3beta, or vehicle. These mice were subjected to partial hepatic I/R. Blood was collected for test of alanine aminotransferase (ALT), and liver specimen for assays of phosphorylation at the Ser9 residue of GSK-3beta, GSK-3beta activity, axin 2 and the anti-apoptotic factors Bcl-2 and survivin, as well as the proliferative factors cyclin D1 and proliferating cell nuclear antigen, and apoptotic index (TUNEL). Real-time PCR, Western blotting and immunohistochemical staining were used. SB216763 increased phospho-GSK-3beta levels and suppressed GSK-3beta activity (1880+/-229 vs 3280+/-272 cpm, P<0.01). ALT peaked at 6 hours after reperfusion. Compared with control, SB216763 decreased ALT after 6 hours of reperfusion (4451+/-424 vs 7868+/-845 IU/L, P<0.01), and alleviated hepatocyte necrosis and vacuolization. GSK-3beta inhibition led to the accumulation of beta-catenin in the cytosol (0.40+/-0.05 vs 1.31+/-0.11, P<0.05) and nucleus (0.62+/-0.14 vs 1.73+/-0.12, P<0.05), beta-catenin further upregulated the expression of axin 2. Upregulation of GSK-3beta/beta-catenin signaling increased Bcl-2, survivin and cyclin D1. Serological and histological analyses showed that SB216763 alleviated hepatic I/R-induced injury by reducing apoptosis (1.4+/-0.2% vs 3.6+/-0.4%, P<0.05) and enhanced liver proliferation (56+/-8% vs 19+/-4%, P<0.05). Inhibition of GSK-3beta ameliorates hepatic I/R injury through the GSK-3beta/beta-catenin signaling pathway.

  2. (CF3CO)2O/CF3SO3H-mediated synthesis of 1,3-diketones from carboxylic acids and aromatic ketones

    PubMed Central

    Kim, JungKeun; Shokova, Elvira; Tafeenko, Victor

    2014-01-01

    Summary A very simple and convenient reaction for 1,3-diketone preparation from carboxylic acids and aromatic ketones in TFAA/TfOH system is described. When the β-phenylpropionic acids were used as starting materials, they initially gave 1-indanones and then underwent further acylation with the formation of 2-(β-phenylpropionyl)-1-indanones as the main reaction products. In addition, the application of the proposed protocol allowed for the synthesis of selected polysubstituted pyrazoles in a one-pot procedure directly from acids and ketones. PMID:25298794

  3. [Trattamento del disturbo da uso di alcol da un punto di vista psicologico].

    PubMed

    Coriale, Giovanna; Fiorentino, Daniela; De Rosa, Francesca; Solombrino, Simona; Scalese, Bruna; Ciccarelli, Rosaria; Attilia, Fabio; Vitali, Mario; Musetti, Alessia; Fiore, Marco; Ceccanti, Mauro

    2018-01-01

    RIASSUNTO. L'elaborazione del piano di trattamento rappresenta un momento molto delicato e complesso del processo terapeutico del disturbo da abuso di alcol (DUA). È la fase in cui le informazioni raccolte da un'équipe di professionisti (medici, psicologi e assistenti sociali) (modello bio-psico-sociale del DUA) vengono messe insieme per decidere il percorso terapeutico più adatto. Per quanto riguarda la parte psicologica, è di notevole importanza scegliere un trattamento clinico in grado di ridurre al minimo la mancata adesione al trattamento e, per i soggetti che rimangono in trattamento, di garantirne l'efficacia. Se da una parte, le tecniche psicoanalitiche e comportamentali hanno fornito le basi della terapia psicologica dell'alcolismo, dall'altra, gli approcci basati sull'evidenza scientifica sono stati elaborati a partire dai principi del colloquio motivazionale e della terapia cognitivo-comportamentale. In questo articolo viene fornita una panoramica dei trattamenti che sono risultati più efficaci nel trattare il DUA e delle modalità temporali più adeguate per monitorare l'efficacia del trattamento.

  4. Investigation of attractive and repulsive interactions associated with ketones in supercritical CO2, based on Raman spectroscopy and theoretical calculations.

    PubMed

    Kajiya, Daisuke; Saitow, Ken-ichi

    2013-08-07

    Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone < acetophenone < benzophenone. The Mulliken charges of the three solutes and CO2 molecules obtained by using quantum chemistry calculations described the order of the magnitude of the attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones

  5. Trasforiiazioni Termoelastiche Finite di Solidi Incomprimibili

    NASA Astrophysics Data System (ADS)

    Signorini, A.

    Queste lezlioni hanno come direttiva una sintesi di quanto si trova sistematicamente sviluppato in una mia Memoria sulle trasformazioni termoelastiche finite di solidi incomprimibili, in corso di stampa negli Annali di Matematica pura e applicata t. XXXIX ( 1955) pp. 147-201 , Verranno anche esposti, come necessaria premessa, alcuni d ei risultati di due precedenti Memorie degli stessi Annali. Invece, per motivo di brevità, non potrò dare neppure un cenno delle ulteriori ricerche svilup pate dal prof. T. Manacorda in tre recentissimi suoi lavori:

  6. Accelerated simulations of aromatic polymers: application to polyether ether ketone (PEEK)

    NASA Astrophysics Data System (ADS)

    Broadbent, Richard J.; Spencer, James S.; Mostofi, Arash A.; Sutton, Adrian P.

    2014-10-01

    For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example, the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase fivefold to 5 fs.

  7. C-C bond formation and related reactions at the CNC backbone in (smif)FeX (smif = 1,3-di-(2-pyridyl)-2-azaallyl): dimerizations, 3 + 2 cyclization, and nucleophilic attack; transfer hydrogenations and alkyne trimerization (X = N(TMS)2, dpma = (di-(2-pyridyl-methyl)-amide)).

    PubMed

    Frazier, Brenda A; Williams, Valerie A; Wolczanski, Peter T; Bart, Suzanne C; Meyer, Karsten; Cundari, Thomas R; Lobkovsky, Emil B

    2013-03-18

    Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(μ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(μ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhN═NPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.

  8. Synthesis of ketones from biomass-derived feedstock.

    PubMed

    Meng, Qinglei; Hou, Minqiang; Liu, Huizhen; Song, Jinliang; Han, Buxing

    2017-01-31

    Cyclohexanone and its derivatives are very important chemicals, which are currently produced mainly by oxidation of cyclohexane or alkylcyclohexane, hydrogenation of phenols, and alkylation of cyclohexanone. Here we report that bromide salt-modified Pd/C in H 2 O/CH 2 Cl 2 can efficiently catalyse the transformation of aromatic ethers, which can be derived from biomass, to cyclohexanone and its derivatives via hydrogenation and hydrolysis processes. The yield of cyclohexanone from anisole can reach 96%, and the yields of cyclohexanone derivatives produced from the aromatic ethers, which can be extracted from plants or derived from lignin, are also satisfactory. Detailed study shows that the Pd, bromide salt and H 2 O/CH 2 Cl 2 work cooperatively to promote the desired reaction and inhibit the side reaction. Thus high yields of desired products can be obtained. This work opens the way for production of ketones from aromatic ethers that can be derived from biomass.

  9. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais.

    PubMed

    Pizzolitto, Romina P; Herrera, Jimena M; Zaio, Yesica P; Dambolena, Jose S; Zunino, Maria P; Gallucci, Mauro N; Zygadlo, Julio A

    2015-11-12

    Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure-activity relationship (Q-SAR) studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87) affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05). The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (-77.8 ± 8.5, p < 0.001) against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize.

  10. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

    PubMed Central

    Pizzolitto, Romina P.; Herrera, Jimena M.; Zaio, Yesica P.; Dambolena, Jose S.; Zunino, Maria P.; Gallucci, Mauro N.; Zygadlo, Julio A.

    2015-01-01

    Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure–activity relationship (Q-SAR) studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87) affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05). The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (−77.8 ± 8.5, p < 0.001) against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize. PMID:27682121

  11. Efficient Three-Component Strecker Reaction of Aldehydes/Ketones via NHC-Amidate Palladium(II) Complex Catalysis

    PubMed Central

    Jarusiewicz, Jamie; Choe, Yvonne; Yoo, Kyung Soo; Park, Chan Pil

    2009-01-01

    A simple and efficient one-pot three-component method has been developed for the synthesis of α-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethyl siliyl cyanide in the presence of a palladium Lewis aid catalyst in dichloromethane solvent at room temperature. PMID:19265413

  12. Asymmetric hydrogenation of aromatic ketones by new recyclable ionic tagged ferrocene-ruthenium catalyst system.

    PubMed

    Xu, Di; Zhou, Zhi-Ming; Dai, Li; Tang, Li-Wei; Zhang, Jun

    2015-05-01

    Newly developed ferrocene-oxazoline-phosphine ligands containing quaternary ammonium ionic groups exhibited excellent catalytic performance for the ruthenium-catalyzed hydrogenation of aromatic ketonic substrates to give chiral secondary alcohols with high levels of conversions and enantioselectivities. Simple manipulation process, water tolerance, high activity and good recyclable property make this catalysis practical and appealing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense.

    PubMed

    O'Neal, Lindsey; Ryu, Min-Hyung; Gomelsky, Mark; Alexandre, Gladys

    2017-09-15

    Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger cyclic di-GMP (c-di-GMP) as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense , c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared-light-regulated diguanylate cyclase and a blue-light-regulated c-di-GMP phosphodiesterase. It allows the generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the time scale of chemotaxis signaling. We provide experimental evidence that binding of c-di-GMP to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense change with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state. IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and

  14. Optogenetic Manipulation of Cyclic Di-GMP (c-di-GMP) Levels Reveals the Role of c-di-GMP in Regulating Aerotaxis Receptor Activity in Azospirillum brasilense

    PubMed Central

    O'Neal, Lindsey; Ryu, Min-Hyung; Gomelsky, Mark

    2017-01-01

    ABSTRACT Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger cyclic di-GMP (c-di-GMP) as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared-light-regulated diguanylate cyclase and a blue-light-regulated c-di-GMP phosphodiesterase. It allows the generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the time scale of chemotaxis signaling. We provide experimental evidence that binding of c-di-GMP to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense change with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state. IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and

  15. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes.

    PubMed

    Zhou, Shuangliu; Wu, Zhangshuan; Rong, Jiewei; Wang, Shaowu; Yang, Gaosheng; Zhu, Xiancui; Zhang, Lijun

    2012-02-27

    A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Design, synthesis, and bioactivities screening of a diaryl ketone-inspired pesticide molecular library as derived from natural products.

    PubMed

    Zhang, Hong; Jin, Hong; Ji, Lan-zhu; Tao, Ke; Liu, Wei; Zhao, Hao-yu; Hou, Tai-ping

    2011-07-01

    Three natural products, 1,5-diphenylpentan-1-one, 1,5-diphenylpent-2-en-1-one, and 3-hydroxy-1,5-diphenylpentan-1-one, with good insecticidal activities were extracted from Stellera chamaejasme L. Based on their shared diaryl ketone moiety as 'pharmacophores', a series of diaryl ketones were synthesized and tested for insecticidal activity, acetylcholinesterase inhibitory activity, and antifungal activity. All synthesized compounds showed poor insecticidal and acetylcholinesterase inhibitory activities. Compound III with a furyl ring showed strong activities against plant pathogenic fungi. The IC(50) of compound (E)-1-(2,4-dichlorophenyl)-3-(furan-2-yl)- -prop-2-en-1-one (III(2) ) was 1.20 mg/L against Rhizoctonia solani, suggesting its strong potential as a novel antifungal drug. © 2011 John Wiley & Sons A/S.

  17. Rise and Fall: Poly(phenyl vinyl ketone) Photopolymerization and Photodegradation under Visible and UV Radiation.

    PubMed

    Reeves, Jennifer A; Allegrezza, Michael L; Konkolewicz, Dominik

    2017-07-01

    Vinyl ketone polymers, including phenyl vinyl ketone (PVK), are an important class of polymers due to their ability to degrade upon irradiation with ultraviolet light which makes them useful for a variety of applications. However, traditional radical methods for synthesizing PVK polymers give rise to poor control or are unable to produce block copolymers. This work uses reversible addition-fragmentation chain transfer polymerization (RAFT) and photochemistry to polymerize PVK. When visible blue radiation of 440 ± 10 nm is used as the light source for the photopolymerization, rapid polymerization and well-defined polymers are created. This RAFT method uses PVK as both monomer and radical initiator, exciting the PVK mono-mer by 440 ± 10 nm irradiation to avoid the use of an additional radical initiator. Once the poly-mer is synthesized, it is stable against degradation by blue light (440 ± 10 nm), but upon exposure to ultraviolet (UV) radiation (310 ± 20 nm) significant decrease in molecular weight is observed. The degradation is observed for all poly(PVK) materials synthesized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. IKKβ inhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents.

    PubMed

    Ivovic, Aleksandar; Oprescu, Andrei I; Koulajian, Khajag; Mori, Yusaku; Eversley, Judith A; Zhang, Liling; Nino-Fong, Rodolfo; Lewis, Gary F; Donath, Marc Y; Karin, Michael; Wheeler, Michael B; Ehses, Jan; Volchuk, Allen; Chan, Catherine B; Giacca, Adria

    2017-10-01

    We have previously shown that oxidative stress plays a causal role in beta cell dysfunction induced by fat. Here, we address whether the proinflammatory kinase inhibitor of (nuclear factor) κB kinase β (IKKβ), which is activated by oxidative stress, is also implicated. Fat (oleate or olive oil) was infused intravenously in Wistar rats for 48 h with or without the IKKβ inhibitor salicylate. Thereafter, beta cell function was evaluated in vivo using hyperglycaemic clamps or ex vivo in islets isolated from fat-treated rats. We also exposed rat islets to oleate in culture, with or without salicylate and 4(2'-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline; BMS-345541 (BMS, another inhibitor of IKKβ) and evaluated beta cell function in vitro. Furthermore, oleate was infused in mice treated with BMS and in beta cell-specific Ikkb-null mice. 48 h infusion of fat impaired beta-cell function in vivo, assessed using the disposition index (DI), in rats (saline: 1.41 ± 0.13; oleate: 0.95 ± 0.11; olive oil [OLO]: 0.87 ± 0.15; p < 0.01 for both fats vs saline) and in mice (saline: 2.51 ± 0.39; oleate: 1.20 ± 0.19; p < 0.01 vs saline) and ex vivo (i.e., insulin secretion, units are pmol insulin islet -1  h -1 ) in rat islets (saline: 1.51 ± 0.13; oleate: 1.03 ± 0.10; OLO: 0.91 ± 0.13; p < 0.001 for both fats vs saline) and the dysfunction was prevented by co-infusion of salicylate in rats (oleate + salicylate: 1.30 ± 0.09; OLO + salicylate: 1.33 ± 0.23) or BMS in mice (oleate + BMS: 2.25 ± 0.42) in vivo and by salicylate in rat islets ex vivo (oleate + salicylate: 1.74 ± 0.31; OLO + salicylate: 1.54 ± 0.29). In cultured islets, 48 h exposure to oleate impaired beta-cell function ([in pmol insulin islet -1  h -1 ] control: 0.66 ± 0.12; oleate: 0.23 ± 0.03; p < 0.01 vs saline), an effect prevented by both inhibitors (oleate + salicylate: 0.98 ± 0.08; oleate + BMS: 0.50 ± 0.02). Genetic

  19. Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site Definition and Plasma Stability

    DTIC Science & Technology

    2015-11-01

    systemic therapy to prevent breast cancer bone colony progression. Figure 6. Colocalization of Ac-PhscNGGK-Bio with DiI in lung– extravasated SUM149PT cells...breast cancer progression that are ultimately fatal. Hence, prevention of extravasation which leads to colony formation would increase life...1 Award Number: W81XWH-12-1-0097 TITLE: “Targeting Alpha5 Beta1 Integrin to Prevent Metastatic Breast Cancer Cell Invasion: PhScN Target Site

  20. Copper-catalyst-controlled site-selective allenylation of ketones and aldehydes with propargyl boronates.

    PubMed

    Fandrick, Keith R; Ogikubo, Junichi; Fandrick, Daniel R; Patel, Nitinchandra D; Saha, Jaideep; Lee, Heewon; Ma, Shengli; Grinberg, Nelu; Busacca, Carl A; Senanayake, Chris H

    2013-03-15

    A practical and highly site-selective copper-PhBPE-catalyst-controlled allenylation with propargyl boronates has been developed. The methodology has shown to be tolerant of diverse ketones and aldehydes providing the allenyl adducts in high selectivity. The BPE ligand and boronate substituents were shown to direct the site selectivity for which either propargyl or allenyl adducts can be acquired in high selectivity. A model is proposed that explains the origin of the site selectivity.

  1. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    PubMed

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  2. Beta experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A focused laser doppler velocimeter (LDV) system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. A Doppler signal generator was used in mapping the coherent sensitive focal volume of a focused LDV system. System calibration data was analyzed during the flight test activity scheduled for the Beta system. These analyses were performed to determine the acceptability of the Beta measurement system's performance.

  3. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    PubMed

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10 3 , 6.624×10 3 and 2.244×10 3 (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms.

    PubMed

    Kaur, Harpreet; Raghava, G P S

    2002-03-01

    beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from http://imtech.res.in/raghava/betatpred/

  5. Nitro-fatty acid metabolome: saturation, desaturation, beta-oxidation, and protein adduction.

    PubMed

    Rudolph, Volker; Schopfer, Francisco J; Khoo, Nicholas K H; Rudolph, Tanja K; Cole, Marsha P; Woodcock, Steven R; Bonacci, Gustavo; Groeger, Alison L; Golin-Bisello, Franca; Chen, Chen-Shan; Baker, Paul R S; Freeman, Bruce A

    2009-01-16

    Nitrated derivatives of fatty acids (NO2-FA) are pluripotent cell-signaling mediators that display anti-inflammatory properties. Current understanding of NO2-FA signal transduction lacks insight into how or if NO2-FA are modified or metabolized upon formation or administration in vivo. Here the disposition and metabolism of nitro-9-cis-octadecenoic (18:1-NO2) acid was investigated in plasma and liver after intravenous injection in mice. High performance liquid chromatography-tandem mass spectrometry analysis showed that no 18:1-NO2 or metabolites were detected under basal conditions, whereas administered 18:1-NO2 is rapidly adducted to plasma thiol-containing proteins and glutathione. NO2-FA are also metabolized via beta-oxidation, with high performance liquid chromatography-tandem mass spectrometry analysis of liver lipid extracts of treated mice revealing nitro-7-cis-hexadecenoic acid, nitro-5-cis-tetradecenoic acid, and nitro-3-cis-dodecenoic acid and corresponding coenzyme A derivatives of 18:1-NO2 as metabolites. Additionally, a significant proportion of 18:1-NO2 and its metabolites are converted to nitroalkane derivatives by saturation of the double bond, and to a lesser extent are desaturated to diene derivatives. There was no evidence of the formation of nitrohydroxyl or conjugated ketone derivatives in organs of interest, metabolites expected upon 18:1-NO2 hydration or nitric oxide (*NO) release. Plasma samples from treated mice had significant extents of protein-adducted 18:1-NO2 detected by exchange to added beta-mercaptoethanol. This, coupled with the observation of 18:1-NO2 release from glutathione-18:1-NO2 adducts, supports that reversible and exchangeable NO2-FA-thiol adducts occur under biological conditions. After administration of [3H]18:1-NO2, 64% of net radiolabel was recovered 90 min later in plasma (0.2%), liver (18%), kidney (2%), adipose tissue (2%), muscle (31%), urine (6%), and other tissue compartments, and may include metabolites not yet

  6. Gene encoding the human. beta. -hexosaminidase. beta. chain: Extensive homology of intron placement in the. alpha. - and. beta. -chain genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proia, R.L.

    1988-03-01

    Lysosomal {beta}-hexosaminidase is composed of two structurally similar chains, {alpha} and {beta}, that are the products of different genes. Mutations in either gene causing {beta}-hexosaminidase deficiency result in the lysosomal storage disease GM2-gangliosidosis. To enable the investigation of the molecular lesions in this disorder and to study the evolutionary relationship between the {alpha} and {beta} chains, the {beta}-chain gene was isolated, and its organization was characterized. The {beta}-chain coding region is divided into 14 exons distributed over {approx}40 kilobases of DNA. Comparison with the {alpha}-chain gene revealed that 12 of the 13 introns interrupt the coding regions at homologous positions.more » This extensive sharing of intron placement demonstrates that the {alpha} and {beta} chains evolved by way of the duplication of a common ancestor.« less

  7. Plasma beta-endorphin, beta-lipotropin and corticotropin in polycystic ovarian disease.

    PubMed

    Laatikainen, T; Salminen, K; Virtanen, T; Apter, D

    1987-04-01

    In 9 women with polycystic ovarian disease (PCOD) and in 11 control subjects at the follicular phase of the normal cycle, blood samples were collected at 15-min intervals during a 2 h period of bed rest for the assay of beta-endorphin, beta-lipotropin, corticotropin, cortisol and prolactin. During the study period, the plasma levels of these hormones decreased more significantly in the PCOD than in the control group, suggesting that the PCOD patients had a more significant stress response to the puncture of the vein than the control subjects. The second hour of the study period was considered to represent resting levels of hormones. The mean resting levels (+/- S.E.) of the hormones between the PCOD and control groups, respectively, were as follows: beta-E, 2.0 +/- 0.4 vs. 1.1 +/- 0.1 pmol/l, p less than 0.05; beta-LPH, 3.4 +/- 0.6 vs. 2.1 +/- 0.5 pmol/l, N.S.; corticotropin, 2.0 +/- 0.3 vs. 1.1 +/- 0.5 pmol/l, p less than 0.05; cortisol, 176 +/- 24 vs. 128 +/- 16, N.S.; and prolactin; 3.9 +/- 0.6 vs. 5.6 +/- 1.2 ng/ml, N.S. These results confirm the previous findings on increased circulating levels of beta-E in PCOD. A concomitant increase of the plasma level of corticotropin suggests that the basal secretion of both beta-E and corticotropin from the anterior pituitary gland is increased in women with PCOD.

  8. Polypeptides having beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis.

    PubMed

    Kunji, E R; Hagting, A; De Vries, C J; Juillard, V; Haandrikman, A J; Poolman, B; Konings, W N

    1995-01-27

    In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addressed. Mutants have been constructed that lack a functional di-tripeptide transport system (DtpT) and/or oligopeptide transport system (Opp) but do express the P1-type proteinase (specific for hydrolysis of beta- and to a lesser extent kappa-casein). The wild type strain and the DtpT- mutant accumulate all beta-casein-derived amino acids in the presence of beta-casein as protein substrate and glucose as a source of metabolic energy. The amino acids are not accumulated significantly inside the cells by the Opp- and DtpT- Opp- mutants. When cells are incubated with a mixture of amino acids mimicking the composition of beta-casein, the amino acids are taken up to the same extent in all four strains. Analysis of the extracellular peptide fraction, formed by the action of PrtP on beta-casein, indicates that distinct peptides disappear only when the cells express an active Opp system. These and other experiments indicate that (i) oligopeptide transport is essential for the accumulation of all beta-casein-derived amino acids, (ii) the activity of the Opp system is sufficiently high to support high growth rates on beta-casein provided leucine and histidine are present as free amino acids, and (iii) extracellular peptidase activity is not present in L. lactis.

  10. ADVANCED EMISSIONS SPECIATION METHODOLOGIES FOR THE AUTO/OIL AIR QUALITY IMPROVEMENT RESEARCH PROGRAM - II. ALDEHYDES, KETONES, AND ALCOHOLS

    EPA Science Inventory

    Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air quality Improvement Research Program to provide emission data for comparison of...

  11. Effects of the oestrous cycle and exogenous ovarian steroids on metabolism of beta-phenylethylamine in rat lung.

    PubMed Central

    Bakhle, Y. S.; Ben-Harari, R. R.

    1979-01-01

    1 Metabolism of [14C]-beta-phenylethylamine (PEN), a substrate for monoamine oxidase-B (MAO-B), was measured in lung homogenates and in perfused lungs during the 4 day oestrous cycle of the rat. 2 Metabolism in vitro was high during met-oestrus and di-oestrus and low during pro-oestrus and oestrus; this variation in activity correlated with changes in Vmax of the enzyme without changes in Km. 3 PEN metabolism in lung homogenates was also altered by treatment of rats with 17 beta-oestradiol but not by progesterone treatment. 4 Metabolism of [14C]-PEN in perfused lungs was the same during either pro-oestrus or met-oestrus. Uptake of [14C]-PEN in perfused lung measured directly was also the same at these two stages. 5 These results demonstrate that in lungs MAO-B activity was affected by endogenous changes in steroid level but that such changes in enzymic activity were not reflected in the metabolic properties of whole lung. PMID:574038

  12. Role of the NH2 functionality and solvent in terdentate CNN alkoxide ruthenium complexes for the fast transfer hydrogenation of ketones in 2-propanol.

    PubMed

    Baratta, Walter; Ballico, Maurizio; Esposito, Gennaro; Rigo, Pierluigi

    2008-01-01

    The reaction of [RuCl(CNN)(dppb)] (1; HCNN=6-(4-methylphenyl)-2-pyridylmethylamine) with NaOiPr in 2-propanol/C6D6 affords the alcohol adduct alkoxide [Ru(OiPr)(CNN)(dppb)].n iPrOH (5), containing the Ru-NH2 linkage. The alkoxide [Ru(OiPr)(CNN)(dppb)] (4) is formed by treatment of the hydride [Ru(H)(CNN)(dppb)] (2) with acetone in C6D6. Complex 5 in 2-propanol/C6D6 equilibrates quickly with hydride 2 and acetone with an exchange rate of (5.4+/-0.2) s(-1) at 25 degrees C, higher than that found between 4 and 2 ((2.9+/-0.4) s(-1)). This fast process, involving a beta-hydrogen elimination versus ketone insertion into the Ru-H bond, occurs within a hydrogen-bonding network favored by the Ru-NH2 motif. The cationic alcohol complex [Ru(CNN)(dppb)(iPrOH)](BAr(f)4) (6; Ar(f)=3,5-C6H3(CF3)2), obtained from 1, Na[BAr(f)4], and 2-propanol, reacts with NaOiPr to afford 5. Complex 5 reacts with either 4,4'-difluorobenzophenone through hydride 2 or with 4,4'-difluorobenzhydrol through protonation, affording the alkoxide [Ru(OCH(4-C6H4F)2)(CNN)(dppb)] (7) in 90 and 85 % yield of the isolated product. The chiral CNN-ruthenium compound [RuCl(CNN)((S,S)-Skewphos)] (8), obtained by the reaction of [RuCl2(PPh3)3] with (S,S)-Skewphos and orthometalation of HCNN in the presence of NEt3, is a highly active catalyst for the enantioselective transfer hydrogenation of methylaryl ketones (turnover frequencies (TOFs) of up to 1.4 x 10(6) h(-1) at reflux were obtained) with up to 89% ee. Also the ketone CF3CO(4-C6H4F), containing the strong electron-withdrawing CF3 group, is reduced to the R alcohol with 64% ee and a TOF of 1.5 x 10(4) h(-1). The chiral alkoxide [Ru(OiPr)(CNN)((S,S)-Skewphos)]n iPrOH (9), obtained from 8 and NaOiPr in the presence of 2-propanol, reacts with CF3CO(4-C6H4F) to afford a mixture of the diastereomer alkoxides [Ru(OCH(CF3)(4-C6H4F))(CNN)((S,S)-Skewphos)] (10/11; 74% yield) with 67% de. This value is very close to the enantiomeric excess of the alcohol (R)-CF3CH

  13. [La diagnosi del disturbo da uso di alcol dal punto di vista psicologico].

    PubMed

    Coriale, Giovanna; Fiorentino, Daniela; Porrari, Raffaella; Battagliese, Gemma; Capriglione, Ida; Cereatti, Federica; Iannuzzi, Silvia; Mauri, Benilde; Galli, Domenica; Fiore, Marco; Attilia, Maria Luisa; Ceccanti, Mauro

    2018-01-01

    RIASSUNTO. Il disturbo da uso di alcol (DUA) è uno dei disturbi psichiatrici più comuni nella popolazione generale. Il DUA è caratterizzato da un pattern di bere eccessivo, che si mantiene nonostante gli effetti negativi che l'alcol ha sul funzionamento lavorativo, sulla salute, sulle problematiche legali, sull'educazione e sulla vita sociale. Attualmente, il modello bio-psico-sociale è quello che spiega meglio il DUA. Infatti, molte ricerche hanno fornito evidenze su come il DUA sia una patologia multidimensionale. Variabili biologiche, psicologiche e socio-culturali entrano in gioco nell'eziologia, nella natura, nel mantenimento e nel cambiamento nel tempo del disturbo. La fase diagnostica è un momento importante del processo di cura, perché il successo del trattamento dipende in larga misura dall'esattezza e dall'adeguatezza della diagnosi. La diagnosi clinica si basa su una valutazione globale del funzionamento del paziente e utilizza il colloquio e gli strumenti psicometrici come mezzo di raccolta di informazioni. Questo articolo fornirà una panoramica delle dimensioni psicologiche più importanti da valutare e sui migliori strumenti psicometrici da usare per una diagnosi adeguata.

  14. Lewis acid catalysis and ligand exchange in the asymmetric binaphthol-catalyzed propargylation of ketones.

    PubMed

    Grayson, Matthew N; Goodman, Jonathan M

    2013-09-06

    1,1'-Bi-2-naphthol (BINOL)-derived catalysts catalyze the asymmetric propargylation of ketones. Density functional theory (DFT) calculations show that the reaction proceeds via a closed six-membered transition structure (TS) in which the chiral catalyst undergoes an exchange process with the original cyclic boronate ligand. This leads to a Lewis acid type activation mode, not a Brønsted acid process, which accurately predicts the stereochemical outcome observed experimentally.

  15. Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.

    PubMed

    Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi

    2011-12-16

    Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.

  16. Spectroscopic properties of a perfluorinated ketone for PLIF applications

    NASA Astrophysics Data System (ADS)

    Roy, Arnab; Gustavsson, Jonas P. R.; Segal, Corin

    2011-11-01

    This work identifies the fluorescence characteristics of a perfluorinated ketone, 2-trifluoromethyl-1,1,1,2,4,4,5,5,5-nonafluoro-3-pentanone, further referred to as fluoroketone. This compound is suitable for use with the third harmonic of an Nd:YAG laser for quantitative concentration measurements, as it exhibits strong emission even for relatively low excitation and has a near-linear response of fluorescence intensity with concentration. This makes it suitable for a broad range of fluorescence applications. The absorption cross-section of 3.81 × 10-19 cm2 was found to be constant for a temperature range of 293-441 K and a pressure range of 1-18 atm. A calibration line has been generated that relates the concentration of gaseous and liquid fluoroketone with its absorption coefficient.

  17. Thiazolylidene-catalyzed cleavage of methyl oleate-derived α-hydroxy ketone to the corresponding free aldehydes.

    PubMed

    Deruer, Elsa; Duguet, Nicolas; Lemaire, Marc

    2015-08-10

    The thiazolylidene-catalyzed cleavage of the α-hydroxy ketone derived from methyl oleate gave the corresponding aldehydes under nonoxidative conditions through a retro-benzoin process. The aldehydes produced are in equilibrium with their corresponding acyloins. To illustrate the synthetic utility of this protocol, the aldehydes were recovered by distillation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. SN-EXCHANGED HYDROTALCITES AS CATALYSTS FOR CLEAN AND SELECTIVE BAEYER-VILLIGER OXIDATION OF KETONES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    A Sn-doped hydrotalcite (Sn/HT) catalyst prepared by ion-exchange is found to be an active and selective catalyst for the liquid phase Baeyer-Villiger (BV) oxidation of cyclic ketones in acetonitrile using hydrogen peroxide (H2O2) as oxidant. Different reaction perameters such as...

  19. TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...

  20. Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes

    DOE PAGES

    Griffith, David A.; Kung, Daniel W.; Esler, William P.; ...

    2014-11-25

    Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. We disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate formore » the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. In conclusion, this demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.« less

  1. A ketone/alcohol polymer for cycle of electrolytic hydrogen-fixing with water and releasing under mild conditions

    PubMed Central

    Kato, Ryo; Yoshimasa, Keisuke; Egashira, Tatsuya; Oya, Takahiro; Oyaizu, Kenichi; Nishide, Hiroyuki

    2016-01-01

    Finding a safe and efficient carrier of hydrogen is a major challenge. Recently, hydrogenated organic compounds have been studied as hydrogen storage materials because of their ability to stably and reversibly store hydrogen by forming chemical bonds; however, these compounds often suffer from safety issues and are usually hydrogenated with hydrogen at high pressure and/or temperature. Here we present a ketone (fluorenone) polymer that can be moulded as a plastic sheet and fixes hydrogen via a simple electrolytic hydrogenation at −1.5 V (versus Ag/AgCl) in water at room temperature. The hydrogenated alcohol derivative (the fluorenol polymer) reversibly releases hydrogen by heating (80 °C) in the presence of an aqueous iridium catalyst. Both the use of a ketone polymer and the efficient hydrogen fixing with water as a proton source are completely different from other (de)hydrogenated compounds and hydrogenation processes. The easy handling and mouldable polymers could suggest a pocketable hydrogen carrier. PMID:27687772

  2. Beta Emission and Bremsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-11-13

    Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter; different beta emitters have different endpoint energies; high-energy betas interacting with high-Z materials will more likely produce bremsstrahlung; depending on the data, sometimes all you can say is that a beta emitter is present.

  3. Crystal structures of isomeric 3,5-di-chloro-N-(2,3-di-methyl-phen-yl)benzene-sulfonamide, 3,5-di-chloro-N-(2,6-di-methyl-phen-yl)benzene-sulfonamide and 3,5-di-chloro-N-(3,5-di-methyl-phen-yl)benzene-sulfonamide.

    PubMed

    Shakuntala, K; Naveen, S; Lokanath, N K; Suchetan, P A

    2017-05-01

    The crystal structures of three isomeric compounds of formula C 14 H 13 Cl 2 NO 2 S, namely 3,5-di-chloro- N -(2,3-di-methyl-phen-yl)-benzene-sulfonamide (I), 3,5-di-chloro- N -(2,6-di-methyl-phen-yl)benzene-sulfonamide (II) and 3,5-di-chloro- N -(3,5-di-methyl-phen-yl)benzene-sulfonamide (III) are described. The mol-ecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The mol-ecular conformation of (II) is stabilized by intra-molecular C-H⋯O hydrogen bonds and C-H⋯π inter-actions. The crystal structure of (I) features N-H⋯O hydrogen-bonded R 2 2 (8) loops inter-connected via C (7) chains of C-H⋯O inter-actions, forming a three-dimensional architecture. The structure also features π-π inter-actions [ Cg ⋯ Cg = 3.6970 (14) Å]. In (II), N-H⋯O hydrogen-bonded R 2 2 (8) loops are inter-connected via π-π inter-actions [inter-centroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the a axis. In (III), adjacent C (4) chains of N-H⋯O hydrogen-bonded mol-ecules running parallel to [010] are connected via C-H⋯π inter-actions, forming sheets parallel to the ab plane. Neighbouring sheets are linked via offset π-π inter-actions [inter-centroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.

  4. 40 CFR 721.10325 - Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721... Substances § 721.10325 Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes...

  5. 40 CFR 721.10325 - Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721... Substances § 721.10325 Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes...

  6. 40 CFR 721.10325 - Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721... Substances § 721.10325 Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes...

  7. Tricaprylin Alone Increases Plasma Ketone Response More Than Coconut Oil or Other Medium-Chain Triglycerides: An Acute Crossover Study in Healthy Adults

    PubMed Central

    Vandenberghe, Camille; St-Pierre, Valérie; Pierotti, Tyler; Fortier, Mélanie; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2017-01-01

    Abstract Background: Ketones are the brain's main alternative fuel to glucose. Dietary medium-chain triglyceride (MCT) supplements increase plasma ketones, but their ketogenic efficacy relative to coconut oil (CO) is not clear. Objective: The aim was to compare the acute ketogenic effects of the following test oils in healthy adults: coconut oil [CO; 3% tricaprylin (C8), 5% tricaprin (C10)], classical MCT oil (C8-C10; 55% C8, 35% C10), C8 (>95% C8), C10 (>95% C10), or CO mixed 50:50 with C8-C10 or C8. Methods: In a crossover design, 9 participants with mean ± SD ages 34 ± 12 y received two 20-mL doses of the test oils prepared as an emulsion in 250 mL lactose-free skim milk. During the control (CTL) test, participants received only the milk vehicle. The first test dose was taken with breakfast and the second was taken at noon but without lunch. Blood was sampled every 30 min over 8 h for plasma acetoacetate and β-hydroxybutyrate (β-HB) analysis. Results: C8 was the most ketogenic test oil with a day-long mean ± SEM of +295 ± 155 µmol/L above the CTL. C8 alone induced the highest plasma ketones expressed as the areas under the curve (AUCs) for 0–4 and 4–8 h (780 ± 426 µmol ⋅ h/L and 1876 ± 772 µmol ⋅ h/L, respectively); these values were 813% and 870% higher than CTL values (P < 0.01). CO plasma ketones peaked at +200 µmol/L, or 25% of the C8 ketone peak. The acetoacetate-to-β-HB ratio increased 56% more after CO than after C8 after both doses. Conclusions: In healthy adults, C8 alone had the highest net ketogenic effect over 8 h, but induced only half the increase in the acetoacetate-to-β-HB ratio compared with CO. Optimizing the type of MCT may help in developing ketogenic supplements designed to counteract deteriorating brain glucose uptake associated with aging. This trial was registered at clinicaltrials.gov as NCT 02679222.

  8. Synthesis and cytotoxic analysis of some disodium 3beta,6beta-dihydroxysterol disulfates.

    PubMed

    Cui, Jianguo; Wang, Hui; Huang, Yanmin; Xin, Yi; Zhou, Aimin

    2009-01-01

    Disodium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (1) was synthesized in 4 steps with a high overall yield from cholesterol. First, cholesterol (4a) was converted to cholest-4-en-3,6-dione (5a) via oxidation with pyridinium chlorochromate (PCC) and then 5a was reduced by NaBH(4) in the presence of NiCl(2) to produce cholest-3beta,6beta-diol (6a). The reaction of 6a with the triethylamine-sulfur trioxide complex generated diammonium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (7a) and the treatment of 7a by cation exchange resin 732 (sodium form)(Na(+)) yielded the target steroid 1. Disodium 24-ethyl-3beta,6beta-dihydroxycholest-22-ene disulfate (2) and disodium 24-ethyl-3beta,6beta-dihydroxycholestane disulfate (3) were synthesized using a similar method. The cytotoxicity of these compounds against Sk-Hep-1 (human liver carcinoma cell line), H-292 (human lung carcinoma cell line), PC-3 (human prostate carcinoma cell line) and Hey-1B (human ovarian carcinoma cell line) cells was investigated. Our results indicate that presence of a cholesterol-type side chain at position 17 is necessary for their biological activity.

  9. (+/-)-3-[4-(2-dimethylamino-1-methylethoxy)-phenyl]-1H-pyrazolo[3,4- B]pyridine-1-acetic acid (Y-25510) stimulates production of IL-1 beta and IL-6 at the level of messenger RNA expression in cultured human monocytes.

    PubMed

    Kusuhara, H; Komatsu, H; Hisadome, M; Ikeda, Y

    1996-12-01

    (+/-)-3-[4-(2-Dimethylamino-1-methylethoxy)phenyl]-1H-pyrazolo[3, 4-b]pyridine-1-acetic acid (Y-25510) stimulated the mRNA expression for interleukin-1 beta (IL-1 beta), and enhanced the expression induced by lipopolysaccharide (LPS) in cultured human peripheral blood mononuclear cells (PBMC) and THP-1 cells, a cell-line derived from human monocytic leukemia. Y-25510 also stimulated the mRNA expression for IL-6 in both types of the cells, however, the stimulation required the presence of LPS. In THP-1 cells, the stimulation of IL-1 beta mRNA expression by Y-25510 was suppressed by cycloheximide, an inhibitor of protein synthesis. This phenomenon indicates that the stimulation requires de norv protein synthesis. In contrast, the stimulation of mRNA expression for IL-6 by Y-25510 was not suppressed by cycloheximide but suppressed by N alpha-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), an inhibitor of nuclear transcription factor-kappa B (NF-kappa B) activation, in the presence of LPS, suggesting that the stimulation requires NF-kappa activation. These results demonstrate that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms. Dexamethasone suppressed the LPS-induced expression of mRNA for IL-1 beta and IL-6 in THP-1 cells, whereas the drug never suppressed the mRNA expression for these cytokines in the presence of Y-25510. The result indicates that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms from those of LPS.

  10. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels.

    PubMed

    Ma, Weiyuan; Berg, Jim; Yellen, Gary

    2007-04-04

    A low-carbohydrate ketogenic diet remains one of the most effective (but mysterious) treatments for severe pharmacoresistant epilepsy. We have tested for an acute effect of physiological ketone bodies on neuronal firing rates and excitability, to discover possible therapeutic mechanisms of the ketogenic diet. Physiological concentrations of ketone bodies (beta-hydroxybutyrate or acetoacetate) reduced the spontaneous firing rate of neurons in slices from rat or mouse substantia nigra pars reticulata. This region is thought to act as a "seizure gate," controlling seizure generalization. Consistent with an anticonvulsant role, the ketone body effect is larger for cells that fire more rapidly. The effect of ketone bodies was abolished by eliminating the metabolically sensitive K(ATP) channels pharmacologically or by gene knock-out. We propose that ketone bodies or glycolytic restriction treat epilepsy by augmenting a natural activity-limiting function served by K(ATP) channels in neurons.

  11. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    PubMed

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Conversion of Methyl Ketones into Acetylenes: A Project for a Problem-Oriented or Microscale Organic Chemistry Course.

    ERIC Educational Resources Information Center

    Silveira, Augustine, Jr.; Orlando, Steven C.

    1988-01-01

    Describes a process for producing terminal or internal alkynes from ketones. Recommends using the experiment to aid in understanding acid-base strength, enolate anion chemistry, reaction at carbon versus oxygen, use of polar aprotic solvents, and elimination and nucleophilic substitution reactions. (ML)

  13. Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein.

    PubMed

    Plant, Sheila R; Iocca, Heather A; Wang, Ying; Thrash, J Cameron; O'Connor, Brian P; Arnett, Heather A; Fu, Yang-Xin; Carson, Monica J; Ting, Jenny P-Y

    2007-07-11

    Inflammation mediated by macrophages is increasingly found to play a central role in diseases and disorders that affect a myriad of organs, prominent among these are diseases of the CNS. The neurotoxicant-induced, cuprizone model of demyelination is ideally suited for the analysis of inflammatory events. Demyelination on exposure to cuprizone is accompanied by predictable microglial activation and astrogliosis, and, after cuprizone withdrawal, this activation reproducibly diminishes during remyelination. This study demonstrates enhanced expression of lymphotoxin beta receptor (Lt betaR) during the demyelination phase of this model, and Lt betaR is found in areas enriched with microglial and astroglial cells. Deletion of the Lt betaR gene (Lt betaR-/-) resulted in a significant delay in demyelination but also a slight delay in remyelination. Inhibition of Lt betaR signaling by an Lt betaR-Ig fusion decoy protein successfully delayed demyelination in wild-type mice. Unexpectedly, this Lt betaR-Ig decoy protein dramatically accelerated the rate of remyelination, even after the maximal pathological disease state had been reached. This strongly indicates the beneficial role of Lt betaR-Ig in the delay of demyelination and the acceleration of remyelination. The discrepancy between remyelination rates in these systems could be attributed to developmental abnormalities in the immune systems of Lt betaR-/- mice. These findings bode well for the use of an inhibitory Lt betaR-Ig as a candidate biological therapy in demyelinating disorders, because it is beneficial during both demyelination and remyelination.

  14. Ketimine modifications as a route to novel amorphous and derived semicrystalline poly(arylene ether ketone) homo- and copolymers

    NASA Technical Reports Server (NTRS)

    Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.

    1987-01-01

    A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.

  15. Experimental verification, and domain definition, of structural alerts for protein binding: epoxides, lactones, nitroso, nitros, aldehydes and ketones.

    PubMed

    Nelms, M D; Cronin, M T D; Schultz, T W; Enoch, S J

    2013-01-01

    This study outlines how a combination of in chemico and Tetrahymena pyriformis data can be used to define the applicability domain of selected structural alerts within the profilers of the OECD QSAR Toolbox. Thirty-three chemicals were profiled using the OECD and OASIS profilers, enabling the applicability domain of six structural alerts to be defined, the alerts being: epoxides, lactones, nitrosos, nitros, aldehydes and ketones. Analysis of the experimental data showed the applicability domains for the epoxide, nitroso, aldehyde and ketone structural alerts to be well defined. In contrast, the data showed the applicability domains for the lactone and nitro structural alerts needed modifying. The accurate definition of the applicability domain for structural alerts within in silico profilers is important due to their use in the chemical category in predictive and regulatory toxicology. This study highlights the importance of utilizing multiple profilers in category formation.

  16. [Determination of nitroaromatics and cyclo ketones in sea water' by gas chromatography coupled with activated carbon fiber solid-phase micro-extraction].

    PubMed

    Ma, Hanna; Zhu, Mengya; Wang, Yalin; Sun, Tonghua; Jia, Jinping

    2009-05-01

    A gas chromatography (GC) coupled with solid-phase micro-extraction using a special activated carbon fiber (ACF) was developed for the analysis of 6 nitroaromatics and cyclic ketones, nitrobenzene (NB), 1,3-dinitrobenzene (1,3-DNB), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), isophorone, 1,4-naphthaquinone (1,4-NPQ), in sea water samples. The sample was extracted for 30 min under saturation of NaCl at 1,500 r/min and 60 degrees C in head space. The desorption was performance at 280 degrees C for 2 min. The linear ranges were from 0.01 to 400 microg/L. The limits of detection (LODs) were 1.4 - 3.2 ng/L. This method has been successfully applied to the determination of nitroaromatics and cyclic ketones in the sea water samples obtained from East China Sea. The concentrations of nitrobenzene, 1,3-dinitrobenzene and 2,6-dinitrotoluene in the sea water sample were 0.756, 0.944, 0.890 microg/L, respectively. The recoveries were 86.3% - 101.8% with the relative standard deviations (RSDs) of 3.7% -7.8%. The method is suitable for analyzing nitroaromatics and cyclic ketones at low concentration levels in sea water samples.

  17. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.

  18. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase is dispersed.

  19. Additional conformer observed in the microwave spectrum of methyl vinyl ketone

    NASA Astrophysics Data System (ADS)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-05-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one). Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis resulted in V3 barrier heights of 433.8(1) and 376.6(2) cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species of both conformers were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  20. Near Infrared Spectroscopic Identification of Alkyl Aromatic Esters and Phenyl Ketones

    NASA Astrophysics Data System (ADS)

    Nelyubov, D. V.; Vazhenin, D. A.; Kudriavtsev, A. A.; Buzolina, A. Yu.

    2018-03-01

    Bands characterizing the content of carbon atoms in alkyl (7177-7205 cm-1) and phenyl structural fragments (9175-9192 cm-1) in organic molecules were revealed by studying the near infrared spectra of such compounds. The optical density at the maxima of these absorption bands was shown to depend strongly on the fraction of carbon atoms in the corresponding fragments. The developed models proved to be adequate for determining the fraction of carbon atoms in alkyl aromatic esters and phenyl ketones. The feasibility of modeling the molecular structure of alkyl aromatic esters using regression models was demonstrated for the product of the condensation of oleic acid and benzyl alcohol.