Vaughn, M A; Phelps, K J; Gonzalez, J M
2017-12-06
Two separate experiments were conducted to evaluate the effect of betaGRO® supplementation on in vitro porcine fetal myoblasts (PFM) and porcine satellite cells (PSC) proliferation, fusion and myotube thickness. The PFM and PSC were isolated from the m. longissimus dorsi of day 60 of gestation fetuses and piglets within 24 h of birth, respectively. Proliferation assays were conducted as 4×3 factorial arrangements with time of culture (24, 48, 72, 96 h) and media treatment (standard porcine media supplemented with 10% (vol/vol) fetal bovine serum (HS); HS without 10% fetal bovine serum (LS); and LS supplemented with 10 mg/ml betaGRO® (BG)) as main effects. Fusion and myotube growth assays were conducted as 2×2 factorial designs with serum concentration (HS or LS), and betaGRO® inclusion (0 or 10 mg/ml) as main effects. There was a treatment×time interaction and betaGRO®×serum interactions for proliferation, fusion and myotube thickness of PFM (P<0.01). At all-time points, HS and BG-PFM had greater proliferation rates compared LS (P<0.01). The HS treatment had greater proliferation rates than BG (P<0.02) except at 72 h of culture (P=0.44). When betaGRO® was added to LS media, fusion percentage and myotube thickness decreased (P<0.01), while fusion percentage increased (P<0.01) and myotube thickness was unaffected (P=0.63) when betaGRO® was added to HS media. There were treatment×time and betaGRO®×serum interactions for proliferation rate and fusion rate of PSC, respectively (P<0.01). At all-time points, HS had greater proliferation rates than LS and BG (P<0.01), and LS had greater proliferation rates than BG (P<0.02). When betaGRO® was added to LS and HS media, fusion percentage increased for both media types (P<0.01). There was no betaGRO®×serum interaction (P=0.63) for PSC myotube thickness; however, betaGRO® supplemented myotubes were thicker (P<0.01) than non-betaGRO® supplemented myotubes. These two experiments indicate in vitro betaGRO® supplementation stimulates divergent responses based on the age of cell examined.
A small molecule fusion inhibitor of dengue virus.
Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P; Ma, Ngai Ling; Smit, Jolanda M; Wilschut, Jan; Shi, Pei-Yong; Wenk, Markus R; Schul, Wouter
2009-12-01
The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion. Two fusion assays were developed to examine the anti-fusion activities of compounds. The first assay measures the cellular internalization of propidium iodide upon membrane fusion. The second assay measures the protease activity of trypsin upon fusion between dengue virions and trypsin-containing liposomes. We performed an in silico virtual screening for small molecules that can potentially bind to the betaOG pocket and tested these candidate molecules in the two fusion assays. We identified one compound that inhibits dengue fusion in both assays with an IC(50) of 6.8 microM and reduces viral titers with an EC(50) of 9.8 microM. Time-of-addition experiments showed that the compound was only active when present during viral infection but not when added 1h later, in agreement with a mechanism of action through fusion inhibition.
Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Project
NASA Astrophysics Data System (ADS)
McGuire, Thomas
2017-10-01
The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. Major project activities will be reviewed, including the T4B and T5 plasma heating experiments. The goal of the experiments is to demonstrate a suitable plasma target for heating experiments, to characterize the behavior of plasma sources in the CFR configuration and to then heat the plasma with neutral beams, with the plasma transitioning into the high Beta confinement regime. The design and preliminary results of the experiments will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2017 Lockheed Martin Corporation. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngo, Sam; Guo, Zhefeng, E-mail: zhefeng@ucla.edu
Highlights: Black-Right-Pointing-Pointer A{beta} oligomers are neurotoxins and likely the causing agents for Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}42 fusion protein form globular oligomers. Black-Right-Pointing-Pointer A{beta}42 fusion protein oligomers contain SDS-resistant tetramers and hexamers. Black-Right-Pointing-Pointer Cysteine substitutions at residues 31, 32, 34, 39-41 disrupt A{beta}42 oligomerization. -- Abstract: Deposition of amyloid fibrils consisting of amyloid {beta} (A{beta}) protein as senile plaques in the brain is a pathological hallmark of Alzheimer's disease. However, a growing body of evidence shows that soluble A{beta} oligomers correlate better with dementia than fibrils, suggesting that A{beta} oligomers may be the primary toxic species. The structure and oligomerization mechanismmore » of these A{beta} oligomers are crucial for developing effective therapeutics. Here we investigated the oligomerization of A{beta}42 in the context of a fusion protein containing GroES and ubiquitin fused to the N-terminus of A{beta} sequence. The presence of fusion protein partners, in combination with a denaturing buffer containing 8 M urea at pH 10, is unfavorable for A{beta}42 aggregation, thus allowing only the most stable structures to be observed. Transmission electron microscopy showed that A{beta}42 fusion protein formed globular oligomers, which bound weakly to thioflavin T and Congo red. SDS-PAGE shows that A{beta}42 fusion protein formed SDS-resistant hexamers and tetramers. In contrast, A{beta}40 fusion protein remained as monomers on SDS gel, suggesting that the oligomerization of A{beta}42 fusion protein is not due to the fusion protein partners. Cysteine scanning mutagenesis at 22 residue positions further revealed that single cysteine substitutions of the C-terminal hydrophobic residues (I31, I32, L34, V39, V40, and I41) led to disruption of hexamer and tetramer formation, suggesting that hydrophobic interactions between these residues are most critical for A{beta}42 oligomerization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loyer, M.; Leclerc, D.; Gravel, R.A.
1994-09-01
Propionic acidemia is a rare autosomal recessive disorder resulting from defects of the {alpha} or {beta} subunit of biotin-dependent propionyl-CoA carboxylase (PCC). Mutations are assigned to defects of the PCCA ({alpha} subunit) or PCCB ({beta} subunit) gene through complementation studies after somatic fusion of patient cell lines. About two-thirds of patients with {beta} subunit defects (complementation group pccBC) show interallelic complementation in cell fusion experiments (subgroups pccB and pccC), monitored by the PCC-dependent metabolisms of {sup 14}C-propionate. Most patient cell lines are heteroallelic for two different mutations, leaving ambiguous the identity of the mutation participating in interallelic complementation. To identifymore » the complementing mutations, we have expressed {beta}-subunit cDNAs containing individual mutations by microinjection of the cDNAs in recipient cells from patients with {beta} subunit defects. Correction of the PCC defect was monitored by autoradiography of {sup 14}C-propionate incorporation. In some experiments, cDNAs were co-injected with a plasmid expressing the E. coli lacZ gene as a positive control for successful injection. Two mutations from the pccB subgroup showed complementation when injected into pccC cells; dupKICK140-143 and Pro228Leu. Similarly, two mutations from the pccC subgroup complemented after injection into pccB cells; {Delta}Ile408 and Arg410Trp. No mutation complemented with mutation of the pccBC group which are classified as non-complementing in cell fusion experiments. The results show that the complementing pccB mutations are found in the N-terminal half of the {beta} subunit, while the complementing pccC mutations cluxter at a site in the C-terminal half. The latter site is a candidate for the propionyl-CoA binding site based on sequence identity with a region of transcarboxylase from Propionibacterium shermanii.« less
Cooper, K W; Baneyx, F
2001-03-01
TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site. Copyright 2001 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarus, E; Peng, Yueng Kay Martin
Oak Ridge National Laboratory (ORNL) proposes to build the Spherical Torus Experiment (STX), a very low aspect ratio toroidal confinement device. This proposal concentrates on tokamak operation of the experiment; however, it can in principle be operated as a pinch or reversed-field pinch as well. As a tokamak, the spherical torus confines a plasma that is characterized by high toroidal beta, low poloidal beta, large natural elongation, high plasma current for a given edge q, and strong paramagnetism. These features combine to offer the possibility of a compact, low-field fusion device. The figure below shows that when compared to amore » conventional tokamak the spherical torus represents a major change in geometry. The primary goals of the experiment will be to demonstrate a capability for high beta (20%) in the first stability regime, to extend our knowledge of tokamak confinement scaling, and to test oscillating-field current drive. The experiment will operate in the high-beta, collisionless regime, which is achieved in STX at low temperatures because of the geometry. At a minimum, operation of STX will help to resolve fundamental questions regarding the scaling of beta and confinement in tokamaks. Complete success in this program would have a significant impact on toroidal fusion research in that it would demonstrate solutions to the problems of beta and steady-state operation in the tokamak. The proposed device has a major radius of 0.45 m, a toroidai field of 0.5 T, a plasma current of 900 kA, and heating by neutral beam injection. We estimate 30 months for design, construction, and assembly. The budget estimate, including contingency and escalation, is $6.8 million.« less
de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M
2002-03-04
Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme beta-glucuronidase. The sequences encoding C28 and human enzyme beta-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGkappa signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-beta-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme beta-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. Copyright 2002 Cancer Research UK
Pilehchian Langroudi, Reza; Shamsara, Mehdi; Aghaiypour, Khosrow
2013-07-11
Clostridium perfringens is an anaerobic spore-forming, pathogenic bacterium that is responsible for severe diseases in humans and livestock. In the present study, an epsilon-beta fusion toxin was expressed as a soluble protein in E. coli and the recombinant cell lysate was used for immunization studies in mouse. Potency of the toxin (as an antigen) induced 6 and 10IU/ml of epsilon and beta anti-toxin in rabbit, respectively. These titers were higher than the minimum level required by the European Pharmacopoeia for epsilon and beta toxins. Experimental challenge with the recombinant fusion toxoid revealed that it could protect mice against C. perfringens epsilon and beta toxins. Toxicity of the fusion toxin was studied by histopathological findings, which were the same as the native toxins. In conclusion, E. coli is a suitable expression host for immunogenic epsilon-beta fusion toxin of C. perfringens. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Jincun; Wang Wei; Yuan Zhihong
The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel {beta}-sheets, {beta}5 and {beta}6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire {beta}6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the {beta}6 fragment, while the mouse antisera, induced by immunization of BALB/cmore » mice with recombinant S450-650, mainly recognized the {beta}6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the {beta}6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the {beta}6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.« less
β-MSCs: successful fusion of MSCs with β-cells results in a β-cell like phenotype.
Azizi, Zahra; Lange, Claudia; Paroni, Federico; Ardestani, Amin; Meyer, Anke; Wu, Yonghua; Zander, Axel R; Westenfelder, Christof; Maedler, Kathrin
2016-08-02
Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes.Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment.With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP.After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasek, Marta; Boeggeman, Elizabeth; Ramakrishnan, Boopathy
The expression of recombinant proteins in Escherichia coli often leads to inactive aggregated proteins known as the inclusion bodies. To date, the best available tool has been the use of fusion tags, including the carbohydrate-binding protein; e.g., the maltose-binding protein (MBP) that enhances the solubility of recombinant proteins. However, none of these fusion tags work universally with every partner protein. We hypothesized that galectins, which are also carbohydrate-binding proteins, may help as fusion partners in folding the mammalian proteins in E. coli. Here we show for the first time that a small soluble lectin, human galectin-1, one member of amore » large galectin family, can function as a fusion partner to produce soluble folded recombinant human glycosyltransferase, {beta}-1,4-galactosyltransferase-7 ({beta}4Gal-T7), in E. coli. The enzyme {beta}4Gal-T7 transfers galactose to xylose during the synthesis of the tetrasaccharide linker sequence attached to a Ser residue of proteoglycans. Without a fusion partner, {beta}4Gal-T7 is expressed in E. coli as inclusion bodies. We have designed a new vector construct, pLgals1, from pET-23a that includes the sequence for human galectin-1, followed by the Tev protease cleavage site, a 6x His-coding sequence, and a multi-cloning site where a cloned gene is inserted. After lactose affinity column purification of galectin-1-{beta}4Gal-T7 fusion protein, the unique protease cleavage site allows the protein {beta}4Gal-T7 to be cleaved from galectin-1 that binds and elutes from UDP-agarose column. The eluted protein is enzymatically active, and shows CD spectra comparable to the folded {beta}4Gal-T1. The engineered galectin-1 vector could prove to be a valuable tool for expressing other proteins in E. coli.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Brooks; A.H. Reiman; G.H. Neilson
High-beta, low-aspect-ratio (compact) stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady-state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2-4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A beta = 4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has amore » substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at beta = 4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.« less
Learning Activity Package, Physical Science. LAP Numbers 8, 9, 10, and 11.
ERIC Educational Resources Information Center
Williams, G. J.
These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover nuclear reactions, alpha and beta particles, atomic radiation, medical use of nuclear energy, fission, fusion, simple machines, Newton's laws of motion, electricity, currents, electromagnetism, Oersted's experiment, sound, light,…
Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer
2009-04-24
Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less
Method of oocyte activation affects cloning efficiency in pigs.
Whitworth, Kristin M; Li, Rongfeng; Spate, Lee D; Wax, David M; Rieke, August; Whyte, Jeffrey J; Manandhar, Gaurishankar; Sutovsky, Miriam; Green, Jonathan A; Sutovsky, Peter; Prather, Randall S
2009-05-01
The following experiments compared the efficiency of three fusion/activation protocols following somatic cell nuclear transfer (SCNT) with porcine somatic cells transfected with enhanced green fluorescent protein driven by the chicken beta-actin/rabbit beta-globin hybrid promoter (pCAGG-EGFP). The three protocols included electrical fusion/activation (NT1), electrical fusion/activation followed by treatment with a reversible proteasomal inhibitor MG132 (NT2) and electrical fusion in low Ca(2+) followed by chemical activation with thimerosal/dithiothreitol (NT3). Data were collected at Days 6, 12, 14, 30, and 114 of gestation. Fusion rates, blastocyst-stage mean cell numbers, recovery rates, and pregnancy rates were calculated and compared between protocols. Fusion rates were significantly higher for NT1 and NT2 compared to NT3 (P < 0.05). There was no significant difference in mean nuclear number. Pregnancy rate for NT2 was 100% (n = 19) at all stages collected and was significantly higher than NT1 (71.4%, n = 28; P < 0.05), but was not significantly higher than NT3 (82.6%, n = 23; P < 0.15). Recovery rates were calculated based on the number of embryos, conceptuses, fetuses, or piglets present at the time of collection, divided by the number of embryos transferred to the recipient gilts. Recovery rates between the three groups were not significantly different at any of the stages collected (P > 0.05). All fusion/activation treatments produced live, pCAGG-EGFP positive piglets from SCNT. Treatment with MG132 after fusion/activation of reconstructed porcine embryos was the most effective method when comparing the overall pregnancy rates. The beneficial effect of NT2 protocol may be due to the stimulation of proteasomes that infiltrate donor cell nucleus shortly after nuclear transfer. (c) 2008 Wiley-Liss, Inc.
Chaumont, F; Silva Filho, M de C; Thomas, D; Leterme, S; Boutry, M
1994-02-01
The mitochondrial F1-ATPase beta subunit (ATPase-beta) of Nicotiana plumbaginifolia is nucleus-encoded as a precursor containing an NH2-terminal extension. By sequencing the mature N. tabacum ATPase-beta, we determined the length of the presequence, viz. 54 residues. To define the essential regions of this presequence, we produced a series of 3' deletions in the sequence coding for the 90 NH2-terminal residues of ATPase-beta. The truncated sequences were fused with the chloramphenicol acetyl transferase (cat) and beta-glucuronidase (gus) genes and introduced into tobacco plants. From the observed distribution of CAT and GUS activity in the plant cells, we conclude that the first 23 amino-acid residues of ATPase-beta remain capable of specifically targeting reporter proteins into mitochondria. Immunodetection in transgenic plants and in vitro import experiments with various CAT fusion proteins show that the precursors are processed at the expected cleavage site but also at a cryptic site located in the linker region between the presequence and the first methionine of native CAT.
Wolters, Manuel; Zobiak, Bernd; Nauth, Theresa; Aepfelbacher, Martin
2015-10-13
Many gram-negative bacteria including pathogenic Yersinia spp. employ type III secretion systems to translocate effector proteins into eukaryotic target cells. Inside the host cell the effector proteins manipulate cellular functions to the benefit of the bacteria. To better understand the control of type III secretion during host cell interaction, sensitive and accurate assays to measure translocation are required. We here describe the application of an assay based on the fusion of a Yersinia enterocolitica effector protein fragment (Yersinia outer protein; YopE) with TEM-1 beta-lactamase for quantitative analysis of translocation. The assay relies on cleavage of a cell permeant FRET dye (CCF4/AM) by translocated beta-lactamase fusion. After cleavage of the cephalosporin core of CCF4 by the beta-lactamase, FRET from coumarin to fluorescein is disrupted and excitation of the coumarin moiety leads to blue fluorescence emission. Different applications of this method have been described in the literature highlighting its versatility. The method allows for analysis of translocation in vitro and also in in vivo, e.g., in a mouse model. Detection of the fluorescence signals can be performed using plate readers, FACS analysis or fluorescence microscopy. In the setup described here, in vitro translocation of effector fusions into HeLa cells by different Yersinia mutants is monitored by laser scanning microscopy. Recording intracellular conversion of the FRET reporter by the beta-lactamase effector fusion in real-time provides robust quantitative results. We here show exemplary data, demonstrating increased translocation by a Y. enterocolitica YopE mutant compared to the wild type strain.
Extension of high poloidal beta scenario in DIII-D to lower q95 for steady state fusion reactor
NASA Astrophysics Data System (ADS)
Huang, J.; Gong, X.; Qian, J.; Ding, S.; Ren, Q.; Guo, W.; Pan, C.; Li, G.; Xia, T.; Garofalo, A.; Lao, L.; Hyatt, A.; Ferron, J.; Collins, C.; Lin, D.; McKee, G.; Rhode, T.; McClenaghan, J.; Holcomb, C.; Cui, L.; Heidbrink, W.; Zhu, Y.; Diiid Team; East Team
2017-10-01
DIII-D/EAST joint experiments have improved the high poloidal beta scenario with sustained large-radius internal transport barrier (ITB) extended to high plasma current Ip 1MA with q95 6.0. Slight off-axis NBCD is applied to obtain broader current density profile, ITBs can now be sustained below the previously observed βp threshold with excellent confinement (H98y2 1.8). The scenario also exhibits a local negative shear appearing with q increased at rho 0.4, which helps ITB formation and sustainment. This confirms TGLF prediction that negative magnetic shear can help recover ITB and achieve high confinement with reduced q95. Detailed analysis shows that the Shafranov shift and q profile is critical in the ITB formation at high βp regime. Supported in part by National Magnetic Confinement Fusion Program of China 2015GB102000, 2015GB110005, and US Department of Energy under DE-FC02-04ER54698.
High performance advanced tokamak regimes in DIII-D for next-step experiments
NASA Astrophysics Data System (ADS)
Greenfield, C. M.; Murakami, M.; Ferron, J. R.; Wade, M. R.; Luce, T. C.; Petty, C. C.; Menard, J. E.; Petrie, T. W.; Allen, S. L.; Burrell, K. H.; Casper, T. A.; DeBoo, J. C.; Doyle, E. J.; Garofalo, A. M.; Gorelov, I. A.; Groebner, R. J.; Hobirk, J.; Hyatt, A. W.; Jayakumar, R. J.; Kessel, C. E.; La Haye, R. J.; Jackson, G. L.; Lohr, J.; Makowski, M. A.; Pinsker, R. I.; Politzer, P. A.; Prater, R.; Strait, E. J.; Taylor, T. S.; West, W. P.; DIII-D Team
2004-05-01
Advanced Tokamak (AT) research in DIII-D [K. H. Burrell for the DIII-D Team, in Proceedings of the 19th Fusion Energy Conference, Lyon, France, 2002 (International Atomic Energy Agency, Vienna, 2002) published on CD-ROM] seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with nonaxisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts.
Shiina, T; Kawasaki, A; Nagao, T; Kurose, H
2000-09-15
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.
Recent progress in understanding electron thermal transport in NSTX
Ren, Y.; Belova, E.; Gorelenkov, N.; ...
2017-03-10
The anomalous level of electron thermal transport inferred in magnetically confined configurations is one of the most challenging problems for the ultimate realization of fusion power using toroidal devices: tokamaks, spherical tori and stellarators. It is generally believed that plasma instabilities driven by the abundant free energy in fusion plasmas are responsible for the electron thermal transport. The National Spherical Torus eXperiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557) provides a unique laboratory for studying plasma instabilities and their relation to electron thermal transport due to its low toroidal field, high plasma beta, low aspect ratio and largemore » ExB flow shear. Recent findings on NSTX have shown that multiple instabilities are required to explain observed electron thermal transport, given the wide range of equilibrium parameters due to different operational scenarios and radial regions in fusion plasmas. Here we review the recent progresses in understanding anomalous electron thermal transport in NSTX and focus on mechanisms that could drive electron thermal transport in the core region. The synergy between experiment and theoretical/ numerical modeling is essential to achieving these progresses. The plans for newly commissioned NSTX-Upgrade will also be discussed.« less
HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern
2007-04-06
To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but wasmore » repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.« less
Tse, R; Wu, Y J; Vavougios, G; Hou, Y; Hinek, A; Mahuran, D J
1996-08-20
There are three human beta-hexosaminidase isozymes which are composed of all possible dimeric combinations of an alpha and/or a beta subunit; A (alpha beta), and B (beta beta), and S (alpha alpha). The amino acid sequences of the two subunits are 60% identical. The homology between the two chains varies with the middle > the carboxy-terminal > > the amino-terminal portions. Although dimerization is required for activity, each subunit contains its own active site and differs in its substrate specificity and thermal stability. The presence of the beta subunit in hexosaminidase A also influences the substrate specificity of the alpha subunit; e.g., in vivo only the A heterodimer can hydrolyze GM2 ganglioside. In this report, we localize functional regions in the two subunits by cellular expression of alpha/beta fusion proteins joined at adjacently aligned residues. First, a chimeric alpha/beta chain was made by replacing the least well-conserved amino-terminal section of the beta chain with the corresponding alpha section. The biochemical characteristics of this protein were nearly identical to hexosaminidase B. Therefore, the most dissimilar regions in the subunits are not responsible for their dissimilar biochemical properties. A second fusion protein was made that also included the more homologous middle section of the alpha chain. This protein expressed the substrate specificity unique to isozymes containing an alpha subunit (A and S). We conclude that the region responsible for the ability of the alpha subunit to bind negatively charged substrates is located within residues alpha 132-283. Interestingly, the remaining carboxy-terminal section from the beta chain, beta 316-556, was sufficient to allow this chimera to hydrolyze GM2 ganglioside with 10% the specific activity of heterodimeric hexosaminidase A. Thus, the carboxy-terminal section of each subunit is likely involved in subunit-subunit interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebey, Peter S.; Dole, James M.; Geller, Drew A.
2005-11-15
Beta-layering, the process of beta-decay heat-driven mass redistribution, has been demonstrated in a deuterium-tritium (D-T)-filled polymer sphere of the type required for fusion ignition experiments at the National Ignition Facility. This is the first report, to the best of the authors' knowledge, of a D-T layer formed in a permeation-filled sphere. The 2-mm-diam sphere was filled with D-T by permeation; cooled to cryogenic temperatures while in the high-pressure permeation vessel; and, while cold, removed to an optical axis where the D-T was frozen, melted, and beta-layered in a series of experiments over several weeks' time. This work was performed inmore » the Los Alamos National Laboratory cryogenic pressure loader system. The beta-layering time constant was 24.0 {+-} 2.5 min, less than the theoretical value of 26.8 min, and not showing the significant increase due to build-up of {sup 3}He often observed in beta-layered samples. Supercooling of the liquid D-T was observed. Neither the polymer target nor its tenting material showed visual signs of degradation after 5 weeks of exposure to D-T. Small external thermal gradients were used to shift the D-T material back and forth within the sphere.« less
Observation of finite-. beta. MHD phenomena in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, K.M.
1984-09-01
Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1more » internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.« less
NASA Astrophysics Data System (ADS)
Jones, Robert
2017-10-01
I have suggested that fusion researchers should put more effort into the study of beta > 1 or wall confined plasmas. Magneto-Inertial Fusion and Magnetized Target Fusion projects at Los Alamos National Laboratory are recent examples of this sort of work. Unfortunately, theoretical studies of such systems may be employing overly optimistic models of the magnetic thermal insulation. One might well expect such systems to have stochastic field lines. If that is the case then we might want to employ turbulent thermal insulation as suggested in my papers: Current Science, pg 991, 1988 and Bull. Am. Phys. Soc., Nov. 4, 2009.
Simulation of High-Beta Plasma Confinement
NASA Astrophysics Data System (ADS)
Font, Gabriel; Welch, Dale; Mitchell, Robert; McGuire, Thomas
2017-10-01
The Lockheed Martin Compact Fusion Reactor concept utilizes magnetic cusps to confine the plasma. In order to minimize losses through the axial and ring cusps, the plasma is pushed to a high-beta state. Simulations were made of the plasma and magnetic field system in an effort to quantify particle confinement times and plasma behavior characteristics. Computations are carried out with LSP using implicit PIC methods. Simulations of different sub-scale geometries at high-Beta fusion conditions are used to determine particle loss scaling with reactor size, plasma conditions, and gyro radii. ©2017 Lockheed Martin Corporation. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Jinping P.; Garofalo, Andrea M.; Gong, Xianzu Z.
Recent EAST/DIII-D joint experiments on the high poloidal betamore » $${{\\beta}_{\\text{P}}}$$ regime in DIII-D have extended operation with internal transport barriers (ITBs) and excellent energy confinement (H 98y2 ~ 1.6) to higher plasma current, for lower q 95 ≤ 7.0, and more balanced neutral beam injection (NBI) (torque injection < 2 Nm), for lower plasma rotation than previous results. Transport analysis and experimental measurements at low toroidal rotation suggest that the E × B shear effect is not key to the ITB formation in these high $${{\\beta}_{\\text{P}}}$$ discharges. Experiments and TGLF modeling show that the Shafranov shift has a key stabilizing effect on turbulence. Extrapolation of the DIII-D results using a 0D model shows that with the improved confinement, the high bootstrap fraction regime could achieve fusion gain Q = 5 in ITER at $${{\\beta}_{\\text{N}}}$$ ~ 2.9 and q 95 ~ 7. With the optimization of q(0), the required improved confinement is achievable when using 1.5D TGLF-SAT1 for transport simulations. Furthermore, results reported in this paper suggest that the DIII-D high $${{\\beta}_{\\text{P}}}$$ scenario could be a candidate for ITER steady state operation.« less
Two modes of control of pilA, the gene encoding type 1 pilin in Escherichia coli.
Orndorff, P E; Spears, P A; Schauer, D; Falkow, S
1985-01-01
Type 1 piliation in Escherichia coli is subject to metastable regulation at the transcriptional level (B. I. Eisenstein, Science 214:337-339, 1981). However, the genes controlling in this fashion are not known. We present evidence that the pilA gene, encoding the structural subunit of type 1 pili, is subject to metastable transcriptional regulation. A pilA'-lacZ fusion, constructed in vitro on a recombinant plasmid, was used in conjunction with a recBC sbcB mutant of E. coli K-12 to introduce the fusion into the chromosomal region encoding Pil. This fusion was found to be subject to metastable transcriptional control. The rate of switching from the Lac+ to the Lac- phenotype was 4 X 10(-4) per cell per generation and 6.2 X 10(-4) in the opposite direction. A ca. 10-fold difference in beta-galactosidase activity was observed between phenotypically "ON" (Lac+) and "OFF" (Lac-) populations. P1 transduction experiments showed that the element determining the ON or OFF phenotype was tightly linked to pilA. In addition to the metastable regulation of pilA, a second type of transcriptional regulation was effected by the product of a gene, hyp, adjacent to pilA. By using a recombinant plasmid containing just a pilA'-lacZ fusion and the putative pilA promoter, we found that a lesion in hyp conferred a beta-galactosidase activity about fivefold higher than that of a strain possessing the parental hyp gene. Mutants constructed to have a pilA'-lacZ fusion and a hyp::Tn5-132 mutation in the chromosome exhibited a frequency of switching from Lac+ to Lac- and vice versa indistinguishable from that of the parental strain. However, in the ON mode, hyp::Tn5-132 mutants showed a twofold-higher beta-galactosidase activity. Thus, hyp does not appear to affect metastable variation but does affect the level of transcription of the pilA gene in the ON (transcribed) mode. Images PMID:3930469
Runaway Geneeration In Disruptions Of Plasmas In TFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, E. D.; Bell, M. G.; Taylor, G.
2014-03-31
Many disruptions in the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24] produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lastingmore » runaway plasmas, Parail-Pogutse instabilities were observed.« less
Is Deuterium Nuclear Fusion Catalyzed by Antineutrinos?
NASA Astrophysics Data System (ADS)
Shomer, Isaac
2010-02-01
The hypothesis of Fischbach and Jenkins that neutrinos emitted from the sun accelerate radioactive decay is noted. It is thought that neutrinos accelerate beta decay by reacting with neutron-rich nuclides to form a beta particle and a daughter product, with no antineutrino emitted. Conversely, it is proposed that antineutrinos can react with proton-rich nuclides to cause positron decay, with no neutrino emitted. It is also proposed that the nuclear fusion of the hydrogen bomb is triggered not only by the energy of the igniting fission bomb, but by the antineutrinos created by the rapid beta decay of the daughter products in the fission process. The contemplated mechanism for antineutrino initiated fusion is the following: 1. The antineutrinos from the fission daughter products cause positron decay of deuterium by the process outlined above. 2. In a later fusion step, these positrons subsequently react with neutrons in deuterium to create antineutrinos. Electrons are unavailable to annihilate positrons in the plasma of the hydrogen bomb. 3. These antineutrinos thereafter react with more deuterium to form positrons, thereby propagating a chain reaction. )
Mermelstein, Cláudia S; Portilho, Débora M; Medeiros, Rommel B; Matos, Aline R; Einicker-Lamas, Marcelo; Tortelote, Giovane G; Vieyra, Adalberto; Costa, Manoel L
2005-02-01
The formation of a skeletal muscle fiber begins with the withdrawal of committed mononucleated precursors from the cell cycle. These myoblasts elongate while aligning with each other, guided by recognition between their membranes. This step is followed by cell fusion and the formation of long striated multinucleated myotubes. We used methyl-beta-cyclodextrin (MCD) in primary cultured chick skeletal muscle cells to deplete membrane cholesterol and investigate its role during myogenesis. MCD promoted a significant increase in the expression of troponin T, enhanced myoblast fusion, and induced the formation of large multinucleated myotubes with nuclei being clustered centrally and not aligned at the cell periphery. MCD myotubes were striated, as indicated by sarcomeric alpha-actinin staining, and microtubule and desmin filament distribution was not altered. Pre-fusion MCD-treated myoblasts formed large aggregates, with cadherin and beta-catenin being accumulated in cell adhesion contacts. We also found that the membrane microdomain marker GM1 was not present as clusters in the membrane of MCD-treated myoblasts. Our data demonstrate that cholesterol is involved in the early steps of skeletal muscle differentiation.
Enzyme-linked immunosorbent assay for Escherichia coli heat-stable enterotoxin type II.
Handl, C; Rönnberg, B; Nilsson, B; Olsson, E; Jonsson, H; Flock, J I
1988-01-01
The gene for Escherichia coli heat-stable enterotoxin type II (STII) was fused to the genes for protein A from Staphylococcus aureus and beta-galactosidase in two different expression systems. Antibodies raised in rabbits against the protein A-STII fusion protein recognized the beta-galactosidase-STII fusion protein. The latter fusion protein was used as the immobilized antigen in an enzyme-linked immunosorbent assay (ELISA) for detection of STII. The correlation between the results of the ELISA and the intestinal loop test in piglets was 95%, suggesting that the ELISA can be used to reliably detect STII. Images PMID:3049659
Repetitively Pulsed High Power RF Solid-State System
NASA Astrophysics Data System (ADS)
Bowman, Chris; Ziemba, Timothy; Miller, Kenneth E.; Prager, James; Quinley, Morgan
2017-10-01
Eagle Harbor Technologies, Inc. (EHT) is developing a low-cost, fully solid-state architecture for the generation of the RF frequencies and power levels necessary for plasma heating and diagnostic systems at validation platform experiments within the fusion science community. In Year 1 of this program, EHT has developed a solid-state RF system that combines an inductive adder, nonlinear transmission line (NLTL), and antenna into a single system that can be deployed at fusion science experiments. EHT has designed and optimized a lumped-element NLTL that will be suitable RF generation near the lower-hybrid frequency at the High Beta Tokamak (HBT) located at Columbia University. In Year 2, EHT will test this system at the Helicity Injected Torus at the University of Washington and HBT at Columbia. EHT will present results from Year 1 testing and optimization of the NLTL-based RF system. With support of DOE SBIR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stencel, J.R.; Finley, V.L.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory for CY90. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The PPPL has engaged in fusion energy research sincemore » 1951 and in 1990 had one of its two large tokamak devices in operation: namely, the Tokamak Fusion Test Reactor. The Princeton Beta Experiment-Modification is undergoing new modifications and upgrades for future operation. A new machine, the Burning Plasma Experiment -- formerly called the Compact Ignition Tokamak -- is under conceptual design, and it is awaiting the approval of its draft Environmental Assessment report by DOE Headquarters. This report is required under the National Environmental Policy Act. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. 59 refs., 39 figs., 45 tabs.« less
Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges
NASA Astrophysics Data System (ADS)
Park, J. M.
2013-10-01
Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at βN > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at βN as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable βN (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.
Production and study of high-beta plasma confined by a superconducting dipole magneta)
NASA Astrophysics Data System (ADS)
Garnier, D. T.; Hansen, A.; Mauel, M. E.; Ortiz, E.; Boxer, A. C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.
2006-05-01
The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4GHz, and a population of energetic electrons, with mean energies above 50keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large.
Final Report: Levitated Dipole Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routinemore » investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m -3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.« less
Qian, Jinping P.; Garofalo, Andrea M.; Gong, Xianzu Z.; ...
2017-03-20
Recent EAST/DIII-D joint experiments on the high poloidal betamore » $${{\\beta}_{\\text{P}}}$$ regime in DIII-D have extended operation with internal transport barriers (ITBs) and excellent energy confinement (H 98y2 ~ 1.6) to higher plasma current, for lower q 95 ≤ 7.0, and more balanced neutral beam injection (NBI) (torque injection < 2 Nm), for lower plasma rotation than previous results. Transport analysis and experimental measurements at low toroidal rotation suggest that the E × B shear effect is not key to the ITB formation in these high $${{\\beta}_{\\text{P}}}$$ discharges. Experiments and TGLF modeling show that the Shafranov shift has a key stabilizing effect on turbulence. Extrapolation of the DIII-D results using a 0D model shows that with the improved confinement, the high bootstrap fraction regime could achieve fusion gain Q = 5 in ITER at $${{\\beta}_{\\text{N}}}$$ ~ 2.9 and q 95 ~ 7. With the optimization of q(0), the required improved confinement is achievable when using 1.5D TGLF-SAT1 for transport simulations. Furthermore, results reported in this paper suggest that the DIII-D high $${{\\beta}_{\\text{P}}}$$ scenario could be a candidate for ITER steady state operation.« less
An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement
NASA Astrophysics Data System (ADS)
Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian
2014-10-01
An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.
Hirai, M Y; Fujiwara, T; Chino, M; Naito, S
1995-10-01
Transgenic expression of genes encoding the alpha' and beta subunits of beta-conglycinin, one of the major seed storage proteins of soybean (Glycine max [L.] Merr.), was analyzed in Arabidopsis thaliana (L.) Heynh. under conditions of sulfate deficiency. Temporal patterns of expression of both the intact beta subunit gene and the beta subunit gene promoter fused to the beta-glucuronidase (GUS) gene are similar in soil-less cultures using rockwool, suggesting that the response to sulfate deficiency is regulated mainly at the level of transcription. In hydroponic cultures with various concentrations of sulfate, expression of both the intact beta subunit gene and the beta subunit gene promoter-GUS fusion gene were negatively correlated to increased sulfate concentrations in the culture medium. Transfer of transgenic A. thaliana plants carrying the beta subunit gene promoter-GUS fusion from sulfate-deficient to sulfate-sufficient control medium caused GUS activity in developing siliques to be repressed within two days. A reverse shift, where the plants were transferred from the control to sulfate-deficient medium, caused GUS activity to become higher than that in seeds of the control plants within two days. These results indicate that the expression of the beta subunit gene promoter responds rapidly to changes of sulfate availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, V.L.; Wiezcorek, M.A.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY93. The report is prepared to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1993. The objective of the Annual Site Environmental Report is to document evidence that DOE facility environmental protection programs adequately protect the environment and the public health. The Princeton Plasmamore » Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1993, PPPL had both of its two large tokamak devices in operation; the Tokamak Fusion Test Reactor (TFTR) and the Princeton Beta Experiment-Modification (PBX-M). PBX-M completed its modifications and upgrades and resumed operation in November 1991. TFTR began the deuterium-tritium (D-T) experiments in December 1993 and set new records by producing over six million watts of energy. The engineering design phase of the Tokamak Physics Experiment (TPX), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In 1993, the Environmental Assessment (EA) for the TFRR Shutdown and Removal (S&R) and TPX was prepared for submittal to the regulatory agencies.« less
Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.
Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less
A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeslack, W.A. III; Hurley, J.; Paskell, T.
1994-12-31
Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less
Garofalo, Andrea M.; Gong, Xianzu; Grierson, Brian A.; ...
2015-11-16
Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by ≥30% relative to earlier work. The advancement was enabled by improved understanding of the “relaxation oscillations”, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the “relaxation oscillations” are coupled core-edge modes 2 amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced tomore » classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction ≥ 80%, β N ≤ 4 , β P ≥ 3 , and β T ≥ 2%. Finally, these results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.« less
Phenomenology of beam driven modes in the field reversed configuration
NASA Astrophysics Data System (ADS)
Magee, Richard; Bolte, Nathan; Clary, Ryan; Necas, Ales; Korepanov, Sergey; Smirnov, Artem; Thompson, Matthew; Tajima, Toshiki; THE TAE Team
2016-10-01
The C-2U experiment offers a unique plasma environment combining a high beta field reversed configuration (FRC) embedded in a low beta magnetic mirror with high power neutral beam injection. The beams are injected tangentially into a modest magnetic field so that the orbits of the resulting fast ions encircle the entire plasma. These large orbit particles sustain and stabilize the plasma and suppress turbulence. Measurements of magnetic fluctuations at the edge of the plasma reveal the presence of three coherent beam driven modes: a low frequency, chirping mode, a mode near the ion cyclotron frequency, and a high frequency compressional Alfven mode. Remarkably, none of these modes are observed to have a deleterious effect on global plasma confinement. In fact, the cyclotron mode has the beneficial effect of dramatically enhancing the DD fusion reaction rate by drawing a trail from the plasma ion energy distribution on a sub-collisional timescale. In this presentation, we experimentally characterize the beam driven modes in the C-2U FRC with data from multiple diagnostics including magnetics, spectroscopy, neutral particle analyzers and fusion product diagnostics. Results are compared to a particle-in-cell simulation in a simplified geometry.
Plasma Experiments on an Internal Coil Device with an High Temperature Superconductor
NASA Astrophysics Data System (ADS)
Yuichi, Ogawa; Junji, Morikawa; Kotaro, Ohkuni; Dan, Hori; Shigeo, Yamakosi; Nagato, Yanagi; Toshiyuki, Mito; Masataka, Iwakuma; Toshio, Uede
2003-10-01
An internal coil device would be expected for exploring high beta plasmas based on plasma relaxation process. Prof. A. Hasegawa proposed an advanced fusion reactor with a dipole configuration, and Mahajan and Yoshida developed a new high beta state based on two-fluid relaxation theory. To study these high beta plasmas, we have constructed an internal coil device with a high temperature superconductor. The major radius of the internal coil is 15 cm, and the coil current is 50 kA. Three different types of Ag-sheathed Bi-2223 tapes are employed; i.e., a high critical current tape with a low silver ratio for the main HTS coil, a 0.3wt3atprovided by a GM refrigerator and supplied to the coil through a check valve, and the coil current is directly excited with the external power supply through removable electrodes. It took about 11 hours to cool the coil down to 21 K from the room temperature, and the nominal cable current of 118 A (overall coil current: 50 kA) has been achieved. A decay time constant of the persistent current is a few tens of hours. Plasma experiments in a dipole configuration have been initiated.
NASA Astrophysics Data System (ADS)
Shimomura, Y.; Aymar, R.; Chuyanov, V. A.; Huguet, M.; Matsumoto, H.; Mizoguchi, T.; Murakami, Y.; Polevoi, A. R.; Shimada, M.; ITER Joint Central Team; ITER Home Teams
2001-03-01
ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first ten years of operation will be devoted primarily to physics issues at low neutron fluence and the following ten years of operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes, such as inductive high Q modes, long pulse hybrid modes and non-inductive steady state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours a day but also in involving the worldwide fusion community and in promoting scientific competition among the ITER Parties.
On heat loading, novel divertors, and fusion reactors
NASA Astrophysics Data System (ADS)
Kotschenreuther, M.; Valanju, P. M.; Mahajan, S. M.; Wiley, J. C.
2007-07-01
The limited thermal power handling capacity of the standard divertors (used in current as well as projected tokamaks) is likely to force extremely high (˜90%) radiation fractions frad in tokamak fusion reactors that have heating powers considerably larger than ITER [D. J. Campbell, Phys. Plasmas 8, 2041 (2001)]. Such enormous values of necessary frad could have serious and debilitating consequences on the core confinement, stability, and dependability for a fusion power reactor, especially in reactors with Internal Transport Barriers. A new class of divertors, called X-divertors (XD), which considerably enhance the divertor thermal capacity through a flaring of the field lines only near the divertor plates, may be necessary and sufficient to overcome these problems and lead to a dependable fusion power reactor with acceptable economics. X-divertors will lower the bar on the necessary confinement to bring it in the range of the present experimental results. Its ability to reduce the radiative burden imparts the X-divertor with a key advantage. Lower radiation demands allow sharply peaked density profiles that enhance the bootstrap fraction creating the possibility for a highly increased beta for the same beta normal discharges. The X-divertor emerges as a beta-enhancer capable of raising it by up to roughly a factor of 2.
Zabeau, M; Stanley, K K
1982-01-01
Hybrid plasmids carrying cro-lacZ gene fusions have been constructed by joining DNA segments carrying the PR promoter and the start of the cro gene of bacteriophage lambda to the lacZ gene fragment carried by plasmid pLG400 . Plasmids in which the translational reading frames of the cro and lacZ genes are joined in-register (type I) direct the synthesis of elevated levels of cro-beta-galactosidase fusion protein amounting to 30% of the total cellular protein, while plasmids in which the genes are fused out-of-register (type II) produce a low level of beta-galactosidase protein. Sequence rearrangements downstream of the cro initiator AUG were found to influence the efficiency of translation, and have been correlated with alterations in the RNA secondary structure of the ribosome-binding site. Plasmids which direct the synthesis of high levels of beta-galactosidase are conditionally lethal and can only be propagated when the PR promoter is repressed. Deletion of sequences downstream of the lacZ gene restored viability, indicating that this region of the plasmid encodes a function which inhibits the growth of the cells. The different applications of these plasmids for expression of cloned genes are discussed. Images Fig. 6. PMID:6327257
Ohmic ignition with high engineering beta based on the RFP
NASA Astrophysics Data System (ADS)
Sarff, J. S.; Anderson, J. K.; Chapman, B. E.; McCollam, K. J.
2017-10-01
The RFP configuration allows the possibility of ohmic ignition for fusion energy, eliminating the need for auxiliary heating by rf or neutral beam injection. Complex plasma-facing antennas and NBI sources are therefore not required, simplifying the difficult fusion materials challenge. While all toroidal configurations require a volume-average 〈 B 〉 >= 5 T, the field strength at the magnet in the RFP is only Bcoil 3T since plasma current generates almost all of the field. Engineering beta is therefore maximized. We summarize access to ohmic ignition by examining a Lawson-like power balance for an RFP fusion plasma comparable to the ARIES-AT advanced tokamak, which generates neutron wall loading Pn / A 5 MW/m2. The required energy confinement for ohmic ignition in an RFP is similar to that for a tokamak. Confinement in MST is comparable to a same-size, same-field tokamak plasma, but 〈 B 〉 in MST is only 1/20th that required for fusion. While transport could ultimately be dominated by micro turbulence, extrapolation of stochastic transport using Lundquist number scaling for MHD tearing indicates standard RFP confinement (not enhanced by current profile control) could be sufficient to access ohmic ignition. This bolsters the possibility for steady-state inductive sustainment using oscillating field current drive. The high beta and classical energetic ion confinement measured in MST also bolster the RFP's fusion potential. Work supported by U.S. DoE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, V.L.; Wieczorek, M.A.
This report gives the results of the environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for CY94. The report is prepared to provide the US Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants, if any, added to the environment as a result of PPPL operations, as well as environmental initiatives, assessments, and programs that were undertaken in 1994. The objective of the Annual Site Environmental Report is to document evidence that PPPL`s environmental protection programs adequately protect the environment and the public health. The Princeton Plasma Physicsmore » Laboratory has engaged in fusion energy research since 195 1. The long-range goal of the US Magnetic Fusion Energy Research Program is to develop and demonstrate the practical application of fusion power as an alternate energy source. In 1994, PPPL had one of its two large tokamak devices in operation-the Tokamak Fusion Test Reactor (TFTR). The Princeton Beta Experiment-Modification or PBX-M completed its modifications and upgrades and resumed operation in November 1991 and operated periodically during 1992 and 1993; it did not operate in 1994 for funding reasons. In December 1993, TFTR began conducting the deuterium-tritium (D-T) experiments and set new records by producing over ten @on watts of energy in 1994. The engineering design phase of the Tokamak Physics Experiment (T?X), which replaced the cancelled Burning Plasma Experiment in 1992 as PPPL`s next machine, began in 1993 with the planned start up set for the year 2001. In December 1994, the Environmental Assessment (EA) for the TFTR Shutdown and Removal (S&R) and TPX was submitted to the regulatory agencies, and a finding of no significant impact (FONSI) was issued by DOE for these projects.« less
Sharma, Prerna; Kaila, Pallavi; Guptasarma, Purnananda
2016-12-01
Diverse unrelated enzymes that adopt the beta/alpha (or TIM) barrel topology display similar arrangements of beta/alpha units placed in a radial eight-fold symmetry around the barrel's axis. The TIM barrel was originally thought to be a single structural domain; however, it is now thought that TIM barrels arose from duplication and fusion of smaller half-barrels consisting of four beta/alpha units. We describe here the design, expression and purification, as well as characterization of folding, activity and stability, of chimeras of two TIM barrel glycosyl hydrolases, made by fusing different half-barrel domains derived from an endoglucanase from Clostridium cellulolyticum, CelCCA and a beta-glucosidase from Pyrococcus furiosus, CelB. We show that after refolding following purification from inclusion bodies, the two half-barrel fusion chimeras (CelCCACelB and CelBCelCCA) display catalytic activity although they assemble into large soluble oligomeric aggregated species containing chains of mixed beta and alpha structure. CelBCelCCA displays hyperthermophile-like structural stability as well as significant stability to chemical denaturation (C m of 2.6 m guanidinium hydrochloride), whereas CelCCACelB displays mesophile-like stability (T m of ~ 71 °C). The endoglucanase activities of both chimeras are an order of magnitude lower than those of CelB or CelCCA, whereas the beta-glucosidase activity of CelBCelCCA is about two orders of magnitude lower than that of CelB. The chimera CelCCACelB shows no beta-glucosidase activity. Our results demonstrate that half-barrel domains from unrelated sources can fold, assemble and function, with scope for improvement. Pyrococcus furiosus beta-glucosidase (CelB, EC: 3.2.1.21). Clostridium cellulolyticum endoglucanase A (CelCCA, EC: 3.2.1.4). © 2016 Federation of European Biochemical Societies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yankai; Yan Rong; He Yi
2006-07-14
The {beta}-subunit of human chorionic gonadotropin ({beta}-hCG) is secreted by many kinds of tumors and it has been used as an ideal target antigen to develop vaccines against tumors. In view of the low immunogenicity of this self-peptide,we designed a method based on isocaudamer technique to repeat tandemly the 10-residue sequence X of {beta}-hCG (109-118), then 10 tandemly repeated copies of the 10-residue sequence combined with {beta}-hCG C-terminal 37 peptides were fused to mycobacterial heat-shock protein 65 to construct a fusion protein HSP65-X10-{beta}hCGCTP37 as an immunogen. In this study, we examined the effect of the tandem repeats of this 10-residuemore » sequence in eliciting an immune by comparing the immunogenicity and anti-tumor effects of the two immunogens, HSP65-X10-{beta}hCGCTP37 and HSP65-{beta}hCGCTP37 (without the 10 tandem repeats). Immunization of mice with the fusion protein HSP65-X10-{beta}hCGCTP37 elicited much higher levels of specific anti-{beta}-hCG antibodies and more effectively inhibited the growth of Lewis lung carcinoma (LLC) in vivo than with HSP65-{beta}hCGCTP37, which should suggest that HSP65-X10-{beta}hCGCTP37 may be an effective protein vaccine for the treatment of {beta}-hCG-dependent tumors and multiple tandem repeats of a certain epitope are an efficient method to overcome the low immunogenicity of self-peptide antigens.« less
Drift kinetic effects on plasma response in high beta spherical tokamak experiments
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan
2018-01-01
The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.
NASA Astrophysics Data System (ADS)
Kesner, J.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.
2006-10-01
The levitated dipole experiment (LDX) is a new research facility that is investigating plasma confinement and stability in a dipole magnetic field configuration as a possible catalyzed DD fusion power source that would avoid the burning of tritium. We report the production of high beta plasma confined by a laboratory superconducting dipole using neutral gas fueling and electron cyclotron resonance heating (ECRH). The pressure results from a population of anisotropic energetic trapped electrons that is sustained by microwave heating provided sufficient neutral gas is supplied to the plasma. The trapped electron beta was observed to be limited by the hot electron interchange (HEI) instability, but when the neutral gas was programmed so as to maintain the deuterium gas pressure near 0.2 mPa, the fast electron pressure increased by more than a factor of ten and the resulting stable high beta plasma was maintained quasi-continuously for up to 14 seconds. Low frequency (<10 kHz) fluctuations are sometimes observed at low neutral base pressure.
A quantitative study of skeletofusimotor innervation in the cat peroneus tertius muscle.
Jami, L; Murthy, K S; Petit, J
1982-01-01
1. Physiological tests were used to identify skeletofusimotor or beta axons to the cat peroneus tertius muscle in order to assess the proportion of beta axons in the motor supply to this muscle. 2. Static beta axons (beta S) were identified by: (a) observation of a delay between the complete block of extrafusal contraction and the failure of spindle activation upon prolonged stimulation, (b) increase of spindle excitation with stimulation frequencies above that eliciting maximal extrafusal contraction, (c) observation of 'unfused' frequencygram of spindle primary afferent discharge during stimulation of the axon at frequencies above that eliciting complete fusion of extrafusal contraction and (d) static action exerted on the response of the spindle afferent to ramp stretch. 3. Dynamic beta axons (beta D) were identified by the persistence of spindle activation after selective block of extrafusal neuromuscular junctions and by their dynamic action on spindle primary endings. 4. The actions of 116 motor axons (conduction velocity 56-104 m/sec) on ninety-five spindle afferents (fifty-seven from primary and thirty-eight from secondary endings) were examined in ten experiments. Thirty-six beta axons (31% of the total sample) were identified: twenty-four beta S (conduction velocity 69-104 m/sec) and twelve beta D (conduction velocity 56-91 m/sec). 5. Twenty (35%) primary endings were activated by a beta S and sixteen (28%) by a beta D axon. Nineteen (45%) secondary endings were activated by a beta S and five (13%) by a beta D axon. Convergence of beta D and beta S axons on the same spindle occurred in 10% of instances. beta-innervated spindles were also supplied by gamma axons. 6. Most of the beta S motor units were of the fast-fatigue resistant (FR) type, with a few units of the fast-fatigable (FF) type, and nearly all the beta D motor units were of the slow (S) type. PMID:6213764
Mermelstein, Cláudia S; Portilho, Débora M; Mendes, Fábio A; Costa, Manoel L; Abreu, José Garcia
2007-03-01
Myogenic differentiation is a multistep process that begins with the commitment of mononucleated precursors that withdraw from cell cycle. These myoblasts elongate while aligning to each other, guided by the recognition between their membranes. This step is followed by cell fusion and the formation of long and striated multinucleated myotubes. We have recently shown that cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) induces myogenic differentiation by enhancing myoblast recognition and fusion. Here, we further studied the signaling pathways responsible for early steps of myogenesis. As it is known that Wnt plays a role in muscle differentiation, we used the chemical MbetaCD to deplete membrane cholesterol and investigate the involvement of the Wnt/beta-catenin pathway during myogenesis. We show that cholesterol depletion promoted a significant increase in expression of beta-catenin, its nuclear translocation and activation of the Wnt pathway. Moreover, we show that the activation of the Wnt pathway after cholesterol depletion can be inhibited by the soluble protein Frzb-1. Our data suggest that membrane cholesterol is involved in Wnt/beta-catenin signaling in the early steps of myogenic differentiation.
Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.
2015-11-01
Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.
Final Report: Levitated Dipole Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamicsmore » and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross-field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.« less
Highlander, S K; Wickersham, E A; Garza, O; Weinstock, G M
1993-01-01
Multicopy and single-copy chromosomal fusions between the Pasteurella haemolytica leukotoxin regulatory region and the Escherichia coli beta-galactosidase gene have been constructed. These fusions were used as reporters to identify and isolate regulators of leukotoxin expression from a P. haemolytica cosmid library. A cosmid clone, which inhibited leukotoxin expression from multicopy and single-copy protein fusions, was isolated and found to contain the complete leukotoxin gene cluster plus additional upstream sequences. The locus responsible for inhibition of expression from leukotoxin-beta-galactosidase fusions was mapped within these upstream sequences, by transposon mutagenesis with Tn5, and its DNA sequence was determined. The inhibitory activity was found to be associated with a predicted 440-amino-acid reading frame (lapA) that lies within a four-gene arginine transport locus. LapA is predicted to be the nucleotide-binding component of this transport system and shares homology with the Clp family of proteases. Images PMID:8359916
EDITORIAL: The Nuclear Fusion Award The Nuclear Fusion Award
NASA Astrophysics Data System (ADS)
Kikuchi, M.
2011-01-01
The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 635-44 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 451-61 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L25-8 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 512-20 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 277-84 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 82-98 Berk H.L. et al 2006 Explanation of the JET n = 0 chirping mode Nucl. Fusion 46 S888-97 Urano H. et al 2006 Confinement degradation with beta for ELMy HH-mode plasmas in JT-60U tokamak Nucl. Fusion 46 781-7 Izzo V.A. et al 2006 A numerical investigation of the effects of impurity penetration depth on disruption mitigation by massive high-pressure gas jet Nucl. Fusion 46 541-7 Inagaki S. et al 2006 Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas Nucl. Fusion 46 133-41 Watanabe T.-H. et al 2006 Velocity-space structures of distribution function in toroidal ion temperature gradient turbulence Nucl. Fusion 46 24-32 2010 Nuclear Fusion Award nominees For the 2010 award, the papers published in the 2007 volume were assessed and the following papers were nominated, all of which are magnetic confinement experiments and theory. Rice J.E. et al 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 1618-24 Lipschultz B. et al 2007 Plasma-surface interaction, scrape-off layer and divertor physics: implications for ITER Nucl. Fusion 47 1189-205 Loarer T. et al 2007 Gas balance and fuel retention in fusion devices Nucl. Fusion 47 1112-20 Garcia O.E et al 2007 Fluctuations and transport in the TCV scrape-off layer Nucl. Fusion 47 667-76 Zonca F. et al 2007 Electron fishbones: theory and experimental evidence Nucl. Fusion 47 1588-97 Maggi C.F. et al 2007 Characteristics of the H-mode pedestal in improved confinement scenarios in ASDEX Upgrade, DIII-D, JET and JT-60U Nucl. Fusion 47 535-51 Yoshida M. et al 2007 Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas Nucl. Fusion 47 856-63 Zohm H. et al 2007 Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER Nucl. Fusion 47 228-32 Snyder P.B. et al 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation Nucl. Fusion 47 961-8 Urano H. et al 2007 H-mode pedestal structure in the variation of toroidal rotation and toroidal field ripple in JT-60U Nucl. Fusion 47 706-13 Günter S. et al 2007 Interaction of energetic particles with large and small scale instabilities Nucl. Fusion 47 920-8
Denis, F; Archambault, D
2001-01-01
Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are cytokines produced primarily by monocytes and macrophages with regulatory effects in inflammation and multiple aspects of the immune response. As yet, no molecular data have been reported for IL-1beta and TNF-alpha of the beluga whale. In this study, we cloned and determined the entire cDNA sequence encoding beluga whale IL-1beta and TNF-alpha. The genetic relationship of the cytokine sequences was then analyzed with those from several mammalian species, including the human and the pig. The homology of beluga whale IL-1beta nucleic acid and deduced amino acid sequences with those from these mammalian species ranged from 74.6 to 86.0% and 62.7 to 77.1%, respectively, whereas that of TNF-alpha varied from 79.3 to 90.8% and 75.3 to 87.7%, respectively. Phylogenetic analyses based on deduced amino acid sequences showed that the beluga whale IL-1beta and TNF-alpha were most closely related to those of the ruminant species (cattle, sheep, and deer). The beluga whale IL-1beta- and TNF-alpha-encoding sequences were thereafter successfully expressed in Escherichia coli as fusion proteins by using procaryotic expression vectors. The fusion proteins were used to produce beluga whale IL-1beta- and TNF-alpha-specific rabbit antisera. Images Figure 3. Figure 4. Figure 5. PMID:11768130
Nonlinear Burn Control and Operating Point Optimization in ITER
NASA Astrophysics Data System (ADS)
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
HIV-1 virion fusion assay: uncoating not required and no effect of Nef on fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavrois, Marielle; Neidleman, Jason; Yonemoto, Wes
2004-10-15
We recently described a sensitive and specific assay that detects the fusion of HIV-1 virions to a broad range of target cells, including primary CD4 cells. This assay involves the use of virions containing {beta}-lactamase-Vpr (BlaM-Vpr) and the loading of target cells with CCF2, a fluorogenic substrate of {beta}-lactamase. Since Vpr strongly associates with the viral core, uncoating of the viral particle might be required for effective cleavage of CCF2 by BlaM-Vpr. Here, we show that BlaM-Vpr within mature viral cores effectively cleaves CCF2, indicating that this assay measures virion fusion independently of uncoating. We also show that wildtype andmore » Nef-deficient HIV-1 virions fuse with equivalent efficiency to HeLa-CD4 cells, SupT1 T cells, and primary CD4 T cells. Since Nef enhances cytoplasmic delivery of viral cores and increases viral infectivity, these findings indicate that Nef enhances an early post-fusion event in the multistep process of viral entry. Possible sites of Nef action include enlargement of the fusion pore, enhanced uncoating of viral particles, and more efficient passage of viral cores through the dense cortical actin network located immediately beneath the plasma membrane.« less
Greenberg, N M; Reding, T V; Duffy, T; Rosen, J M
1991-10-01
Previous studies have demonstrated that the entire rat beta-casein (R beta C) gene and a -524/+490 R beta C fragment-chloramphenicol acetyltransferase (CAT) fusion gene are expressed preferentially in the mammary gland of transgenic mice in a developmentally regulated fashion. However, transgene expression was infrequent, less than 1% of that observed for the endogenous gene, and varied as much as 500-fold, presumably due to the site of chromosomal integration. To determine whether a heterologous hormone-responsive enhancer could be used to increase both the level and frequency of expression in the mammary gland, a fragment derived from the mouse mammary tumor virus long terminal repeat containing four hormone response elements (HREs) was inserted into the R beta C promoter at a site not known to contain transcriptional regulatory elements. Transgenic mice generated which carried HRE-enhanced R beta C-CAT fusion genes expressed CAT activity in the mammary glands of all founder lines examined at levels that were on average 13-fold greater than for lines generated with similar constructs not carrying HREs. In the highest expressing line, the level of HRE-enhanced transgene expression was found to be developmentally regulated, increasing 14-fold in the mammary gland from virgin to day 10 of lactation. In this line, expression was also observed in the thymus and spleen; however, the level of CAT activity was 4-fold lower than in the mammary gland and was not developmentally regulated. In adrenalectomized mice, the administration of dexamethasone stimulated CAT expression in the mammary gland but not in the thymus and spleen. These studies demonstrate that in the context of the R beta C promoter, the HRE functions in the mammary gland to increase both the frequency and level of transgene expression.
NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.
Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W
2002-07-01
Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.
Energy-confinement scaling for high-beta plasmas in the W7-AS stellarator.
Preuss, R; Dinklage, A; Weller, A
2007-12-14
High-beta energy-confinement data are subjected to comparisons of scaling invariant, first-principles physical models. The models differ in the inclusion of basic equations indicating the nature of transport. The result for high-beta data of the W7-AS stellarator is that global transport is described best with a collisional high-beta model, which is different from previous outcomes for low-beta data. Model predictive calculations indicate the validation of energy-confinement prediction with respect to plasma beta and collisionality nu*. The finding of different transport behaviors in distinct beta regimes is important for the development of fusion energy based on magnetic confinement and for the assessment of different confinement concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkatib, G.; Graham, R.; Pelmear-Telenius, A.
1994-09-01
A cDNA fragment spanning the 3{prime}-end of the Huntington disease gene (from 8052 to 9252) was cloned into a prokaryotic expression vector containing the E. Coli lac promoter and a portion of the coding sequence for {beta}-galactosidase. The truncated {beta}-galactosidase gene was cleaved with BamHl and fused in frame to the BamHl fragment of the Huntington disease gene 3{prime}-end. Expression analysis of proteins made in E. Coli revealed that 20-30% of the total cellular proteins was represented by the {beta}-galactosidase-huntingtin fusion protein. The identity of the Huntington disease protein amino acid sequences was confirmed by protein sequence analysis. Affinity chromatographymore » was used to purify large quantities of the fusion protein from bacterial cell lysates. Affinity-purified proteins were used to immunize New Zealand white rabbits for antibody production. The generated polyclonal antibodies were used to immunoprecipitate the Huntington disease gene product expressed in a neuroblastoma cell line. In this cell line the antibodies precipitated two protein bands of apparent gel migrations of 200 and 150 kd which together, correspond to the calculated molecular weight of the Huntington disease gene product (350 kd). Immunoblotting experiments revealed the presence of a large precursor protein in the range of 350-750 kd which is in agreement with the predicted molecular weight of the protein without post-translational modifications. These results indicate that the huntingtin protein is cleaved into two subunits in this neuroblastoma cell line and implicate that cleavage of a large precursor protein may contribute to its biological activity. Experiments are ongoing to determine the precursor-product relationship and to examine the synthesis of the huntingtin protein in freshly isolated rat brains, and to determine cellular and subcellular distribution of the gene product.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Philip B.; Solomon, Wayne M.; Burrell, Keith H.
2015-07-21
A new “Super H-mode” regime is predicted, which enables pedestal height and predicted fusion performance substantially higher than for H-mode operation. This new regime is predicted to exist by the EPED pedestal model, which calculates criticality constraints for peeling-ballooning and kinetic ballooning modes, and combines them to predict the pedestal height and width. EPED usually predicts a single (“H-mode”) pedestal solution for each set of input parameters, however, in strongly shaped plasmas above a critical density, multiple pedestal solutions are found, including the standard “Hmode” solution, and a “Super H-Mode” solution at substantially larger pedestal height and width. The Supermore » H-mode regime is predicted to be accessible by controlling the trajectory of the density, and to increase fusion performance for ITER, as well as for DEMO designs with strong shaping. A set of experiments on DIII-D has identified the predicted Super H-mode regime, and finds pedestal height and width, and their variation with density, in good agreement with theoretical predictions from the EPED model. Finally, the very high pedestal enables operation at high global beta and high confinement, including the highest normalized beta achieved on DIII-D with a quiescent edge.« less
Medium-{beta} free-boundary equilibria of a quasi-isodynamic stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailov, M. I.; Drevlak, M.; Nuehrenberg, J.
Free-boundary MHD equilibria with magnetic surfaces in the vacuum region surrounding the plasma [E. Strumberger, Nucl. Fusion 37, 19 (1997); M. Drevlak, D. Monticello, and A. Reiman, Nucl. Fusion 45, 731 (2005)] are obtained for a quasi-isodynamic stellarator [A. A. Subbotin, M. I. Mikhailov, V. D. Shafranov et al., Nucl. Fusion 46, 921 (2006); M. I. Mikhailov, J. Nuhrenberg, and V. D. Shafranov, Plasma Phys. Rep. 35, 529 (2009)].
Recent Progress on Spherical Torus Research and Implications for Fusion Energy Development Path
NASA Astrophysics Data System (ADS)
Ono, Masayuki
2014-10-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A =R0 / a) reduced to A near 1.5, well below the normal tokamak operating range of A equal to 2.5 or greater. As the aspect ratio is reduced, the ideal tokamak beta (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural plasma elongation which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to the longer term goal of an attractive fusion energy power source. Since the start of the two mega-ampere class ST facilities in 2000, the National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in the UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all areas of fusion research, including fundamental fusion energy science as well as technological innovation. These results suggest exciting future prospects for ST research in both the near and longer term. The talk will summarize the key physics results from worldwide ST experiments, and describe ST community plans to provide the database for FNSF design while improving predictive capabilities for ITER and beyond. This work supported by DoE Contract No. DE-AC02-09CH11466.
The FAST (FRC Acceleration Space Thruster) Experiment
NASA Technical Reports Server (NTRS)
Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.
Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.
2003-05-01
High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.
Identification and characterization of the Myxococcus xanthus bsgA gene product.
Gill, R E; Bornemann, M C
1988-01-01
The bsgA mutants of Myxococcus xanthus are blocked at a very early stage of the developmental program. They fail to produce fruiting bodies or to sporulate under normal conditions but can be rescued by extracellular complementation in mixtures with wild-type cells. A bsgA-lacZ gene fusion was constructed and expressed in Escherichia coli. The resulting fusion protein, which has beta-galactosidase enzyme activity, was partially purified by affinity chromatography and preparative polyacrylamide gel electrophoresis. The protein was used to immunize mice, which produced a hybridoma secreting monoclonal antibody that was specific for the bsgA gene product. The monoclonal antibody was used in Western blot (immunoblot) experiments to determine the apparent cellular location of the bsgA protein in M. xanthus and to compare the level of this protein at various times in the Myxococcus life cycle. Images PMID:2846515
Chern, C J; Croce, C M
1976-01-01
The structural locus for human beta glucuronidase is assigned to chromosome 7, a localization based upon concordant segregation of the expression of the human enzyme and the presence of human chromosome 7 in somatic cell hybrid clones derived independently from fusions of different human and mouse cells. Hybrid clones containing only human chromosome 7 are included in this study. Electrophoresis of beta glucuronidase also has revealed that human beta glucuronidase has a tetrametric structure. Images Fig. 1 Fig. 2 Fig. 3 PMID:941902
Binding Linkage in a Telomere DNA–Protein Complex at the Ends of Oxytricha nova Chromosomes
Buczek, Pawel; Orr, Rochelle S.; Pyper, Sean R.; Shum, Mili; Ota, Emily Kimmel Irene; Gerum, Shawn E.; Horvath, Martin P.
2005-01-01
Alpha and beta protein subunits of the telomere end binding protein from Oxytricha nova (OnTEBP) combine with telomere single strand DNA to form a protective cap at the ends of chromosomes. We tested how protein–protein interactions seen in the co-crystal structure relate to DNA binding through use of fusion proteins engineered as different combinations of domains and subunits derived from OnTEBP. Joining alpha and beta resulted in a protein that bound single strand telomere DNA with high affinity (KD-DNA=1.4 nM). Another fusion protein, constructed without the C-terminal protein–protein interaction domain of alpha, bound DNA with 200-fold diminished affinity (KD-DNA=290 nM) even though the DNA-binding domains of alpha and beta were joined through a peptide linker. Adding back the alpha C-terminal domain as a separate protein restored high-affinity DNA binding. The binding behaviors of these fusion proteins and the native protein subunits are consistent with cooperative linkage between protein-association and DNA-binding equilibria. Linking DNA–protein stability to protein–protein contacts at a remote site may provide a trigger point for DNA–protein disassembly during telomere replication when the single strand telomere DNA must exchange between a very stable OnTEBP complex and telomerase. PMID:15967465
Development of an inducible platform for intercellular protein delivery.
Siller, Richard; Dufour, Eric; Lycke, Max; Wilmut, Ian; Jung, Yong-Wook; Park, In Hyun; Sullivan, Gareth J
2017-04-30
A challenge to protein based therapies is the ability to produce biologically active proteins and their ensured delivery. Various approaches have been utilised including fusion of protein transduction domains with a protein or biomolecule of interest. A compounding issue is lack of specificity, efficiency and indeed whether the protein fusions are actually translocated into the cell and not merely an artefact of the fixation process. Here we present a novel platform, allowing the inducible export and uptake of a protein of interest. The system utilises a combination of the Tetracyline repressor system, combined with a fusion protein containing the N-terminal signal peptide from human chorionic gonadotropin beta-subunit, and a C-terminal poly-arginine domain for efficient uptake by target cells. This novel platform was validated using enhanced green fluorescent protein as the gene of interest. Doxycycline efficiently induced expression of the fusion protein. The human chorionic gonadotropin beta-subunit facilitated the export of the fusion protein into the cell culture media. Finally, the fusion protein was able to efficiently enter into neighbouring cells (target cells), mediated by the poly-arginine cell penetrating peptide. Importantly we have addressed the issue of whether the observed uptake is an artefact of the fixation process or indeed genuine translocation. In addition this platform provides a number of potential applications in diverse areas such as stem cell biology, immune therapy and cancer targeting therapies. Copyright © 2017 Elsevier B.V. All rights reserved.
Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P
1998-07-01
By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.
Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P
1998-11-01
By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.
Wilson, G M; Vasa, M Z; Deeley, R G
1998-05-01
The mRNA encoding the human low density lipoprotein (LDL) receptor is transiently stabilized after phorbol ester treatment of HepG2 cells and has been shown to associate with components of the cytoskeleton in this cell line (G. M. Wilson, E. A. Roberts, and R. G. Deeley, J. Lipid Res. 1997. 38: 437-446). Using an episomal expression system, fragments of the 3' untranslated region (3'UTR) of LDL receptor mRNA were transcribed in fusion with the coding region of beta-globin mRNA in HepG2 cells. Analyses of the decay kinetics of these beta-globin-LDL receptor fusion mRNA deletion mutants showed that sequences in the proximal 3'UTR of LDL receptor mRNA including several AU-rich elements (AREs) were sufficient to confer short constitutive mRNA half-life in the heterologous system. Stabilization of LDL receptor mRNA in the presence of PMA required sequences in the distal 3'UTR, at or near three Alu-like repetitive elements. Furthermore, the 3'UTR of LDL receptor mRNA conferred cytoskeletal association on the otherwise unassociated beta-globin mRNA, by a mechanism involving at least two distinct RNA elements. Comparisons of decay kinetics and subcellular localization of endogenous LDL receptor mRNA and beta-globin-LDL receptor mRNA fusions in HepG2 cells have demonstrated that several cis-acting elements in the receptor 3'UTR contribute to post-transcriptional regulation of receptor expression, and provide further support for involvement of the cytoskeleton in the regulation of LDL receptor mRNA turnover.
The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield
NASA Astrophysics Data System (ADS)
Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco
2017-10-01
Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.
Impact of physics and technology innovations on compact tokamak fusion pilot plants
NASA Astrophysics Data System (ADS)
Menard, Jonathan
2016-10-01
For magnetic fusion to be economically attractive and have near-term impact on the world energy scene it is important to focus on key physics and technology innovations that could enable net electricity production at reduced size and cost. The tokamak is presently closest to achieving the fusion conditions necessary for net electricity at acceptable device size, although sustaining high-performance scenarios free of disruptions remains a significant challenge for the tokamak approach. Previous pilot plant studies have shown that electricity gain is proportional to the product of the fusion gain, blanket thermal conversion efficiency, and auxiliary heating wall-plug efficiency. In this work, the impact of several innovations is assessed with respect to maximizing fusion gain. At fixed bootstrap current fraction, fusion gain varies approximately as the square of the confinement multiplier, normalized beta, and major radius, and varies as the toroidal field and elongation both to the third power. For example, REBCO high-temperature superconductors (HTS) offer the potential to operate at much higher toroidal field than present fusion magnets, but HTS cables are also beginning to access winding pack current densities up to an order of magnitude higher than present technology, and smaller HTS TF magnet sizes make low-aspect-ratio HTS tokamaks potentially attractive by leveraging naturally higher normalized beta and elongation. Further, advances in kinetic stabilization and feedback control of resistive wall modes could also enable significant increases in normalized beta and fusion gain. Significant reductions in pilot plant size will also likely require increased plasma energy confinement, and control of turbulence and/or low edge recycling (for example using lithium walls) would have major impact on fusion gain. Reduced device size could also exacerbate divertor heat loads, and the impact of novel divertor solutions on pilot plant configurations is addressed. For missions including tritium breeding, high-thermal-efficiency liquid metal breeding blankets are attractive, and novel immersion blankets offer the potential for simplified fabrication and maintenance and reduced cost. Lastly, the optimal aspect ratio for a tokamak pilot plant is likely a function of the device mission and associated cost, with low aspect ratio favored for minimizing TF magnet mass and higher aspect ratio favored for minimizing blanket mass. The interplay between a range of physics and technology innovations for enabling compact pilot plants will be described. This work was supported by U.S. DOE Contract Number DE-AC02-09CH11466.
Eliciting an antibody response against a recombinant TSH containing fusion protein.
Mard-Soltani, Maysam; Rasaee, Mohamad Javad; Sheikhi, AbdolKarim; Hedayati, Mehdi
2017-01-01
Designing novel antigens to rise specific antibodies for Thyroid Stimulating Hormone (TSH) detection is of great significance. A novel fusion protein consisting of the C termini sequence of TSH beta subunit and a fusion sequence was designed and produced for rabbit immunization. Thereafter, the produced antibodies were purified and characterized for TSH detection. Our results indicate that the produced antibody is capable of sensitive and specific detection of TSH with low cross reactivity. This study underscores the applicability of designed fusion protein for specific and sensitive polyclonal antibody production and the importance of selecting an amenable region of the TSH for immunization.
Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Wilson; R.E. Bell; S. Bernabei
2003-02-11
High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less
High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents
NASA Astrophysics Data System (ADS)
Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia
2016-10-01
Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.
Sarsero, J P; Pittard, A J
1995-01-01
The mtr gene of Escherichia coli K-12 encodes an inner membrane protein which is responsible for the active transport of trypotophan into the cell. It has been proposed that the Mtr permease has a novel structure consisting of 11 hydrophobic transmembrane spans, with a cytoplasmically disposed amino terminus and a carboxyl terminus located in the periplasmic space (J.P. Sarsero, P. J. Wookey, P. Gollnick, C. Yanofsky, and A.J. Pittard, J. Bacteriol. 173:3231-3234, 1991). The validity of this model was examined by the construction of fusion proteins between the Mtr permease and alkaline phosphatase or beta-galactosidase. In addition to the conventional methods, in which the reporter enzyme replaces a carboxyl-terminal portion of the membrane protein, the recently developed alkaline phosphatase sandwich fusion technique was utilized, in which alkaline phosphatase is inserted into an otherwise intact membrane protein. A cluster of alkaline phosphatase fusions to the carboxyl-terminal end of the Mtr permease exhibited high levels of alkaline phosphatase activity, giving support to the proposition of a periplasmically located carboxyl terminus. The majority of fusion proteins produced enzymatic activities which were in agreement with the positions of the fusion sites on the proposed topological model of the permease. The synthesis of a small cluster of hybrid proteins, whose enzymatic activity did not agree with the location of their fusion sites within putative transmembrane span VIII or the preceding periplasmic loop, was not detected by immunological techniques and did not necessitate modification of the proposed model in this region. Slight alterations may need to be made in the positioning of the carboxyl-terminal end of transmembrane span X.
Gibbs free energy difference between the undercooled liquid and the beta phase of a Ti-Cr alloy
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.
1992-01-01
The heat of fusion and the specific heats of the solid and liquid have been experimentally determined for a Ti60Cr40 alloy. The data are used to evaluate the Gibbs free energy difference, delta-G, between the liquid and the beta phase as a function of temperature to verify a reported spontaneous vitrification (SV) of the beta phase in Ti-Cr alloys. The results show that SV of an undistorted beta phase in the Ti60Cr40 alloy at 873 K is not feasible because delta-G is positive at the temperature. However, delta-G may become negative with additional excess free energy to the beta phase in the form of defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica
Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 wasmore » down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of Drp1 in islets evokes loss of glucose-stimulated insulin secretion.« less
Li, Guangjin; Chen, Weizao; Yan, Weiyao; Zhao, Kai; Liu, Mingqiu; Zhang, Jun; Fei, Liang; Xu, Quanxing; Sheng, Zutian; Lu, Yonggan; Zheng, Zhaoxin
2004-10-25
Previously, we demonstrated that a fusion protein (Gal-FMDV) consisting of beta-galactosidase and an immunogenic peptide, amino acids (141-160)-(21-40)-(141-160), of foot-and-mouth disease virus (FMDV) VP1 protein induced protective immune responses in guinea pigs and swine. We now designed a new potential recombinant protein vaccine against FMDV in swine. The immunogenic peptide, amino acids (141-160)-(21-40)-(141-160) from the VP1 protein of serotype O FMDV, was fused to the carboxy terminus of a swine immunoglobulin G single heavy chain constant region and expressed in Escherichia coli. The expressed fusion protein (IgG-FMDV) was purified and emulsified with oil adjuvant. Vaccination twice at an interval of 3 weeks with the emulsified IgG-FMDV fusion protein induced an FMDV-specific spleen proliferative T-cell response in guinea pigs and elicited high levels of neutralizing antibody in guinea pigs and swine. All of the immunized animals were efficiently protected against FMDV challenge. There was no significant difference between IgG-FMDV and Gal-FMDV in eliciting immunity after vaccination twice in swine. However, when evaluating the efficacy of a single inoculation of the fusion proteins, we found that IgG-FMDV could elicit a protective immune response in swine, while Gal-FMDV only elicited a weak neutralizing activity and could not protect the swine against FMDV challenge. Our results suggest that the IgG-FMDV fusion protein is a promising vaccine candidate for FMD in swine.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-04-04
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
Spherical torus fusion reactor
Peng, Yueng-Kay M.
1989-01-01
A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.
An overview of optical diagnostics developed for the Lockheed Martin compact fusion reactor
NASA Astrophysics Data System (ADS)
Sommers, Bradley; Raymond, Anthony; Gucker, Sarah; Lockheed Martin Compact Fusion Reactor Team
2017-10-01
The T4B experiment is a linear, encapsulated ring cusp confinement device, designed to develop a physics and technology basis for a follow-on high beta machine as part of the compact fusion reactor program. Toward this end, a collection of non-invasive optical diagnostics have been developed to investigate confinement, neutral beam heating, and source behavior on the T4B device. These diagnostics include: (1) a multipoint Thomson scattering system employing a 532 nm Nd:YAG laser and high throughput spectrometer to measure 1D profiles of electron density and temperature, (2) a dispersion interferometer utilizing a continuous-wave CO2 laser (10.6 μm) to measure time resolved, line-integrated electron density, and (3) a bolometer suite utilizing four AXUV photodiodes with 64 lines of sight to generate 2D reconstructions of total radiative power and soft x-ray emission (via beryllium filters). An overview of design methods, including laser systems, detection schemes, and data analysis techniques is presented as well as results to date.
Physicsdesign point for a 1MW fusion neutron source
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Melnik, Paul; Sieck, Paul; Stuber, James; Romero-Talamas, Carlos; O'Bryan, John; Miller, Ronald
2016-10-01
We are developing a design point for a spheromak experiment heated by adiabatic compression for use as a compact neutron source. We utilize the CORSICA and NIMROD MHD codes as well as analytic modeling to assess a concept with target parameters R0 =0.5m, Rf =0.17m, T0 =1keV, Tf =8keV, n0 =2e20m-3 and nf = 5e21m-3, with radial convergence of C =R0/Rf =3. We present results from CORSICA showing the placement of coils and passive structure to ensure stability during compression. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement. We present results simulations of magnetic compression using the NIMROD code to examine the role of rotation on the stability and confinement of the spheromak as it is compressed. Supported by DARPA Grant N66001-14-1-4044 and IAEA CRP on Compact Fusion Neutron Sources.
AE activity during transient beta drops in high poloidal beta discharges
NASA Astrophysics Data System (ADS)
Huang, J.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Qian, J. P.; Pan, C. K.; Li, G. Q.; Heidbrink, W. W.; Garofalo, A. M.; McClenaghan, J.
2016-10-01
Enhanced AE activity has been observed during transient beta drops in high poloidal beta DIII-D discharges with internal transport barriers (ITBs). These drops in beta are believed to be caused by n=1 external kink modes. In some discharges, beta recovers within 200 ms but, in others, beta stays suppressed. A typical discharge has βP 3, qmin 3, and q95 12. The drop in beta affects both fast ions and thermal particles, and a drop is also observed in the density and rotation. The enhanced AE activity follows the instability that causes the beta drop, is largest at the lowest beta, and subsides as beta recovers. MHD stability analysis is planned. A database study of the plasma conditions associated with the collapse will be also presented. Supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC05-06OR23100, and by the National Natural Science Foundation of China 11575249, and the National Magnetic Confinement Fusion Program of China No. 2015GB110005.
Translational regulation of sigma 32 synthesis: requirement for an internal control element.
Kamath-Loeb, A S; Gross, C A
1991-01-01
We have investigated the sequence requirements for the translational regulation of sigma 32 by examining the behavior of a new rpoH-lacZ protein fusion containing a short N-terminal fragment of sigma 32 fused to beta-galactosidase. Although the fusion retains rpoH translational initiation signals, it lacks translational regulation, implicating coding sequences within rpoH in this regulatory process. Images PMID:2050641
Papanikolopoulou, Katerina; Teixeira, Susana; Belrhali, Hassan; Forsyth, V Trevor; Mitraki, Anna; van Raaij, Mark J
2004-09-03
Adenovirus fibres are trimeric proteins that consist of a globular C-terminal domain, a central fibrous shaft and an N-terminal part that attaches to the viral capsid. In the presence of the globular C-terminal domain, which is necessary for correct trimerisation, the shaft segment adopts a triple beta-spiral conformation. We have replaced the head of the fibre by the trimerisation domain of the bacteriophage T4 fibritin, the foldon. Two different fusion constructs were made and crystallised, one with an eight amino acid residue linker and one with a linker of only two residues. X-ray crystallographic studies of both fusion proteins shows that residues 319-391 of the adenovirus type 2 fibre shaft fold into a triple beta-spiral fold indistinguishable from the native structure, although this is now resolved at a higher resolution of 1.9 A. The foldon residues 458-483 also adopt their natural structure. The intervening linkers are not well ordered in the crystal structures. This work shows that the shaft sequences retain their capacity to fold into their native beta-spiral fibrous fold when fused to a foreign C-terminal trimerisation motif. It provides a structural basis to artificially trimerise longer adenovirus shaft segments and segments from other trimeric beta-structured fibre proteins. Such artificial fibrous constructs, amenable to crystallisation and solution studies, can offer tractable model systems for the study of beta-fibrous structure. They can also prove useful for gene therapy and fibre engineering applications.
Nuclear Fusion prize laudation Nuclear Fusion prize laudation
NASA Astrophysics Data System (ADS)
Burkart, W.
2011-01-01
Clean energy in abundance will be of critical importance to the pursuit of world peace and development. As part of the IAEA's activities to facilitate the dissemination of fusion related science and technology, the journal Nuclear Fusion is intended to contribute to the realization of such energy from fusion. In 2010, we celebrated the 50th anniversary of the IAEA journal. The excellence of research published in the journal is attested to by its high citation index. The IAEA recognizes excellence by means of an annual prize awarded to the authors of papers judged to have made the greatest impact. On the occasion of the 2010 IAEA Fusion Energy Conference in Daejeon, Republic of Korea at the welcome dinner hosted by the city of Daejeon, we celebrated the achievements of the 2009 and 2010 Nuclear Fusion prize winners. Steve Sabbagh, from the Department of Applied Physics and Applied Mathematics, Columbia University, New York is the winner of the 2009 award for his paper: 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' [1]. This is a landmark paper which reports record parameters of beta in a large spherical torus plasma and presents a thorough investigation of the physics of resistive wall mode (RWM) instability. The paper makes a significant contribution to the critical topic of RWM stabilization. John Rice, from the Plasma Science and Fusion Center, MIT, Cambridge is the winner of the 2010 award for his paper: 'Inter-machine comparison of intrinsic toroidal rotation in tokamaks' [2]. The 2010 award is for a seminal paper that analyzes results across a range of machines in order to develop a universal scaling that can be used to predict intrinsic rotation. This paper has already triggered a wealth of experimental and theoretical work. I congratulate both authors and their colleagues on these exceptional papers. W. Burkart Deputy Director General Department of Nuclear Sciences and Applications International Atomic Energy Agency, Vienna, Austria References [1] Sabbagh S. et al 2006 Nucl. Fusion 46 635-44 [2] Rice J.E. et al 2007 Nucl. Fusion 47 1618-24
Achieving a long-lived high-beta plasma state by energetic beam injection
NASA Astrophysics Data System (ADS)
Guo, H. Y.; Binderbauer, M. W.; Tajima, T.; Milroy, R. D.; Steinhauer, L. C.; Yang, X.; Garate, E. G.; Gota, H.; Korepanov, S.; Necas, A.; Roche, T.; Smirnov, A.; Trask, E.
2015-04-01
Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.
Feng, Gai-feng; Wang, Jun-yang; Jin, Hui; Wang, Wei-xi; Qian, Yi-hua; Yang, Wei-na; Wang, Quan-ying; Yang, Guang-xiao
2011-11-01
To construct the recombinant prokaryotic expression plasmid pET/c-ABCSP-Aβ(15-c);, and evaluate the immunogenicity of the fusion protein expressed in E.coli. The gene fragment HBc88-144 was amplified by PCR and subcloned to pUC19. The APP beta cleavage site peptide(ABCSP) and Aβ(1-15); gene(ABCSP-Aβ(15);) was amplified by PCR and inserted downstream of HBc1-71 in pGEMEX/c1-71. After restriction enzyme digestion, c1-17-ABCSP-Aβ(15); were connected with HBc88-144, yielding the recombinant gene c-ABCSP-Aβ(15-c);. c-ABCSP-Aβ(15-c); gene was subcloned into pET-28a(+).The fusion protein expressed in transformed E.coli BL21 was induced with IPTG and analyzed by SDS-PAGE. The virus-like particles (VLP) formed by fusion protein was observed with Transmission Electron Microscope (TEM). 4 Kunming (KM) mice received intraperitoneal injection (i.p) of fusion protein VLP. The antibody was detected by indirect ELISA. The recombinant gene was confirmed by restriction enzyme digestion and DNA sequencing. After IPTG induction, fusion protein was expressed and mainly existed in the sediment of the bacterial lysate. The expression level was 40% of all the proteins in the sediment. The fusion protein could form VLP. After 5 times of immunization, the titer of anti-ABCSP and anti-Aβantibody in sera of KM mice reached up to 1:5 000 and 1:10 000 respectively, while the anti-HBc antibody was undetectable. Recombinant c-ABCSP-Aβ(15-c); gene can be expressed in E.coli. The expressed protein could form VLP and has a strong immunogenicity. This study lays the foundation for the study of AD genetic engineering vaccine.
Recent Progress on Spherical Torus Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki; Kaita, Robert
2014-01-01
The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ≥ 2.5. As the aspect ratio is reduced, the ideal tokamak beta β (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as β ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation κ, which makes its plasma shape appear spherical, the ST configurationmore » can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.« less
NASA Astrophysics Data System (ADS)
McKinsey, D. N.;
2016-05-01
The LUX and ZEPLIN collaborations have merged to construct a 7 tonne two-phase Xe dark matter detector, known as LUX-ZEPLIN or LZ. Chosen as one of the Generation 2 suite of dark matter direct detection experiments, LZ will probe spin-independent WIMP-nucleon cross sections down to 2 × 10-48 cm2 at 50 GeV/c2 within 3 years of operation, covering a substantial range of theoretically-motivated dark matter candidates. Along with dark matter interactions with Xe nuclei, LZ will also be sensitive to solar neutrinos emitted by the pp fusion process in the sun, neutrinos emitted by a nearby supernova and detected by coherent neutrino-nucleus scattering, certain classes of axions and axion-like particles, and neutrinoless double-beta decay of 136Xe. The design of LZ is presented, along with its expected backgrounds and projected sensitivity.
HNF1(beta) is required for mesoderm induction in the Xenopus embryo.
Vignali, R; Poggi, L; Madeddu, F; Barsacchi, G
2000-04-01
XHNF1(&bgr;) is a homeobox-containing gene initially expressed at the blastula stage in the vegetal part of the Xenopus embryo. We investigated its early role by functional ablation, through mRNA injection of an XHNF1(beta)/engrailed repressor fusion construct (XHNF1(beta)/EngR). Dorsal injections of XHNF1(beta)/EngR mRNA abolish dorsal mesoderm formation, leading to axial deficiencies; ventral injections disrupt ventral mesoderm formation without affecting axial development. XHNF1(beta)/EngR phenotypic effects specifically depend on the DNA-binding activity of its homeodomain and are fully rescued by coinjection of XHNF1(beta) mRNA. Vegetal injection of XHNF1(beta)/EngR mRNA blocks the mesoderm-inducing ability of vegetal explants. Both B-Vg1 and VegT maternal determinants trigger XHNF1(beta) expression in animal caps. XHNF1(beta)/EngR mRNA blocks B-Vg1-mediated, but not by eFGF-mediated, mesoderm induction in animals caps. However, wild-type XHNF1(beta) mRNA does not trigger Xbra expression in animal caps. We conclude that XHNF1(beta) function is essential, though not sufficient, for mesoderm induction in the Xenopus embryo.
Multi-Wavelength Imaging of Solar Plasma - High-Beta Disruption Model of Solar Flares -
NASA Astrophysics Data System (ADS)
Shibasaki, Kiyoto
Solar atmosphere is filled with plasma and magnetic field. Activities in the atmosphere are due to plasma instabilities in the magnetic field. To understand the physical mechanisms of activities / instabilities, it is necessary to know the physical conditions of magnetized plasma, such as temperature, density, magnetic field, and their spatial structures and temporal developments. Multi-wavelength imaging is essential for this purpose. Imaging observations of the Sun at microwave, X-ray, EUV and optical ranges are routinely going on. Due to free exchange of original data among solar physics and related field communities, we can easily combine images covering wide range of spectrum. Even under such circumstances, we still do not understand the cause of activities in the solar atmosphere well. The current standard model of solar activities is based on magnetic reconnection: release of stored magnetic energy by reconnection is the cause of solar activities on the Sun such as solar flares. However, recent X-ray, EUV and microwave observations with high spatial and temporal resolution show that dense plasma is involved in activities from the beginning. Based on these observations, I propose a high-beta model of solar activities, which is very similar to high-beta disruptions in magnetically confined fusion experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Tianping; Chen, Zhan W.; Gao Wei
2008-11-15
During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a moremore » regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.« less
Detection of anticentromere antibodies using cloned autoantigen CENP-B.
Rothfield, N; Whitaker, D; Bordwell, B; Weiner, E; Senecal, J L; Earnshaw, W
1987-12-01
A solid-phase enzyme-linked immunosorbent assay has been established using a cloned fusion protein, CtermCENP-B [beta-gal], as antigen. The fusion protein carries the major epitope of CENP-B, the major centromeric autoantigen. The enzyme-linked immunosorbent assay was more sensitive than immunofluorescence techniques in detecting anticentromere antibodies in patients with scleroderma or Raynaud's disease, and was weakly positive in 3% of normal controls and in 3% of 70 patients with other connective tissue diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Garcia, Fernando; Mendieta-Moreno, Jesus Ignacio; Mendieta, Jesus
2012-03-30
Highlights: Black-Right-Pointing-Pointer Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. Black-Right-Pointing-Pointer HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. Black-Right-Pointing-Pointer HRS domains of F protein form three single {alpha}-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmentalmore » pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from {beta}-sheet conformation to an elongated coil and then spontaneously to an {alpha}-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.« less
Morris, C J; Lidstrom, M E
1992-01-01
In Methylobacterium extorquens AM1, gene encoding methanol dehydrogenase polypeptides are transcriptionally regulated in response to C1 compounds, including methanol (M. E. Lidstrom and D. I. Stirling, Annu. Rev. Microbiol. 44:27-57, 1990). In order to study this regulation, a transcriptional fusion has been constructed between a beta-galactosidase reporter gene and a 1.55-kb XhoI-SalI fragment of M. extorquens AM1rif DNA encoding the N terminus of the methanol dehydrogenase large subunit (moxF) and 1,289 bp of upstream DNA. The fusion exhibited orientation-specific promoter activity in M. extorquens AM1rif but was expressed constitutively when the transcriptional fusion was located on the plasmid. However, correct regulation was restored when the construction was inserted in the M. extorquens AM1rif chromosome. This DNA fragment was shown to contain both the moxFJGI promoter and the sequences necessary in cis for its transcriptional regulation by methanol. Transcription from this promoter was studied in the M. extorquens AM1rif moxB mutant strains UV4rif and UV25rif, which have a pleiotropic phenotype with regard to the components of methanol oxidation. In these mutants, beta-galactosidase activity from the fusion was reduced to a level equal to that of the vector background when the fusion was present in both plasmid and chromosomal locations. Since both constitutive and methanol-inducible promoter activities were lost in the mutants, moxB appears to be required for transcription of the genes encoding the methanol dehydrogenase polypeptides. Images PMID:1624436
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang Youhua; Zhao Zhe
2006-12-08
The 3{beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3{beta}-HSD gene homolog was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3{beta}-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3{beta}-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3{beta}-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3{beta}-HSDmore » in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3{beta}-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3{beta}-HSD might be a protein involved in host-virus interaction.« less
Z-membranes: artificial organelles for overexpressing recombinant integral membrane proteins.
Gong, F C; Giddings, T H; Meehl, J B; Staehelin, L A; Galbraith, D W
1996-01-01
We have expressed a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme beta-glucuronidase in transgenic tobacco cells. Electron microscope images of such cells demonstrate that overexpression of this fusion protein gives rise to a type of endoplasmic reticulum membrane domain in which adjacent membranes become zippered together apparently as a consequence of the oligomerizing action of beta-glucuronidase. These zippered (Z-) membranes lack markers of the endoplasmic reticulum (NADH cytochrome c reductase and ribosomes) and accumulate in the cells in the form of multilayered scroll-like structures (up to 2 micrometers in diameter; 20-50 per cell) without affecting plant growth. The discovery of Z-membranes has broad implications for biology and biotechnology in that they provide a means for accumulating large quantities of recombinant membrane proteins within discrete domains of native membranes. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8700911
Assessing the relative stabilities of engineered hemoglobins using electrospray mass spectrometry.
Apostol, I
1999-07-15
An ion trap mass spectrometer equipped with an electrospray source was used to examine the relative thermodynamic stabilities of various hemoglobins with respect to both tetramer dissociation and hemin dissociation. The results demonstrated that the stability of hemoglobin molecules can be differentiated by the amount of applied collision-induced dissociation (CID) energy necessary to break up the intact tetramer into its constituent globins. The stability of the intact tetramer was affected by single mutations in the beta-globins. The stabilities of the constituent hologlobins were assessed via trap CID of selected ions. The results demonstrated the importance of the contributions of the hologlobin components to the stability of the intact tetramer. Genetic fusion of two alpha-globins, through the introduction of a single glycine residue between the C-terminus of one alpha-chain and the N-terminus of the second, significantly increased the stability of the hemoglobin pseudo-tetramer. Chemical crosslinking of the beta-globins in addition to genetic fusion of alpha-globins further stabilized the hemoglobin molecule. A dihemoglobin molecule produced by the genetic fusion of two di-alpha-globins with a flexible linker demonstrated a decreased stability relative to the corresponding monohemoglobin. Copyright 1999 Academic Press.
Method for nondestructive fuel assay of laser fusion targets
Farnum, Eugene H.; Fries, R. Jay
1976-01-01
A method for nondestructively determining the deuterium and tritium content of laser fusion targets by counting the x rays produced by the interaction of tritium beta particles with the walls of the microballoons used to contain the deuterium and tritium gas mixture under high pressure. The x rays provide a direct measure of the tritium content and a means for calculating the deuterium content using the initial known D-T ratio and the known deuterium and tritium diffusion rates.
Chemical rescue of cleft palate and midline defects in conditional GSK-3beta mice.
Liu, Karen J; Arron, Joseph R; Stankunas, Kryn; Crabtree, Gerald R; Longaker, Michael T
2007-03-01
Glycogen synthase kinase-3beta (GSK-3beta) has integral roles in a variety of biological processes, including development, diabetes, and the progression of Alzheimer's disease. As such, a thorough understanding of GSK-3beta function will have a broad impact on human biology and therapeutics. Because GSK-3beta interacts with many different pathways, its specific developmental roles remain unclear. We have discovered a genetic requirement for GSK-3beta in midline development. Homozygous null mice display cleft palate, incomplete fusion of the ribs at the midline and bifid sternum as well as delayed sternal ossification. Using a chemically regulated allele of GSK-3beta (ref. 6), we have defined requirements for GSK-3beta activity during discrete temporal windows in palatogenesis and skeletogenesis. The rapamycin-dependent allele of GSK-3beta produces GSK-3beta fused to a tag, FRB* (FKBP/rapamycin binding), resulting in a rapidly destabilized chimaeric protein. In the absence of drug, GSK-3beta(FRB)*(/FRB)* mutants appear phenotypically identical to GSK-3beta-/- mutants. In the presence of drug, GSK-3betaFRB* is rapidly stabilized, restoring protein levels and activity. Using this system, mutant phenotypes were rescued by restoring endogenous GSK-3beta activity during two distinct periods in gestation. This technology provides a powerful tool for defining windows of protein function during development.
Fusion Plasma Performance and Confinement Studies on JT-60 and JT-60U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamada, Y.; Fujita, T.; Ishida, S.
2002-09-15
Fusion plasma performance and confinement studies on JT-60 and JT-60U are reviewed. With the main aim of providing a physics basis for ITER and the steady-state tokamak reactors, JT-60/JT-60U has been developing and optimizing the operational concepts, and extending the discharge regimes toward sustainment of high integrated performance in the reactor relevant parameter regime. In addition to achievement of high fusion plasma performances such as the equivalent breakeven condition (Q{sub DT}{sup eq} up to 1.25) and a high fusion triple product n{sub D}(0){tau}{sub E}T{sub i}(0) = 1.5 x 10{sup 21} m{sup -3}skeV, JT-60U has demonstrated the integrated performance of highmore » confinement, high {beta}{sub N}, full non-inductive current drive with a large fraction of bootstrap current. These favorable performances have been achieved in the two advanced operation regimes, the reversed magnetic shear (RS) and the weak magnetic shear (high-{beta}{sub p}) ELMy H modes characterized by both internal transport barriers (ITB) and edge transport barriers (ETB). The key factors in optimizing these plasmas towards high integrated performance are control of profiles of current, pressure, rotation, etc. utilizing a variety of heating, current drive, torque input, and particle control capabilities and high triangularity operation. As represented by discovery of ITBs (density ITB in the central pellet mode, ion temperature ITB in the high-{beta}{sub p} mode, and electron temperature ITB in the reversed shear mode), confinement studies in JT-60/JT-60U have been emphasizing freedom and also restriction of radial profiles of temperature and density. In addition to characterization of confinement and analyses of transport properties of the OH, the L-mode, the H-mode, the pellet mode, the high-{beta}{sub p} mode, and the RS mode, JT-60U has clarified formation conditions, spatial structures and dynamics of edge and internal transport barriers, and evaluated effects of repetitive MHD events on confinement such as sawteeth and ELMs. Through these studies, JT-60U has demonstrated applicability of the high confinement modes to ITER and the steady-state tokamak reactors.« less
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
NASA Astrophysics Data System (ADS)
Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
Turbulent Stresses in LAPD and CSDX
NASA Astrophysics Data System (ADS)
Light, A. D.; Sechrest, Y.; Schaffner, D. A.; Muller, S. H.; Rossi, G. D.; Guice, D.; Carter, T. A.; Tynan, G. R.; Vincena, S.; Munsat, T.
2011-10-01
Turbulent momentum transport can affect phenomena as diverse as intrinsic rotation in self-organized systems, stellar dynamo, astrophysical accretion, and the mechanism of internal transport barriers in fusion devices. Contributions from turbulent fluctuations, in the form of Reynolds and Maxwell stress terms, have been predicted theoretically and observed in toroidal devices. In an effort to gain general insight into the physics, we present new results from turbulent stress measurements on two linear devices: the LArge Plasma Device (LAPD) at the University of California, Los Angeles, and the Controlled Shear De-correlation eXperiment (CSDX) at the University of California, San Diego. Both experiments are well-characterized linear machines in which the plasma beta can be varied. Electrostatic and magnetic fluctuations are measured over a range of plasma parameters in concert with fast imaging. Maxwell and Reynolds stresses are calculated from probe data and fluctuations are compared with fast camera images using velocimetry techniques.
Status of fusion research and implications for D/He-3 systems
NASA Technical Reports Server (NTRS)
Miley, George H.
1988-01-01
World wide programs in both magnetic confinement and inertial confinement fusion research have made steady progress towards the experimental demonstration of energy breakeven. However, after breakeven is achieved, considerable time and effort must still be expended to develop a usable power plant. The main program described is focused on Deuterium-Tritium devices. In magnetic confinement, three of the most promising high beta approaches with a reasonable experimental data base are the Field Reversed Configuration, the high field tokamak, and the dense Z-pinch. The situation is less clear in inertial confinement where the first step requires an experimental demonstration of D/T spark ignition. It appears that fusion research has reached a point in time where an R and D plan to develop a D/He-3 fusion reactor can be laid out with some confidence of success.
Swadźba, Elwira; Rupik, Weronika
2012-01-01
The monoclonal anti-cytokeratin 1/10 (LH1) antibody recognizing K1/K10 keratin epitopes that characterizes a keratinized epidermis of mammals cross-reacts with the beta and Oberhäutchen layers covering the scales and gastrosteges of grass snake embryos during the final period of epidermis differentiation. The immunolocalization of the anti-cytokeratin 1/10 (LH1) antibody appears in the beta layer of the epidermis, covering the outer surface of the gastrosteges at the beginning of developmental stage XI, and in the beta layer of the epidermis, covering the outer surface of the scales at the end of developmental stage XI. This antibody cross-reacts with the Oberhäutchen layers in the epidermis covering the outer surface of both scales and gastrosteges at developmental stages XI and XII just before its fusion with the beta layers. After fusion of the Oberhäutchen and beta layers, LH1 immunolabeling is weaker than before. This might suggest that alpha-keratins in these layers of the epidermis are masked by beta-keratins, modified, or degraded. The anti-cytokeratin 1/10 (LH1) antibody stains the Oberhäutchen layer in the epidermis covering the inner surface of the gastrosteges and the hinge regions between gastrosteges at the end of developmental stage XI. However, the Oberhäutchen of the epidermis covering the inner surfaces of the scales and the hinge regions between scales does not show cytokeratin 1/10 (LH1) immunolabeling until hatching. This cross-reactivity suggests that the beta and Oberhäutchen layers probably contain some alpha-keratins that react with the LH1 antibody. It is possible that these alpha-keratins create specific scaffolding for the latest beta-keratin deposition. It is also possible that the LH1 antibody cross-reacts with other epidermal proteins such as filament-associated proteins, i.e., filaggrin-like. The anti-cytokeratin 1/10 (LH1) antibody does not stain the alpha and mesos layers until hatching. We suppose that the differentiation of these layers will begin just after the first postnatal sloughing.
Double Beta Decays and Neutrinos - Experiments and MOON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejiri, H.; National Institute of Radiological Sciences, Chiba, 263-8555
2008-01-24
This is a brief review of the present and future experiments of neutrino-less double beta decays (0{nu}{beta}{beta}) and the MOON (Mo Observatory Of Neutrinos) project. High sensitivity 0{nu}{beta}{beta} experiments are unique and realistic probes for studying the Majorana nature of neutrinos and the absolute mass scale as suggested by neutrino oscillation experiments. MOON aims at spectroscopic 0{nu}{beta}{beta} studies with the {nu}-mass sensitivity of 100-30 meV by means of a super ensemble of multilayer modules of scintillator plates and tracking detector planes.
Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O; Dobritsa, Anna A; Evstafieva, Alexandra G; Boldyreff, Brigitte; Issinger, Olaf-Georg; Gvozdev, Vladimir A
2002-03-01
An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta)tes-beta-galactosidase fusion protein driven by the CK2(beta)tes promoter was found in transgenic flies at postmitotic stages of spermatogenesis. Examination of biochemical characteristics of a recombinant CK2(beta)tes protein expressed in Escherichia coli revealed properties similar to those of CK2beta: (a) CK2(beta)tes protein stimulates CK2alpha catalytic activity toward synthetic peptide; (b) it inhibits phosphorylation of calmodulin and mediates stimulation of CK2alpha by polylysine; (c) it is able to form (CK2(beta)tes)2 dimers, as well as (CK2alpha)2(CK2(beta)tes)2 tetramers. Using the yeast two-hybrid system and coimmunoprecipitation analysis of protein extract from Drosophila testes, we demonstrated an association between CK2(beta)tes and CK2alpha. Northern-analysis has shown that another regulatory (beta') subunit found recently in D. melanogaster genome is also testis-specific. Thus, we describe the first example of two tissue-specific regulatory subunits of CK2 which might serve to provide CK2 substrate recognition during spermatogenesis.
Hoshi, K; Fujihara, Y; Mori, Y; Asawa, Y; Kanazawa, S; Nishizawa, S; Misawa, M; Numano, T; Inoue, H; Sakamoto, T; Watanabe, M; Komura, M; Takato, T
2016-09-01
In this study, the mutual fusion of chondrocyte pellets was promoted in order to produce large-sized tissue-engineered cartilage with a three-dimensional (3D) shape. Five pellets of human auricular chondrocytes were first prepared, which were then incubated in an agarose mold. After 3 weeks of culture in matrix production-promoting medium under 5.78g/cm(2) compression, the tissue-engineered cartilage showed a sufficient mechanical strength. To confirm the usefulness of these methods, a transplantation experiment was performed using beagles. Tissue-engineered cartilage prepared with 50 pellets of beagle chondrocytes was transplanted subcutaneously into the cell-donor dog for 2 months. The tissue-engineered cartilage of the beagles maintained a rod-like shape, even after harvest. Histology showed fair cartilage regeneration. Furthermore, 20 pellets were made and placed on a beta-tricalcium phosphate prism, and this was then incubated within the agarose mold for 3 weeks. The construct was transplanted into a bone/cartilage defect in the cell-donor beagle. After 2 months, bone and cartilage regeneration was identified on micro-computed tomography and magnetic resonance imaging. This approach involving the fusion of small pellets into a large structure enabled the production of 3D tissue-engineered cartilage that was close to physiological cartilage tissue in property, without conventional polyper scaffolds. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Estrada, Sarah M.
This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta ˜ 3.5, at VCE = 20V and IB = 10mA) were obtained with an HBT formed via fusion at 600°C for 1 hour, with an optimized base-collector design. This was quite an improvement, as compared to an HBT with a simpler base-collector structure, also fused at 600°C for 1 hour (IC ˜ 0.83 kA/cm2 and beta ˜ 0.89, at VCE = 20V and IB = 10mA). Fused AlGaAs-GaAs-GaAs HBTs were compared to fused AlGaAs-GaAs-GaN HBTs, demonstrating that the use of a wider bandgap collector (Eg,GaN > Eg,GaAs) did indeed improve HBT performance at high applied voltages, as desired for high-power applications.
Kornasio, Reut; Riederer, Ingo; Butler-Browne, Gillian; Mouly, Vincent; Uni, Zehava; Halevy, Orna
2009-05-01
Beta-hydroxy-beta-methylbutyrate (HMB), a leucine catabolite, has been shown to prevent exercise-induced protein degradation and muscle damage. We hypothesized that HMB would directly regulate muscle-cell proliferation and differentiation and would attenuate apoptosis, the latter presumably underlying satellite-cell depletion during muscle degradation or atrophy. Adding various concentrations of HMB to serum-starved myoblasts induced cell proliferation and MyoD expression as well as the phosphorylation of MAPK/ERK. HMB induced differentiation-specific markers, increased IGF-I mRNA levels and accelerated cell fusion. Its inhibition of serum-starvation- or staurosporine-induced apoptosis was reflected by less apoptotic cells, reduced BAX expression and increased levels of Bcl-2 and Bcl-X. Annexin V staining and flow cytometry analysis showed reduced staurosporine-induced apoptosis in human myoblasts in response to HMB. HMB enhanced the association of the p85 subunit of PI3K with tyrosine-phosphorylated proteins. HMB elevated Akt phosphorylation on Thr308 and Ser473 and this was inhibited by Wortmannin, suggesting that HMB acts via Class I PI3K. Blocking of the PI3K/Akt pathway with specific inhibitors revealed its requirement in mediating the promotive effects of HMB on muscle cell differentiation and fusion. These direct effects of HMB on myoblast differentiation and survival resembling those of IGF-I, at least in culture, suggest its positive influence in preventing muscle wasting.
Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Jardin; C.E. Kessel; T.K. Mau
2003-10-07
The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads tomore » a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.« less
Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.
2015-08-18
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.
Marini, F C; Cannon, J P; Belmont, J W; Shillitoe, E J; Lapeyre, J N
1995-09-01
We evaluated the ability of a replication-deficient, recombinant adenoviral vector to transfer the bifunctional gene GAL-TEK, which expresses a marking/therapeutic gene product, to naturally occurring cat fibrosarcomas in situ. GAL-TEK contains an in-frame fusion of the bacterial LacZ gene for histochemical marking of tumors with beta-galactosidase (beta-Gal) and the HSV tk gene for enzyme-prodrug activation of the prodrug ganciclovir (GCV) to induce selective tumor cell killing. GAL-TEK bifunctional marking and cell killing activities were tested in vitro after adenoviral vector infection of HT1080 human fibrosarcoma cells. The tk activity of GAL-TEK is shown to be almost as potent as HSV tk to catalyze conversion of GCV to GCV nucleotides and promote selective cell killing. Using 8 cats with recurring 2.5-cm2 fibrosarcomas that either arose spontaneously or were induced by vaccine, we determined experimentally the administration routes and times required for optimum GAL-TEK gene transfer by beta-Gal histological staining and reverse transcriptase polymerase chain reaction to the multiple compartments of the growing fibrosarcomas consonant with minimizing collateral infection of neighboring tissues and other unwanted side effects.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.
2016-12-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less
Klein, B; Pawlowski, K; Höricke-Grandpierre, C; Schell, J; Töpfer, R
1992-05-01
A cDNA encoding beta-ketoacyl-ACP reductase (EC 1.1.1.100), an integral part of the fatty acid synthase type II, was cloned from Cuphea lanceolata. This cDNA of 1276 bp codes for a polypeptide of 320 amino acids with 63 N-terminal residues presumably representing a transit peptide and 257 residues corresponding to the mature protein of 27 kDa. The encoded protein shows strong homology with the amino-terminal sequence and two tryptic peptides from avocado mesocarp beta-ketoacyl-ACP reductase, and its total amino acid composition is highly similar to those of the beta-ketoacyl-ACP reductases of avocado and spinach. Amino acid sequence homologies to polyketide synthase, beta-ketoreductases and short-chain alcohol dehydrogenases are discussed. An engineered fusion protein lacking most of the transit peptide, which was produced in Escherichia coli, was isolated and proved to possess beta-ketoacyl-ACP reductase activity. Hybridization studies revealed that in C. lanceolata beta-ketoacyl-ACP reductase is encoded by a small family of at least two genes and that members of this family are expressed in roots, leaves, flowers and seeds.
Browne, H M; Churcher, M J; Stanley, M A; Smith, G L; Minson, A C
1988-06-01
The L1 open reading frame of human papillomavirus type 16 (HPV16) has been expressed in vaccinia virus under the control of both the 7.5K early and late promoter, and the 4b major late promoter. Antibodies to a beta-galactosidase fusion protein containing a C-terminal portion of the HPV16 L1 gene product were used to compare the levels of L1 expression in the two recombinants, and showed that greater levels of expression were obtained when the gene was placed under the control of the 4b late promoter. Immunofluorescence studies revealed a nuclear location of the L1 gene product when expressed in vaccinia virus. Antibodies to the beta-galactosidase fusion protein detected a major polypeptide species of 57K and a minor species of 64K in Western blots of recombinant-infected cell lysates. The 64K species was not detected when cells were infected in the presence of tunicamycin, indicating that the primary translation product of the HPV16 L1 open reading frame is modified by N-linked glycosylation when expressed in vaccinia virus. Whereas antibodies to HPV16 L1 fusion proteins and to a peptide containing amino acids from the C terminus of HPV16 L1 reacted well in Western blots with the HPV16 L1 target expressed in vaccinia virus, no reactivity was observed with antibodies to bovine papillomavirus type 1 particles or to a HPV6b fusion protein.
Plant, Sheila R; Iocca, Heather A; Wang, Ying; Thrash, J Cameron; O'Connor, Brian P; Arnett, Heather A; Fu, Yang-Xin; Carson, Monica J; Ting, Jenny P-Y
2007-07-11
Inflammation mediated by macrophages is increasingly found to play a central role in diseases and disorders that affect a myriad of organs, prominent among these are diseases of the CNS. The neurotoxicant-induced, cuprizone model of demyelination is ideally suited for the analysis of inflammatory events. Demyelination on exposure to cuprizone is accompanied by predictable microglial activation and astrogliosis, and, after cuprizone withdrawal, this activation reproducibly diminishes during remyelination. This study demonstrates enhanced expression of lymphotoxin beta receptor (Lt betaR) during the demyelination phase of this model, and Lt betaR is found in areas enriched with microglial and astroglial cells. Deletion of the Lt betaR gene (Lt betaR-/-) resulted in a significant delay in demyelination but also a slight delay in remyelination. Inhibition of Lt betaR signaling by an Lt betaR-Ig fusion decoy protein successfully delayed demyelination in wild-type mice. Unexpectedly, this Lt betaR-Ig decoy protein dramatically accelerated the rate of remyelination, even after the maximal pathological disease state had been reached. This strongly indicates the beneficial role of Lt betaR-Ig in the delay of demyelination and the acceleration of remyelination. The discrepancy between remyelination rates in these systems could be attributed to developmental abnormalities in the immune systems of Lt betaR-/- mice. These findings bode well for the use of an inhibitory Lt betaR-Ig as a candidate biological therapy in demyelinating disorders, because it is beneficial during both demyelination and remyelination.
NASA Astrophysics Data System (ADS)
Tobita, Kenji; Konishi, Satoshi; Tokimatsu, Koji; Nishio, Satoshi; Hiwatari, Ryoji
This section describes the future of fusion energy in terms of its impact on the global energy supply and global warming mitigation, the possible entry scenarios of fusion into future energy market, and innovative technologies for deploying and expanding fusion's share in the market. Section 5.1 shows that fusion energy can contribute to the stabilization of atmospheric CO2 concentration if fusion is introduced into the future energy market at a competitive price. Considerations regarding fusion's entry scenarios into the energy market are presented in Sec. 5.2, suggesting that fusion should replace fossil energy sources and thus contribute to global warming mitigation. In this sense, first generation fusion power plants should be a viable energy source with global appeal and be so attractive as to be employed in developing countries rather than in developed countries. Favorable factors lending to this purpose are fusion's stability as a power source, and its security, safety, and environmental frendliness as well as its cost-of-electricity. The requirements for core plasma to expand the share of fusion in the market in the latter half of this century are given in Sec.5.3, pointing out the importance of high beta access with low aspect ratio and plasma profile control. From this same point of view, innovative fusion technologies worthy of further development are commented on in Sec. 5.4, addressing the high temperature blanket, hydrogen production, high temperature superconductors, and hot cell maintenance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.
This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant,more » at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole radial plasma cross-section. The actual EBW experiment will cost several million dollars, and remains in the proposal stage. The HHFW current drive system has been experimentally implemented on NSTX, and successfully drives substantial current. The understanding of the experiment is to be accomplished in terms of general concepts of rf current drive, and also detailed modeling of the experiment which can discern the various competing processes which necessarily occur simultaneously in the experiment. An early discovery of the CompX codes, GENRAY and CQL3D, was that there could be significant interference between the neutral beam injection fast ions in the machine (injected for plasma heating) and the HHFW energy. Under many NSTX experimental conditions, power which could go to the fast ions would then be unavailable for current drive by the desired HHFW interaction with electrons. This result has been born out by experiments; the modeling helps in understanding difficulties with HHFW current drive, and has enabled adjustment of the experiment to avoid interaction with neutral beam injected fast ions thereby achieving stronger HHFW current drive. The detailed physics modeling of the various competing processes is almost always required in fusion energy plasma physics, to ensure a reasonably accurate and certain interpretation of the experiment, enabling the confident design of future, more advanced experiments and ultimately a commercial fusion reactor. More recent work entails detailed investigation of the interaction of the HHFW radiation for fast ions, accounting for the particularly large radius orbits in NSTX, and correlations between multiple HHFW-ion interactions. The spherical aspect of the NSTX experiment emphasized particular physics such as the large orbits which are present to some degree in all tokamaks, but gives clearer clues on the resulting physics phenomena since competing physics effects are reduced.« less
Anaplastic lymphoma kinase is expressed in different subtypes of human breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Pinera, Pablo; Chang, Y.; Astudillo, A.
2007-06-29
Pleiotrophin (PTN, Ptn) is an 18 kDa cytokine expressed in human breast cancers. Since inappropriate expression of Ptn stimulates progression of breast cancer in transgenic mice and a dominant negative PTN reverses the transformed phenotype of human breast cancer cells that inappropriately express Ptn, it is suggested that constitutive PTN signaling in breast cancer cells that inappropriately express Ptn activates pathways that promote a more aggressive breast cancer phenotype. Pleiotrophin signals by inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP){beta}/{zeta}, and, recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTP{beta}/{zeta} signaling pathway in PTN-stimulated cells,more » not through a direct interaction of PTN with ALK and thus not through the PTN-enforced dimerization of ALK. Since full-length ALK is activated in different malignant cancers and activated ALK is a potent oncogenic protein, we examined human breast cancers to test the possibility that ALK may be expressed in breast cancers and potentially activated through the PTN/RPTP{beta}/{zeta} signaling pathway; we now demonstrate that ALK is strongly expressed in different histological subtypes of human breast cancer; furthermore, ALK is expressed in both nuclei and cytoplasm and, in the 'dotted' pattern characteristic of ALK fusion proteins in anaplastic large cell lymphoma. This study thus supports the possibility that activated ALK may be important in human breast cancers and potentially activated either through the PTN/RPTP{beta}/{zeta} signaling pathway, or, alternatively, as an activated fusion protein to stimulate progression of breast cancer in humans.« less
Efficacy of different bone volume expanders for augmenting lumbar fusions.
Epstein, Nancy E
2008-01-01
A wide variety of bone volume expanders are being used in performing posterolateral lumbar noninstrumented and instrumented lumbar fusions. This article presents a review of their efficacy based on fusion rates, complications, and outcomes. Lumbar noninstrumented and instrumented fusions frequently use laminar autografts and different bone graft expanders. This review presents the utility of multiple forms/ratios of DBMs containing allografts. It also discusses the efficacy of artificial bone graft substitutes, including HA and B-TCP. Dynamic x-ray and/or CT examinations were used to document fusion in most series. Outcomes were variously assessed using Odom's criteria or different outcome questionnaires (Oswestry Questionnaire, SF-36, Dallas Pain Questionnaire, and/or Low Back Pain Rating Scale). Performing noninstrumented and instrumented lumbar posterolateral fusions resulted in comparable fusion rates in many series. Similar outcomes were also documented based on Odom's criteria or the multiple patient-based questionnaires. However, in some studies, the addition of spinal instrumentation increased the reoperation rate, operative time, blood loss, and cost. Various forms of DBMs, applied in different ratios to autografts, effectively supplemented spinal fusions in animal models and patient series. beta-Tricalcium phosphate, which is used to augment autograft fusions addressing idiopathic scoliosis or lumbar disease, also proved to be effective. Different types of bone volume expanders, including various forms of allograft-based DBMs, and artificial bone graft substitutes (HA and B-TCP) effectively promote posterolateral lumbar noninstrumented and instrumented fusions when added to autografts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart Zweben; Samuel Cohen; Hantao Ji
Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.
Design and installation of a ferromagnetic wall in tokamak geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.
Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics andmore » overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohara-Imaizumi, Mica; Aoyagi, Kyota; Nakamichi, Yoko
We simultaneously analyzed insulin granule fusion with insulin fused to green fluorescent protein and the subplasma membrane Ca{sup 2+} concentration ([Ca{sup 2+}]{sub PM}) with the Ca{sup 2+} indicator Fura Red in rat {beta} cells by dual-color total internal reflection fluorescence microscopy. We found that rapid and marked elevation in [Ca{sup 2+}]{sub PM} caused insulin granule fusion mostly from previously docked granules during the high KCl-evoked release and high glucose-evoked first phase release. In contrast, the slow and sustained elevation in [Ca{sup 2+}]{sub PM} induced fusion from newcomers translocated from the internal pool during the low KCl-evoked release and glucose-evoked secondmore » phase release. These data suggest that the pattern of the [Ca{sup 2+}]{sub PM} rise directly determines the types of fusing granules.« less
Aydin, Halil; Cook, Jonathan D.
2014-01-01
Membrane fusion is a key step in the life cycle of all envelope viruses, but this process is energetically unfavorable; the transmembrane fusion subunit (TM) of the virion-attached glycoprotein actively catalyzes the membrane merger process. Retroviral glycoproteins are the prototypical system to study pH-independent viral entry. In this study, we determined crystal structures of extramembrane regions of the TMs from Mason-Pfizer monkey virus (MPMV) and xenotropic murine leukemia virus-related virus (XMRV) at 1.7-Å and 2.2-Å resolution, respectively. The structures are comprised of a trimer of hairpins that is characteristic of class I viral fusion proteins and now completes a structural library of retroviral fusion proteins. Our results allowed us to identify a series of intra- and interchain electrostatic interactions in the heptad repeat and chain reversal regions. Mutagenesis reveals that charge-neutralizing salt bridge mutations significantly destabilize the postfusion six-helix bundle and abrogate retroviral infection, demonstrating that electrostatic stapling of the fusion subunit is essential for viral entry. Our data indicate that salt bridges are a major stabilizing force on the MPMV and XMRV retroviral TMs and likely provide the key energetics for viral and host membrane fusion. PMID:24131724
Development of the Los Alamos National Laboratory Cryogenic Pressure Loader
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebey, Peter S.; Dole, James M.; Hoffer, James K.
2003-05-15
Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less
Smith, A R; Boursnell, M E; Binns, M M; Brown, T D; Inglis, S C
1990-01-01
Nucleotide sequences from the third open reading frame of mRNA D (D3) of infectious bronchitis virus (IBV) were expressed in bacteria as part of a fusion protein with beta-galactosidase. Antiserum raised in rabbits against this fusion protein immunoprecipitated from IBV-infected chick kidney or Vero cells a polypeptide of 12.4K, the size expected for a D3-encoded product. The D3 polypeptide is apparently non-glycosylated, and appears to be associated with the membrane fraction of infected cells, as judged by cell fractionation and immunofluorescence.
Analysis of Snail1 function and regulation by Twist1 in palatal fusion.
Yu, Wenli; Zhang, Yanping; Ruest, L Bruno; Svoboda, Kathy K H
2013-01-01
Palatal fusion is a tightly controlled process which comprises multiple cellular events, including cell movement and differentiation. Midline epithelial seam (MES) degradation is essential to palatal fusion. In this study, we analyzed the function of Snail1 during the degradation of the MES. We also analyzed the mechanism regulating the expression of the Snail1 gene in palatal shelves. Palatal explants treated with Snail1 siRNA did not degrade the MES and E-cadherin was not repressed leading to failure of palatal fusion. Transforming growth factor beta 3 (Tgfβ3) regulated Snail1 mRNA, as Snail1 expression decreased in response to Tgfβ3 neutralizing antibody and a PI-3 kinase (PI3K) inhibitor. Twist1, in collaboration with E2A factors, regulated the expression of Snail1. Twist1/E47 dimers bond to the Snail1 promoter to activate expression. Without E47, Twist1 repressed Snail1 expression. These results support the hypothesis that Tgfβ3 may signal through Twist1 and then Snail1 to downregulate E-cadherin expression during palatal fusion.
Greinert, R; Detzler, E; Volkmer, B; Harder, D
1995-11-01
Human lymphocytes irradiated with graded doses of up to 5 Gy of 150 kV X rays were fused with mitotic CHO cells after delay times ranging from 0 to 14 h after irradiation. The yields of dicentrics seen under PCC conditions, using C-banding for centromere detection, and of excess acentric fragments observed in the PCC experiment were determined by image analysis. At 4 Gy the time course of the yield of dicentrics shows an early plateau for delay times up to 2 h, then an S-shaped rise and a final plateau which is reached after a delay time of about 8 to 10 h. Whereas the dose-yield curve measured at zero delay time is strictly linear, the shape of the curve obtained for 8 h delay time is linear-quadratic. The linear yield component, alpha D, is formed entirely in the fast process manifested in the early plateau, while component beta D2 is developed slowly in the subsequent hours. Analysis of the kinetics of the rise of the S-shaped curve for yield as a function of time leads to the postulate of an "intermediate product" of pairwise DNA lesion interaction, still fragile when subjected to the stress of PCC, but gradually processed into a stable dicentric chromosome. It is concluded that the observed difference in the kinetics of the alpha and beta components explains a number of earlier results, especially the disappearance of the beta component at high LET, and opens possibilities for chemical and physical modification of the beta component during the extended formation process after irradiation observed here.
Laser Beat-Wave Magnetization of a Dense Plasma
NASA Astrophysics Data System (ADS)
Yates, Kevin; Hsu, Scott; Montgomery, David; Dunn, John; Langendorf, Samuel; Pollock, Bradley; Johnson, Timothy; Welch, Dale; Thoma, Carsten
2017-10-01
We present results from the first of a series of experiments to demonstrate and characterize laser beat-wave magnetization of a dense plasma, motivated by the desire to create high-beta targets with standoff for magneto-inertial fusion. The experiments are being conducted at the Jupiter Laser Facility (JLF) at LLNL. The experiment uses the JLF Janus 1 ω (1053 nm) beam and a standalone Nd:YAG (1064 nm) to drive the beat wave, and the Janus 2 ω (526.5 nm) beam to ionize/heat a gas-jet target as well as to provide Thomson-scattering (TS) measurements of the target density/temperature and scattered light from the beat wave. Streaked TS data captured electron-plasma-wave and ion-acoustic-wave features utilizing either nitrogen or helium gas jets. Effects of initial gas density as well as laser intensity on target have been measured, with electron densities ranging from 1E18 to 1E19 cm-3 with temperatures of tens to hundreds of eV, near the desired range for optimal field generation. LSP simulations were run to aid experimental design and data interpretation. LANL LDRD Program.
Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W
2006-05-25
We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not change the PT thermodynamics or kinetics appreciably for the first and the second PT beta <--> delta cycles, as predicted by theory; (f) beta <--> delta PTs start at a very small driving force (in contrast to all known solid-solid transformations with large transformation strain), that is, elastic energy and athermal interface friction must be negligible; (g) beta --> alpha and alpha --> beta PTs, which are thermodynamically possible in the temperature range 382.4 < theta < 430 K and below 382.4 K, respectively, do not occur.
Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D
2016-07-01
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.
Energy and Technology Review, October 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.C.; de Vore, L.; Gleason, K.
1990-10-01
This report discuss the following topics: History of Cold Fusion Experiments; LLNL Experiments on Cold Fusion; Roundtable Discussion on Cold Fusion; and Using MeV Ions To Characterize and Modify Materials.
Evaluation of performance of select fusion experiments and projected reactors
NASA Technical Reports Server (NTRS)
Miley, G. H.
1978-01-01
The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters.
NASA Astrophysics Data System (ADS)
Qian, J. P.; Garofalo, A. M.; Gong, X. Z.; Ren, Q. L.; Ding, S. Y.; Solomon, W. M.; Xu, G. S.; Grierson, B. A.; Guo, W. F.; Holcomb, C. T.; McClenaghan, J.; McKee, G. R.; Pan, C. K.; Huang, J.; Staebler, G. M.; Wan, B. N.
2017-05-01
Recent EAST/DIII-D joint experiments on the high poloidal beta {β\\text{P}} regime in DIII-D have extended operation with internal transport barriers (ITBs) and excellent energy confinement (H 98y2 ~ 1.6) to higher plasma current, for lower q 95 ⩽ 7.0, and more balanced neutral beam injection (NBI) (torque injection < 2 Nm), for lower plasma rotation than previous results (Garofalo et al, IAEA 2014, Gong et al 2014 IAEA Int. Conf. on Fusion Energy). Transport analysis and experimental measurements at low toroidal rotation suggest that the E × B shear effect is not key to the ITB formation in these high {β\\text{P}} discharges. Experiments and TGLF modeling show that the Shafranov shift has a key stabilizing effect on turbulence. Extrapolation of the DIII-D results using a 0D model shows that with the improved confinement, the high bootstrap fraction regime could achieve fusion gain Q = 5 in ITER at {β\\text{N}} ~ 2.9 and q 95 ~ 7. With the optimization of q(0), the required improved confinement is achievable when using 1.5D TGLF-SAT1 for transport simulations. Results reported in this paper suggest that the DIII-D high {β\\text{P}} scenario could be a candidate for ITER steady state operation.
Spectroscopic Studies of Double Beta Decays and MOON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejiri, H.; Nuclear Science, Czech Technical University, Brehova, Prague, Czech Republic, National Institute of Radiological Sciences, Chiba, 263-8555
2007-10-12
This is a brief review of future spectroscopic experiments of neutrino-less double beta decays (0{nu}{beta}{beta}) and the MOON (Mo Observatory Of Neutrinos) project. Spectroscopic 0{nu}{beta}{beta} experiments of MOON, SuperNEMO and DCBA are planned to study Majorana masses in the quasi-degenerate (QD) and inverted mass hierarchy (IH) regions. MOON aims at 0{nu}{beta}{beta} studies with the {nu}-mass sensitivities of 100-30 meV by means of a super ensemble of multi-layer modules, each being consist of a scintillator plate, two tracking detector planes and a thin {beta}{beta} source film.
Protein- protein interaction detection system using fluorescent protein microdomains
Waldo, Geoffrey S.; Cabantous, Stephanie
2010-02-23
The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro
To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two typesmore » of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.« less
Takahashi, Y; Bigler, D; Ito, Y; White, J M
2001-04-01
ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M.S.; Knauf, J.A.; Pendergrass, S.H.
1996-08-06
Xeroderma pigmentosum type G (XPG) is a human genetic disease exhibiting extreme sensitivity to sunlight. XPG patients are defective XPG endonuclease, which is an enzyme essential for DNA repair of the major kinds of solar ultraviolet (UV)-induced DNA damages. Here we describe a novel dynamics of this protein within the cell nucleus after UV irradiation of human cells. USing confocal microscopy, we have localized the immunofluorescent, antigenic signal of XPG protein to foci throughout the cell nucleus. Our biochemical studies also established that XPG protein forms a tight association with nuclear structure(s). In human skin fibroblast cells, the number ofmore » XPG foci decreased within 2 h after UV irradiation, whereas total nuclear XPG fluorescence intensity remained constant, suggesting redistribution of XPG from a limited number of nuclear foci to the nucleus overall. Within 8 h after UV, most XPG antigenic signal was found as foci. Using {beta}-galactosidase-XPG fusion constructs ({beta}-gal-XPG) transfected into HeLa cells, we have identified a single region of XPG that is evidently responsible both for foci formation and for the UV dynamic response. The fusion protein carrying the C terminus of XPG (amino acids 1146-1185) localized {beta}-gal specific antigenic signal to foci and to the nucleolus regions. After UV irradiation, antigenic {beta}-gal translocated reversibly from the subnuclear structures to the whole nucleus with kinetics very similar to the movements of XPG protein. These findings lead us to propose a model in which distribution of XPG protein may regulate the rate of DNA repair within transcriptionally active and inactive compartments of the cell nucleus. 50 refs., 5 figs., 1 tab.« less
Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech
NASA Astrophysics Data System (ADS)
Sabbagh, Steven Anthony
2011-01-01
This is an exceptional moment in my career, and so I want to thank all of my teachers, colleagues and mentors who have made this possible. From my co-authors and myself, many thanks to the International Atomic Energy Agency, IOP Publishing, the Nuclear Fusion journal team, and the selection committee for the great honor of receiving this award. Also gratitude to Kikuchi-sensei, not only for the inventive and visionary creation of this award, but also for being a key mentor dating back to his efforts in producing high neutron output in JT-60U. It was also a great honor to receive the award directly from IAEA Deputy Director General Burkart during the 23rd IAEA Fusion Energy Conference in Daejeon. Receiving the award at this venue is particularly exciting as Daejeon is home to the new, next-generation KSTAR tokamak device that will lead key magnetic fusion research areas going forward. I would also like to thank the mayor of Daejeon, Dr Yum Hong-Chul, and all of the meeting organizers for giving us all a truly spectacular and singular welcoming event during which the award was presented. The research leading to the award would not have been possible without the support of the US Department of Energy, and I thank the Department for the continued funding of this research. Special mention must be made to a valuable co-author who is no longer with us, Professor A. Bondeson, who was a significant pioneer in resistive wall mode (RWM) research. I would like to thank my wife, Mary, for her infinite patience and encouragement. Finally, I would like to personally thank all of you that have approached and congratulated me directly. There are no units to measure how important your words have been in this regard. When notified that our paper had been shortlisted for the 2009 Nuclear Fusion Award, my co-authors responded echoing how I felt—honored to be included in such a fine collection of research by colleagues. It was unfathomable—would this paper follow the brilliant work of Dr Todd Evans, another significant mentor of mine, as winner of this prestigious award? Then, it happened. The paper covers several key topics related to high beta tokamak physics. For me, the greatest satisfaction in receiving this award is because it was the first Nuclear Fusion Award to recognize research on the National Spherical Torus Experiment (NSTX) located at the Princeton Plasma Physics Laboratory. The achievement of record stability parameters in a mega-Ampere class spherical torus (ST) device reported in the paper represents a multi-year effort, contributed to by the entire research team. Research to maintain such plasmas for an indefinite period continues today. Understanding RWM stabilization physics is crucial for this goal, and leveraging the high beta ST operating space uniquely tests theory for application to future STs and to tokamaks in general, including advanced operational scenarios of ITER. For instance, the RWM was found to have significant amplitude in components with the toroidal mode number greater than unity. This has important implications for general active RWM control. Evidence that the RWM passive stabilization physics and marginal stability criterion are indeed more complex than originally thought was shown in this paper. Present work shows the greater complexity has a direct impact on how we should extrapolate RWM stabilization to future devices. The paper also reported the qualitative observation of neoclassical toroidal viscosity (NTV), followed by a companion paper by our group in 2006 reporting the quantitative observation of this effect and comparison to theory. The physics of this interesting and important phenomenon was introduced to me by Professor J. Callen (who has given an overview talk at this conference including this subject) and Professor Kerchung Shaing of the University of Wisconsin, to whom I am quite indebted. The paper also reported the first measurement of resonant field amplification at high beta in the NSTX, following work of the Columbia University group at DIII-D during that period. My greatest hope in our stability physics research effort is that our insight in this portion of the much larger research effort, of which we all partake, to make fusion reactors a practical reality, will give new and future researchers the input and motivation to amplify our work and create realities that we had thought were just out of reach. Receiving the 2009 IAEA Nuclear Fusion Award is a substantial honor that greatly motivates me to continue to support the international nuclear fusion research effort at the highest level possible. So, please allow me to raise this beautiful trophy high, here today, to best remember this fine honor. Thank you. Steven Anthony Sabbagh 2009 Nuclear Fusion Award winner Columbia University, New York, NY, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filone, Claire Marie; Heise, Mark; Doms, Robert W.
2006-12-20
Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expressionmore » of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.« less
Helium Catalyzed D-D Fusion in a Levitated Dipole
NASA Astrophysics Data System (ADS)
Kesner, J.; Bromberg, L.; Garnier, D. T.; Hansen, A.; Mauel, M. E.
2003-10-01
Fusion research has focused on the goal of deuterium and tritium (D-T) fusion power because the reaction rate is large compared with the other fusion fuels: D-D or D-He3. Furthermore, the D-D cycle is difficult in traditional confinement devices, such as tokamaks, because good energy confinement is accompanied by good particle confinement which leads to an accumulation of ash. Fusion reactors based on the D-D reaction would be advantageous to D-T based reactors since they do not require the breeding of tritium and can reduce the flux of energetic neutrons that cause material damage. We propose a fusion power source based on the levitated dipole fusion concept that uses a "helium catalyzed D-D" fuel cycle, where rapid circulation of plasma allows the removal of tritium and the re-injection of the He3 decay product, eliminating the need for a massive blanket and shield. Stable dipole confinement derives from plasma compressibility instead of the magnetic shear and average good curvature. As a result, a dipole magnetic field can stabilize plasma at high beta while allowing large-scale adiabatic particle circulation. These properties may make the levitated dipole uniquely capable of achieving good energy confinement with low particle confinement. We find that a dipole based D-D power source can provide better utilization of magnetic field energy with a comparable mass power density to a D-T based tokamak power source.
Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung
2006-09-01
Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.
Styron, J D; Cooper, G W; Ruiz, C L; Hahn, K D; Chandler, G A; Nelson, A J; Torres, J A; McWatters, B R; Carpenter, Ken; Bonura, M A
2014-11-01
A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.
Review of modern double beta decay experiments
NASA Astrophysics Data System (ADS)
Barabash, A. S.
2015-10-01
The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (
Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie
2008-07-01
Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.
Marcipar, Iván S; Olivares, María Laura; Robles, Lucía; Dekanty, Andrés; Marcipar, Alberto; Silber, Ariel M
2004-03-01
In the present work, we have determined the effect of expression vectors and their corresponding host bacteria on the antigenic performance of Trypanosoma cruzi P2beta (TcP2beta) full-length recombinant protein. The gene encoding the TcP2beta ribosomal protein was cloned in pMAL-c2 and pET-32a vectors that allow the expression of high levels of soluble fusion proteins. A panel of 32 positive and 32 negative sera was assayed with the purified proteins expressed using pMal-c2 (TcP2beta-MBP) and pET-32a (TcP2beta-TRX) vectors and with MBP and TRX purified from pMAL-c2 and pET-32a vectors, respectively. The antigenic behavior of each TcP2beta recombinant protein differed in the diagnostic performance in terms of DI(+) (93.7 for TcP2beta-MBP vs 100% for TcP2beta-TRX), in DI(-) (90.5 for TcP2beta-MBP vs 100% for TcP2beta-TRX) and in cross-reaction with negative sera. To determine if the higher reactivity of expressed pMAL-c2 protein was due to folding during protein expression or to a steric effect related to the protein adsorption at the titration plate, the reactivity of sera against soluble proteins was assessed by ELISA inhibition assays. As each soluble protein preserved its level of reactivity, we concluded that differences in reactivity were due to intrinsic characteristics of the proteins and not to differences in patterns of adsorption to the plates.
Campos, Eleonora; Negro Alvarez, María José; Sabarís di Lorenzo, Gonzalo; Gonzalez, Sergio; Rorig, Marcela; Talia, Paola; Grasso, Daniel H; Sáez, Felicia; Manzanares Secades, Paloma; Ballesteros Perdices, Mercedes; Cataldi, Angel A
2014-01-01
The use of lignocellulosic biomass for second generation biofuels requires optimization of enzymatic breakdown of plant cell walls. In this work, cellulolytic bacteria were isolated from a native and two cultivated forest soil samples. Amplification of glycosyl hydrolases was attempted by using a low stringency-degenerate primer PCR strategy, using total soil DNA and bulk DNA pooled from positive colonies as template. A set of primers was designed based on Acidothermus cellulolyticus genome, by search of conserved domains of glycosyl hydrolases (GH) families of interest. Using this approach, a fragment containing an open reading frame (ORF) with 98% identity to a putative GH43 beta-xylosidase coding gene from Enterobacter cloacae was amplified and cloned. The full protein was expressed in Escherichia coli as N-terminal or C-terminal His-tagged fusions and purified under native conditions. Only N-terminal fusion protein, His-Xyl43, presented beta-xylosidase activity. On pNPX, optimal activity was achieved at pH 6 and 40 °C and Km and Kcat values were 2.92 mM and 1.32 seg(-1), respectively. Activity was also demonstrated on xylobiose (X2), with Km 17.8 mM and Kcat 380 s(-1). These results demonstrated that Xyl43 is a functional beta-xylosidase and it is the first evidence of this activity for Enterobacter sp. Copyright © 2013 Elsevier GmbH. All rights reserved.
McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...
2017-08-03
In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less
Prater, Ronald; Moeller, Charles P.; Pinsker, Robert I.; ...
2014-06-26
Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called “helicons” or “whistlers”) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behavior of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly toward the plasma center. The high frequency also contributes to strong damping. Modeling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta ismore » above about 1.8%. Detailed analysis of ray behavior shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behavior in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n||, so wave accessibility issues can be reduced. Finally, use of a traveling wave antenna provides a very narrow n|| spectrum, which also helps avoid accessibility problems.« less
Review of the magnetic fusion program by the 1986 ERAB Fusion Panel
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.
1987-09-01
The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.
Modular low aspect ratio-high beta torsatron
Sheffield, George V.; Furth, Harold P.
1984-02-07
A fusion reactor device in which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low aspect ratio toroid in planes having the cylindrical coordinate relationship .phi.=.phi..sub.i +kz where k is a constant equal to each coil's pitch and .phi..sub.i is the toroidal angle at which the i'th coil intersects the z=o plane. The device may be described as a modular, high beta torsation whose screw symmetry is pointed along the systems major (z) axis. The toroid defined by the modular coils preferably has a racetrack minor cross section. When vertical field coils and preferably a toroidal plasma current are provided for magnetic field surface closure within the toroid, a vacuum magnetic field of racetrack shaped minor cross section with improved stability and beta valves is obtained.
Shared Negative Experiences Lead to Identity Fusion via Personal Reflection.
Jong, Jonathan; Whitehouse, Harvey; Kavanagh, Christopher; Lane, Justin
2015-01-01
Across three studies, we examined the role of shared negative experiences in the formation of strong social bonds--identity fusion--previously associated with individuals' willingness to self-sacrifice for the sake of their groups. Studies 1 and 2 were correlational studies conducted on two different populations. In Study 1, we found that the extent to which Northern Irish Republicans and Unionists experienced shared negative experiences was associated with levels of identity fusion, and that this relationship was mediated by their reflection on these experiences. In Study 2, we replicated this finding among Bostonians, looking at their experiences of the 2013 Boston Marathon Bombings. These correlational studies provide initial evidence for the plausibility of our causal model; however, an experiment was required for a more direct test. Thus, in Study 3, we experimentally manipulated the salience of the Boston Marathon Bombings, and found that this increased state levels of identity fusion among those who experienced it negatively. Taken together, these three studies provide evidence that shared negative experience leads to identity fusion, and that this process involves personal reflection.
NASA Astrophysics Data System (ADS)
Moyer, R. A.; Paz-Soldan, C.; Nazikian, R.; Orlov, D. M.; Ferraro, N. M.; Grierson, B. A.; Knölker, M.; Lyons, B. C.; McKee, G. R.; Osborne, T. H.; Rhodes, T. L.; Meneghini, O.; Smith, S.; Evans, T. E.; Fenstermacher, M. E.; Groebner, R. J.; Hanson, J. M.; La Haye, R. J.; Luce, T. C.; Mordijck, S.; Solomon, W. M.; Turco, F.; Yan, Z.; Zeng, L.; DIII-D Team
2017-10-01
Experiments have been executed in the DIII-D tokamak to extend suppression of Edge Localized Modes (ELMs) with Resonant Magnetic Perturbations (RMPs) to ITER-relevant levels of beam torque. The results support the hypothesis for RMP ELM suppression based on transition from an ideal screened response to a tearing response at a resonant surface that prevents expansion of the pedestal to an unstable width [Snyder et al., Nucl. Fusion 51, 103016 (2011) and Wade et al., Nucl. Fusion 55, 023002 (2015)]. In ITER baseline plasmas with I/aB = 1.4 and pedestal ν * ˜ 0.15, ELMs are readily suppressed with co- I p neutral beam injection. However, reducing the beam torque from 5 Nm to ≤ 3.5 Nm results in loss of ELM suppression and a shift in the zero-crossing of the electron perpendicular rotation ω ⊥ e ˜ 0 deeper into the plasma. The change in radius of ω ⊥ e ˜ 0 is due primarily to changes to the electron diamagnetic rotation frequency ωe * . Linear plasma response modeling with the resistive MHD code m3d-c1 indicates that the tearing response location tracks the inward shift in ω ⊥ e ˜ 0. At pedestal ν * ˜ 1, ELM suppression is also lost when the beam torque is reduced, but the ω ⊥ e change is dominated by collapse of the toroidal rotation v T . The hypothesis predicts that it should be possible to obtain ELM suppression at reduced beam torque by also reducing the height and width of the ωe * profile. This prediction has been confirmed experimentally with RMP ELM suppression at 0 Nm of beam torque and plasma normalized pressure β N ˜ 0.7. This opens the possibility of accessing ELM suppression in low torque ITER baseline plasmas by establishing suppression at low beta and then increasing beta while relying on the strong RMP-island coupling to maintain suppression.
Zou, Ying S; Hoppman, Nicole L; Singh, Zeba N; Sawhney, Sameer; Kotiah, Sandy D; Baer, Maria R
2017-04-01
We report a NUMA1-PDGFRB fusion in a myeloproliferative neoplasm with eosinophilia in a 61-year old man, with response to imatinib mesylate therapy. A t(5;11) chromosome translocation involving bands 5q32 and 11q13.4 was identified by metaphase chromosome analysis, and rearrangement of the platelet-derived growth factor receptor beta (PDGFRB) gene on 5q32 was demonstrated by FISH using a PDGFRB break-apart probe set. Bacterial artificial chromosome (BAC) FISH mapping of the PDGFRB fusion partner gene narrowed the breakpoint at 11q13.4 to a 150 kb genomic region containing three genes, including NUMA1. Mate pair sequencing analysis demonstrated NUMA1-PDGFRB fusion. The fusion protein includes coiled-coil domains of nuclear mitotic apparatus protein 1 (NuMA1, involved in protein homodimerization and heteroassociation) and tyrosine kinase domains of PDGFRB. Diverse rearrangements involving the PDGFRB gene have been identified in myeloid and lymphoid neoplasms with eosinophilia, but rearrangement of the nuclear mitotic apparatus protein 1 (NUMA1) gene has previously been reported in a human malignancy in only one instance, a NUMA1-RARA fusion caused by a t(11;17) translocation in a patient with acute promyelocytic leukemia. The NUMA1-PDGFRB fusion is the second instance of rearrangement of NUMA1, encoding an element of the mitotic apparatus, in human cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Lafuente, M J; Petit, T; Gancedo, C
1997-12-22
We have constructed a series of plasmids to facilitate the fusion of promoters with or without coding regions of genes of Schizosaccharomyces pombe to the lacZ gene of Escherichia coli. These vectors carry a multiple cloning region in which fission yeast DNA may be inserted in three different reading frames with respect to the coding region of lacZ. The plasmids were constructed with the ura4+ or the his3+ marker of S. pombe. Functionality of the plasmids was tested measuring in parallel the expression of fructose 1,6-bisphosphatase and beta-galactosidase under the control of the fbp1+ promoter in different conditions.
de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M
2002-01-01
Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme β-glucuronidase. The sequences encoding C28 and human enzyme β-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGκ signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-β-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme β-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. British Journal of Cancer (2002) 86, 811–818. DOI: 10.1038/sj/bjc/6600143 www.bjcancer.com © 2002 Cancer Research UK PMID:11875747
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie
2007-08-10
We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) nomore » specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.« less
Scrape-off-layer characterization and current-control of kink modes in HBT-EP
NASA Astrophysics Data System (ADS)
Brooks, John; Stewart, Ian; Levesque, Jeffrey; Mauel, Mike; Navratil, Gerald
2017-10-01
Scrape-off layer (SOL) currents and their paths through tokamaks are not well understood, but their control may prove crucial to the success of ITER and future fusion energy devices. We extend Columbia University's High Beta Tokamak-Extended Pulse (HBT-EP) experiment and active GPU feedback system to study the SOL and control MHD kink instabilities by actively controlling these currents. First, the radial plasma profiles and the edge structure of kink instabilities are measured with two triple probes. Second, we use active feedback control of a radially adjustable biased electrode to change the rotation and magnitude of slowly growing kink instabilities. By changing the phase between the probe's voltage and the edge instability with active feedback, we study its ability to influence and control plasma MHD structures. This work is in preparation for a planned 2018 multi-electrode SOL control upgrade. Supported by U.S. DOE Grant DE-FG02-86ER53222.
NASA Astrophysics Data System (ADS)
Sykes, Alan
1997-05-01
The world's first high-power auxiliary heating experiments in a tight aspect ratio (or spherical) tokamak have been performed on the Small Tight Aspect Ratio Tokomak (START) device [Sykes et al., Nucl. Fusion 32, 694 (1992)] at Culham Laboratory, using the 40 keV, 0.5 MW Neutral Beam Injector loaned by the Oak Ridge National Laboratory. Injection has been mainly of hydrogen into hydrogen or deuterium target plasmas, with a one-day campaign to explore D→D operation. In each case injection provides a combination of higher density operation and effective heating of both ions and electrons. The highest β values achieved to date in START are volume average βT˜11.5% and central beta βO˜50%. Already high, these values are expected to increase further with the use of higher beam power.
Isolation of Erwinia chrysanthemi kduD mutants altered in pectin degradation.
Condemine, G; Hugouvieux-Cotte-Pattat, N; Robert-Baudouy, J
1986-01-01
Mutants of Erwinia chrysanthemi impaired in pectin degradation were isolated by chemical and Mu d(Ap lac) insertion mutagenesis. A mutation in the kduD gene coding for 2-keto-3-deoxygluconate oxidoreductase prevented the growth of the bacteria on polygalacturonate as the sole carbon source. Analysis of the kduD::Mu d(Ap lac) insertions indicated that kduD is either an isolated gene or the last gene of a polycistronic operon. Some of the Mu d(Ap lac) insertions were kduD-lac fusions in which beta-galactosidase synthesis reflected kduD gene expression. In all these fusions, beta-galactosidase activity was shown to be sensitive to catabolite repression by glucose and to be inducible by polygalacturonate, galacturonate, and other intermediates of polygalacturonate catabolism. Galacturonate-mediated induction was prevented by a mutation which blocked its metabolism to 2-keto-3-deoxygluconate. 2-Keto-3-deoxygluconate appeared to be the true inducer of kduD expression resulting from galacturonate degradation. 5-Keto-4-deoxyuronate or 2,5-diketo-3-deoxygluconate were the true inducers, originating from polygalacturonate cleavage. These three intermediates also appeared to induce pectate lyases, oligogalacturonate lyase, and 5-keto-4-deoxyuronate isomerase synthesis. PMID:3949717
Single Null Negative Triangularity Tokamak for Power Handling
NASA Astrophysics Data System (ADS)
Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.
2017-10-01
Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.
Activation of IKKalpha and IKKbeta through their fusion with HTLV-I tax protein.
Xiao, G; Sun, S C
2000-10-26
Human T-cell leukemia virus type I (HTLV-I) Tax protein persistently stimulates the activity of IkappaB kinase (IKK), resulting in constitutive activation of the transcription factor NF-kappaB. Tax activation of IKK requires physical interaction of this viral protein with the IKK regulatory subunit, IKKgamma. The Tax/IKKgamma interaction allows Tax to engage the IKK catalytic subunits, IKKalpha and IKKbeta, although it remains unclear whether this linker function of IKKgamma is sufficient for supporting the Tax-specific IKK activation. To address this question, we have examined the sequences of IKKgamma required for modulating the Tax/IKK signaling. We demonstrate that when fused to Tax, a small N-terminal fragment of IKKgamma, containing its minimal IKKalpha/beta-binding domain, is sufficient for bringing Tax to and activating the IKK catalytic subunits. Disruption of the IKKalpha/beta-binding activity of this domain abolishes its function in modulating the Tax/IKK signaling. We further demonstrate that direct fusion of Tax to IKKalpha and IKKbeta leads to activation of these kinases. These findings suggest that the IKKgamma-directed Tax/IKK association serves as a molecular trigger for IKK activation.
Overlapping reading frames at the LYS5 locus in the yeast Yarrowia lipolytica.
Xuan, J W; Fournier, P; Declerck, N; Chasles, M; Gaillardin, C
1990-01-01
Mutants affected at the LYS5 locus of Yarrowia lipolytica lack detectable dehydrogenase (SDH) activity. The LYS5 gene has previously been cloned, and we present here the sequence of the 2.5-kilobase-pair (kb) DNA fragment complementing the lys5 mutation. Two large antiparallel open reading frames (ORF1 and ORF2) were observed, flanked by potential transcription signals. Both ORFs appear to be transcribed, but several lines of evidence suggest that only ORF2 is translated and encodes SDH. (i) The global amino acid compositions of Saccharomyces cerevisiae SDH and of the putative ORF2 product are similar and that of ORF1 is dissimilar. (ii) An in-frame translational fusion of ORF2 with the Escherichia coli lacZ gene was introduced into yeast cells and resulted in a beta-galactosidase activity regulated similarly to SDH; no beta-galactosidase activity was obtained with an in-frame fusion of ORF1 with lacZ. (iii) The introduction of a stop codon at the beginning of ORF2 prevented SDH expression in yeast cells, whereas no phenotypic effect was observed when ORF1 translation was blocked. Images PMID:2388625
The Apollo 5' exonuclease functions together with TRF2 to protect telomeres from DNA repair.
Lenain, Christelle; Bauwens, Serge; Amiard, Simon; Brunori, Michele; Giraud-Panis, Marie-Josèphe; Gilson, Eric
2006-07-11
A major issue in telomere research is to understand how the integrity of chromosome ends is preserved . The human telomeric protein TRF2 coordinates several pathways that prevent checkpoint activation and chromosome fusions. In this work, we identified hSNM1B, here named Apollo, as a novel TRF2-interacting factor. Interestingly, the N-terminal domain of Apollo is closely related to that of Artemis, a factor involved in V(D)J recombination and DNA repair. Both proteins belong to the beta-CASP metallo-beta-lactamase family of DNA caretaker proteins. Apollo appears preferentially localized at telomeres in a TRF2-dependent manner. Reduced levels of Apollo exacerbate the sensitivity of cells to TRF2 inhibition, resulting in severe growth defects and an increased number of telomere-induced DNA-damage foci and telomere fusions. Purified Apollo protein exhibits a 5'-to-3' DNA exonuclease activity. We conclude that Apollo is a novel component of the human telomeric complex and works together with TRF2 to protect chromosome termini from being recognized and processed as DNA damage. These findings unveil a previously undescribed telomere-protection mechanism involving a DNA 5'-to-3' exonuclease.
Main features of detectors and isotopes to investigate double beta decay with increased sensitivity
NASA Astrophysics Data System (ADS)
Barabash, A. S.
2018-03-01
The current situation in double beta decay experiments, the characteristics of modern detectors and the possibility of increasing the sensitivity to neutrino mass in future experiments are discussed. The issue of the production and use of enriched isotopes in double beta decay experiments is discussed in addition.
Translational autocontrol of the Escherichia coli ribosomal protein S15.
Portier, C; Dondon, L; Grunberg-Manago, M
1990-01-20
When rpsO, the gene encoding the ribosomal protein S15 in Escherichia coli, is carried by a multicopy plasmid, the mRNA synthesis rate of S15 increases with the gene dosage but the rate of synthesis of S15 does not rise. A translational fusion between S15 and beta-galactosidase was introduced on the chromosome in a delta lac strain and the expression of beta-galactosidase studied under different conditions. The presence of S15 in trans represses the beta-galactosidase level five- to sixfold, while the synthesis rate of the S15-beta-galactosidase mRNA decreases by only 30 to 50%. These data indicate that S15 is subject to autogenous translational control. Derepressed mutants were isolated and sequenced. All the point mutations map in the second codon of S15, suggesting a location for the operator site that is very near to the translation initiation codon. However, the creation of deletion mutations shows that the operator extends into the 5' non-coding part of the message, thus overlapping the ribosome loading site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji
Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a verymore » low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V{alpha}/V{beta} region of the TCR. These findings provide new insights into the binding of sTCRs to p/MHCs and will hopefully be instrumental in establishing functional sTCR as a diagnostic and therapeutic tool for cancer.« less
X-ray Spectroscopic Characterization of Plasma for a Charged-Particle Energy-Loss Experiment
NASA Astrophysics Data System (ADS)
Hoffman, Nm; Lee, Cl; Wilson, Dc; Barnes, Cris W.; Petrasso, Rd; Li, C.; Hicks, D.
2000-10-01
We are pursuing an approach to a charged-particle energy-loss experiment in which charged fusion products from an imploded ICF capsule travel through a well characterized, spatially separate plasma. For this purpose, a fully ionized, uniform, nearly steady-state carbon-hydrogen plasma will be created by laser irradiation of a plastic foil. The temperature and density structure of this plasma must be determined accurately in order to relate observed energy losses to predictions of theory. Various methods for diagnosing the plasma are possible, including Thomson scattering. Alternatively, if a small admixture of higher-Z material such as chlorine is included in the plastic, x-ray spectroscopic techniques will allow the plasma's temperature and density to be determined. Electron temperature is inferred from the ratios of line strengths of various chlorine ion stages, while electron density is determined from the spectra of lithium-like satellite lines near the He beta line of helium-like chlorine. We present results from detailed-configuration accounting (DCA) models of line emission from C+H+Cl plasmas, and estimate the accuracy with which such plasmas can be characterized.
Gamma Ray Spectroscopy and SASSYER
NASA Astrophysics Data System (ADS)
Pauerstein, Benjamin; Bonniwell, Cain; Allmond, J. M.; Beausang, C. W.
2009-10-01
An experiment was performed to study the Gd and Tb nuclei resulting from a 27 MeV proton beam on a 156Gd target. This was conducted at Lawrence Berkeley National Laboratory using the STARS/LIBERACE array. The main focus of the experiment was on charged particle channels (p,d) into 155Gd and (p,t) into 154Gd. However, the trigger was either gamma-gamma or particle-gamma so new data was also obtained on 155Tb nuclei following fusion evaporation reactions. Preliminary analysis was conducted at Wright Nuclear Structure Lab where RADWARE programs were used to analyze the data and search for unknown gamma rays. A second, separate, experiment was conducted using the SASSYER (a gas-filled separator at Yale). In this experiment, fission fragments from a 252Cf source were focused to a DSSD and a Ge detector was used to search for either gamma-decay from long lived isomers in the fission fragments or to find gammas from recoil-beta-decay tagging on the fission fragments. The data collection seems to have gone smoothly, and the data is currently being sorted for analysis. This work was supported by the US Department of Energy under grant numbers DE-FG02-52NA26206 and DE-FG02-05ER41379.
Nighttime images fusion based on Laplacian pyramid
NASA Astrophysics Data System (ADS)
Wu, Cong; Zhan, Jinhao; Jin, Jicheng
2018-02-01
This paper expounds method of the average weighted fusion, image pyramid fusion, the wavelet transform and apply these methods on the fusion of multiple exposures nighttime images. Through calculating information entropy and cross entropy of fusion images, we can evaluate the effect of different fusion. Experiments showed that Laplacian pyramid image fusion algorithm is suitable for processing nighttime images fusion, it can reduce the halo while preserving image details.
Huang, H; Yang, Z; Xu, Q; Sheng, Z; Xie, Y; Yan, W; You, Y; Sun, L; Zheng, Z
1999-01-01
In this study, we provide evidence that a recombinant fusion protein containing beta-galactosidase and a tandem repeat peptide of immunogenic dominant epitope of foot-and-mouth disease virus (FMDV) VP1 protein elicits high levels of neutralizing antibody and protects both guinea pigs and swine against infection. Vaccination with this fusion protein induced a FMDV-specific proliferative T-cell response and a neutralizing antibody response. The immunized guinea pigs and swine were protected against FMD type O virus infection. Two DNA plasmids expressing genes of foot-and-mouth disease were constructed. Both plasmids pBO1 and pCO1 contain a signal sequence of the swine immunoglobulin G (IgG) gene and fusion protein gene of pXZ84. The signal sequence and fusion protein gene were under the control of a metallothionein promoter in the case of the pBO1 plasmid and under the control of a cytomegalovirus immediate early promoter in the case of pCO1 plasmid. When pBO1 and pCO1 were inoculated intramuscularly into guinea pigs, both plasmids elicited a neutralizing antibody response and spleen cell proliferation increased following stimulation with FMDV antigen, but animals were not protected from viral challenge.
Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.
Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro
2008-07-01
We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.
Impact of ideal MHD stability limits on high-beta hybrid operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piovesan, Paolo; Igochine, V.; Turco, F.
Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less
Impact of ideal MHD stability limits on high-beta hybrid operation
Piovesan, Paolo; Igochine, V.; Turco, F.; ...
2016-10-27
Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajra, A.; Liu, P.; Collins, E.S.
1994-09-01
A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu
2010-01-01
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less
Jhappan, C; Geiser, A G; Kordon, E C; Bagheri, D; Hennighausen, L; Roberts, A B; Smith, G H; Merlino, G
1993-01-01
Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland. Images PMID:8491177
NASA Astrophysics Data System (ADS)
Goad, Pamela Joy
The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed modulation were arranged in all possible voicings. Results showed frequency modulation in the lower voice and less variance in amplitude envelopes contributed to an increase in fusion. The theory that similar modulations would promote better fusion was only marginally supported. For these experiments, results revealed differences depending on modulation type and that a lesser amount of modulation fosters greater fusion.
Review of modern double beta decay experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, A. S., E-mail: barabash@itep.ru
2015-10-28
The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T{sub 1/2}(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (〈m{sub ν}〉 < 0.46 eV) and a coupling constant of Majoron to neutrino (〈g{sub ee}〉 < 1.3 · 10{sup −5}) are obtained. Prospects of search for neutrinoless double beta decay inmore » new experiments with sensitivity to 〈m{sub ν}〉 at the level of ∼ 0.01-0.1 eV are discussed.« less
The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.
Sengupta, P K; Lavelle, D E; DeSimone, J
1994-03-01
Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
A search is presented for additional neutral Higgs bosons in themore » $$\\tau\\tau$$ final state in proton-proton collisions at the LHC. The search is performed in the context of the minimal supersymmetric extension of the standard model (MSSM), using the data collected with the CMS detector in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb$$^{-1}$$. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes production of the Higgs boson in association with b quarks. No significant deviation above the expected background is observed. Model-independent limits at 95% confidence level (CL) are set on the product of the branching fraction for the decay into $$\\tau$$ leptons and the cross section for the production via gluon fusion or in association with b quarks. These limits range from 18 pb at 90 GeV to 3.5 fb at 3.2 TeV for gluon fusion and from 15 pb (at 90 GeV) to 2.5 fb (at 3.2 TeV) for production in association with b quarks. In the m$$_{\\text{h}}^{\\text{mod+}}$$ scenario these limits translate into a 95% CL exclusion of $$\\tan\\beta>$$ 6 for neutral Higgs boson masses below 250 GeV, where $$\\tan\\beta$$ is the ratio of the vacuum expectation values of the neutral components of the two Higgs doublets. The 95% CL exclusion contour reaches 1.6 TeV for $$\\tan\\beta=$$ 60.« less
Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment
NASA Technical Reports Server (NTRS)
1999-01-01
The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.
The molecular biology of the group VIA Ca2+-independent phospholipase A2.
Ma, Z; Turk, J
2001-01-01
The group VIA PLA2 is a member of the PLA2 superfamily. This enzyme, which is cytosolic and Ca2+-independent, has been designated iPLA2beta to distinguish it from another recently cloned Ca2+-independent PLA2. Features of iPLA2beta molecular structure offer some insight into possible cellular functions of the enzyme. At least two catalytically active iPLA2beta isoforms and additionalsplicing variants are derived from a single gene that consists of at least 17 exons located on human chromosome 22q13.1. Potential tumor suppressor genes also reside at or near this locus. Structural analyses reveal that iPLA2beta contains unique structural features that include a serine lipase consensus motif (GXSXG), a putative ATP-binding domain, an ankyrin-repeat domain, a caspase-3 cleavage motif DVTD138Y/N, a bipartite nuclear localization signal sequence, and a proline-rich region in the human long isoform. iPLA2beta is widely expressed among mammalian tissues, with highest expression in testis and brain. iPLA2beta prefers to hydrolyze fatty acid at the sn-2 fatty acid substituent but also exhibits phospholipase A1, lysophospholipase, PAF acetylhydrolase, and transacylase activities. iPLA2beta may participate in signaling, apoptosis, membrane phospholipid remodeling, membrane homeostasis, arachidonate release, and exocytotic membrane fusion. Structural features and the existence of multiple splicing variants of iPLA2beta suggest that iPLA2beta may be subject to complex regulatory mechanisms that differ among cell types. Further study of its regulation and interaction with other proteins may yield insight into how its structural features are related to its function.
A Burning Plasma Experiment: the role of international collaboration
NASA Astrophysics Data System (ADS)
Prager, Stewart
2003-04-01
The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.
Stable Spheromaks Sustained by Neutral Beam Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, T K; Jayakumar, R; McLean, H S
It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.
Alimu, Reyihanguli; Mao, Xinfang; Liu, Zhongyuan
2013-06-01
To improve the expression level of tmAMP1m gene from Tenebrio molitor in Escherichia coli, we studied the effects of expression level and activity of the fusion protein HIS-TmAMP1m by conditions, such as culture temperature, inducing time and the final concentration of inductor Isopropyl beta-D-thiogalactopyranoside (IPTG). We analyzed the optimum expression conditions by Tricine-SDS-PAGE electrophoresis, meanwhile, detected its antibacterial activity by using agarose cavity diffusion method. The results suggest that when inducing the recombinant plasmid with a final IPTG concentration of 0.1 mmol/L at 37 degrees C for 4 h, there was the highest expression level of fusion protein HIS-TmAMP1m in Escherichia coli. Under these conditions, the expression of fusion protein accounted for 40% of the total cell lysate with the best antibacterial activity. We purified the fusion protein HIS-TmAMPlm with nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography matrices. Western blotting analysis indicates that the His monoclonal antibody could be specifically bound to fusion protein HIS-TmAMPlm. After expression by inducing, the fusion protein could inhibit the growth of host cell transformed by pET30a-tmAMP1m. The fusion protein HIS-TmAMP1m had better stability and remained higher antibacterial activities when incubated at 100 degrees C for 10 h, repeated freeze thawing at -20 degrees C, dissolved in strong acid and alkali, or treated by organic solvents and protease. Moreover, the minimum inhibitory concentration results demonstrated that the fusion protein HIS-TmAMP1m has a good antibacterial activity against Staphylococcus aureus, Staphylococcus sp., Corynebacterium glutamicum, Bacillus thuringiensis, Corynebacterium sp. This study laid the foundation to promote the application of insect antimicrobial peptides and further research.
Hohaus, Annette; Person, Veronika; Behlke, Joachim; Schaper, Jutta; Morano, Ingo; Haase, Hannelore
2002-08-01
Ahnak is a ubiquitously expressed giant protein of 5643 amino acids implicated in cell differentiation and signal transduction. In a recent study, we demonstrated the association of ahnak with the regulatory beta2 subunit of the cardiac L-type Ca2+ channel. Here we identify the most carboxyl-terminal ahnak region (aa 5262-5643) to interact with recombinant beta2a as well as with beta2 and beta1a isoforms of native muscle Ca2+ channels using a panel of GST fusion proteins. Equilibrium sedimentation analysis revealed Kd values of 55 +/- 11 nM and 328 +/- 24 nM for carboxyl-terminal (aa 195-606) and amino-terminal (aa 1-200) truncates of the beta2a subunit, respectively. The same carboxyl-terminal ahnak region (aa 5262-5643) bound to G-actin and cosedimented with F-actin. Confocal microscopy of human left ventricular tissue localized the carboxyl-terminal ahnak portion to the sarcolemma including the T-tubular system and the intercalated disks of cardiomyocytes. These results suggest that ahnak provides a structural basis for the subsarcolemmal cytoarchitecture and confers the regulatory role of the actin-based cytoskeleton to the L-type Ca2+ channel.
Fast ion beta limit measurements by collimated neutron detection in MST plasmas
NASA Astrophysics Data System (ADS)
Capecchi, William; Anderson, Jay; Bonofiglo, Phillip; Kim, Jungha; Sears, Stephanie
2015-11-01
Fast ion orbits in the reversed field pinch (RFP) are well ordered and classically confined despite magnetic field stochasticity generated by multiple tearing modes. Classical TRANSP modeling of a 1MW tangentially injected hydrogen neutral beam in MST deuterium plasmas predicts a core-localized fast ion density that can be up to 25% of the electron density and a fast ion beta of many times the local thermal beta. However, neutral particle analysis of an NBI-driven mode (presumably driven by a fast ion pressure gradient) shows mode-induced transport of core-localized fast ions and a saturated fast ion density. The TRANSP modeling is presumed valid until the onset of the beam-driven mode and gives an initial estimate of the volume-averaged fast ion beta of 1-2% (local core value up to 10%). A collimated neutron detector for fusion product profile measurements will be used to determine the spatial distribution of fast ions, allowing for a first measurement of the critical fast-ion pressure gradient required for mode destabilization. Testing/calibration data and initial fast-ion profiles will be presented. Characterization of both the local and global fast ion beta will be done for deuterium beam injection into deuterium plasmas for comparison to TRANSP predictions. Work supported by US DOE.
Zhang, Q; Yang, Y Q; Zhang, Z Y; Li, L; Yan, W Y; Jiang, W J; Xin, A G; Lei, C X; Zheng, Z X
2002-01-01
In this study, the sequences of capsid protein VPI regions of YNAs1.1 and YNAs1.2 isolates of foot-and-mouth disease virus (FMDV) were analyzed and a peptide containing amino acids (aa) 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia I was assumed to contain B and T cell epitopes, because it is hypervariable and includes a cell attachment site RGD located in the G-H loop. The DNA fragments encoding aa 133-158 of VP1 and aa 20-34 of VP4 of FMDV type Asia 1 were chemically synthesized and ligated into a tandem repeat of aa 133-158-20 approximately 34-133-158. In order to enhance its immunogenicity, the tandem repeat was inserted downstream of the beta-galactosidase gene in the expression vector pWR590. This insertion yielded a recombinant expression vector pAS1 encoding the fusion protein. The latter reacted with sera from FMDV type Asia 1-infected animals in vitro and elicited high levels of neutralizing antibodies in guinea pigs. The T cell proliferation in immunized animals increased following stimulation with the fusion protein. It is reported for the first time that a recombinant fusion protein vaccine was produced using B and T cell epitopes of FMDV type Asia 1 and that this fusion protein was immunogenic. The fusion protein reported here can serve as a candidate of fusion epitopes for design of a vaccine against FMDV type Asia 1.
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Chan, V. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Meneghini, O.
2013-10-01
A Fusion National Science Facility (FNSF) would complement ITER in addressing the community identified science and technology gaps to a commercially attractive DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. Steady-state plasma operation is highly desirable to address the requirements for fusion nuclear technology testing [1]. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues with a more compact device, and the direct relevance to an attractive target power plant. Key features of AT are fully noninductive current drive, strong plasma cross section shaping, internal profiles consistent with high bootstrap fraction, and operation at high beta, typically above the free boundary limit, βN > 3 . Work supported by GA IR&D funding, DE-FC02-04ER54698, and DE-FG02-95ER43309.
Saryu Malhotra, Sudha; Suman, Pankaj; Kumar Gupta, Satish
2015-01-01
The aim of the present study is to delineate the role of human chorionic gonadotropin (hCG) in trophoblast fusion. In this direction, using shRNA lentiviral particles, α- and β-hCG silenced ‘BeWo’ cell lines were generated. Treatment of both α- and β-hCG silenced BeWo cells with either forskolin or exogenous hCG showed a significant reduction in cell fusion as compared with control shRNA treated cells. Studies by qRT-PCR, Western blotting and immunofluorescence revealed down-regulation of fusion-associated proteins such as syncytin-1 and syndecan-1 in the α- and β-hCG silenced cells. Delineation of downstream signaling pathways revealed that phosphorylation of PKA and CREB were compromised in the silenced cells whereas, no significant changes in p38MAPK and ERK1/2 phosphorylation were observed. Moreover, β-catenin activation was unaffected by either α- or β-hCG silencing. Further, inhibition of PKA by H89 inhibitor led to a significant decrease in BeWo cell fusion but had no effect on β-catenin activation suggesting the absence of non-canonical β-catenin stabilization via PKA. Interestingly, canonical activation of β-catenin was associated with the up-regulation of Wnt 10b expression. In summary, this study establishes the significance of hCG in the fusion of trophoblastic BeWo cells, but there may be additional factors involved in this process. PMID:26053549
Estimation of Biological Effects of Tritium.
Umata, Toshiyuki
2017-01-01
Nuclear fusion technology is expected to create new energy in the future. However, nuclear fusion requires a large amount of tritium as a fuel, leading to concern about the exposure of radiation workers to tritium beta radiation. Furthermore, countermeasures for tritium-polluted water produced in decommissioning of the reactor at Fukushima Daiichi Nuclear Power Station may potentially cause health problems in radiation workers. Although, internal exposure to tritium at a low dose/low dose rate can be assumed, biological effect of tritium exposure is not negligible, because tritiated water (HTO) intake to the body via the mouth/inhalation/skin would lead to homogeneous distribution throughout the whole body. Furthermore, organically-bound tritium (OBT) stays in the body as parts of the molecules that comprise living organisms resulting in long-term exposure, and the chemical form of tritium should be considered. To evaluate the biological effect of tritium, the effect should be compared with that of other radiation types. Many studies have examined the relative biological effectiveness (RBE) of tritium. Hence, we report the RBE, which was obtained with radiation carcinogenesis classified as a stochastic effect, and serves as a reference for cancer risk. We also introduce the outline of the tritium experiment and the principle of a recently developed animal experimental system using transgenic mouse to detect the biological influence of radiation exposure at a low dose/low dose rate.
Absolute neutrino mass measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joachim
2011-10-06
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less
Williams, Dumaine; Vicôgne, Jérome; Zaitseva, Irina; McLaughlin, Stuart; Pessin, Jeffrey E
2009-12-01
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in beta cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.
1997-12-31
Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growthmore » in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.« less
Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device
NASA Astrophysics Data System (ADS)
Motojima, Osamu
2006-12-01
The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program as an integrated part of ITER and Development of Fusion Energy project Agreement. Moreover, the relationship with the NIFS' new parent organization the National Institutes of Natural Sciences and with foreign research institutions is briefly explained.
Antiproton catalyzed microfission/fusion propulsion
NASA Technical Reports Server (NTRS)
Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman
1994-01-01
Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.
The Majorana neutrinoless double beta-decay experiment The Majorana experiment will search for neutrinoless double-beta decay of 76Ge. The discovery of this process would imply that the neutrino is a neutrinoless double beta-decay by Klapdor-Kleingrothaus et al. (2006), to demonstrate a low enough background
Transcriptional analysis of the bglP gene from Streptococcus mutans.
Cote, Christopher K; Honeyman, Allen L
2006-04-21
An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript.
Transcriptional analysis of the bglP gene from Streptococcus mutans
Cote, Christopher K; Honeyman, Allen L
2006-01-01
Background An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. Results To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. Conclusion The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript. PMID:16630357
Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu
2008-11-14
TGF-{beta} activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-{beta} enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-{beta} type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smadmore » complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.« less
Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes.
Wang, Bei; Suzuki, Hiroyuki; Kato, Mitsuyasu
2008-11-14
TGF-beta activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-beta enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-beta type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.
Protein design on computers. Five new proteins: Shpilka, Grendel, Fingerclasp, Leather, and Aida.
Sander, C; Vriend, G; Bazan, F; Horovitz, A; Nakamura, H; Ribas, L; Finkelstein, A V; Lockhart, A; Merkl, R; Perry, L J
1992-02-01
What is the current state of the art in protein design? This question was approached in a recent two-week protein design workshop sponsored by EMBO and held at the EMBL in Heidelberg. The goals were to test available design tools and to explore new design strategies. Five novel proteins were designed: Shpilka, a sandwich of two four-stranded beta-sheets, a scaffold on which to explore variations in loop topology; Grendel, a four-helical membrane anchor, ready for fusion to water-soluble functional domains; Finger-clasp, a dimer of interdigitating beta-beta-alpha units, the simplest variant of the "handshake" structural class; Aida, an antibody binding surface intended to be specific for flavodoxin; Leather--a minimal NAD binding domain, extracted from a larger protein. Each design is available as a set of three-dimensional coordinates, the corresponding amino acid sequence and a set of analytical results. The designs are placed in the public domain for scrutiny, improvement, and possible experimental verification.
Belkin, A M; Zhidkova, N I; Balzac, F; Altruda, F; Tomatis, D; Maier, A; Tarone, G; Koteliansky, V E; Burridge, K
1996-01-01
The cytoplasmic domains of integrins provide attachment of these extracellular matrix receptors to the cytoskeleton and play a critical role in integrin-mediated signal transduction. In this report we describe the identification, expression, localization, and initial functional characterization of a novel form of beta 1 integrin, termed beta 1D. This isoform contains a unique alternatively spliced cytoplasmic domain of 50 amino acids, with the last 24 amino acids encoded by an additional exon. Of these 24 amino acids, 11 are conserved when compared to the beta 1A isoform, but 13 are unique (Zhidkova, N. I., A. M. Belkin, and R. Mayne. 1995. Biochem. Biophys. Res. Commun. 214:279-285; van der Flier, A., I. Kuikman, C. Baudoin, R, van der Neuf, and A. Sonnenberg. 1995. FEBS Lett. 369:340-344). Using an anti-peptide antibody against the beta 1D integrin subunit, we demonstrated that the beta 1D isoform is synthesized only in skeletal and cardiac muscles, while very low amounts of beta 1A were detected by immunoblot in striated muscles. Whereas beta 1A could not be detected in adult skeletal muscle fibers and cardiomyocytes by immunofluorescence, beta 1D was localized to the sarcolemma of both cell types. In skeletal muscle, beta 1D was concentrated in costameres, myotendinous, and neuromuscular junctions. In cardiac muscle this beta 1 isoform was found in costamers and intercalated discs. beta 1D was associated with alpha 7A and alpha 7B in adult skeletal muscle. In cardiomyocytes of adult heart, alpha 7B was the major partner for the beta 1D isoform. beta 1D could not be detected in proliferating C2C12 myoblasts, but it appeared immediately after myoblast fusion and its amount continued to rise during myotube growth and maturation. In contrast, expression of the beta 1A isoform was downregulated during myodifferentiation in culture and it was completely displaced by beta 1D in mature differentiated myotubes. We also analyzed some functional properties of the beta 1D integrin subunit. Expression of human beta 1D in CHO cells led to its localization at focal adhesions. Clustering of this integrin isoform on the cell surface stimulated tyrosine phosphorylation of pp125FAK (focal adhesion kinase) and caused transient activation of mitogen-activated protein (MAP) kinases. These data indicate that beta 1D and beta 1A integrin isoforms are functionally similar with regard to integrin-mediated signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge Shimei; Xie Baoen; Chen Sanfeng
2006-03-10
The previous report from our laboratory has recently identified a new trpE gene (termed trpE {sub 2}) which exists independently in Azospirillum brasilense Yu62. In this study, amplification of trpE(G) (termed trpE {sub 1}(G) here) confirmed that there are two copies of trpE gene, one trpE being fused into trpG while the other trpE existed independently. This is First report to suggest that two copies of the trpE gene exist in this bacterium. Comparison of the nucleotide sequence demonstrated that putative leader peptide, terminator, and anti-terminator were found upstream of trpE {sub 1}(G) while these sequence features did not existmore » in front of trpE {sub 2}. The {beta}-galactosidase activity of an A. brasilense strain carrying a trpE {sub 2}-lacZ fusion remained constant at different tryptophan concentrations, but the {beta}-galactosidase activity of the same strain carrying a trpE {sub 1}(G)-lacZ fusion decreased as the tryptophan concentration increased. These data suggest that the expression of trpE {sub 1}(G) is regulated at the transcriptional level by attenuation while trpE {sub 2} is constantly expressed. The anthranilate synthase assays with trpE {sub 1}(G){sup -} and trpE {sub 2} {sup -} mutants demonstrated that TrpE{sub 1}(G) fusion protein is feedback inhibited by tryptophan while TrpE{sub 2} protein is not. We also found that both trpE {sub 1}(G) and trpE {sub 2} gene products were involved in IAA synthesis.« less
Fluorescence fluctuation analysis of BACE1-GFP fusion protein in cultured HEK293 cells
NASA Astrophysics Data System (ADS)
Gardeen, Spencer; Johnson, Joseph L.; Heikal, Ahmed A.
2016-10-01
Beta-site APP cleaving enzyme 1 (BACE1) is a type I transmembrane aspartyl protease. In the amyloidogenic pathway, BACE1 provides β-secretase activity that cleaves the amyloid precursor protein (APP) that leads to amyloid beta (Aβ) peptides. The aggregation of these Aβ will ultimately results in amyloid plaque formation, a hallmark of Alzheimer's disease (AD). Amyloid aggregation leads to progressive memory impairment and neural loss. Recent detergent protein extraction studies suggest that the untreated BACE1 protein forms a dimer that has significantly higher catalytic activity than its monomeric counterpart. Here, we examine the dimerization hypothesis of BACE1 in cultured HEK293 cells using fluorescence correlation spectroscopy (FCS). Cells were transfected with a BACE1-EGFP fusion protein construct and imaged using confocal and DIC microscopy to monitor labeled BACE1 localization and distribution within the cell. Our one-photon fluorescence fluctuation autocorrelation of BACE1- EGFP on the plasma membrane of HEK cells is modeled using two diffusing species on the plasma membrane with estimated diffusion coefficients of 1.39 x 10-7 cm2/sec and 2.8 x 10-8 cm2/sec under resting conditions and STA-200 inhibition, respectively. Anomalous diffusion model also provided adequate description of the observed autocorrelation function of BACE1- EGFP on the plasma membrane with an estimate exponent (α) of 0.8 and 0.5 for resting and STA-200 treated cells, respectively. The corresponding hydrodynamic radius of this transmembrane fusion protein was estimated using the measured diffusion coefficients assuming both Stokes-Einstein and Saffman-Delbruck models. Our results suggest a complex diffusion pattern of BACE1-EGFP on the plasma membrane of HEK cells with the possibility for dimer formation, especially under STA-200 inhibition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidhauser, C. Bissell, M.J.; Myers, C.A.; Casperson, G.F.
1990-12-01
Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-2D has been developed in which more than 35% of the cells express {beta}-casein, form alveoli-like structures when plated onto a reconstituted basement membrane, and secrete {beta}-casein undirectionally into a lumen. These cells were stably transfected with amore » series of chloramphenicol acetyltransferase (CAT) fusion genes to study transcriptional regulation of the bovine {beta}-casein gene. The expression of CAT in these lines demonstrated a striking matrix and hormone dependency. This regulation occurered primarily at the transcriptional level and was dependent on the length of the 5{prime} flanking region of the {beta}-casein promotor. Both matrix and hormonal control of transcription occurred within at least the first 1790 base pairs upstream and/or 42 base pairs downstream of the transcriptional initiation site. The ECM effect was independent of glucocorticoid stimulation. However, prolactin was essential and hydrocortisone further increased CAT expression. Endogenous {beta}-casein expression in these lines was similar to that of the parent CID 9 cells. Our data indicate the existence of matrix-dependent elements that regulate transcription.« less
Ruhlman, Tracey; Ahangari, Raheleh; Devine, Andrew; Samsam, Mohtahsem; Daniell, Henry
2007-07-01
Lettuce and tobacco chloroplast transgenic lines expressing the cholera toxin B subunit-human proinsulin (CTB-Pins) fusion protein were generated. CTB-Pins accumulated up to ~16% of total soluble protein (TSP) in tobacco and up to ~2.5% of TSP in lettuce. Eight milligrams of powdered tobacco leaf material expressing CTB-Pins or, as negative controls, CTB-green fluorescent protein (CTB-GFP) or interferon-GFP (IFN-GFP), or untransformed leaf, were administered orally, each week for 7 weeks, to 5-week-old female non-obese diabetic (NOD) mice. The pancreas of CTB-Pins-treated mice showed decreased infiltration of cells characteristic of lymphocytes (insulitis); insulin-producing beta-cells in the pancreatic islets of CTB-Pins-treated mice were significantly preserved, with lower blood or urine glucose levels, by contrast with the few beta-cells remaining in the pancreatic islets of the negative controls. Increased expression of immunosuppressive cytokines, such as interleukin-4 and interleukin-10 (IL-4 and IL-10), was observed in the pancreas of CTB-Pins-treated NOD mice. Serum levels of immunoglobulin G1 (IgG1), but not IgG2a, were elevated in CTB-Pins-treated mice. Taken together, T-helper 2 (Th2) lymphocyte-mediated oral tolerance is a likely mechanism for the prevention of pancreatic insulitis and the preservation of insulin-producing beta-cells. This is the first report of expression of a therapeutic protein in transgenic chloroplasts of an edible crop. Transplastomic lettuce plants expressing CTB-Pins grew normally and transgenes were maternally inherited in T(1) progeny. This opens up the possibility for the low-cost production and delivery of human therapeutic proteins, and a strategy for the treatment of various other autoimmune diseases.
Lewis, Ashley Glen; Lemhӧfer, Kristin; Schoffelen, Jan-Mathijs; Schriefers, Herbert
2016-08-01
For native speakers, many studies suggest a link between oscillatory neural activity in the beta frequency range and syntactic processing. For late second language (L2) learners on the other hand, the extent to which the neural architecture supporting syntactic processing is similar to or different from that of native speakers is still unclear. In a series of four experiments, we used electroencephalography to investigate the link between beta oscillatory activity and the processing of grammatical gender agreement in Dutch determiner-noun pairs, for Dutch native speakers, and for German L2 learners of Dutch. In Experiment 1 we show that for native speakers, grammatical gender agreement violations are yet another among many syntactic factors that modulate beta oscillatory activity during sentence comprehension. Beta power is higher for grammatically acceptable target words than for those that mismatch in grammatical gender with their preceding determiner. In Experiment 2 we observed no such beta modulations for L2 learners, irrespective of whether trials were sorted according to objective or subjective syntactic correctness. Experiment 3 ruled out that the absence of a beta effect for the L2 learners in Experiment 2 was due to repetition of the target nouns in objectively correct and incorrect determiner-noun pairs. Finally, Experiment 4 showed that when L2 learners are required to explicitly focus on grammatical information, they show modulations of beta oscillatory activity, comparable to those of native speakers, but only when trials are sorted according to participants' idiosyncratic lexical representations of the grammatical gender of target nouns. Together, these findings suggest that beta power in L2 learners is sensitive to violations of grammatical gender agreement, but only when the importance of grammatical information is highlighted, and only when participants' subjective lexical representations are taken into account. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A
2014-01-01
Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.
2018-01-01
Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion goals.
Overview of the Fusion Z-Pinch Experiment FuZE
NASA Astrophysics Data System (ADS)
Weber, T. R.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; UW/LLNL Team
2016-10-01
Previously, the ZaP device, at the University of Washington, demonstrated sheared flow stabilized (SFS) Z-pinch plasmas. Instabilities that have historically plagued Z-pinch plasma confinement were mitigated using sheared flows generated from a coaxial plasma gun of the Marshall type. Based on these results, a new SFS Z-pinch experiment, the Fusion Z-pinch Experiment (FuZE), has been constructed. FuZE is designed to investigate the scaling of SFS Z-pinch plasmas towards fusion conditions. The experiment will be supported by high fidelity physics modeling using kinetic and fluid simulations. Initial plans are in place for a pulsed fusion reactor following the results of FuZE. Notably, the design relies on proven commercial technologies, including a modest discharge current (1.5 MA) and voltage (40 kV), and liquid metal electrodes. Supported by DoE FES, NNSA, and ARPA-E ALPHA.
Overview of Heavy Ion Fusion Accelerator Research in the U. S.
NASA Astrophysics Data System (ADS)
Friedman, Alex
2002-12-01
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.
Experience with beta-blockers in long term management of peripartum cardiomyopathy.
Mohsin, Kiren; Akhtar, Naveed
2004-01-01
Peripartum cardiomyopathy (PPCM) is an ominous complication of pregnancy, about which little is known. Although the role of Beta Blockers is well established in heart failure, there is limited data evaluating their use in Peripartum cardiomyopathy. We report the use of Beta-Blockers (metoprolol) in conjunct with standard heart failure therapy in two patients of PPCM with favorable long-term outcome. Our experience, although limited, highlights the significance of use of Beta-Blockers in this rare life threatening condition.
Kaur, Simarjot; Mishra, Mukti Nath; Tripathi, Anil K
2009-10-01
Carbonic anhydrase (CA; [EC 4.2.1.1]) is a ubiquitous enzyme catalysing the reversible hydration of CO(2) to bicarbonate, a reaction that supports various biochemical and physiological functions. Genome analysis of Azospirillum brasilense, a nonphotosynthetic, nitrogen-fixing, rhizobacterium, revealed an ORF with homology to beta-class carbonic anhydrases (CAs). Biochemical characteristics of the beta-class CA of A. brasilense, analysed after cloning the gene (designated as bca), overexpressing in Escherichia coli and purifying the protein by affinity purification, revealed that the native recombinant enzyme is a homotetramer, inhibited by the known CA inhibitors. CA activity in A. brasilense cell extracts, reverse transcriptase (RT)-PCR and Western blot analyses showed that bca was constitutively expressed under aerobic conditions. Lower beta-galactosidase activity in A. brasilense cells harbouring bca promoter: lacZ fusion during the stationary phase or during growth on 3% CO(2) enriched air or at acidic pH indicated that the transcription of bca was downregulated by the stationary phase, elevated CO(2) levels and acidic pH conditions. These observations were also supported by RT-PCR analysis. Thus, beta-CA in A. brasilense seems to be required for scavenging CO(2) from the ambient air and the requirement of CO(2) hydration seems to be higher for the cultures growing exponentially at neutral to alkaline pH.
Kowluru, Anjaneyulu
2008-01-15
Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Koshi, E-mail: khashi@med.gunma-u.ac.jp; Ishida, Emi; Matsumoto, Shunichi
2009-12-25
We report the isolation and functional characterization of a novel transcriptional co-activator, termed LXRBSV. LXRBSV is an alternative splicing variant of liver X receptor (LXR)-{beta} LXRBSV has an intronic sequence between exons 2 and 3 in the mouse LXR-{beta} gene. The LXRBSV gene is expressed in various tissues including the liver and brain. We sub-cloned LXRBSV into pSG5, a mammalian expression vector, and LXRBSV in pSG5 augmented human Sterol Response Element Binding Protein (SREBP)-1c promoter activity in HepG2 cells in a ligand (TO901317) dependent manner. The transactivation mediated by LXRBSV is selective for LXR-{beta}. The LXRBSV protein was deduced tomore » be 64 amino acids in length; however, a GAL4-LXRBSV fusion protein was not able to induce transactivation. Serial deletion constructs of LXRBSV demonstrated that the intronic sequence inserted in LXRBSV is required for its transactivation activity. An ATG mutant of LXRBSV was able to induce transactivation as wild type. Furthermore, LXRBSV functions in the presence of cycloheximide. Taken together, we have concluded that LXRBSV acts as an RNA transcript not as a protein. In the current study, we have demonstrated for the first time that an alternative splicing variant of a nuclear receptor acts as an RNA co-activator.« less
Regazzi, R; Wollheim, C B; Lang, J; Theler, J M; Rossetto, O; Montecucco, C; Sadoul, K; Weller, U; Palmer, M; Thorens, B
1995-01-01
VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion. Images PMID:7796801
Diagnosing magnetized liner inertial fusion experiments on Z
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.
The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~10 12 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10 10. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm 3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
Diagnosing magnetized liner inertial fusion experiments on Z
Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; ...
2015-05-14
The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~10 12 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10 10. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm 3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
Commowick, Olivier; Warfield, Simon K
2010-01-01
In order to evaluate the quality of segmentations of an image and assess intra- and inter-expert variability in segmentation performance, an Expectation Maximization (EM) algorithm for Simultaneous Truth And Performance Level Estimation (STAPLE) was recently developed. This algorithm, originally presented for segmentation validation, has since been used for many applications, such as atlas construction and decision fusion. However, the manual delineation of structures of interest is a very time consuming and burdensome task. Further, as the time required and burden of manual delineation increase, the accuracy of the delineation is decreased. Therefore, it may be desirable to ask the experts to delineate only a reduced number of structures or the segmentation of all structures by all experts may simply not be achieved. Fusion from data with some structures not segmented by each expert should be carried out in a manner that accounts for the missing information. In other applications, locally inconsistent segmentations may drive the STAPLE algorithm into an undesirable local optimum, leading to misclassifications or misleading experts performance parameters. We present a new algorithm that allows fusion with partial delineation and which can avoid convergence to undesirable local optima in the presence of strongly inconsistent segmentations. The algorithm extends STAPLE by incorporating prior probabilities for the expert performance parameters. This is achieved through a Maximum A Posteriori formulation, where the prior probabilities for the performance parameters are modeled by a beta distribution. We demonstrate that this new algorithm enables dramatically improved fusion from data with partial delineation by each expert in comparison to fusion with STAPLE. PMID:20879379
Commowick, Olivier; Warfield, Simon K
2010-01-01
In order to evaluate the quality of segmentations of an image and assess intra- and inter-expert variability in segmentation performance, an Expectation Maximization (EM) algorithm for Simultaneous Truth And Performance Level Estimation (STAPLE) was recently developed. This algorithm, originally presented for segmentation validation, has since been used for many applications, such as atlas construction and decision fusion. However, the manual delineation of structures of interest is a very time consuming and burdensome task. Further, as the time required and burden of manual delineation increase, the accuracy of the delineation is decreased. Therefore, it may be desirable to ask the experts to delineate only a reduced number of structures or the segmentation of all structures by all experts may simply not be achieved. Fusion from data with some structures not segmented by each expert should be carried out in a manner that accounts for the missing information. In other applications, locally inconsistent segmentations may drive the STAPLE algorithm into an undesirable local optimum, leading to misclassifications or misleading experts performance parameters. We present a new algorithm that allows fusion with partial delineation and which can avoid convergence to undesirable local optima in the presence of strongly inconsistent segmentations. The algorithm extends STAPLE by incorporating prior probabilities for the expert performance parameters. This is achieved through a Maximum A Posteriori formulation, where the prior probabilities for the performance parameters are modeled by a beta distribution. We demonstrate that this new algorithm enables dramatically improved fusion from data with partial delineation by each expert in comparison to fusion with STAPLE.
Double Beta Decay Experiments: Present Status and Prospects for the Future
NASA Astrophysics Data System (ADS)
Barabash, A. S.
The review of modern experiments on search and studying of double beta decay processes is done. Results of the most sensitive current experiments are discussed. The main attention is paid to EXO-200, KamLAND-Zen, GERDA-I and CUORE-0 experiments. Modern values of T1/2(2ν) and best present limits on neutrinoless double beta decay and double beta decay with Majoron emission are presented. Conservative limits on effective mass of a Majorana neutrino (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime
2014-11-15
We found that spontaneous improved confinement was brought about depending on the operating region in the Toroidal Pinch Experiment-Reversed eXperiment (TPE-RX) reversed-field pinch plasma [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. Gradual decay of the toroidal magnetic field at plasma surface B{sub tw} reversal makes it possible to realize a prolonged discharge, and the poloidal beta value and energy confinement time increase in the latter half of the discharge, where reversal and pinch parameters become shallow and low, respectively. In the latter half of the discharge, the plasma current and volume-averaged toroidal magnetic field 〈B{sub t}〉 increasemore » again, the electron density slowly decays, the electron temperature and soft X-ray radiation intensity increase, and the magnetic fluctuations are markedly reduced. In this period of improved confinement, the value of (〈B{sub t}〉-B{sub tw})/B{sub pw}, where B{sub pw} is the poloidal magnetic field at the plasma surface, stays almost constant, which indicates that the dynamo action occurs without large magnetohydrodynamic activities.« less
Interactive Plasma Physics Education Using Data from Fusion Experiments
NASA Astrophysics Data System (ADS)
Calderon, Brisa; Davis, Bill; Zwicker, Andrew
2010-11-01
The Internet Plasma Physics Education Experience (IPPEX) website was created in 1996 to give users access to data from plasma and fusion experiments. Interactive material on electricity, magnetism, matter, and energy was presented to generate interest and prepare users to understand data from a fusion experiment. Initially, users were allowed to analyze real-time and archival data from the Tokamak Fusion Test Reactor (TFTR) experiment. IPPEX won numerous awards for its novel approach of allowing users to participate in ongoing research. However, the latest revisions of IPPEX were in 2001 and the interactive material is no longer functional on modern browsers. Also, access to real-time data was lost when TFTR was shut down. The interactive material on IPPEX is being rewritten in ActionScript3.0, and real-time and archival data from the National Spherical Tokamak Experiment (NSTX) will be made available to users. New tools like EFIT animations, fast cameras, and plots of important plasma parameters will be included along with an existing Java-based ``virtual tokamak.'' Screenshots from the upgraded website and future directions will be presented.
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D. M.; d'Angelo, S.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Laubenstein, M.; Mokina, V. M.; Poda, D. V.; Polischuk, O. G.; Shlegel, V. N.; Tretyak, V. I.; Umatov, V. I.
2016-05-01
The Aurora experiment to investigate double beta decay of 116 Cd with the help of 1.162 kg cadmium tungstate crystal scintillators enriched in 116 Cd to 82% is in progress at the Gran Sasso Underground Laboratory. The half-life of 116 Cd relatively to the two neutrino double beta decay is measured with the highest up-to-date accuracy T1/2 = (2.62 ± 0.14) × 1019 yr. The sensitivity of the experiment to the neutrinoless double beta decay of 116 Cd to the ground state of 116 Sn is estimated as T1/2 ≥ 1.9 × 1023 yr at 90% CL, which corresponds to the effective Majorana neutrino mass limit (mv) ≤ (1.2 — 1.8) eV. New limits are obtained for the double beta decay of 116 Cd to the excited levels of 116 Sn, and for the neutrinoless double beta decay with emission of majorons.
Fuel gain exceeding unity in an inertially confined fusion implosion.
Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R
2014-02-20
Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.
Low Background Signal Readout Electronics for the MAJORANA DEMONSTRATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guinn, I.; Abgrall, N.; Avignone, III, F. T.
The MAJORANA DEMONSTRATOR is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay (0 nu beta beta) in Ge-76. Such an experiment would require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the beta beta decay. Designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. This paper will discuss the MAJORANA collaboration's solutions to some of these challenges.
Non-inductively driven tokamak plasmas at near-unity βt in the Pegasus toroidal experiment
NASA Astrophysics Data System (ADS)
Reusch, J. A.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Rhodes, A. T.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Weberski, J. D.
2018-05-01
A major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓi, high elongation κ, and high toroidal and normalized beta ( βt and βN) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓi. The low aspect ratio ( R0/a ˜1.2 ) of Pegasus allows access to high κ and high normalized plasma currents ( IN=Ip/a BT>14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high βt plasmas. Equilibrium analyses indicate that βt up to ˜100% is achieved. These high βt discharges disrupt at the ideal no-wall β limit at βN˜7.
Proteolytic processing of endogenous and recombinant beta 4 integrin subunit
1992-01-01
The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432
Binaural Pitch Fusion in Bilateral Cochlear Implant Users.
Reiss, Lina A J; Fowler, Jennifer R; Hartling, Curtis L; Oh, Yonghee
Binaural pitch fusion is the fusion of stimuli that evoke different pitches between the ears into a single auditory image. Individuals who use hearing aids or bimodal cochlear implants (CIs) experience abnormally broad binaural pitch fusion, such that sounds differing in pitch by as much as 3-4 octaves are fused across ears, leading to spectral averaging and speech perception interference. The goal of this study was to determine if adult bilateral CI users also experience broad binaural pitch fusion. Stimuli were pulse trains delivered to individual electrodes. Fusion ranges were measured using simultaneous, dichotic presentation of reference and comparison stimuli in opposite ears, and varying the comparison stimulus to find the range that fused with the reference stimulus. Bilateral CI listeners had binaural pitch fusion ranges varying from 0 to 12 mm (average 6.1 ± 3.9 mm), where 12 mm indicates fusion over all electrodes in the array. No significant correlations of fusion range were observed with any subject factors related to age, hearing loss history, or hearing device history, or with any electrode factors including interaural electrode pitch mismatch, pitch match bandwidth, or within-ear electrode discrimination abilities. Bilateral CI listeners have abnormally broad fusion, similar to hearing aid and bimodal CI listeners. This broad fusion may explain the variability of binaural benefits for speech perception in quiet and in noise in bilateral CI users.
D-He-3 spherical torus fusion reactor system study
NASA Astrophysics Data System (ADS)
Macon, William A., Jr.
1992-04-01
This system study extrapolates present physics knowledge and technology to predict the anticipated characteristics of D-He3 spherical torus fusion reactors and their sensitivity to uncertainties in important parameters. Reference cases for steady-state 1000 MWe reactors operating in H-mode in both the 1st stability regime and the 2nd stability regime were developed and assessed quantitatively. These devices would a very small aspect ratio (A=1,2), a major radius of about 2.0 m, an on-axis magnetic field less than 2 T, a large plasma current (80-120 MA) dominated by the bootstrap effect, and high plasma beta (greater than O.6). The estimated cost of electricity is in the range of 60-90 mills/kW-hr, assuming the use of a direct energy conversion system. The inherent safety and environmental advantages of D-He3 fusion indicate that this reactor concept could be competitive with advanced fission breeder reactors and large-scale solar electric plants by the end of the 21st century if research and development can produce the anticipated physics and technology advances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NEMO Collaboration
Double beta decay of {sup 100}Mo (172g) is studied with the NEMO 2 detector in the Frejus Underground Laboratory. The experiment has now accumulated 2485 hours of data taking. A clear signal of 380 events for 2{beta}2{nu} decay has been obtained corresponding to a half-life of T{sub {1/2}} = 1.0 {plus_minus} 0.08 (syst.) 10{sup 19} y. Limits are presented for 2{beta}(0{nu}, {chi}), 2{beta}0{nu} (ground state and excited states 2{sub 1}{sup +} and 0{sub 1}{sup +}). The experiment will run til October 1993.
Agaisse, H; Lereclus, D
1994-08-01
Expression of the Bacillus thuringiensis cryIIIA gene encoding a Coleoptera-specific toxin is weak during vegetative growth and is activated at the onset of the stationary phase. cryIIIA'-'lacZ fusions and primer extension analysis show that the regulation of cryIIIA expression is similar in Bacillus subtilis and in B. thuringiensis. Activation of cryIIIA expression was not altered in B. subtilis mutant strains deficient for the sigma H and sigma E sporulation-specific sigma factors or for minor sigma factors such as sigma B, sigma D, or sigma L. This result and the nucleotide sequence of the -35 and -10 regions of the cryIIIA promoter suggest that cryIIIA expression might be directed by the E sigma A form of RNA polymerase. Expression of the cryIIIA'-'lacZ fusion is shut off after t2 (2 h after time zero) of sporulation in the B. subtilis wild-type strain grown on nutrient broth sporulation medium. However, no decrease in cryIIIA-directed beta-galactosidase activity occurred in sigma H, kinA, or spo0A mutant strains. Moreover, beta-galactosidase activity was higher and remained elevated after t2 in the spo0A mutant strain. beta-Galactosidase activity was weak in abrB and spo0A abrB mutant strains, suggesting that AbrB is responsible for the higher level of cryIIIA expression observed in a spo0A mutant. However, both in spo0A and spo0A abrB mutant strains, beta-galactosidase activity remained elevated after t2, suggesting that even in the absence of AbrB, cryIIIA expression is controlled through modulation of the phosphorylated form of Spo0A. When the cryIIIA gene is expressed in a B. subtilis spo0A mutant strain or in the 168 wild-type strain, large amounts of toxins are produced and accumulate to form a flat rectangular crystal characteristic of the coleopteran-specific B. thuringiensis strains.
Absolute mass of neutrinos and the first unique forbidden {beta} decay of {sup 187}Re
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvornicky, Rastislav; Simkovic, Fedor; Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, 141980 Dubna, Moscow region
2011-04-15
The planned rhenium {beta}-decay experiment, called the ''Microcalorimeter Arrays for a Rhenium Experiment'' (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which will take commissioning data in 2011 and will proceed for 5 years. We present the energy distribution of emitted electrons for the first unique forbidden {beta} decay of {sup 187}Re. It is found that the p-wave emission of electron dominates over the s wave. By assuming mixing of three neutrinos, the Kurie function for the rhenium {beta} decay is derived. It is shown that themore » Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed {beta} decay of {sup 3}H.« less
Magnetized target fusion: An ultra high energy approach in an unexplored parameter space
NASA Astrophysics Data System (ADS)
Lindemuth, I. R.
Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment.
Diagnosing magnetized liner inertial fusion experiments on Z
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, S. B., E-mail: sbhanse@sandia.gov; Gomez, M. R.; Sefkow, A. B.
Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.
A GDT-based fusion neutron source for academic and industrial applications
NASA Astrophysics Data System (ADS)
Anderson, J. K.; Forest, C. B.; Mirnov, V. V.; Peterson, E. E.; Waleffe, R.; Wallace, J.; Harvey, R. W.
2017-10-01
The design of a fusion neutron source based on the gas dynamic trap (GDT) configuration is underway. The motivation is both the ends and the means. There are immediate applications for neutrons including medical isotope production and actinide burners. Taking the next step in the magnetic mirror path will leverage advances in high-temperature superconducting magnets and additive manufacturing in confining a fusion plasma, and both the technological and physics bases exist. Recent breakthrough results at the GDT facility in Russia demonstrate stable confinement of a beta 60% mirror plasma at high Te ( 1 keV). These scale readily to a fusion neutron source with an increase in magnetic field, mirror ratio, and ion energy. Studies of a next-step compact device focus on calculations of MHD equilibrium and stability, and Fokker-Planck modeling to optimize the heating scenario. The conceptualized device uses off-the-shelf MRI magnets for a 1 T central field, REBCO superconducting mirror coils (which can currently produce fields in excess of 30T), and existing 75 keV NBI and 140 GHz ECRH. High harmonic fast wave injection is damped on beam ions, dramatically increasing the fusion reactivity for an incremental bump in input power. MHD stability is achieved with the vortex confinement scheme, where a biasing profile imposes optimal ExB rotation of the plasma. Liquid metal divertors are being considered in the end cells. Work supported by the Wisconsin Alumni Research Foundation.
Performance of ITER as a burning plasma experiment
NASA Astrophysics Data System (ADS)
Shimada, M.; Mukhovatov, V.; Federici, G.; Gribov, Y.; Kukushkin, A.; Murakami, Y.; Polevoi, A.; Pustovitov, V.; Sengoku, S.; Sugihara, M.
2004-02-01
Recent performance analysis has improved confidence in achieving Q (= fusion power/auxiliary heating power)geq 10 in inductive operation in ITER. Performance analysis based on empirical scalings shows the feasibility of achieving Q geq 10 in inductive operation, particularly with improved modelling of helium exhaust. Analysis has also indicated the possibility that ITER can potentially demonstrate Q ~ 50, enabling studies of self-heated plasmas. Theory-based core modelling indicates the need for a high pedestal temperature (3.2-5.3 keV) to achieve Q geq 10, which is in the range of projections with presently available pedestal scalings. Pellet injection from the high-field side would be useful in enhancing Q and reducing edge localized mode (ELM) heat load in high plasma current operation. If the ELM heat load is not acceptable, it could be made tolerable by further tilting the target plate. Steady state operation scenarios at Q = 5 have been developed with modest requirements on confinement improvement and beta (HH98(y,2) geq 1.3 and bgrN geq 2.6). Stabilization of the resistive wall modes (RWMs), required in such regimes, is feasible with the present saddle coils and power supplies with double-wall structures taken into account. Recent analysis shows a potential of high power steady state operation with a fusion power of 0.7 GW at Q ~ 8. Achievement of the required bgrN ~ 3.6 by RWM stabilization is a possibility. Further analysis is also needed on reduction of the divertor target heat load.
Swer, Pynskhem Bok; Bhadoriya, Pooja; Saran, Shweta
2014-03-01
Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52 percent identity and 100 percent similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the beta-galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway.
Repression of choline kinase by inositol and choline in Saccharomyces cerevisiae.
Hosaka, K; Murakami, T; Kodaki, T; Nikawa, J; Yamashita, S
1990-01-01
The regulation of choline kinase (EC 2.7.1.32), the initial enzyme in the CDP-choline pathway, was examined in Saccharomyces cerevisiae. The addition of myo-inositol to a culture of wild-type cells resulted in a significant decrease in choline kinase activity. Additional supplementation of choline caused a further reduction in the activity. The coding frame of the choline kinase gene, CK1, was joined to the carboxyl terminus of lacZ and expressed in Escherichia coli as a fusion protein, which was then used to prepare an anti-choline kinase antibody. Upon Western (immuno-) and Northern (RNA) blot analyses using the antibody and a CK1 probe, respectively, the decrease in the enzyme activity was found to be correlated with decreases in the enzyme amount and mRNA abundance. The molecular mass of the enzyme was estimated to be 66 kilodaltons, in agreement with the value predicted previously from the nucleotide sequence of the gene. The coding region of CK1 was replaced with that of lacZ, and CK1 expression was measured by assaying beta-galactosidase. The expression of beta-galactosidase from this fusion was repressed by myo-inositol and choline and derepressed in a time-dependent manner upon their removal. The present findings indicate that yeast choline kinase is regulated by myo-inositol and choline at the level of mRNA abundance. Images FIG. 3 FIG. 4 PMID:2156807
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huysmans, G.T.A.; Kerner, W.; Borba, D.
1995-05-01
The active excitation of global Alfven modes using the saddle coils in the Joint European Torus (JET) [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1984, Proceedings of the 10th International Conference, London (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] as the external antenna, will provide information on the damping of global modes without the need to drive the modes unstable. For the modeling of the Alfven mode excitation, the toroidal resistive magnetohydrodynamics (MHD) code CASTOR (Complex Alfven Spectrum in TORoidal geometry) [18{ital th} {ital EPS} {ital Conference} {ital On} {italmore » Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Physics}, Berlin, 1991, edited by P. Bachmann and D. C. Robinson (The European Physical Society, Petit-Lancy, 1991), Vol. 15, Part IV, p. 89] has been extended to calculate the response to an external antenna. The excitation of a high-performance, high beta JET discharge is studied numerically. In particular, the influence of a finite pressure is investigated. Weakly damped low-{ital n} global modes do exist in the gaps in the continuous spectrum at high beta. A pressure-driven global mode is found due to the interaction of Alfven and slow modes. Its frequency scales solely with the plasma temperature, not like a pure Alfven mode with a density and magnetic field.« less
Molecular recognition of parathyroid hormone by its G protein-coupled receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioszak, Augen A.; Xu, H. Eric
Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineeredmore » as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.« less
Nuclear fusion of advanced fuels using converging focused ion beams
NASA Astrophysics Data System (ADS)
Egle, Brian James
The Six Ion Gun Fusion Experiment (SIGFE) was designed and built to investigate a possible avenue to increase the reaction rate efficiency of the D-D and D-3He nuclear fusion reactions in Inertial Electrostatic Confinement (IEC) devices to the levels required for several non-electric applications of nuclear fusion. The SIGFE is based on the seminal IEC experiment published by Hirsch in 1967, and is the first experiment to recreate the results and unique features of the Hirsch device. The SIGFE used six identical ion beams to focus and converge deuterium and helium-3 ions into a sphere of less than 2 mm at nearly mono-energetic ion energies up to 150 keV. With improved ion optics and diagnostics, the SIGFE concluded that within the investigated parameter space, the region where the ion beams converged accounted for less than 0.2% of the total D-D fusion reactions. The maximum D-D fusion rates were observed when the ion beams were intentionally defocused to strike the inside surface of the cathode lenses. In this defocused state, the total D-D fusion rate increased when the chamber pressure was decreased. The maximum D-D fusion rate was 4.3 x 107 neutrons per second at a cathode voltage of -130 kV, a total cathode current of 10 mA, and a chamber pressure of 27 mPa. The D and 3He ion beams were produced in six self-contained ion gun modules. The modules were each capable of at least 4 mA of ion current while maintaining a main chamber pressure as low as 13 mPa. The theoretically calculated extractable ion current agreed with the experiment within a factor of 2. A concept was also developed and evaluated for the production of radioisotopes from the 14.7 MeV D-3He fusion protons produced in an IEC device. Monte Carlo simulations of this concept determined that a D-3He fusion rate on the order of 1011 s-1 would be required for an IEC device to produce 1 mCi of the 11C radioisotope.
Ternes, T A; Kreckel, P; Mueller, J
1999-01-12
Aerobic batch experiments containing a diluted slurry of activated sludge from a real sewage treatment plant (STP) near Frankfurt/Main were undertaken, in order to investigate the persistence of natural estrogens and contraceptives under aerobic conditions. The batch experiments showed that while in contact with activated sludge the natural estrogen 17 beta-estradiol was oxidized to estrone, which was further eliminated in the batch experiments in an approximate linear time dependence. Further degradation products of estrone were not observed. 16 alpha-hydroxyestrone was rapidly eliminated, again without detection of further degradation products. The contraceptive 17 alpha-ethinylestradiol was principally persistent under the selected aerobic conditions, whereas mestranol was rapidly eliminated and small portions of 17 alpha-ethinylestradiol were formed by demethylation. Additionally, two glucuronides of 17 beta-estradiol (17 beta-estradiol-17-glucuronide and 17 beta-estradiol-3-glucuronide) were cleaved in contact with the diluted activated sludge solution and thus 17 beta-estradiol was released. The glucuronidase activity of the activated sludge was further confirmed by the cleavage of 4-methylumbelliferyl-beta-D-glucuronide (MUF-beta-glucuronide) in a solution of a activated sludge slurry and Milli-Q-water (1:100, v/v). The turnover rate obtained was approximately steady state, with a turnover rate of 0.1 mumol/l for the released MUF. Hence, it is very likely that the glucuronic acid moiety of 17 beta-estradiol glucuronides and other estrogen glucuronides become cleaved in a real municipal STP, so that the concentrations of the free estrogens increase.
Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.
2002-01-01
Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.
Advanced ECCD based NTM control in closed-loop operation at ASDEX Upgrade (AUG)
NASA Astrophysics Data System (ADS)
Reich, Matthias; Barrera-Orte, Laura; Behler, Karl; Bock, Alexander; Giannone, Louis; Maraschek, Marc; Poli, Emanuele; Rapson, Chris; Stober, Jörg; Treutterer, Wolfgang
2012-10-01
In high performance plasmas, Neoclassical Tearing Modes (NTMs) are regularly observed at reactor-grade beta-values. They limit the achievable normalized beta, which is undesirable because fusion performance scales as beta squared. The method of choice for controlling and avoiding NTMs at AUG is the deposition of ECCD inside the magnetic island for stabilization in real-time (rt). Our approach to tackling such complex control problems using real-time diagnostics allows rigorous optimization of all subsystems. Recent progress in rt-equilibrium reconstruction (< 3.5 ms), rt-localization of NTMs (< 8 ms) and rt beam tracing (< 25 ms) allows closed-loop feedback operation using multiple movable mirrors as the ECCD deposition actuator. The rt-equilibrium uses function parametrization or a fast Grad-Shafranov solver with an option to include rt-MSE measurements. The island localization is based on a correlation of ECE and filtered Mirnov signals. The rt beam-tracing module provides deposition locations and their derivative versus actuator position of multiple gyrotrons. The ``MHD controller'' finally drives the actuators. Results utilizing closed-loop operation with multiple gyrotrons and their effect on NTMs are shown.
NIMROD Simulations of the HIT-SI and HIT-SI3 Devices
NASA Astrophysics Data System (ADS)
Morgan, Kyle; Jarboe, Tom; Hossack, Aaron; Chandra, Rian; Everson, Chris
2017-10-01
The Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) experiment uses a set of inductively driven helicity injectors to apply non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. Significant improvements have been made to extended MHD modeling of HIT-SI, with both the resolution of disagreement at high injector frequencies in HIT-SI in addition to successes with the new upgraded HIT-SI3 device. Previous numerical studies of HIT-SI, using a zero-beta eMHD model, focused on operations with a drive frequency of 14.5 kHz, and found reduced agreement with both the magnetic profile and current amplification at higher frequencies (30-70 kHz). HIT-SI3 has three helicity injectors which are able to operate with different mode structures of perturbations through the different relative temporal phasing of the injectors. Simulations that allow for pressure gradients have been performed in the parameter regimes of both devices using the NIMROD code and show improved agreement with experimental results, most notably capturing the observed Shafranov-shift due to increased beta observed at higher finj in HIT-SI and the variety of toroidal perturbation spectra available in HIT-SI3. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 96ER54361.
Effects of magnetization on fusion product trapping and secondary neutron spectraa)
NASA Astrophysics Data System (ADS)
Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.
2015-05-01
By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.
Search for neutrino transitions to sterile states using an intense beta source
NASA Astrophysics Data System (ADS)
Oralbaev, A. Yu.; Skorokhvatov, M. D.; Titov, O. A.
2017-11-01
The results of beta spectrum calculations for two 144Pr decay branches are presented, which are of interest for reconstructing the spectrum of antineutrinos from the 144Ce-144Pr source to be used in the SOX experiment on the search for sterile neutrinos. The main factors affecting the beta spectrum are analyzed, their calculation methods are given, and calculations are compared with experiment.
Evaluating the effectiveness of using electroencephalogram power indices to measure visual fatigue.
Hsu, Bin-Wei; Wang, Mao-Jiun J
2013-02-01
Electroencephalography (EEG) is widely used in cognitive and behavioral research. This study evaluates the effectiveness of using the EEG power index to measure visual fatigue. Three common visual fatigue measures, critical-flicker fusion (CFF), near-point accommodation (NPA), and subjective eye-fatigue rating, were used for comparison. The study participants were 20 men with a mean age of 20.4 yr. (SD = 1.5). The experimental task was a car-racing video game. Results indicated that the EEG power indices were valid as a visual fatigue measure and the sensitivity of the objective measures (CFF and EEG power index) was higher than the subjective measure. The EEG beta and EEG alpha were effective for measuring visual fatigue in short- and long-duration tasks, respectively. EEG beta/alpha were the most effective power indexes for the visual fatigue measure.
Modular low-aspect-ratio high-beta torsatron
Sheffield, G.V.
1982-04-01
A fusion-reactor device is described which the toroidal magnetic field and at least a portion of the poloidal magnetic field are provided by a single set of modular coils. The coils are arranged on the surface of a low-aspect-ratio toroid in planed having the cylindrical coordinate relationship phi = phi/sub i/ + kz, where k is a constant equal to each coil's pitch and phi/sub i/ is the toroidal angle at which the i'th coil intersects the z = o plane. The toroid defined by the modular coils preferably has a race track minor cross section. When vertical field coils and, preferably, a toroidal plasma current are provided for magnetic-field-surface closure within the toroid, a vacuum magnetic field of racetrack-shaped minor cross section with improved stability and beta valves is obtained.
NASA Astrophysics Data System (ADS)
Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Novoselov, A. S.; Oganessian, Yu. Ts.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Krupa, L.; Granja, C.; Pospisil, S.; Kliman, J.; Motycak, S.; Sivacek, I.
2015-06-01
Radon and mercury isotopes were produced in multi nucleon transfer (48Ca + 232Th) and complete fusion (48Ca + naturalNd) reactions, respectively. The isotopes with given masses were detected using two detectors: a multi-strip detector of the well-type (made in CANBERRA) and a position-sensitive quantum counting hybrid pixel detector of the TIMEPIX type. The isotopes implanted into the detectors then emit alpha- and betaparticles until reaching the long lived isotopes. The position of the isotopes, the tracks, the time and energy of beta-particles were measured and analyzed. A new software for the particle recognition and data analysis of experimental results was developed and used. It was shown that MASHA+ TIMEPIX setup is a powerful instrument for investigation of neutron-rich isotopes far from stability limits.
Ochiai, Nagahiro; Masumoto, Shuji; Sakagami, Hiroyuki; Yoshimura, Yoshiyuki; Yamauchi, Takashi
2007-05-01
We previously found the neuronal cell-type specific promoter and binding partner of the beta isoform of Ca(2+)/calmodulin-dependent protein kinase II (beta CaM kinase II) in rat brain [Donai, H., Morinaga, H., Yamauchi, T., 2001. Genomic organization and neuronal cell type specific promoter activity of beta isoform of Ca(2+)/calmodulin-dependent protein kinase II of rat brain. Mol. Brain Res. 94, 35-47]. In the present study, we purified a protein that binds specifically a promoter region of beta CaM kinase II gene from a nuclear extract of the rat cerebellum using DEAE-cellulose column chromatography, ammonium sulfate fractionation, gel filtration and polyacrylamide gel electrophoresis. The purified protein was identified as rat leucine-rich protein 157 (rLRP157) using tandem mass spectrometry. Then, we prepared its cDNA by reverse transcriptase-polymerase chain reaction (RT-PCR) from poly(A)(+)RNA of rat cerebellum. The rLRP157 cDNA was introduced into mouse neuroblastomaxrat glioma hybrid NG108-15 cells, and cells stably expressing rLRP157 (NG/LRP cells) were isolated. Binding of rLRP157 with the promoter sequence was confirmed by electrophoretic mobility shift assay using nuclear extract of NG/LRP cells. A luciferase reporter gene containing a promoter of beta CaM kinase II was transiently expressed in NG/LRP cells. Under the conditions, the promoter activity was enhanced about 2.6-fold in NG/LRP cells as compared with wild-type cells. The expression of rLRP157 mRNA was paralleled with that of beta CaM kinase II in the adult and embryo rat brain detected by in situ hybridization. Nuclear localization of rLRP157 was confirmed using GFP-rLRP157 fusion protein investigated under a confocal microscope. These results indicate that rLRP157 is one of the proteins binding to, and regulating the activity of, the promoter of beta CaM kinase II.
Vian, A; Carrascosa, A V; García, J L; Cortés, E
1998-06-01
The nucleotide sequence of both the bgaA gene, coding for a thermostable beta-galactosidase of Thermus sp. strain T2, and its flanking regions was determined. The deduced amino acid sequence of the enzyme predicts a polypeptide of 645 amino acids (Mr, 73,595). Comparative analysis of the open reading frames located in the flanking regions of the bgaA gene revealed that they might encode proteins involved in the transport and hydrolysis of sugars. The observed homology between the deduced amino acid sequences of BgaA and the beta-galactosidase of Bacillus stearothermophilus allows us to classify the new enzyme within family 42 of glycosyl hydrolases. BgaA was overexpressed in its active form in Escherichia coli, but more interestingly, an active chimeric beta-galactosidase was constructed by fusing the BgaA protein to the choline-binding domain of the major pneumococcal autolysin. This chimera illustrates a novel approach for producing an active and thermostable hybrid enzyme that can be purified in a single step by affinity chromatography on DEAE-cellulose, retaining the catalytic properties of the native enzyme. The chimeric enzyme showed a specific activity of 191,000 U/mg at 70 degrees C and a Km value of 1.6 mM with o-nitrophenyl-beta-D-galactopyranoside as a substrate, and it retained 50% of its initial activity after 1 h of incubation at 70 degrees C.
NASA Astrophysics Data System (ADS)
Erickson, Kyle J.; Ross, Timothy D.
2007-04-01
Decision-level fusion is an appealing extension to automatic/assisted target recognition (ATR) as it is a low-bandwidth technique bolstered by a strong theoretical foundation that requires no modification of the source algorithms. Despite the relative simplicity of decision-level fusion, there are many options for fusion application and fusion algorithm specifications. This paper describes a tool that allows trade studies and optimizations across these many options, by feeding an actual fusion algorithm via models of the system environment. Models and fusion algorithms can be specified and then exercised many times, with accumulated results used to compute performance metrics such as probability of correct identification. Performance differences between the best of the contributing sources and the fused result constitute examples of "gain." The tool, constructed as part of the Fusion for Identifying Targets Experiment (FITE) within the Air Force Research Laboratory (AFRL) Sensors Directorate ATR Thrust, finds its main use in examining the relationships among conditions affecting the target, prior information, fusion algorithm complexity, and fusion gain. ATR as an unsolved problem provides the main challenges to fusion in its high cost and relative scarcity of training data, its variability in application, the inability to produce truly random samples, and its sensitivity to context. This paper summarizes the mathematics underlying decision-level fusion in the ATR domain and describes a MATLAB-based architecture for exploring the trade space thus defined. Specific dimensions within this trade space are delineated, providing the raw material necessary to define experiments suitable for multi-look and multi-sensor ATR systems.
ERIC Educational Resources Information Center
Glasstone, Samuel
This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…
NASA Astrophysics Data System (ADS)
Zhirkin, A. V.; Alekseev, P. N.; Batyaev, V. F.; Gurevich, M. I.; Dudnikov, A. A.; Kuteev, B. V.; Pavlov, K. V.; Titarenko, Yu. E.; Titarenko, A. Yu.
2017-06-01
In this report the calculation accuracy requirements of the main parameters of the fusion neutron source, and the thermonuclear blankets with a DT fusion power of more than 10 MW, are formulated. To conduct the benchmark experiments the technical documentation and calculation models were developed for two blanket micro-models: the molten salt and the heavy water solid-state blankets. The calculations of the neutron spectra, and 37 dosimetric reaction rates that are widely used for the registration of thermal, resonance and threshold (0.25-13.45 MeV) neutrons, were performed for each blanket micro-model. The MCNP code and the neutron data library ENDF/B-VII were used for the calculations. All the calculations were performed for two kinds of neutron source: source I is the fusion source, source II is the source of neutrons generated by the 7Li target irradiated by protons with energy 24.6 MeV. The spectral indexes ratios were calculated to describe the spectrum variations from different neutron sources. The obtained results demonstrate the advantage of using the fusion neutron source in future experiments.
Resonance Raman Spectroscopy of Beta-Carotene and Lycopene: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Hoskins, L. C.
1984-01-01
Discusses the theory of resonance Raman (RR) spectroscopy as it applies to beta-carotene and lycopene pigments (found in tomatoes and carrots, respectively). Also discusses an experiment which demonstrates the theoretical principles involved. The experiment has been tested over a three-year period and has received excellent acceptance by physical…
Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H
2012-10-01
Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.
NASA Astrophysics Data System (ADS)
Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET
2016-11-01
Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.
Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)
NASA Astrophysics Data System (ADS)
Knott, M. J.
1982-08-01
As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.
Genetics Home Reference: 17-beta hydroxysteroid dehydrogenase 3 deficiency
... some affected individuals may also experience breast enlargement (gynecomastia). Despite having testes, people with this disorder are ... 17-beta-hydroxysteroid oxidoreductase deficiency pseudohermaphroditism, male, with gynecomastia testosterone 17-beta-dehydrogenase deficiency Related Information How ...
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis
2014-10-01
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less
Objective quality assessment for multiexposure multifocus image fusion.
Hassen, Rania; Wang, Zhou; Salama, Magdy M A
2015-09-01
There has been a growing interest in image fusion technologies, but how to objectively evaluate the quality of fused images has not been fully understood. Here, we propose a method for objective quality assessment of multiexposure multifocus image fusion based on the evaluation of three key factors of fused image quality: 1) contrast preservation; 2) sharpness; and 3) structure preservation. Subjective experiments are conducted to create an image fusion database, based on which, performance evaluation shows that the proposed fusion quality index correlates well with subjective scores, and gives a significant improvement over the existing fusion quality measures.
Status of double beta decay experiments using isotopes other than 136Xe
NASA Astrophysics Data System (ADS)
Pandola, L.
2014-09-01
Neutrinoless double beta decay is a lepton-number violating process predicted by many extensions of the standard model. It is actively searched for in several candidate isotopes within many experimental projects. The status of the experimental initiatives which are looking for the neutrinoless double beta decay in isotopes other than 136Xe is reviewed, with special emphasis given to the projects that passed the R&D phase. The results recently released by the experiment GERDA are also summarized and discussed. The GERDA data give no positive indication of neutrinoless double beta decay of 76Ge and disfavor in a model-independent way the long-standing observation claim on the same isotope. The lower limit reported by GERDA for the half-life of neutrinoless double beta decay of 76Ge is T1/20ν > 2.1 ṡ1025 yr (90% C.L.), or T1/20ν > 3.0 ṡ1025 yr, when combined with the results of other 76Ge predecessor experiments.
Expression of the barley stripe mosaic virus RNA beta "triple gene block".
Zhou, H; Jackson, A O
1996-02-15
Genomic RNA beta of barley strip mosaic virus (BSMV) contains four defined open reading frames (ORFs). These include the coat protein (beta a) and a "triple gene block" consisting of the beta b, beta c, and beta d ORFs that overlap one another. Two subgenomic beta RNAs (sgRNA beta 1 and sgRNA beta 2) with sizes of 2.5 and 0.96 kb were identified in BSMV-infected protoplasts, and their transcription initiation sites were mapped to nucleotides 789 and 2327, respectively, of RNA beta by primer extension experiments. In a cell-free wheat germ translation system, genomic RNA beta served as a mRNA only for the 22-kDa coat protein, and sgRNA beta 1 directed synthesis of only the 58-kDA beta b protein. However, with sgRNA beta 2, three proteins with sizes of 14, 17, and 23 kDa were synthesized. Both the 14- and the 23-kDa proteins were recognized by the beta d antibodies in vitro and in vivo. These results demonstrated that the 14-kDa protein was encoded by the beta d ORF and suggested that the 23-kDa protein, designated beta d', is a readthrough product of the amber stop codon of the beta d ORF. Mutagenesis of sgRNA beta 2 revealed that the 17-kDa protein was a product of the beta c ORF. Expression of sgRNA beta 1 and sgRNA beta 2 was also investigated with the chloramphenicol acetyl transferase (CAT) reporter gene in protoplasts coinfected with RNAs alpha and gamma plus chimeric RNA beta derivatives containing the CAT gene in-frame with the beta b, beta c, beta d, or beta d' ORFs. Elimination of the sgRNA beta 1 promoter abolished CAT expression from the beta b-CAT chimeric RNA, and removal of the sgRNA beta 2 promoter prevented CAT expression from the beta c-CAT, beta d-CAT, and beta d'-CAT chimeric RNAs. Taken together, these results demonstrate that the BSMV coat protein is the sole translation product of the genomic RNA beta, whereas sgRNA beta 1 serves as a messenger for translation of the beta b protein, and sgRNA beta 2 functions as a messenger for translation of beta c and beta d and the newly discovered beta d' protein. Additional mutagenesis experiments indicate that beta c is translated by a leaky scanning mechanism.
2014-03-01
bundle (MFB); quantification by confocal optical dissection of either GFP-positive axons in the MFB in transgenic TH- GFP mice or of Tomato -positive...axons following transduction with anterograde tracer Tomato -Tau. As anticipated, based on anatomical evidence showing an inability of AAV eIF4E to re...which the axon-targeted fusion protein Tomato -Tau is delivered to SN neurons by AAV and expression is driven by the robust chicken-beta actin promoter
Alibardi, L; Thompson, M B
2003-04-01
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal. Copyright 2003 Wiley-Liss, Inc.
Chun, Danielle S; Cook, Ralph W; Weiner, Joseph A; Schallmo, Michael S; Barth, Kathryn A; Singh, Sameer K; Freshman, Ryan D; Patel, Alpesh A; Hsu, Wellington K
2018-03-01
Retrospective cohort. Determine whether surgeon demographic factors influence postoperative complication rates after elective spine fusion procedures. Surgeon demographic factors have been shown to impact decision making in the management of degenerative disease of the lumbar spine. Complication rates are frequently reported outcome measurements used to evaluate surgical treatments, quality-of-care, and determine health care reimbursements. However, there are few studies investigating the association between surgeon demographic factors and complication outcomes after elective spine fusions. A database of US spine surgeons with corresponding postoperative complications data after elective spine fusions was compiled utilizing public data provided by the Centers for Medicare and Medicaid Services (2011-2013) and ProPublica Surgeon Scorecard (2009-2013). Demographic data for each surgeon was collected and consisted of: surgical specialty (orthopedic vs. neurosurgery), years in practice, practice setting (private vs. academic), type of medical degree (MD vs. DO), medical school location (United States vs. foreign), sex, and geographic region of practice. General linear mixed models using a Beta distribution with a logit link and pairwise comparison with post hoc Tukey-Kramer were used to assess the relationship between surgeon demographics and complication rates. 2110 US-practicing spine surgeons who performed spine fusions on 125,787 Medicare patients from 2011 to 2013 met inclusion criteria for this study. None of the surgeon demographic factors analyzed were found to significantly affect overall complication rates in lumbar (posterior approach) or cervical spine fusion. Publicly available complication rates for individual spine surgeons are being utilized by hospital systems and patients to assess aptitude and gauge expectations. The increasing demand for transparency will likely lead to emphasis of these statistics to improve outcomes. We conclude that none of the surgeon demographic factors analyzed in this study are associated with differences in overall complications rates in patients undergoing elective spine fusion as published by the ProPublica Surgeon Scorecard. Level 3.
Inomoto, M; Abe, K; Yamada, T; Kuwahata, A; Kamio, S; Cao, Q H; Sakumura, M; Suzuki, N; Watanabe, T; Ono, Y
2011-02-01
A cost-effective power supply for static magnetic field coils used in fusion plasma experiments has been developed by application of an electric double layer capacitor (EDLC). A prototype EDLC power supply system was constructed in the form of a series LCR circuit. Coil current of 100 A with flat-top longer than 1 s was successfully supplied to an equilibrium field coil of a fusion plasma experimental apparatus by a single EDLC module with capacitance of 30 F. The present EDLC power supply has revealed sufficient performance for plasma confinement experiments whose discharge duration times are an order of several seconds.
Condorcet and borda count fusion method for ligand-based virtual screening.
Ahmed, Ali; Saeed, Faisal; Salim, Naomie; Abdo, Ammar
2014-01-01
It is known that any individual similarity measure will not always give the best recall of active molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening approaches can be enhanced by using data fusion. Data fusion can be implemented using two different approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking of the compounds in the database. The Condorcet fusion method was examined. This approach combines the outputs of similarity searches from eleven association and distance similarity coefficients, and then the winner measure for each class of molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Simulated virtual screening experiments with the standard two data sets show that the use of Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought.
Condorcet and borda count fusion method for ligand-based virtual screening
2014-01-01
Background It is known that any individual similarity measure will not always give the best recall of active molecule structure for all types of activity classes. Recently, the effectiveness of ligand-based virtual screening approaches can be enhanced by using data fusion. Data fusion can be implemented using two different approaches: group fusion and similarity fusion. Similarity fusion involves searching using multiple similarity measures. The similarity scores, or ranking, for each similarity measure are combined to obtain the final ranking of the compounds in the database. Results The Condorcet fusion method was examined. This approach combines the outputs of similarity searches from eleven association and distance similarity coefficients, and then the winner measure for each class of molecules, based on Condorcet fusion, was chosen to be the best method of searching. The recall of retrieved active molecules at top 5% and significant test are used to evaluate our proposed method. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Conclusions Simulated virtual screening experiments with the standard two data sets show that the use of Condorcet fusion provides a very simple way of improving the ligand-based virtual screening, especially when the active molecules being sought have a lowest degree of structural heterogeneity. However, the effectiveness of the Condorcet fusion was increased slightly when structural sets of high diversity activities were being sought. PMID:24883114
Schlesinger, T K; Demali, K A; Johnson, G L; Kazlauskas, A
1999-01-01
Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR. PMID:10567236
Thermonuclear Fusion: An Energy Source for the Future
ERIC Educational Resources Information Center
Drummond, William E.
1973-01-01
Discusses current research in thermonuclear fusion with particular emphasis on the problem of confining hot plasma. Recent experiments indicate that magnetic bottles called tokamaks may achieve the necessary confinement times, and this break-through has given renewed optimism to the feasibility of commercial fusion power by the turn of the…
Modeling Cyber Situational Awareness Through Data Fusion
2013-03-01
following table: Table 3.10: Example Vulnerable Hosts for Criticality Assessment Experiment Example Id OS Applications/Services Version 1 Mac OS X VLC ...linux.org/. [4] Blasch, E., I. Kadar, J. Salerno, M. Kokar, S. Das, G. Powell, D. Corkill, and E. Ruspini. “Issues and challenges of knowledge representation...Holsopple. “Issues and challenges in higher level fusion: Threat/impact assessment and intent modeling (a panel summary)”. Information Fusion (FUSION
Effects of magnetization on fusion product trapping and secondary neutron spectra
Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...
2015-05-14
In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less
U. S. fusion programs: Struggling to stay in the game
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, M.
Funding for the US fusion energy program has suffered and will probably continue to suffer major cuts. A committee hand-picked by Energy Secretary James Watkins urged the Department of Energy to mount an aggressive program to develop fusion power, but congress cut funding from $323 million in 1990 to $275 million in 1991. This portends dire conditions for fusion research and development. Projects to receive top priority are concerned with the tokamaks and to keep the next big machine, the Burning Plasma Experiment, scheduled for beginning of construction in 1993 on schedule. Secretary Watkins is said to want to keepmore » the International Thermonuclear Energy Reactor (ITER) on schedule. ITER would follow the Burning Plasma Experiment.« less
1999-05-12
The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.
USDA-ARS?s Scientific Manuscript database
Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite Beta-hydroxy-Beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...
USDA-ARS?s Scientific Manuscript database
Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB). To determine the effects of HMB on protein synthesi...
Precision operation of the Nova laser for fusion experiments
NASA Astrophysics Data System (ADS)
Caird, J. A.; Ehrlich, R. B.; Hermes, G. L.; Landen, O. L.; Laumann, C. W.; Lerche, R. A.; Miller, J. L.; Murray, J. E.; Nielsen, N. D.; Powell, H. T.; Rushford, M. C.; Saunders, R. L.; Thompson, C. E.; VanArsdall, P. J.; Vann, C. S.; Weiland, T. L.
1994-10-01
The operation of a Neodymium glass laser of a special design for fusion experiments is improved by a better pulse synchronization, the gain stabilization, and the laser diagnostics. We used sensor upgrading and antifriction coating of focusing lenses. The pointing accuracy of the Nova laser meets now our goal for precision operation. (AIP)
The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Long; Lok, Shee-Mei; Yu, I-Mei
2008-09-17
Many viruses go through a maturation step in the final stages of assembly before being transmitted to another host. The maturation process of flaviviruses is directed by the proteolytic cleavage of the precursor membrane protein (prM), turning inert virus into infectious particles. We have determined the 2.2 angstrom resolution crystal structure of a recombinant protein in which the dengue virus prM is linked to the envelope glycoprotein E. The structure represents the prM-E heterodimer and fits well into the cryo-electron microscopy density of immature virus at neutral pH. The pr peptide {beta}-barrel structure covers the fusion loop in E, preventingmore » fusion with host cell membranes. The structure provides a basis for identifying the stages of its pH-directed conformational metamorphosis during maturation, ending with release of pr when budding from the host.« less
NASA Astrophysics Data System (ADS)
Dreicer, H.
1987-09-01
Potential commercial fusion power systems must be acceptable from a safety and environmental standpoint. They must also promise to be competitive with other sources of energy (i.e., fossil, fission, etc.) when considered from the standpoint of the cost of electricity (COE) and the unit direct cost (UDC) in dollars/kWe. These costs are affected by a host of factors including recirculating power, plant availability, construction time, capital cost, etc., and are influenced by technological complexity. In an attempt to meet these requirements, the emphasis of fusion research in the United States has been moving toward smaller, lower-cost systems. There is increased interest in higher beta tokamaks and stellarators, and in compact alternate concepts such as the Reversed Field Pinch (RFP) and the Compact Toroids (CTs) which are, in part, the subject of this paper.
A Physics Exploratory Experiment on Plasma Liner Formation
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter
2002-01-01
Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.
Rodríguez-Quiñones, F; Bosch, R; Imperial, J
1993-01-01
The nifBQ transcriptional unit of Azotobacter vinelandii has been previously shown to be required for activity of the three nitrogenase systems, Mo nitrogenase, V nitrogenase, and Fe nitrogenase, present in this organism. We studied regulation of expression and the role of the nifBQ region by means of translational beta-galactosidase fusions to each of the five open reading frames: nifB, orf2 (fdxN), orf3 (nifO), nifQ, and orf5. Expression of the first three open reading frames was observed under all three diazotrophic conditions; expression of orf5 was never observed. Genes nifB and fdxN were expressed at similar levels. With Mo, expression of nifO and nifQ was approximately 20- and approximately 400-fold lower than that of fdxN, respectively. Without Mo, expression of nifB dropped three- to fourfold and that of nifQ dropped to the detection limit. However, expression of nifO increased threefold. The products of nifB, fdxN, nifO, and nifQ have been visualized in A. vinelandii as beta-galactosidase fusion proteins with the expected molecular masses. The NifB- fusion lacked activity for any of the three nitrogenase systems and showed an iron-molybdenum cofactor-deficient phenotype in the presence of Mo. The FdxN- mutation resulted in reduced nitrogenase activities, especially when V was present. Dinitrogenase activity in extracts was similarly affected, suggesting a role of FdxN in iron-molybdenum cofactor synthesis. The NifO(-)-producing mutation did not affect any of the nitrogenases under standard diazotrophic conditions. The NifQ(-)-producing mutation resulted in an increased (approximately 1,000-fold) Mo requirement for Mo nitrogenase activity, a phenotype already observed with Klebsiella pneumoniae. No effect of the NifQ(-)-producing mutation on V or Fe nitrogenase was found; this is consistent with its very low expression under those conditions. Mutations in orf5 had no effect on nitrogenase activity. Images PMID:8491713
Siehnel, R J; Worobec, E A; Hancock, R E
1988-01-01
The gene encoding the outer membrane phosphate-selective porin protein P from Pseudomonas aeruginosa was cloned into Escherichia coli. The protein product was expressed and transported to the outer membrane of an E. coli phoE mutant and assembled into functional trimers. Expression of a product of the correct molecular weight was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, using polyclonal antibodies to protein P monomer and trimer forms. Protein P trimers were partially purified from the E. coli clone and shown to form channels with the same conductance as those formed by protein P from P. aeruginosa. The location and orientation of the protein P-encoding (oprP) gene on the cloned DNA was identified by three methods: (i) mapping the insertion point of transposon Tn501 in a previously isolated P. aeruginosa protein P-deficient mutant; (ii) hybridization of restriction fragments from the cloned DNA to an oligonucleotide pool synthesized on the basis of the amino-terminal protein sequence of protein P; and (iii) fusion of a PstI fragment of the cloned DNA to the amino terminus of the beta-galactosidase gene of pUC8, producing a fusion protein that contained protein P-antigenic epitopes. Structural analysis of the cloned DNA and P. aeruginosa chromosomal DNA revealed the presence of two adjacent PstI fragments which cross-hybridized, suggesting a possible gene duplication. The P-related (PR) region hybridized to the oligonucleotide pool described above. When the PstI fragment which contained the PR region was fused to the beta-galactosidase gene of pUC8, a fusion protein was produced which reacted with a protein P-specific antiserum. However, the restriction endonuclease patterns of the PR region and the oprP gene differed significantly beyond the amino-terminal one-third of the two genes. Images PMID:2834340
Das, Shreya; Majumder, Saugata; Kingston, Joseph J; Batra, Harsh V
2016-02-01
Clostridium perfringens beta (CPB) and iota (CPI) toxaemias result in some of the most lethal forms of haemorrhagic and necrotic enteritis and sudden death syndrome affecting especially neonates. While CPB enterotoxemia is one of the most common forms of clostridial enterotoxemia, CPI enterotoxemia though putatively considered to be rare is an emerging cause of concern. The similarities in clinical manifestation, gross and histopathology findings of both types of toxaemias coupled to the infrequency of CPI toxaemia might lead to symptomatic misidentification with Type C resulting in therapeutic failure due to habitual administration of CPB anti-toxin which is ineffective against CPI. Therefore in the present study, to generate a composite anti-toxin capable of neutralizing both toxaemias, a novel bivalent chimera r-Cpib was constructed by splicing the non-toxic C terminal binding regions of CPB and CPI, via a flexible glycine linker (G4S) by overlap-extension PCR. The fusion protein was characterized for its therapeutic abilities toward CPI and CPB toxin neutralizations. The r-Cpib was found to be non-toxic and could competitively inhibit binding of CPB to host cell receptors thereby reducing its cytotoxicity. Immunization of mice with r-Cpib generated specific antibodies capable of neutralizing the above toxaemias both in vitro and in vivo. Caco-2 cells exposed to a mixture of anti-r-Cpib sera and native CPI or CPB, displayed significantly superior protection against the respective toxins while passive challenge of mice with a similar mixture resulted in 83 and 91% protection against CPI and CPB respectively. Alternatively, mice exposed to a mixture of sham sera and native toxins died within 2-3 days. This work thus demonstrates r-Cpib as a novel bivalent fusion protein capable of efficient immunotherapy against C. perfringens CPI and CPB toxaemia. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Dermatophagoides farinae group 22 allergen: cloning and expression in Escherichia coli.
Cui, Yu-bao; Cai, Hong-xing; Zhou, Ying; Wang, Nan; Yu, Li-li; Yang, Li; Zhang, Cheng-bo
2015-09-01
Dermatophagoides farinae (Hughes) (Acari: Pyroglyphidae) and other domestic mites produce allergens that affect people worldwide. Here, the complementary DNA (cDNA) coding for group 22 allergen of D. farinae (Der f 22) from China was cloned, sequenced, and expressed successfully. The cDNA encoding Der f 22 was synthesized by reverse transcription polymerase chain reaction (RT-PCR), then ligated to the pCold-TF for expression in Escherichia coli BL21 cells. The purified recombinant fusion protein was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western-blotting, and tandem matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF/TOF). The full-length cDNA comprised 468 nucleotides and was 99.57% (466/468) identical with the reference sequence (GenBank: DQ643992). After the plasmid pCold-TF-Der f 22 was transformed into E. coli BL21 and expressed with the induction of IPTG, SDS-PAGE showed a specific band for the recombinant fusion protein. The recombinant fusion protein, which was purified by chromatography, bound with a His-tagged antibody by Western blotting. MALDI-TOF/TOF mass spectrometry revealed that the structure of the recombinant protein was identical to the predicted Der f 22 structure. The hydrophilic protein contains a signal peptide of 20 amino acids, and the mature Der f 22 consists of 135 amino acid residues with a molecular weight of 14.7 kDa and theoretical isoelectric points (pI) of 6.38. Its secondary structure comprises an alpha helix (38.5%), beta-sheet (45.9%), random coils (11.85%), and beta-turns (11.1%). This work represents the first reported full-length sequence and successful cloning of Der f 22 from D. farinae in China; bioinformatics analysis can be used to further study the allergenicity and clinical utility of the recombinant Der f 22. © 2015 ARS-AAOA, LLC.
Membrane-anchored plakoglobins have multiple mechanisms of action in Wnt signaling.
Klymkowsky, M W; Williams, B O; Barish, G D; Varmus, H E; Vourgourakis, Y E
1999-10-01
In Wnt signaling, beta-catenin and plakoglobin transduce signals to the nucleus through interactions with TCF-type transcription factors. However, when plakoglobin is artificially engineered to restrict it to the cytoplasm by fusion with the transmembrane domain of connexin (cnxPg), it efficiently induces a Wnt-like axis duplication phenotype in Xenopus. In Xenopus embryos, maternal XTCF3 normally represses ventral expression of the dorsalizing gene Siamois. Two models have been proposed to explain the Wnt-like activity of cnxPg: 1) that cnxPg inhibits the machinery involved in the turnover of cytosolic beta-catenin, which then accumulates and inhibits maternal XTCF3, and 2) that cnxPg directly acts to inhibit XTCF3 activity. To distinguish between these models, we created a series of N-terminal deletion mutations of cnxPg and examined their ability to induce an ectopic axis in Xenopus, activate a TCF-responsive reporter (OT), stabilize beta-catenin, and colocalize with components of the Wnt signaling pathway. cnxPg does not colocalize with the Wnt pathway component Dishevelled, but it does lead to the redistribution of APC and Axin, two proteins involved in the regulation of beta-catenin turnover. Expression of cnxPg increases levels of cytosolic beta-catenin; however, this effect does not completely explain its signaling activity. Although cnxPg and Wnt-1 stabilize beta-catenin to similar extents, cnxPg activates OT to 10- to 20-fold higher levels than Wnt-1. Moreover, although LEF1 and TCF4 synergize with beta-catenin and plakoglobin to activate OT, both suppress the signaling activity of cnxPg. In contrast, XTCF3 suppresses the signaling activity of both beta-catenin and cnxPg. Both exogenous XLEF1 and XTCF3 are sequestered in the cytoplasm of Xenopus cells by cnxPg. Based on these data, we conclude that, in addition to its effects on beta-catenin, cnxPg interacts with other components of the Wnt pathway, perhaps TCFs, and that these interactions contribute to its signaling activity.
Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Crawford, Howard C; Fusenig, Norbert E; Garlick, Jonathan A
2005-03-01
We studied the link between loss of E-cadherin-mediated adhesion and acquisition of malignant properties in three-dimensional, human tissue constructs that mimicked the initial stages of squamous cell cancer progression. Suppression of E-cadherin expression in early-stage, skin-derived tumor cells (HaCaT-II-4) was induced by cytoplasmic sequestration of beta-catenin upon stable expression of a dominant-negative E-cadherin fusion protein (H-2Kd-Ecad). In monolayer cultures, expression of H-2Kd-Ecad resulted in decreased levels of E-cadherin, redistribution of beta-catenin to the cytoplasm, and complete loss of intercellular adhesion when compared with control II-4 cells. This was accompanied by a 7-fold decrease in beta-catenin-mediated transcription and a 12-fold increase in cell migration. In three-dimensional constructs, E-cadherin-deficient tissues showed disruption of architecture, loss of adherens junctional proteins from cell contacts, and focal tumor cell invasion. Invasion was linked to activation of matrix metalloproteinase (MMP)-mediated degradation of basement membrane in H-2Kd-Ecad-expressing tissue constructs that was blocked by MMP inhibition (GM6001). Quantitative reverse transcription-PCR showed a 2.5-fold increase in MMP-2 and an 8-fold increase in MMP-9 in cells expressing the H-2Kd-Ecad fusion protein when compared with controls, and gel zymography showed increased MMP protein levels. Following surface transplantation of three-dimensional tissues, suppression of E-cadherin expression greatly accelerated tumorigenesis in vivo by inducing a switch to high-grade carcinomas that resulted in a 5-fold increase in tumor size after 4 weeks. Suppression of E-cadherin expression and loss of its function fundamentally modified squamous cell carcinoma progression by activating a highly invasive, aggressive tumor phenotype, whereas maintenance of E-cadherin prevented invasion in vitro and limited tumor progression in vivo.
They just don't get enough! Variable intern experience in bedside procedural skills.
Boots, R J; Egerton, W; McKeering, H; Winter, H
2009-04-01
Medical school and resident training programmes offer different learning opportunities and outcomes. The aim of the study was to assess medical student and intern experience in common clinical procedures. Interns employed in a metropolitan teaching hospital from 2000 to 2004 completed a survey of experience and confidence in clinical procedures at the beginning and end of their intern year. Attendance at and the contribution to procedural confidence of a voluntary procedural skill-training programme were examined. For the 314 interns, clinical experience before and during internship varied for each procedure and between year cohorts as did training programme attendance (44-84%). Student procedural confidence was predicted by pre-intern experience either on patients or by simulation (beta = 0.17, 95% confidence interval (CI) 0.02-0.21, P = 0.03) and age >30 years on commencing internship (beta = 8.44, 95%CI 3.03-14.06, P = 0.003. Adjusted R(2) = 0.08, P = 0.002). Intern procedural confidence by year's end was predicted by attendance at the training programme (beta = 0.48, 95%CI 0.34-0.62, P < 0.001), intern experience with patient procedures (beta = 0.34, 95%CI 0.21-0.47, P < 0.001) and a clear decision to enter a postgraduate training programme (beta = 0.13, 95%CI 0.04-0.22, P = 0.007, Adjusted R(2) = 0.50, P < 0.001). Interns and students receive variable experience to carry out procedural skills on patients. This makes designing training programmes difficult as training needs vary each year. Both mandatory supervision of key skills and opportunities to supplement limited experience are needed during the intern year to ensure a uniform experience.
Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; ...
2017-12-12
Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less
NASA Astrophysics Data System (ADS)
Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Van Zeeland, M. A.
2017-12-01
Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. The proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterion predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. The proposed criterion constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.
Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less
Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The optical absorption spectra of the vapor phase over HgI2(s,l) were measured for wavelengths between 200 and 600 nm. The spectra show that the sample sublimed congruently into HgI2 with no Hg or I2 absorption spectrum observed. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were determined. From these constants the vapor pressure of H912, P, was established as a function of temperatures for the liquid and the solid Beta-phases. The expressions correspond to the enthalpies of vaporization and sublimation of 15.30 and 20.17 Kcal/mole, respectively, for the liquid and the Beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 Kcal/mole and the intersection of the two expressions gives a melting point of 537 K.
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
NASA Astrophysics Data System (ADS)
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
Strategy for D/He-3 fusion development
NASA Technical Reports Server (NTRS)
Santarius, John F.
1988-01-01
It is concluded that Deuterium/Helium-3 fusion faces a more difficult physics development path but an easier technology development path than does Deuterium/Tritium. Early D/He-3 tests in next generation D/T fusion experiments might provide a valuable D/He-3 proof-of-principle at modest cost. At least one high leverage alternate concept should be vigorously pursued. Space applications of D/He-3 fusion are critically important to large scale development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shima, T.; /Osaka U., Res. Ctr. Nucl. Phys.; Doe, P.J.
2008-01-01
The performance of the MOON detector for a next-generation neutrino-less double-beta decay experiment was evaluated by means of the Monte Carlo method. The MOON detector was found to be a feasible solution for the future experiment to search for the Majorana neutrino mass in the range of 100-30 meV.
Hermansen, Anna; Peolsson, Anneli; Kammerlind, Ann-Sofi; Hjelm, Katarina
2016-04-01
To explore and describe women's experiences of daily life after anterior cervical decompression and fusion surgery. Qualitative explorative design. Fourteen women aged 39-62 years (median 52 years) were included 1.5-3 years after anterior cervical decompression and fusion for cervical disc disease. Individual semi-structured interviews were analysed by qualitative content analysis with an inductive approach. The women described their experiences of daily life in 5 different ways: being recovered to various extents; impact of remaining symptoms on thoughts and feelings; making daily life work; receiving support from social and occupational networks; and physical and behavioural changes due to interventions and encounters with healthcare professionals. This interview study provides insight into women's daily life after anterior cervical decompression and fusion. Whilst the subjects improved after surgery, they also experienced remaining symptoms and limitations in daily life. A variety of mostly active coping strategies were used to manage daily life. Social support from family, friends, occupational networks and healthcare professionals positively influenced daily life. These findings provide knowledge about aspects of daily life that should be considered in individualized postoperative care and rehabilitation in an attempt to provide better outcomes in women after anterior cervical decompression and fusion.
The final results of the Mi-Beta Cryogenic Experiment towards the CUORICINO Experiment
NASA Astrophysics Data System (ADS)
Pirro, S.; Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; McDonald, R. J.; Nucciotti, A.; Pavan, M.; Pedretti, M.; Pessina, G.; Pobes, C.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.
2002-02-01
We present the final results on neutrinoless Double Beta Decay (DBD) of 130Te obtained with an array of 20 cryogenic detectors. The Mi-Beta Experiment is operating since 3 years and was upgraded in March 2001. The background in the DBD energy region was reduced thanks to a new Roman lead shield framed inside the dilution unit and a neutron shield mounted outside the cryostat. We also improved the energy threshold using a cold electronic stage inside the cryostat. The new set-up represents also a good test for the CUORICINO Experiment. CUORICINO will start by the beginning of 2002 and will consist of 56 Tellurium Oxide Crystal with an overall bolometric mass of 42 kg. .
Neuhaus, Jochen; Heinrich, Marco; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe
2009-02-01
Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells. In this study, we examined the TGF-beta1 effects on Cx43 expression in cultured hBSMCs. hBSMC cultures, established from patients undergoing cystectomy, were treated with recombinant human TGF-beta1. Cx43 expression was then examined by Western blotting, real-time PCR, and immunocytochemistry. Dye-injection experiments were used to study the size of functional syncytia. Dye-coupling experiments revealed stable formation of functional syncytia in passaged cell cultures (P1-P4). Stimulation with TGF-beta1 led to significant reduction of Cx43 immunoreactivity and coupling. Cx43 protein expression was significantly downregulated and Cx43 mRNA was only 30% of the control level. Interestingly, low phosphorylation species of Cx43 were particularly affected. Our experiments demonstrated a significant down regulation of connexin 43 by TGF-beta1 in cultured hBSMCs. These findings support the view that TGF-beta1 is involved in the pathophysiology of urinary bladder dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Y.K.M.; Strickler, D.J.
The spherical torus is a very small aspect ratio (A < 2) confinement concept obtained by retaining only the indispensable components inboard to the plasma torus. MHD equilibrium calculations show that spherical torus plasmas with safety factor q > 2 are characterized by high toroidal beta (..beta../sub t/ > 0.2), low poloidal beta (..beta../sub p/ < 0.3), naturally large elongation (kappa greater than or equal to 2), large plasma current with I/sub p//(aB/sub t0/) up to about 7 MA/mT, strong paramagnetism (B/sub t//B/sub t0/ > 1.5), and strong plasma helicity (F comparable to THETA). A large near-omnigeneous region is seenmore » at the large-major-radius, bad-curvature region of the plasma in comparison with the conventional tokamaks. These features combine to engender the spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost. Because of its strong paramagnetism and helicity, the spherical torus plasma shares some of the desirable features of spheromak and reversed-field pinch (RFP) plasmas, but with tokamak-like confinement and safety factor q. The general class of spherical tori, which includes the spherical tokamak (q > 1), the spherical pinch (1 > q > O), and the spherical RFP (q < O), have magnetic field configurations unique in comparison with conventional tokamaks and RFPs. 22 refs., 12 figs.« less
Campuzano, Susana; Serra, Beatriz; Llull, Daniel; García, José L; García, Pedro
2009-09-01
A Streptococcus mitis genomic DNA fragment carrying the SMT1224 gene encoding a putative beta-galactosidase was identified, cloned, and expressed in Escherichia coli. This gene encodes a protein 2,411 amino acids long with a predicted molecular mass of 268 kDa. The deduced protein contains an N-terminal signal peptide and a C-terminal choline-binding domain consisting of five consensus repeats, which facilitates the anchoring of the secreted enzyme to the cell wall. The choline-binding capacity of the protein facilitates its purification using DEAE-cellulose affinity chromatography, although its complete purification was achieved by constructing a His-tagged fusion protein. The recombinant protein was characterized as a monomeric beta-galactosidase showing a specific activity of around 2,500 U/mg of protein, with optimum temperature and pH ranges of 30 to 40 degrees C and 6.0 to 6.5, respectively. Enzyme activity is not inhibited by glucose, even at 200 mM, and remains highly stable in solution or immobilized at room temperature in the absence of protein stabilizers. In S. mitis, the enzyme was located attached to the cell surface, but a significant activity was also detected in the culture medium. This novel enzyme represents the first beta-galactosidase having a modular structure with a choline-binding domain, a peculiar property that can also be useful for some biotechnological applications.
Tumor suppression function of the Big-h3 gene in radiation carcinogenesis
NASA Astrophysics Data System (ADS)
Zhao, Y.; Piao, C.; Hei, T.
Interaction between cell and extracellular matrix (ECM) plays a crucial role in tumor invasiveness and metastasis. Using an immortalized human bronchial epithelial (BEP2D) cell model, we show here that expression of Big-h3 gene, a secreted adhesion molecule induced by transforming growth factor- beta (TGF-beta ), is markedly decreased in independently generated, high LET radiation-induced tumor cell lines (TL1-TL5) relative to parental BEP2D cells. Expression of this gene was restored to control level in fusion cell lines between the tumorigenic and parental BEP2D cells that were no longer tumorigenic in nude mice. Transfection of Big-h3 gene into tumor cells resulted in a significant reduction of tumor growth. While integrin receptor alpha 5/beta 1 was overexpressed in tumor cells, its expression was corrected to the level of control BEP2D cells after Big-h3 transfection. These data suggest that Big-h3 is involved in tumor progression by regulating integrin receptor alpha 5/beta 1. . WWee We further show that down regulation of Big-h3 results from loss of expression of TGFbeta1 in tumor cells. The findings provide strong evidence that the Big-h3 gene has tumor suppressor function in radiation induced tumorigenic human bronchial epithelial cells and suggest a potential target for interventional therapy.
Experiments on the origin of molecular chirality by parity non-conservation during beta-decay
NASA Technical Reports Server (NTRS)
Bonner, W. A.
1974-01-01
Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta-decay, and their resulting circularly polarized bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. The historical background to this subject is briefly reviewed. Our experiments involve subjecting a number of racemic and optically active amino acid samples to a beta-radiation source for a period of 1.34 years (total dose: 411 Mrads), then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography.
NASA Technical Reports Server (NTRS)
1982-01-01
A focused laser doppler velocimeter (LDV) system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. A Doppler signal generator was used in mapping the coherent sensitive focal volume of a focused LDV system. System calibration data was analyzed during the flight test activity scheduled for the Beta system. These analyses were performed to determine the acceptability of the Beta measurement system's performance.
Project Physics Handbook 6, The Nucleus.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Five experiments and nine activities are presented in this Unit 6 handbook. The experiments are related to random events, ranges of alpha and beta particles, half-lives, and radioactive tracers. The activities are concerned with the energy measurement in beta radiation, demonstration with sugar cubes, ionization by radioactivity, magnetic…
MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.
2015-01-01
The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.
2000-01-01
beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.
Master, E R; Mohn, W W
2001-06-01
We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gm(r) fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30 degrees C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7 degrees C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15 degrees C was approximately five times less than the level in LB400-1 grown at 30 degrees C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.
Comparison between initial Magnetized Liner Inertial Fusion experiments and integrated simulations
NASA Astrophysics Data System (ADS)
Sefkow, A. B.; Gomez, M. R.; Geissel, M.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Peterson, K. J.; Slutz, S. A.; Koning, J. M.; Marinak, M. M.
2014-10-01
The Magnetized Liner Inertial Fusion (MagLIF) approach to ICF has obtained thermonuclear fusion yields using the Z facility. Integrated magnetohydrodynamic simulations provided the design for the first neutron-producing experiments using capabilities that presently exist, and the initial experiments measured stagnation radii rstag < 75 μm, temperatures around 3 keV, and isotropic neutron yields up to YnDD = 2 ×1012 from imploded liners reaching peak velocities around 70 km/s over an implosion time of about 60 ns. We present comparisons between the experimental observables and post-shot degraded integrated simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlburg, Jill; Corones, James; Batchelor, Donald
Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individualmore » features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC integrated planning document (IPPA, 2000), represents a significant opportunity for the DOE Office of Science to further the understanding of fusion plasmas to a level unparalleled worldwide.« less
EDITORIAL: Message from the Editor
NASA Astrophysics Data System (ADS)
Schüller, F. C.
2005-01-01
The group of 25 articles published in this special issue of Nuclear Fusion aims to monitor the progress made with experiments on fusion physics that have been conducted worldwide up to the end of 2004. These articles are based on overview reports from the various experimental teams presented at the Fusion Energy Conference (FEC 2004). This conference was organized by the IAEA together with the Portuguese host organization CFN-IST and was held in Vilamoura, Portugal, in early November 2004. The overviews presented at the conference have been rewritten and extended for the purpose of this special issue and submitted to the standard double-referee peer-review of Nuclear Fusion. Most teams have made use of this opportunity. Therefore this issue, which also includes four conference summaries, presents a reasonably complete picture of the progress made since FEC 2002 in Lyon. The articles are placed in the following sequence: Conference summaries Theory of magnetic confinement Experimental confinement, plasma-material interactions and innovative concepts Experiments on stability, energetic particles, waves and current drive Inertial confinement fusion Tokamaks Performance: JT-60U, JET, DIII-D, ASDEX-U, C-MOD Steady state/long pulse operation: Tore Supra, HT-7, TRIAM Spherical tokamaks: MAST, NSTX Tritium experiments: JET Diagnostics and heating methods: JET (diagnostics), T-10 (ECRH and diagnostics) and FTU (LHH + ECRH) New devices: HL-2A Small devices Alternative magnetic confinement concepts Stellarators: LHD, TJ-II Reversed field pinches: MST Inertial confinement Direct drive Heavy ion beam fusion Readers will also notice the supplementary issue of the journal (volume 45, issue 10A). This extra issue contains the 15-year overview report on progress in fusion research as written by the International Fusion Research Council (IFRC) under the editorial responsibility of the IFRC. Both issues together will give the interested reader a state-of-the-art picture of the progress in nuclear fusion research.
Presynaptic control of dopamine release by BETA-phenylethylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zharikova, A.D.; Godukhin, O.V.
The authors study the effect of extracellular ions (Ca/sup 2 +/, Na/sup 2 +/) on the beta-phenylethylamine (beta-PEA) releasing effect, dependence of this effect on the membrane potential of dopaminergic endings, and the participation of dopamine presynaptic autoreceptors in the realization of the effects of beta-PEA on dopamine (DA) release. Experi ments were carried out on noninbred male albino rats. By means of a microsyringe, (/sup 3/H)-DA hydrochloride was injected. The significance of the difference in levels of (/sup 3/H)-DA release during analogous periods of perfusion in the groups of animals compared was estimated by Student's test. These experiments inmore » vivo thus demonstrated the ability of beta-PEA to regulate DA release in different directions depending on the functional state of the dopaminergic neuron.« less
Energy-resolved neutron imaging for inertial confinement fusion
NASA Astrophysics Data System (ADS)
Moran, M. J.; Haan, S. W.; Hatchett, S. P.; Izumi, N.; Koch, J. A.; Lerche, R. A.; Phillips, T. W.
2003-03-01
The success of the National Ignition Facility program will depend on diagnostic measurements which study the performance of inertial confinement fusion (ICF) experiments. Neutron yield, fusion-burn time history, and images are examples of important diagnostics. Neutron and x-ray images will record the geometries of compressed targets during the fusion-burn process. Such images provide a critical test of the accuracy of numerical modeling of ICF experiments. They also can provide valuable information in cases where experiments produce unexpected results. Although x-ray and neutron images provide similar data, they do have significant differences. X-ray images represent the distribution of high-temperature regions where fusion occurs, while neutron images directly reveal the spatial distribution of fusion-neutron emission. X-ray imaging has the advantage of a relatively straightforward path to the imaging system design. Neutron imaging, by using energy-resolved detection, offers the intriguing advantage of being able to provide independent images of burning and nonburning regions of the nuclear fuel. The usefulness of energy-resolved neutron imaging depends on both the information content of the data and on the quality of the data that can be recorded. The information content will relate to the characteristic neutron spectra that are associated with emission from different regions of the source. Numerical modeling of ICF fusion burn will be required to interpret the corresponding energy-dependent images. The exercise will be useful only if the images can be recorded with sufficient definition to reveal the spatial and energy-dependent features of interest. Several options are being evaluated with respect to the feasibility of providing the desired simultaneous spatial and energy resolution.
Molecular Diagnostics of Fusion and Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Fantz, U.
2005-05-01
The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.
Optical fusions and proportional syntheses
NASA Astrophysics Data System (ADS)
Albert-Vanel, Michel
2002-06-01
A tragic error is being made in the literature concerning matters of color when dealing with optical fusions. They are still considered to be of additive nature, whereas experience shows us somewhat different results. The goal of this presentation is to show that fusions are, in fact, of 'proportional' nature, tending to be additive or subtractive, depending on each individual case. Using the pointillist paintings done in the manner of Seurat, or the spinning discs experiment could highlight this intermediate sector of the proportional. So, let us try to examine more closely what occurs in fact, by reviewing additive, subtractive and proportional syntheses.
Contribution to fusion research from IAEA coordinated research projects and joint experiments
NASA Astrophysics Data System (ADS)
Gryaznevich, M.; Van Oost, G.; Stöckel, J.; Kamendje, R.; Kuteev, B. N.; Melnikov, A.; Popov, T.; Svoboda, V.; The IAEA CRP Teams
2015-10-01
The paper presents objectives and activities of IAEA Coordinated Research Projects ‘Conceptual development of steady-state compact fusion neutron sources’ and ‘Utilisation of a network of small magnetic confinement fusion devices for mainstream fusion research’. The background and main projects of the CRP on FNS are described in detail, as this is a new activity at IAEA. Recent activities of the second CRP, which continues activities of previous CRPs, are overviewed.
Beltzer, J P; Spiess, M
1991-01-01
The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897
Acid-Catalyzed Enolization of [beta]-Tetralone
ERIC Educational Resources Information Center
Dewprashad, Brahmadeo; Nesturi, Anthony; Urena, Joel
2008-01-01
This experiment allows students to use [to the first power]H NMR to directly compare the relative initial rates of substitution of the benzylic and non-benzylic [alpha] hydrogens of [beta]-tetralone and correlate their findings with the predictions made by resonance theory. The experiment demonstrates that the benzylic hydrogens undergo [alpha]…
Simple Laboratory Exercise for Induction of Beta-Mannanase from "Aspergillus niger"
ERIC Educational Resources Information Center
Mulimani, V. H.; Naganagouda, K.
2010-01-01
This laboratory experiment was designed for Biochemistry, Biotechnology, Microbiology, and Food Technology students of undergraduate and postgraduate courses. The experiment shows the advantages of using agricultural waste, copra mannan as potent inducer of [beta]-mannanase. The students were able to compare the enzyme induction by commercial…
Further Experiments on Gibberellin-Stimulated Amylase Production in Cereal Grains
ERIC Educational Resources Information Center
Coppage, Jo; Hill, T. A.
1973-01-01
Experiments conducted on wheat and barley grains to analyze activities of alpha- and beta-amylase enzymes. Gibberellins were used exogenously. Techniques are described in detail. Results on different cultivars revealed that beta-amylase was not an invariable result of imbibition. Techniques employed can be used by school students. (PS)
The Majorana Double Beta Decay Experiment:. Present Status
NASA Astrophysics Data System (ADS)
Aguayo, E.; Avignone, F. T.; Back, H. O.; Barabash, A. S.; Beene, J. R.; Bergevin, M.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Chan, Y.-D.; Christofferson, C. D.; Collar, J. I.; Combs, D. C.; Cooper, R. J.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Esterline, J.; Fast, J. E.; Fields, N.; Finnerty, P.; Fraenkle, F. M.; Gehman, V. M.; Giovanetti, G. K.; Green, M. P.; Guiseppe, V. E.; Gusey, K.; Hallin, A. L.; Hazama, R.; Henning, R.; Hime, A.; Hoppe, E. W.; Horton, M.; Howard, S.; Howe, M. A.; Johnson, R. A.; Keeter, K. J.; Keller, C.; Kidd, M. F.; Knecht, A.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; Laferriere, B. D.; Laroque, B. H.; Leon, J.; Leviner, L. E.; Loach, J. C.; Macmullin, S.; Marino, M. G.; Martin, R. D.; Mei, D.-M.; Merriman, J. H.; Miller, M. L.; Mizouni, L.; Nomachi, M.; Orrell, J. L.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Perumpilly, G.; Prior, G.; Radford, D. C.; Rielage, K.; Robertson, R. G. H.; Ronquest, M. C.; Schubert, A. G.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Steele, D.; Strain, J.; Thomas, K.; Timkin, V.; Tornow, W.; Vanyushin, I.; Varner, R. L.; Vetter, K.; Vorren, K.; Wilkerson, J. F.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V. I.; Zhang, C.
2013-11-01
The Majorana collaboration is actively pursuing research and development aimed at a tonne-scale 76Ge neutrinoless double-beta decay (0νββ) experiment. The current, primary focus is the construction of the Majorana Demonstrator experiment, an R&D effort that will field approximately 40 kg of germanium detectors with mixed enrichment levels. This article provides a status update on the construction of the Demonstrator.
NASA Technical Reports Server (NTRS)
Stormont, R. W.; Morrison, A.
1974-01-01
Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.
Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment
Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.; ...
2018-03-14
Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less
NASA Astrophysics Data System (ADS)
Karim, Rezwanul
1999-10-01
This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
A method has been developed for the direct selection of methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 (formerly Pseudomonas sp. strain AM1). Using this direct selection technique, we have isolated mutants of Methylobacterium sp. strain AM1 that are no longer capable of growth on methanol but retain the ability to grow on methylamine. These methanol oxidation (Mox) mutants were complemented with a genomic clone bank of this organism constructed in the broad-host-range cosmid pVK100, and subcloning and Tn5 mutagenesis experiments have assigned the Mox mutants to 10 distinct complementation groups. Using an open reading frame beta-galactosidasemore » fusion vector and antibodies specific for Methylobacterium sp. strain AM1 methanol dehydrogenase, we have identified the methanol dehydrogenase structural gene and determined the direction of transcription. The results suggest that the synthesis and utilization of an active methanol dehydrogenase in this organism requires at least 10 different gene functions.« less
First results of transcritical magnetized collisionless shock studies on MSX
NASA Astrophysics Data System (ADS)
Weber, T. E.; Smith, R. J.; Hutchinson, T. M.; Taylor, S. F.; Hsu, S. C.
2014-10-01
Magnetized collisionless shocks exhibit transitional length and time scales much shorter than can be created through collisional processes. They are common throughout the cosmos, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL produces super-Alfvénic shocks through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a strong magnetic mirror and flux-conserving vacuum boundary. Plasma flows have been produced with sonic and Alfvén Mach numbers up to ~10 over a wide range of plasma beta with embedded perpendicular, oblique, and parallel magnetic field. Macroscopic ion skin-depth and long ion-gyroperiod enable diagnostic access to relevant shock physics using common methods. Variable plasmoid velocity, density, temperature, and magnetic field provide access to a wide range of shock conditions, and a campaign to study the physics of transcritical and supercritical shocks within the FRC plasmoid is currently underway. An overview of the experimental design, diagnostics suite, physics objectives, and recent results will be presented. Supported by DOE Office of Fusion Energy Sciences under DOE Contract DE-AC52-06NA25369.
Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.
Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less
MHD Stability in Compact Stellarators
NASA Astrophysics Data System (ADS)
Fu, Guoyong
1999-11-01
A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.
NASA Astrophysics Data System (ADS)
Chien, Haoyang
A syndiotactic alternating ethylene-propylene (SYN-ALT-EP) crystalline copolymer was synthesized by complete hydrogenation, using a diimide reduction, of syndiotactic cis-1,4-poly(pentadiene-1,3) (CIS-PPD). The microstructure was studied by both high resolution nuclear magnetic resonance (NMR) spectroscopy and also fourier transform infra-red (FTIR) spectroscopy. The number average length of syndiotactic sequences is about 69 which indicates a high degree of syndiotacticity (97%) in the microstructure of this copolymer. The single FTIR absorbance at 733 cm^{ -1} without any splitting suggests an alternating arrangement of ethylene and propylene units. The solution state characterization of SYN-ALT -EP was studied by gel permeation chromatography using on -line measurements of multi-angle laser light scattering (MALLS), single capillary viscosities (VISC), and concentrations by differential refractive index (DRI) detectors. The Mark-Houwink-Sakurada parameters of "K" and "a" in THF at 30^circC are determined to be 8.99 times 10^ {-5} and 0.8, respectively. The universal GPC calibration curve can be applied to this copolymer in THF at 30^circC. Two different molecular relaxation processes ( alpha and beta relaxations) were found via dynamic mechanical (DM) analysis below room temperature: an alpha relaxation (around -60^ circC) and a beta relaxation (around -125^circ C). The apparent activation energy of the alpha relaxation is 285 kJ/mol, and the activation energy of the beta relaxation is 43 kJ/mol based on the Arrhenius equation. Molecular motion in SYN-ALT-EP copolymer was probed by solid state ^{13}C NMR experiments. At temperatures above T_{rm g} there are two major molecular motions in this copolymer: a backbone motion (the rotational motion about single bonds) and a methyl side group rotation. The backbone motion is frozen below T_{rm g}, but the methyl rotation still occurs. As the temperature is further decreased to about -175 ^circC, well below the beta -transition observed in DM analysis, the methyl side group rotation slows down, suggesting that the methyl rotation may be associated with the observed beta relaxation process. The equilibrium melting temperature is 55 +/- 1^circC; the equilibrium heat of fusion is 8.8 +/- 0.3 kJ/mol. The overall crystallization kinetics show an Avrami exponent (n) that qualitatively increases with crystallization temperature during primary crystallization. The transition from Regime II to Regime III is observed near T_{rm c} = 26 ^circC based on linear crystal growth rate experiments. The fold surface free energy ( sigma_{rm e}) is determined to be 33 erg/cm^2. A monoclinic crystal unit cell was determined (a = 11.19A b = 11.82A c = 9.00A gamma = 67.03^circ) from the fiber pattern via wide angle x-ray diffraction experiments (WAXD). A banded spherulitic morphology was observed by polarized light microscopy (PLM) and transmission electron microscopy (TEM). Such texture is characteristic of the co-twisting of growing lamellae. The morphology changes from regularly banded spherulites to non-regularly banded spherulites and may be correlated with the Regime III to Regime II transition. A plate-like single crystal morphology was also observed by polarized light microscopy after a melt crystallization at small supercooling conditions. Blends of SYN-ALT-EP/IPP, SYN-ALT-EP/HDPE, and SYN-ALT-EP/LDPE were made and examined. Neither T _{rm g} shifting nor co-crystallization using different blending compositions were observed. Therefore, only limited, if any, miscibility exists in these blends.
Observation of the hot electron interchange instability in a high beta dipolar confined plasma
NASA Astrophysics Data System (ADS)
Ortiz, Eugenio Enrique
In this thesis the first study of the high beta, hot electron interchange (HEI) instability in a laboratory, dipolar confined plasma is presented. The Levitated Dipole Experiment (LDX) is a new research facility that explores the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. In initial experiments long-pulse, quasi-steady state microwave discharges lasting more than 10 sec have been produced with equilibria having peak beta values of 20%. Creation of high-pressure, high beta plasma is possible only when intense HEI instabilities are stabilized by sufficiently high background plasma density. LDX plasma exist within one of three regimes characterized by its response to heating and fueling. The observed HEI instability depends on the regime and can take one of three forms: as quasiperiodic bursts during the low density, low beta plasma regime, as local high beta relaxation events in the high beta plasma regime, and as global, intense energy relaxation bursts, both in the high beta and afterglow plasma regimes. Measurements of the HEI instability are made using high-impedance, floating potential probes and fast Mirnov coils. Analysis of these signals reveals the extent of the transport during high beta plasmas. During intense high beta HEI instabilities, fluctuations at the edge significantly exceed the magnitude of the equilibrium field generated by the high beta electrons and energetic electron confinement ends in under 100 musec. For heated plasmas, one of the consequences of the observed high beta transport is the presence of hysteresis in the neutral gas fueling required to stabilize and maintain the high beta plasma. Finally, a nonlinear, self-consistent numerical simulation of the growth and saturation of the HEI instability has been adapted for LDX and compared to experimental observations.
Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng
2017-01-01
A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Bishop, Robert H.
1996-01-01
A recently developed rendezvous navigation fusion filter that optimally exploits existing distributed filters for rendezvous and GPS navigation to achieve the relative and inertial state accuracies of both in a global solution is utilized here to process actual flight data. Space Shuttle Mission STS-69 was the first mission to date which gathered data from both the rendezvous and Global Positioning System filters allowing, for the first time, a test of the fusion algorithm with real flight data. Furthermore, a precise best estimate of trajectory is available for portions of STS-69, making possible a check on the performance of the fusion filter. In order to successfully carry out this experiment with flight data, two extensions to the existing scheme were necessary: a fusion edit test based on differences between the filter state vectors, and an underweighting scheme to accommodate the suboptimal perfect target assumption made by the Shuttle rendezvous filter. With these innovations, the flight data was successfully fused from playbacks of downlinked and/or recorded measurement data through ground analysis versions of the Shuttle rendezvous filter and a GPS filter developed for another experiment. The fusion results agree with the best estimate of trajectory at approximately the levels of uncertainty expected from the fusion filter's covariance matrix.
Fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems
NASA Astrophysics Data System (ADS)
Atta, Debasis; Basu, D. N.
2014-12-01
Existing data on near-barrier fusion excitation functions of medium and heavy nucleus-nucleus systems have been analyzed by using a simple diffused-barrier formula derived assuming the Gaussian shape of the barrier-height distributions. The fusion cross section is obtained by folding the Gaussian barrier distribution with the classical expression for the fusion cross section for a fixed barrier. The energy dependence of the fusion cross section, thus obtained, provides good description to the existing data on near-barrier fusion and capture excitation functions for medium and heavy nucleus-nucleus systems. The theoretical values for the parameters of the barrier distribution are estimated which can be used for fusion or capture cross-section predictions that are especially important for planning experiments for synthesizing new superheavy elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenbrunner, James R.; Booker, Jane M.
We examine the derivatives with respect to temperature, for various deuterium-tritium (DT) and deuterium-deuterium (D-D) fusion-reactivity formulations. Langenbrunner and Makaruk [1] had studied this as a means of understanding the time and temperature domain of reaction history measured in dynamic fusion experiments. Presently, we consider the temperature derivative dependence of fusion reactivity as a means of exercising and verifying the consistency of the various reactivity formulations.
Remote sensing fusion based on guided image filtering
NASA Astrophysics Data System (ADS)
Zhao, Wenfei; Dai, Qinling; Wang, Leiguang
2015-12-01
In this paper, we propose a novel remote sensing fusion approach based on guided image filtering. The fused images can well preserve the spectral features of the original multispectral (MS) images, meanwhile, enhance the spatial details information. Four quality assessment indexes are also introduced to evaluate the fusion effect when compared with other fusion methods. Experiments carried out on Gaofen-2, QuickBird, WorldView-2 and Landsat-8 images. And the results show an excellent performance of the proposed method.
First results of neutrinoless double beta decay search with the GERmanium Detector Array "GERDA"
NASA Astrophysics Data System (ADS)
Janicskó Csáthy, József
2014-06-01
The study of neutrinoless double beta decay is the most powerful approach to the fundamental question if the neutrino is a Majorana particle, i.e. its own anti-particle. The observation of the lepton number violating neutrinoless double beta decay would establish the Majorana nature of the neutrino. Until now neutrinoless double beta decay was not observed. The GERmanium Detector Array, GERDA is a double beta decay experiment located at the INFN Gran Sasso National Laboratory, Italy. GERDA operates bare Ge diodes enriched in 76Ge in liquid argon supplemented by a water shield. The exposure accumulated adds up to 21.6 kg· yr with a background level of 1.8 · 10-2 cts/(keV·kg·yr). The results of the Phase I of the experiment are presented and the preparation of the Phase II is briefly discussed.
Application of cellular mechanisms to growth and development of food producing animals.
Chung, K Y; Johnson, B J
2008-04-01
Postnatal skeletal muscle growth is a result of hypertrophy of existing skeletal muscle fibers in food producing animals. Accumulation of additional nuclei, as a source of DNA, to the multinucleated skeletal muscle fiber aids in fiber hypertrophy during periods of rapid skeletal muscle growth. Muscle satellite cells are recognized as the source of nuclei to support muscle hypertrophy. Exogenous growth-enhancing compounds have been used to modulate growth rate and efficiency in meat animals for over a half century. In cattle, these compounds enhance efficiency of growth by preferentially stimulating skeletal muscle growth compared with adipose tissue. There are 2 main classes of compounds approved for use in cattle in the United States, anabolic steroids and beta-adrenergic agonists (beta-AA). Administration of both trenbolone acetate and estradiol-17beta, as implants, increased carcass protein accumulation 8 to 10% in yearling steers. Muscle satellite cells isolated from steers implanted with trenbolone acetate/ estradiol-17beta had a shorter lag phase in culture compared with satellite cells isolated from control steers. Collectively, these data indicate that activation, increased proliferation, and subsequent fusion of satellite cells in muscles of implanted cattle may be an important mechanism by which anabolic steroids enhance muscle hypertrophy. Oral administration of beta-AA to ruminants does not alter DNA accumulation in skeletal muscle over a typical feeding period (28 to 42 d). Enhanced muscle hypertrophy observed due to beta-AA feeding occurs by direct, receptor-mediated changes in protein synthesis and degradation rates of skeletal muscle tissue. Proper timing of anabolic steroid administration when coupled with beta-AA feeding could result in a synergistic response in skeletal muscle growth due to the effects of anabolic steroids at increasing satellite cell activity, which then can support the rapid hypertrophic changes of the muscle fiber when exposed to beta-AA. At the same time each of these classes of compounds are stimulating lean tissue deposition, they appear to repress adipogenesis in meat animals. Increased knowledge of the mechanism by which growth promoters regulate lean tissue deposition and adipogenesis in meat animals will allow for effective application of these techniques to optimize lean tissue growth and minimize the negative effects on meat quality.
Experimental Test in a Tokamak of Fusion with Spin-Polarized D and 3He
NASA Astrophysics Data System (ADS)
Honig, Arnold; Sandorfi, Andrew
2007-06-01
An experiment to test polarization retention of highly polarized D and 3He fusion fuels prior to their fusion reactions in a tTokamak is in preparation. The fusion reaction rate with 100% vector polarized reactants is expected from simple theory to increase by a factor of 1.5. With presently available polarizations, fusion reaction enhancements of ˜15% are achievable and of significant interest, while several avenues for obtaining higher polarizations are open. The potential for survival of initial fusion fuel polarizations at ˜108 K plasma core temperatures (˜5KeV) throughout the time interval preceding fusion burn was addressed in a seminal paper in 1982. While the positive conclusion from those calculations suggests that reaction enhancements are indeed feasible, this crucial factor has never been tested in a high temperature plasma core because of difficulties in preparation and injection of sufficiently polarized fusion fuels into a high temperature reactorfusion plasma. Our solution to these problems employs a new source of highly polarized D in the form of solid HD which has been developed and used in our laboratories. Solid HD is compatible with fusion physics in view of its simplicity of elemental composition and very long (weeks) relaxation times at 4K temperature, allowing efficient polarization-preserving cold-transfer operations. Containment and polarization of the HD within polymer capsules, similar to those used in inertial confinement fusion (ICF), is an innovation which simplifies the cold-transfer of polarized fuel from the dilution refrigerator polarization-production apparatus to other liquid helium temperature cryostats, for storage, transport and placement into the barrel of a cryogenic pellet gun for firing at high velocity into the reactor. The other polarized fuel partner, 3He, has been prepared as a polarized gas for applications including high-energy polarized targets and magnetic resonance imaging (MRI) scans. It will be introduced into the reactor by loading at high pressure into a thick-walled ICF-type polymer shell for injection into the plasma core with a room temperature injection gun. Based on current experience, polarizations of both D and 3He of ˜55% are projected, producing a fusion yield increase of about 15%. A collaboration is being developed for implementing this experiment at the DIII-D Ttokamak experiment at San Diego, operated by General Atomics for the U.S. Department of Energy. Calculations indicate a 10% fusion yield increase in the 14.6 MeV protons from the D-3He reaction will provide a statistically significant test of polarization retention in the plasma. Injection of the polarized fuels into a 4He or 1H plasma improves the discrimination of the effects of polarized fuels. Details of the HD fuel preparation, of the polarization processes, and of the injection into the plasma will beare presented. If the expected fusion reaction yield increase indicative of polarization retention is detected, a route to significantly improved second generation D-3He fusion would be established, as well as confidence to undertake the more difficult polarization of tritium, which would offer important cost savings and improved prospects of ignition in the ITER program.
Access to high beta advanced inductive plasmas at low injected torque
NASA Astrophysics Data System (ADS)
Solomon, W. M.; Politzer, P. A.; Buttery, R. J.; Holcomb, C. T.; Ferron, J. R.; Garofalo, A. M.; Grierson, B. A.; Hanson, J. M.; In, Y.; Jackson, G. L.; Kinsey, J. E.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Okabayashi, M.; Petty, C. C.; Turco, F.; Welander, A. S.
2013-09-01
Recent experiments on DIII-D demonstrate that advanced inductive (AI) discharges with high equivalent normalized fusion gain can be accessed and sustained with very low amounts (∼1 N m) of externally injected torque, a level of torque that is anticipated to drive a similar amount of rotation as the beams on ITER, via simple consideration of the scaling of the moment of inertia and confinement time. The AI regime is typically characterized by high confinement, and high βN, allowing the possibility for high performance, high gain operation at reduced plasma current. Discharges achieved βN ∼ 3.1 with H98(y,2) ∼ 1 at q95 ∼ 4, and are sustained for the maximum duration of the counter neutral beams (NBs). In addition, plasmas using zero net NB torque from the startup all the way through to the high βN phase have been created. AI discharges are found to become increasingly susceptible to m/n = 2/1 neoclassical tearing modes as the torque is decreased, which if left unmitigated, generally slow and lock, terminating the high performance phase of the discharge. Access is not notably different whether one ramps the torque down at high βN, or ramps βN up at low torque. The use of electron cyclotron heating (ECH) and current drive proved to be an effective method of avoiding such modes, enabling stable operation at high beta and low torque, a portion of phase space that has otherwise been inaccessible. Thermal confinement is significantly reduced at low rotation, a result that is reproduced using the TGLF transport model. Although it is thought that stiffness is increased in regions of low magnetic shear, in these AI plasmas, the reduced confinement occurs at radii outside the low shear, and in fact, higher temperature gradients can be found in the low shear region at low rotation. Momentum transport is also larger at low rotation, but a significant intrinsic torque is measured that is consistent with a previous scaling considering the role of the turbulent Reynolds stress and thermal ion orbit loss. Although high normalized fusion performance has been achieved in these discharges, more detailed projections suggest that enhancement in the confinement needs to be realized in order to obtain a low current solution consistent with ITER Q = 10 performance, and this remains a future research challenge.
Gundanna, Mukund I.; Miller, Larry E.; Block, Jon E.
2011-01-01
Background Open and minimally invasive lumbar fusion procedures have inherent procedural risks, with posterior and transforaminal approaches resulting in significant soft-tissue injury and the anterior approach endangering organs and major blood vessels. An alternative lumbar fusion technique uses a small paracoccygeal incision and a presacral approach to the L5-S1 intervertebral space, which avoids critical structures and may result in a favorable safety profile versus open and other minimally invasive fusion techniques. The purpose of this study was to evaluate complications associated with axial interbody lumbar fusion procedures using the Axial Lumbar Interbody Fusion (AxiaLIF) System (TranS1, Wilmington, North Carolina) in the postmarketing period. Methods Between March 2005 and March 2010, 9,152 patients underwent interbody fusion with the AxiaLIF System through an axial presacral approach. A single-level L5-S1 fusion was performed in 8,034 patients (88%), and a 2-level (L4-S1) fusion was used in 1,118 (12%). A predefined database was designed to record device- or procedure-related complaints via spontaneous reporting. The complications that were recorded included bowel injury, superficial wound and systemic infections, transient intraoperative hypotension, migration, subsidence, presacral hematoma, sacral fracture, vascular injury, nerve injury, and ureter injury. Results Complications were reported in 120 of 9,152 patients (1.3%). The most commonly reported complications were bowel injury (n = 59, 0.6%) and transient intraoperative hypotension (n = 20, 0.2%). The overall complication rate was similar between single-level (n = 102, 1.3%) and 2-level (n = 18, 1.6%) fusion procedures, with no significant differences noted for any single complication. Conclusions The 5-year postmarketing surveillance experience with the AxiaLIF System suggests that axial interbody lumbar fusion through the presacral approach is associated with a low incidence of complications. The overall complication rates observed in our evaluation compare favorably with those reported in trials of open and minimally invasive lumbar fusion surgery. PMID:25802673
High-beta spherical tokamak startup in TS-4 merging experiment by use of toroidal field ramp-up
NASA Astrophysics Data System (ADS)
Kaminou, Yasuhiro; , Toru, II; Kato, Joji; Inomoto, Michiaki; Ono, Yasushi; TS Group Team; National InstituteFusion Science Collaboration
2014-10-01
We demonstrated the formation method of an ultrahigh-beta spherical tokamak by use of a field-reversed configuration and a spheromak in TS-4 device (R ~ 0.5 m, A ~ 1.5, Ip ~ 30-100 kA, B ~ 100 mT). This method is composed of the following steps: 1. Two spheromaks are merged together and a high-beta spheromak or FRC is formed by reconnection heating. 2. External toroidal magnetic field is added (current rising time ~50 μs), and spherical tokamak-like configuration is formed. In this way, the ultrahigh-beta ST is formed. The ultrahigh-beta ST formed by FRC has a diamagnetic toroidal field, and it presumed to be in a second-stable state for ballooning stability, and the one formed by spheromak has a weak paramagnetic toroidal magnetic field, while a spheormak has a strong paramagnetic toroidal magnetic field. This diamagnetic current derives from inductive electric field by ramping up the external toroidal magnetic field, and the diamagnetic current sustains high thermal pressure of the ultrahigh-beta spherical tokamak. And the beta of the ultrahigh-beta ST formed by FRC reaches about 50%. To sustain the high-beta state, 0.6 MW neutral beam injection and center solenoid coils are installed to the TS-4 device. In the poster, we report the experimental results of ultrahigh-beta spherical tokamak startup and sustainment by NBI and CS current driving experiment.
Moua, Pachai S; Gonzalez, Alfonso; Oshiro, Kristin T; Tam, Vivian; Li, Zhiguo Harry; Chang, Jennifer; Leung, Wilson; Yon, Amy; Thor, Der; Venkatram, Sri; Franz, Andreas H; Risser, Douglas D; Lin-Cereghino, Joan; Lin-Cereghino, Geoff P
2016-08-01
The Escherichia coli maltose binding protein (MBP) is an N-terminal fusion partner that was shown to enhance the secretion of some heterologous proteins from the yeast Pichia pastoris, a popular host for recombinant protein expression. The amount of increase in secretion was dependent on the identity of the cargo protein, and the fusions were proteolyzed prior to secretion, limiting its use as a purification tag. In order to overcome these obstacles, we used the MBP as C-terminal partner for several cargo peptides. While the Cargo-MBP proteins were no longer proteolyzed in between these two moieties when the MBP was in this relative position, the secretion efficiency of several fusions was lower than when MBP was located at the opposite end of the cargo protein (MBP-Cargo). Furthermore, fluorescence analysis suggested that the MBP-EGFP and EGFP-MBP proteins followed different routes within the cell. The effect of several Pichia pastoris beta-galactosidase supersecretion (bgs) strains, mutants showing enhanced secretion of select reporters, was also investigated on both MBP-EGFP and EGFP-MBP. While the secretion efficiency, proteolysis and localization of the MBP-EGFP was influenced by the modified function of Bgs13, EGFP-MBP behavior was not affected in the bgs strain. Taken together, these results indicate that the location of the MBP in a fusion affects the pathway and trans-acting factors regulating secretion in P. pastoris. Copyright © 2016 Elsevier Inc. All rights reserved.
Crystal Structure of Menin Reveals Binding Site for Mixed Lineage Leukemia (MLL) Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murai, Marcelo J.; Chruszcz, Maksymilian; Reddy, Gireesh
2014-10-02
Menin is a tumor suppressor protein that is encoded by the MEN1 (multiple endocrine neoplasia 1) gene and controls cell growth in endocrine tissues. Importantly, menin also serves as a critical oncogenic cofactor of MLL (mixed lineage leukemia) fusion proteins in acute leukemias. Direct association of menin with MLL fusion proteins is required for MLL fusion protein-mediated leukemogenesis in vivo, and this interaction has been validated as a new potential therapeutic target for development of novel anti-leukemia agents. Here, we report the first crystal structure of menin homolog from Nematostella vectensis. Due to a very high sequence similarity, the Nematostellamore » menin is a close homolog of human menin, and these two proteins likely have very similar structures. Menin is predominantly an {alpha}-helical protein with the protein core comprising three tetratricopeptide motifs that are flanked by two {alpha}-helical bundles and covered by a {beta}-sheet motif. A very interesting feature of menin structure is the presence of a large central cavity that is highly conserved between Nematostella and human menin. By employing site-directed mutagenesis, we have demonstrated that this cavity constitutes the binding site for MLL. Our data provide a structural basis for understanding the role of menin as a tumor suppressor protein and as an oncogenic co-factor of MLL fusion proteins. It also provides essential structural information for development of inhibitors targeting the menin-MLL interaction as a novel therapeutic strategy in MLL-related leukemias.« less
Xanthanolides and xanthane epoxide derivatives from Xanthium strumarium.
Mahmoud, A A
1998-12-01
From the aerial parts of Xanthium strumarium, three new xanthanolide and xanthane-type sesquiterpenoids, 11alpha,13-dihydroxanthatin, 4beta,5beta-epoxyxanthatin-1alpha,4alpha-endoperoxide, and 1beta,4beta,4alpha,5alpha-diepoxyxanth-11(13)-en-12-oic acid have been isolated, together with seven known compounds. The structures were determined by spectroscopic methods, particularly high resolution 1D, 2D NMR spectroscopy and NOE experiments.
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D
2010-05-28
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.
Song, Yi; Guo, Fen; Gu, Song-hai
2007-02-01
Eight components, i. e. Mn, SiO2, Fe, P, Al2O3, CaO, MgO and S, in manganese ore were determined by X-ray fluorescence spectrometer. Because manganese ore sample releases a lot of air bubbles during fusion which effect accuracy and reproducibility of determination, nitric acid was added to the sample to destroy organic matter before fusion by the mixture flux at 1000 degrees C. This method solved the problem that the flux splashed during fusion because organic matter volatilized brought out a lot of air bubbles, eliminated particle size effects and mineral effect, while solved the problem of volatilization of sulfur during fusion. The experiments for the selection of the sample preparation conditions, i. e. fusion flux, fusion time and volume of HNO3, were carried out. The matrix effects on absorption and enhancement were corrected by variable theoretical alpha coefficient to expand the range of determination. Moreover, the precision and accuracy experiments were performed. In comparison with chemical analysis method, the quantitative analytical results for each component are satisfactory. The method has proven rapid, precise and simple.
The 76Ge Program to Search for Neutrinoless Double-Beta Decay
NASA Astrophysics Data System (ADS)
Guiseppe, Vincente
2017-09-01
Neutrinoless double-beta decay searches play a major role in determining the nature of neutrinos, the existence of a lepton violating process, and the effective Majorana neutrino mass. The
NASA Technical Reports Server (NTRS)
Gilland, James H.; Mikekkides, Ioannis; Mikellides, Pavlos; Gregorek, Gerald; Marriott, Darin
2004-01-01
This project has been a multiyear effort to assess the feasibility of a key process inherent to virtually all fusion propulsion concepts: the expansion of a fusion-grade plasma through a diverging magnetic field. Current fusion energy research touches on this process only indirectly through studies of plasma divertors designed to remove the fusion products from a reactor. This project was aimed at directly addressing propulsion system issues, without the expense of constructing a fusion reactor. Instead, the program designed, constructed, and operated a facility suitable for simulating fusion reactor grade edge plasmas, and to examine their expansion in an expanding magnetic nozzle. The approach was to create and accelerate a dense (up to l0(exp 20)/m) plasma, stagnate it in a converging magnetic field to convert kinetic energy to thermal energy, and examine the subsequent expansion of the hot (100's eV) plasma in a subsequent magnetic nozzle. Throughout the project, there has been a parallel effort between theoretical and numerical design and modelling of the experiment and the experiment itself. In particular, the MACH2 code was used to design and predict the performance of the magnetoplasmadynamic (MPD) plasma accelerator, and to design and predict the design and expected behavior for the magnetic field coils that could be added later. Progress to date includes the theoretical accelerator design and construction, development of the power and vacuum systems to accommodate the powers and mass flow rates of interest to out research, operation of the accelerator and comparison to theoretical predictions, and computational analysis of future magnetic field coils and the expected performance of an integrated source-nozzle experiment.
Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment
Le, Ari Yitzchak; Kwan, Thomas J. T.; Schmitt, Mark J.; ...
2016-10-24
The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Finally, diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.
NASA Astrophysics Data System (ADS)
Nagai, Keiji; Norimatsu, Takayoshi; Izawa, Yasukazu
Target fabrication technique is a key issue of laser fusion. We present a comprehensive, up-to-data compilation of laser fusion target fabrication and relating new materials. To achieve highly efficient laser implosion, organic and inorganic highly spherical millimeter-sized capsules and cryogenic hydrogen layers inside should be uniform in diameter and thickness within sub-micrometer ˜ nanometer error. Porous structured targets and molecular cluster targets are required for laser-plasma experiments and applications. Various technologies and new materials concerning above purposes are summarized including fast-ignition targets, equation-of-state measurement targets, high energy ion generation targets, etc.
Multi-focus image fusion based on window empirical mode decomposition
NASA Astrophysics Data System (ADS)
Qin, Xinqiang; Zheng, Jiaoyue; Hu, Gang; Wang, Jiao
2017-09-01
In order to improve multi-focus image fusion quality, a novel fusion algorithm based on window empirical mode decomposition (WEMD) is proposed. This WEMD is an improved form of bidimensional empirical mode decomposition (BEMD), due to its decomposition process using the adding window principle, effectively resolving the signal concealment problem. We used WEMD for multi-focus image fusion, and formulated different fusion rules for bidimensional intrinsic mode function (BIMF) components and the residue component. For fusion of the BIMF components, the concept of the Sum-modified-Laplacian was used and a scheme based on the visual feature contrast adopted; when choosing the residue coefficients, a pixel value based on the local visibility was selected. We carried out four groups of multi-focus image fusion experiments and compared objective evaluation criteria with other three fusion methods. The experimental results show that the proposed fusion approach is effective and performs better at fusing multi-focus images than some traditional methods.
State-of-the-Art Fusion-Finder Algorithms Sensitivity and Specificity
Carrara, Matteo; Beccuti, Marco; Lazzarato, Fulvio; Cavallo, Federica; Cordero, Francesca; Donatelli, Susanna; Calogero, Raffaele A.
2013-01-01
Background. Gene fusions arising from chromosomal translocations have been implicated in cancer. RNA-seq has the potential to discover such rearrangements generating functional proteins (chimera/fusion). Recently, many methods for chimeras detection have been published. However, specificity and sensitivity of those tools were not extensively investigated in a comparative way. Results. We tested eight fusion-detection tools (FusionHunter, FusionMap, FusionFinder, MapSplice, deFuse, Bellerophontes, ChimeraScan, and TopHat-fusion) to detect fusion events using synthetic and real datasets encompassing chimeras. The comparison analysis run only on synthetic data could generate misleading results since we found no counterpart on real dataset. Furthermore, most tools report a very high number of false positive chimeras. In particular, the most sensitive tool, ChimeraScan, reports a large number of false positives that we were able to significantly reduce by devising and applying two filters to remove fusions not supported by fusion junction-spanning reads or encompassing large intronic regions. Conclusions. The discordant results obtained using synthetic and real datasets suggest that synthetic datasets encompassing fusion events may not fully catch the complexity of RNA-seq experiment. Moreover, fusion detection tools are still limited in sensitivity or specificity; thus, there is space for further improvement in the fusion-finder algorithms. PMID:23555082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu
2015-05-15
Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formedmore » draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.« less
Compact NE213 neutron spectrometer with high energy resolution for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimbal, A.; Reginatto, M.; Schuhmacher, H.
Neutron spectrometry is a tool for obtaining important information on the fuel ion composition, velocity distribution and temperature of fusion plasmas. A compact NE213 liquid scintillator, fully characterized at Physikalisch-Technische Bundesanstalt, was installed and operated at the Joint European Torus (JET) during two experimental campaigns (C8-2002 and trace tritium experiment-TTE 2003). The results show that this system can operate in a real fusion experiment as a neutron (1.5 MeV
Double beta decay: yesterday, today, tomorrow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiorini, Ettore
2011-12-16
After a brief introduction on the main features of Double Beta Decay (DBD) and on its origin, its importance is stressed in view of the recent results of experiments on neutrino oscillations. The present experimental situation is reported with special reference to direct experiments and to the comparison of their results with theory. The expectations of the future experiments aiming to reach the sensitivity indicated by neutrino oscillations in the inverse hierarchy hypothesis are discussed.
Wind Tunnel Data Fusion and Immersive Visualization: A Case Study
NASA Technical Reports Server (NTRS)
Severance, Kurt; Brewster, Paul; Lazos, Barry; Keefe, Daniel
2001-01-01
This case study describes the process of fusing the data from several wind tunnel experiments into a single coherent visualization. Each experiment was conducted independently and was designed to explore different flow features around airplane landing gear. In the past, it would have been very difficult to correlate results from the different experiments. However, with a single 3-D visualization representing the fusion of the three experiments, significant insight into the composite flowfield was observed that would have been extremely difficult to obtain by studying its component parts. The results are even more compelling when viewed in an immersive environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, J.D.; Nelson, L.D.; Conner, B.J.
1994-09-01
Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B,more » twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.« less
Lorenz, P; Koczan, D; Thiesen, H J
2001-04-01
The KRAB domain of human Kox1, a member of the KRAB C2H2 zinc finger family, confers strong transcriptional repressor activities even to remote promoter positions. Here, HDAC inhibitors were used to demonstrate that histone deacetylation is not required for mediating transcriptional repression of KRAB zinc finger proteins. Two reporter systems with either stably integrated or transiently transfected templates, both under control of strong viral promoters, were analyzed. Under all circumstances, HDAC inhibition did not alter the repression potential of the KRAB domain. In case of the stably integrated luciferase reporter gene system, neither expression levels of the KRAB fusion protein nor complex formation with its putative co-repressor TIF1beta were significantly changed. Furthermore, the TIF1beta/KRAB complex was devoid of mSin3A and HDAC1. In the transient transfection system, the transcriptional repression induced by TIF1beta and HP1alpha was not diminished by HDAC inhibitors, whereas the repressory activity of TIF1alpha was significantly affected. Thus, KRAB, TIF1beta and HP1alpha are likely to be functionally linked. In conclusion, HDAC activity is not essential for the strong transcriptional repressor activity mediated by the KRAB domain of Kox1 in particular and, presumably, by KRAB domains in general. This feature might be helpful in identifying and characterizing target genes under the control of
Improved H mode with flat central q profile on EAST
NASA Astrophysics Data System (ADS)
Liu, Haiqing; Yang, Yao; Gao, Xiang; Zeng, Long; Qian, Jinping; Gong, Xianzu; Wan, Baonian; Ding, Weixing; Brower, David Lyn; EAST Team
2017-10-01
High betaN ( 1.8) plasma with good confinement (H98y2 1.1) on EAST tokamak has been reported recently. These ELMy H-mode plasmas with Bt = 1.6T, Ip = 400 kA and q95 4.5 were heated by lower hybrid wave and neutral beam injection. The internal transport barrier (ITB) and edge transport barrier (ETB) are both observed with m/n =1/1 fishbone, which were identified to clamp central q at values close to unity. Implying an improved H-mode with flat central q profile and absence of sawteeth, like other devices. Accurate q profile, key profile for developing scenarios aim at high performance H mode, were derived by Polarimeter-interferometer (POINT) measurement as constraint. Base on the optimized current profile, better confinement (H98y2 1.4) with an electron ITB was obtained also with flat central q profile and absence of sawteeth at high betaP ( 2) regime with Bt = 2.5T, Ip = 400 kA. Both high betaN regime and high betaP regime H mode, are characterized by a stationary flat central q profile q0 >=1, but typically close to 1, absence of sawteeth, H98(y,2) >1 and simultaneously, with ITB. This work is supported by the National Magnetic Confinement Fusion Program of China with Contract No. 2014GB106002 and partly supported by the US D.O.E. contract DESC0010469.
Townley, Robert G; Gendapodi, Pradeep R; Qutna, Nidal; Evans, Joseph; Romero, Francisco A; Abel, Peter
2009-03-01
Fluticasone affects airway bronchial hyperresponsiveness (BHR) and enhances bronchodilation and bronchoprotection induced by beta-adrenergic agonists. Interleukin 13 (IL-13), however, induces BHR. To test the hypotheses that fluticasone inhibits BHR after either allergen sensitization or IL-13 administration and that fluticasone restores the bronchodilation and bronchoprotective effects of beta-agonists. The BHR to methacholine induced by IL-13 or ovalbumin was determined in BALB/c mice, and the provocation concentration of methacholine that caused an increase in enhanced pause in expiration of 200% (PC200) was calculated. We compared this response to methacholine in control mice with the response after treatment with IL-13 receptor alpha 2-IgGFc fusion protein (IL-13R alpha 2) (an IL-13 blocker), fluticasone, albuterol, salmeterol, fluticasone-albuterol, and fluticasone-salmeterol. IL-13R alpha 2 (PC200, 17.59) completely blocks the BHR-induced effects of IL-13 (PC200, 7.28; P < .005). After IL-13 therapy (PC200, 5.90; P < .005), 1 mg/mL of albuterol (PC200, 3.38; P = .33), fluticasone (PC200, 4.59; P = .40), or fluticasone plus 50 microg/mL of salmeterol (PC200, 5.59; P = .11) showed no significant bronchoprotection. In nonsensitized mice, fluticasone plus 0.25 microg/mL of salmeterol (PC200, 25.90; P < .005) showed significantly greater bronchoprotection than did salmeterol alone (PC200, 11.08; P = .26). Fluticasone plus 0.3 mg/mL of albuterol and fluticasone plus 1 mg/mL of albuterol were significantly more protective than was fluticasone or albuterol alone in ovalbumin-sensitized mice. The protective effects of fluticasone, beta-agonists, and fluticasone plus beta-agonists are significantly less in IL-13-treated mice than in nonsensitized or ovalbumin-sensitized mice.
Ding, Zhihu; Gillespie, Laura L; Paterno, Gary D
2003-01-01
mi-er1 (previously called er1) was first isolated from Xenopus laevis embryonic cells as a novel fibroblast growth factor-regulated immediate-early gene. Xmi-er1 was shown to encode a nuclear protein with an N-terminal acidic transcription activation domain. The human orthologue of mi-er1 (hmi-er1) displays 91% similarity to the Xenopus sequence at the amino acid level and was shown to be upregulated in breast carcinoma cell lines and tumors. Alternative splicing at the 3' end of hmi-er1 produces two major isoforms, hMI-ER1alpha and hMI-ER1beta, which contain distinct C-terminal domains. In this study, we investigated the role of hMI-ER1alpha and hMI-ER1beta in the regulation of transcription. Using fusion proteins of hMI-ER1alpha or hMI-ER1beta tethered to the GAL4 DNA binding domain, we show that both isoforms, when recruited to the G5tkCAT minimal promoter, function to repress transcription. We demonstrate that this repressor activity is due to interaction and recruitment of a trichostatin A-sensitive histone deacetylase 1 (HDAC1). Furthermore, deletion analysis revealed that recruitment of HDAC1 to hMI-ER1alpha and hMI-ER1beta occurs through their common ELM2 domain. The ELM2 domain was first described in the Caenorhabditis elegans Egl-27 protein and is present in a number of SANT domain-containing transcription factors. This is the first report of a function for the ELM2 domain, highlighting its role in the regulation of transcription.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamrun F, Muhammad; Jurusan Fisika FMIPA, Universitas Haluoleo, Kendari, Sulawesi Tenggara, 93232; Kasim, Hasan Abu
2010-12-23
We study the fusion reaction of the {sup 74}Ge+{sup 74}Ge system in term of the full order coupled-channels formalism. We especially calculated the fusion cross section as well as the fusion barrier distribution of this reaction using transition matrix suggested by recent Coulomb excitation experiment. We compare the results with the one obtained by coupling matrix based on pure vibrational and rotational models. The present coupled-channels calculations for the barrier distributions obtained using experiment coupling matrix is in good agreement with the one obtained with vibrational model, in contrast to the rotational model. This is indicates that {sup 74}Ge nucleusmore » favor a spherical shape than a deformed shape in its ground state. Our results will resolve the debates concerning the structure of this nucleus.« less
NASA Astrophysics Data System (ADS)
Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert
2013-11-01
Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.
Soft X-ray streak camera for laser fusion applications
NASA Astrophysics Data System (ADS)
Stradling, G. L.
1981-04-01
The development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development is reviewed as well as laser fusion and laser fusion diagnostics. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.
Progress in magnet design activities for the material plasma exposure experiment
Duckworth, Robert; Lumsdaine, Arnold; Rapp, Juergen; ...
2017-07-01
One of the critical challenges for the development of next generation fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or DEMO, is the understanding of plasma material interactions (PMI). Making progress in PMI research will require integrated facilities that can provide the types of conditions that will be seen in the first wall and divertor regions of future fusion facilities. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX), is proposed. In order to generate high ion fluence to simulate fusion divertor conditions, a steady-state plasma will be generated andmore » confined with superconducting magnets. Finally, the on-axis fields will range from 1 to 2.5 T in order to meet the requirements of the various plasma source and heating systems. Details on the pre-conceptual design of the magnets and cryogenic system are presented.« less
Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed
2018-02-14
At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.
Cherenkov neutron detector for fusion reaction and runaway electron diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheon, MunSeong, E-mail: munseong@nfri.re.kr; Kim, Junghee
2015-08-15
A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.
Optimal fusion offset in splicing photonic crystal fibers
NASA Astrophysics Data System (ADS)
Jin, Wa; Bi, Weihong; Fu, Guangwei
2013-08-01
Heat transfer is very complicate in fusion splicing process of photonic crystal fibers (PCFs) due to different structures and sizes of air hole, which requires different fusion splicing power and offsets of heat source. Based on the heat transfer characteristics, this paper focus on the optimal splicing offset splicing the single mode fiber and PCFs with a CO2 laser irradiation. The theory and experiments both show that the research results can effectively calculate the optimal fusion splicing offset and guide the practical splicing between PCFs and SMFs.
Isolation and characterization of an Arabidopsis biotin carboxylase gene and its promoter.
Bao, X; Shorrosh, B S; Ohlrogge, J B
1997-11-01
In the plastids of most plants, acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a multisubunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protien (BCCP), and carboxytransferase (alpha-CT, beta-CT) subunits. To better understand the regulation of this enzyme, we have isolated and sequenced a BC genomic clone from Arabidopsis and partially characterized its promoter. Fifteen introns were identified. The deduced amino acid sequence of the mature BC protein is highly conserved between Arabidopsis and tobacco (92.6% identity). BC expression was evaluated using northern blots and BC/GUS fusion constructs in transgenic Arabidopsis. GUS activity in the BC/GUS transgenics as well as transcript level of the native gene were both found to be higher in silique and flower than in root and leaf. Analysis of tobacco suspension cells transformed with truncated BC promoter/GUS gene fusions indicated the region from -140 to +147 contained necessary promoter elements which supported basal gene expression. A positive regulatory region was found to be located between -2100 and -140, whereas a negative element was possibly located in the first intron. In addition, several conserved regulatory elements were identified in the BC promoter. Surprisingly, although BC is a low-abundance protein, the expression of BC/GUS fusion constructs was similar to 35S/GUS constructs.
Van Puymbroeck, M; Kuilman, M E; Maas, R F; Witkamp, R F; Leyssens, L; Vanderzande, D; Gelan, J; Raus, J
1998-12-01
17 alpha-Boldenone (17 alpha-BOL) and/or 17 beta-boldenone (17 beta-BOL) appear occasionally in fecal matter of cattle. In addition to 17 alpha-BOL, a whole array of boldenone related substances can be found in the same samples. In vitro experiments with microsomal liver preparations and isolated hepatocytes combined with the excretion profiles found in urine and feces samples of in vivo experiments made it possible to identify several metabolites of 17 beta-BOL in 17 beta-BOL positive feces samples. In one animal treated with 17 beta-BOL, no 17 beta-BOL or its metabolites were present before treatment and most of these compounds disappeared gradually in time after the treatment was stopped. It is not clear what the origin is of 17 alpha-BOL and boldenone metabolites in samples screened routinely for the abuse of anabolic steroids and considered to be 'negative' because of the absence of 17 beta-BOL since other workers showed some evidence that 17 alpha-BOL can be of endogenous origin. However, in our hands, most of these 17 alpha-BOL positive samples, obtained during routinely performed screenings of cattle, contained large amounts of delta 4-androstene-3,17-dione (AED), which normally is absent from routinely screened negative samples. Furthermore, AED was absent in all samples obtained from the animals treated with 17 beta-BOL. We have no direct evidence that 17 alpha-BOL or 17 beta-BOL is of endogenous origin.
MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W
2015-04-24
The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Mikhailov, M V; Ashcroft, S J
2000-02-04
We have investigated protein interactions involved in pancreatic beta-cell ATP-sensitive potassium channel assembly. These channels, which are of key importance for control of insulin release, are a hetero-oligomeric complex of pore-forming Kir6.2 subunits and sulfonylurea receptor (SUR1) subunits with two nucleotide-binding domains (NBD1 and NBD2). We divided SUR1 into two halves at Pro-1042. Expression of either the individual N- or C-terminal domain in a baculovirus expression system did not lead to glibenclamide binding activity, although studies with green fluorescent protein fusion proteins showed that both half-molecules were inserted into the plasma membrane. However, significant glibenclamide binding activity was observed when the half-molecules were co-expressed (even when NBD2 was deleted from the C-terminal half-molecule). Simultaneous expression of Kir6.2 resulted in enhanced glibenclamide binding activity. We conclude that the glibenclamide-binding site includes amino acid residues from both halves of the molecule, that there is strong interaction between different regions of SUR1, that NBD2 is not essential for glibenclamide binding, and that interactions between Kir6.2 and SUR1 participate in ATP-sensitive potassium channel assembly. Investigation of NBD1-green fluorescent protein fusion protein distribution inside insect cells expressing C-terminal halves of SUR1 demonstrated strong interaction between NBD1 and NBD2. We also expressed and purified NBD1 from Escherichia coli. Purified NBD1 was found to exist as a tetramer indicating strong homomeric attractions and a possible role for NBD1 in SUR1 assembly.
Ross, T S; Gilliland, D G
1999-08-06
We have previously reported that the Huntingtin interacting protein 1 (HIP1) gene is fused to the platelet-derived growth factor beta receptor (PDGFbetaR) gene in a patient with chronic myelomonocytic leukemia. We now show that HIP1/PDGFbetaR oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the murine hematopoietic cell line, Ba/F3, to interleukin-3-independent growth. A kinase-inactive mutant is neither tyrosine-phosphorylated nor able to transform Ba/F3 cells. Oligomerization and kinase activation required the 55-amino acid carboxyl-terminal TALIN homology region but not the leucine zipper domain. Tyrosine phosphorylation of a 130-kDa protein and STAT5 correlates with transformation in cells expressing HIP1/PDGFbetaR and related mutants. A deletion mutant fusion protein that contains only the TALIN homology region of HIP1 fused to PDGFbetaR is incapable of transforming Ba/F3 cells and does not tyrosine-phosphorylate p130 or STAT5, although it is itself constitutively tyrosine-phosphorylated. We have also analyzed cells expressing Tyr --> Phe mutants of HIP1/PDGFbetaR in the known PDGFbetaR SH2 docking sites and report that none of these sites are necessary for STAT5 activation, p130 phosphorylation, or Ba/F3 transformation. The correlation of factor-independent growth of hematopoietic cells with p130 and STAT5 phosphorylation/activation in both the HIP1/PDGFbetaR Tyr --> Phe and deletion mutational variants suggests that both STAT5 and p130 are important for transformation mediated by HIP1/PDGFbetaR.
Soft x-ray streak camera for laser fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stradling, G.L.
This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV aremore » also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.« less
Duarte, Cristiana; Pinto-Gouveia, José
2017-12-01
This study examined the phenomenology of shame experiences from childhood and adolescence in a sample of women with Binge Eating Disorder. Moreover, a path analysis was investigated testing whether the association between shame-related memories which are traumatic and central to identity, and binge eating symptoms' severity, is mediated by current external shame, body image shame and body image cognitive fusion. Participants in this study were 114 patients, who were assessed through the Eating Disorder Examination and the Shame Experiences Interview, and through self-report measures of external shame, body image shame, body image cognitive fusion and binge eating symptoms. Shame experiences where physical appearance was negatively commented or criticized by others were the most frequently recalled. A path analysis showed a good fit between the hypothesised mediational model and the data. The traumatic and centrality qualities of shame-related memories predicted current external shame, especially body image shame. Current shame feelings were associated with body image cognitive fusion, which, in turn, predicted levels of binge eating symptomatology. Findings support the relevance of addressing early shame-related memories and negative affective and self-evaluative experiences, namely related to body image, in the understanding and management of binge eating. Copyright © 2017 Elsevier B.V. All rights reserved.
Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.
Filip, S; Mokrý, J; Karbanová, J; Vávrová, J; Vokurková, J; Bláha, M; English, D
2005-04-01
A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, p<0.001. In the second experiment, we studied kinetics of (beta-galactosidase(+)) NSCs after their transplantation to sub-lethally irradiated mice. Histochemistry of tissues was performed on days 12 and 30 post-transplantation, and beta-galactosidase(+) cells were detected with the help of histochemical examination of removed tissues (lung, liver, spleen, thymus, and skeletal muscle). In tissues removed on day 12 post-transplantation, we found a significantly higher number of beta-galactosidase(+) cells in the spleen and thymus on day 30. While we presumed the presence beta-galactosidase(+) cells in the spleen, as spleen and reticuloendothelial system represent an important retaining system for different cell types, the presence of beta-galactosidase(+) cells in the thymus was rather surprising but very interesting. This indicates a certain mutual and close interconnection of transplanted stem cells and immune system in an adult organism. In the third experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Garofalo, A. M.; Holod, I.; Weiland, J.
2018-05-01
The Multi-Mode Model (MMM7.1) for anomalous transport is tested in predictive modeling of temperature profiles of a high beta poloidal DIII-D discharge. This new H-mode plasma regime, with high beta poloidal and high bootstrap currents, has been studied in DIII-D tokamak discharges [A. Garofalo et al., Nucl. Fusion 55, 123025 (2015)]. The role of instabilities that can drive the anomalous transport described by MMM7.1 is investigated. The temperature profiles for a high beta poloidal DIII-D discharge are computed using the NCLASS model for the neoclassical transport and the Weiland and Electron Temperature Gradient (ETG) components of the MMM7.1 model for the anomalous transport. The neoclassical transport is found to be the main contributor to the ion thermal transport in the plasma core. The contributions from the ion temperature gradient driven modes are found to be important only outside of the internal transport barrier. The magnitudes of the predicted temperature profiles are found to be in a reasonable agreement with experimental profiles. The simulation results approximately reproduce the internal transport barrier in the ion temperature profile but not in the electron temperature profile due to a weak dependence of the ETG driven transport on the Shafranov shift in the ETG component of MMM7.1. Possible effects that can contribute to stabilization of these modes, for example, effects associated with the large beta poloidal such as the Shafranov shift stabilization in the MMM7.1 model, are discussed. It is demonstrated that the E × B flow shear has a relatively small effect in the formation of the internal transport barrier in the high beta poloidal DIII-D discharge 154406. The Shafranov shift (alpha stabilization) and small or reversed magnetic shear profiles are found to be the primary reasons for quenched anomalous transport in this discharge.
NASA Astrophysics Data System (ADS)
Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.
2012-10-01
Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.
Positron emission tomography with [ 18F]-FDG in oncology
NASA Astrophysics Data System (ADS)
Talbot, J. N.; Petegnief, Y.; Kerrou, K.; Montravers, F.; Grahek, D.; Younsi, N.
2003-05-01
Positron Emission Tomography (PET) is a several decade old imaging technique that has more recently demonstrated its utility in clinical applications. The imaging agents used for PET contain a positron emmiter coupled to a molecule that drives the radionuclide to target organs or to tissues performing the targetted biological function. PET is then part of functional imaging. As compared to conventional scintigraphy that uses gamma photons, the coincidence emission of two 511 keV annihilation photons in opposite direction that finally results from by beta plus decay makes it possible for PET to get rid of the collimators that greatly contribute to the poor resolution of scintigraphy. In this article, the authors describe the basics of physics for PET imaging and report on the clinical performances of the most commonly used PET tracer: [ 18F]-fluorodeoxyglucose (FDG). A recent and promising development in this field is fusion of images coming from different imaging modalities. New PET machines now include a CT and this fusion is therefore much easier.
Ignition and Inertial Confinement Fusion at The National Ignition Facility
NASA Astrophysics Data System (ADS)
Moses, Edward I.
2016-10-01
The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.
Plasma-surface interaction in the context of ITER.
Kleyn, A W; Lopes Cardozo, N J; Samm, U
2006-04-21
The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.
Daniels, Timothy R; Younger, Alastair S E; Penner, Murray J; Wing, Kevin J; Le, Ian L D; Russell, Iain S; Lalonde, Karl-André; Evangelista, Peter T; Quiton, Jovelyn D; Glazebrook, Mark; DiGiovanni, Christopher W
2015-07-01
Ankle and hindfoot arthrodesis is often supplemented with autograft to promote bony union. Autograft harvest can lead to increased perioperative morbidity. Purified recombinant human platelet-derived growth factor BB homodimer (rhPDGF-BB) has stimulated bone formation in mandibular defects and hindfoot fusion. This randomized controlled trial evaluated the efficacy and safety of rhPDGF-BB combined with an injectable, osteoconductive beta-tricalcium phosphate (β-TCP)-collagen matrix versus autograft in ankle and hindfoot fusions. Seventy-five patients requiring ankle or hindfoot fusion were randomized 5:1 for rhPDGF-BB/β-TCP-collagen (treatment, n = 63) or autograft (control, n = 12). Prospective analysis included 142 autograft control subjects from another clinical trial with identical study protocols. Standardized operative and postoperative protocols were used. Patients underwent standard internal fixation augmented with autograft or 0.3 mg/mL rhPDGF-BB/β-TCP-collagen. Radiologic, clinical, and quality-of-life outcomes were assessed over 52 weeks. Primary outcome was joint fusion (50% or more osseous bridging on computed tomography) at 24 weeks. Secondary outcomes included radiographs, clinical healing status, visual analog scale pain score, American Orthopaedic Foot & Ankle Society Ankle-Hindfoot Scale score, Foot Function Index score, and Short Form-12 score. Noninferiority P values were calculated. Complete fusion of all involved joints at 24 weeks as indicated by computed tomography was achieved in 53 of 63 (84%) rhPDGF-BB/β-TCP-collagen-treated patients and 100 of 154 (65%) autograft-treated patients (P < .001). Mean time to fusion was 14.3 ± 8.9 weeks for rhPDGF-BB/β-TCP-collagen patients versus 19.7 ± 11.5 weeks for autograft patients (P < .01). Clinical success at 52 weeks was achieved in 57 of 63 (91%) rhPDGF-BB/β-TCP-collagen patients and 120 of 154 (78%) autograft patients (P < .001). Safety-related outcomes were equivalent. Autograft controls had 2 bone graft harvest infections. Application of rhPDGF-BB/β-TCP-collagen was a safe, effective alternative to autograft for ankle and hindfoot fusions, eliminating the pain and morbidity associated with autograft harvesting. Level I, prospective randomized study. © The Author(s) 2015.
Overview of theory and simulations in the Heavy Ion Fusion Science Virtual National Laboratory
NASA Astrophysics Data System (ADS)
Friedman, Alex
2007-07-01
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.
Next-generation laser for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C; Bibeau, C; Bayramian, A
1998-03-13
We are developing and building the ''Mercury'' laser system as the first in a series of a new generation of diode-pumped solid-state lasers (DPSSL) for advanced high energy density (HED) physics experiments at LLNL. Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced Inertial Confinement Fusion (ICF) goals. Primary performance goals include 10% efficiencies at 10 Hz and a <10 ns pulse with l {omega} energies of 100 J and with 2 {omega}/3 {omega} frequency conversion. Achieving this performance will provide a near term capability for HED experiments and prove the potential of DPSSLsmore » for inertial fusion energy (IFE).« less
AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion
Rapp, Steven M; Miller, Larry E; Block, Jon E
2011-01-01
Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4–S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date. PMID:22915939
AxiaLIF system: minimally invasive device for presacral lumbar interbody spinal fusion.
Rapp, Steven M; Miller, Larry E; Block, Jon E
2011-01-01
Lumbar fusion is commonly performed to alleviate chronic low back and leg pain secondary to disc degeneration, spondylolisthesis with or without concomitant lumbar spinal stenosis, or chronic lumbar instability. However, the risk of iatrogenic injury during traditional anterior, posterior, and transforaminal open fusion surgery is significant. The axial lumbar interbody fusion (AxiaLIF) system is a minimally invasive fusion device that accesses the lumbar (L4-S1) intervertebral disc spaces via a reproducible presacral approach that avoids critical neurovascular and musculoligamentous structures. Since the AxiaLIF system received marketing clearance from the US Food and Drug Administration in 2004, clinical studies of this device have reported high fusion rates without implant subsidence, significant improvements in pain and function, and low complication rates. This paper describes the design and approach of this lumbar fusion system, details the indications for use, and summarizes the clinical experience with the AxiaLIF system to date.
Multispectral image fusion for target detection
NASA Astrophysics Data System (ADS)
Leviner, Marom; Maltz, Masha
2009-09-01
Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.
Forbidden unique beta-decays and neutrino mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvornický, Rastislav; Šimkovic, Fedor
2013-12-30
The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that themore » p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.« less
A new evaluation method research for fusion quality of infrared and visible images
NASA Astrophysics Data System (ADS)
Ge, Xingguo; Ji, Yiguo; Tao, Zhongxiang; Tian, Chunyan; Ning, Chengda
2017-03-01
In order to objectively evaluate the fusion effect of infrared and visible image, a fusion evaluation method for infrared and visible images based on energy-weighted average structure similarity and edge information retention value is proposed for drawbacks of existing evaluation methods. The evaluation index of this method is given, and the infrared and visible image fusion results under different algorithms and environments are made evaluation experiments on the basis of this index. The experimental results show that the objective evaluation index is consistent with the subjective evaluation results obtained from this method, which shows that the method is a practical and effective fusion image quality evaluation method.
NASA Astrophysics Data System (ADS)
Ogawa, Yuichi
2016-05-01
A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.
Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion
NASA Astrophysics Data System (ADS)
Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei
2018-06-01
Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.
Metzger, Wolfgang; Grenner, Nadine; Motsch, Sandra E; Strehlow, Rothin; Pohlemann, Tim; Oberringer, Martin
2007-11-01
Growth factors are an important tool in tissue engineering. Bone morphogenetic protein-2 and transforming growth factor-beta(1) (TGF-beta(1)) are used to provide bioactivity to surgical implants and tissue substitute materials. Mostly growth factors are used in soluble or adsorbed form. However, simple adsorption of proteins to surfaces is always accompanied by reduced stability and undefined pharmacokinetics. This study aims to prove that TGF-beta(1) can be covalently immobilized to functionalized surfaces, maintaining its ability to induce myofibroblastic differentiation of normal human dermal fibroblasts. In vivo, fibroblasts differentiate to myofibroblasts (MFs) during soft tissue healing by the action of TGF-beta(1). As surfaces for our experiments, we used slides bearing aldehyde, epoxy, or amino groups. For our in vitro cell culture experiments, we used the expression of alpha-smooth muscle actin as a marker for MFs after immunochemical staining. Using the aldehyde and the epoxy slides, we were able to demonstrate the activity of immobilized TGF-beta(1) through a significant increase in MF differentiation rate. A simple immunological test was established to detect TGF-beta(1) on the surfaces. This technology enables the creation of molecular "landscapes" consisting of several factors arranged in a distinct spatial pattern and immobilized on appropriate surfaces.
Estabrook, R W; Shet, M S; Faulkner, K; Fisher, C W
1996-11-01
A method has been developed for the commercial application of the unique oxygen chemistry catalyzed by various cytochrome P450s. This is illustrated here for the synthesis of hydroxylated steroids. This method requires the preparation of large amounts of enzymatically functional P450 proteins that can serve as catalysts and a technique for providing electrons at an economically acceptable cost. To generate large amounts of enzymatically active recombinant P450s we have engineered the cDNAs for various P450s, including bovine adrenal P450c17, by linking them to a modified cDNA for rat NADPH-P450 reductase and placing them in the plasmid pCWori+. Transformation of E. coli results in the high level expression of an enzymatically active protein that can be easily purified by affinity chromatography. Incubation of the purified enzyme with steroid in a reaction vessel containing a platinum electrode and a Ag/AgCl electrode couple poised at -650 mV, together with the electromotively active redox mediator, cobalt sepulchrate, results in the 17 alpha-hydroxylation of progesterone at rates as high as 25 nmoles of progesterone hydroxylated/min/nmole of P450. Thus, high concentrations of hydroxylated steroids can be produced with incubation conditions of hours duration without the use of costly NADPH. Similar experiments have been carried out for the generation of the 6 beta-hydroxylation product of testosterone (using a fusion protein containing human P450 3A4). It is apparent that this method is applicable to many other P450 catalyzed reactions for the synthesis of large amounts of hydroxylated steroid metabolites. The electrochemical system is also applicable to drug discovery studies for the characterization of drug metabolites.
Papanikolopoulou, Katerina; Forge, Vincent; Goeltz, Pierrette; Mitraki, Anna
2004-03-05
The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.
Integrated Scenario Modeling of NSTX Advanced Plasma Configurations
NASA Astrophysics Data System (ADS)
Kessel, Charles; Synakowski, Edward
2003-10-01
The Spherical Torus will provide an attractive fusion energy source if it can demonstrate the following major features: high elongation and triangularity, 100% non-inductive current with a credible path to high bootstrap fractions, non-solenoidal startup and current rampup, high beta with stabilization of RWM instabilities, and sufficiently high energy confinement. NSTX has specific experimental milestones to examine these features, and integrated scenario modeling is helping to understand how these configurations might be produced and what tools are needed to access this operating space. Simulations with the Tokamak Simulation Code (TSC), CURRAY, and JSOLVER/BALMSC/PEST2 have identified fully non-inductively sustained, high beta plasmas that rely on strong plasma shaping accomplished with a PF coil modification, off-axis current drive from Electron Bernstein Waves (EBW), flexible on-axis heating and CD from High Harmonic Fast Wave (HHFW) and Neutral Beam Injection (NBI), and density control. Ideal MHD stability shows that with wall stabilization through plasma rotation and/or RWM feedback coils, a beta of 40% is achievable, with 100% non-inductive current sustained for 4 current diffusion times. Experimental data and theory are combined to produce a best extrapolation to these regimes, which is continuously improved as the discharges approach these parameters, and theoretical/computational methods expand. Further investigations and development for integrated scenario modeling on NSTX is discussed.
NASA Astrophysics Data System (ADS)
Guo, W. F.; Gong, X. Z.; Huang, J.; Ren, Q. L.; Qian, J. P.; Ding, S. Y.; Pan, C. K.; Li, G. Q.; Xia, T. Y.; Garofalo, A. M.; Lao, L.; Hyatt, A.; Ferron, J.; Meneghini, O.; Liu, Y. Q.; McClenaghan, J.; Holcomb, C. T.
2017-10-01
The high poloidal beta scenario with plasma current IP 600 kA and large-radius internal transport barrier (ITB) on DIII-D is subject to n =1 MHD kink modes when the current profile becomes very broad at internal inductance values li 0.5-0.6. It is desirable to extend this scenario to higer plasma current ( 1 MA) for highernormalized fusionperformance. However, higher current at constant normalized beta, ?N 3, would reducethe poloidal bet, ?P, below the threshold for ITB sustainment, observed at ?P 1.9. Thus, to avoid loss of the IT, ?N?? must be increased together with IP while avoiding the kink instability. MHD analysis is presented that explains possible paths to high ?N stability limit for the kink mode in tis scenario. Work supported by National Magnetic Confinement Fusion Program of Chin under 2015GB110001 and 2015GB102000 - National Natural Science Foundation of China under Grant No. 1147521 and by US DOE under DE-FC02-04ER54698.
Imaging of laboratory magnetospheric plasmas using coherence imaging technique
NASA Astrophysics Data System (ADS)
Nishiura, Masaki; Takahashi, Noriki; Yoshida, Zensho; Nakamura, Kaori; Kawazura, Yohei; Kenmochi, Naoki; Nakatsuka, Masataka; Sugata, Tetsuya; Katsura, Shotaro; Howard, John
2017-10-01
The ring trap 1 (RT-1) device creates a laboratory magnetosphere for the studies on plasma physics and advanced nuclear fusion. A levitated superconducting coil produces magnetic dipole fields that realize a high beta plasma confinement that is motivated by self-organized plasmas in planetary magnetospheres. The electron cyclotron resonance heating (ECRH) with 8.2 GHz and 50 kW produces the plasmas with hot electrons in a few ten keV range. The electrons contribute to the local electron beta that exceeded 1 in RT-1. For the ion heating, ion cyclotron range of frequencies (ICRF) heating with 2-4 MHz and 10 kW has been performed in RT-1. The radial profile of ion temperature by a spectroscopic measurement indicates the signature of ion heating. In the holistic point of view, a coherence imaging system has been implemented for imaging the entire ion dynamics in the laboratory magnetosphere. The diagnostic system and obtained results will be presented.
Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...
2015-12-17
Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less
Borst, D W; Blumenthal, R M; Matthews, R G
1996-12-01
Most studies of global regulatory proteins are performed in vitro or involve phenotypic comparisons between wild-type and mutant strains. We report the use of strains in which the gene for the leucine-responsive regulatory protein (lrp) is transcribed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters for the purpose of continuously varying the in vivo concentration of Lrp. To obtain a broad range of Lrp concentrations, strains were employed that contained the lrp fusion either in the chromosome (I. C. Blomfield, P. J. Calie, K. J. Eberhardt, M. S. McClain, and B. I. Eisenstein, J. Bacteriol. 175:27-36, 1993) or on a multicopy plasmid. Western blot (immunoblot) analysis with polyclonal antiserum to Lrp confirmed that Lrp levels could be varied more than 70-fold by growing the strains in glucose minimal 3-(N-morpholino)propanesulfonic acid (MOPS) medium containing different amounts of IPTG. Expression of an Lrp-regulated gltB::lacZ operon fusion was measured over this range of Lrp concentrations. beta-Galactosidase activity rose with increasing Lrp levels up to the level of Lrp found in wild-type strains, at which point expression is maximal. The presence of leucine in the medium increased the level of Lrp necessary to achieve half-maximal expression of the gltB::lacZ fusion, as predicted by earlier in vitro studies (B. R. Ernsting, J. W. Denninger, R. M. Blumenthal, and R. G. Matthews, J. Bacteriol. 175:7160-7169, 1993). Interestingly, levels of Lrp greater than those in wild-type cells interfered with activation of gltB::lacZ expression. The growth rate of cultures correlated with the intracellular Lrp concentration: levels of Lrp either lower or higher than wild-type levels resulted in significantly slower growth rates. Thus, the level of Lrp in the cell appears to be optimal for rapid growth in minimal medium, and the gltBDF control region is designed to give maximal expression at this Lrp level.
Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules.
Wu, Yingjie; Frueh, Johannes; Si, Tieyan; Möhwald, Helmuth; He, Qiang
2015-02-07
In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers.
Fusion Safety Program annual report, fiscal year 1994
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.
1995-03-01
This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.
Synthesis and pharmacological characterization of beta2-adrenergic agonist enantiomers: zilpaterol.
Kern, Christopher; Meyer, Thorsten; Droux, Serge; Schollmeyer, Dieter; Miculka, Christian
2009-03-26
The beta-adrenergic agonist 1 (zilpaterol) is used as production enhancer in cattle. Binding experiments of separated enantiomers on recombinant human beta(2)-adrenergic and mu-opioid receptors and functional studies showed that the (-)-1 enantiomer accounts for essentially all the beta(2)-adrenergic agonist activity and that it exhibits less affinity toward the mu-opioid receptor than (+)-1, which is a mu-opioid receptor antagonist. X-ray crystallography revealed the absolute configuration of (-)-1 to be 6R,7R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.
This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)
Dinklage, Andreas; Turkin, Yuriy; Bozhenkov, Sergey; Geiger, Joachim; Fuchert, Golo; Bosch, Hans-Stephan; Rahbarnia, Kian; Thomsen, Henning; Neuner, Ulrich; Klinger, Thomas; Langenberg, Andreas; Trimiño Mora, Humberto; Kornejew, Petra; Hirsch, Matthias; Pablant, Novimir
2017-01-01
The first physics operation phase on the stellarator experiment Wendelstein 7-X was successfully completed in March 2016 after about 10 weeks of operation. Experiments in this phase were conducted with five graphite limiters as the primary plasma-facing components. Overall, the results were beyond the expectations published shortly before the start of operation [Sunn Pedersen et al., Nucl. Fusion 55, 126001 (2015)] both with respect to parameters reached and with respect to physics themes addressed. We report here on some of the most important plasma experiments that were conducted. The importance of electric fields on global confinement will be discussed, and the obtained results will be compared and contrasted with results from other devices, quantified in terms of the fusion triple product. Expected values for the triple product in future operation phases will also be described and put into a broader fusion perspective. PMID:29104420
1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser
NASA Astrophysics Data System (ADS)
Mori, Y.; Sekine, T.; Komeda, O.; Nakayama, S.; Ishii, K.; Hanayama, R.; Fujita, K.; Okihara, S.; Satoh, N.; Kurita, T.; Kawashima, T.; Kan, H.; Nakamura, N.; Kondo, T.; Fujine, M.; Azuma, H.; Hioki, T.; Kakeno, M.; Motohiro, T.; Nishimura, Y.; Sunahara, A.; Sentoku, Y.; Kitagawa, Y.
2013-07-01
A Ti : sapphire laser HAMA pumped by a diode-pumped solid-state laser (DPSSL) is developed to enable a high-repetitive inertial confinement fusion (ICF) experiment to be conducted. To demonstrate a counter-irradiation fast-heating fusion scheme, a 3.8 J, 0.4 ns amplified chirped pulse is divided into four beams: two counter-irradiate a target with intensities of 6 × 1013 W cm-2, and the remaining two are pulse-compressed to 110 fs for heating the imploded target with intensities of 2 × 1017 W cm-2. HAMA contributed to the first demonstration by showing that a 10 J class DPSSL is adaptable to ICF experiments and succeeded in DD neutron generation in the repetition mode. Based on HAMA, we can design and develop an integrated repetitive ICF experiment machine by including target injection and tracking.
Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.
2011-10-01
Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.
Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator
Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; ...
2016-05-26
Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρR liner ~ 1g/cm 2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improvemore » and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less
Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.
Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρR liner ~ 1g/cm 2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improvemore » and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less
NASA Technical Reports Server (NTRS)
1982-01-01
A focused laser Doppler velocimeter system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. The system was flight tested at several different locations and the results of these tests are summarized.
Yakovenko, I A; Cheremushkin, E A; Kozlov, M K
2015-01-01
The research of changes of a beta rhythm parameters on condition of working memory loading by extension of a interstimuli interval between the target and triggering stimuli to 16 sec is investigated on 70 healthy adults in two series of experiments with set to a facial expression. In the second series at the middle of this interval for strengthening of the load was entered the additional cognitive task in the form of conditioning stimuli like Go/NoGo--circles of blue or green color. Data analysis of the research was carried out by means of continuous wavelet-transformation on the basis of "mather" complex Morlet-wavelet in the range of 1-35 Hz. Beta rhythm power was characterized by the mean level, maxima of wavelet-transformation coefficient (WLC) and latent periods of maxima. Introduction of additional cognitive task to pause between the target and triggering stimuli led to essential increase in absolute values of the mean level of beta rhythm WLC and relative sizes of maxima of beta rhythm WLC. In the series of experiments without conditioning stimulus subjects with large number of mistakes (from 6 to 40), i.e. rigid set, in comparison with subjects with small number of mistakes (to 5), i.e. plastic set, at the forming stage were characterized by higher values of the mean level of beta rhythm WLC. Introduction of the conditioning stimuli led to smoothing of intergroup distinctions throughout the experiment.
Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins
Brunger, Axel T.; Cipriano, Daniel J.; Diao, Jiajie
2015-01-01
Abstract Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed. PMID:25788028
Measurement of the double- β decay half-life of 136 Xe with the KamLAND-Zen experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gando, A.; Gando, Y.; Hanakago, H.
2012-04-19
We present results from the KamLAND-Zen double-beta decay experiment based on an exposure of 77.6 days with 129 kg of 136Xe. The measured two-neutrino double-beta decay half-life of 136Xe is Tmore » $$2ν\\atop{1/2}$$ = 2.38 ± 0.02(stat) ± 0.14(syst) x10 21 yr, consistent with a recent measurement by EXO-200. We also obtain a lower limit for the neutrinoless double-beta decay half-life, T$$0ν\\atop{1/2}$$ > 5.7 x 10 24 yr at 90% C.L.« less
Current Status of the Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.
2002-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). An experimental GDM device has been constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. An initial shakedown of the device is currently underway with initial experiments slated to occur in late 2001. This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. The high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. The high plasma density results in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with 'loss cone' microinstabilities. The device has been constructed to allow a considerable degree of flexibility in its configuration thus permitting the experiment to grow over time without necessitating a great deal of additional fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelenkov, Nikolai N
The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEsmore » (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).« less
An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones.
Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han
2015-12-11
Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel "quasi-dynamic" Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the "process-level" fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move.
Alternate fusion fuels workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-06-01
The workshop was organized to focus on a specific confinement scheme: the tokamak. The workshop was divided into two parts: systems and physics. The topics discussed in the systems session were narrowly focused on systems and engineering considerations in the tokamak geometry. The workshop participants reviewed the status of system studies, trade-offs between d-t and d-d based reactors and engineering problems associated with the design of a high-temperature, high-field reactor utilizing advanced fuels. In the physics session issues were discussed dealing with high-beta stability, synchrotron losses and transport in alternate fuel systems. The agenda for the workshop is attached.
NASA Astrophysics Data System (ADS)
Huang, Yadong; Gao, Kun; Gong, Chen; Han, Lu; Guo, Yue
2016-03-01
During traditional multi-resolution infrared and visible image fusion processing, the low contrast ratio target may be weakened and become inconspicuous because of the opposite DN values in the source images. So a novel target pseudo-color enhanced image fusion algorithm based on the modified attention model and fast discrete curvelet transformation is proposed. The interesting target regions are extracted from source images by introducing the motion features gained from the modified attention model, and source images are performed the gray fusion via the rules based on physical characteristics of sensors in curvelet domain. The final fusion image is obtained by mapping extracted targets into the gray result with the proper pseudo-color instead. The experiments show that the algorithm can highlight dim targets effectively and improve SNR of fusion image.
Fusion barrier characteristics of actinides
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.; Sridhar, K. N.
2018-03-01
We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6
Hemagglutinin-Mediated Membrane Fusion: A Biophysical Perspective.
Boonstra, Sander; Blijleven, Jelle S; Roos, Wouter H; Onck, Patrick R; van der Giessen, Erik; van Oijen, Antoine M
2018-05-20
Influenza hemagglutinin (HA) is a viral membrane protein responsible for the initial steps of the entry of influenza virus into the host cell. It mediates binding of the virus particle to the host-cell membrane and catalyzes fusion of the viral membrane with that of the host. HA is therefore a major target in the development of antiviral strategies. The fusion of two membranes involves high activation barriers and proceeds through several intermediate states. Here, we provide a biophysical description of the membrane fusion process, relating its kinetic and thermodynamic properties to the large conformational changes taking place in HA and placing these in the context of multiple HA proteins working together to mediate fusion. Furthermore, we highlight the role of novel single-particle experiments and computational approaches in understanding the fusion process and their complementarity with other biophysical approaches.
Bang, Myun-Ho; Han, Min-Woo; Song, Myoung-Chong; Cho, Jin-Gyeong; Chung, Hae-Gon; Jeong, Tae-Sook; Lee, Kyung-Tae; Choi, Myung-Sook; Kim, Se-Young; Baek, Nam-In
2008-08-01
Repeated silica gel and octadecyl silica gel (ODS) column chromatography of the aerial parts of Artemisia princeps PAMPANINI (Sajabalssuk) led to the isolation of a new sesquiterpenoid, 3-((S)-2-methylbutyryloxy)-costu-1(10),4(5)-dien-12,6 alpha-olide (2), along with two previously reported sesquiterpenoids: 8 alpha-angeloyloxy-3beta,4 beta-epoxy-6 beta H,7 alpha H,8 beta H-guaia-1(10),11(13)-dien-12,6 alpha-olide (1, carlaolide B) and 3beta,4 beta-epoxy-8 alpha-isobutyryloxy-6 beta H,7 alpha H,8 beta H-guaia-1(10),11(13)-dien-12,6 alpha-olide (3, carlaolide A). The structure of compound 2 was elucidated by spectroscopic data analysis, including one dimensional (1D) and two dimensional (2D) nuclear magnetic resonance (NMR) experiments. Of the isolates, compound 2 exhibited potent cytotoxicity against human cervix adenocarcinoma cells and induced apoptosis.
Flowing DPF Design for Propulsion Experiments
1993-08-01
plasma acceleration but not a pinch i.e., added fusion energy , as envisioned in a DPF. The outer electrode at the UI DPF is constructed of 24 rods which...many respects to a coaxial plasma accelerator or a magnetic plasmoid accelerator, the added fusion energy supplied by the pinch step greatly enhances...modified DPF in space propulsion. Using a scaled-up model. From this model, the contribution of fusion energy to thrust and specific impulse is estimated
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R.F.; Fowler, T.K.; Bulmer, R.
2005-01-15
The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employedmore » a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M.« less
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R F; Fowler, T K; Bulmer, R
2004-07-15
The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies havemore » employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M« less
Mutations participating in interallelic complementation in propionic acidemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravel, R.A.; Akerman, B.R.; Lamhonwah, A.M.
1994-07-01
Deficiency of propionyl-CoA carboxylase (PCC; [alpha][sub 4][beta][sub 4]) results in the rare, autosomal recessive disease propionic acidemia. Cell fusion experiments have revealed two complementation groups, pccA and pccB, corresponding to defects of the PCCA ([alpha]-subunit) and PCCB ([beta]-subunit) genes, respectively. The pccBCC group includes subgroups, pccB and pccC, which are thought to reflect interallelic complementation between certain mutations of the PCCB gene. In this study, the authors have identified the mutations in two pccB, one pccC, and two pccBC cell lines and have deduced those alleles participating in interallelic complementation. One pccB line was a compound hetrozygote of Pro228Leu andmore » Asn536Asp. The latter mutation was also detected in a noncomplementing pccBC line. This leaves Pro228Leu responsible for complementation in the pccB cells. The second pccB line contained an insertional duplication, dupKICK140-143, and a splice mutation IVS+1 G[yields]T, located after Lys466. The authors suggest that the dupKICK mutation is the complementing allele, since the second allele is incompatible with normal splicing. The pccC line studied was homozygous for Arg410Trp, which is necessarily the complementing allele in that line. For a second pccC line, they previously had proposed that [Delta]Ile408 was the complementing allele. They now show that its second allele, [open quotes]Ins[center dot]Del[close quotes], a 14-bp deletion replaced by a 12-bp insertion beginning at codon 407, fails to complement in homozygous form. The authors conclude that the interallelic complementation results from mutations in domains that can interact between [beta]-subunits in the PCC heteromer to restore enzymatic function. On the basis of sequence homology with the Propionibacterium shermanii transcarboxylase 12S subunit, they suggest that the pccC domain, defined by Ile408 and Arg410, may involve the propionyl-CoA binding site. 37 refs., 5 figs., 2 tabs.« less
Functions and ATP-binding responses of the twelve histidine residues in the TF1-ATPase beta subunit.
Tozawa, K; Yagi, H; Hisamatsu, K; Ozawa, K; Yoshida, M; Akutsu, H
2001-10-01
The C2 proton signals of all (twelve) histidine residues of the TF1 beta subunit in the 1H-NMR spectrum have been identified and assigned by means of pH change experiments and site-directed substitution of histidines by glutamines. pH and ligand titration experiments were carried out for these signals. Furthermore, the ATPase activity of the reconstituted alpha3beta3gamma complex was examined for the twelve mutant beta subunits. Two of three conserved histidines, namely, His-119 and 324, were found to be important for expression of the ATPase activity. The former fixes the N-terminal domain to the central domain. His-324 is involved in the formation of the interface essential for the alpha3beta3gamma complex assembly. The other conserved residue, His-363, showed a very low pK(a), suggesting that it is involved in the tertiary structure formation. On the binding of a nucleotide, only the signals of His-173, 179, 200, and 324 shifted. These histidines are located in the hinge region, and its proximity, of the beta subunit. This observation provided further support for the conformational change of the beta monomer from the open to the closed form on the binding of a nucleotide proposed by us [Yagi et al. (1999) Biophys. J. 77, 2175-2183]. This conformational change should be one of the essential driving forces in the rotation of the alpha3beta3gamma complex.
Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas
NASA Astrophysics Data System (ADS)
Lattuada, D.; Barbarino, M.; Bonasera, A.; Bang, W.; Quevedo, H. J.; Warren, M.; Consoli, F.; De Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.
2016-04-01
In this work, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to :mmultiscripts>(d ,n )3He . The experiment was performed with the Texas Petawatt Laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D2 or CD4 molecular clusters (where D denotes 2H ) . After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume of the fusion plasma, and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the :mmultiscripts>(d ,n )3He and 3He(d ,p )4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d +d case (lower Gamow energies), for the d +3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.
Model-independent determination of the astrophysical S factor in laser-induced fusion plasmas
Lattuada, D.; Barbarino, M.; Bonasera, A.; ...
2016-04-19
In this paper, we present a new and general method for measuring the astrophysical S factor of nuclear reactions in laser-induced plasmas and we apply it to 2H(d,n) 3He. The experiment was performed with the Texas Petawatt Laser, which delivered 150–270 fs pulses of energy ranging from 90 to 180 J to D 2 or CD 4 molecular clusters (where D denotes 2H). After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S factor using the measured energy distribution of the ions, the measured volume ofmore » the fusion plasma, and the measured fusion yields. This method is model independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution, especially at high energies, and of the relevant fusion yields. In the 2H(d,n) 3He and 3He(d,p) 4He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S factor in the d+d case (lower Gamow energies), for the d+ 3He case the data are not precise enough to obtain the S factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.« less
National Fusion Collaboratory: Grid Computing for Simulations and Experiments
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2004-05-01
The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.
NASA Astrophysics Data System (ADS)
Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.
2016-01-01
Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.
The aCORN backscatter-suppressed beta spectrometer
Hassan, M. T.; Bateman, F.; Collett, B.; ...
2017-06-16
Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron–antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. Lastly, the design, construction, calibration, and performance ofmore » the spectrometer are discussed.« less
Role of 5-hydroxytryptamine in the regulation of brain neuropeptides in normal and diabetic rat
NASA Technical Reports Server (NTRS)
Kolta, Malak G.; Williams, Byron B.; Soliman, Karam F. A.
1986-01-01
The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta-E), and immunoreactive insulin was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) three days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for three days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindolel acetic acid, while it caused significant increase and decrease in brain beta-E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta-E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta-E and insulin regardless of the availability of pancreatic insulin.
Modification of the D2 radial wavefunction by near resonant compact states
NASA Astrophysics Data System (ADS)
Hagelstein, Peter L.
2003-03-01
We have proposed that phonon exchange can occur in the presence of a highly excited optical phonon mode during a dd-fusion reaction. We have also suggested (P. L. Hagelstein, Bull. APS 45, 235 (2000)) at new second-order site-other-site reactions can occur when the energy of a fusion reaction is transferred elsewhere. Fast particle ejecta from the experiments of Chambers( G. P. Chambers, et al, J. Fusion Energy, Vol. 9, p. 281 (1990).) and of Cecil (F. E. Cecil, et al, AIP Conf. Proc. Vol. 228, p. 383 (1990).) appear to be consistent with such a mechanism, in which a dd-fusion reaction at one site is coupled to a disintegration at another site. The dominant process of this type is the null reaction in which dd-fusion is coupled to He-4 dissociation. This process can lead to compact dd-states(P. L. Hagelstein, Bull. APS 2001), and is consistent with the Kasagi experiment(J. Kasagi et al, J. Phys. Soc. Japan 64, 777 (1995). ). We find that compact states near resonance with the molecular D2 states changes the radial wavefunction at small r.
NASA Astrophysics Data System (ADS)
van Lehn, Reid; Ricci, Maria; Carney, Randy; Voitchovsky, Kislon; Stellacci, Francesco; Alexander-Katz, Alfredo
2014-03-01
Vesicle fusion is a primary mechanism used to mediate the uptake and trafficking of materials both into and between cells. The pathway of vesicle fusion involves the formation of a lipid stalk in which the hydrophobic core regions of two closely associated bilayers merge. The transition state for stalk formation requires the transient protrusion of hydrophobic lipid tails into solvent; favorable contact between these hydrophobic tails then drives stalk creation. In this work, we use unbiased atomistic molecular dynamics simulations to show that lipid tail protrusions can also induce the insertion of charged, amphiphilic nanoparticles (NPs) into lipid bilayers. As in the case of vesicle fusion, the rate-limiting step for NP-bilayer fusion is the stochastic protrusion of aliphatic lipid tails into solvent and into contact with hydrophobic material in the amphiphilic NP monolayer. We confirm our predictions with experiments on supported lipid bilayers. The strong agreement between simulation and experiments indicates that the pre-stalk transition associated with vesicle fusion may be a general mechanism for the insertion of amphiphilic nano-objects that could be prominent in biological systems given the widespread use of NPs in applications ranging from drug delivery to biosensing.
Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance
NASA Astrophysics Data System (ADS)
Heuvingh, J.; Pincet, F.; Cribier, S.
2004-07-01
Proteins involved in membrane fusion, such as SNARE or influenza virus hemagglutinin, share the common function of pulling together opposing membranes in closer contact. The reduction of inter-membrane distance can be sufficient to induce a lipid transition phase and thus fusion. We have used functionalized lipids bearing DNA bases as head groups incorporated into giant unilamellar vesicles in order to reproduce the reduction of distance between membranes and to trigger fusion in a model system. In our experiments, two vesicles were isolated and brought into adhesion by the mean of micromanipulation; their evolution was monitored by fluorescence microscopy. Actual fusion only occurred in about 5% of the experiments. In most cases, a state of “hemifusion” is observed and quantified. In this state, the outer leaflets of both vesicles' bilayers merged whereas the inner leaflets and the aqueous inner contents remained independent. The kinetics of the lipid probes redistribution is in good agreement with a diffusion model in which lipids freely diffuse at the circumference of the contact zone between the two vesicles. The minimal density of bridging structures, such as stalks, necessary to explain this redistribution kinetics can be estimated.
NASA Technical Reports Server (NTRS)
Fralick, Gustave C.; Decker, Arthur J.; Blue, James W.
1989-01-01
An experiment was performed to look for evidence of deuterium fusion in palladium. The experiment, which involved introducing deuterium into the palladium filter of a hydrogen purifier, was designed to detect neutrons produced in the reaction D-2 + D-2 yields He-3 + n as well as heat production. The neutron counts for deuterium did not differ significantly from background or from the counts for a hydrogen control. Heat production was detected when deuterium, but not hydrogen, was pumped from the purifier.
Neutrinoless Double Beta Decay with CUORE-0: Physics Results and Detector Performance
NASA Astrophysics Data System (ADS)
Canonica, L.
2016-08-01
The CUORE-0 experiment searches for neutrinoless double beta decay in ^{130}Te. It consists of an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK, with a total mass of about 39 kg of TeO_2. CUORE-0 has been built to test the performance of the upcoming CUORE experiment and represents the largest ^{130}Te bolometric setup currently in operation. This experiment has been running in the Gran Sasso National Laboratory, Italy, since March 2013. We report the results of a search for neutrinoless double beta decay in 9.8 kg years ^{130}Te exposure, which allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background rate and energy resolution are also reported.
Binaural pitch fusion: Comparison of normal-hearing and hearing-impaired listenersa)
Reiss, Lina A. J.; Shayman, Corey S.; Walker, Emily P.; Bennett, Keri O.; Fowler, Jennifer R.; Hartling, Curtis L.; Glickman, Bess; Lasarev, Michael R.; Oh, Yonghee
2017-01-01
Binaural pitch fusion is the fusion of dichotically presented tones that evoke different pitches between the ears. In normal-hearing (NH) listeners, the frequency range over which binaural pitch fusion occurs is usually <0.2 octaves. Recently, broad fusion ranges of 1–4 octaves were demonstrated in bimodal cochlear implant users. In the current study, it was hypothesized that hearing aid (HA) users would also exhibit broad fusion. Fusion ranges were measured in both NH and hearing-impaired (HI) listeners with hearing losses ranging from mild-moderate to severe-profound, and relationships of fusion range with demographic factors and with diplacusis were examined. Fusion ranges of NH and HI listeners averaged 0.17 ± 0.13 octaves and 1.7 ± 1.5 octaves, respectively. In HI listeners, fusion ranges were positively correlated with a principal component measure of the covarying factors of young age, early age of hearing loss onset, and long durations of hearing loss and HA use, but not with hearing threshold, amplification level, or diplacusis. In NH listeners, no correlations were observed with age, hearing threshold, or diplacusis. The association of broad fusion with early onset, long duration of hearing loss suggests a possible role of long-term experience with hearing loss and amplification in the development of broad fusion. PMID:28372056
Gasdynamic Mirror Fusion Propulsion Experiment
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.
[An improved low spectral distortion PCA fusion method].
Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong
2013-10-01
Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.
Bang, W; Barbui, M; Bonasera, A; Quevedo, H J; Dyer, G; Bernstein, A C; Hagel, K; Schmidt, K; Gaul, E; Donovan, M E; Consoli, F; De Angelis, R; Andreoli, P; Barbarino, M; Kimura, S; Mazzocco, M; Natowitz, J B; Ditmire, T
2013-09-01
We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.
Zorzano, Antonio; Hernández-Alvarez, María Isabel; Palacín, Manuel; Mingrone, Geltrude
2010-01-01
Muscle mitochondrial metabolism is regulated by a number of factors, many of which are responsible for the transcription of nuclear genes encoding mitochondrial proteins such as PPARdelta, PGC-1alpha or PGC-1beta. Recent evidence indicates that proteins participating in mitochondrial dynamics also regulate mitochondrial metabolism. Thus, in cultured cells the mitochondrial fusion protein mitofusin 2 (Mfn2) stimulates respiration, substrate oxidation and the expression of subunits involved in respiratory complexes. Mitochondrial dysfunction has been reported in skeletal muscle of type 2 diabetic patients. Reduced mitochondrial mass and defective activity has been proposed to explain this dysfunction. Alterations in mitochondrial metabolism may be crucial to account for some of the pathophysiological traits that characterize type 2 diabetes. Skeletal muscle of type 2 diabetic patients shows reduced expression of PGC-1alpha, PGC-1beta, and Mfn2. In addition, a differential response to bilio-pancreatic diversion-induced weight loss in non-diabetic and type 2 diabetic patients has been reported. While non-diabetic morbidly obese subjects showed an increased expression of genes encoding Mfn2, PGC-1alpha, PGC-1beta, PPARdelta or SIRT1 in response to bariatric surgery-induced weight loss, no effect was detected in type 2 diabetic patients. These observations suggest the existence of a heritable component responsible for the abnormal control of the expression of genes encoding for modulators of mitochondrial biogenesis/metabolism, and which may participate in the development of the disease. Copyright © 2010 Elsevier B.V. All rights reserved.
Garrison, L. M.; Zenobia, Samuel J.; Egle, Brian J.; ...
2016-08-01
The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000°C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ionmore » gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10 14 ions/(cm 2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. In conclusion, the MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.« less
Garrison, L M; Zenobia, S J; Egle, B J; Kulcinski, G L; Santarius, J F
2016-08-01
The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10(14) ions/(cm(2) s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.
NASA Astrophysics Data System (ADS)
Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.
2016-08-01
The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.
Conference Report on the 4rd International Symposium on Lithium Applications
NASA Astrophysics Data System (ADS)
Tabares, F. L.; Hirooka, Y.; Maingi, R.; Mazzitelli, G.; Mirnov, V.; Nygren, R.; Ono, M.; Ruzic, D. N.
2016-12-01
The fourth International Symposium on Liquid Metal Application for Fusion Devices (ISLA-2015) was held on 28-30 September 2015 at Granada, Spain, with growing participation and interest from the community working on general aspects of liquid metal research for fusion energy development. The ISLA symposia remain the largest, and arguably, the most important meetings dedicated to liquid metal application for the magnetic fusion research. Overall, 43 presentations plus 7 posters were given, representing 28 institutions from 12 countries. The latest experimental results from 9 magnetic fusion devices were given in 17 presentations from NSTX and LTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST (ASIPP, China), HT-7 (ASIPP, China), DIII-D (GA, USA), ISTTOK (IPFN, Portugal) and KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) liquid metals (LM) in magnetic confinement experiments (facility overviews), (II) LM in magnetic confinement experiments (topical issues), (III) laboratory experiments, (IV) LM tests in linear plasma devices, (V) LM theory/modeling (VI) LM technology and (VII) a special session on lithium-safety and lithium handling. There were contributions from fusion technology communities including IFMIF and TBM, which provided productive exchanges with physics-oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference), with the next workshop scheduled for Moscow, Russian Federation, in 2017.
Thiols, recA induction and radiosensitivity in Escherichia coli.
Naslund, M; Anderstam, B; Granath, F; Ehrenberg, L
1996-01-01
Induction by gamma-radiation, UV radiation or hydroxyurea of RecA gene product synthesis in Escherichia coli, monitored as beta-D-galactosidase in recA-lacZ fusion strains, was shown to be inhibited if 2-mercaptoethylamine (MEA) was added before treatment with the inducing agents. If cysteine (Cys) at low concentrations was added at the same time as MEA it counteracted the action of MEA. The effect of MEA may be described as a competitive inhibition of an inducing or conducting effect of Cys. In E. coli GE499 (uvrA+), complete inhibition by 30-mmol dm-3 MEA of recA induction was associated with about five times higher radio-resistence. Both of these effects of MEA were completely reversed by 0.3-mmol dm-3 Cys. As shown in parallel experiments with E. coli GE500 (uvrA-), these effects of MEA and Cys were shown to be independent of excision-repair proficiency. Treatment of bacteria with MEA and/or Cys was shown not to lead to increased intracellular concentrations of these thiols. Instead, treatment with them appeared to provoke conspicuous increases in glutathione levels, which are, however, probably not directly involved in the studied action of MEA and Cys.
Properties of low-lying intruder states in 34Al and 34Si populated in the beta-decay of 34Mg
NASA Astrophysics Data System (ADS)
Licǎ, R.; Rotaru, F.; Negoitǎ, F.; Grévy, S.; Mǎrginean, N.; Desagne, Ph.; Stora, T.; Borcea, C.; Borcea, R.; Cǎlinescu, S.; Daugas, J. M.; Filipescu, D.; Kuti, I.; Fraile, L. M.; Franchoo, S.; Gheorghe, I.; Ghitǎ, D. G.; Mǎrginean, R.; Mihai, C.; Mourface, P.; Morel, P.; Mrazek, J.; Negret, A.; Pietreanu, D.; Sava, T.; Sohler, D.; Stǎnoiu, M.; Stefan, I.; Şuvǎilǎ, R.; Toma, S.; Ur, C. A.
2015-02-01
The results of the IS530 experiment at ISOLDE revealed new information concerning several nuclei close to the N ≈ 20 'Island of Inversion' - 34Mg , 34Al , 34Si . The half-life of 34Mg was found to be three times larger than the adopted value (63(1) ms instead of 20(10) ms). The beta-gamma spectroscopy of 34Mg performed for the first time in this experiment, led to the first experimental level scheme for 34Al , also showing that the full beta strength goes through the predicted 1+ isomer in 34Al [1] and/or excited states that deexcite to it. The subsequent beta-decay of the 1+ isomer in 34Al allowed the observation of new gamma lines in 34Si , (tentatively) associated with low-spin high-energy excited states previously unobserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevilacqua, V.L.; Thomson, D.S.; Prestegard, J.H.
1990-06-12
Spin simulation and selective deuteration have been used to aid in the interpretation of 1D transferred nuclear Overhauser effect (TRNOE) NMR experiments on ricin B-chain/ligand systems. Application of these methods has revealed a change in the conformation of deuterated methyl beta-lactoside upon binding to the ricin B-chain which results in a slight change in glycosidic torsional angels which appear to dominate in the solution conformation. The combination of simulation and experiment also shows an important sensitivity of TRNOE magnitudes to dissociation rate constants and available spin-diffusion pathways for the ricin B-chain/ligand systems under study. The sensitivity to dissociation rates allowsmore » determination of rate constants for methyl beta-lactoside and methyl beta-galactoside of 50 and 300 s-1, respectively.« less
Fusion policy advisory committee named
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Department of Energy Secretary James Watkins has announced the formation of new Fusion Policy Advisory Committee which will recommend a policy for conducting DOE's fusion energy research program. Issues that will be considered by the committee include the balance of research activities within the programs, the timing of experiments to test the burning of plasma fuel, the International Thermonuclear Experimental Reactor, and the development of laser technologies, DOE said. Watkins said that he would be entirely open to the committee's advice.
A Unique Opportunity to Test Whether Cell Fusion is a Mechanism of Breast Cancer Metastasis
2015-06-01
conditions for T47D and human mesenchymal stem cell populations. As a result we have been able to conduct our first co-culture experiments to determine...spontaneously and reliably with mesenchymal stem cells . We found that fusion occurs more frequently with hypoxia and that one means by which...in hypoxic conditions, we decided to investigate whether the mechanism of breast cancer cell fusion with mesenchymal stem /multipotent stromal cells
Magnetized Target Fusion Collaboration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John
Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.« less
Basic distinctions between cold- and hot-fusion reactions in the synthesis of superheavy elements
NASA Astrophysics Data System (ADS)
Nasirov, A. K.; Muminov, A. I.; Giardina, G.; Mandaglio, G.
2014-07-01
Superheavy elements (SHE) of charge number in the range of Z = 106-112 were synthesized in so-called cold-fusion reactions. The smallness of the excitation energy of compound nuclei is the main advantage of cold-fusion reactions. However, the synthesis of SHEs of charge number in the region of Z ≥ 112 is strongly complicated in cold-fusion reactions by a sharp decrease in the cross section of a compound nucleus formation in the entrance channel because of superiority of quasifission in the competition with complete fusion. Two favorable circumstances contributed to the success of the experiments aimed at the synthesis of the Z = 113-118 elements and performed at the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research: large cross sections for the production of a compound nucleus, which are characteristic of hot-fusion reactions, and an increase in the fission barrier for nuclei toward the stability island. The factor that complicates the formation of a compound nucleus in cold-fusion reactions is discussed.
Whitman, Shannon D.; Dutch, Rebecca Ellis
2007-01-01
Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F. PMID:17328935
ERIC Educational Resources Information Center
Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.
2011-01-01
X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…
An FPGA-based heterogeneous image fusion system design method
NASA Astrophysics Data System (ADS)
Song, Le; Lin, Yu-chi; Chen, Yan-hua; Zhao, Mei-rong
2011-08-01
Taking the advantages of FPGA's low cost and compact structure, an FPGA-based heterogeneous image fusion platform is established in this study. Altera's Cyclone IV series FPGA is adopted as the core processor of the platform, and the visible light CCD camera and infrared thermal imager are used as the image-capturing device in order to obtain dualchannel heterogeneous video images. Tailor-made image fusion algorithms such as gray-scale weighted averaging, maximum selection and minimum selection methods are analyzed and compared. VHDL language and the synchronous design method are utilized to perform a reliable RTL-level description. Altera's Quartus II 9.0 software is applied to simulate and implement the algorithm modules. The contrast experiments of various fusion algorithms show that, preferably image quality of the heterogeneous image fusion can be obtained on top of the proposed system. The applied range of the different fusion algorithms is also discussed.
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-05-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment.
Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun
2011-03-01
As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.
Fusion Energy Division progress report, 1 January 1990--31 December 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.
1994-03-01
The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from componentsmore » for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.« less
Fusion Science Education Outreach
NASA Astrophysics Data System (ADS)
Danielson, C. A.; DIII-D Education Group
1996-11-01
This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.
Final report on the Magnetized Target Fusion Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Slough
Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred tomore » as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator was made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. A high density FRC plasmoid is to be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) are obtained in the reevant regime of interest. The process still needs to be optimized, and a final design for implementation at AFRL must now be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.« less
Tian, Yu-Lou; Xie, Jiang-Chun; Zhao, Zhen-Jin; Zhang, Yang
2006-06-01
To investigate the dynamic changes of interlukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in gingival crevicular fluid (GCF) during orthodontic tooth movement, and to discuss the biological significance. Fifteen patients were chosen as subjects. For each patient, upper and lower canines at one side having one treatment for distal movement by elastic chain served as the experimental teeth, whereas the contralateral ones were used as controls. The GCF were taken before activation and at 1, 24, 48, 72, 168 hours respectively after initiation of the experiment. The levels of IL-1beta and TNF-alpha in GCF were determined by radioimmunoassay. The levels of IL-1beta and TNF-alpha in experimental group began to increase at 24 hours and reached to its peak value at 72 hours after initiation of the experiment, but their levels returned to baseline at 168 hours. Both of them, however, remained at the baseline level in control group. The changes of the two cytokines level were found statistically significant at 48 and 72 hours (P<0.05) between experimental and control group. No statistically significant were observed before activation and at 1, 168 hours after application of orthodontic forces (P>0.05) between experimental and control group. The levels of IL-1beta and TNF-alpha in gingival crevicular fluid experience dynamic changes during the early phase of orthodontic treatment, indicate that they might play an important role in the process of alveolar regeneration and tooth movement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Cadwallader
The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclearmore » endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical exposure value is ~1000 times the Earth’s magnetic field, but the Earth’s field is a very low value. Allowable static magnetic field exposure limits have remained constant over the recent past and would appear to remain constant for the foreseeable future. Some existing fusion experiments have suffered from RF energy leakage from waveguides, the typical practice to protect personnel is establishing personnel exclusion areas when systems are operating. RF exposure limits have remained fairly constant for overall body exposures, but have become more specific in the exposure frequency values. This paper describes the occupational limits for those types of exposure, how these exposures are managed, and also discusses the likelihood of more restrictive regulations being promulgated that will affect the design of future fusion power plants and safety of their personnel.« less
PandaX-III neutrinoless double beta decay experiment
NASA Astrophysics Data System (ADS)
Wang, Shaobo; PandaX-III Collaboration
2017-09-01
The PandaX-III experiment uses high pressure Time Projection Chambers (TPCs) to search for neutrinoless double-beta decay of Xe-136 with high energy resolution and sensitivity at the China Jin-Ping underground Laboratory II (CJPL-II). Fine-pitch Microbulk Micromegas will be used for charge amplification and readout in order to reconstruct both the energy and track of the neutrinoless double-beta decay event. In the first phase of the experiment, the detector, which contains 200 kg of 90% Xe-136 enriched gas operated at 10 bar, will be immersed in a large water tank to ensure 5 m of water shielding. For the second phase, a ton-scale experiment with multiple TPCs will be constructed to improve the detection probability and sensitivity. A 20-kg scale prototype TPC with 7 Micromegas modules has been built to optimize the design of Micromegas readout module, study the energy calibration of TPC and develop algorithm of 3D track reconstruction.
Muon-catalyzed D-T fusion at low temperature
NASA Astrophysics Data System (ADS)
Breunlich, W. H.; Cargnelli, M.; Kammel, P.; Marton, J.; Naegele, N.; Pawlek, P.; Scrinzi, A.; Werner, J.; Zmeskal, J.; Bistirlich, J.; Crowe, K. M.; Justice, M.; Kurck, J.; Petitjean, C.; Sherman, R. H.; Bossy, H.; Daniel, H.; Hartmann, F. J.; Neumann, W.; Schmidt, G.
1987-01-01
Muon-catalyzed deuterium-tritium fusion was investigated within a wide range of mixtures in liquid and gas (23-35 K) by detection of fusion neutrons. Our improved analysis includes hyperfine effects and allows a clear separation of intrinsic dt sticking ωs from kinetic effects. Strongly density-dependent cycle rates with values up to 1.45×108 s-1, yields of 113 fusions per muon, and ωs=(0.45+/-0.05)% are found. In comparison with previous experiments we confirm that ωs in liquid is lower than theoretically predicted, but do not find a strong dependence on either ct or density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Zakharov, J. Li and Y. Wu
The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.
NASA Astrophysics Data System (ADS)
Shirai, Junpei
Double beta decay is a key process to reveal a fundamental property of neutrinos. If neutrinos are Majorana particles, that is they are equivalent to their antiparticles, neutrinoless double beta (0νββ) decay, (A,Z) → (A,Z + 2) + 2e‑, would occur. The process is beyond the standard model and would lead to a scenario which can explain the extremely small masses of neutrinos and provide a solution to the current matter dominance of the world. In this talk experimental efforts searching for 0νββ decays are presented. Then, major 0νββ experiments together with searches using 136Xe nuclei are described, followed by the current status of the KamLAND-Zen experiment.
Review of Neutrino Mass Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, A.; INFN-Milano, Via Valleggio 11, I-22100 Como
2006-02-08
After a brief summary of the recent achievements of neutrino physics, the concept of neutrino mass scale is clarified. The methods for the determination of the neutrino mass values are summarized and critically compared, in particular in the different and complementary contexts of cosmology, double and single beta decay. The attention is then focussed on the laboratory approaches to investigate neutrino mass. The role of neutrinoless double beta decay is explained and a short review of the present and most promising future experiments in this field is given. Single beta decay sensitivity is discussed, with brief descriptions of the KATRINmore » tritium experiment and of the recently proposed MARE rhenium project.« less
Leliveld, S Rutger; Stitz, Lothar; Korth, Carsten
2008-06-10
A misfolded conformation of the prion protein (PrP), PrP (Sc), is the essential component of prions, the infectious agents that cause transmissible neurodegenerative diseases. Insertional mutations that lead to an increase in the number of octarepeats (ORs) in PrP are linked to familial human prion disease. In this study, we investigated how expansion of the OR domain causes PrP to favor a prion-like conformation. Therefore, we compared the conformational and aggregation modulating properties of wild-type versus expanded OR domains, either as a fusion construct with the protein G B1 domain (GB1-OR) or as an integral part of full-length mouse PrP (MoPrP). Using circular dichroism spectroscopy, we first demonstrated that ORs are not unfolded but exist as an ensemble of three distinct conformers: polyproline helix-like, beta-turn, and "Trp-related". Domain expansion had little effect on the conformation of GB1-OR fusion proteins. When part of MoPrP however, OR domain expansion changed PrP's folding landscape, not by hampering the production of native alpha-helical monomers but by greatly reducing the propensity to form amyloid and by altering the assembly of misfolded, beta-rich aggregates. These features may relate to subtle pH-dependent conformational differences between wild-type and mutant monomers. In conclusion, we propose that PrP insertional mutations are pathogenic because they enhance specific misfolding pathways of PrP rather than by undermining native folding. This idea was supported by a trial bioassay in transgenic mice overexpressing wild-type MoPrP, where intracerebral injection of recombinant MoPrP with an expanded OR domain but not wild-type MoPrP caused prion disease.
Nielen, Michel W F; Lasaroms, Johan J P; Essers, Martien L; Sanders, Marieke B; Heskamp, Henri H; Bovee, Toine F H; van Rhijn, J Hans; Groot, Maria J
2007-03-14
A lifetime controlled reference experiment has been performed using 42 veal calves, 21 males and 21 females which were fed and housed according to European regulations and common veterinary practice. During the experiment feed, water, urine and hair were sampled and feed intake and growth were monitored. Thus for the first time residue analysis data were obtained from guaranteed lifetime-untreated animals. The analysis was focused on the natural hormones estradiol and testosterone and their metabolites, on 17beta- and 17alpha-nortestosterone, on 17beta- and 17alpha-boldenone and androsta-1,4-diene-3,17-dione (ADD), and carried out by gas chromatography tandem mass spectrometry (GC/MS/MS), an estrogen bioassay and liquid chromatography (LC) MS/MS. Feed, water and hair samples were negative for the residues tested. Female calf urines showed occasionally low levels of 17alpha-estradiol and 17alpha-testosterone. On one particular sampling day male veal calf urines showed very high levels of 17alpha-testosterone (up to 1000 ng mL(-1)), accompanied by lower levels of estrone and 17beta-testosterone. Despite these extreme levels of natural testosterone, 17beta-boldenone was never detected in the same urine samples; even 17alpha-boldenone and ADD were only occasionally beyond CCalpha (maximum levels 2.7 ng mL(-1)). The data from this unique experiment provide a set of reference values for steroid hormones in calf urine and demonstrate that 17beta-boldenone is not a naturally occurring compound in urine samples.
Capturing Neutrinos from a Star's Final Hours
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-04-01
What happens on the last day of a massive stars life? In the hours before the star collapses and explodes as a supernova, the rapid evolution of material in its core creates swarms of neutrinos. Observing these neutrinos may help us understand the final stages of a massive stars life but theyve never been detected.A view of some of the 1,520 phototubes within the MiniBooNE neutrino detector. Observations from this and other detectors are helping to illuminate the nature of the mysterious neutrino. [Fred Ullrich/FNAL]Silent Signposts of Stellar EvolutionThe nuclear fusion that powers stars generates tremendous amounts of energy. Much of this energy is emitted as photons, but a curious and elusive particle the neutrino carries away most of the energy in the late stages of stellar evolution.Stellar neutrinos can be created through two processes: thermal processesand beta processes. Thermal processes e.g.,pair production, in which a particle/antiparticle pair are created depend on the temperature and pressure of the stellar core. Beta processes i.e.,when a proton converts to a neutron, or vice versa are instead linked to the isotopic makeup of the stars core. This means that, if we can observe them, beta-process neutrinos may be able to tell us about the last steps of stellar nucleosynthesis in a dying star.But observing these neutrinos is not so easilydone. Neutrinos arenearly massless, neutral particles that interact only feebly with matter; out of the whopping 1060neutrinos released in a supernova explosion, even the most sensitive detectors only record the passage of just a few. Do we have a chance of detectingthe beta-process neutrinos that are released in the final few hours of a stars life, beforethe collapse?Neutrino luminosities leading up to core collapse. Shortly before collapse, the luminosity of beta-process neutrinos outshines that of any other neutrino flavor or origin. [Adapted from Patton et al. 2017]Modeling Stellar CoresTo answer this question, Kelly Patton (University of Washington) and collaborators first used a stellar evolution model to explore neutrino production in massive stars. They modeled the evolution of two massive stars 15 and 30 times the mass of our Sun from the onset of nuclear fusion to the moment of collapse.The authors found that in the last few hours before collapse, during which the material in the stars cores is rapidly upcycled into heavier elements, the flux from beta-process neutrinos rivals that of thermal neutrinos and even exceeds it at high energies. So now we know there are many beta-process neutrinos but can we spot them?Neutrino and antineutrino fluxes at Earth from the last 2 hours of a 30-solar-mass stars life compared to the flux from background sources. The rows represent calculations using two different neutrino mass hierarchies. Click to enlarge. [Patton et al. 2017]Observing Elusive NeutrinosFor an imminent supernova at a distance of 1 kiloparsec, the authors find that the presupernova electron neutrino flux rises above the background noise from the Sun, nuclear reactors, and radioactive decay within the Earth in the final two hours before collapse.Based on these calculations, current and future neutrino observatories should be able to detect tens of neutrinos from a supernova within 1 kiloparsec, about 30% of which would be beta-process neutrinos. As the distance to the star increases, the time and energy window within which neutrinos can be observed gradually narrows, until it closes for stars at a distance of about 30 kiloparsecs.Are there any nearby supergiants soon to go supernova so these predictions can be tested? At a distance of only 650 light-years, the red supergiant star Betelgeuse should produce detectable neutrinos when it explodes an exciting opportunity for astronomers in the far future!CitationKelly M. Patton et al 2017ApJ8516. doi:10.3847/1538-4357/aa95c4
Direct transfer of learned behaviour via cell fusion in non-neural organisms
Vogel, David
2016-01-01
Cell fusion is a fundamental phenomenon observed in all eukaryotes. Cells can exchange resources such as molecules or organelles during fusion. In this paper, we ask whether a cell can also transfer an adaptive response to a fusion partner. We addressed this question in the unicellular slime mould Physarum polycephalum, in which cell–cell fusion is extremely common. Slime moulds are capable of habituation, a simple form of learning, when repeatedly exposed to an innocuous repellent, despite lacking neurons and comprising only a single cell. In this paper, we present a set of experiments demonstrating that slime moulds habituated to a repellent can transfer this adaptive response by cell fusion to individuals that have never encountered the repellent. In addition, we show that a slime mould resulting from the fusion of a minority of habituated slime moulds and a majority of unhabituated ones still shows an adaptive response to the repellent. Finally, we further reveal that fusion must last a certain time to ensure an effective transfer of the behavioural adaptation between slime moulds. Our results provide strong experimental evidence that slime moulds exhibit transfer of learned behaviour during cell fusion and raise the possibility that similar phenomena may occur in other cell–cell fusion systems. PMID:28003457
Cell fusion in the liver, revisited
Lizier, Michela; Castelli, Alessandra; Montagna, Cristina; Lucchini, Franco; Vezzoni, Paolo; Faggioli, Francesca
2018-01-01
There is wide agreement that cell fusion is a physiological process in cells in mammalian bone, muscle and placenta. In other organs, such as the cerebellum, cell fusion is controversial. The liver contains a considerable number of polyploid cells: They are commonly believed to originate by genome endoreplication, although the contribution of cell fusion to polyploidization has not been excluded. Here, we address the topic of cell fusion in the liver from a historical point of view. We discuss experimental evidence clearly supporting the hypothesis that cell fusion occurs in the liver, specifically when bone marrow cells were injected into mice and shown to rescue genetic hepatic degenerative defects. Those experiments-carried out in the latter half of the last century-were initially interpreted to show “transdifferentiation”, but are now believed to demonstrate fusion between donor macrophages and host hepatocytes, raising the possibility that physiologically polyploid cells, such as hepatocytes, could originate, at least partially, through homotypic cell fusion. In support of the homotypic cell fusion hypothesis, we present new data generated using a chimera-based model, a much simpler model than those previously used. Cell fusion as a road to polyploidization in the liver has not been extensively investigated, and its contribution to a variety of conditions, such as viral infections, carcinogenesis and aging, remains unclear. PMID:29527257
High-Q plasmas in the TFTR tokamak
NASA Astrophysics Data System (ADS)
Jassby, D. L.; Barnes, C. W.; Bell, M. G.; Bitter, M.; Boivin, R.; Bretz, N. L.; Budny, R. V.; Bush, C. E.; Dylla, H. F.; Efthimion, P. C.; Fredrickson, E. D.; Hawryluk, R. J.; Hill, K. W.; Hosea, J.; Hsuan, H.; Janos, A. C.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kamperschroer, J.; Kieras-Phillips, C.; Kilpatrick, S. J.; LaMarche, P. H.; LeBlanc, B.; Mansfield, D. K.; Marmar, E. S.; McCune, D. C.; McGuire, K. M.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mueller, D.; Owens, D. K.; Park, H. K.; Paul, S. F.; Pitcher, S.; Ramsey, A. T.; Redi, M. H.; Sabbagh, S. A.; Scott, S. D.; Snipes, J.; Stevens, J.; Strachan, J. D.; Stratton, B. C.; Synakowski, E. J.; Taylor, G.; Terry, J. L.; Timberlake, J. R.; Towner, H. H.; Ulrickson, M.; von Goeler, S.; Wieland, R. M.; Williams, M.; Wilson, J. R.; Wong, K.-L.; Young, K. M.; Zarnstorff, M. C.; Zweben, S. J.
1991-08-01
In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 26, 11 (1984)], the highest neutron source strength Sn and D-D fusion power gain QDD are realized in the neutral-beam-fueled and heated ``supershot'' regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, Sn increases approximately as P1.8b. The highest-Q shots are characterized by high Te (up to 12 keV), Ti (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad Te profiles, and lower Zeff. Replacement of critical areas of the graphite limiter tiles with carbon-fiber composite tiles and improved alignment with the plasma have mitigated the ``carbon bloom.'' Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, QDD increases with decreasing pre-injection carbon radiation, and increases strongly with density peakedness [ne(0)/
Ungerfeld, R
2008-02-01
To determine if the frequency distribution of time to oestrus observed after the introduction of rams, and additional ewes in oestrus, is affected by the administration of oestradiol- 17beta. To determine if the fertility following mating at the first induced oestrus in progesterone-primed ewes may be increased with administration of oestradiol-17beta. In Experiment 1, ewes received 40 mug oestradiol- 17beta 3 (E3; n=61) or 5 (E5; n=56) days before the introduction of rams; 61 ewes were controls (C1). In Experiment 2, a controlled internal drug-releasing (CIDR) device was inserted in 95 ewes on Day -5 (Day 0 = introduction of rams). In addition, 47 ewes received oestradiol-17beta on Day 0 (CE), and the remaining 48 were controls (C2). In both experiments, additional ewes, brought into oestrus between Days 0 and 2 by hormonal treatments, were introduced with the rams. Onset of oestrus was estimated by visual observation of ewes marked by rams. Pregnancy status of ewes in Experiment 2 was determined using ultrasound, 30 days after oestrus. The total number of ewes detected in oestrus in Experiment 1 was similar between the three groups. The frequency distribution of ewes in oestrus in the E5 group differed from that of ewes in both C1 (p=0.05) and E3 (p<0.001). A similar number of ewes were detected in oestrus between Days 16-20, but the proportion of ewes in oestrus between Days 21-26 was greater for ewes in C1 than E5 or E3. Mean interval to the onset of oestrus was shorter in C1 than E3 which was shorter than E5 ewes (p<0.001). In Experiment 2, the total number of ewes in oestrus were similar between groups. Ewes in oestrus between Days 1-4 (65% and 64% for C2 and CE, respectively) and conception rates over the same period (81% and 80% for C2 and CE, respectively) were also similar between groups. Administration of oestradiol-17beta to anoestrous ewes altered the pattern of onset of oestrus, but it did not affect submission or conception rates, regardless of whether or not a short period of progesterone priming with a new CIDR device was included prior to the introduction of rams.
Structural requirements of oleosin domains for subcellular targeting to the oil body.
van Rooijen, G J; Moloney, M M
1995-01-01
We have investigated the protein domains responsible for the correct subcellular targeting of plant seed oleosins. We have attempted to study this targeting in vivo using "tagged" oleosins in transgenic plants. Different constructs were prepared lacking gene sequences encoding one of three structural domains of natural oleosins. Each was fused in frame to the Escherichia coli uid A gene encoding beta-glucuronidase (GUS). These constructs were introduced into Brassica napus using Agrobacterium-mediated transformation. GUS activity was measured in washed oil bodies and in the soluble protein fraction of the transgenic seeds. It was found that complete Arabidopsis oleosin-GUS fusions undergo correct subcellular targeting in transgenic Brassica seeds. Removal of the C-terminal domain of the Arabidopsis oleosin comprising the last 48 amino acids had no effect on overall subcellular targeting. In contrast, loss of the first 47 amino acids (N terminus) or amino acids 48 to 113 (which make up a lipophilic core) resulted in impaired targeting of the fusion protein to the oil bodies and greatly reduced accumulation of the fusion protein. Northern blotting revealed that this reduction is not due to differences in mRNA accumulation. Results from these measurements indicated that both the N-terminal and central oleosin domain are important for targeting to the oil body and show that there is a direct correlation between the inability to target to the oil body and protein stability. PMID:8539295
EDITORIAL: Message from the Editor Message from the Editor
NASA Astrophysics Data System (ADS)
Thomas, Paul
2010-02-01
This year Nuclear Fusion celebrates its fiftieth anniversary. This has been marked by the January special edition, containing papers presented at the plenary and celebratory evening session of the 22nd Fusion Energy Conference at Geneva. These papers underline the enormous progress that has been made in the last 50 years both in experiment and theory. Whilst the technical challenges that we face are still formidable, they are largely concerned with engineering a fusion reactor rather than fundamental plasma physics. In my editorial of a year ago, I remarked on the price of oil and the incentive that it gives to develop nuclear fusion into a viable energy source. This last year, attention has shifted somewhat from the markets to the environment and the Copenhagen climate summit in particular. The timescale for action on the environment is much shorter than we can possibly match and so we can only play our part towards developing long term solutions. Our responsibility is to present a programme that has the clear goal in developing a sustainable source of energy and, as the next step, make an unambiguous success of ITER. The Nuclear Fusion journal has continued to make an important contribution to the research programme and has maintained its position as the leading journal in the field. The journal depends entirely on its authors and referees and so I would like to thank them all for their work in 2009 and look forward to a continuing, successful collaboration in 2010. Refereeing The Nuclear Fusion Editorial Office understands how much effort is required of our referees. The Editorial Board decided that an expression of thanks to our most loyal referees is appropriate and so, since January 2005, we have been offering the top ten most active referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. This year, seven of the top referees have reviewed four or more manuscripts in the period November 2008 to November 2009 and provided particularly detailed advice to the authors. The other three have been very helpful in 'minority fields'. We have excluded our Board members, Guest Editors of special editions and those referees who were already listed in the last four years. Guest Editors' work on papers submitted to their Special Issues is also excluded from consideration. The following people have been selected: Tomonori Takizuka, JAEA-Naka Fusion Institute, Japan Rudolf Neu, Max-Planck-Institut für Plasmaphysik, Germany Sibylle Guenter, Max-Planck-Institut für Plasmaphysik, Germany Taik-Soo Hahm, Princeton Plasma Physics Laboratory, United States David R. Mikkelsen, Princeton Plasma Physics Laboratory, United States Peter C. de Vries, EURATOM/UKAEA Fusion Association, United Kingdom Yasuhiro Suzuki, National Institute for Fusion Science, Japan Jerzy Wolowski, Institute of Plasma Physics and Laser Microfusion, Poland Tetsuo Tanabe, Kyushu University, Japan Yasuyuki Yagi, National Institute of Advanced Industrial Science and Technology, Japan Congratulations and many, many thanks! The Guest Editors of special editions deserve a special mention for the excellent help that they have given us. They are: Taik-Soo Hahm, Princeton Plasma Physics Laboratory, United States, Special Issue on H-Mode Physics and Transport Barriers Yaroslav Kolesnichenko, Institute for Nuclear Research, Ukraine, Special Issue on Energetic Particles in Magnetic Confinement Systems Kimitaka Itoh, National Institute for Fusion Science, Japan and Howard R. Wilson, University of York, UK, Special Issue on Plasma Instabilities Bernhard Unterberg, Forschungszentrum Juelich, Germany, Special Issue on Stochastic Fusion Plasma In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion. At the end of this issue we give the full list of all referees for 2009. Our thanks to them! Authors The winner of the 2009 Nuclear Fusion award was Steven A. Sabbagh et al for the paper entitled 'Resistive wall stabilized operation in rotating high beta NSTX plasmas' (Nucl. Fusion 46 635-644). Reviews Last year I announced a revival of Nuclear Fusion Reviews, following a decision by the Board of Editors. 'A review of zonal flow experiments', by Akihide Fujisawa was the first fruit of this. In 2010, we are expecting to publish further review articles, the first of which is entitled 'Gyrokinetic simulations of turbulent transport' by Xavier Garbet, Yasuhiro Idomura, Laurent Villard and Tomo-Hiko Watanabe. Letters At the 2009 Board of Editors Meeting in Atlanta, the current letters procedure was summarized and it was noted that the peer review time for Letters is quite variable. Some are accepted within a month of submission, others take longer. Since the purpose of Letters is to provide a route for rapid communication, this is quite an important matter. It was agreed that the Board of Editors would play a more active role in the Letter approval process. If a reviewer asks for a second revision the Editor or a Board of Editors member will be queried as to whether the submission should still be treated as a Letter rather than a regular Paper. The Board of Editors The following Board of Editors members reached the end of their term in 2009: Amanda Hubbard, Yaroslav Kolesnichenko, Kunioki Mima, Boris Sharkov and Michael Ulrickson. On behalf of the Nuclear Fusion Office and the Chairman of the Board of Editors, Mitsuru Kikuchi, I would like to thank them for their efforts in support of the journal. At the same time, we welcomed: Hiroshi Azechi, Xuru Duan, Richard Hawryluk, Sergey Konovalov, Bruce Lipschultz, Peter Norreys, Francesco Romanelli, Tony Taylor and Hartmut Zohm. I am sure that such an illustrious group does not need any introduction to the readers of Nuclear Fusion and I am confident that the new members can only further the success of the journal. It is with great sadness that I have to note the passing away of the following former members of the Board of Editors: Ravindra Sudan (1975 to 1984), Joe Di Marco (1984 to 1991) and Roy Bickerton (1975 to 1986). The Nuclear Fusion Office and IOP Publishing Just as the journal depends on the authors and referees, so its success is also due to the tireless and largely unsung efforts of the Nuclear Fusion Office in Vienna and IOP Publishing in Bristol. I would like to express my personal thanks to Maria Bergamini-Roedler, Katja Haslinger, Sophy Le Masurier, Yasmin McGlashan, Caroline Wilkinson, Sarah Ryder, Rachael Kriefman and Katie Gerrard for the support that they have given to me, the authors and the referees. Season's Greetings The January special edition delayed this editorial for a month. Nevertheless, I would like belatedly to wish our readers, authors, referees and Board of Editors the season's greetings and thank them for their contributions to Nuclear Fusion in 2009.
confFuse: High-Confidence Fusion Gene Detection across Tumor Entities.
Huang, Zhiqin; Jones, David T W; Wu, Yonghe; Lichter, Peter; Zapatka, Marc
2017-01-01
Background: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. Results: confFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. Conclusions: confFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.
Bajorunaite, Egle; Cirkovas, Andrejus; Radzevicius, Kostas; Larsen, Kim Lambertsen; Sereikaite, Jolanta; Bumelis, Vladas-Algirdas
2009-06-01
Cyclodextrins with different ring size and ring substituents were tested for recombinant mink and porcine growth hormones aggregation suppression in the refolding process from Escherichia coli inclusion bodies. Methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin show a positive effect on the aggregation suppression of both proteins. The influence of different methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin concentrations on the renaturation yield of both growth hormones was investigated. Moreover, methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin suppress not only folding-related, but also temperature-related aggregates formation of both proteins. Circular dichroism experiments (monitoring of protein solution turbidity by registering high tension voltage) showed that the onset temperature of aggregation of both growth hormones increased with increasing 2-hydroxypropyl-beta-cyclodextrin concentration. In conclusion, cyclodextrins have perspectives in biotechnology of veterinary growth hormones not only for protein production, but also for its storage.
Agui, T; Xin, X; Cai, Y; Shim, G; Muramatsu, Y; Yamada, T; Fujiwara, H; Matsumoto, K
1995-09-01
The regulation of the gene expression of the atrial natriuretic peptide receptor (ANPR) subtypes, ANPR-A, ANPR-B, and ANPR-C, was investigated in a murine thymic stromal cell line, MRL 104.8a. When MRL 104.8a cells were cultured with transforming growth factor (TGF)-beta1, [125I]ANP binding sites increased with increasing dose of TGF-beta1. These binding sites were identified as ANPR-C by a displacement experiment with ANPR-C-specific ligand, C-ANF, and by the affinity cross-linking of the [125I]ANP binding sites with a chemical cross-linker to determine the molecular weight of the ANPR. This augmentation of the ANPR-C expression was elucidated to occur at the transcriptional level by Northern blot experiment, comparison of the relative amounts of mRNA by reverse transcription (RT)-PCR, and in vitro nuclear transcription assay. Conversely, the expression of the ANP biological receptors, ANPR-A and ANPR-B, was shown to be down-regulated by TGF-beta1. These data suggest that TGF-beta1 regulates the gene expression of ANPRs in the thymic stromal cells and that ANP and TGF-beta1 might affect the thymic stromal cell functions.